Sample records for states apollo program

  1. Apollo Program Leadership

    NASA Technical Reports Server (NTRS)

    1950-01-01

    This historical photograph is of the Apollo Space Program Leaders. An inscription appears at the top of the image that states, 'Our deep appreciation for your outstanding contribution to the success of Apollo 11', signed 'S', indicating that it was originally signed by Apollo Program Director General Sam Phillips, pictured second from left. From left to right are; NASA Associate Administrator George Mueller; Phillips; Kurt Debus, Director of the Kennedy Space Center; Robert Gilruth, Director of the Manned Spacecraft Center, later renamed the Johnson Space Center; and Wernher von Braun, Director of the Marshall Space Flight Center.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1950-01-01

    This historical photograph is of the Apollo Space Program Leaders. An inscription appears at the top of the image that states, “Our deep appreciation for your outstanding contribution to the success of Apollo 11”, signed “S”, indicating that it was originally signed by Apollo Program Director General Sam Phillips, pictured second from left. From left to right are; NASA Associate Administrator George Mueller; Phillips; Kurt Debus, Director of the Kennedy Space Center; Robert Gilruth, Director of the Manned Spacecraft Center, later renamed the Johnson Space Center; and Wernher von Braun, Director of the Marshall Space Flight Center.

  3. NASA Technology Applications Team

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The contributions of NASA to the advancement of the level of the technology base of the United States are highlighted. Technological transfer from preflight programs, the Viking program, the Apollo program, and the Shuttle and Skylab programs is reported.

  4. Project management in the Apollo program: An interdisciplinary study

    NASA Technical Reports Server (NTRS)

    Drucker, E. E.; Pooler, W. S.; Wilemon, D. L.; Wood, B. D.

    1972-01-01

    Findings concerning project management in the NASA Apollo program are presented. The Apollo program in the context of the total NASA organization is examined along with the nature of project management and the manner in which project managers functioned in the Apollo program. The utilization of the in-house technical competence in the support of the Apollo program, and the formal and informal relationships between Apollo managers and the contractors are discussed.

  5. LUNAR SAMPLES - APOLLO XVI - JSC

    NASA Image and Video Library

    1975-03-18

    S75-23543 (April 1972) --- This Apollo 16 lunar sample (moon rock) was collected by astronaut John W. Young, commander of the mission, about 15 meters southwest of the landing site. This rock weighs 128 grams when returned to Earth. The sample is a polymict breccia. This rock, like all lunar highland breccias, is very old, about 3,900,000,000 years older than 99.99% of all Earth surface rocks, according to scientists. Scientific research is being conducted on the balance of this sample at NASA's Johnson Space Center and at other research centers in the United States and certain foreign nations under a continuing program of investigation involving lunar samples collected during the Apollo program.

  6. Apollo experience report: Guidance and control systems. Mission control programmer for unmanned missions AS-202, Apollo 4, and Apollo 6

    NASA Technical Reports Server (NTRS)

    Holloway, G. F.

    1975-01-01

    An unmanned test flight program required to evaluate the command module heat shield and the structural integrity of the command and service module/Saturn launch vehicle is described. The mission control programer was developed to provide the unmanned interface between the guidance and navigation computer and the other spacecraft systems for mission event sequencing and real-time ground control during missions AS-202, Apollo 4, and Apollo 6. The development of this unmanned programer is traced from the initial concept through the flight test phase. Detailed discussions of hardware development problems are given with the resulting solutions. The mission control programer functioned correctly without any flight anomalies for all missions. The Apollo 4 mission control programer was reused for the Apollo 6 flight, thus being one of the first subsystems to be reflown on an Apollo space flight.

  7. Apollo 17: On the Shoulders of Giants

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A documentary view of the Apollo 17 journey to Taurus-Littrow, the final lunar landing mission in the Apollo program is discussed. The film depicts the highlights of the mission and relates the Apollo program to Skylab, the Apollo-Soyuz linkup and the Space Shuttle.

  8. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    Mike Ciannilli, the Apollo, Challenger, Columbia Lessons Learned Program manager, far right, is pictured with panelists from the Apollo 1 Lessons Learned event in the Training Auditorium at NASA's Kennedy Space Center in Florida. In the center, are Ernie Reyes, retired, former Apollo 1 senior operations manager; and John Tribe, retired, former Apollo 1 Reaction and Control System lead engineer. At far left is Zulie Cipo, the Apollo, Challenger, Columbia Lessons Learned Program event support team lead. The theme of the program was "To there and Back Again." The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  9. The triumph and decline of the "squares": Grumman Aerospace engineers and production workers in the Apollo era, 1957--1973

    NASA Astrophysics Data System (ADS)

    Onkst, David Hugh

    This dissertation is a social, cultural, and economic history of the men and women of the Grumman Aerospace Company of Bethpage, New York from 1957 through 1973. These "Grummanites" were the engineers and production workers who designed and built the Apollo Lunar Modules that allowed humans to land on the Moon. This study provides unique insights into the impact that the Apollo Program---a large state-initiated and -supported program---had on those "squares," people whom many contemporaries saw as a vital part of mainstream 1960s American society. By the beginning of the Space Age in 1957, Grumman, Long Island's single largest employer, had firmly established a workplace culture of paternalism that Grummanites largely embraced. Company officials believed strongly in worker retention and had established a policy of providing every sort of benefit their employees seemingly desired, including a highly personal and participatory form of management. Many Grummanites had joined the firm during the early years of the Apollo Program because they believed in the promise of permanent employment on exciting projects that would explore the endless frontier of space. But, as many of these mainly self-reliant, individualistic "squares" would bitterly discover, their dedication to Grumman did little to secure their livelihoods during the aerospace industry's early 1970s downsizing; their individual successes were too largely tied to federal spending and declined when Americans grew disenchanted with space exploration. This dissertation demonstrates how the cultural bond of paternalism between aerospace workers and their company unraveled in the 1960s, and then ended in the early 1970s, because of forces within the company, the economy, and the American state. The word "triumph" in this study's title not only applies to Grummanites' triumphs with the Lunar Modules, but also their individual socioeconomic victories. The term "decline" refers to the early 1970s downsizing of more than a third of the Apollo workforce that had made that program a reality. By relying on a wide-range of archival research (including corporate records) and extensive surveys and interviews with Grummanites, this dissertation provides an overview of how Apollo era aerospace workers interacted with the Cold War American state.

  10. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    Mike Ciannilli, the Apollo, Challenger, Columbia Lessons Learned Program manager, welcomes participants to the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA’s Kennedy Space Center in Florida. The program's theme was "To There and Back Again." Guest panelists included Charlie Duke, former Apollo 16 astronaut and member of the Apollo 1 Emergency Egress Investigation Team; Ernie Reyes, retired, Apollo 1 senior operations engineer; and John Tribe, retired, Apollo 1 Reaction and Control System lead engineer. The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  11. Apollo 11: A good ending to a bad decade

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Gemini program and the Apollo program which culminated in landing a man on the moon and safely returning him to earth are highlighted. The space program in the aftermath of Apollo 11 is briefly summarized, including: Skylab, Apollo Soyuz, Mars and Venus probes, improved world communications, remote sensing of world resources, and finally, space shuttle.

  12. Project Apollo: The Tough Decisions

    NASA Technical Reports Server (NTRS)

    Seamans, Robert C., Jr.

    2005-01-01

    The report reviews the major Mercury and then Gemini precursors for the Apollo mission program and its development and mission sequence. But, very importantly, it describes the major and often complex deliberations that encouraged inputs from the broad range of informed internal Agency individuals in order to arrive at the resulting actions taken; it recognizes differences among their various views, including even sensitivities within the leadership of the Agency, and it acknowledges NASA's relationships with the President and key executive branch personnel, as well as the very important and often complex relationships with members of Congress. The process of writing this book was searching and comprehensive. The achievement of the world's first manned lunar landings, after the earlier Mercury and Gemini programs played catch-up to match the Soviet Union's advanced position, clearly established the United States' preeminence in space. Early in the book, Bob describes an extended meeting in the White House in which the President's views and those of Mr. Webb were seriously discussed. Bob tells how, through Apollo's lunar landing, NASA clearly met both President Kennedy's goal to overcome the Soviets' leadership image and James Webb's goal to use Apollo as a major part of his program to demonstrate U.S. technological preeminence.

  13. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    Mike Ciannilli, at left, the Apollo, Challenger, Columbia Lessons Learned Program manager, presents a certificate to Charlie Duke, former Apollo 16 astronaut and member of the Apollo 1 Emergency Egress Investigation Team, during the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA's Kennedy Space Center in Florida. The program's theme was "To There and Back Again." The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  14. Apollo Program Summary Report: Synopsis of the Apollo Program Activities and Technology for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Overall program activities and the technology developed to accomplish lunar exploration are discussed. A summary of the flights conducted over an 11-year period is presented along with specific aspects of the overall program, including lunar science, vehicle development and performance, lunar module development program, spacecraft development testing, flight crew summary, mission operations, biomedical data, spacecraft manufacturing and testing, launch site facilities, equipment, and prelaunch operations, and the lunar receiving laboratory. Appendixes provide data on each of the Apollo missions, mission type designations, spacecraft weights, records achieved by Apollo crewmen, vehicle histories, and a listing of anomalous hardware conditions noted during each flight beginning with Apollo 4.

  15. Apollo Block I Spacesuit Development and Apollo Block II Spacesuit Competition

    NASA Technical Reports Server (NTRS)

    McBarron, Jim

    2013-01-01

    Jim McBarron has over 40 years of experience with the U.S. Air Force pressure suit and NASA spacesuit development and operations. As a result of his experience, he shared his significant knowledge about the requirements and modifications made to the Gemini spacesuit, which were necessary to support the Apollo Block I Program. In addition, he provided an overview of the Apollo Block II Spacesuit competition test program conducted by the NASA Manned Spacecraft Center. Topics covered included the program's chronology; competition test program ground rules, scoring details, and final test results; and the implementation of resulting modifications to the Apollo Spacesuit Program. He concluded his presentation by identifying noteworthy lessons learned.

  16. Apollo experience report: Mission planning for Apollo entry

    NASA Technical Reports Server (NTRS)

    Graves, C. A.; Harpold, J. C.

    1972-01-01

    The problems encountered and the experience gained in the entry mission plans, flight software, trajectory-monitoring procedures, and backup trajectory-control techniques of the Apollo Program should provide a foundation upon which future spacecraft programs can be developed. Descriptions of these entry activities are presented. Also, to provide additional background information needed for discussion of the Apollo entry experience, descriptions of the entry targeting for the Apollo 11 mission and the postflight analysis of the Apollo 10 mission are presented.

  17. Six Apollo astronauts in front of Saturn V at ASVC prior to grand opening

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Some of the former Apollo program astronauts pose in front of an Apollo Command and Service Module during a tour the new Apollo/Saturn V Center (ASVC) at KSC prior to the gala grand opening ceremony for the facility that was held Jan. 8, 1997. The astronauts were invited to participate in the event, which also featured NASA Administrator Dan Goldin and KSC Director Jay Honeycutt. The astronauts are (from left): Apollo 14 Lunar Module Pilot Edgar D. Mitchell; Apollo 10 Command Module Pilot and Apollo 16 Commander John W. Young; Apollo 11 Lunar Module Pilot Edwin E. 'Buzz' Aldrin, Jr.; Apollo 10 Commander Thomas P. Stafford; Apollo 10 Lunar Module Pilot and Apollo 17 Commander Eugene A. Cernan; and Apollo 9 Lunar Module Pilot Russell L. Schweikart. The ASVC also features several other Apollo program spacecraft components, multimedia presentations and a simulated Apollo/Saturn V liftoff. The facility will be a part of the KSC bus tour that embarks from the KSC Visitor Center.

  18. An annotated bibliography of the Apollo program

    NASA Technical Reports Server (NTRS)

    Launius, Roger D.; Hunley, J. D.

    1994-01-01

    The topics presented include the following: general works, the space race, decisions, Apollo technology, operations, popular culture and promotion, science, astronauts, the management of the Apollo Program, and juvenile literature.

  19. Kennedy Space Center: Apollo to Multi-User Spaceport

    NASA Technical Reports Server (NTRS)

    Weber, Philip J.; Kanner, Howard S.

    2017-01-01

    NASA Kennedy Space Center (KSC) was established as the gateway to exploring beyond earth. Since the establishment of KSC in December 1963, the Center has been critical in the execution of the United States of Americas bold mission to send astronauts beyond the grasp of the terra firma. On May 25, 1961, a few weeks after a Soviet cosmonaut became the first person to fly in space, President John F. Kennedy laid out the ambitious goal of landing a man on the moon and returning him safely to the Earth by the end of the decade. The resultant Apollo program was massive endeavor, driven by the Cold War Space Race, and supported with a robust budget. The Apollo program consisted of 18 launches from newly developed infrastructure, including 12 manned missions and six lunar landings, ending with Apollo 17 that launched on December 7, 1972. Continuing to use this infrastructure, the Skylab program launched four missions. During the Skylab program, KSC infrastructure was redesigned to meet the needs of the Space Shuttle program, which launched its first vehicle (STS-1) on April 12, 1981. The Space Shuttle required significant modifications to the Apollo launch pads and assembly facilities, as well as new infrastructure, such as Orbiter and Payload Processing Facilities, as well as the Shuttle Landing Facility. The Space Shuttle was a workhorse that supported many satellite deployments, but was key for the construction and maintenance of the International Space Station, which required additional facilities at KSC to support processing of the flight hardware. After reaching the new Millennium, United States policymakers searched for new ways to reduce the cost of space exploration. The Constellation Program was initiated in 2005 with a goal of providing a crewed lunar landing with a much smaller budget. The very successful Space Shuttle made its last launch on July 8, 2011, after 135 missions. In the subsequent years, KSC continues to evolve, and this paper will address past and future efforts of the transformation of the KSC Apollo and Space Shuttle heritage infrastructure into a more versatile, multi-user spaceport. The paper will also discuss the US Congressional and NASA initiatives for developing and supporting multiple commercial partners, while simultaneously supporting NASAs human exploration initiative, consisting of Space Launch System (SLS), Orion spacecraft and associated ground launch systems. In addition, the paper explains the approach with examples for NASA KSC to leverage new technologies and innovative capabilities developed to reduce the cost to individual users.

  20. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    Mike Ciannilli, at left, the Apollo, Challenger, Columbia Lessons Learned Program manager, presents a certificate to John Tribe, retired, Apollo 1 Reaction and Control System lead engineer, during the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA's Kennedy Space Center in Florida. The theme of the program was "To there and Back Again." The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  1. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    Mike Ciannilli, the Apollo, Challenger, Columbia Lessons Learned program manager, at left, presents a certificate to Ernie Reyes, retired, former Apollo 1 senior operations manager, during the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA's Kennedy Space Center in Florida. The theme of the program was "To there and Back Again." The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1974-06-04

    On June 4, 1974, 5 years after the successful Apollo 11 lunar landing mission, commander Neil Armstrong (right) presented a plaque to U.S. President Richard Milhous Nixon (left) on behalf of all people who had taken part in the space program. In making the presentation, Armstrong said “Mr. President, you have proclaimed this week to be United States Space week in conjunction with the fifth anniversary of our first successful landing on the Moon. It is my privilege to represent my colleagues, the crewmen of projects Mercury, Gemini, Apollo, and Skylab, and the men and women of NASA, and the hundreds of thousands of Americans from across the land who contributed so mightily to the success of our efforts in space in presenting this plaque which bears the names of each individual who has had the privilege of representing this country” in a space flight. The presentation was made at the California white house in San Clemente.

  3. Four Apollo astronauts with Command and Service Module at ASVC prior to grand opening

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Some of the former Apollo program astronauts admire an Apollo Command and Service Module during a tour the new Apollo/Saturn V Center (ASVC) at KSC prior to the gala grand opening ceremony for the facility that was held Jan. 8, 1997. The astronauts were invited to participate in the event, which also featured NASA Administrator Dan Goldin and KSC Director Jay Honeycutt. The astronauts are (from left): Apollo 10 Command Module Pilot and Apollo 16 Commander John W. Young;. Apollo 11 Lunar Module Pilot Edwin E. 'Buzz' Aldrin, Jr.; Apollo 17 Commander Eugene A. Cernan; and Apollo 10 Commander Thomas P. Stafford. The ASVC also features several other Apollo program spacecraft components, multimedia presentations and a simulated Apollo/Saturn V liftoff. The facility will be a part of the KSC bus tour that embarks from the KSC Visitor Center.

  4. Engle, Cernan, Young, and Stafford under Saturn V at ASVC prior to grand opening

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Some of the former Apollo program astronauts recall the past as they tour the new Apollo/Saturn V Center (ASVC) at KSC prior to the gala grand opening ceremony for the facility that was held Jan. 8, 1997. The astronauts were invited to participate in the event, which also featured NASA Administrator Dan Goldin and KSC Director Jay Honeycutt. Standing underneath the KSC Apollo/Saturn V inside the building are (from left): Apollo 14 Back-up Lunar Module Pilot Joe H. Engle; Apollo 10 Lunar Module Pilot and Apollo 17 Commander Eugene A. Cernan; Apollo 10 Command Module Pilot and Apollo 16 Commander John W. Young; and Apollo 10 Commander Thomas P. Stafford. The ASVC also features several other Apollo program spacecraft components, multimedia presentations and a simulated Apollo/Saturn V liftoff. The facility will be a part of the KSC bus tour that embarks from the KSC Visitor Center.

  5. KSC-04PD-1013

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Vance Brand is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russias Mir space station; the late Francis R. 'Dick' Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Brand was Command Module Pilot on the 1975 Apollo- Soyuz Test Project, the first linkup in orbit between spaceships of the United States and Soviet Union, and he later commanded three Space Shuttle missions. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  6. KSC-04pd1013

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Vance Brand is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Brand was Command Module Pilot on the 1975 Apollo-Soyuz Test Project, the first linkup in orbit between spaceships of the United States and Soviet Union, and he later commanded three Space Shuttle missions. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  7. KSC-99pp0877

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- During an anniversary banquet honoring the Apollo program team, the people who made the entire lunar landing program possible, former Apollo astronaut Gene Cernan relates a humorous comment while Wally Schirra (background) gestures behind him. Cernan, who flew on Apollo 10 and 17, was the last man to walk on the moon; Schirra flew on Apollo 7. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Other guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin "Buzz" Aldrin who flew on Apollo 11, the launch of the first moon landing, and Walt Cunningham, who also flew on Apollo 7

  8. Cernan, Stafford, and Young talk at ASVC prior to grand opening

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Some of the former Apollo program astronauts tour the new Apollo/Saturn V Center (ASVC) at KSC prior to the gala grand opening ceremony for the facility that was held Jan. 8, 1997. The astronauts were invited to participate in the event, which also featured NASA Administrator Dan Goldin and KSC Director Jay Honeycutt. Discussing old times beneath the KSC Apollo/Saturn V rocket inside the building are (from left) Apollo 10 Lunar Module Pilot and Apollo 17 Commander Eugene A. Cernan; Apollo 10 Commander Thomas P. Stafford and Apollo 16 Commander John W. Young. The ASVC also features several other Apollo program spacecraft components, multimedia presentations and a simulated Apollo/ Saturn V liftoff. The facility will be a part of the KSC bus tour that embarks from the KSC Visitor Center.

  9. Five Apollo astronauts with Lunar Module at ASVC prior to grand opening

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Some of the former Apollo program astronauts observe a Lunar Module and Moon mockup during a tour the new Apollo/Saturn V Center (ASVC) at KSC prior to the gala grand opening ceremony for the facility that was held Jan. 8, 1997. The astronauts were invited to participate in the event, which also featured NASA Administrator Dan Goldin and KSC Director Jay Honeycutt. Some of the visiting astonauts were (from left): Apollo 10 Lunar Module Pilot and Apollo 17 Commander Eugene A. Cernan; Apollo 9 Lunar Module Pilot Russell L. Schweikart; Apollo 10 Command Module Pilot and Apollo 16 Commander John W. Young; Apollo 10 Commander Thomas P. Stafford; and Apollo 11 Lunar Module Pilot Edwin E. 'Buzz' Aldrin, Jr. The ASVC also features several other Apollo program spacecraft components, multimedia presentations and a simulated Apollo/Saturn V liftoff. The facility will be a part of the KSC bus tour that embarks from the KSC Visitor Center.

  10. Cernan, Stafford, and Young talk at ASVC prior to grand opening

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Some of the former Apollo program astronauts tour the new Apollo/Saturn V Center (ASVC) at KSC prior to the gala grand opening ceremony for the facility that was held Jan. 8, 1997. The astronauts were invited to participate in the event, which also featured NASA Administrator Dan Goldin and KSC Director Jay Honeycutt. Discussing old times are (from left) Apollo 10 Lunar Module Pilot and Apollo 17 Commander Eugene A. Cernan; Apollo 10 Commander Thomas P. Stafford and Apollo 16 Commander John W. Young. The ASVC also features several other Apollo program spacecraft components, multimedia presentations and a simulated Apollo/ Saturn V liftoff. The facility will be a part of the KSC bus tour that embarks from the KSC Visitor Center.

  11. Success Factors in Human Space Programs - Why Did Apollo Succeed Better Than Later Programs?

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2015-01-01

    The Apollo Program reached the moon, but the Constellation Program (CxP) that planned to return to the moon and go on to Mars was cancelled. Apollo is NASA's greatest achievement but its success is poorly understood. The usual explanation is that President Kennedy announced we were going to the moon, the scientific community and the public strongly supported it, and Congress provided the necessary funding. This is partially incorrect and does not actually explain Apollo's success. The scientific community and the public did not support Apollo. Like Apollo, Constellation was announced by a president and funded by Congress, with elements that continued on even after it was cancelled. Two other factors account for Apollo's success. Initially, the surprise event of Uri Gagarin's first human space flight created political distress and a strong desire for the government to dramatically demonstrate American space capability. Options were considered and Apollo was found to be most effective and technically feasible. Political necessity overrode both the lack of popular and scientific support and the extremely high cost and risk. Other NASA human space programs were either canceled, such as the Space Exploration Initiative (SEI), repeatedly threatened with cancellation, such as International Space Station (ISS), or terminated while still operational, such as the space shuttle and even Apollo itself. Large crash programs such as Apollo are initiated and continued if and only if urgent political necessity produces the necessary political will. They succeed if and only if they are technically feasible within the provided resources. Future human space missions will probably require gradual step-by-step development in a more normal environment.

  12. Apollo - A pioneering generation

    NASA Technical Reports Server (NTRS)

    Fries, S. D.

    1986-01-01

    This paper describes an ongoing study of the National Aeronautics and Space Administration's (NASA's) first generation of engineers - the generation which accomplished the United States' first major achievements in manned space exploration. Combining statistical analysis with personal interviews, the study explores questions such as the origins, motivations, and career histories of NASA's first generation of engineers; that generation's role in NASA's current leadership; the relationships of science, engineering, and management in NASA's institutional culture; and changes experienced within NASA during and after the Apollo program.

  13. Saturn Apollo Program

    NASA Image and Video Library

    1972-04-01

    The Lunar Roving Vehicle (LRV) was designed to transport astronauts and materials on the Moon. An LRV was used on each of the last three Apollo missions; Apollo 15, Apollo 16, and Apollo 17, in 1971 and 1972, to permit the crew to travel several miles from the lunar landing site. This photograph was taken during the Apollo 16 mission.

  14. Flight Operations reunion for the Apollo 11 20th anniversary of the first manned lunar landing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The following major areas are presented: (1) the Apollo years; (2) official flight control manning list for Apollo 11; (3) original mission control emblem; (4) foundations of flight control; (5) Apollo-11 20th anniversary program and events; (6) Apollo 11 mission operations team certificate; (7) Apollo 11 mission summary (timeline); and (8) Apollo flight control team photographs and biographies.

  15. The Impact of Apollo-Era Microbiology on Human Space Flight

    NASA Technical Reports Server (NTRS)

    Elliott, T. F; Castro, V. A.; Bruce, R. J.; Pierson, D. L.

    2014-01-01

    The microbiota of crewmembers and the spacecraft environment contributes significant risk to crew health during space flight missions. NASA reduces microbial risk with various mitigation methods that originated during the Apollo Program and continued to evolve through subsequent programs: Skylab, Shuttle, and International Space Station (ISS). A quarantine of the crew and lunar surface samples, within the Lunar Receiving Laboratory following return from the Moon, was used to prevent contamination with unknown extraterrestrial organisms. The quarantine durations for the crew and lunar samples were 21 days and 50 days, respectively. A series of infections among Apollo crewmembers resulted in a quarantine before launch to limit exposure to infectious organisms. This Health Stabilization Program isolated the crew for 21 days before flight and was effective in reducing crew illness. After the program developed water recovery hardware for Apollo spacecraft, the 1967 National Academy of Science Space Science Board recommended the monitoring of potable water. NASA implemented acceptability limits of 10 colony forming units (CFU) per mL and the absence of viable E. coli, anaerobes, yeasts, and molds in three separate 150 mL aliquots. Microbiological investigations of the crew and spacecraft environment were conducted during the Apollo program, including the Apollo-Soyuz Test Project and Skylab. Subsequent space programs implemented microbial screening of the crew for pathogens and acceptability limits on spacecraft surfaces and air. Microbiology risk mitigation methods have evolved since the Apollo program. NASA cancelled the quarantine of the crew after return from the lunar surface, reduced the duration of the Health Stabilization Program; and implemented acceptability limits for spacecraft surfaces and air. While microbial risks were not a main focus of the early Mercury and Gemini programs, the extended duration of Apollo flights resulted in the increased scrutiny of impact of the space flight environment on crew health. The lessons learned during that era of space flight continue to impact microbiology risk mitigation in space programs today.

  16. Apollo lunar surface experiments package

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Developments in the ALSEP program are reported. A summary of the status for the total ALSEP program is included. Other areas discussed include: (1) status of Apollo 16 (array D) and Apollo 17 (array E), (2) lunar seismic profiling experiment, (3) lunar ejecta and meteorites experiment, and (4) lunar mass spectrometer experiments.

  17. Report of Apollo 204 Review Board

    NASA Technical Reports Server (NTRS)

    1967-01-01

    The Nation's space program requires that man and machine achieve the highest capability to pursue the exploration of space. The Apollo 204 Review Board was charged with the responsibility of reviewing the circumstances surrounding the accident, reporting its findings relating to the cause of the accident, and formulating recommendations so that inherent hazards are reduced to a minimum. The Board is very concerned that its description of the defects in the Apollo Program that led to the condition existing at the time of the Apollo 204 accident will be interpreted as an indictment of the entire manned space flight program and a castigation of the many people associated with that program. This report, rather than presenting a total picture of that program, is concerned with the deficiencies uncovered.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1972-01-01

    This photograph was taken during the testing of the Lunar Roving Vehicle (LRV) at the Johnson Space Center. Developed by the MSFC, the LRV was the lightweight electric car designed to increase the range of mobility and productivity of astronauts on the lunar surface. It was used on the last three Apollo missions; Apollo 15, Apollo 16, and Apollo 17.

  19. Apollo Expeditions to the Moon

    NASA Technical Reports Server (NTRS)

    Cortright, E. M. (Editor)

    1975-01-01

    The Apollo program is described from the planning stages through Apollo 17. The organization of the program is discussed along with the development of the spacecraft and related technology. The objectives and accomplishments of each mission are emphasized along with personal accounts of the major figures involved. Other topics discussed include: ground support systems and astronaut selection.

  20. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    Charlie Duke, former Apollo 16 astronaut and member of the Apollo 1 Emergency Egress Investigation Team, speaks to participants during the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA's Kennedy Space Center in Florida. The program's theme was "To There and Back Again." Other guest panelists included Ernie Reyes, retired, Apollo 1 senior operations engineer; and John Tribe, retired, Apollo 1 Reaction and Control System lead engineer. The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  1. Insignia for the Apollo program

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The insignia for the Apollo program is a disk circumscribed by a band displaying the words Apollo and NASA. The center disc bears a large letter 'A' with the constellation Orion positioned so its three central stars form the bar of the letter. To the right is a sphere of the earth, with a sphere of the moon in the upper left portion of the center disc. The face on the moon represents the mythical god, Apollo. A double trajectory passes behind both spheres and through the central stars.

  2. Apollo experience report: Apollo lunar surface experiments package data processing system

    NASA Technical Reports Server (NTRS)

    Eason, R. L.

    1974-01-01

    Apollo Program experience in the processing of scientific data from the Apollo lunar surface experiments package, in which computers and associated hardware and software were used, is summarized. The facility developed for the preprocessing of the lunar science data is described, as are several computer facilities and programs used by the Principal Investigators. The handling, processing, and analyzing of lunar science data and the interface with the Principal Investigators are discussed. Pertinent problems that arose in the development of the data processing schemes are discussed so that future programs may benefit from the solutions to the problems. The evolution of the data processing techniques for lunar science data related to recommendations for future programs of this type.

  3. Saturn Apollo Program

    NASA Image and Video Library

    1970-06-01

    This image depicts the Apollo 16 mission astronauts John Young (right) and Charles Duke (left) in pressure suits during a final crew training on the Lunar Roving Vehicle (LRV) at the Marshall Space Flight Center (MSFC), building 4619. Developed by the MSFC, the LRV was the lightweight electric car designed to increase the range of mobility and productivity of astronauts on the lunar surface. It was used on the last three Apollo missions; Apollo 15, Apollo 16, and Apollo 17.

  4. View of Mission Control Center during Apollo 13 splashdown

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Overall view of Mission Operations Control Room in Mission Control Center at the Manned Spacecraft Center (MSC) during the ceremonies aboard the U.S.S. Iwo Jima, prime recovery ship for the Apollo 13 mission. Dr. Donald K. Slayton (in black shirt, left of center), Director of Flight Crew Operations at MSC, and Chester M. Lee of the Apollo Program Directorate, Office of Manned Space Flight, NASA Headquarters, shake hands, while Dr. Rocco A. Petrone, Apollo Program Director, Office of Manned Space Flight, NASA Headquarters (standing, near Lee), watches the large screen showing Astronaut James A. Lovell Jr., Apollo 13 commander, during the on-board ceremonies. In the foreground, Glynn S. Lunney (extreme left) and Eugene F. Kranz (smoking a cigar), two Apollo 13 Flight Directors, view the activity from their consoles.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-01

    This is a good cutaway diagram of the Saturn V launch vehicle showing the three stages, the instrument unit, and the Apollo spacecraft. The chart on the right presents the basic technical data in clear metric detail. The Saturn V is the largest and most powerful launch vehicle in the United States. The towering, 111 meter, Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams. Development of the Saturn V was the responsibility of the Marshall Space Flight Center at Huntsville, Alabama, directed by Dr. Wernher von Braun.

  6. Apollo Soyuz test project. USA-USSR, fact sheet

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Apollo Soyuz Test Project (ASTP) is discussed. The United States and the Soviet Union have agreed to develop compatible rendezvous and docking systems which will provide a basis for docking and rescue on future spacecraft of both nations. The ASTP mission will include testing the rendezvous system in orbit, verifying techniques for transfer of astronauts and cosmonauts, and conducting experiments while docked and undocked. Diagrams of the spacecraft and systems involved in the tests are presented. The prime contractors for the equipment are identified. Biographical data on the astronauts participating in the program are provided.

  7. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    Kennedy Space Center Director Bob Cabana welcomes participants to the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA’s Kennedy Space Center in Florida. The program's theme was "To There and Back Again." Guest panelists included Charlie Duke, former Apollo 16 astronaut and member of the Apollo 1 Emergency Egress Investigation Team; Ernie Reyes, retired, Apollo 1 senior operations engineer; and John Tribe, retired, Apollo 1 Reaction and Control System lead engineer. The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  8. Saturn Apollo Program

    NASA Image and Video Library

    1968-06-03

    Pictured left to right, in the Apollo 7 Crew Portrait, are astronauts R. Walter Cunningham, Lunar Module pilot; Walter M. Schirra, Jr., commander; and Donn F. Eisele, Command Module Pilot. The Apollo 7 mission, boosted by a Saturn IB launch vehicle on October 11, 1968, was the first manned flight of the Apollo spacecraft.

  9. The role of toxicology in the Apollo space program

    NASA Technical Reports Server (NTRS)

    Rippstein, W. J., Jr.

    1975-01-01

    Some of the major considerations are presented which governed the formation and application of the toxicology program employed in support of the Apollo program. The overriding concern of the program was the safety of crews exposed to trace contaminant gases for extended periods of time. The materials screening program employed, in conjunction with a well designed spacecraft environmental control system, helped to attain the goals set forth for the Apollo program. The knowledge gained from working with the toxicity problems and the identification of compounds in the space cabin atmosphere are of importance for continued efforts in manned space flight. Tabular data of spacecraft contaminants are presented.

  10. [327] Biomedical Research Deferred in the Aftermath of the Apollo Fire: Impact to Progress in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    2017-01-01

    Before Apollo fire, early Apollo missions were expected to continue pattern established in Gemini program of accommodating significant scientific and biological experimentation, including human biomedical studies, during flights. Apollo1 and Apollo2, both 2-week engineering test flights, were to carry almost as many biomedical studies as Gemini 7, a 2-week medical test mission.

  11. Apollo 13 - Mission Control Console

    NASA Image and Video Library

    1970-04-15

    S70-35096 (16 April 1970) --- As the problem-plagued Apollo 13 crewmen entered their final 24 hours in space, several persons important to the mission remained attentive at consoles in the Mission Operations Control Room of the Mission Control Center at Manned Spacecraft Center. Among those monitoring communications and serving in supervisory capacities were these four officials from National Aeronautics and Space Administration Headquarters, Washington, D.C.: (from left) Thomas H. McMullen, Office of Manned Space Flight, who served as Shift 1 mission director; Dale Myers, associate administrator, Manned Space Flight; Chester M. Lee of the Apollo Program Directorate, OMSF, Apollo 13 mission director; and Dr. Rocco A. Petrone, Apollo program director, OMSF.

  12. Summary of lightning activities by NASA for the Apollo Soyuz test project: Supplement no. 1 to Apollo Soyuz mission evaluation report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    To avoid the possibility of an unnecessary launch delay, a special program was initiated to provide aircraft measurement of electric fields at various altitudes over the Apollo vehicle launch pad. Eight aircraft, each equipped with electric field meters, were used in the program. This program and some of the more important findings are discussed. Also included is a summary of the history of manned space vehicle involvement with lightning, a brief description of the lightning instrumentation in use at KSC (Kennedy Space Center) at the time of the Apollo Soyuz mission and a discussion of the airborne instrumentation and related data.

  13. Mission Control Center (MCC) View - Apollo 13 Splashdown - MSC

    NASA Image and Video Library

    1970-04-17

    S70-35145 (17 April 1970) --- Overall view of Mission Operations Control Room in Mission Control Center at the Manned Spacecraft Center (MSC) during the ceremonies aboard the USS Iwo Jima, prime recovery ship for the Apollo 13 mission. Dr. Donald K. Slayton (in black shirt, left of center), director of Flight Crew Operations at MSC, and Chester M. Lee of the Apollo Program Directorate, Office of Manned Space Flight, NASA Headquarters, shake hands, while Dr. Rocco A. Petrone, Apollo program director, Office of Manned Space Flight, NASA Headquarters (standing, near Lee), watches the large screen showing astronaut James A. Lovell Jr., Apollo 13 commander, during the onboard ceremonies. In the foreground, Glynn S. Lunney (extreme left) and Eugene F. Kranz (smoking a cigar), two Apollo 13 flight directors, view the activity from their consoles.

  14. Organics in APOLLO Lunar Samples

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Allton, J. H.

    2007-01-01

    One of many unknowns prior to the Apollo landings concerned the possibility of life, its remains, or its organic precursors on the surface of the Moon. While the existence of lunar organisms was considered highly unlikely, a program of biological quarantine and testing for the astronauts, the Apollo Command Modules, and the lunar rock and soil samples, was instituted in the Lunar Receiving Laboratory (LRL). No conclusive evidence of lunar organisms, was detected and the quarantine program was ended after Apollo 14. Analyses for organic compounds were also con-ducted. Considerable effort was expended, during lunar surface operations and in the LRL, to minimize and quantify organic contamination. Post-Apollo curatorial operations and cleaning minimize contamination from particulates, oxygen, and water but no longer specifically address organic contamination. The organic compounds measured in Apollo samples are generally consistent with known sources of contamination.

  15. Neil Armstrong chats with attendees at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Former Apollo 11 astronaut Neil A. Armstrong talks with a former Apollo team member during an anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  16. Apollo Photograph Evaluation (APE) programming manual

    NASA Technical Reports Server (NTRS)

    Kim, I. J.

    1974-01-01

    This document describes the programming techniques used to implement the equations of the Apollo Photograph Evaluation (APE) program on the UNIVAC 1108 computer and contains detailed descriptions of the program structure, a User's Guide section to provide the necessary information for proper operation of the program, and information for the assessment of the program's adaptability to future problems.

  17. Saturn Apollo Program

    NASA Image and Video Library

    1968-10-01

    AS-205, the fifth Saturn IB launch vehicle developed by the Marshall Space Flight Center (MSFC), lifts off from Cape Canaveral, Florida on the first marned Apollo-Saturn mission, Apollo 7. Primary mission objectives included demonstration of the Apollo crew (Walter Schirra, Don Eisele, and Walter Cunningham) capabilities and the Command/Service Module rendezvous capability. In all, nine Saturn IB flights were made, ending with the Apollo-Soyuz Test Project in July 1975.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1968-01-22

    The Saturn IB launch vehicle (SA204) for the Apollo 5 mission lifted off on January 22, 1968. The unmarned Apollo 5 mission verified the ascent and descent stage propulsion systems, including restart and throttle operations of the Lunar Module.

  19. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    Suzy Cunningham, with the Communication and Public Engagement Directorate, sings the National Anthem before the start of the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA’s Kennedy Space Center in Florida. The program's theme was "To There and Back Again." Guest panelists included Charlie Duke, former Apollo 16 astronaut and member of the Apollo 1 Emergency Egress Investigation Team; Ernie Reyes, retired, Apollo 1 senior operations engineer; and John Tribe, retired, Apollo 1 Reaction and Control System lead engineer. The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  20. NASA Administrator Dan Goldin speaks at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA Administrator Daniel S. Goldin addresses the audience at the Apollo 11 anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7.

  1. KSC-99pp0935

    NASA Image and Video Library

    1999-07-01

    KENNEDY SPACE CENTER, FLA. -- During an anniversary banquet honoring the Apollo program team, the people who made the entire lunar landing program possible, former Apollo astronauts Neil Armstrong (left) and Gene Cernan talk about their experiences. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Other guests at the banquet were astronauts Wally Schirra, Edwin "Buzz" Aldrin and Walt Cunningham. Neil Armstrong was the first man to walk on the moon; Gene Cernan was the last

  2. KSC-99pp0931

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- Former Apollo astronauts Neil Armstrong (left) and Gene Cernan entertain the audience during an anniversary banquet honoring the Apollo program team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Other guests at the banquet were astronauts Wally Schirra, Edwin "Buzz" Aldrin and Walt Cunningham. Armstrong was the first man to walk on the moon; Cernan was the last

  3. KSC-99pp0932

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- Former Apollo astronauts Neil Armstrong (left) and Gene Cernan entertain the audience during an anniversary banquet honoring the Apollo program team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Other guests at the banquet were astronauts Wally Schirra, Edwin "Buzz" Aldrin and Walt Cunningham. Neil Armstrong was the first man to walk on the moon; Gene Cernan was the last

  4. KSC-99pp0933

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- Former Apollo astronauts Edwin "Buzz" Aldrin (left) and Gene Cernan share stories about their missions for an audience attending an anniversary banquet honoring the Apollo program team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Other guests at the banquet were astronauts Wally Schirra, Gene Cernan and Walt Cunningham. Neil Armstrong was the first man to walk on the moon; Gene Cernan was the last

  5. KSC-99pp0936

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- During an anniversary banquet honoring the Apollo program team, the people who made the entire lunar landing program possible, former Apollo astronauts Neil Armstrong (left) and Gene Cernan talk about their experiences. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Other guests at the banquet were astronauts Wally Schirra, Edwin "Buzz" Aldrin and Walt Cunningham. Neil Armstrong was the first man to walk on the moon; Gene Cernan was the last

  6. A thermal scale modeling study for Apollo and Apollo applications, volume 1

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.

    1972-01-01

    The program is reported for developing and demonstrating the capabilities of thermal scale modeling as a thermal design and verification tool for Apollo and Apollo Applications Projects. The work performed for thermal scale modeling of STB; cabin atmosphere/spacecraft cabin wall thermal interface; closed loop heat rejection radiator; and docked module/spacecraft thermal interface are discussed along with the test facility requirements for thermal scale model testing of AAP spacecraft. It is concluded that thermal scale modeling can be used as an effective thermal design and verification tool to provide data early in a spacecraft development program.

  7. Apollo Soyuz, mission evaluation report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Apollo Soyuz mission was the first manned space flight to be conducted jointly by two nations - the United States and the Union of Soviet Socialist Republics. The primary purpose of the mission was to test systems for rendezvous and docking of manned spacecraft that would be suitable for use as a standard international system, and to demonstrate crew transfer between spacecraft. The secondary purpose was to conduct a program of scientific and applications experimentation. With minor modifications, the Apollo and Soyuz spacecraft were like those flown on previous missions. However, a new module was built specifically for this mission - the docking module. It served as an airlock for crew transfer and as a structural base for the docking mechanism that interfaced with a similar mechanism on the Soyuz orbital module. The postflight evaluation of the performance of the docking system and docking module, as well as the overall performance of the Apollo spacecraft and experiments is presented. In addition, the mission is evaluated from the viewpoints of the flight crew, ground support operations, and biomedical operations. Descriptions of the docking mechanism, docking module, crew equipment and experiment hardware are given.

  8. Sonic-boom measurements in the focus region during the ascent of Apollo 17. [maximum positive overpressure, positive impulse, signature duration, and bow-shock rise time

    NASA Technical Reports Server (NTRS)

    Henderson, H. R.; Hilton, D. A.

    1974-01-01

    Sonic-boom pressure signatures recorded during the ascent phase of Apollo 17 are presented. The measurements were obtained onboard six U.S. Navy ships positioned along the ground track of the spacecraft vehicle in the area of expected focus resulting from the flight path and acceleration of the vehicle. Tracings of the measured signatures are presented along with values of the maximum positive overpressure, positive impulse, signature duration, and bowshock rise time. Also included are brief descriptions of the ships and their location, the deployment of the sonic-boom instrumentation, flight profiles and operating conditions for the launch vehicle and spacecraft, surface-weather and sea-state information at the measuring sites, and high-altitude weather information for the general measurement areas. Comparisons of the measured and predicted sonic-boom overpressures for the Apollo 17 mission are presented. The measured data are also compared with data from the Apollo 15 and 16 missions and data from flight test programs of various aircraft.

  9. MISSION CONTROL CENTER (MCC) - MSC - during Apollo 16

    NASA Image and Video Library

    1972-05-08

    S72-37009 (20 April 1972) --- NASA officials gather around a console in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC) prior to the making of a decision whether to land Apollo 16 on the moon or to abort the landing. Seated, left to right, are Dr. Christopher C. Kraft Jr., Director of the Manned Spacecraft Center (MSC), and Brig. Gen. James A. McDivitt (USAF), Manager, Apollo Spacecraft Program Office, MSC; and standing, left to right, are Dr. Rocco A. Petrone, Apollo Program Director, Office Manned Space Flight (OMSF), NASA HQ.; Capt. John K. Holcomb (U.S. Navy, Ret.), Director of Apollo Operations, OMSF; Sigurd A. Sjoberg, Deputy Director, MSC; Capt. Chester M. Lee (U.S. Navy, Ret.), Apollo Mission Director, OMSF; Dale D. Myers, NASA Associate Administrator for Manned Space Flight; and Dr. George M. Low, NASA Deputy Administrator. Photo credit: NASA

  10. MISSION CONTROL CENTER (MCC) - APOLLO 16 - MSC

    NASA Image and Video Library

    1972-05-08

    S72-37010 (20 April 1972) --- NASA officials gather around a console in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC) prior to the making of a decision whether to land Apollo 16 on the moon or to abort the landing. Seated, left to right, are Dr. Christopher C. Kraft Jr., Director of the Manned Spacecraft Center (MSC), and Brig. Gen. James A. McDivitt (USAF), Manager, Apollo Spacecraft Program Office, MSC; and standing, left to right, are Dr. Rocco A. Petrone, Apollo Program Director, Office Manned Space Flight (OMSF), NASA HQ.; Capt. John K. Holcomb (U.S. Navy, Ret.), Director of Apollo Operations, OMSF; Sigurd A. Sjoberg, Deputy Director, MSC; Capt. Chester M. Lee (U.S. Navy, Ret.), Apollo Mission Director, OMSF; Dale D. Myers, NASA Associate Administrator for Manned Space Flight; and Dr. George M. Low, NASA Deputy Administrator. Photo credit: NASA

  11. NASA Officials in MCC to decide whether to land Apollo 16 or cancel landing

    NASA Technical Reports Server (NTRS)

    1972-01-01

    NASA Officials gather around a console in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC) prior to the making of a decision whether to land Apollo 16 on the moon or to abort the landing. Seated, left to right, are Dr. Christopher C. Kraft Jr., Director of the Manned Spacecraft Center (MSC), and Brig. Gen. James A. McDivitt (USAF), Manager, Apollo Spacecraft Program Office, MSC; and standing, left to right, are Dr. Rocco A. Petrone, Apollo Program Director, Office Manned Space Flight (OMSF), NASA HQ.; Capt. John K. Holcolmb (U.S. Navy, Ret.), Director of Apollo Operations, OMSF; Sigurd A. Sjoberg, Deputy Director, MSC; Capt. Chester M. Lee (U.S. Navy, Ret.), Apollo Mission Director, OMSF; Dale D. Myers, NASA Associate Administrator for Manned Space Flight; and Dr. George M. Low, NASA Deputy Administrator.

  12. Apollo 1 Lessons Learned Show

    NASA Image and Video Library

    2017-01-27

    Ernie Reyes, retired, former Apollo 1 senior operations manager, signs a book for a worker after the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA's Kennedy Space Center in Florida. The theme of the program was "To there and Back Again." The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.

  13. Space food systems - Mercury through Apollo.

    NASA Technical Reports Server (NTRS)

    Roth, N. G.; Smith, M. C.

    1972-01-01

    Major achievements which characterized the development of food systems used by American astronauts in manned space flight are reviewed throughout a period spanning the Mercury, Gemini, and Apollo programs up to and including the Apollo 11 lunar landing mission. Lists of food types are accompanied by information on packaging, storage, preparation, consumption, and quality of particular products. Experience gained from development efforts for the Manned Orbiting Laboratory Program is also discussed.

  14. Apollo 11 Commander Armstrong Presents President With Commemorative Plaque

    NASA Technical Reports Server (NTRS)

    1974-01-01

    On June 4, 1974, 5 years after the successful Apollo 11 lunar landing mission, commander Neil Armstrong (right) presented a plaque to U.S. President Richard Milhous Nixon (left) on behalf of all people who had taken part in the space program. In making the presentation, Armstrong said 'Mr. President, you have proclaimed this week to be United States Space week in conjunction with the fifth anniversary of our first successful landing on the Moon. It is my privilege to represent my colleagues, the crewmen of projects Mercury, Gemini, Apollo, and Skylab, and the men and women of NASA, and the hundreds of thousands of Americans from across the land who contributed so mightily to the success of our efforts in space in presenting this plaque which bears the names of each individual who has had the privilege of representing this country' in a space flight. The presentation was made at the California white house in San Clemente.

  15. Apollo experience report: Reliability and quality assurance

    NASA Technical Reports Server (NTRS)

    Sperber, K. P.

    1973-01-01

    The reliability of the Apollo spacecraft resulted from the application of proven reliability and quality techniques and from sound management, engineering, and manufacturing practices. Continual assessment of these techniques and practices was made during the program, and, when deficiencies were detected, adjustments were made and the deficiencies were effectively corrected. The most significant practices, deficiencies, adjustments, and experiences during the Apollo Program are described in this report. These experiences can be helpful in establishing an effective base on which to structure an efficient reliability and quality assurance effort for future space-flight programs.

  16. Comparison of MX-857 versus MX-641 chemistries for type 2485 film

    NASA Technical Reports Server (NTRS)

    Bourque, P. F.

    1972-01-01

    Tests were conducted to evaluate Kodak MX-857 and MX-641 chemistry systems for use with film Type 2485 to be used in the dim light experiments on Apollo 16. The test program objectives were to: (1) retain a minimum ASA speed of at least 4000; (2) maintain a base-plus-fog level of 0.21 density units or less; and (3) minimize the granularity but do not exceed the granularity level of the Apollo 15 imagery. Test results on the Versamat processor indicate that the use of MX-857 chemistry is preferred over MX-641 chemistry in satisfying the stated test objectives.

  17. NASA Administrator Dan Goldin speaks at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA Administrator Daniel S. Goldin (right) addresses the audience at the Apollo 11 anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex, with seating under an unused Saturn V rocket like those that powered the Apollo launches . This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7.

  18. Apollo program flight summary report: Apollo missions AS-201 through Apollo 16, revision 11

    NASA Technical Reports Server (NTRS)

    Holcomb, J. K.

    1972-01-01

    A summary of the Apollo flights from AS-201 through Apollo 16 is presented. The following subjects are discussed for each flight: (1) mission primary objectives, (2) principle objectives of the launch vehicle and spacecraft, (3) secondary objectives of the launch vehicle and spacecraft, (4) unusual features of the mission, (5) general information on the spacecraft and launch vehicle, (6) space vehicle and pre-launch data, and (7) recovery data.

  19. Apollo experience report: Protection of life and health

    NASA Technical Reports Server (NTRS)

    Wooley, B. C.

    1972-01-01

    The development, implementation, and effectiveness of the Apollo Lunar Quarantine Program and the Flight Crew Health Stabilization Program are discussed as part of the broad program required for the protection of the life and health of U.S. astronauts. Because the goal of the Apollo Program has been the safe transport of men to the moon and back to earth, protection of the astronauts and of the biosphere from potentially harmful lunar contaminants has been required. Also, to ensure mission success, the continuing good health of the astronauts before and during a mission has been necessary. Potential applications of specific aspects of the health and quarantine programs to possible manned missions to other planets are discussed.

  20. Apollo lunar orbital sciences program alpha and X-ray spectrometers

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of the alpha and X-ray spectrometers which were used on the Apollo 15 and 16 flights is discussed. Specific subjects presented are: (1) lunar program management, (2) scientific and technical approach, (3) major test programs, (4) reliability, quality assurance, and safety, and (5) subcontract management.

  1. Apollo: A Retrospective Analysis

    NASA Technical Reports Server (NTRS)

    Launius, Roger D.

    2004-01-01

    The program to land an American on the Moon and return safely to Earth in the 1960s has been called by some observers a defining event of the twentieth century. Pulitzer Prize-winning historian Arthur M. Schlesinger, Jr., even suggested that when Americans two centuries hence study the twentieth century, they will view the Apollo lunar landing as the critical event of the century. While that conclusion might be premature, there can be little doubt but that the flight of Apollo 11 in particular and the overall Apollo program in general was a high point in humanity s quest to explore the universe beyond Earth. Since the completion of Project Apollo more than twenty years ago there have been a plethora of books, studies, reports, and articles about its origin, execution, and meaning. At the time of the twenty-fifth anniversary of the first landing, it is appropriate to reflect on the effort and its place in U.S. and NASA history. This monograph has been written as a means to this end. It presents a short narrative account of Apollo from its origin through its assessment. That is followed by a mission by mission summary of the Apollo flights and concluded by a series of key documents relative to the program reproduced in facsimile. The intent of this monograph is to provide a basic history along with primary documents that may be useful to NASA personnel and others desiring information about Apollo.

  2. Astronaut Eugene Cernan sleeping aboard Apollo 17 spacecraft

    NASA Image and Video Library

    1972-12-17

    AS17-162-24049 (7-19 Dec. 1972) --- A fellow crewman took this picture of astronaut Eugene A. Cernan dozing aboard the Apollo 17 spacecraft during the final lunar landing mission in NASA's Apollo program. Also, aboard Apollo 17 were astronaut Ronald E. Evans, command module pilot, and scientist-astronaut Harrison H. "Jack" Schmitt, lunar module pilot. Cernan was the mission commander.

  3. Apollo/Skylab suit program management systems study. Volume 2: Cost analysis

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The business management methods employed in the performance of the Apollo-Skylab Suit Program are studied. The data accumulated over the span of the contract as well as the methods used to accumulate the data are examined. Management methods associated with the monitoring and control of resources applied towards the performance of the contract are also studied and recommended upon. The primary objective is the compilation, analysis, and presentation of historical cost performance criteria. Cost data are depicted for all phases of the Apollo-Skylab program in common, meaningful terms, whereby the data may be applicable to future suit program planning efforts.

  4. KSC-99pp0874

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- NASA Administrator Daniel S. Goldin addresses the audience at the Apollo 11 anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin "Buzz" Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7

  5. Apollo food technology

    NASA Technical Reports Server (NTRS)

    Smith, M. C., Jr.; Heidelbaugh, N. D.; Rambaut, P. C.; Rapp, R. M.; Wheeler, H. O.; Huber, C. S.; Bourland, C. T.

    1975-01-01

    Large improvements and advances in space food systems achieved during the Apollo food program are discussed. Modifications of the Apollo food system were directed primarily toward improving delivery of adequate nutrition to the astronaut. Individual food items and flight menus were modified as nutritional countermeasures to the effects of weightlessness. Unique food items were developed, including some that provided nutritional completeness, high acceptability, and ready-to-eat, shelf-stable convenience. Specialized food packages were also developed. The Apollo program experience clearly showed that future space food systems will require well-directed efforts to achieve the optimum potential of food systems in support of the physiological and psychological well-being of astronauts and crews.

  6. First Apollo 11 sample return containers arrive at Ellington AFB

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The first Apollo 11 sample return container, containing lunar surface material, arrives at Ellington Air Force Base by air from the Pacific recovery area. Happily posing for photographs with the rock box are (left to right) George M. Low, Manager, Apollo Spacecraft Program, Manned Spacecraft Center (MSC); U.S. Air Force Lt. Gen. Samuel C. Phillips, Apollo Program Director, Office of Manned Space Flight, NASA HQ.; George S. Trimble, MSC Deputy Director (almost obscured); Eugene G. Edmonds, MSC Photographic Technology Laboratory; RIchard S. Johnston (in back), Special Assistant to the MSC Director; Dr. Thomas O. Paine, NASA Administrator; and Dr. Robert R. Gilruth, MSC Director.

  7. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-31

    In the launch control center at Kennedy Space Flight Center (KSC), Walter J. Kapryan, Director of Launch Operations (center), discusses an aspect of the Apollo 14 flight with Marshall Space Flight Center’s (MSFC) Dr. Rocco A. Petrone, Apollo Program Director (right). The Apollo 14, carrying a crew of three astronauts: Mission commander Alan B. Shepard Jr., Command Module pilot Stuart A. Roosa, and Lunar Module pilot Edgar D. Mitchell, lifted off from launch complex 39A at KSC on January 31, 1971. It was the third manned lunar landing, the first manned landing in exploration of the lunar highlands, and it demonstrated pinpoint landing capability. The major goal of Apollo 14 was the scientific exploration of the Moon in the foothills of the rugged Fra Mauro region. The extravehicular activity (EVA) of astronauts Shepard and Mitchell included setting up an automated scientific laboratory called Apollo Lunar Scientific Experiments Package (ALSEP), and collecting a total of about 95 pounds (43 kilograms) of Moon rock and soil for a geological investigation back on the Earth. Apollo 14 safely returned to Earth on February 9, 1971.

  8. Neil Armstrong chats with attendees at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Former Apollo 11 astronaut Neil A. Armstrong poses for a photograph with fans who attended the anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  9. KSC-99pp0855

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- Former Apollo 11 astronaut Neil A. Armstrong talks with a former Apollo team member during an anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon

  10. Chariots for Apollo: A History of Manned Lunar Spacecraft

    NASA Technical Reports Server (NTRS)

    Brooks, C. G.; Grimwood, J. M.; Swenson, L. S., Jr.

    1979-01-01

    Beginning with the challenges presented by Sputnik 1 in 1957, and the formation of NASA, the apollo lunar exploration program is reviewed through Apollo Flight 11. The focal points are the spacecraft including the command and service modules, and the lunar module.

  11. Apollo 7 - Press Kit

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Contents include the following: General release. Mission objectives. Mission description. Flight plan. Alternate missions. Experiments. Abort model. Spacecraft structure system. The Saturn 1B launch vehicle. Flight sequence. Launch preparations. Mission control center-Houston. Manned space flight network. Photographic equipment. Apollo 7 crew. Apollo 7 test program.

  12. Astronaut Eugene Cernan eating a meal aboard Apollo 17 spacecraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A fellow crewman took this photograph of Astronaut Eugene A. Cernan, Apollo 17 mission commander, eating a meal under the weightless conditions of space during the final lunar landing mission in the Apollo program. Cernan appears to be eating chocolate pudding.

  13. Apollo Spacesuit Modifications for the Apollo-Soyuz Test Project (ASTP) Spacesuit

    NASA Technical Reports Server (NTRS)

    McBarron, James W., II

    2015-01-01

    With over 50 years of experience with NASA spacesuit development and operations, as well as for early U.S. Air Force pressure suits, Jim McBarron shared his significant knowledge about modifications to the Apollo spacesuit for use in the Apollo-Soyuz Test Project (ASTP). This included requirements and design changes implemented to establish the ASTP spacesuit design baseline. Additionally, he identified Apollo spacesuit contact details including quantity of spacesuits delivered to support the Apollo and Skylab Programs, and the ASTP. He concluded by identifying a summary of noteworthy lessons learned with recommendations for future spacesuit development.

  14. KSC-2012-1845

    NASA Image and Video Library

    2012-02-17

    Apollo Capsule/Lunar Lander: The goal of Project Apollo was to land man on the moon and return them safely to the Earth. The Apollo spacecraft consisted of a command module serving as the crew’s quarters and flight control section and the lunar module, carrying two crewmembers to the surface of the moon. The first Apollo spacecraft to land on the moon was Apollo 11 on July 20, 1969. The program concluded with Apollo 17 in December 1972 after putting 27 men into lunar orbit and 12 of them on the surface of the moon. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA

  15. A review of cryogenic testing performed by the thermochemical test branch, Manned Spacecraft Center in support of Apollo 13 and14

    NASA Technical Reports Server (NTRS)

    Propp, C. E.; Mcgee, J. M.

    1971-01-01

    The Apollo 13 anomaly provided considerable impetus for a variety of types of cryogenic and ignition tests. The logic of the various test program designs, the test techniques, and their final impact upon the investigation findings are described. In addition, several test programs initiated to determine the thermal performance and general performance characteristics of the redesigned Apollo 14 cryogenic storage system are presented.

  16. KSC-99pp0875

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- NASA Administrator Daniel S. Goldin (right) addresses the audience at the Apollo 11 anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex, with seating under an unused Saturn V rocket like those that powered the Apollo launches . This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin "Buzz" Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7

  17. NASA Administrator Dan Goldin greets Neil Armstrong at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During an anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible, former Apollo astronaut Neil A. Armstrong (left) shakes the hand of Judy Goldin (center), wife of NASA Administrator Daniel S. Goldin (right). The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7.

  18. Human Spaceflight and American Society: The Record So Far

    NASA Technical Reports Server (NTRS)

    Murray, Charles

    2005-01-01

    This paper presents a look at the historical Apollo Program and it's comparisons to NASA's human spaceflight program today. The author gives three examples of how audacity began with the Apollo Program and explains how human spaceflight must continue with this audacity to do new things and take on large missions.

  19. The Apollo Program and Amino Acids

    ERIC Educational Resources Information Center

    Fox, Sidney W.

    1973-01-01

    Discusses the determination of hydrolyzable amino acid precursors and a group of six amino acids in the returned lunar samples of the Apollo programs. Indicates that molecular evolution is arrested at the precursor stage on the Moon because of lack of water. (CC)

  20. Saturn Apollo Program

    NASA Image and Video Library

    1964-09-09

    This is the official portrait of astronaut Frank Borman. A career Air Force officer from 1950, his assignments included service as a fighter pilot, an operational pilot and instructor, an experimental test pilot and an assistant professor of thermodynamics and fluid mechanics at West Point. When selected by NASA, Frank Borman was an instructor at the Aerospace Research Pilot School at Edwards AFB, California. In 1967 he served as a member of the Apollo 204 Fire Investigation Board, investigating the causes of the fire which killed three astronauts aboard an Apollo spacecraft. Later he became the Apollo Program Resident Manager, heading the team that reengineered the Apollo spacecraft. He also served as Field Director of the NASA Space Station Task Force. Frank Borman retired from the air Force in 1970, but is well remembered as a part of American history as a pioneer in the exploration of space. He is a veteran of both the Gemini 7, 1965 Space Orbital Rendezvous with Gemini 6 and the first manned lunar orbital mission, Apollo 8, in 1968.

  1. KSC-99pp0876

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- During an anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible, former Apollo astronaut Neil A. Armstrong (left) shakes the hand of Judy Goldin (center), wife of NASA Administrator Daniel S. Goldin (right). The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin "Buzz" Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7

  2. KSC-2011-1313

    NASA Image and Video Library

    2011-01-29

    CAPE CANAVERAL, Fla. -- Apollo Program legends attend the Apollo 14 Anniversary Soirée at the Kennedy Space Center Visitor Complex's Saturn V Center. The celebration was hosted by the Astronaut Scholarship Foundation. Apollo 14 landed on the lunar surface 40 years ago on Feb. 5, 1971. Photo credit: NASA/Kim Shiflett

  3. KSC-2011-1312

    NASA Image and Video Library

    2011-01-29

    CAPE CANAVERAL, Fla. -- Apollo Program legends attend the Apollo 14 Anniversary Soirée at the Kennedy Space Center Visitor Complex's Saturn V Center. The celebration was hosted by the Astronaut Scholarship Foundation. Apollo 14 landed on the lunar surface 40 years ago on Feb. 5, 1971. Photo credit: NASA/Kim Shiflett

  4. Saturn Apollo Program

    NASA Image and Video Library

    1970-01-01

    Apollo 13 astronauts Fred Haise, John Swigert, and James Lovell are pictured during the press conference after their ill-fated mission. The Apollo 13 mission (the third lunar landing mission) was aborted after 56 hours of flight, 205,000 miles from Earth, when an oxygen tank in the service module exploded.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1975-07-01

    SA-210 Apollo-Soyuz Test Project (ASTP) awaits the launch scheduled on July 15, 1975 on the launch pad at the Kennedy Space Center, the ASTP mission with astronauts Thomas Stafford, Vance Brand, and Donald "Deke" Slayton. The Saturn IB, developed under the direction of the Marshall Space Flight Center (MSFC), launched five manned Earth-orbital missions between 1968 and 1975: Apollo 7, Skylab 2, Skylab 3, Skylab 4, and the Apollo-Soyuz Test Project .

  6. Schweickart and guest at ASVC prior to grand opening

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Apollo 9 Lunar Module Pilot Russell L. Schweikart poses in front of an Apollo Command and Service Module in the the new Apollo/Saturn V Center (ASVC) at KSC prior to the gala grand opening ceremony for the facility that was held Jan. 8, 1997. Several Apollo astronauts were invited to participate in the event, which also featured NASA Administrator Dan Goldin and KSC Director Jay Honeycutt. The ASVC also features several other Apollo program spacecraft components, multimedia presentations and a simulated Apollo/Saturn V liftoff. The facility will be a part of the KSC bus tour that embarks from the KSC Visitor Center.

  7. KSC-99pp0844

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- In the Apollo/Saturn V Center, Lisa Malone (left), chief of KSC's Media Services branch, laughs at a humorous comment along with former Apollo astronauts Neil A. Armstrong and Edwin "Buzz" Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7. The four met with the media before an anniversary banquet celebrating the accomplishments of the Apollo program team. This is the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon

  8. Development and application of nonflammable, high-temperature beta fibers

    NASA Technical Reports Server (NTRS)

    Dawn, Frederic S.

    1989-01-01

    Recent advances in fiber technology have contributed to the success of the U.S. space program. The inorganic fiber Beta, developed as a result of efforts begun in the early 1960's and heightened following the January 27, 1967 Apollo fire is unique among inorganic and organic fibers. It has been developed into woven, nonwoven, knitted, braided, coated and printed structures. All of these were used extensively for the Apollo, Skylab, Apollo-Soyuz test project, space shuttle, Spacelab, and satellite programs. In addition to being used successfully in the space program, Beta fibers are being used commercially as firesafe fabrics in homes, hospitals, institutions, public buildings, aircraft, and public transportation, wherever total nonflammability is required. One of the most unique applications of the Beta composite structure is the roofing material for the 80,000-seat Detroit Lion's Silverdome and 5 square miles of the Jeddah International Airport in Saudi Arabia. This fiber has been successfully incorporated into 165 major public construction projects around the globe. The United States alone has used more than 12 million square yards of the material. Beta fiber has been used successfully to date and has a promising future with unlimited potential for both space and commercial application. Efforts are currently underway to improve Beta fiber to meet the requirements of extended service life for the Space Station Freedom, lunar outpost, and Mars exploration missions.

  9. KSC-99pp0859

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- Former Apollo astronaut Gene Cernan makes a point during a presentation at the Apollo 11 anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Cernan appeared with other former astronauts Neil Armstrong, the first man to walk on the moon; Edwin "Buzz" Aldrin; Walt Cunningham; and others

  10. Launch of the Apollo 17 lunar landing mission

    NASA Image and Video Library

    1972-12-07

    S72-55482 (7 Dec. 1972) --- The huge, 363-feet tall Apollo 17 (Spacecraft 114/Lunar Module 12/Saturn 512) space vehicle is launched from Pad A., Launch Complex 39, Kennedy Space Center (KSC), Florida, at 12:33 a.m. (EST), Dec. 7, 1972. Apollo 17, the final lunar landing mission in NASA's Apollo program, was the first nighttime liftoff of the Saturn V launch vehicle. Aboard the Apollo 17 spacecraft were astronaut Eugene A. Cernan, commander; astronaut Ronald E. Evans, command module pilot; and scientist-astronaut Harrison H. Schmitt, lunar module pilot. Flame from the five F-1 engines of the Apollo/Saturn first (S-1C) stage illuminates the nighttime scene. A two-hour and 40-minute hold delayed the Apollo 17 launching.

  11. Launch of the Apollo 17 lunar landing mission

    NASA Image and Video Library

    1972-09-07

    S72-55070 (7 Dec. 1972) --- The huge, 363-feet tall Apollo 17 (Spacecraft 114/Lunar Module 12/Saturn 512) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida, at 12:33 a.m. (EST), Dec. 7, 1972. Apollo 17, the final lunar landing mission in NASA's Apollo program, was the first nighttime liftoff of the Saturn V launch vehicle. Aboard the Apollo 17 spacecraft were astronaut Eugene A. Cernan, commander; astronaut Ronald E. Evans, command module pilot; and scientist-astronaut Harrison H. Schmitt, lunar module pilot. Flame from the five F-1 engines of the Apollo/Saturn first (S-1C) stage illuminates the nighttime scene. A two-hour and 40-minute hold delayed the Apollo 17 launching.

  12. Study of the National Science Foundation's South Pole Station as an analogous data base for the logistical support of a Moon laboratory

    NASA Technical Reports Server (NTRS)

    Hickam, H. H., Jr.

    1993-01-01

    The day will come when the United States will want to return to the Earth's Moon. When that occurs, NASA may look to the Apollo program for technical and inspirational guidance. The Apollo program, however, was designed to be an end to itself--the landing of a man on the Moon and his return safely within the decade of the 1960's. When that was accomplished, the program folded because it was not self-sustaining. The next time we return to the Moon, we should base our planning on a program that is designed to be a sustained effort for an indefinite period. It is the thrust of this report that the South Pole Station of the National Science Foundation can be used to develop analogs for the construction, funding, and logistical support of a lunar base. Other analogs include transportation and national efforts versus international cooperation. A recommended lunar base using the South Pole Station as inspiration is provided, as well as details concerning economical construction of the base over a 22-year period.

  13. Multipurpose electric furnace system. [for use in Apollo-Soyuz Test Program

    NASA Technical Reports Server (NTRS)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Mchugh, J. P.; Foust, H. C.; Piotrowski, P. A.

    1974-01-01

    A multipurpose electric furnace system of advanced design for space applications was developed and tested. This system is intended for use in the Apollo-Soyuz Test Program. It consists of the furnace, control package and a helium package for rapid cooldown.

  14. KSC-04pd1008

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Before the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame, former astronaut Gene Cernan waves to guests as he is introduced as a previous inductee. He walked in space on Gemini 9, orbited the Moon on Apollo 10 and walked on the Moon as commander of Apollo 17. The ceremony was held at the Apollo/Saturn V Center at KSC. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  15. Engineering potential for lunar missions after Apollo.

    NASA Technical Reports Server (NTRS)

    Burke, J. D.

    1972-01-01

    The need for continuing post-Apollo lunar research is defined by outlining problems in stellar, planetary, biological, and social evolution which require specific studies of the moon. Engineering capabilities existing immediately after the Apollo program are described in the areas of launch vehicles and spacecraft, lunar surface mobility, instrumentation, and communications.

  16. A model for calculating expected performance of the Apollo unified S-band (USB) communication system

    NASA Technical Reports Server (NTRS)

    Schroeder, N. W.

    1971-01-01

    A model for calculating the expected performance of the Apollo unified S-band (USB) communication system is presented. The general organization of the Apollo USB is described. The mathematical model is reviewed and the computer program for implementation of the calculations is included.

  17. Apollo: Learning From the Past, For the Future

    NASA Technical Reports Server (NTRS)

    Grabois, Michael R.

    2009-01-01

    This paper shares an interesting and unique case study of knowledge capture by the National Aeronautics and Space Administration (NASA), an ongoing project to recapture and make available the lessons learned from the Apollo lunar landing project so that those working on future projects do not have to "reinvent the wheel". NASA's new Constellation program, the successor to the Space Shuttle program, proposes a return to the Moon using a new generation of vehicles. The Orion Crew Vehicle and the Altair Lunar Lander will use hardware, practices, and techniques descended and derived from Apollo, Shuttle and the International Space Station. However, the new generation of engineers and managers who will be working with Orion and Altair are largely from the decades following Apollo, and are likely not well aware of what was developed in the 1960s. In 2006 a project at NASA's Johnson Space Center was begun to find pertinent Apollo-era documentation and gather it, format it, and present it using modern tools for today's engineers and managers. This "Apollo Mission Familiarization for Constellation Personnel" project is accessible via the web from any NASA center for those interested in learning "how did we do this during Apollo?"

  18. Apollo: Learning From the Past, For the Future

    NASA Technical Reports Server (NTRS)

    Grabois, Michael R.

    2010-01-01

    This paper shares an interesting and unique case study of knowledge capture by the National Aeronautics and Space Administration (NASA), an ongoing project to recapture and make available the lessons learned from the Apollo lunar landing project so that those working on future projects do not have to "reinvent the wheel". NASA's new Constellation program, the successor to the Space Shuttle program, proposes a return to the Moon using a new generation of vehicles. The Orion Crew Vehicle and the Altair Lunar Lander will use hardware, practices, and techniques descended and derived from Apollo, Shuttle and the International Space Station. However, the new generation of engineers and managers who will be working with Orion and Altair are largely from the decades following Apollo, and are likely not well aware of what was developed in the 1960s. In 2006 a project at NASA's Johnson Space Center was begun to find pertinent Apollo-era documentation and gather it, format it, and present it using modern tools for today's engineers and managers. This "Apollo Mission Familiarization for Constellation Personnel" project is accessible via the web from any NASA center for those interested in learning "how did we do this during Apollo?"

  19. NASA-marks 5th anniversary of first lunar landing

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The accomplishments of the Apollo 11 Flight are presented as a tribute to the fifth anniversary of the first landing on the moon. The document contains: (1) a general description of the Apollo 11 Flight, (2) Presidential statements, (3) Apollo historical summary, (4) Apollo mission facts, (5) information on astronauts who are no longer in the program, and (6) transcripts of the landing sequence and first extravehicular activities on the moon.

  20. Where No Man Has Gone Before: A History of Apollo Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Compton, William David

    1988-01-01

    This book is a narrative account of the development of the science program for the Apollo lunar landing missions. It focuses on the interaction between scientific interests and operational considerations in such matters as landing site selection and training of crews, quarantine and back contamination control, and presentation of results from scientific investigations. Scientific exploration of the moon on later flights, Apollo 12 through Apollo 17 is emphasized.

  1. Saturn Apollo Program

    NASA Image and Video Library

    1968-01-01

    AS-204, the fourth Saturn IB launch vehicle, developed by the Marshall Space Flight Center (MSFC), awaits its January 22, 1968 liftoff from Cape Canaveral, Florida for the unmarned Apollo 5 mission. Primary mission objectives included the verification of the Apollo Lunar Module's (LM) ascent and descent propulsion systems and an evaluation of the S-IVB stage instrument unit performance. In all, nine Saturn IB flights were made, ending with the Apollo-Soyuz Test Project in July 1975.

  2. Around Marshall

    NASA Image and Video Library

    1998-04-06

    Portrait of Marshall's third Center Director Dr. Rocco A. Petrone (1973-1974) standing in front of a Saturn V rocket. Dr. Petrone personally supervised the Apollo 11 Mission and then became Director of the Apollo program in 1969 before coming to Marshall. At Marshall he continued to direct the marned space flight programs.

  3. Apollo 14 - Press Kit

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Apollo 14, the sixth United States manned flight to the Moon and fourth Apollo mission with an objective of landing men on the Moon, is scheduled for launch Jan. 31 at 3:23 p.m. EST from Kennedy Space Center, Fla. The Apollo 14 lunar module is to land in the hilly upland region north of the Fra Mauro crater for a stay of about 33 hours, during which the landing crew will leave the spacecraft twice to set up scientific experiments on the lunar surface and to continue geological explorations. The two earlier Apollo lunar landings were Apollo 11 at Tranquility Base and Apollo 12 at Surveyor 3 crater in the Ocean of Storms.

  4. Apollo Experience Report: Command and Service Module Reaction Control Systems

    NASA Technical Reports Server (NTRS)

    Taeuber, Ralph J.; Weary, Dwayne P.

    1973-01-01

    The reaction control systems of the Apollo command and service module were developed and modified between July 1961 and July 1969. The successful development of these systems, as part of the Apollo Program, was the result of extensive testing, retesting, and modifications of the hardware to ensure system capability and intrasystem compatibility.

  5. How the Apollo Program Changed the Geology of the Moon

    ERIC Educational Resources Information Center

    Smith, J. V.; Steele, I. M.

    1973-01-01

    Evaluates the effect of the Apollo program on the geology of the Moon to determine further study problems. Concludes that the National Aeronautics and Space Administration can provide excellent justification for its extension since human beings have the possibility of using the rocks in ways not currently conceived. (CC)

  6. Research at the Stanford Center for Radar Astronomy

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The research is reported in the applications of radar and radio techniques to the study of the solar system, and to space programs. Experiments reported include: bistatic-radar on Apollo missions, development of an unmanned geophysical observatory in the Antartic, Bragg scattering probes of sea states, characteristics of dense solar wind disturbances, and satellite communications for Alaska.

  7. Apollo experience report: The problem of stress-corrosion cracking

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1973-01-01

    Stress-corrosion cracking has been the most common cause of structural-material failures in the Apollo Program. The frequency of stress-corrosion cracking has been high and the magnitude of the problem, in terms of hardware lost and time and money expended, has been significant. In this report, the significant Apollo Program experiences with stress-corrosion cracking are discussed. The causes of stress-corrosion cracking and the corrective actions are discussed, in terminology familiar to design engineers and management personnel, to show how stress-corrosion cracking can be prevented.

  8. KSC-2012-1846

    NASA Image and Video Library

    2012-02-17

    Apollo/Saturn Program: In January 1962, NASA initiated development of the large launch vehicle for the Project Apollo manned lunar flights. The Saturn V configuration comprised the S-IC first stage, the S-II second stage and the S-IVB third stage, all integrated and stacked in the Vehicle Assembly Building. The first manned Apollo spacecraft launched on the mighty Saturn V was Apollo 8 on December 21, 1968. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA

  9. Neil Armstrong chats with attendees at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Former Apollo 11 astronaut Neil A. Armstrong is the center of attention at the anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon. He appeared at the banquet with other former astronauts Edwin 'Buzz' Aldrin, Gene Cernan, Walt Cunningham and others.

  10. Neil Armstrong gets round of applaus at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Former Apollo 11 astronaut Neil A. Armstrong stands to a round of applause after being introduced at the anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon. He appeared at the banquet with other former astronauts Edwin 'Buzz' Aldrin, Gene Cernan, Walt Cunningham and others.

  11. Evolving Public Perceptions of Spaceflight in American Culture

    NASA Astrophysics Data System (ADS)

    Launius, R. D.

    2002-01-01

    There is a belief that exists in the United States about public support for NASA's activities. The belief is almost universally held that NASA enjoyed outstanding public support and confidence in the 1960s during the era of Apollo and that public support waned in the post-Apollo era, only to sink to quite low depths in the decade of the 1990s. These beliefs are predicated on anecdotal evidence that should not be discounted, but empirical evidence gleaned from public opinion polling data suggest that some of these conceptions are totally incorrect and others either incomplete or more nuanced than previously believed. This paper presents an analysis of public opinion polling data in the United States from throughout the history of the space age. Analyzing these polls allows the plotting of trends over a long period of time. This study reveals several interesting insights about the evolution of spaceflight. For example, most people believe that Project Apollo was enormously popular, but the polls do not support this contention. Consistently throughout the 1960s a majority of Americans did not believe Apollo was worth the cost, with the one exception to this being a poll taken at the time of the Apollo 11 lunar landing in July 1969. And consistently throughout the decade 45-60 percent of Americans believed that the government was spending too much on space. Clearly, this data does not support a contention that most people approved of Apollo and thought it important to explore space. The decision to proceed with Apollo was not made because it was enormously popular with the public, despite general acquiescence, but for hard-edged political reasons. There are many other observations emerging from this review. Some of them are contradictory to the general findings discussed above about support for Apollo. They include the following: - The American public has long held generally positive attitudes toward the space program, but is not - Over the history of the space age, an average of more than 60 percent of those polled rated the job done - Most Americans have shown support for space exploration and view it as important over the years, but - Most are also in favor of NASA as an organization, but are relatively unfamiliar with the majority of - These polls also suggest historically close relationships between public perceptions of NASA and - These images from popular culture, coupled with real-world accomplishments in spaceflight, work The paper will include numerous charts showing trends over time and offer comments on the meaning of public perceptions fort he evolution of space policy and the development of space exploration in the United States since the 1950s.

  12. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    This cutaway illustration shows the Apollo Spacecraft with callouts of the major components. The spacecraft consisted of the lunar module, the service module, the command module, and the launch escape system.

  13. Apollo experience report: Launch escape propulsion subsystem

    NASA Technical Reports Server (NTRS)

    Townsend, N. A.

    1973-01-01

    The Apollo launch escape propulsion subsystem contained three solid rocket motors. The general design, development, and qualification of the solid-propellant pitch-control, tower-jettison, and launch-escape motors of the Apollo launch escape propulsion subsystem were completed during years 1961 to 1966. The launch escape system components are described in general terms, and the sequence of events through the ground-based test programs and flight-test programs is discussed. The initial ground rules established for this system were that it should use existing technology and designs as much as possible. The practicality of this decision is proved by the minimum number of problems that were encountered during the development and qualification program.

  14. Special report, a brief history of data and theory pertaining to the atmosphere of the moon

    NASA Technical Reports Server (NTRS)

    Thomas, G. E.

    1972-01-01

    A brief historical account of data and theory pertaining to the lunar atmosphere prior to the Apollo program is presented. It consists of a summary of the most important pre-Apollo research, rather than an exhaustive bibliographical study, and constitutes a supporting analytical study for the Apollo 17 UV Spectrometer Experiment.

  15. Biomedical Results of Apollo

    NASA Technical Reports Server (NTRS)

    Johnston, R. S. (Editor); Dietlein, L. F. (Editor); Berry, C. A. (Editor); Parker, James F. (Compiler); West, Vita (Compiler)

    1975-01-01

    The biomedical program developed for Apollo is described in detail. The findings are listed of those investigations which are conducted to assess the effects of space flight on man's physiological and functional capacities, and significant medical events in Apollo are documented. Topics discussed include crew health and inflight monitoring, preflight and postflight medical testing, inflight experiments, quarantine, and life support systems.

  16. KSC-04pd1020

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Jim Lovell acknowledges the applause as he is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Lovell piloted Gemini 7, commanded Gemini 12, orbited the Moon on Apollo 8 and commanded the aborted Apollo 13 moon flight. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  17. KSC-99pp0856

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- Former Apollo 11 astronaut Neil A. Armstrong poses for a photograph with fans who attended the anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon

  18. Presidential Leadership in the Development of the U.S. Space Program

    NASA Technical Reports Server (NTRS)

    Launius, Roger D. (Editor); Mccurdy, Howard E. (Editor)

    1994-01-01

    Papers presented at a historical symposium on Presidential leadership in the space program include the following: 'The Imperial Presidency in the History of Space Exploration'; 'The Reluctant Racer: Dwight D. Eisenhower and United States Space Policy'; 'Kennedy and the Decision to Go to the Moon'; 'Johnson, Project Apollo, and the Politics of Space Program Planning'; 'The Presidency, Congress, and the Deceleration of the U.S. Space Program in the 1970s'; 'Politics not Science: The U.S. Space Program in the Reagan and Bush Years'; 'Presidential Leadership and International Aspects of the Space Program'; 'National Leadership and Presidential Power'; and 'Epilogue: Beyond NASA Exceptionalism'.

  19. Artist's concept of Apollo/Soyuz spacecraft docking approach

    NASA Image and Video Library

    1973-08-01

    S73-02395 (August 1973) --- An artist?s concept illustrating an Apollo-type spacecraft (on left) about to dock with a Soviet Soyuz-type spacecraft. A recent agreement between the United States and the Union of Soviet Socialist Republics provides for the docking in space of the Soyuz and Apollo-type spacecraft in Earth orbit in 1975. The joint venture is called the Apollo-Soyuz Test Project.

  20. Public Attitudes toward the Apollo Space Program, 1965-1975.

    ERIC Educational Resources Information Center

    Krugman, Herbert E.

    1977-01-01

    Analyzes the decline in public support for the Apollo Space Program from 1965 to 1975 in spite of generally positive media coverage. Using data from 31 telephone surveys during the period, concludes that the Moon landing polarized both opponents and proponents and increased opposition because "there was nothing more to be done." (JMF)

  1. MISSION CONTROL CENTER (MCC) VIEW - CONCLUSION APOLLO 11 CELEBRATION - MSC

    NASA Image and Video Library

    1969-07-24

    S69-40024 (24 July 1969) --- NASA and Manned Spacecraft Center (MSC) officials join in with the flight controllers, in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), in celebrating the successful conclusion of the Apollo 11 lunar landing mission. Identifiable in the picture, starting in foreground, are Dr. Robert R. Gilruth, MSC Director; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Christopher C. Kraft Jr., MSC Director of Flight Operation; U.S. Air Force Lt. Gen. Samuel C. Phillips (with glasses, looking downward), Apollo Program Director, Office of Manned Space Flight, NASA Headquarters; and Dr. George E. Mueller (with glasses, looking toward left), Associate Administrator, Office of Manned Space Flight, NASA Headquarters. Former astronaut John H. Glenn Jr. is standing behind Mr. Low.

  2. Radiation protection and instrumentation

    NASA Technical Reports Server (NTRS)

    Bailey, J. V.

    1975-01-01

    Radiation was found not to be an operational problem during the Apollo program. Doses received by the crewmen of Apollo missions 7 through 17 were small because no major solar-particle events occurred during those missions. One small event was detected by a radiation sensor outside the Apollo 12 spacecraft, but no increase in radiation dose to the crewmen inside the spacecraft was detected. Radiation protection for the Apollo program was focused on both the peculiarities of the natural space radiation environment and the increased prevalence of manmade radiation sources on the ground and onboard the spacecraft. Radiation-exposure risks to crewmen were assessed and balanced against mission gain to determine mission constraints. Operational radiation evaluation required specially designed radiation detection systems onboard the spacecraft in addition to the use of satellite data, solar observatory support, and other liaison. Control and management of radioactive sources and radiation-generating equipment was important in minimizing radiation exposure of ground-support personnel, researchers, and the Apollo flight and backup crewmen.

  3. Apollo experience report: Very high frequency ranging system

    NASA Technical Reports Server (NTRS)

    Panter, W. C.; Shores, P. W.

    1972-01-01

    The history of the Apollo very-high-frequency ranging system development program is presented from the program-planning stage through the final-test and flight-evaluation stages. Block diagrams of the equipment are presented, and a description of the theory of operation is outlined. A sample of the distribution of errors measured in the aircraft-flight test program is included. The report is concluded with guidelines or recommendations for the management of development programs having the same general constraints.

  4. Apollo Science

    ERIC Educational Resources Information Center

    Biggar, G. M.

    1973-01-01

    Summarizes the scientific activities of the Apollo program, including findings from analyses of the returned lunar sample. Descriptions are made concerning the possible origin of the moon and the formation of the lunar surface. (CC)

  5. Apollo-NADP(+): a spectrally tunable family of genetically encoded sensors for NADP(+).

    PubMed

    Cameron, William D; Bui, Cindy V; Hutchinson, Ashley; Loppnau, Peter; Gräslund, Susanne; Rocheleau, Jonathan V

    2016-04-01

    NADPH-dependent antioxidant pathways have a critical role in scavenging hydrogen peroxide (H2O2) produced by oxidative phosphorylation. Inadequate scavenging results in H2O2 accumulation and can cause disease. To measure NADPH/NADP(+) redox states, we explored genetically encoded sensors based on steady-state fluorescence anisotropy due to FRET (fluorescence resonance energy transfer) between homologous fluorescent proteins (homoFRET); we refer to these sensors as Apollo sensors. We created an Apollo sensor for NADP(+) (Apollo-NADP(+)) that exploits NADP(+)-dependent homodimerization of enzymatically inactive glucose-6-phosphate dehydrogenase (G6PD). This sensor is reversible, responsive to glucose-stimulated metabolism and spectrally tunable for compatibility with many other sensors. We used Apollo-NADP(+) to study beta cells responding to oxidative stress and demonstrated that NADPH is significantly depleted before H2O2 accumulation by imaging a Cerulean-tagged version of Apollo-NADP(+) with the H2O2 sensor HyPer.

  6. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James Lovell makes the opening remarks at the induction ceremony of four Space Shuttle astronauts into the U.S. Astronaut Hall of Fame. Being inducted are Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James Lovell makes the opening remarks at the induction ceremony of four Space Shuttle astronauts into the U.S. Astronaut Hall of Fame. Being inducted are Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  7. Analysis of Microgravity Experiments Conducted on the Apollo Spacecraft

    NASA Technical Reports Server (NTRS)

    Sharpe, R. J.; Wright, M. D.

    2009-01-01

    This Technical Memorandum (TM) discusses the microgravity experiments carried out during the later missions of the Apollo program. Microgravity experiments took place during the Apollo 14, 16, and 17 missions and consisted of four experiments in various materials processing concentrations with two of the four experiments taking place over the course of two missions. Experiments consist of composite casting, electrophoresis, heat flow and convection, and liquid transfer. This TM discusses the background, the workup, execution, and results of each experiment. In addition, the historical significance of each experiment to future applications/NASA programs is discussed.

  8. KSC-99pp0934

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- At an anniversary banquet honoring the Apollo program team, the people who made the entire lunar landing program possible, Center Director Roy D. Bridges offers remarks. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were astronauts Neil Armstrong, Edwin "Buzz" Aldrin, Wally Schirra, Gene Cernan and Walt Cunningham. Neil Armstrong was the first man to walk on the moon; Gene Cernan was the last

  9. Members of House Committee on Science and Astronautics Visited MSFC

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. The subcommittee was briefed on MSFC's manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. In this photograph, MSFC Director, Dr. Wernher von Braun and Joe Waggoner, Democratic representative of Louisiana, discuss Apollo models.

  10. Apollo experience report: Postflight testing of command modules

    NASA Technical Reports Server (NTRS)

    Hamilton, D. T.

    1973-01-01

    Various phases of the postflight testing of the command modules used in the Apollo Program are presented. The specific tasks to be accomplished by the task force recovery teams, the National Aeronautics and Space Administration Lyndon B. Johnson Space Center, (formerly the Manned Spacecraft Center) and the cognizant contractors/subcontractors are outlined. The means and methods used in postflight testing and how such activities evolved during the Apollo Program and were tailored to meet specific test requirements are described. Action taken to resolve or minimize problems or anomalies discovered during the flight, the postflight test phase, or mission evaluation is discussed.

  11. Around Marshall

    NASA Image and Video Library

    1962-03-08

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation’s space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. The subcommittee was briefed on MSFC’s manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. In this photograph, MSFC Director, Dr. Wernher von Braun and Joe Waggoner, Democratic representative of Louisiana, discuss Apollo models.

  12. Launch Vehicle Flight Report - Nasa Project Apollo Little Joe 2 Qualification Test Vehicle 12-50-1

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The Little Joe II Qualification Test Vehicle, Model 12-50-1, was launched from Army Launch Area 3 {ALA-3) at White Sands Missile Range, New Mexico, on 28 August 1963. This was the first launch of this class of boosters. The Little Joe II Launch Vehicle was designed as a test vehicle for boosting payloads into flight. For the Apollo Program, its mission is to serve as a launch vehicle for flight testing of the Apollo spacecraft. Accomplishment of this mission requires that the vehicle be capable of boosting the Apollo payload to parameters ranging from high dynamic pressures at low altitude to very high altitude flight. The fixed-fin 12-50 version was designed to accomplish the low-altitude parameter. The 12-51 version incorporates an attitude control system to accomplish the high altitude mission. This launch was designed to demonstrate the Little Joe II capability of meeting the high dynamic pressure parameter for the Apollo Program. For this test, a boiler-plate version of the Apollo capsule, service module and escape tower were attached to the launch vehicle to simulate weight, center of gravity and aerodynamic shape of the Apollo configuration. No attempt was made to separate the payload in flight. The test was conducted in compliance with Project Apollo Flight Mission Directive for QTV-1, NASA-MSC, dated 3 June 1963, under authority of NASA Contract NAS 9-492,

  13. Bone mineral measurement from Apollo experiment M-078. [derangement of bone mineral metabolism in spacecrews

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.; Rambaut, P. C.; Smith, M. C., Jr.

    1974-01-01

    Loss of mineral from bone during periods of immobilization, recumbency, or weightlessness is examined. This report describes the instrumentation, technique, and bone mineral changes observed preflight and postflight for the Apollo 14, 15, and 16 missions. The bone mineral changes documented during the Apollo Program are reviewed, and their relevance to future missions is discussed.

  14. Moonport: A History of Apollo Launch Facilities and Operations

    NASA Technical Reports Server (NTRS)

    Benson, C. D.; Faherty, W. B.

    1978-01-01

    The development of the Apollo f launch facilities and launch operations is described from the beginning of design through the final launch. Management techniques, innovation in automation, and testing on the ground to avoid failures in space are among the topics covered. The impact of the Apollo program on the citrus groves and quiet beaches of Florida's east coast is included.

  15. Saturn Apollo Program

    NASA Image and Video Library

    1971-07-31

    This is a photo of the Apollo 15 Lunar Module, Falcon, on the lunar surface. Apollo 15 launched from Kennedy Space Center (KSC) on July 26, 1971 via a Saturn V launch vehicle. Aboard was a crew of three astronauts including David R. Scott, Mission Commander; James B. Irwin, Lunar Module Pilot; and Alfred M. Worden, Command Module Pilot. The first mission designed to explore the Moon over longer periods, greater ranges and with more instruments for the collection of scientific data than on previous missions, the mission included the introduction of a $40,000,000 lunar roving vehicle (LRV) that reached a top speed of 16 kph (10 mph) across the Moon's surface. The successful Apollo 15 lunar landing mission was the first in a series of three advanced missions planned for the Apollo program. The primary scientific objectives were to observe the lunar surface, survey and sample material and surface features in a preselected area of the Hadley-Apennine region, setup and activation of surface experiments and conduct in-flight experiments and photographic tasks from lunar orbit. Apollo 15 televised the first lunar liftoff and recorded a walk in deep space by Alfred Worden. Both the Saturn V rocket and the LRV were developed at the Marshall Space Flight Center.

  16. APOLLO XII - LAUNCH DAY ACTIVITIES - LAUNCH COMPLEX 39A - KSC

    NASA Image and Video Library

    1969-11-14

    S69-58880 (14 Nov. 1969) --- Astronaut Alan L. Bean, Apollo 12 lunar module pilot, suits up in the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building during the Apollo 12 prelaunch countdown. Minutes later astronauts Bean; Charles Conrad Jr., commander; and Richard F. Gordon Jr., command module pilot, rode a special transport van over to Pad A, Launch Complex 39, where their spacecraft awaited. The Apollo 12 liftoff occurred at 11:22 a.m. (EST), Nov. 14, 1969. Apollo 12 is the United States' second lunar landing mission.

  17. Saturn Apollo Program

    NASA Image and Video Library

    1968-12-19

    Pictured from left to right, the Apollo 9 astronauts, James A. McDivitt, David R. Scott, and Russell L. Schweickart, pause in front of the Apollo/Saturn V space vehicle that would launch the Apollo 8 crew. The launch of the Apollo 9 (Saturn V launch vehicle, SA-504) took place on March 3, 1968. The Apollo 9 spacecraft, in the lunar mission configuration, was tested in Earth orbit. The mission was designed to rehearse all the steps and reproduce all the events of the Apollo 11 mission with the exception of the lunar touchdown, stay, and liftoff. The command and service modules, and the lunar module were used in flight procedures identical to those that would later take similar vehicles to the Moon, and a landing. The flight mechanics, mission support systems, communications, and recording of data were tested in a final round of verification. Astronauts Scott and Schweickart conducted Extravehicular Activity during this mission.

  18. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    NASA Technical Reports Server (NTRS)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  19. Apollo experience report: Guidance and control systems. Engineering simulation program

    NASA Technical Reports Server (NTRS)

    Gilbert, D. W.

    1973-01-01

    The Apollo Program experience from early 1962 to July 1969 with respect to the engineering-simulation support and the problems encountered is summarized in this report. Engineering simulation in support of the Apollo guidance and control system is discussed in terms of design analysis and verification, certification of hardware in closed-loop operation, verification of hardware/software compatibility, and verification of both software and procedures for each mission. The magnitude, time, and cost of the engineering simulations are described with respect to hardware availability, NASA and contractor facilities (for verification of the command module, the lunar module, and the primary guidance, navigation, and control system), and scheduling and planning considerations. Recommendations are made regarding implementation of similar, large-scale simulations for future programs.

  20. Apollo experience report: Real-time auxiliary computing facility development

    NASA Technical Reports Server (NTRS)

    Allday, C. E.

    1972-01-01

    The Apollo real time auxiliary computing function and facility were an extension of the facility used during the Gemini Program. The facility was expanded to include support of all areas of flight control, and computer programs were developed for mission and mission-simulation support. The scope of the function was expanded to include prime mission support functions in addition to engineering evaluations, and the facility became a mandatory mission support facility. The facility functioned as a full scale mission support activity until after the first manned lunar landing mission. After the Apollo 11 mission, the function and facility gradually reverted to a nonmandatory, offline, on-call operation because the real time program flexibility was increased and verified sufficiently to eliminate the need for redundant computations. The evaluation of the facility and function and recommendations for future programs are discussed in this report.

  1. Winners of student essay contest receive awards

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Apollo/Saturn V Center, George Meguiar (center left) and George English (center right) present scholarships to two students who entered an essay contest in conjunction with the 30th Anniversary of Apollo 11. The winners shown are Kyla Davis Horn, of Cocoa Beach, and Kyle Rukaczewski, of Satellite Beach. A third winner, Jason Gagnon, of Viera, was unable to attend. Meguiar and English head the Apollo 11 Commemoration Association which sponsored the contest in conjunction with Florida Today newspaper. The presentation was made at the Apollo/Saturn V Center during an anniversary banquet that honored all the people who made the Apollo Program possible. Special guests included former Apollo astronauts Neil Armstrong, Edwin 'Buzz' Aldrin, Gene Cernan and Walt Cunningham, who shared their experiences with the audience.

  2. Last chance at Taurus-Littrow

    NASA Technical Reports Server (NTRS)

    Wilhelms, D. E.

    1992-01-01

    By the fall of 1971, it was known that only two more Apollos would land on the Moon. Most geoscientists agreed that both should concentrate on the previously neglected terrae (highlands). In June 1991, the Apollo Site Selection Board (ASSB) had chosen Descartes as the site of the Apollo 16 terra landing, scheduled for April 1972. Therefore, we had to assess how many pre-Apollo objectives the first four landings had met, how many Apollo 16 was likely to meet, and how to meet the remaining ones with Apollo 17. Geologists convened at Caltech in November 1971 and formulated a list of major lunar problems. An edited version of the list is presented, and how the remaining problems influenced the Apollo 16 and 17 landing site selection process is discussed with particular emphasis on the selection of Taurus-Littrow as the landing site for Apollo 17. Apollo 17 returned a fine collection from the massifs, bright mantle, Sculptured Hills, subfloor basalt, and dark mantle of Taurus-Littrow. They answered many of 1971's questions, showed others to have been wrongly asked, and left others for us to ponder still today. A brief discussion of the problems solved and the questions raised by the Apollo Program are presented.

  3. KSC-2009-4192

    NASA Image and Video Library

    2009-07-16

    CAPE CANAVERAL, Fla. – During NASA's 40th Anniversary of Apollo Celebration at the Apollo/Saturn V Center at NASA's Kennedy Space Center in Florida, the Visitor Complex Chief Operating Officer, Bob Moore (center left), gives Center Director Bob Cabana a plaque commemorating the Apollo Treasures Gallery. Others on stage are (far left) the program moderator, John Zarella, with CNN, and Apollo astronauts Al Worden, Edgar Mitchell, Walt Cunningham, Buzz Aldrin, (Moore, Cabana), Charlie Duke, Vance Brand, Gerald Carr and Bruce McCandless. The celebration honored the July 1969 launch and landing on the moon. Photo credit: NASA/Kim Shiflett

  4. Apollo 17 crew arrive aboard the U.S.S. Ticonderoga

    NASA Image and Video Library

    1972-12-19

    S72-55937 (19 Dec. 1972) --- The three Apollo 17 crewmembers arrive aboard the prime recovery ship, the USS Ticonderoga, to successfully conclude the final lunar landing mission in NASA's Apollo program. They are astronauts Eugene A. Cernan (waving), Harrison H. Schmitt (on Cernan's left), and Ronald E. Evans (standing in back). VIP's, dignitaries, officials and Navy personnel gave the three crew men a red-carpet welcome. Apollo 17 splashed down at 1:24:59 p.m. (CST), Dec. 19, 1972, about 350 nautical miles southeast of Samoa.

  5. Stages to Saturn

    NASA Technical Reports Server (NTRS)

    Bilstein, Roger E.

    1996-01-01

    Part one of this report is intended to bring back into focus some of the facts, circumstances, and background of space exploration. A recapitulation of the flight of Apollo 11, the first lunar landing missions, provides an opportunity to introduce some of the hardware and nomenclature of the Apollo-Saturn program. An historical overview of rocketry, including the main threads of Saturn's origins, provides a background for the scope and boldness of Apollo 11 and the Saturn adventure. The management structure developed by NASA to implement the Apollo-Saturn missions is described in some detail.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1967-11-09

    This photograph shows an early moment of the first test flight of the Saturn V vehicle for the Apollo 4 mission, photographed by a ground tracking camera, on the morning of November 9, 1967. This mission was the first launch of the Saturn V launch vehicle. Objectives of the unmarned Apollo 4 test flight were to obtain flight information on launch vehicle and spacecraft structural integrity and compatibility, flight loads, stage separation, and subsystems operation including testing of restart of the S-IVB stage, and to evaluate the Apollo command module heat shield.

  7. Saturn Apollo Program

    NASA Image and Video Library

    1973-01-01

    This illustration depicts a configuration of the Soyuz spacecraft for the Apollo-Soyuz Test Project (ASTP). The ASTP was the first international docking of the U.S.'s Apollo spacecraft and the U.S.S.R.'s Soyuz spacecraft in space. For this project, the Soviets built another in their continuing series of Soyuz space capsules. The U.S. used the Saturn IB Apollo capsule. A joint engineering team from the two countries met to develop a docking system that permitted the two spacecraft to link in space and allowed the crews to travel from one spacecraft to the other.

  8. MSFC Skylab Apollo Telescope Mount. [a technical history and management critique

    NASA Technical Reports Server (NTRS)

    Morse, A. R.

    1974-01-01

    A technical history and management critique of the Skylab Apollo Telescope Mount (ATM) from initial conception through the design, manufacturing, testing and prelaunch phases is presented. A mission performance summary provides a general overview of the ATM's achievements in relationship to its design goals. Recommendations and conclusions applicable to hardware design, test program philosophy and performance, and program management techniques for the ATM with potential application to future programs are also discussed.

  9. NASA takes stock

    NASA Technical Reports Server (NTRS)

    Frosch, R. A.

    1979-01-01

    The history of NASA activities and achievements in the past decade is reviewed with consideration given to the Apollo expeditions and the post-Apollo planetary exploration. Progress in spaceborne astronomy and in satellite communications is characterized as revolutionary. It is also noted that Landsat alone may eventually repay the United States for the cost of the entire space program. Special attention is given to the Shuttle program which will be the key to all operations in space for the next decade including the Galileo mission to Jupiter (1982) and the Space Telescope (1983). Future missions could include a Venus orbiter with imaging radar to finally penetrate the cloud cover of the planet and to map its surface; a rover or sample return expedition to Mars; a Saturn orbiter combined with a probe of its Titan satellite, and an examination of Halley's Comet. Finally the next decade should bring the data needed to make a 'go' or 'no go' decision on the concept of SPS that would beam solar energy into earth stations.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1976-06-01

    This illustration depicts the launch configuration of the Apollo spacecraft for the Apollo-Soyuz Test Project (ASTP). The ASTP was the first international docking of the U.S.'s Apollo spacecraft and the U.S.S.R.'s Soyuz spacecraft in space. A joint engineering team from the two countries met to develop a docking system that permitted the two spacecraft to link in space and allowed the two crews to travel from one spacecraft to the other. This system entailed developing a large habitable Docking Module (DM) to be carried on the Apollo spacecraft to facilitate the joining of two dissimilar spacecraft. The Marshall Space Flight Center was responsible for development and sustaining engineering of the Saturn IB launch vehicle during the mission.

  11. KSC-04pd1007

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Before the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame, astronaut John Young is warmly greeted as he is introduced as a previous inductee. Co-holder of a record for the most space flights, six, he flew on Gemini 3 and 10, orbited the Moon on Apollo 10, walked on the Moon on Apollo 16, and commanded two space shuttle missions, STS-1 and STS-9. Young currently serves as associate director, technical, at Johnson Space Center. The induction ceremony was held at the Apollo/Saturn V Center at KSC. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  12. Skylab

    NASA Image and Video Library

    1971-01-01

    This image illustrates major areas of emphasis of the Skylab Program. In an early effort to extend the use of Apollo for further applications, NASA established the Apollo Applications Program (AAP) in August of 1965. The AAP was to include long duration Earth orbital missions during which astronauts would carry out scientific, technological, and engineering experiments in space by utilizing modified Saturn launch vehicles and the Apollo spacecraft. Established in 1970, the Skylab Program was the forerurner of the AAP. The goals of the Skylab were to enrich our scientific knowledge of the Earth, the Sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms, including man; to study the effects of the processing and manufacturing of materials utilizing the absence of gravity; and to conduct Earth resource observations. The Skylab also conducted 19 selected experiments submitted by high school students. Skylab's 3 different 3-man crews spent up to 84 days in Earth orbit. The Marshall Space Flight Center (MSFC) had responsibility for developing and integrating most of the major components of the Skylab: the Orbital Workshop (OWS), Airlock Module (AM), Multiple Docking Adapter (MDA), Apollo Telescope Mount (ATM), Payload Shroud (PS), and most of the experiments. MSFC was also responsible for providing the Saturn IB launch vehicles for three Apollo spacecraft and crews and a Saturn V launch vehicle for the Skylab.

  13. Overviews of the Apollo Program and Its Management

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This special bibliography includes items individually selected by scientific and technical information professionals that provide an overview of the history, events, and results of the Apollo missions. Planning, scheduling, and management are also included.

  14. KSC-04pd1005

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Before the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame, former astronaut Wally Schirra is greeted with applause as he is introduced as a previous inductee. One of America's original Mercury Seven astronauts, Schirra is the only one who flew in all three of the nation's pioneering space programs, Mercury, Gemini, and Apollo. The ceremony was held at the Apollo/Saturn V Center at KSC. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  15. The Evolution of Failure Analysis at NASA's Kennedy Space Center and the Lessons Learned

    NASA Technical Reports Server (NTRS)

    Long, Victoria S.; Wright, M. Clara; McDanels, Steve

    2015-01-01

    The United States has had four manned launch programs and three station programs since the era of human space flight began in 1961. The launch programs, Mercury, Gemini, Apollo, and Shuttle, and the station programs, Skylab, Shuttle-Mir, and the International Space Station (ISS), have all been enormously successful, not only in advancing the exploration of space, but also in advancing related technologies. As each subsequent program built upon the successes of previous programs, they similarly learned from their predecessors' failures. While some failures were spectacular and captivated the attention of the world, most only held the attention of the dedicated men and women working to make the missions succeed.

  16. Members of House Committee on Science and Astronautics Visited MSFC

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. The subcommittee was briefed on MSFC's manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. In this photograph, MSFC Director, Dr. Wernher von Braun and Richard L. Roudebush, Republican representative of Indiana, discuss Apollo models.

  17. ASTP - INSIGNIAS

    NASA Image and Video Library

    1975-01-01

    S75-20361 (27 Feb. 1975) --- This is the American crew insignia of the joint United States-USSR Apollo-Soyuz Test Project (ASTP) scheduled to take place in July 1975. Of circular design, the insignia has a colorful border area, outlined in red, with the names of the five crew members and the words Apollo in English and Soyuz in Russian around an artist?s concept of the Apollo and Soyuz spacecraft about to dock in Earth orbit. The bright sun and the blue and white Earth are in the background. The white stars on the blue background represent American astronauts Thomas P. Stafford, commander; Vance D. Brand, command module pilot; and Donald (Deke) K. Slayton, docking module pilot. The dark gold stars on the red background represent Soviet cosmonauts Aleksey A. Leonov, commander, and Valeriy N. Kubasov, engineer. Soyuz and Apollo will be launched separately from the USSR and United States, and will dock and remain together for as long as two days. The three Apollo astronauts will enter Soyuz and the two Soviet cosmonauts will visit the Apollo spacecraft via a docking module. The Russian word ?soyuz? means ?union? in English.

  18. Development of the J-2X Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle: Building on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Greene, WIlliam

    2007-01-01

    The United States (U.S.) Vision for Space Exploration has directed NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020 by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage (EDS). This decision was reached during the Exploration Systems Architecture Study and confirmed after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by testing existing engine hardware and designs; building on the Apollo Program (1961 to 1975), the Space Shuttle Program (1972 to 2010); and consulting with Apollo era experts to derive other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.

  19. Development of the J-2X Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle: Building on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Greene, William D.; Snoddy, Jim

    2007-01-01

    The United States (U.S.) Vision for Space Exploration has directed NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020, by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage. This decision was reached during the Exploration Systems Architecture Study and confirmed after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by testing existing engine hardware and designs; building on the Apollo Program (1961 to 1975), the Space Shuttle Program (1972 to 2010); and consulting with Apollo-era experts to derive other lessons lived to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.

  20. Airman Scholar Journal. Volume 19, Spring 2013

    DTIC Science & Technology

    2013-01-01

    of technological prowess and a symbol of ideological victory over communism . The Apollo program, which Stephen Johnson has called the United States...CO,80840 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11 ...Space Deterrence in a Labrynthine World Zachary Crippen and Andrew Hilton Topical Focus: Proliferation and Deterrence 11 Racism: A Stumbling Block to

  1. Apollo Telescope Mount (ATM) gimballed star tracker. [developed for the Skylab program

    NASA Technical Reports Server (NTRS)

    Lana, J. D.

    1974-01-01

    Design and development of six gimballed star trackers for Skylab's Apollo Telescope Mount, which performed successfully on all three manned Skylab missions and accumulated a total usage time of approximately 3,500 hours, is described in terms of configurations, materials and construction, qualification testing, performance, and reliability characteristics. A brief program history and design changes incorporated during the life of the program are also discussed. Extensive drawings, block diagrams, and photographs are provided.

  2. KENNEDY SPACE CENTER, FLA. - Hundreds of guests attend a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-20

    KENNEDY SPACE CENTER, FLA. - Hundreds of guests attend a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  3. The Apollo Program and Lunar Science

    ERIC Educational Resources Information Center

    Kuiper, Gerard P.

    1973-01-01

    Discusses the history of the Vanguard project and the findings in Ranger records and Apollo missions, including lunar topography, gravity anomalies, figure, and chemistry. Presented are speculative remarks on the research of the origin of the Moon. (CC)

  4. Flight Planning and Procedures

    NASA Technical Reports Server (NTRS)

    Rich, Allison C.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) was founded in 1958 by President Eisenhower as a civilian lead United States federal agency designed to advance the science of space. Over the years, NASA has grown with a vision to "reach for new heights and reveal the unknown for the benefit of humankind" (About NASA). Mercury, Gemini, Apollo, Skylab, and Space Shuttle are just a few of the programs that NASA has led to advance our understanding of the universe. Each of the eleven main NASA space centers located across the United States plays a unique role in accomplishing that vision. Since 1961, Johnson Space Center (JSC) has led the effort for manned spaceflight missions. JSC has a mission to "provide and apply the preeminent capabilities to develop, operate, and integrate human exploration missions spanning commercial, academic, international, and US government partners" (Co-op Orientation). To do that, JSC is currently focused on two main programs, Orion and the International Space Station (ISS). Orion is the exploration vehicle that will take astronauts to Mars; a vessel comparable to the Apollo capsule. The International Space Station (ISS) is a space research facility designed to expand our knowledge of science in microgravity. The first piece of the ISS was launched in November of 1998 and has been in a continuous low earth orbit ever since. Recently, two sub-programs have been developed to resupply the ISS. The Commercial Cargo program is currently flying cargo and payloads to the ISS; the Commercial Crew program will begin flying astronauts to the ISS in a few years.

  5. Apollo experience report: Flight planning for manned space operations

    NASA Technical Reports Server (NTRS)

    Oneill, J. W.; Cotter, J. B.; Holloway, T. W.

    1972-01-01

    The history of flight planning for manned space missions is outlined, and descriptions and examples of the various evolutionary phases of flight data documents from Project Mercury to the Apollo Program are included. Emphasis is given to the Apollo flight plan. Time line format and content are discussed in relationship to the manner in which they are affected by the types of flight plans and various constraints.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1973-05-01

    SA-206 lifts off from Kennedy Space Center's launch complex 39B, in Florida, on May 25, 1973, for the first manned Skylab mission (SL-2) with astronauts Pete Conrad, Joseph Kerwin, and Paul Weitz. The Saturn IB, developed under the direction of the Marshall Space Flight Center (MSFC), launched five manned Earth-orbital missions between 1968 and 1975: Apollo 7, Skylab 2, Skylab 3, Skylab 4, and the Apollo-Soyuz Test Project (ASTP).

  7. KSC-04pd1009

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Before the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame, former astronaut Ed Mitchell is introduced as a previous inductee. Mitchell explored the Moon's hilly Fra Mauro region with Alan B. Shepard during the 1971 Apollo 14 mission. The ceremony was held at the Apollo/Saturn V Center at KSC. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  8. KSC-99pp0842

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- In the Apollo/Saturn V Center, Lisa Malone (left), chief of KSC's Media Services branch, relays a question from the media to former Apollo astronaut Neil A. Armstrong. Beside Armstrong are Edwin "Buzz" Aldrin, Gene Cernan, and Walt Cunningham, all of whom also flew on Apollo missions. The four met with the media prior to an anniversary banquet highlighting the contributions of aerospace employees who made the Apollo program possible. The banquet celebrated the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon

  9. Saturn Apollo Program

    NASA Image and Video Library

    1972-04-16

    The sixth marned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 continued the broad-scale geological, geochemical, and geophysical mapping of the Moon's crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph. It photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle was also used. The mission ended on April 27, 1972.

  10. KSC-99pp0858

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- Former Apollo 11 astronaut Neil A. Armstrong stands to a round of applause after being introduced at the anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon. He appeared at the banquet with other former astronauts Edwin "Buzz" Aldrin, Gene Cernan, Walt Cunningham and others

  11. KSC-99pp0857

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- Former Apollo 11 astronaut Neil A. Armstrong is the center of attention at the anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon. He appeared at the banquet with other former astronauts Edwin "Buzz" Aldrin, Gene Cernan, Walt Cunningham and others

  12. S70-34903

    NASA Image and Video Library

    1970-04-14

    S70-34903 (14 April 1970) --- Dr. Thomas O. Paine, Administrator, National Aeronautics and Space Administration (NASA), talks on the telephone to President Richard M. Nixon. Dr. Paine is seated at his console in the Mission Operations Control Room (MOCR) at the Mission Control Center (MCC), Manned Spacecraft Center (MSC). Also pictured are Dr. Rocco Petrone, Apollo program director, Office Manned Spaceflight, NASA Headquarters (facing camera); and Chester M. Lee, Apollo mission director, Office of Manned Spaceflight, NASA Headquarters (HQ). Dr. Paine and the President were discussing the revised Apollo 13 flight plan following discovery of an oxygen cell failure in the Apollo 13 spacecraft several hours earlier.

  13. Saturn Apollo Program

    NASA Image and Video Library

    1972-04-27

    The Apollo 16 Command Module splashed down in the Pacific Ocean on April 27, 1972 after an 11-day moon exploration mission. The sixth manned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission Commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 continued the broad-scale geological, geochemical, and geophysical mapping of the Moon’s crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1972-04-18

    This view of the back side of the Moon was captured by the Apollo 16 mission crew. The sixth manned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission Commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 continued the broad-scale geological, geochemical, and geophysical mapping of the Moon’s crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used. The mission ended on April 27, 1972.

  15. Winners of student essay contest receive awards

    NASA Technical Reports Server (NTRS)

    1999-01-01

    George Meguiar (left) presents a scholarship award to Kyla Davis Horn, of Cocoa Beach, one of the winners of an essay contest related to the 30th Anniversary of Apollo 11. Meguiar and George English (second from right) head the Apollo 11 Commemoration Association who sponsored the contest in conjunction with Florida Today newspaper. The other scholarship winner is Kyle Rukaczewski, of Satellite Beach (far right). A third winner, Jason Gagnon, of Viera, was unable to attend. The presentation was made at the Apollo/Saturn V Center during an anniversary banquet that honored all the people who made the Apollo Program possible. Special guests included former Apollo astronauts Neil Armstrong, Edwin 'Buzz' Aldrin, Gene Cernan and Walt Cunningham, who shared their experiences with the audience.

  16. KSC-99pp0939

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- George Meguiar (left) presents a scholarship award to Kyla Davis Horn, of Cocoa Beach, one of the winners of an essay contest related to the 30th Anniversary of Apollo 11. Meguiar and George English (second from right) head the Apollo 11 Commemoration Association who sponsored the contest in conjunction with Florida Today newspaper. The other scholarship winner is Kyle Rukaczewski, of Satellite Beach (far right). A third winner, Jason Gagnon, of Viera, was unable to attend. The presentation was made at the Apollo/Saturn V Center during an anniversary banquet that honored all the people who made the Apollo Program possible. Special guests included former Apollo astronauts Neil Armstrong, Edwin "Buzz" Aldrin, Gene Cernan and Walt Cunningham, who shared their experiences with the audience

  17. Apollo experience report: Television system

    NASA Technical Reports Server (NTRS)

    Coan, P. P.

    1973-01-01

    The progress of the Apollo television systems from the early definition of requirements through the development and inflight use of color television hardware is presented. Television systems that have been used during the Apollo Program are discussed, beginning with a description of the specifications for each system. The document describes the technical approach taken for the development of each system and discusses the prototype and engineering hardware built to test the system itself and to perform the testing to verify compatibility with the spacecraft systems. Problems that occurred during the design and development phase are described. Finally, the flight hardware, operational characteristics, and performance during several Apollo missions are described, and specific recommendations for the remaining Apollo flights and future space missions are made.

  18. KSC-2014-3249

    NASA Image and Video Library

    2014-07-21

    CAPE CANAVERAL, Fla. -- Apollo astronauts and their families receive a briefing in one of the remodeled firing rooms in the Launch Control Center at NASA's Kennedy Space Center in Florida. The facility's firing rooms were used to conduct the Saturn V countdowns during the Apollo Program. The tour followed a ceremony renaming the refurbished Operations and Checkout Building for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. Second from left is Apollo 11 moonwalker Buzz Aldrin and former astronaut Jim Lovell, a member of the Apollo 8 and Apollo 13 crews, standing next to him, at center. The ceremony was part of NASA's 45th anniversary celebration of the Apollo 11 moon landing. As the world watched, Neil Armstrong and Buzz Aldrin landed in the moon's Sea of Tranquility on July 20, 1969, aboard the lunar module Eagle. Meanwhile, crewmate Michael Collins orbited above in the command module Columbia. For more, visit http://www.nasa.gov/press/2014/july/nasa-honors-historic-first-moon-landing-eyes-first-mars-mission. Photo credit: NASA/Kim Shiflett

  19. Teaching Chemistry Using From the Earth to the Moon

    NASA Astrophysics Data System (ADS)

    Goll, James G.; Mundinger, Stacie L.

    2003-03-01

    The space program and media based on it have provided fascinating examples that can be used to expore chemical principles. The HBO series From the Earth to the Moon and a documentary Moonshot provide examples for teaching chemical principles from the Apollo missions. A docking problem between two spacecrafts occurred during the Apollo 14 mission. This situation can be used to discuss the conditions necessary for a chemical reaction. A catastrophic fire on Apollo 1 can be used to illustrate the influence of different conditions on the rate of a reaction. Lightning striking Apollo 12 during liftoff showed the consequence of adding ions to solution. The landing of Apollo 12, which touched down only 535 feet from Surveyor 3, can be used to teach accuracy and absolute and relative error. The astronauts of Apollo 15 discovered a sample of the primordial lunar crust, and during Apollo 17, astronauts discovered orange dust on the moon. These discoveries can be used to demonstrate the importance of trained observation skills and analytical thinking.

  20. Apollo experience report: Safety activities

    NASA Technical Reports Server (NTRS)

    Rice, C. N.

    1975-01-01

    A description is given of the flight safety experiences gained during the Apollo Program and safety, from the viewpoint of program management, engineering, mission planning, and ground test operations was discussed. Emphasis is placed on the methods used to identify the risks involved in flight and in certain ground test operations. In addition, there are discussions on the management and engineering activities used to eliminate or reduce these risks.

  1. Island of Oahu, State of Hawaii, as seen from the Apollo 7 spacecraft

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Island of Oahu, State of Hawaii, as seen from the Apollo 7 spacecraft during its 51st revolution of the earth. Photographed from an altitude of 122 nautical miles, at ground elapsed time of 81 hours. Diamond Head and Pearl Harbor are clearly visible.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-01

    The crowning achievement for the Saturn V rocket came when it launched Apollo 11 astronauts, Neil Armstrong, Edwin (Buzz) Aldrin, and Michael Collins, to the Moon in July 1969. In this photograph, astronaut Aldrin takes his first step onto the surface of the Moon.

  3. The ninth Dr. Albert Plesman memorial lecture: The Future of Space Flight

    NASA Technical Reports Server (NTRS)

    Moore, J. W.

    1984-01-01

    The history of space flight is reviewed and major NASA programs (Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz, Science and Applications, Space Shuttle, Space Station) are summarized. Developments into the early 21st century are predicted.

  4. Development of flame-resistant structures for use in the Apollo and Skylab programs

    NASA Technical Reports Server (NTRS)

    Coskren, R. J.

    1973-01-01

    Flame-resistant materials have been designed and fabricated to meet certain end-use criteria established by NASA with emphasis on meeting established flammability standards. The program had three general phases: (1) fabrication of candidate sample structures for evaluation by the Structures and Mechanics Division and/or NASA contractors; (2) physical testing of the structures developed; and (3) supply of required quantities of specific items for fabrication into prototype and/or flight items for the Apollo and Skylab programs.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1979-05-01

    This montage depicts the flight crew patches for the manned Apollo 7 thru Apollo 17 missions. The Apollo 7 through 10 missions were basically manned test flights that paved the way for lunar landing missions. Primary objectives met included the demonstration of the Command Service Module (CSM) crew performance; crew/space vehicle/mission support facilities performance and testing during a manned CSM mission; CSM rendezvous capability; translunar injection demonstration; the first manned Apollo docking, the first Apollo Extra Vehicular Activity (EVA), performance of the first manned flight of the lunar module (LM); the CSM-LM docking in translunar trajectory, LM undocking in lunar orbit, LM staging in lunar orbit, and manned LM-CSM docking in lunar orbit. Apollo 11 through 17 were lunar landing missions with the exception of Apollo 13 which was forced to circle the moon without landing due to an onboard explosion. The craft was,however, able to return to Earth safely. Apollo 11 was the first manned lunar landing mission and performed the first lunar surface EVA. Landing site was the Sea of Tranquility. A message for mankind was delivered, the U.S. flag was planted, experiments were set up and 47 pounds of lunar surface material was collected for analysis back on Earth. Apollo 12, the 2nd manned lunar landing mission landed in the Ocean of Storms and retrieved parts of the unmanned Surveyor 3, which had landed on the Moon in April 1967. The Apollo Lunar Surface Experiments Package (ALSEP) was deployed, and 75 pounds of lunar material was gathered. Apollo 14, the 3rd lunar landing mission landed in Fra Mauro. ALSEP and other instruments were deployed, and 94 pounds of lunar materials were gathered, using a hand cart for first time to transport rocks. Apollo 15, the 4th lunar landing mission landed in the Hadley-Apennine region. With the first use of the Lunar Roving Vehicle (LRV), the crew was bale to gather 169 pounds of lunar material. Apollo 16, the 5th lunar landing mission, landed in the Descartes Highlands for the first study of highlands area. Selected surface experiments were deployed, the ultraviolet camera/spectrograph was used for first time on the Moon, and the LRV was used for second time for a collection of 213 pounds of lunar material. The Apollo program came to a close with Apollo 17, the 6th and final manned lunar landing mission that landed in the Taurus-Littrow highlands and valley area. This mission hosted the first scientist-astronaut, Schmitt, to land on the Moon. The 6th automated research station was set up, and 243 ponds of lunar material was gathered using the LRV.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-31

    Stuart A. Roosa, Apollo 14 Command Module pilot, undergoes a final space suit check prior to liftoff. The Apollo 14, carrying a crew of three astronauts: Roosa; Alan B. Shepard, Jr., Mission Commander; and Edgar D. Mitchell, Lunar Module pilot, lifted off from launch complex 39A at KSC on January 31, 1971. It was the third manned lunar landing, the first manned landing in exploration of the lunar highlands, and it demonstrated pinpoint landing capability. The major goal of Apollo 14 was the scientific exploration of the Moon in the foothills of the rugged Fra Mauro region. The lunar surface extravehicular activity (EVA) of astronauts Shepard and Mitchell included setting up an automated scientific laboratory called Apollo Lunar Scientific Experiments Package (ALSEP), and collecting a total of about 95 pounds (43 kilograms) of Moon rock and soil for a geological investigation back on the Earth. Apollo 14 safely returned to Earth on February 9, 1971.

  7. Shuttle - Mir Program Insignia

    NASA Image and Video Library

    1994-09-20

    The rising sun signifies the dawn of a new era of human Spaceflight, the first phase of the United States/Russian space partnership, Shuttle-Mir. Mir is shown in its proposed final on orbit configuration. The Shuttle is shown in a generic tunnel/Spacehab configuration. The Shuttle/Mir combination, docked to acknowledge the union of the two space programs, orbits over an Earth devoid of any definable features or political borders to emphasize Earth as the home planet for all humanity. The individual stars near the Space Shuttle and the Russian Mir Space Station represent the previous individual accomplishments of Russia's space program and that of the United States. The binary star is a tribute to the previous United States-Russian joint human Spaceflight program, the Apollo-Soyuz Test Project (ASTP). The flags of the two nations are symbolized by flowing ribbons of the national colors interwoven in space to represent the two nations joint exploration of space. NASA SHUTTLE and PKA MNP are shown in the stylized logo fonts of the two agencies that are conducting this program.

  8. Saturn Apollo Program

    NASA Image and Video Library

    1972-12-01

    This photograph taken during the Apollo 17 mission (the last mission of the Apollo Program), depicts stiff plasticized maps being taped together and fastened by clamps to patch a broken fender of the Lunar Roving Vehicle (LRV). Powered by battery, the lightweight electric car greatly increased the range of mobility and productivity on the scientific traverses for astronauts. It weighed 462 pounds (77 pounds on the Moon) and could carry two suited astronauts, their gear and cameras, and several hundred pounds of bagged samples. The LRV's mobility was quite high. It could climb and descend slopes of about 25 degrees. The LRV was designed and developed by the Marshall Space Flight Center and built by the Boeing Company.

  9. Remembering Apollo 11: The 30th Anniversary Data Archive CD-ROM

    NASA Technical Reports Server (NTRS)

    Cortright, Edgar M. (Editor)

    1999-01-01

    On July 20, 1969, the human race accomplished its single greatest technological achievement of all time when a human first set foot on another celestial body. Six hours after landing at 4:17 p.m. Eastern Standard Time (with less than thirty seconds of fuel remaining), Neil A. Armstrong took the "small step" into our greater future when he stepped off the Lunar Module, named Eagle, onto the surface of the Moon, from which he could look up and see Earth in the heavens as no one had done before him. He was shortly joined by Edwin "Buzz" Aldrin, and the two astronauts spent twenty-one hours on the lunar surface and returned forty-six pounds of lunar rocks. After their historic walks on the Moon, they successfully docked with Michael Collins, patiently orbiting the cold but no longer lifeless Moon alone in the Command module Columbia. This CR-ROM is intended as a collection of hard to find technical data and other interesting information about the Apollo 11 mission, as well as the apollo program in general. It includes basic overviews, such as a retrospective analysis, an annotated bibliography, and history of the lunar-orbit rendezvous concept. It also contains technical data, such as mission operations reports, press kits, and news references for all of the Apollo missions, the Apollo spacecraft, and the Saturn V launch vehicle. Rounding out this CD-ROM are extensive histories of the lunar Orbiter program (the robotic predecessor to Apollo, biographies of the Apollo astronauts and other key individuals, and interesting audio-visual materials, such as video and audio clips, photo galleries, and blueprint-like diagrams of the Apollo spacecraft.

  10. NASA evolution of exploration architectures

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.

    1991-01-01

    A series of charts and diagrams is used to provide a detailed overview of the evolution of NASA space exploration architectures. The pre-Apollo programs including the Werner von Braun feasibility study are discussed and the evolution of the Apollo program itself is treated in detail. The post-Apollo era is reviewed and attention is given to the resurgence of strategic planning exemplified by both ad hoc and formal efforts at planning. Results of NASA's study of the main elements of the Space Exploration Initiative which examined technical scenarios, science opportunities, required technologies, international considerations, institutional strengths and needs, and resource estimates are presented. The 90-day study concludes that, among other things, major investments in challenging technologies are required, the scientific opportunities provided by the program are considerable, current launch capabilities are inadequate, and Space Station Freedom is essential.

  11. Around Marshall

    NASA Image and Video Library

    1962-03-08

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation’s space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. Standing at the Apollo Applications Program Cluster Model in building 4745 are (left-to-right): Dr. Wernher von Braun, MSFC; Congressman Joe D. Waggoner, Democratic representative of Louisiana; Congressman Earle Cabell, Democratic representative of Texas; Subcommittee Chairman Olin E. Teague, Democratic representative of Texas; Congressman James G. Fulton, Republican representative of Pennsylvania; and Dr. Ernst Stuhlinger, associate MSFC director for science. The subcommittee was briefed on MSFC’s manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program.

  12. Saturn Apollo Program

    NASA Image and Video Library

    1969-08-27

    Artist’s concept of a manned Lunar Roving Vehicle (LRV) depicting two-man operation on the Lunar surface. The LRV was developed under the direction of the Marshall Space Flight Center (MSFC) to provide Apollo astronauts with a greater range of mobility on the lunar surface.

  13. Space Flight: The First 30 Years

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A history of space flight from Project Mercury to the Space Shuttle is told from the perspective of NASA flight programs. Details are given on Mercury missions, Gemini missions, Apollo missions, Skylab missions, the Apollo-Soyuz Test Project, and the Space Shuttle missions.

  14. Apollo experience report: Earth landing system

    NASA Technical Reports Server (NTRS)

    West, R. B.

    1973-01-01

    A brief discussion of the development of the Apollo earth landing system and a functional description of the system are presented in this report. The more significant problems that were encountered during the program, the solutions, and, in general, the knowledge that was gained are discussed in detail. Two appendixes presenting a detailed description of the various system components and a summary of the development and the qualification test programs are included.

  15. Island of Oahu, State of Hawaii, as seen from the Apollo 7 spacecraft

    NASA Image and Video Library

    1968-10-14

    AS7-07-1741 (14 Oct. 1968) --- Island of Oahu, State of Hawaii, as seen from the Apollo 7 spacecraft during its 51st revolution of Earth. Photographed from an altitude of 122 nautical miles, at ground elapsed time of 81 hours. Diamond Head and Pearl Harbor are clearly visible.

  16. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, actor and Master of Ceremonies Lance Henriksen (at podium) introduces four newly inducted Space Shuttle astronauts to the audience at their induction ceremony into the U.S. Astronaut Hall of Fame. From left center, they are Story Musgrave, Sally K. Ride, Daniel Brandenstein, and Robert "Hoot" Gibson. Also standing, left, is former astronaut James A. Lovell. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, actor and Master of Ceremonies Lance Henriksen (at podium) introduces four newly inducted Space Shuttle astronauts to the audience at their induction ceremony into the U.S. Astronaut Hall of Fame. From left center, they are Story Musgrave, Sally K. Ride, Daniel Brandenstein, and Robert "Hoot" Gibson. Also standing, left, is former astronaut James A. Lovell. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  17. KENNEDY SPACE CENTER, FLA. - Former astronaut James Lovell addresses the audience at a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-20

    KENNEDY SPACE CENTER, FLA. - Former astronaut James Lovell addresses the audience at a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  18. Flame Retardant Fibers for Human Space Exploration - Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2017-01-01

    The National Aeronautics and Space Administration (NASA) has led in the development of unique flame retardant fibers for human spaceflight since the beginning of the Apollo program. After the Apollo 1 fire which killed Command Pilot Virgil I 'Gus' Grissom, Senior Pilot Edward H. White II, and Pilot Roger B. Chaffee from cardiac arrest on January 27, 1967, the accident investigators found severe third degree burns and melted spacesuits on the astronauts bodies. NASA immediately initiated an extensive research program aimed at developing flame retardant and flame resistant fibers for the enriched oxygen atmosphere of the Apollo crew cabin. Fibers are flame retardant when they have been modified by chemical and thermal treatments. Fibers are flame resistant when they are made of inherently flame resistant materials (i.e. glass, ceramic, highly aromatic polymers). Immediately after this tragic accident, NASA funded extensive research in specifically developing flame retardant fibers and fabrics. The early developmental efforts for human spaceflight were for the outer layer of the Apollo spacesuit. It was imperative that non-flammable fabrics be used in a 100% oxygen environment. Owens-Corning thus developed the Beta fiber that was immediately used in the Apollo program and later in the Space Shuttle program. Aside from the urgent need for protective fabrics for the spacesuit, NASA also needed flame retardant fabrics for both clothing and equipment inside the spacecraft. From the mid-1960s to the early 1980's, NASA contracted with many companies to develop inherently flame retardant fibers and flame retardant finishes for existing fibers. Fluorocarbons and aromatic polyamides were the polymers of great interest for the development of new inherently flame retardant fibers for enriched oxygen environments. These enriched environments varied for different space programs. For example, the Apollo program requirements were for materials that would not support combustion in a 70%/30% oxygen/nitrogen environment at 6.3 pounds per square inch (psi). The Skylab program flammability requirements were set at 80%/20% oxygen/nitrogen ratios at 5 psi. While many fibers produced under several NASA contracts were never used, a few have become commercial products. The intent of this paper is to present the developmental history of some of these new or modified textile fibers. These developmental efforts are presented at various levels of details depending on the source of the historical records.

  19. Apollo: A retrospective analysis

    NASA Technical Reports Server (NTRS)

    Launius, Roger D.

    1994-01-01

    Since the completion of Project Apollo more than twenty years ago there have been a plethora of books, studies, reports, and articles about its origin, execution, and meaning. At the time of the twenty-fifth anniversary of the first landing, it is appropriate to reflect on the effort and its place in U.S. and NASA history. This monograph has been written as a means to this end. It presents a short narrative account of Apollo from its origin through its assessment. That is followed by a mission by mission summary of the Apollo flights and concluded by a series of key documents relative to the program reproduced in facsimile. The intent of this monograph is to provide a basic history along with primary documents that may be useful to NASA personnel and others desiring information about Apollo.

  20. International Collaboration in Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Morris, K. Bruce; Horack, John M.; Nall, Mark; Leahy, Bart. D.

    2007-01-01

    The U.S. Vision for Space Exploration commits the United States to return astronauts to the moon by 2020 using the Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle. Like the Apollo program of the 1960s and 1970s, this effort will require preliminary reconnaissance in the form of robotic landers and probes. Unlike Apollo, some of the data NASA will rely upon to select landing sites and conduct science will be based on international missions as well, including SMART-1, SELENE, and Lunar Reconnaissance Orbiter (LRO). Opportunities for international cooperation on the moon also lie in developing lunar exploration technologies. The European Space Agency's SMART-1 orbiter (Figure 1) is making the first comprehensive inventory of key chemical elements in the lunar surface. It is also investigating the impact theory of the moon's formation.'

  1. ASTRONAUT GROUP - FLIGHT LINE

    NASA Image and Video Library

    1961-01-01

    S61-01250 (20 Jan. 1961) --- Photo of the Mercury astronauts standing beside a Convair 106-B aircraft. They are, left to right, M. Scott Carpenter, L. Gordon Cooper Jr., John H. Glenn Jr., Virgil I. Grissom, Walter M. Schirra Jr., Alan B. Shepard Jr. and Donald K. Slayton. EDITOR'S NOTE: Astronaut Gus Grissom died in the Apollo 1 -- Apollo/Saturn (AS-204) -- fire at Cape Kennedy, Florida on Jan. 27, 1967. Astronaut Deke Slayton died from complications of a brain tumor, in League City, Texas on June 13, 1993. Astronaut Shepard died after a lengthy illness in Monterey, California, on July 21, 1998. As of Jan. 1, 1977 none of the seven astronauts remained with the NASA Space Program. However, in October 1998, United States Senator Glenn (Democrat-Ohio) flew as payload specialist on the STS-95 mission. Photo credit: NASA

  2. Saturn Apollo Program

    NASA Image and Video Library

    1972-04-16

    The sixth manned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission Commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 mission continued the broad-scale geological, geochemical, and geophysical mapping of the Moon’s crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used. The mission ended on April 27, 1972.

  3. KSC-04pd0651

    NASA Image and Video Library

    2004-03-26

    KENNEDY SPACE CENTER, FLA. -- This aerial photo shows the storage area containing Launch Umbilical Towers that were used during the early years of the Space Program. In the lower left corner of the storage field is a Caterpillar excavator with a 48-inch shear demolishing LUT-1, used to launch Apollo 8, Apollo 11, Skylab manned missions and the Apollo-Soyuz Test Project. The shear is one used in the deconstruction of the Twin Towers in New York City after 9/11.

  4. KSC-04pd0649

    NASA Image and Video Library

    2004-03-26

    KENNEDY SPACE CENTER, FLA. -- This aerial photo shows the storage area containing Launch Umbilical Towers that were used during the early years of the Space Program. In the lower right corner of the storage field is a Caterpillar excavator with a 48-inch shear demolishing LUT-1, used to launch Apollo 8, Apollo 11, Skylab manned missions and the Apollo-Soyuz Test Project. The shear is one used in the deconstruction of the Twin Towers in New York City after 9/11.

  5. KSC-04pd0648

    NASA Image and Video Library

    2004-03-26

    KENNEDY SPACE CENTER, FLA. -- This aerial photo shows the storage area containing Launch Umbilical Towers that were used during the early years of the Space Program. In the upper right corner of the storage field is a Caterpillar excavator with a 48-inch shear demolishing LUT-1, used to launch Apollo 8, Apollo 11, Skylab manned missions and the Apollo-Soyuz Test Project. The shear is one used in the deconstruction of the Twin Towers in New York City after 9/11.

  6. View of Mission Control Center during the Apollo 13 emergency return

    NASA Image and Video Library

    1970-04-16

    S70-35369 (16 April 1970) --- Discussion in the Mission Operations Control Room (MOCR) dealing with the Apollo 13 crewmen during their final day in space. From left to right are Glynn S. Lunney, Shift 4 flight director; Gerald D. Griffin, Shift 2 flight director; astronaut James A. McDivitt, manager, Apollo Spacecraft Program, MSC; Dr. Donald K. Slayton, director of Flight Crew Operations, MSC; and Dr. Willard R. Hawkins, M.D., Shift 1 flight surgeon.

  7. The telomeric protein SNM1B/Apollo is required for normal cell proliferation and embryonic development

    PubMed Central

    Akhter, Shamima; Lam, Yung C.; Chang, Sandy; Legerski, Randy J.

    2013-01-01

    Summary Conserved metallo β-Lactamase and β-CASP (CPSF-Artemis-Snm1-Pso2) domain nuclease family member SNM1B/Apollo is a shelterin-associated protein that localizes to telomeres through its interaction with TRF2. To study its in vivo role, we generated a knockout of SNM1B/Apollo in a mouse model. Snm1B/Apollo homozygous null mice die at birth with developmental delay and defects in multiple organ systems. Cell proliferation defects were observed in Snm1B/Apollo mutant mouse embryonic fibroblasts (MEFs) owing to high levels of telomeric end-to-end fusions. Deficiency of the nonhomologous end-joining (NHEJ) factor Ku70, but not p53, rescued the developmental defects and lethality observed in Snm1B/Apollo mutant mice as well as the impaired proliferation of Snm1B/Apollo-deficient MEFs. These findings demonstrate that SNM1B/Apollo is required to protect telomeres against NHEJ-mediated repair, which results in genomic instability and the consequent multi-organ developmental failure. Although Snm1B/Apollo-deficient MEFs exhibited high levels of apoptosis, abrogation of p53-dependent programmed cell death did not rescue the multi-organ developmental failure in the mice. PMID:20854421

  8. KSC-2009-4345

    NASA Image and Video Library

    2009-07-30

    CAPE CANAVERAL, Fla. – NASA will honor Apollo astronaut Al Worden with the presentation of this Ambassador of Exploration Award, a moon rock encased in Lucite, mounted for public display. He is being honored for his contributions to the U.S. space program. Worden received the award during a ceremony July 30 at the Apollo Saturn V Center at NASA's Kennedy Space Center Visitor Complex in Florida, where the moon rock will be displayed. Worden served as command module pilot for the Apollo 15 mission, which set several moon records for NASA, including the longest lunar surface stay time, the longest lunar extravehicular activity and the first use of a lunar roving vehicle. Worden spent 38 minutes in a spacewalk outside the command module and logged a total of 295 hours, 11 minutes in space during the mission. NASA is giving the Ambassador of Exploration Award to the first generation of explorers in the Mercury, Gemini and Apollo space programs for realizing America's goal of going to the moon. The rock is part of the 842 pounds of lunar samples collected during six Apollo expeditions from 1969 to 1972. Those astronauts who receive the award will then present the award to a museum of their choice. Photo credit: NASA/Jack Pfaller

  9. President Nixon and Apollo 13 crewmen at Hickam AFB

    NASA Image and Video Library

    1970-04-18

    S70-15526 (18 April 1970) --- President Richard M. Nixon and the Apollo 13 crew members pay honor to the United States flag during the post-mission ceremonies at Hickam Air Force Base, Hawaii. Astronauts James A. Lovell Jr., (United States Navy Captain, salutes the flag) commander; John L. Swigert Jr., command module pilot (right); and Fred W. Haise Jr., lunar module pilot (left), were presented the Presidential Medal of Freedom by the Chief Executive. The Apollo 13 splashdown occurred at 12:07:44 p.m. (CST), April 17, 1970, about a day and a half prior to the award presentation.

  10. Emblem - Apollo 17 Lunar Landing Mission

    NASA Image and Video Library

    1972-09-13

    S72-49079 (8 Sept. 1972) --- This is the official emblem of the Apollo 17 lunar landing mission which will be flown by astronauts Eugene A. Cernan, Ronald E. Evans and Harrison H. Schmitt. The insignia is dominated by the image of Apollo, the Greek sun god. Suspended in space behind the head of Apollo is an American eagle of contemporary design, the red bars of the eagle's wing represent the bars in the United States flag; the three white stars symbolize the three astronaut crewmen. The background is deep blue space and within it are the moon, the planet Saturn and a spiral galaxy or nebula. The moon is partially overlaid by the eagle's wing suggesting that this is a celestial body that man has visited and in that sense conquered. The thrust of the eagle and the gaze of Apollo to the right and toward Saturn and the galaxy is meant to imply that man's goals in space will someday include the planets and perhaps the stars. The colors of the emblem are red, white and blue, the colors of our flag; with the addition of gold, to symbolize the golden age of space flight that will begin with this Apollo 17 lunar landing. The Apollo image used in this emblem was the famous Apollo of Belvedere sculpture now in the Vatican Gallery in Rome. This emblem was designed by artist Robert T. McCall in collaboration with the astronauts. This is the official Apollo 17 emblem, a property of the government of the United States. It has been authorized only for use by the astronauts. Its reproduction in any form other than in news, information and education media is not authorized without approval. Unauthorized use is subject to the provisions of Title 18, U.S. Code, Section 701.

  11. Man-rated flight software for the F-8 DFBW program

    NASA Technical Reports Server (NTRS)

    Bairnsfather, R. R.

    1976-01-01

    The design, implementation, and verification of the flight control software used in the F-8 DFBW program are discussed. Since the DFBW utilizes an Apollo computer and hardware, the procedures, controls, and basic management techniques employed are based on those developed for the Apollo software system. Program assembly control, simulator configuration control, erasable-memory load generation, change procedures and anomaly reporting are discussed. The primary verification tools are described, as well as the program test plans and their implementation on the various simulators. Failure effects analysis and the creation of special failure generating software for testing purposes are described.

  12. KSC-04PD-1011

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Charles Duke receives a warm welcome as he is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russias Mir space station; the late Francis R. 'Dick' Scobee, commander of the ill- fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Duke explored the rugged highlands of the Moons Descartes region with John Young during the Apollo 16 mission in April 1972. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo- Soyuz, and Space Shuttle programs.

  13. KSC-2009-4349

    NASA Image and Video Library

    2009-07-30

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Visitor Complex in Florida, Apollo astronaut Al Worden shares his thoughts about the Space Program after receiving the Ambassador of Exploration Award. Worden is being honored for his contributions to the U.S. space program. A moon rock encased in Lucite, the award is seen at right and will be displayed at Kennedy. Worden served as command module pilot for the Apollo 15 mission, which set several moon records for NASA, including the longest lunar surface stay time, the longest lunar extravehicular activity and the first use of a lunar roving vehicle. Worden spent 38 minutes in a spacewalk outside the command module and logged a total of 295 hours, 11 minutes in space during the mission. NASA is giving the Ambassador of Exploration Award to the first generation of explorers in the Mercury, Gemini and Apollo space programs for realizing America's goal of going to the moon. The rock is part of the 842 pounds of lunar samples collected during six Apollo expeditions from 1969 to 1972. Those astronauts who receive the award will then present the award to a museum of their choice. Photo credit: NASA/Jack Pfaller

  14. KSC-2009-4350

    NASA Image and Video Library

    2009-07-30

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Visitor Complex in Florida, Apollo astronaut Al Worden shares his thoughts about the Space Program after receiving the Ambassador of Exploration Award. Worden is being honored for his contributions to the U.S. space program. A moon rock encased in Lucite, the award is seen at right and will be displayed at Kennedy. Worden served as command module pilot for the Apollo 15 mission, which set several moon records for NASA, including the longest lunar surface stay time, the longest lunar extravehicular activity and the first use of a lunar roving vehicle. Worden spent 38 minutes in a spacewalk outside the command module and logged a total of 295 hours, 11 minutes in space during the mission. NASA is giving the Ambassador of Exploration Award to the first generation of explorers in the Mercury, Gemini and Apollo space programs for realizing America's goal of going to the moon. The rock is part of the 842 pounds of lunar samples collected during six Apollo expeditions from 1969 to 1972. Those astronauts who receive the award will then present the award to a museum of their choice. Photo credit: NASA/Jack Pfaller

  15. KSC-04pd1011

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Charles Duke receives a warm welcome as he is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Duke explored the rugged highlands of the Moon’s Descartes region with John Young during the Apollo 16 mission in April 1972. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  16. KSC-2014-3250

    NASA Image and Video Library

    2014-07-21

    CAPE CANAVERAL, Fla. -- Apollo astronauts and their families receive a briefing in one of the remodeled firing rooms in the Launch Control Center at NASA's Kennedy Space Center in Florida. The facility's firing rooms were used to conduct the Saturn V countdowns during the Apollo Program. The tour followed a ceremony renaming the refurbished Operations and Checkout Building for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. Second from left is Apollo 11 moonwalker Buzz Aldrin and former astronaut Jim Lovell, a member of the Apollo 8 and Apollo 13 crews, standing next to him, at center. The ceremony was part of NASA's 45th anniversary celebration of the Apollo 11 moon landing. As the world watched, Neil Armstrong and Buzz Aldrin landed in the moon's Sea of Tranquility on July 20, 1969, aboard the lunar module Eagle. Meanwhile, crewmate Michael Collins orbited above in the command module Columbia. For more, visit http://www.nasa.gov/press/2014/july/nasa-honors-historic-first-moon-landing-eyes-first-mars-mission. Photo credit: NASA/Kevin O'Connell

  17. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-16

    From the right, NASA administrator, Dr. Thomas O. Paine talks with U.S. Vice President Spiro T. Agnew while awaiting the launch of Saturn V (AS-506) that carried the Apollo 11 spacecraft to the Moon for man’s historic first landing on the lunar surface. At center is astronaut William Anders, a member of the first crew to orbit the moon during the Apollo 8 mission. At left is Lee B. James, director of Program Management at the NASA Marshall Space Flight Center (MSFC) where the Saturn V was developed. The craft lifted off from launch pad 39 at Kennedy Space Flight Center (KSC) on July 16, 1969. The moon bound crew included astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (M) pilot. The mission finalized with splashdown in the Pacific Ocean on July 24, 1969. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  18. An Old Road Rapidly Aging? The Settlement of Apollo's Long-Standing False Claims Act Lawsuit and the Changing Appeal of Commission-Based Recruitment

    ERIC Educational Resources Information Center

    Observatory on Borderless Higher Education, 2010

    2010-01-01

    Last month, higher education company the Apollo Group, Inc. (Apollo) confirmed that it entered into an agreement with the United States (US) federal government to resolve a long-standing lawsuit concerning its subsidiary, the for-profit University of Phoenix (Phoenix). Originating in 2003, the False Claims Act lawsuit filed by university officials…

  19. Skylab medical experiments program. [for in-flight human physiological adaptive processes

    NASA Technical Reports Server (NTRS)

    Hessberg, R. R.

    1973-01-01

    With the completion of the historic Apollo Program, the significant medical findings will be reviewed and the medical results summarized. The medical objectives of Skylab will be presented. The medical experiments which will be conducted and their relationship to the Apollo medical findings and Skylab objectives will be discussed. The interrelationship of the Skylab medical experiments will be described and the anticipated information to be obtained will be postulated.

  20. "Before This Decade Is Out...": Personal Reflections on the Apollo Program

    NASA Technical Reports Server (NTRS)

    Swanson, Glen E. (Editor)

    1999-01-01

    This handbook presents "Before This Decade Is Out..." Personal Reflections on the Appolo Program. The accounts included in this book are a small sampling of the large number of oral histories that have been conducted under the auspices of the NASA history program, since near the beginning of the Agency. They also represent the many personal contributions made during Project Apollo, the single largest peacetime endeavor in American history. These recollections span the origins, management, and completion of that enormous effort and measurably enhance our appreciation of its difficulty. The comments of some of the key individuals involved in Project Apollo are being preserved by NASA and made available through this book. The people who are quoted in this book were among the top leaders of NASA. All of them played a prominent part in the conduct and accomplishments of Appolo.

  1. Members of House Committee on Science and Astronautics Visited MSFC

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. Standing at the Apollo Applications Program Cluster Model in building 4745 are (left-to-right): Dr. Wernher von Braun, MSFC; Congressman Joe D. Waggoner, Democratic representative of Louisiana; Congressman Earle Cabell, Democratic representative of Texas; Subcommittee Chairman Olin E. Teague, Democratic representative of Texas; Congressman James G. Fulton, Republican representative of Pennsylvania; and Dr. Ernst Stuhlinger, associate MSFC director for science. The subcommittee was briefed on MSFC's manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program.

  2. Modern Gemini-Approach to Technology Development for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    White, Harold

    2010-01-01

    In NASA's plan to put men on the moon, there were three sequential programs: Mercury, Gemini, and Apollo. The Gemini program was used to develop and integrate the technologies that would be necessary for the Apollo program to successfully put men on the moon. We would like to present an analogous modern approach that leverages legacy ISS hardware designs, and integrates developing new technologies into a flexible architecture This new architecture is scalable, sustainable, and can be used to establish human exploration infrastructure beyond low earth orbit and into deep space.

  3. Apollo Quality Program.

    PubMed

    Sibal, Anupam; Dewan, Shaveta; Uberoi, R S; Kar, Sujoy; Loria, Gaurav; Fernandes, Clive; Yatheesh, G; Sharma, Karan

    2012-01-01

    Ensuring patient safety is a vital step for any hospital in achieving the best clinical outcomes. The Apollo Quality Program aimed at standardization of processes for clinical handovers, medication safety, surgical safety, patient identification, verbal orders, hand washing compliance and falls prevention across the hospitals in the Group. Thirty-two hospitals across the Group in settings varying from rural to semi urban, urban and metropolitan implemented the program and over a period of one year demonstrated a visible improvement in the compliance to processes for patient safety translating into better patient safety statistics.

  4. Modeling of Lunar Dust Contamination Due to Plume Impingement

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2009-01-01

    During the Apollo missions it became apparent that lunar dust was a significant hazard. Problems included: surface obscuration during landing sequence; abrasion damage to gouge faces and helmet visors; mechanism clogging; development of space suit pressurization leaks; loss of radiator heat rejection capabilities to the point where vulnerable equipment exceeded maximum survival temperature ratings; temporary vision and respiratory problems within the Apollo Lunar Module (LM). NASA Constellation Program features many system-level components, including the Altair Lunar Lander. Altair to endure longer periods at lunar surface conditions: Apollo LM, about three days; Altair, over seven months. Program managers interested in plume-generated dust transport onto thermal control surface radiators of the first Altair created by its own landing operations.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1967-09-09

    This is the official NASA portrait of astronaut William Anders. Anders was commissioned in the air Force after graduation from the Naval Academy and served as a fighter pilot in all-weather interception squadrons of the Air Defense Command. Later he was responsible for technical management of nuclear power reactor shielding and radiation effects programs while at the Air Force Weapons Laboratory in New Mexico. In 1964, Anders was selected by the National Aeronautics and Space Administration (NASA) as an astronaut with responsibilities for dosimetry, radiation effects and environmental controls. He was backup pilot for the Gemini XI, Apollo 11 flights, and served as lunar module (LM) pilot for Apollo 8, the first lunar orbit mission in December 1968. He has logged more than 6,000 hours flying time.

  6. Integration of Apollo Lunar Sample Data into Google Moon

    NASA Technical Reports Server (NTRS)

    Dawson, Melissa D.; Todd, Nancy S.; Lofgren, Gary

    2010-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is a continuation of the Apollo 15 Google Moon Add-On project, which provides a scientific and educational tool for the study of the Moon and its geologic features. The main goal of this project is to provide a user-friendly interface for an interactive and educational outreach and learning tool for the Apollo missions. Specifically, this project?s focus is the dissemination of information about the lunar samples collected during the Apollo missions by providing any additional information needed to enhance the Apollo mission data on Google Moon. Apollo missions 15 and 16 were chosen to be completed first due to the availability of digitized lunar sample photographs and the amount of media associated with these missions. The user will be able to learn about the lunar samples collected in these Apollo missions, as well as see videos, pictures, and 360 degree panoramas of the lunar surface depicting the lunar samples in their natural state, following collection and during processing at NASA. Once completed, these interactive data layers will be submitted for inclusion into the Apollo 15 and 16 missions on Google Moon.

  7. 2017 "Mission Success is in Our Hands" program with Apollo 17 as

    NASA Image and Video Library

    2017-12-07

    Apollo 17 lunar module pilot Harrison Schmitt, left, shared his experiences as an astronaut and lunar geologist during a visit to Marshall Dec. 7, as part of the Shared Experiences Forum. During an interactive Q&A moderated by Marshall Associate Director Jonathan Pettus, right, Schmitt spoke about launching on the Saturn V rocket, exploring the Moon and looking back at the Earth. The day of his visit was the 45th anniversary of the Apollo 17 launch.

  8. Saturn Apollo Program

    NASA Image and Video Library

    1975-01-01

    This montage illustrates the various configurations and missions of the three classes of the Saturn vehicles developed by the Marshall Space Flight Center. The missions for the Saturn I included atmospheric science investigations and the deployment of the Pegasus meteroid-detection satellite as well as launch vehicle development. The Saturn IB vehicle tested the Apollo spacecraft and launched the three marned Skylab missions as well as the Apollo Soyuz test project. The Saturn V vehicle launched the manned lunar orbital/landing missions, and the Skylab Orbital Workshop in 1973.

  9. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-01

    The Lunar Roving Vehicle (LRV) was designed to transport astronauts and materials on the Moon. It was a collapsible open-space vehicle about 10 feet long with large mesh wheels, anterna, appendages, tool caddies, and cameras. Powered by two 36-volt batteries, it has four 1/4-hp drive motors, one for each wheel. The vehicle was designed to travel in forward or reverse, negotiate obstacles about 1 foot high, cross crevasses about 2 feet wide, and climb or descend moderate slopes. Its speed limit was about 9 miles (14 kilometers) per hour. An LRV was used on each of the last three Apollo missions (Apollo 15, Apollo 16, and Apollo 17) and permitted the crew to travel several miles from the Lunar Module. The LRV was designed, developed, and tested by the Marshall Space Flight Center, and built by the Boeing Plant in Kent, Washington.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-01

    The Lunar Roving Vehicle (LRV) was designed to transport astronauts and materials on the Moon. It was a collapsible open-space vehicle about 10 feet long with large mesh wheels, anterna, appendages, tool caddies, and cameras. Powered by two 36-volt batteries, it has four 1/4-hp drive motors, one for each wheel. The vehicle was designed to travel in forward or reverse, negotiate obstacles about 1 foot high, cross crevasses about 2 feet wide, and climb or descend moderate slopes. Its speed limit was about 9 miles (14 kilometers) per hour. An LRV was used on each of the last three Apollo missions (Apollo 15, Apollo 16, and Apollo 17) and permitted the crews to travel several miles from the Lunar Module. The LRV was designed, developed, and tested by the Marshall Space Flight Center, and built by the Boeing Plant in Kent, Washington.

  11. Apollo 14 visibility tests: Visibility of lunar surface features and lunar landing

    NASA Technical Reports Server (NTRS)

    Ziedman, K.

    1972-01-01

    An in-flight visibility test conducted on the Apollo 14 mission is discussed. The need for obtaining experimental data on lunar feature visibility arose from visibility problems associated with various aspects of the Apollo missions; and especially from anticipated difficulties of recognizing lunar surface features at the time of descent and landing under certain illumination conditions. Although visibility problems have influenced many other aspects of the Apollo mission, they have been particularly important for descent operations, due to the criticality of this mission phase and the crew's guidance and control role for landing site recognition and touchdown point selection. A series of analytical and photographic studies were conducted during the Apollo program (prior to as well as after the initial manned lunar operations) to delineate constraints imposed on landing operations by visibility limitations. The purpose of the visibility test conducted on Apollo 14 was to obtain data to reduce uncertainties and to extend the analytical models of visibility in the lunar environment.

  12. KSC-2014-3248

    NASA Image and Video Library

    2014-07-21

    CAPE CANAVERAL, Fla. -- Apollo astronauts and their families tour one of the remodeled firing rooms in the Launch Control Center at NASA's Kennedy Space Center in Florida. The facility's firing rooms were used to conduct the Saturn V countdowns during the Apollo Program. NASA Administrator Charles Bolden, at left, accompanied the astronauts on the tour which followed a ceremony renaming the refurbished Operations and Checkout Building for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. Former astronaut Jim Lovell, a member of the Apollo 8 and Apollo 13 crews, is at center. The ceremony was part of NASA's 45th anniversary celebration of the Apollo 11 moon landing. As the world watched, Neil Armstrong and Buzz Aldrin landed in the moon's Sea of Tranquility on July 20, 1969, aboard the lunar module Eagle. Meanwhile, crewmate Michael Collins orbited above in the command module Columbia. For more, visit http://www.nasa.gov/press/2014/july/nasa-honors-historic-first-moon-landing-eyes-first-mars-mission. Photo credit: NASA/Kim Shiflett

  13. Intra-Extra Vehicular Activity Apollo Spacesuits

    NASA Technical Reports Server (NTRS)

    Thomas, Kenneth S.

    2016-01-01

    Kenneth Thomas will discuss the Apollo Intra-Extra Vehicular Activity (IEVA) spacesuits, which supported launch and reentry and extra-vehicular activity. This program was NASA's first attempt to develop a new suit design from requirements and concepts. Mr. Thomas will chronicle the challenges, developments, struggles, and solutions that culminated in the system that allowed the first human exploration of the Moon and deep space (outside low-Earth orbit). Apollo pressure suit designs allowed the heroic repair of the Skylab space station and supported the first U.S. and Russian spacecraft docking during the Apollo Soyuz Test Project. Mr. Thomas will also discuss the IEVA suits' successes and challenges associated with the IEVA developments of the 1960s.

  14. Apollo 8 Mission Report

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Postflight analysis of Apollo 8 mission. Apollo 8 was the second manned flight in the program and the first manned lunar orbit mission. The crew were Frank Borman, Commander; James A. Lovell, Command Module Pilot; and William A. Anders, Lunar Module Pilot. The Apollo 8 space vehicle was launched on time from Kennedy Space Center, Florida, at 7:51:00 AM, EST, on December 21, 1968. Following a nominal boost phase, the spacecraft and S-IVB combination was inserted - into a parking orbit of 98 by 103 nautical miles. After a post-insertion checkout of spacecraft systems, the 319-second translunar injection maneuver was initiated at 2:50:37 by reignition of the S-IVB engine.

  15. Apollo 11 Launch HD SILENT

    NASA Image and Video Library

    2017-03-08

    On July 16, 1969, the huge, 363-feet tall Saturn V rocket launches on the Apollo 11 mission from Pad A, Launch Complex 39, Kennedy Space Center, at 9:32 a.m. EDT. Onboard the Apollo 11 spacecraft are astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 was the United States' first lunar landing mission. While astronauts Armstrong and Aldrin descended in the Lunar Module "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules "Columbia" in lunar orbit.

  16. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert "Hoot" Gibson (at podium) addresses the audience at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are actor and Master of Ceremonies Lance Henriksen and former astronaut John H. Glenn. Also being inducted with Gibson are Space Shuttle astronauts Daniel Brandenstein, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert "Hoot" Gibson (at podium) addresses the audience at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are actor and Master of Ceremonies Lance Henriksen and former astronaut John H. Glenn. Also being inducted with Gibson are Space Shuttle astronauts Daniel Brandenstein, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  17. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James A. Lovell (standing left) applauds former astronaut Sally K. Ride at her induction ceremony into the U.S. Astronaut Hall of Fame. Seated on the dais, from left, are former astronauts Gordon Cooper, Scott Carpenter, and Buzz Aldrin, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James A. Lovell (standing left) applauds former astronaut Sally K. Ride at her induction ceremony into the U.S. Astronaut Hall of Fame. Seated on the dais, from left, are former astronauts Gordon Cooper, Scott Carpenter, and Buzz Aldrin, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  18. Apollo experience report: Electrical wiring subsystem

    NASA Technical Reports Server (NTRS)

    White, L. D.

    1975-01-01

    The general requirements of the electrical wiring subsystems and the problem areas and solutions that occurred during the major part of the Apollo Program are detailed in this report. The concepts and definitions of specific requirements for electrical wiring; wire-connecting devices; and wire-harness fabrication, checkout, and installation techniques are discussed. The design and development of electrical wiring and wire-connecting devices are described. Mission performance is discussed, and conclusions and recommendations for future programs are presented.

  19. The telomeric protein SNM1B/Apollo is required for normal cell proliferation and embryonic development.

    PubMed

    Akhter, Shamima; Lam, Yung C; Chang, Sandy; Legerski, Randy J

    2010-12-01

    Conserved metallo β-Lactamase and β-CASP (CPSF-Artemis-Snm1-Pso2) domain nuclease family member SNM1B/Apollo is a shelterin-associated protein that localizes to telomeres through its interaction with TRF2. To study its in vivo role, we generated a knockout of SNM1B/Apollo in a mouse model. Snm1B/Apollo homozygous null mice die at birth with developmental delay and defects in multiple organ systems. Cell proliferation defects were observed in Snm1B/Apollo mutant mouse embryonic fibroblasts (MEFs) owing to high levels of telomeric end-to-end fusions. Deficiency of the nonhomologous end-joining (NHEJ) factor Ku70, but not p53, rescued the developmental defects and lethality observed in Snm1B/Apollo mutant mice as well as the impaired proliferation of Snm1B/Apollo-deficient MEFs. These findings demonstrate that SNM1B/Apollo is required to protect telomeres against NHEJ-mediated repair, which results in genomic instability and the consequent multi-organ developmental failure. Although Snm1B/Apollo-deficient MEFs exhibited high levels of apoptosis, abrogation of p53-dependent programmed cell death did not rescue the multi-organ developmental failure in the mice. © 2010 The Authors. Aging Cell © 2010 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  20. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, H.D.

    1991-11-01

    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a ``glass like`` material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable tomore » other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.« less

  1. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, H.D.

    1991-11-01

    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a glass like'' material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable tomore » other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.« less

  2. Apollo-Soyuz test project

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Experiments proposed for the Apollo-Soyuz space mission are discussed. Data focus of space processing and manufacturing, earth surveys, and life sciences. Special efforts were made to test the compatibility of the rendezvous and docking systems for manned spacecraft. Mission planning programs, personnel training, and spacecraft modifications for both spacecraft are included.

  3. Capacitance discharge system for ignition of Single Bridge Apollo Standard Initiators (SBASI)

    NASA Technical Reports Server (NTRS)

    Ward, R. D.

    1974-01-01

    The design support data developed during the single bridge Apollo standard initiator (SBASI) program are presented. A circuit was designed and bread-board tested to verify operational capabilities of the circuit. Test data, design criteria, weight, and reliability trade-off considerations, and final design recommendations are reported.

  4. Updating the Geologic Maps of the Apollo 15, 16, and 17 Landing Sites

    NASA Astrophysics Data System (ADS)

    Garry, W. B.; Mest, S. C.; Yingst, R. A.; Ostrach, L. R.; Petro, N. E.; Cohen, B. A.

    2018-06-01

    Our team is funded through NASA's Planetary Data Archiving, Restoration, and Tools (PDART) program to produce two new USGS Special Investigation Maps (SIM) for the Apollo 15, 16, and 17 missions: a regional map (1:200K) and a landing-site map (1:24K).

  5. Apollo experience report: Electronic systems test program accomplishments and results

    NASA Technical Reports Server (NTRS)

    Ohnesorge, T. E.

    1972-01-01

    A chronological record is presented of the Electronic Systems Test Program from its conception in May 1963 to December 1969. The original concept of the program, which was primarily a spacecraft/Manned Space Flight Network communications system compatibility and performance evaluation, is described. The evolution of these concepts to include various levels of test detail, as well as systems level design verification testing, is discussed. Actual implementation of these concepts is presented, and the facility to support the program is described. Test results are given, and significant contributions to the lunar landing mission are underlined. Plans for modifying the facility and the concepts, based on Apollo experience, are proposed.

  6. Skylab

    NASA Image and Video Library

    1974-01-01

    This image is an artist's concept of the Skylab in orbit. In an early effort to extend the use of Apollo for further applications, NASA established the Apollo Applications Program (AAP) in August of 1965. The AAP was to include long duration Earth orbital missions during which astronauts would carry out scientific, technological, and engineering experiments in space by utilizing modified Saturn launch vehicles and the Apollo spacecraft. Established in 1970, the Skylab program was the forerurner of the AAP. The goals of the Skylab were to enrich our scientific knowledge of the Earth, the Sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms, including man; to study the effects of the processing and manufacturing of materials utilizing the absence of gravity; and to conduct Earth resource observations. The Skylab also conducted 19 selected experiments submitted by high school students. Skylab's 3 different 3-man crews spent up to 84 days in Earth orbit. The Marshall Space Flight Center (MSFC) had responsibility for developing and integrating most of the major components of the Skylab: the Orbital Workshop (OWS), Airlock Module (AM), Multiple Docking Adapter (MDA), Apollo Telescope Mount (ATM), Payload Shroud (PS), and most of the experiments. MSFC was also responsible for providing the Saturn IB launch vehicles for three Apollo spacecraft and crews and a Saturn V launch vehicle for the Skylab.

  7. 50th Anniversary of the World's First Extraterrestrial Sample Receiving Laboratory: The Apollo Program's Lunar Receiving Laboratory

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Allton, J. H.; Zeigler, R. A.; McCubbin, F. M.

    2017-01-01

    The Apollo program's Lunar Receiving Laboratory (LRL), building 37 at NASA's Manned Spaceflight Center (MSC), now Johnson Space Center (JSC), in Houston, TX, was the world's first astronaut and extraterrestrial sample quarantine facility (Fig. 1). It was constructed by Warrior Construction Co. and Warrior-Natkin-National at a cost of $8.1M be-tween August 10, 1966 and June 26, 1967. In 1969, the LRL received and curated the first collection of extra-terrestrial samples returned to Earth; the rock and soil samples of the Apollo 11 mission. This year, the JSC Astromaterials Acquisition and Curation Office (here-after JSC curation) celebrates 50 years since the opening of the LRL and its legacy of laying the foundation for modern curation of extraterrestrial samples.

  8. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-01

    This artist's concept illustrates the deployment sequence of the Lunar Roving Vehicle (LRV) on the Moon. The LRV was designed to transport astronauts and materials on the Moon. It was a collapsible open-space vehicle about 10 feet long with large mesh wheels, anterna, appendages, tool caddies, and cameras. Powered by two 36-volt batteries, it has four 1/4-hp drive motors, one for each wheel. The vehicle was designed to travel in forward or reverse, negotiate obstacles about 1 foot high, cross crevasses about 2 feet wide, and climb or descend moderate slopes. Its speed limit was about 9 miles (14 kilometers) per hour. An LRV was used on each of the last three Apollo missions (Apollo 15, Apollo 16, and Apollo 17) and permitted the crew to travel several miles from the Lunar Module. The LRV was designed, developed, and tested by the Marshall Space Flight Center, and built by the Boeing Plant in Kent, Washington.

  9. View of Mission Control Center celebrating conclusion of Apollo 11 mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Overall view of the Mission Operations Control Room in the Mission Control Center, bldg 30, Manned Spacecraft Center (MSC), at the conclusion of the Apollo 11 lunar landing mission. The television monitor shows President Richard M. Nixon greeting the Apollo 11 astronauts aboard the U.S.S. Hornet in the Pacific recovery area (40301); NASA and MSC Officials join the flight controllers in celebrating the conclusion of the Apollo 11 mission. From left foreground Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director fo Flight Operations; Julian Scheer (in back), Assistant Adminstrator, Offic of Public Affairs, NASA HQ.; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA HQ (40302).

  10. Perspectives on NASA flight software development - Apollo, Shuttle, Space Station

    NASA Technical Reports Server (NTRS)

    Garman, John R.

    1990-01-01

    Flight data systems' software development is chronicled for the period encompassing NASA's Apollo, Space Shuttle, and (ongoing) Space Station Freedom programs, with attention to the methodologies and 'development tools' employed in each case and their mutual relationships. A dominant concern in all three programs has been the accommodation of software change; it has also been noted that any such long-term program carries the additional challenge of identifying which elements of its software-related 'institutional memory' are most critical, in order to preclude their loss through the retirement, promotion, or transfer of its 'last expert'.

  11. Analysis of the Apollo spacecraft operational data management system. Executive summary

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A study was made of Apollo, Skylab, and several other data management systems to determine those techniques which could be applied to the management of operational data for future manned spacecraft programs. The results of the study are presented and include: (1) an analysis of present data management systems, (2) a list of requirements for future operational data management systems, (3) an evaluation of automated data management techniques, and (4) a plan for data management applicable to future space programs.

  12. Scanning Apollo Flight Films and Reconstructing CSM Trajectories

    NASA Astrophysics Data System (ADS)

    Speyerer, E.; Robinson, M. S.; Grunsfeld, J. M.; Locke, S. D.; White, M.

    2006-12-01

    Over thirty years ago, the astronauts of the Apollo program made the journey from the Earth to the Moon and back. To record their historic voyages and collect scientific observations many thousands of photographs were acquired with handheld and automated cameras. After returning to Earth, these films were developed and stored at the film archive at Johnson Space Center (JSC), where they still reside. Due to the historical significance of the original flight films typically only duplicate (2nd or 3rd generation) film products are studied and used to make prints. To allow full access to the original flight films for both researchers and the general public, JSC and Arizona State University are scanning and creating an online digital archive. A Leica photogrammetric scanner is being used to insure geometric and radiometric fidelity. Scanning resolution will preserve the grain of the film. Color frames are being scanned and archived as 48 bit pixels to insure capture of the full dynamic range of the film (16 bit for BW). The raw scans will consist of 70 Terabytes of data (10,000 BW Hasselblad, 10,000 color Hasselblad, 10,000 Metric frames, 4500 Pan frames, 620 35mm frames counts; are estimates). All the scanned films will be made available for download through a searchable database. Special tools are being developed to locate images based on various search parameters. To geolocate metric and panoramic frames acquired during Apollos 15\\-17, prototype SPICE kernels are being generated from existing photographic support data by entering state vectors and timestamps from multiple points throughout each orbit into the NAIF toolkit to create a type 9 Spacecraft and Planet Ephemeris Kernel (SPK), a nadir pointing C\\- matrix Kernel (CK), and a Spacecraft Clock Kernel (SCLK). These SPICE kernels, in addition to the Instrument Kernel (IK) and Frames Kernel (FK) that also under development, will be archived along with the scanned images. From the generated kernels, several IDL programs have been designed to display orbital tracks, produce footprint plots, and create image projections. Using the output from these SPICE based programs enables accurate geolocating of SIM bay photography as well as providing potential data from lunar gravitational studies.

  13. KSC-04pd1010

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Al Worden acknowledges the applause as he is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Worden served as Command Module pilot on the 1971 Apollo 15 moon mission, during which he orbited the Moon and took a space walk 200,000 miles from Earth. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  14. Rocketdyne - J-2 Saturn V 2nd and 3rd Stage Engine. Chapter 2, Appendix D

    NASA Technical Reports Server (NTRS)

    Coffman, Paul

    2009-01-01

    The J-2 engine was unique in many respects. Technology was not nearly as well-developed in oxygen/hydrogen engines at the start of the J-2 project. As a result, it experienced a number of "teething" problems. It was used in two stages on the Saturn V vehicle in the Apollo Program, as well as on the later Skylab and Apollo/Soyuz programs. In the Apollo Program, it was used on the S-II stage, which was the second stage of the Saturn V vehicle. There were five J-2 engines at the back end of the S-II Stage. In the S-IV-B stage, it was a single engine, but that single engine had to restart. The Apollo mission called for the entire vehicle to reach orbital velocity in low Earth orbit after the first firing of the Saturn-IV-B stage and, subsequently, to fire a second time to go on to the moon. The engine had to be man-rated (worthy of transporting humans). It had to have a high thrust rate and performance associated with oxygen/hydrogen engines, although there were some compromises there. It had to gimbal for thrust vector control. It was an open-cycle gas generator engine delivering up to 230,000 pounds of thrust.

  15. Dynamic analysis of Apollo-Salyut/Soyuz docking

    NASA Technical Reports Server (NTRS)

    Schliesing, J. A.

    1972-01-01

    The use of a docking-system computer program in analyzing the dynamic environment produced by two impacting spacecraft and the attitude control systems is discussed. Performance studies were conducted to determine the mechanism load and capture sensitivity to parametric changes in the initial impact conditions. As indicated by the studies, capture latching is most sensitive to vehicle angular-alinement errors and is least sensitive to lateral-miss error. As proved by load-sensitivity studies, peak loads acting on the Apollo spacecraft are considerably lower than the Apollo design-limit loads.

  16. Mercury, Skylab, Spacehab, International Space Station: A Continuum

    NASA Technical Reports Server (NTRS)

    Walker, Charles; Crouch, Roger K.; Binnenbruck, Horsta; Nagaoka, Shunji; Riesselmann, Werner

    2000-01-01

    We have conducted real research in space. Virtually all that we conducted in the first decade and a half of the space age was government funded and basic research like the carrier vehicles we call satellites and Sputniki, but direction human interaction began with Project Mercury. When the Apollo program ended with success, we got back to research again. Skylab was using Apollo hardware, using Apollo systems in a manner that offered spacious accomodations for researchers. Education began to move into space. This document describes Skylab's role in spaceborne experiments.

  17. Saturn Apollo Program

    NASA Image and Video Library

    1969-01-01

    The Apollo 12 three-man crew pictured left to right are: Astronauts Charles Conrad, Spacecraft Commander; Richard F. Gordon, pilot of the Command Module `Yankee Clipper'; and Alan L. Bean, pilot of the Lunar Module `Intrepid'. Activities of astronauts Conrad and Bean on the lunar soil included setting out experiments, finding the unmarned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. The second mission of the manned lunar landing and return to Earth, Apollo 12 lifted off on November 14, 1969.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    This image depicts the liftoff of the Apollo 12 on November 14, 1969. The second mission of the marned lunar landing and return to Earth, Apollo 12, carried a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module, Intrepid; Richard Gordon, pilot of the Command Module, Yankee Clipper; and Spacecraft Commander Charles Conrad. Activities of astronauts Conrad and Bean on the lunar soil included setting out experiments, finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples.

  19. Apollo Lunar Sample Photograph Digitization Project Update

    NASA Technical Reports Server (NTRS)

    Todd, N. S.; Lofgren, G. E.

    2012-01-01

    This is an update of the progress of a 4-year data restoration project effort funded by the LASER program to digitize photographs of the Apollo lunar rock samples and create high resolution digital images and undertaken by the Astromaterials Acquisition and Curation Office at JSC [1]. The project is currently in its last year of funding. We also provide an update on the derived products that make use of the digitized photos including the Lunar Sample Catalog and Photo Database[2], Apollo Sample data files for GoogleMoon[3].

  20. BIOSPEX: Biological space experiments, a compendium of life sciences experiments carried on US spacecraft

    NASA Technical Reports Server (NTRS)

    Anderson, M.; Rummel, J. A. (Editor); Deutsch, S. (Editor)

    1979-01-01

    United States space life science experiments, encompassing 27 years of experience beginning with sounding rocket flights carrying primates (1948) to the last U.S. spaceflight, the joint US/USSR Apollo Test Project (1975), are presented. The information for each experiment includes Principal Investigators, the program and mission on which it was flown, the specimens used, the objectives, protocol, equipment, results, conclusions, and bibliographic reference citations for publications derived from each experiment.

  1. Solid state convection models of lunar internal temperature

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Young, R. E.; Cassen, P.

    1975-01-01

    Thermal models of the Moon were made which include cooling by subsolidus creep and consideration of the creep behavior of geologic material. Measurements from the Apollo program on seismic velocities, electrical conductivity of the Moon's interior, and heat flux at two locations were used in the calculations. Estimates of 1500 to 1600 K were calculated for the temperature, and one sextillion to ten sextillion sq cm/sec were calcualted for the viscosity of the deep lunar interior.

  2. View of Africa and Madagascar from the Apollo 17 spacecraft

    NASA Image and Video Library

    1972-12-09

    AS17-148-22717 (7 Dec. 1972) --- This view of a portion of Earth was taken from the Apollo 17 spacecraft following trans-lunar insertion during the final lunar landing mission in NASA's Apollo Program. The visible land mass is the southern two-thirds of the African continent, with Madagascar at right. A portion of Antarctica is visible at bottom frame. Onboard the Apollo 17 spacecraft were astronauts Eugene A. Cernan, commander; Ronald E. Evans, command module pilot; and Harrison H. Schmitt, lunar module pilot. While astronauts Cernan and Schmitt descended in the Lunar Module (LM) "Challenger" to explore the Hadley-Apennine region of the moon, astronaut Evans remained with the Command and Service Modules (CSM) "America" in lunar orbit.

  3. What's the Big Idea? Seeking to Top Apollo

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    2012-01-01

    Human space flight has struggled to find its soul since Apollo. The astounding achievements of human space programs over the 40 years since Apollo have failed to be as iconic or central to society as in the 1960s. The paper proffers a way human space flight could again be associated with a societal Big Idea. It describes eight societal factors that have irrevocably changed since Apollo; then analyzes eight other factors that a forward HSF Big Idea would have to fit. The paper closes by assessing the four principal options for HSF futures against those eight factors. Robotic and human industrialization of geosynchronous orbit to provide unlimited, sustainable electrical power to Earth is found to be the best candidate for the next Big Idea.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1968-03-03

    The launch of the Apollo 9 (Saturn V launch vehicle, SA-504), with astronauts James A. McDivitt, David R. Scott, and Russell L. Schweickart, took place on March 3, 1968. The Apollo 9 spacecraft, in the lunar mission configuration, was tested in Earth orbit. The mission was designed to rehearse all the steps and reproduce all the events of the Apollo 11 mission with the exception of the lunar touchdown, stay, and liftoff. The command and service modules, and the lunar module were used in flight procedures identical to those that would later take similar vehicles to the Moon, and a landing. The flight mechanics, mission support systems, communications, and recording of data were tested in a final round of verification. Astronauts Scott and Schweickart conducted Extravehicular Activity during this mission.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1974-06-01

    This illustration shows the docking configuration of the Apollo-Soyuz Test Project (ASTP). The ASTP was the first international docking of the U.S.'s Apollo spacecraft and the U.S.S.R.'s Soyuz spacecraft in space. A joint engineering team from the two countries met to develop a docking system that permitted the two spacecraft to link in space and allowed the two crews to travel from one spacecraft to the other. This system entailed developing a large habitable Docking Module (DM) to be carried on the Apollo spacecraft to facilitate the joining of two dissimilar spacecraft. The Marshall Space Flight Center was responsible for development and sustaining engineering of the Saturn IB launch vehicle during the mission. The ASTP marked the last use of the Saturn Launch Vehicle.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1969-01-01

    A close-up view of the Apollo 11 command service module ready to be mated with the spacecraft LEM adapter of the third stage. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  7. Apollo experience report: Command and service module sequential events control subsystem

    NASA Technical Reports Server (NTRS)

    Johnson, G. W.

    1975-01-01

    The Apollo command and service module sequential events control subsystem is described, with particular emphasis on the major systems and component problems and solutions. The subsystem requirements, design, and development and the test and flight history of the hardware are discussed. Recommendations to avoid similar problems on future programs are outlined.

  8. Saturn Apollo Program

    NASA Image and Video Library

    1969-02-12

    A test engineer drives a Mobility Test Article (MTA) during a test of a Lunar Roving Vehicle (LRV) concept through the mountains of Arizona. The data provided by the MTA helped in designing the LRV, developed under the direction of MSFC. The LRV was designed to allow Apollo astronauts a greater range of mobility during lunar exploration missions.

  9. Worden Ambassador of Exploration Award

    NASA Image and Video Library

    2009-07-29

    Apollo astronaut Al Worden speaks during a ceremony, Thursday, July 30, 2009, where he was honored with the presentation of the an Ambassador of Exploration Award for his contributions to the U.S. space program at Kennedy Space Center, Fla. Worden served as command module pilot for the Apollo 15 mission. Photo Credit: (NASA/Bill Ingalls)

  10. Apollo lunar surface experiments package

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The ALSEP program status and monthly progress are reported. Environmental and quality control tests and test results are described. Details are given on the Apollo 17 Array E, and the lunar seismic profiling, ejecta and meteorites, mass spectrometer, surface gravimeter, and heat flow experiments. Monitoring of the four ALSEP systems on the moon is also described.

  11. Apollo program soil mechanics experiment. [interaction of the lunar module with the lunar surface

    NASA Technical Reports Server (NTRS)

    Scott, R. F.

    1975-01-01

    The soil mechanics investigation was conducted to obtain information relating to the landing interaction of the lunar module (LM) with the lunar surface, and lunar soil erosion caused by the spacecraft engine exhaust. Results obtained by study of LM landing performance on each Apollo mission are summarized.

  12. Saturn Apollo Program

    NASA Image and Video Library

    1967-08-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This photo depicts a mockup of the ATM contamination monitor camera and photometer.

  13. Saturn Apollo Program

    NASA Image and Video Library

    1967-08-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This angle view is of an ATM contamination monitor meter mockup.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1968-12-20

    Searchlights penetrate the darkness surrounding Apollo 8 on Pad 39-A at Kennedy Space Center. This mission was the first manned flight using the Saturn V. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  15. OFFICIAL EMBLEM - APOLLO 11 - FIRST (1st) SCHEDULED LUNAR LANDING MISSION

    NASA Image and Video Library

    1969-06-01

    S69-34875 (June 1969) --- The official emblem of Apollo 11, the United States' first scheduled lunar landing mission. The Apollo 11 crew will be astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. The NASA insignia design for Apollo flights is reserved for use by the astronauts and for the official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced.

  16. Portraits - American Apollo-Soyuz Test Project (ASTP) Prime Crewmen

    NASA Image and Video Library

    1974-01-01

    S74-15241 (January 1974) --- These three NASA astronauts are the United States flight crew for the 1975 Apollo-Soyuz Test Project (ASTP) mission. The prime crew members for the joint United States - Soviet Union spaceflight are, left to right, Donald K. Slayton, docking module pilot; Vance D. Brand, command module pilot; and Thomas P. Stafford, commander. The American and Soviet crews will visit one another?s spacecraft while the Soyuz and Apollo are docked in Earth orbit for a maximum of two days. The ASTP mission is designed to test equipment and techniques that will establish international crew rescue capability in space, as well as permit future cooperative scientific missions.

  17. Apollo 11 Mission Commemorated

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-07-01

    On 24 July 1969, 4 days after Apollo 11 Mission Commander Neil Armstrong and Lunar Module Eagle Pilot Eugene “Buzz” Aldrin had become the first people to walk on the Moon, they and Apollo 11 Command Module Pilot Michael Collins peered through a window of the Mobile Quarantine Facility on board the U.S.S. Hornet following splashdown of the command module in the central Pacific as U.S. President Richard Nixon told them, “This is the greatest week in the history of the world since the creation.” Forty years later, the Apollo 11 crew and other Apollo-era astronauts gathered at several events in Washington, D. C., to commemorate and reflect on the Apollo program, that mission, and the future of manned spaceflight. “I don’t know what the greatest week in history is,” Aldrin told Eos. “But it was certainly a pioneering opening the door. With the door open when we touched down on the Moon, that was what enabled humans to put many more footprints on the surface of the Moon.”

  18. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-23

    This is a view of astronaut Richard F. Gordon attaching a high resolution telephoto lens to a camera aboard the Apollo 12 Command Module (CM) Yankee Clipper. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Apollo 12 safely returned to Earth on November 24, 1969.

  19. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut John H. Glenn (at podium) presents former astronaut Robert "Hoot" Gibson (standing right) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are actor and Master of Ceremonies Lance Henriksen (left), and former astronauts Sally K. Ride and Daniel Brandenstein (right), both inducted into the Hall of Fame today. Also being inducted is Space Shuttle astronaut Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut John H. Glenn (at podium) presents former astronaut Robert "Hoot" Gibson (standing right) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are actor and Master of Ceremonies Lance Henriksen (left), and former astronauts Sally K. Ride and Daniel Brandenstein (right), both inducted into the Hall of Fame today. Also being inducted is Space Shuttle astronaut Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  20. KENNEDY SPACE CENTER, FLA. - Daniel LeBlanc, chief operating officer of Delaware North Companies Parks and Resorts at KSC, makes the opening remarks to hundreds of guests and media representatives attending a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-20

    KENNEDY SPACE CENTER, FLA. - Daniel LeBlanc, chief operating officer of Delaware North Companies Parks and Resorts at KSC, makes the opening remarks to hundreds of guests and media representatives attending a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  1. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Daniel Brandenstein (standing right) is presented to the audience at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts John H. Glenn and Gordon Cooper, both previously inducted into the Hall of Fame. Being inducted with Brandenstein are Space Shuttle astronauts Robert "Hoot" Gibson, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Daniel Brandenstein (standing right) is presented to the audience at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts John H. Glenn and Gordon Cooper, both previously inducted into the Hall of Fame. Being inducted with Brandenstein are Space Shuttle astronauts Robert "Hoot" Gibson, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  2. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James A. Lovell (standing left) greets former astronaut Story Musgrave (standing right) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also seated on the dais are, from left, former astronaut and Senator John H. Glenn, astronaut and Associate Director (Technical) of the Johnson Space Center John W. Young, and former astronaut Buzz Aldrin, all previously inducted into the Hall of Fame. Being inducted with Musgrave are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James A. Lovell (standing left) greets former astronaut Story Musgrave (standing right) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also seated on the dais are, from left, former astronaut and Senator John H. Glenn, astronaut and Associate Director (Technical) of the Johnson Space Center John W. Young, and former astronaut Buzz Aldrin, all previously inducted into the Hall of Fame. Being inducted with Musgrave are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  3. KENNEDY SPACE CENTER, FLA. - Center Director and former astronaut Roy D. Bridges, Jr., (holding scissors) cuts the ribbon at a ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. Invited guests and dignitaries look on, such as former astronauts Edgar D. Mitchell on Bridges' left and James Lovell on his right. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-20

    KENNEDY SPACE CENTER, FLA. - Center Director and former astronaut Roy D. Bridges, Jr., (holding scissors) cuts the ribbon at a ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. Invited guests and dignitaries look on, such as former astronauts Edgar D. Mitchell on Bridges' left and James Lovell on his right. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  4. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Frederick H. (Rick) Hauck (standing right) congratulates former astronaut Daniel Brandenstein (standing center) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts John H. Glenn and Gordon Cooper, both previously inducted into the Hall of Fame. Being inducted with Brandenstein are Space Shuttle astronauts Robert "Hoot" Gibson, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Frederick H. (Rick) Hauck (standing right) congratulates former astronaut Daniel Brandenstein (standing center) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts John H. Glenn and Gordon Cooper, both previously inducted into the Hall of Fame. Being inducted with Brandenstein are Space Shuttle astronauts Robert "Hoot" Gibson, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  5. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert L. Crippen (right) presents former astronaut Sally K. Ride (standing center) at her induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais are, from left, former astronauts John H. Glenn, Gordon Cooper, Buzz Aldrin, and Walter Cunningham, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert L. Crippen (right) presents former astronaut Sally K. Ride (standing center) at her induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais are, from left, former astronauts John H. Glenn, Gordon Cooper, Buzz Aldrin, and Walter Cunningham, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  6. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert L. Crippen (standing right) congratulates former astronaut Sally K. Ride at her induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts Gordon Cooper, Scott Carpenter, Buzz Aldrin, Walter Cunningham, Edgar B. Mitchell, and Fred W. Haise, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert L. Crippen (standing right) congratulates former astronaut Sally K. Ride at her induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts Gordon Cooper, Scott Carpenter, Buzz Aldrin, Walter Cunningham, Edgar B. Mitchell, and Fred W. Haise, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  7. Apollo management: A key to the solution of the social-economical dilemma - The transferability of space-travel managerial techniques to the civil sector

    NASA Technical Reports Server (NTRS)

    Puttkamer, J. V.

    1973-01-01

    An analysis has been conducted to find out whether the management techniques developed in connection with the Apollo project could be used for dealing with such urgent problems of modern society as the crisis of the cities, the increasing environmental pollution, and the steadily growing traffic. Basic concepts and definitions of program and system management are discussed together with details regarding the employment of these concepts in connection with the solution of the problems of the Apollo program. Principles and significance of a systems approach are considered, giving attention to planning, system analysis, system integration, and project management. An application of the methods of project management to the problems of the civil sector is possible if the special characteristics of each particular case are taken into account.

  8. Orion Navigation Sensitivities to Ground Station Infrastructure for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Getchius, Joel; Kukitschek, Daniel; Crain, Timothy

    2008-01-01

    The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans to the International Space Station and back to the Moon for the first time since the Apollo program. As in the Apollo and Space Shuttle programs, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of the CEV. In the case of lunar missions, the ground station infrastructure consisting of approximately twelve stations distributed about the Earth and known as the Apollo Manned Spaceflight Network, no longer exists. Therefore, additional tracking resources will have to be allocated or constructed to support mission operations for Orion lunar missions. This paper examines the sensitivity of Orion navigation for lunar missions to the number and distribution of tracking sites that form the ground station infrastructure.

  9. The soviet manned lunar program N1-L3

    NASA Astrophysics Data System (ADS)

    Lardier, Christian

    2018-01-01

    The conquest of space was marked by the Moon race in which the two superpowers, the United States and the Soviet Union, were engaged in the 1960s. On the American side, the Apollo program culminated with the Man on the Moon in July 1969, 50 years ago. At the same time, the Soviet Union carried out a similar program which was kept secret for 20 years. This N1-L3 program was unveiled in August 1989. Its goal was to arrive on the Moon before the Americans. It included an original super-rocket, development of which began in June 1960. But this program became a national priority only in August 1964 and the super-rocket failed four times between 1969 and 1972. This article analyses the reasons for these failures, which led to the cancellation of the program in 1974.

  10. Skylab

    NASA Image and Video Library

    1972-01-01

    This artist's concept is a cutaway illustration of the Skylab with the Command/Service Module being docked to the Multiple Docking Adapter. In an early effort to extend the use of Apollo for further applications, NASA established the Apollo Applications Program (AAP) in August of 1965. The AAP was to include long duration Earth orbital missions during which astronauts would carry out scientific, technological, and engineering experiments in space by utilizing modified Saturn launch vehicles and the Apollo spacecraft. Established in 1970, the Skylab Program was the forerurner of the AAP. The goals of the Skylab were to enrich our scientific knowledge of the Earth, the Sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms, including man; to study the effects of the processing and manufacturing of materials utilizing the absence of gravity; and to conduct Earth resource observations. The Skylab also conducted 19 selected experiments submitted by high school students. Skylab's 3 different 3-man crews spent up to 84 days in Earth orbit. The Marshall Space Flight Center (MSFC) had responsibility for developing and integrating most of the major components of the Skylab: the Orbital Workshop (OWS), Airlock Module (AM), Multiple Docking Adapter (MDA), Apollo Telescope Mount (ATM), Payload Shroud (PS), and most of the experiments. MSFC was also responsible for providing the Saturn IB launch vehicles for three Apollo spacecraft and crews and a Saturn V launch vehicle for the Skylab.

  11. Skylab

    NASA Image and Video Library

    1969-01-01

    This cutaway drawing illustrates major Skylab components in launch configuration on top of the Saturn V. In an early effort to extend the use of Apollo for further applications, NASA established the Apollo Applications Program (AAP) in August of 1965. The AAP was to include long duration Earth orbital missions during which astronauts would carry out scientific, technological, and engineering experiments in space by utilizing modified Saturn launch vehicles and the Apollo spacecraft. Established in 1970, the Skylab Program was the forerurner of the AAP. The goals of the Skylab were to enrich our scientific knowledge of the Earth, the Sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms, including man; to study the effects of the processing and manufacturing of materials utilizing the absence of gravity; and to conduct Earth resource observations. The Skylab also conducted 19 selected experiments submitted by high school students. Skylab's 3 different 3-man crews spent up to 84 days in Earth orbit. The Marshall Space Flight Center (MSFC) had responsibility for developing and integrating most of the major components of the Skylab: the Orbital Workshop (OWS), Airlock Module (AM), Multiple Docking Adapter (MDA), Apollo Telescope Mount (ATM), Payload Shroud (PS), and most of the experiments. MSFC was also responsible for providing the Saturn IB launch vehicles for three Apollo spacecraft and crews and a Saturn V launch vehicle for the Skylab.

  12. Skylab

    NASA Image and Video Library

    1970-01-01

    This illustration shows general characteristics of the Skylab with callouts of its major components. In an early effort to extend the use of Apollo for further applications, NASA established the Apollo Applications Program (AAP) in August of 1965. The AAP was to include long duration Earth orbital missions during which astronauts would carry out scientific, technological, and engineering experiments in space by utilizing modified Saturn launch vehicles and the Apollo spacecraft. Established in 1970, the Skylab Program was the forerurner of the AAP. The goals of the Skylab were to enrich our scientific knowledge of the Earth, the Sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms, including man; to study the effects of the processing and manufacturing of materials utilizing the absence of gravity; and to conduct Earth resource observations. The Skylab also conducted 19 selected experiments submitted by high school students. Skylab's 3 different 3-man crews spent up to 84 days in Earth orbit. The Marshall Space Flight Center (MSFC) had responsibility for developing and integrating most of the major components of the Skylab: the Orbital Workshop (OWS), Airlock Module (AM), Multiple Docking Adapter (MDA), Apollo Telescope Mount (ATM), Payload Shroud (PS), and most of the experiments. MSFC was also responsible for providing the Saturn IB launch vehicles for three Apollo spacecraft and crews and a Saturn V launch vehicle for the Skylab.

  13. Skylab

    NASA Image and Video Library

    1967-01-01

    This photograph is of a model of the Skylab with the Command/Service Module being docked. In an early effort to extend the use of Apollo for further applications, NASA established the Apollo Applications Program (AAP) in August of 1965. The AAP was to include long duration Earth orbital missions during which astronauts would carry out scientific, technological, and engineering experiments in space by utilizing modified Saturn launch vehicles and the Apollo spacecraft. Established in 1970, the Skylab Program was the forerurner of the AAP. The goals of the Skylab were to enrich our scientific knowledge of the Earth, the Sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms, including man; to study the effects of the processing and manufacturing of materials utilizing the absence of gravity; and to conduct Earth resource observations. The Skylab also conducted 19 selected experiments submitted by high school students. Skylab's 3 different 3-man crews spent up to 84 days in Earth orbit. The Marshall Space Flight Center (MSFC) had responsibility for developing and integrating most of the major components of the Skylab: the Orbital Workshop (OWS), Airlock Module (AM), Multiple Docking Adapter (MDA), Apollo Telescope Mount (ATM), Payload Shroud (PS), and most of the experiments. MSFC was also responsible for providing the Saturn IB launch vehicles for three Apollo spacecraft and crews and a Saturn V launch vehicle for the Skylab.

  14. Skylab

    NASA Image and Video Library

    1974-01-01

    This image is an artist's concept of the Skylab in orbit with callouts of its major components. In an early effort to extend the use of Apollo for further applications, NASA established the Apollo Applications Program (AAP) in August of 1965. The AAP was to include long duration Earth orbital missions during which astronauts would carry out scientific, technological, and engineering experiments in space by utilizing modified Saturn launch vehicles and the Apollo spacecraft. Established in 1970, the Skylab Program was the forerurner of the AAP. The goals of the Skylab were to enrich our scientific knowledge of the Earth, the Sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms, including man; to study the effects of the processing and manufacturing of materials utilizing the absence of gravity; and to conduct Earth resource observations. The Skylab also conducted 19 selected experiments submitted by high school students. Skylab's 3 different 3-man crews spent up to 84 days in Earth orbit. The Marshall Space Flight Center (MSFC) had responsibility for developing and integrating most of the major components of the Skylab: the Orbital Workshop (OWS), Airlock Module (AM), Multiple Docking Adapter (MDA), Apollo Telescope Mount (ATM), Payload Shroud (PS), and most of the experiments. MSFC was also responsible for providing the Saturn IB launch vehicles for three Apollo spacecraft and crews and a Saturn V launch vehicle for the Skylab.

  15. Engineering support activities for the Apollo 17 Surface Electrical Properties Experiment.

    NASA Technical Reports Server (NTRS)

    Cubley, H. D.

    1972-01-01

    Description of the engineering support activities which were required to ensure fulfillment of objectives specified for the Apollo 17 SEP (Surface Electrical Properties) Experiment. Attention is given to procedural steps involving verification of hardware acceptability to the astronauts, computer simulation of the experiment hardware, field trials, receiver antenna pattern measurements, and the qualification test program.

  16. Restored Moonwalk Footage Release

    NASA Image and Video Library

    2009-07-15

    Stan Lebar, former Westinghouse Electric program manager, left, talks about the Apollo era TV cameras such as the one on display in the foreground as Richard Nafzger, team lead and Goddard engineer, listens at NASA's briefing where restored Apollo 11 moonwalk footage was revealed for the first time at the Newseum, Thursday, July 16, 2009, in Washington, DC. Photo Credit: (NASA/Bill Ingalls)

  17. n/a

    NASA Image and Video Library

    1971-07-26

    During the Apollo 15 pre-launch activity in the launch control center's firing room 1 at Kennedy Space Center, the then recently appointed NASA Administrator, Dr. James C. Fletcher (right) speaks with (Left to right) William Anders, executive secretary of the National Aeronautics and Space Council; Lt. General Sam Phillips, former Apollo Program Director; and Dr. Wernher von Braun, NASA's Deputy Associate Administrator for planning.

  18. A study of lunar models based on Apollo and other data

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The research concerned with the interpretation of lunar data developed during the Apollo Program is reported. The areas of research include: X-ray emission spectra and molecular orbitals of lunar materials, magnetic properties of lunar rock, lunar features, thermal history and evolution of the moon, and the internal constitution and evolution of the moon.

  19. Saturn Apollo Program

    NASA Image and Video Library

    1967-08-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This photo depicts a side view is of a fully extended ATM contamination monitor mockup.

  20. Saturn Apollo Program

    NASA Image and Video Library

    1967-08-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This photo of the ATM contamination monitor mockup offers an extended view of the sunshield interior.

  1. Apollo experience report environmental acceptance testing

    NASA Technical Reports Server (NTRS)

    Laubach, C. H. M.

    1976-01-01

    Environmental acceptance testing was used extensively to screen selected spacecraft hardware for workmanship defects and manufacturing flaws. The minimum acceptance levels and durations and methods for their establishment are described. Component selection and test monitoring, as well as test implementation requirements, are included. Apollo spacecraft environmental acceptance test results are summarized, and recommendations for future programs are presented.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1968-02-06

    Apollo 6, the second and last of the unmarned Saturn V test flights, is slowly transported past the Vehicle Assembly Building on the way to launch pad 39-A. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  3. Saturn Apollo Program

    NASA Image and Video Library

    2004-04-15

    This undated chart provides a description of the Saturn IB and Saturn V's Instrument Unit (IU) and its major components. Designed by NASA at the Marshall Space Flight Center (MSFC), the Instrument Unit, sandwiched between the S-IVB stage and the Apollo spacecraft, served as the Saturn's "nerve center" providing guidance and control, command and sequence of vehicle functions, telemetry, and environmental control.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1973-01-01

    This chart provides a launch summary of the Saturn IB launch vehicle as of 1973. Developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in MSFC's "building block" approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the marned lunar missions.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1968-01-01

    This 1968 chart depicts the various mission configurations for the Saturn IB launch vehicle. Developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in MSFC's "building block" approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the marned lunar missions.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1966-07-01

    AS-203, the third Saturn IB launch vehicle developed by the Marshall Space Flight Center, lifts off from Cape Canaveral, Florida , July 5, 1966. Primary mission objectives included evaluation of the S-IVB stage's hydrogen venting and engine restart capabilities in an orbital environment. In all, nine Saturn IB flights were made, ending with the Apollo-Soyuz Test Project (ASTP) in July 1975.

  7. Saturn Apollo Program

    NASA Image and Video Library

    1968-01-01

    This 1968 chart illustrates the characteristics and proposed missions for the Saturn IB launch vehicle. Developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in MSFC's "building block" approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the marned lunar missions.

  8. Apollo 15 crewmen riding lunar roving vehicle simulator during geology trip

    NASA Image and Video Library

    1970-11-02

    S70-53300 (2-3 Nov. 1970) --- Two Apollo 15 crew members, riding a Lunar Roving Vehicle (LRV) simulator, participate in geology training at the Cinder Lake crater field in Arizona. Astronaut David R. Scott, Apollo 15 commander, seated on the left; and to Scott's right is astronaut James B. Irwin, lunar module pilot. They have stopped at the rim of a 30-feet deep crater to look over the terrain. The simulator, called "Grover", was built by the United States Geological Survey.

  9. Saturn Apollo Program

    NASA Image and Video Library

    1974-01-01

    This illustration depicts a comparison of two space vehicles, the U.S.'s Saturn IB launch vehicle and the U.S.S.R.'s Soyuz launch vehicle, for the Apollo-Soyuz Test Project. The ASTP was the first international docking of the U.S.'s Apollo spacecraft and the U.S.S.R.'s Soyuz spacecraft in space. A joint engineering team from the two countries met to develop a docking system that permitted the two spacecraft to link in space and allowed the two crews to travel from one spacecraft to the other. This system entailed developing a large habitable Docking Module (DM) to be carried on the Apollo spacecraft to facilitate the joining of two dissimilar spacecraft. The Marshall Space Flight Center was responsible for development and sustaining engineering of the Saturn IB launch vehicle during the mission.

  10. Apollo-Soyuz test project docking system

    NASA Technical Reports Server (NTRS)

    Swan, W. L., Jr.

    1976-01-01

    The United States and Soviet Union in July 1975 successfully completed a joint space mission utilizing each country's spacecraft and the compatible docking system designed and fabricated by each country. The compatible docking system is described, along with the extensive research, development, and testing leading up to the successful mission. It also describes the formulation and implementation of methods for breaking the language barrier, bridging the extensive distances for communication and travel, and adjusting to each country's different culture during the three-year development program.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-24

    Aboard the recovery ship, USS Hornet, Apollo 12 astronauts wave to the crowd as they enter the mobile quarantine facility. The recovery operation took place in the Pacific Ocean after the splashdown of the Command Module capsule. Navy para-rescue men recovered the capsule housing the 3-man Apollo 12 crew. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  12. Energy Expenditure During Extravehicular Activity: Apollo Skylab Through STS-135

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    The importance of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to conduct an EVA over-tasked the crewmember and exceeded the capabilities of vehicle and space suit life support systems. Energy expenditure was closely evaluated through the Apollo lunar surface EVAs, resulting in modifications to space suit design and EVA operations. After the Apollo lunar surface missions were completed, the United States shifted its focus to long duration human space flight, to study the human response to living and working in a microgravity environment. This paper summarizes the energy expenditure during EVA from Apollo Skylab through STS-135.

  13. Liftoff of the Apollo 11 lunar landing mission

    NASA Image and Video Library

    1969-07-16

    S69-39961 (16 July 1969) --- The huge, 363-feet tall Apollo 11 (Spacecraft 107/Lunar Module S/Saturn 506) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), at 9:32 a.m. (EDT), July 16, 1969. Onboard the Apollo 11 spacecraft are astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 is the United States' first lunar landing mission. While astronauts Armstrong and Aldrin descend in the Lunar Module (LM) "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins will remain with the Command and Service Modules (CSM) "Columbia" in lunar orbit. Photo credit: NASA

  14. KSC-2009-4190

    NASA Image and Video Library

    2009-07-16

    CAPE CANAVERAL, Fla. – During NASA's 40th Anniversary of Apollo Celebration at the Apollo/Saturn V Center at NASA's Kennedy Space Center in Florida, Center Director Bob Cabana (center) and Chief Operating Officer of the Kennedy Space Center Visitor Complex Bob Moore (left of Cabana) join Apollo astronauts on the stage. At far left is the program moderator John Zarella, with CNN. The astronauts are (from left) Al Worden, Edgar Mitchell, Walt Cunningham, Buzz Aldrin, (Moore, Cabana), Charlie Duke, Vance Brand, Gerald Carr and Bruce McCandless. The celebration honored the July 1969 launch and landing on the moon. Photo credit: NASA/Kim Shiflett

  15. View of Mission Control Center during Apollo 13 splashdown

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Dr. Thomas O. Paine (center), NASA Administrator, and other NASA Officials joined others in applauding the successful splashdown of the Apollo 13 crewmen. Others among the large crowd in the Mission Operations Control Room of the Mission Control Center, Manned Spacecraft Center (MSC) at the time of recovery were U.S. Air Force Lt. Gen. Samuel C. Phillips (extreme left), who formerly served as Apollo program Director, Office of Manned Space Flight, NASA Headquarters; Dr. Charles A. Berry (third from left), Director, Medical Research and Operations Directorate, MSC; and Dr. George M. Low, Associate NASA Administrator.

  16. Indigenous Carbonaceous Phases Embedded Within Surface Deposits on Apollo 17 Volcanic Glass Beads

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; Clemett, S. J.; Ross, D. K.; Le, L.; McKay, D. S.; Gibson, E. K.; Gonzalez, C.

    2012-01-01

    The assessment of indigenous organic matter in returned lunar samples was one of the primary scientific goals of the Apollo program. Prior studies of Apollo samples have shown the total amount of organic matter to be in the range of approx 50 to 250 ppm. Low concentrations of lunar organics may be a consequence not only of its paucity but also its heterogeneous distribution. Several processes should have contributed to the lunar organic inventory including exogenous carbonaceous accretion from meteoroids and interplanetary dust particles, and endogenous synthesis driven by early planetary volcanism and cosmic and solar radiation.

  17. The lunar quarantine program

    NASA Technical Reports Server (NTRS)

    Johnston, R. S.; Mason, J. A.; Wooley, B. C.; Mccollum, G. W.; Mieszkuc, B. J.

    1974-01-01

    The lunar quarantine program was designed to ensure that return of lunar material represented no threat to the public health, to agriculture, or to other living resources. It established definitely that no life exists on the moon. The crews of the three lunar quarantine missions, Apollo 11, 12, and 14, experienced no health problems as a result of their exposure to lunar samples. Plants and animals also showed no adverse effects. Stringent quarantine was terminated after Apollo 14, but lunar samples continued to be protected to guarantee that scientists would receive uncontaminated materials for study.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1966-09-09

    This is the official NASA portrait of astronaut James Lovell. Captain Lovell was selected as an Astronaut by NASA in September 1962. He has since served as backup pilot for the Gemini 4 flight and backup Commander for the Gemini 9 flight, as well as backup Commander to Neil Armstrong for the Apollo 11 lunar landing mission. On December 4, 1965, he and Frank Borman were launched into space on the history making Gemini 7 mission. The flight lasted 330 hours and 35 minutes and included the first rendezvous of two manned maneuverable spacecraft. The Gemini 12 mission, commanded by Lovell with Pilot Edwin Aldrin, began on November 11, 1966 for a 4-day, 59-revolution flight that brought the Gemini program to a successful close. Lovell served as Command Module Pilot and Navigator on the epic six-day journey of Apollo 8, the first manned Saturn V liftoff responsible for allowing the first humans to leave the gravitational influence of Earth. He completed his fourth mission as Spacecraft Commander of the Apollo 13 flight, April 11-17, 1970, and became the first man to journey twice to the moon. The Apollo 13 mission was cut short due to a failure of the Service Module cryogenic oxygen system. Aborting the lunar course, Lovell and fellow crewmen, John L. Swigert and Fred W. Haise, working closely with Houston ground controllers, converted their lunar module, Aquarius, into an effective lifeboat that got them safely back to Earth. Captain Lovell held the record for time in space with a total of 715 hours and 5 minutes until surpassed by the Skylab flights. On March 1, 1973, Captain Lovell retired from the Navy and the Space Program.

  19. Rocket Exhaust Cratering: Lessons Learned from Viking and Apollo

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.; Vu, Bruce T.

    2004-01-01

    During the Apollo and Viking programs NASA expended considerable effort to study the cratering of the regolith when a rocket launches or lands on it. That research ensured the success of those programs but also demonstrated that cratering will be a serious challenge for other mission scenarios. Unfortunately, because three decades have elapsed since NASA last performed a successful retro-rocket landing on a large planetary body - and ironically because Apollo and Viking were successful at minimizing the cratering effects - the space agency has a minimized sense of the seriousness of the issue. The most violent phase of a cratering event is when the static overpressure of the rocket exhaust exceeds the bearing capacity of the soil. This bearing capacity failure (BCF) punches a small and highly concave cup into the surface. The shape of the cup then redirects the supersonic jet - along with a large flux of high-velocity debris - directly toward the spacecraft. This has been observed in terrestrial experiments but never quantified analytically. The blast from such an event will be more than just quantitatively greater than the cratering that occurred in the Apollo and Viking programs. It will be qualitatively different, because BCF had been successfully avoided in all those missions. In fact, the Viking program undertook a significant research and development effort and redesigned the spacecraft specifically for the purpose of avoiding BCF [1]. (See Figure 1.) Because the Apollo and Viking spacecraft were successful at avoiding those cratering effects, it was unnecessary to understand them. As a result, the physics of a BCF-driven cratering event have never been well understood. This is a critical gap in our knowledge because BCF is unavoidable in the Martian environment with the large landers necessary for human exploration, and in Lunar landings it must also be addressed because it may occur depending upon the design specifics of the spacecraft and the weakening of the regolity by gas diffusion.

  20. Apollo 16 mission report. Supplement 2: Service Propulsion system final flight evaluation

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Wood, S. C.

    1974-01-01

    The Apollo 16 Mission was the sixteenth in a series of flights using Apollo flight hardware and included the fifth lunar landing of the Apollo Program. The Apollo 16 Mission utilized CSM 113 which was equipped with SPS Engine S/N 66 (Injector S/N 137). The engine configuration and expected performance characteristics are presented. Since previous flight results of the SPS have consistently shown the existence of a negative mixture ratio shift, SPS Engine S/N 66 was reorificed to increase the mixture ratio for this mission. The propellant unbalance for the two major engine firings is compared with the predicted unbalance. Although the unbalance at the end of the TEI burn is significantly different than the predicted unbalance, the propellant mixture ratio was well within limits. The SPS performed six burns during the mission, with a total burn duration of 575.3 seconds. The ignition time, burn duration and velocity gain for each of the six SPS burns are reported.

  1. Evaluation of Drogue Parachute Damping Effects Utilizing the Apollo Legacy Parachute Model

    NASA Technical Reports Server (NTRS)

    Currin, Kelly M.; Gamble, Joe D.; Matz, Daniel A.; Bretz, David R.

    2011-01-01

    Drogue parachute damping is required to dampen the Orion Multi Purpose Crew Vehicle (MPCV) crew module (CM) oscillations prior to deployment of the main parachutes. During the Apollo program, drogue parachute damping was modeled on the premise that the drogue parachute force vector aligns with the resultant velocity of the parachute attach point on the CM. Equivalent Cm(sub q) and Cm(sub alpha) equations for drogue parachute damping resulting from the Apollo legacy parachute damping model premise have recently been developed. The MPCV computer simulations ANTARES and Osiris have implemented high fidelity two-body parachute damping models. However, high-fidelity model-based damping motion predictions do not match the damping observed during wind tunnel and full-scale free-flight oscillatory motion. This paper will present the methodology for comparing and contrasting the Apollo legacy parachute damping model with full-scale free-flight oscillatory motion. The analysis shows an agreement between the Apollo legacy parachute damping model and full-scale free-flight oscillatory motion.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-24

    Sitting in the life raft, during the Apollo 12 Pacific recovery, are the three mission astronauts; Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms, while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  3. Saturn Apollo Program

    NASA Image and Video Library

    1969-12-14

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples, some of which can be seen in this photograph. Apollo 12 safely returned to Earth on November 24, 1969.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-25

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. This photograph was taken as the mission’s first loaded sample return container arrived at Ellington Air Force Base by air from the Pacific recovery area. The rock box was immediately taken to the Lunar Receiving Laboratory at the Manned Spacecraft Center (MSC) in Houston, Texas. Happily posing for the photograph with the rock container are (L-R) Richard S. Johnston (back), special assistant to the MSC Director; George M. Low, MSC Apollo Spacecraft Program manager; George S. Trimble (back), MSC Deputy Director; Lt. General Samuel C. Phillips, Apollo Program Director, Office of Manned Spaceflight at NASA headquarters; Eugene G. Edmonds, MSC Photographic Technology Laboratory; Dr. Thomas O. Paine, NASA Administrator; and Dr. Robert R. Gilruth, MSC Director.

  5. The Apollo program and amino acids. [precursors significance in molecular evolution

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1973-01-01

    Apollo lunar sample analyses designed to detect the presence of organic compounds are reviewed, and the results are discussed from the viewpoint of relevance to laboratory experiments on the synthesis of amino acids and to theoretical models of cosmochemical processes resulting in the formation of organic compounds. Glycine, alanine, glutamic acid, aspartic acid, serine, and threonine have been found repeatedly in the hydrolyzates of hot aqueous extracts of lunar dust. These compounds represent an early step in the sequence of events leading to the rise of living material and were probably deposited by the solar wind. The results of the Apollo program so far suggest that the pathway from cosmic organic matter to life as it evolved on earth could have been pursued on the moon to the stage of amino acid precursors and then may have been terminated for lack of sufficient water.

  6. Manned Venus Flyby

    NASA Technical Reports Server (NTRS)

    Feldman, M. S.; Ferrara, L. A.; Havenstein, P. L.; Volonte, J. E.; Whipple, P. H.

    1967-01-01

    This study is one of several being conducted at Bellcomm and in Manned Space Flight whose purpose is to give guidance to the Apollo Applications Program's technical objectives by focusing on a longer range goal. The assumed mission in this case is a three-man flyby of Venus launched in November, 1973 on a single standard Saturn V. The selected flight configuration includes a Command and Service Module similar in some respects to Apollo, an Environmental Support Module which occupies the adapter area and a spent S-IVB stage which is utilized for habitable volume and structural support of a solar cell electrical power system. The total injected weight, 106,775 lbs., is within the capability of a single Saturn V of the early 1970's. The study is focused on the selection of subsystem technologies appropriate to long duration flight. The conclusions are reported in terms of the technical characteristics to be achieved as part of the Apollo Applications Program's long duration objectives.

  7. Apollo lunar descent guidance

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1974-01-01

    Apollo lunar-descent guidance transfers the Lunar Module from a near-circular orbit to touchdown, traversing a 17 deg central angle and a 15 km altitude in 11 min. A group of interactive programs in an onboard computer guide the descent, controlling altitude and the descent propulsion system throttle. A ground-based program pre-computes guidance targets. The concepts involved in this guidance are described. Explicit and implicit guidance are discussed, guidance equations are derived, and the earlier Apollo explicit equation is shown to be an inferior special case of the later implicit equation. Interactive guidance, by which the two-man crew selects a landing site in favorable terrain and directs the trajectory there, is discussed. Interactive terminal-descent guidance enables the crew to control the essentially vertical descent rate in order to land in minimum time with safe contact speed. The altitude maneuver routine uses concepts that make gimbal lock inherently impossible.

  8. Saturn Apollo Program

    NASA Image and Video Library

    1970-03-20

    Under the direction of Marshall Space Flight Center (MSFC), the Lunar Roving Vehicle (LRV) was designed to allow Apollo astronauts a greater range of mobility during lunar exploration missions. During the development process, LRV prototype wheels underwent soil tests in building 4481 at Marshall Space Flight Center (MSFC). Pictured from left to right are the wheels for: LRV, Bendix Corporation, Local Scientific Survey Module (LSSM), and Grumman Industries.

  9. Worden Ambassador of Exploration Award

    NASA Image and Video Library

    2009-07-29

    NASA Administrator Charles Bolden, left, visits with Apollo astronaut Al Worden prior to a ceremony, Thursday, July 30, 2009, where Worden was honored with the presentation of the an Ambassador of Exploration Award for his contributions to the U.S. space program at Kennedy Space Center, Fla. Worden served as command module pilot for the Apollo 15 mission. Photo Credit: (NASA/Bill Ingalls)

  10. Restored Moonwalk Footage Release

    NASA Image and Video Library

    2009-07-15

    A photograph from the 1960's showing Stan Lebar, former Westinghouse Electric program manager, holding two cameras used during the Apollo missions is seen on a large video monitor above panelists, including Stan Lebar, at NASA's briefing where restored Apollo 11 moonwalk footage was revealed for the first time at the Newseum, Thursday, July 16, 2009, in Washington, DC. Photo Credit: (NASA/Carla Cioffi)

  11. Saturn Apollo Program

    NASA Image and Video Library

    1968-02-06

    A bird's-eye view of Apollo 6 and its gantry leaving the Vehicle Assembly Building on the transporter heading to the launch site on Pad 39-A at Kennedy Space Center. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  12. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-01

    A technician can be seen working atop the white room across from the escape tower of the Apollo 11 spacecraft a few days prior to the launch of the Saturn V moon rocket. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams

  13. The Apollo spacecraft: A chronology. Volume 2: 8 November 1962 - 30 September 1964

    NASA Technical Reports Server (NTRS)

    Morse, M. L.; Bays, J. K.

    1973-01-01

    A chronology of the Apollo spacecraft development and production program is presented. The subjects discussed are: (1) defining contractural relations, (2) developing hardware distinctions, and (3) developing software ground rules. Illustrations, drawings, and photographs are used extensively to supplement the technical writing. Descriptions of life support systems, communication equipment, propulsion systems, control devices, and spacecraft components are provided.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1966-08-01

    AS-202, the second Saturn IB launch vehicle developed by the Marshall Space Flight Center, lifts off from Cape Canaveral, Florida, August 25, 1966. Primary mission objectives included the confirmation of projected launch loads, demonstration of spacecraft component separation, and verification of heat shield adequacy at high reentry rates. In all, nine Saturn IB flights were made, ending with the Apollo-Soyuz Test Project (ASTP) in July 1975.

  15. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-15

    Seriousness exudes from launch official Miles Ross (left) of Kennedy Space Flight Center (KSC) and Major General E.F. O’Conner, director of program management of the Marshall Space Flight Center (MSFC), as they participate in the Apollo 11 countdown demonstration test. The Apollo 11 mission, the first lunar landing mission, launched from the KSC in Florida via the MSFC developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  16. KSC-2009-4351

    NASA Image and Video Library

    2009-07-30

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Visitor Complex in Florida, Apollo astronaut Al Worden (center) is flanked by Center Director Bob Cabana (left) and NASA Administrator Charles Bolden. Worden was presented with the Ambassador of Exploration Award to honor his contributions to the U.S. space program. A moon rock encased in Lucite, the award is seen in the foreground and will be displayed at Kennedy. Worden served as command module pilot for the Apollo 15 mission, which set several moon records for NASA, including the longest lunar surface stay time, the longest lunar extravehicular activity and the first use of a lunar roving vehicle. Worden spent 38 minutes in a spacewalk outside the command module and logged a total of 295 hours, 11 minutes in space during the mission. NASA is giving the Ambassador of Exploration Award to the first generation of explorers in the Mercury, Gemini and Apollo space programs for realizing America's goal of going to the moon. The rock is part of the 842 pounds of lunar samples collected during six Apollo expeditions from 1969 to 1972. Those astronauts who receive the award will then present the award to a museum of their choice. Photo credit: NASA/Jack Pfaller

  17. KSC-2009-4346

    NASA Image and Video Library

    2009-07-30

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, External Relations Director Lisa Malone speaks to an audience in Kennedy's Visitor Complex about the Ambassador of Exploration Award being given to Al Worden, an Apollo astronaut. Worden is being honored for his contributions to the U.S. space program. The award, to be displayed at Kennedy, is a moon rock encased in Lucite, mounted for public display. Worden served as command module pilot for the Apollo 15 mission, which set several moon records for NASA, including the longest lunar surface stay time, the longest lunar extravehicular activity and the first use of a lunar roving vehicle. Worden spent 38 minutes in a spacewalk outside the command module and logged a total of 295 hours, 11 minutes in space during the mission. NASA is giving the Ambassador of Exploration Award to the first generation of explorers in the Mercury, Gemini and Apollo space programs for realizing America's goal of going to the moon. The rock is part of the 842 pounds of lunar samples collected during six Apollo expeditions from 1969 to 1972. Those astronauts who receive the award will then present the award to a museum of their choice. Photo credit: NASA/Jack Pfaller

  18. KSC-2009-4348

    NASA Image and Video Library

    2009-07-30

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden addresses guests who have gathered in Kennedy's Visitor Complex to celebrate Apollo astronaut Al Worden's receiving the Ambassador of Exploration Award. Worden is being honored for his contributions to the U.S. space program. The award, to be displayed at Kennedy, is a moon rock encased in Lucite, mounted for public display. Worden served as command module pilot for the Apollo 15 mission, which set several moon records for NASA, including the longest lunar surface stay time, the longest lunar extravehicular activity and the first use of a lunar roving vehicle. Worden spent 38 minutes in a spacewalk outside the command module and logged a total of 295 hours, 11 minutes in space during the mission. NASA is giving the Ambassador of Exploration Award to the first generation of explorers in the Mercury, Gemini and Apollo space programs for realizing America's goal of going to the moon. The rock is part of the 842 pounds of lunar samples collected during six Apollo expeditions from 1969 to 1972. Those astronauts who receive the award will then present the award to a museum of their choice. Photo credit: NASA/Jack Pfaller

  19. KSC-2009-4347

    NASA Image and Video Library

    2009-07-30

    CAPE CANAVERAL, Fla. –At NASA's Kennedy Space Center in Florida, Director Bob Cabana speaks to an audience in Kennedy's Visitor Complex about Apollo astronaut Al Worden, who is receiving the Ambassador of Exploration Award. Worden is being honored for his contributions to the U.S. space program. The award, to be displayed at Kennedy, is a moon rock encased in Lucite, mounted for public display. Worden served as command module pilot for the Apollo 15 mission, which set several moon records for NASA, including the longest lunar surface stay time, the longest lunar extravehicular activity and the first use of a lunar roving vehicle. Worden spent 38 minutes in a spacewalk outside the command module and logged a total of 295 hours, 11 minutes in space during the mission. NASA is giving the Ambassador of Exploration Award to the first generation of explorers in the Mercury, Gemini and Apollo space programs for realizing America's goal of going to the moon. The rock is part of the 842 pounds of lunar samples collected during six Apollo expeditions from 1969 to 1972. Those astronauts who receive the award will then present the award to a museum of their choice. Photo credit: NASA/Jack Pfaller

  20. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-15

    Lee B. James (left), manager of the Saturn Program at the Marshall Space flight Center (MSFC), talks with Isom Pigell in the firing room 1 of the Kennedy Space Center (KSC) control center during the countdown demonstration test for the Apollo 11 mission. The Apollo 11 mission, the first lunar landing mission, launched from the KSC in Florida via the MSFC developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  1. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-15

    Lee B. James (left), manager of the Saturn Program at the Marshall Space flight Center (MSFC), talks with Isom Pigell in the firing room 1 of the Kennedy Space Center (KSC) control center during the countdown demonstration test for the Apollo 11 mission. At left is Dr. Hans C. Gruen of KSC. The Apollo 11 mission, the first lunar landing mission, launched from the KSC in Florida via the MSFC developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-23

    Sitting on the lunar surface, this Solar Wind Spectrometer is measuring the energies of the particles that make up the solar wind. This was one of the instruments used during the Apollo 12 mission. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  3. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-23

    Sitting on the lunar surface, this magnetometer provided new data on the Moon’s magnetic field. This was one of the instruments used during the Apollo 12 mission. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  4. Apollo 11 Mission Audio - Day 1

    NASA Image and Video Library

    1969-07-16

    Audio from mission control during the launch of Apollo 11, which was the United States' first lunar landing mission. While astronauts Armstrong and Aldrin descended in the Lunar Module "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules "Columbia" in lunar orbit.

  5. The Legacy of Apollo: Assessed and Appreciated.

    ERIC Educational Resources Information Center

    Griffin, Richard A.; Griffin, Ann D.

    1997-01-01

    The real-life drama 25 years ago when Apollo 13 was rescued through a collaborative team of colleagues provides a model for changes in many public schools. In Texas, the state code specifies that site-based decision making address planning, budgeting, curriculum staffing patterns, staff development, and school organization. (MLF)

  6. Saturn Apollo Program

    NASA Image and Video Library

    1968-12-17

    Apollo 8 crew members paused before the mission simulator during training for the first manned lunar orbital mission. Frank Borman, commander; James Lovell, Command Module (CM) pilot; and William Anders, Lunar Module (LM) pilot , were also the first humans to launch aboard the massive Saturn V space vehicle. Lift off occurred on December 21, 1968 and returned safely to Earth on December 27, 1968. The mission achieved operational experience and tested the Apollo command module systems, including communications, tracking, and life-support, in cis-lunar space and lunar orbit, and allowed evaluation of crew performance on a lunar orbiting mission. The crew photographed the lunar surface, both far side and near side, obtaining information on topography and landmarks as well as other scientific information necessary for future Apollo landings. All systems operated within allowable parameters and all objectives of the mission were achieved.

  7. Nutritional studies

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Smith, M. C., Jr.; Wheeler, H. O.

    1975-01-01

    Detailed metabolic studies were conducted of the Apollo 16 and Apollo 17 flight crews, and the results are presented in tabular form. Intake and absorption data are also included. Apollo nutrient intakes were found to be characteristically hypocaloric. Estimates of body composition changes from metabolic balance data, from preflight and postflight weights and volumes, and from total body water and potassium provide no evidence for diminished caloric requirements during a flight. As observed during the Gemini Program and during periods of bed rest, measurements of bone density and metabolic balance confirm a tendency toward loss of skeletal tissue in weightlessness. No evidence exists that any inflight metabolic anomaly, including hypokalemia, was induced by marginal or deficient nutrient intakes. In general, the Apollo crewmen were well nourished and exhibited normal gastroenterological functions, although appetite was somewhat diminished and the organoleptic response to food was somewhat modified during flight.

  8. Saturn Apollo Program

    NASA Image and Video Library

    1970-04-01

    Apollo 13 onboard photo: This view of the severely damaged Apollo 13 Service Module was photographed from the Lunar Module/Command Module following the jettison of the Service Module. As seen here, an entire panel of the Service Module was blown away by the apparent explosion of oxygen tank number two located in Sector 4 of the Service Module. Two of the three fuel cells are visible just forward (above) the heavily damaged area. Three fuel cells, two oxygen tanks, and two hydrogen tanks, are located in Sector 4. The damaged area is located above the S-band high gain anterna. Nearest the camera is the Service Propulsion System (SPS) engine and nozzle. The damage to the Service Module caused the Apollo 13 crewmen to use the Lunar Module as a lifeboat. The Lunar Module was jettisoned by the Command Module just prior to Earth re-entry.

  9. Saturn Apollo Program

    NASA Image and Video Library

    1969-09-15

    Apollo 11 astronauts, (left to right) Edwin E. Aldrin Jr., Lunar Module pilot; Michael Collins, Command Module pilot; and Neil A. Armstrong, commander, are showing a two-pound Moon rock to Frank Taylor, director of the Smithsonian Institute in Washington D.C. The rock was picked up from the Moon’s surface during the Extra Vehicular Activity (EVA) of Aldrin and Armstrong following man’s first Moon landing and was was presented to the Institute for display in the Art and Industries Building. The Apollo 11 mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  10. Southeastern United States and Caribbean Sea from Apollo 8 spacecraft

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Most of the southeastern United States and Caribbean Sea, the U.S. coastline from Chesapeake Bay to the Florida peninsula can be seen from the Apollo 8 spacecraft in orbit above the Earth. The Bahamas and the Islands of Cuba, Jamaica, Hispiniola and Puerto Rico extend across the Caribbean. The light blue of the shallow Bahama banks contrasts with the darker hue of the deeper water especially in the Tongue of the Ocean area.

  11. KSC-04pd1004

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. - Former astronaut Scott Carpenter is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  12. KSC-04pd1006

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Before the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame, former astronaut Gordon Cooper is introduced as a previous inductee. One of America’s original Mercury Seven astronauts, Cooper flew the last and longest Project Mercury orbital mission and spent eight days in space aboard Gemini 5. The ceremony was held at the Apollo/Saturn V Center at KSC. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  13. KSC-04pd1002

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Inside the Apollo/Saturn V Center at the Kennedy Space Center Visitor Complex, the Bethune-Cookman Choir performs prior to the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  14. Did We Really Land on the Moon? Suggestions for Science Teachers

    NASA Technical Reports Server (NTRS)

    Lowman, Paul D., Jr.; Smith, David E. (Technical Monitor)

    2001-01-01

    On Feb. 15, 2001, the FOX network broadcast a one hour TV program claiming that the Apollo lunar landings had all been staged in a studio set in Nevada, and that astronauts had never landed on the Moon. This claim can be refuted on many points, focused on the supposed photographic evidence indicating studio lighting or other aspects of the Apollo missions. The TV program ignored the returned lunar samples. Science teachers have been swamped with questions about the program, and this paper has been written to suggest how they can use it to stimulate interest in lunar geology. The article shows how the NASA Lunar Disk kits, available on loan to schools, can be studied by students. These samples are visibly different from terrestrial soils and rocks in several ways. There is no quartz in the lunar soil; there are no true reds and browns resulting from ferric oxides; and the textures of the soil (agglutinates and glass beads) can only be formed on an airless planet. The article has several pictures of the lunar surface and the Apollo samples, and a short bibliography for background reading.

  15. JPEG2000 still image coding quality.

    PubMed

    Chen, Tzong-Jer; Lin, Sheng-Chieh; Lin, You-Chen; Cheng, Ren-Gui; Lin, Li-Hui; Wu, Wei

    2013-10-01

    This work demonstrates the image qualities between two popular JPEG2000 programs. Two medical image compression algorithms are both coded using JPEG2000, but they are different regarding the interface, convenience, speed of computation, and their characteristic options influenced by the encoder, quantization, tiling, etc. The differences in image quality and compression ratio are also affected by the modality and compression algorithm implementation. Do they provide the same quality? The qualities of compressed medical images from two image compression programs named Apollo and JJ2000 were evaluated extensively using objective metrics. These algorithms were applied to three medical image modalities at various compression ratios ranging from 10:1 to 100:1. Following that, the quality of the reconstructed images was evaluated using five objective metrics. The Spearman rank correlation coefficients were measured under every metric in the two programs. We found that JJ2000 and Apollo exhibited indistinguishable image quality for all images evaluated using the above five metrics (r > 0.98, p < 0.001). It can be concluded that the image quality of the JJ2000 and Apollo algorithms is statistically equivalent for medical image compression.

  16. KSC-03PD-2014

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Hundreds of guests attend a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert 'Hoot' Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  17. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-16

    This photograph shows the Saturn V launch vehicle (SA-506) for the Apollo 11 mission liftoff at 8:32 am CDT, July 16, 1969, from launch complex 39A at the Kennedy Space Center. Apollo 11 was the first manned lunar landing mission with a crew of three astronauts: Mission commander Neil A. Armstrong, Command Module pilot Michael Collins, and Lunar Module pilot Edwin E. Aldrin, Jr. It placed the first humans on the surface of the moon and returned them back to Earth. Astronaut Armstrong became the first man on the lunar surface, and astronaut Aldrin became the second. Astronaut Collins piloted the Command Module in a parking orbit around the Moon.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1972-12-07

    This is an Apollo 17 onboard photo of an astronaut beside the Lunar Roving Vehicle (LRV) on the lunar surface. Designed and developed by the Marshall Space Flight Center and built by the Boeing Company, the LRV was first used on the Apollo 15 mission and increased the range of astronauts' mobility and productivity on the lunar surface. This lightweight electric car had battery power sufficient for about 55 miles. It weighed 462 pounds (77 pounds on the Moon) and could carry two suited astronauts, their gear, cameras, and several hundred pounds of bagged samples. The LRV's mobility was quite high. It could climb and descend slopes of about 25 degrees.

  19. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-01

    This is the official three-member crew portrait of the Apollo 15 (SA-510). Pictured from left to right are: David R. Scott, Mission Commander; Alfred M. Worden Jr., Command Module pilot; and James B. Irwin, Lunar Module pilot. The fifth marned lunar landing mission, Apollo 15 (SA-510), lifted off on July 26, 1971. Astronauts Scott and Irwin were the first to use a wheeled surface vehicle, the Lunar Roving Vehicle (LRV), or the Rover, which was designed and developed by the Marshall Space Flight Center, and built by the Boeing Company. The astronauts spent 13 days, nearly 67 hours, on the Moon's surface to inspect a wide variety of its geological features.

  20. Apollo experience report: Power generation system

    NASA Technical Reports Server (NTRS)

    Bell, D., III; Plauche, F. M.

    1973-01-01

    A comprehensive review of the design philosophy and experience of the Apollo electrical power generation system is presented. The review of the system covers a period of 8 years, from conception through the Apollo 12 lunar-landing mission. The program progressed from the definition phase to hardware design, system development and qualification, and, ultimately, to the flight phase. Several problems were encountered; however, a technology evolved that enabled resolution of the problems and resulted in a fully manrated power generation system. These problems are defined and examined, and the corrective action taken is discussed. Several recommendations are made to preclude similar occurrences and to provide a more reliable fuel-cell power system.

  1. Astronauts Evans and Cernan aboard the Apollo 17 spacecraft

    NASA Image and Video Library

    1972-12-17

    AS17-162-24053 (7-19 Dec. 1972) --- Scientist-astronaut Harrison H. "Jack" Schmitt, lunar module pilot, took this photograph of his two fellow crew men under zero-gravity conditions aboard the Apollo 17 spacecraft during the final lunar landing mission in NASA's Apollo program. That is astronaut Eugene A. Cernan, commander, who is seemingly "right side up." Astronaut Ronald E. Evans, command module pilot, appears to be "upside down." While astronauts Cernan and Schmitt descended in the Lunar Module (LM) "Challenger" to explore the Taurus-Littrow region of the moon, astronaut Evans remained with the Command and Service Modules (CSM) "America" in lunar orbit.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1965-01-01

    In this photograph, the Pegasus, meteoroid detection satellite is installed in its specially modified Apollo service module atop the S-IV stage (second stage) of a Saturn I vehicle for the SA-9 mission at Cape Kennedy. Personnel in the service structure moved the boilerplate Apollo command module into place to cap the vehicle. The command and service modules, visible here, were jettisoned into orbit to free the Pegasus for wing deployment. The satellite was used to obtain data on frequency and penetration of the potentially hazardous micrometeoroids in low Earth orbits and to relay the information back to Earth. The SA-9 was launched on February 16, 1965.

  3. Around Marshall

    NASA Image and Video Library

    1962-03-08

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation’s space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. The subcommittee was briefed on MSFC’s manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. In this photograph, MSFC Director, Dr. Wernher von Braun, bids farewell to Texas Democratic Representative Olin E. Teague before departure at the Redstone Arsenal Airstrip.

  4. Implementation of Programmatic Quality and the Impact on Safety

    NASA Astrophysics Data System (ADS)

    Huls, Dale T.; Meehan, Kevin M.

    2005-12-01

    The implementation of an inadequate programmatic quality assurance discipline has the potential to adversely affect safety and mission success. This is best demonstrated in the lessons provided by the Apollo 1 Apollo 13 Challenger, and Columbia accidents; NASA Safety and Mission Assurance (S&MA) benchmarking exchanges; and conclusions reached by the Shuttle Return-to-Flight Task Group established following the Columbia Shuttle accident. Examples from the ISS Program demonstrate continuing issues with programmatic quality. Failure to adequately address programmatic quality assurance issues has a real potential to lead to continued inefficiency, increases in program costs, and additional catastrophic accidents.

  5. ["Soiuz-Apollo" experimental flight. Preliminary results of medicobiological studies, carried out during the flight of "Soiuz-19" spaceship].

    PubMed

    Vorob'ev, E I; Gazenko, O G; Gurovskiĭ, N N; Nefedov, Iu G; Egorov, B B

    1976-01-01

    The paper presents brief information on the Apollo-Soyuz test mission, its program biomedical investigations to be carried out in flight and specific medical aspects. It discusses the main tasks of the joint US-USSR experiments and Soviet experiments. It gives and analyzes preliminary results of medical monitoring and postflight examinations of the crew members.

  6. Around Marshall

    NASA Image and Video Library

    1999-07-17

    Outside of Building 4200 at Marshall Space Flight Center, a courtyard was constructed in memory of Dr. Wernher von Braun and his contributions to the U. S. Space program. In the middle of the courtyard a fountain was built. The fountain was made operational prior to the 30th arniversary celebration of the Apollo 11 lunar landing. Attending the dedication ceremony were visiting Apollo astronauts and NASA's Safety and Assurance Director Rothenberg.

  7. Fountain Dedication

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Outside of Building 4200 at Marshall Space Flight Center, a courtyard was constructed in memory of Dr. Wernher von Braun and his contributions to the U. S. Space program. In the middle of the courtyard a fountain was built. The fountain was made operational prior to the 30th arniversary celebration of the Apollo 11 lunar landing. Attending the dedication ceremony were visiting Apollo astronauts and NASA's Safety and Assurance Director Rothenberg.

  8. Apollo experience report: Command module uprighting system

    NASA Technical Reports Server (NTRS)

    White, R. D.

    1973-01-01

    A water-landing requirement and two stable flotation attitudes required that a system be developed to ensure that the Apollo command module would always assume an upright flotation attitude. The resolution to the flotation problem and the uprighting concepts, design selection, design changes, development program, qualification, and mission performance are discussed for the uprighting system, which is composed of inflatable bags, compressors, valves, and associated tubing.

  9. Worden Ambassador of Exploration Award

    NASA Image and Video Library

    2009-07-29

    Apollo astronaut Al Worden, left, and NASA Administrator Charles Bolden, take a close look at Worden's Ambassador of Exploration Award for his contributions to the U.S. space program following a ceremony, Thursday, July 30, 2009, where Worden was honored with the presentation of the award at Kennedy Space Center, Fla. Worden served as command module pilot for the Apollo 15 mission. Photo Credit: (NASA/Bill Ingalls)

  10. Worden Ambassador of Exploration Award

    NASA Image and Video Library

    2009-07-29

    Apollo astronaut Al Worden, center, flanked by NASA Administrator Charles Bolden, right, and Kennedy Space Center Director Bob Cabana following a ceremony, Thursday, July 30, 2009, where Worden was honored with the presentation of the an Ambassador of Exploration Award for his contributions to the U.S. space program at Kennedy Space Center, Fla. Worden served as command module pilot for the Apollo 15 mission. Photo Credit: (NASA/Bill Ingalls)

  11. Saturn Apollo Program

    NASA Image and Video Library

    1970-04-17

    This photograph shows Apollo 13 astronauts Fred Haise, John Swigert, and James Lovell aboard the recovery ship, USS Iwo Jima after safely touching down in the Pacific Ocean at the end of their ill-fated mission. The mission was aborted after 56 hours of flight, 205,000 miles from Earth, when an oxygen tank in the service module exploded. The command module, Odyssey, brought the three astronauts back home safely.

  12. Terrestrial contamination in Apollo lunar samples.

    NASA Technical Reports Server (NTRS)

    Flory, D. A.; Simoneit, B. R.

    1972-01-01

    The contamination prevention procedures adopted for controlling the collection, processing, and analysis of the Apollo lunar samples in order to keep them free of significant levels of terrestrial organic matter are described. The organic contaminants actually found in the samples by the various investigators are summarized. It is shown that the program succeeded in providing investigators with samples containing less than 0.1 ppm total contamination.

  13. Apollo experience report: Simulation of manned space flight for crew training

    NASA Technical Reports Server (NTRS)

    Woodling, C. H.; Faber, S.; Vanbockel, J. J.; Olasky, C. C.; Williams, W. K.; Mire, J. L. C.; Homer, J. R.

    1973-01-01

    Through space-flight experience and the development of simulators to meet the associated training requirements, several factors have been established as fundamental for providing adequate flight simulators for crew training. The development of flight simulators from Project Mercury through the Apollo 15 mission is described. The functional uses, characteristics, and development problems of the various simulators are discussed for the benefit of future programs.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1968-01-01

    This 1968 cutaway drawing illustrates the Saturn IB launch vehicle with its two booster stages, the S-IB and S-IVB. Developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in MSFC's "building block" approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the marned lunar mission.

  15. Saturn Apollo Program

    NASA Image and Video Library

    2004-04-15

    This undated cutaway drawing illustrates the Saturn IB launch vehicle with its two booster stages, the S-IB and S-IVB. Developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in MSFC's "building block" approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the marned lunar missions.

  16. KENNEDY SPACE CENTER, FLA. - Center Director and former astronaut Roy D. Bridges, Jr., (holding scissors) cuts the ribbon at a ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. Invited guests and dignitaries look on, such as former astronauts Edgar D. Mitchell on Bridges' left and James Lovell (hand up) and Buzz Aldrin on his right. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-20

    KENNEDY SPACE CENTER, FLA. - Center Director and former astronaut Roy D. Bridges, Jr., (holding scissors) cuts the ribbon at a ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. Invited guests and dignitaries look on, such as former astronauts Edgar D. Mitchell on Bridges' left and James Lovell (hand up) and Buzz Aldrin on his right. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  17. Indigenous Carbon Embedded in Apollo 17 Black Volcanic Glass Surface Deposits

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Ross, D. K.; Le, L.; Gonzalez, C.; McKay, D. S.; Gibson, E. K.

    2012-01-01

    The assessment of indigenous organic matter in returned lunar samples was one of the primary scientific goals of the Apollo program. The levels of such organic material were expected to be and found to be small. Previous work on this topic includes Murphy et al. [1] who reported the presence of anthropogenic organics with sub-ppm concentrations in Apollo 11 fines. In Apollo 12 samples, Preti et al. [2] detected low levels, < 10 ppb or below, of more complex organic material that may have been synthesized by abrupt heating during analysis. Kvenvolden et al. [3] detected porphyrin-like pigments at the ng to pg level in an Apollo 11 bulk sample. Hodgson et al. [4] and Ponnamperuma et al. [5] suggested that most if not all porphyrins were synthesized from rocket fuel during module landing. Chang et al. [6] reported indigenous carbon ranging from 5-20 g/g in the form of metal carbides in Apollo 11 fines. Hare et al. [7] reported amino acids at he 50 ng/g level in Apollo 11 samples but suggested the results may be explained as contamination. More recently, Clemett et al. [8] reported simple polycyclic aromatic hydrocarbons at concentrations of < 1ppm in an Apollo 16 soil. Low concentrations of lunar organics may be a consequence not only of its paucity, but also its heterogeneous distribution. If the sample size required for a measurement is large relative to the localization of organics, detection is limited not by ultimate sensitivity but rather by the ability to distinguish an indigenous signature from background contamination [9].

  18. NASA Remembers Astronaut John Young, Moonwalker and First Shuttle Commander

    NASA Image and Video Library

    2018-01-06

    Astronaut John Young, who walked on the Moon during Apollo 16 and commanded the first space shuttle mission, has passed away at the age of 87. After earning an engineering degree from Georgia Tech and flying planes for the Navy, Young began his impressive career at NASA in 1962, when he was selected from among hundreds of young pilots to join NASA's second astronaut class, known as the "New Nine." Young first flew in space on the first manned Gemini flight, Gemini 3 in March 1965. He later commanded the Gemini 10 mission in July 1966, served as command module pilot on Apollo 10 in 1969, and landed on the Moon as commander of Apollo 16 in April 1972. He went on to command the first Space Shuttle flight in 1981, and also commanded the STS-9 shuttle mission in 1983. He is the only person to go into space as part of the Gemini, Apollo and space shuttle programs and was the first to fly into space six times -- or seven times, when counting his liftoff from the Moon during Apollo 16.

  19. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-24

    The smiling Apollo 12 astronauts peer out of the window of the mobile quarantine facility aboard the recovery ship, USS Hornet. Pictured (Left to right) are Spacecraft Commander, Charles Conrad; Command Module (CM) Pilot, Richard Gordon; and Lunar Module (LM) Pilot, Alan L. Bean. The crew were housed in the quarantine facility immediately after the Pacific recovery operation took place. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 returned safely to Earth on November 24, 1969.

  20. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the fifteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  1. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the seventeenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the third of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  3. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the thirteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the fourteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the sixth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the seventh of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  7. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the twenty-fifth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  8. Saturn Apollo Program

    NASA Image and Video Library

    1968-11-04

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the fourth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  9. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the second of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the sixteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the eighteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  12. Saturn Apollo Program

    NASA Image and Video Library

    1959-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the twenty-third of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  13. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the twenty-first of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the twenty-fourth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  15. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the fifth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  16. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    This is a view of the Saturn V S-IVB (third) stage for the AS-209 (Apollo-Soyuz test project backup vehicle) on a transporter in the right foreground, and the S-IVB stage for AS-504 (Apollo 9 mission) being installed in the Beta Test Stand 1 at the SACTO facility in California. After the S-II (second) stage dropped away, the S-IVB (third) stage ignited and burned for about two minutes to place itself and the Apollo spacecraft into the desired Earth orbit. At the proper time during this Earth parking orbit, the S-IVB stage was re-ignited to speed the Apollo spacecraft to escape velocity and inject it and the astronauts into a moon trajectory. Developed and manufactured by the Douglas Aircraft Company in California, the S-IVB stage measures about 21.5 feet in diameter, about 58 feet in length, and is powered by a single 200,000-pound-thrust J-2 engine with a re-start capability. The S-IVB stage was also used on the second stage of the Saturn IB launch vehicle.

  17. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-31

    The moon bound Apollo 14, carrying a crew of three astronauts: Mission commander Alan B. Shepard Jr., Command Module pilot Stuart A. Roosa, and Lunar Module pilot Edgar D. Mitchell, lifted off from launch complex 39A at the Kennedy Space Center on January 31, 1971. It was the third manned lunar landing, the first manned landing in exploration of the lunar highlands, and it demonstrated pinpoint landing capability. The major goal of Apollo 14 was the scientific exploration of the Moon in the foothills of the rugged Fra Mauro region. The lunar surface extravehicular activity (EVA) of astronauts Shepard and Mitchell included setting up an automated scientific laboratory called Apollo Lunar Scientific Experiments Package (ALSEP), and collecting a total of about 95 pounds (43 kilograms) of Moon rock and soil for a geological investigation back on the Earth. The mission safely returned to Earth on February 9, 1971.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1971-02-05

    The moon bound Apollo 14, carrying a crew of three astronauts: Mission commander Alan B. Shepard Jr., Command Module pilot Stuart A. Roosa, and Lunar Module pilot Edgar D. Mitchell, lifted off from launch complex 39A at the Kennedy Space Center on January 31, 1971, and safely returned to Earth on February 9, 1971. It was the third manned lunar landing, the first manned landing in exploration of the lunar highlands, and it demonstrated pinpoint landing capability. The major goal of Apollo 14 was the scientific exploration of the Moon in the foothills of the rugged Fra Mauro region. The extravehicular activity (EVA) of astronauts Shepard and Mitchell included setting up an automated scientific laboratory called Apollo Lunar Scientific Experiments Package (ALSEP), shown here fully deployed. In addition, they collected a total of about 95 pounds (43 kilograms) of Moon rock and soil for a geological investigation back on the Earth.

  19. Saturn Apollo Program

    NASA Image and Video Library

    1968-01-01

    This image depicts the Saturn V S-IVB (third) stage for the Apollo 10 mission being removed from the Beta Test Stand 1 after its acceptance test at the Douglas Aircraft Company's Sacramento Test Operations (SACTO) facility. After the S-II (second) stage dropped away, the S-IVB (third) stage was ignited and burned for about two minutes to place itself and the Apollo spacecraft into the desired Earth orbit. At the proper time during this Earth parking orbit, the S-IVB stage was re-ignited to speed the Apollo spacecraft to escape velocity injecting it and the astronauts into a moon trajectory. Developed and manufactured by the Douglas Aircraft Company in California, the S-IVB stage measures about 21.5 feet in diameter, about 58 feet in length, and powered by a single 200,000-pound-thrust J-2 engine with a re-start capability. The S-IVB stage was also used on the second stage of the Saturn IB launch vehicle.

  20. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    After the S-II (second) stage dropped away, the S-IVB (third) stage ignited and burned for about two minutes to place itself and the Apollo spacecraft into the desired Earth orbit. At the proper time during this Earth parking orbit, the S-IVB stage was re-ignited to speed the Apollo spacecraft to escape velocity, injecting it and the astronauts into a moon trajectory. Developed and manufactured by the Douglas Aircraft Company in Huntington, California, the S-IVB stage measures about 21.5 feet in diameter, about 58 feet in length and is powered by a single 200,000-pound-thrust J-2 engine with a re-start capability. The S-IVB stage was also used on the second stage of the Saturn IB launch vehicle. The fully-assembled S-IVB (third) stage for the AS-503 (Apollo 8 mission) launch vehicle is pictured in the Douglas' vertical checkout building.

  1. Apollo experience report: The application of a computerized visualization capability to lunar missions

    NASA Technical Reports Server (NTRS)

    Hyle, C. T.; Lunde, A. N.

    1972-01-01

    The development of a computerized capability to depict views from the Apollo spacecraft during a lunar mission was undertaken before the Apollo 8 mission. Such views were considered valuable because of the difficulties in visualizing the complex geometry of the Earth, Moon, Sun, and spacecraft. Such visualization capability originally was desired for spacecraft attitude verification and contingency situations. Improvements were added for later Apollo flights, and results were adopted for several real time and preflight applications. Some specific applications have included crewmember and ground control personnel familiarization, nominal and contingency mission planning, definition of secondary attitude checks for all major thrust maneuvers, and preflight star selection for navigation and for platform alinement. The use of this computerized visualization capability should prove valuable for any future space program as an aid to understanding the geometrical relationships between the spacecraft and the celestial surroundings.

  2. The Apollo 17 mare basalts: Serenely sampling Taurus-Littrow

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Taylor, Lawrence A.

    1992-01-01

    As we are all aware, the Apollo 17 mission marked the final manned lunar landing of the Apollo program. The lunar module (LM) landed approximately 0.7 km due east of Camelot Crater in the Taurus-Littrow region on the southwestern edge of Mare Serenitatis. Three extravehicular activities (EVA's) were performed, the first concentrating around the LM and including station 1 approximately 1.1 km south-southeast of the LM at the northwestern edge of Steno Crater. The second traversed approximately 8 km west of the LM to include stations 2, 3, 4, and 5, and the third EVA traversed approximately 4.5 km to the northwest of the LM to include stations 6, 7, 8, and 9. This final manned mission returned the largest quantity of lunar rock samples, 110.5 kg/243.7 lb, and included soils, breccias, highland samples, and mare basalts. This abstract concentrates upon the Apollo 17 mare basalt samples.

  3. The Apollo 17 mare basalts: Serenely sampling Taurus-Littrow

    NASA Astrophysics Data System (ADS)

    Neal, Clive R.; Taylor, Lawrence A.

    1992-12-01

    As we are all aware, the Apollo 17 mission marked the final manned lunar landing of the Apollo program. The lunar module (LM) landed approximately 0.7 km due east of Camelot Crater in the Taurus-Littrow region on the southwestern edge of Mare Serenitatis. Three extravehicular activities (EVA's) were performed, the first concentrating around the LM and including station 1 approximately 1.1 km south-southeast of the LM at the northwestern edge of Steno Crater. The second traversed approximately 8 km west of the LM to include stations 2, 3, 4, and 5, and the third EVA traversed approximately 4.5 km to the northwest of the LM to include stations 6, 7, 8, and 9. This final manned mission returned the largest quantity of lunar rock samples, 110.5 kg/243.7 lb, and included soils, breccias, highland samples, and mare basalts. This abstract concentrates upon the Apollo 17 mare basalt samples.

  4. Liftoff - Apollo XI - Lunar Landing Mission - KSC

    NASA Image and Video Library

    1969-07-16

    S69-39962 (16 July 1969) --- The huge, 363-feet tall Apollo 11 (Spacecraft 107/Lunar Module 5/Saturn 506) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), at 9:32 a.m. (EDT), July 16, 1969. Aboard the Apollo 11 spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 is the United States' first lunar landing mission. This view of the liftoff was taken by a camera mounted on the mobile launch tower. While astronauts Armstrong and Aldrin descend in the Lunar Module (LM) "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins will remain with the Command and Service Modules (CSM) "Columbia" in lunar orbit.

  5. Liftoff of the Apollo 11 lunar landing mission

    NASA Image and Video Library

    1969-07-16

    S69-39959 (16 July 1969) --- The huge, 363-feet tall Apollo 11 (Spacecraft 107/Lunar Module 5/ Saturn 506) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), at 9:32 a.m. (EDT), July 16, 1969. Aboard the Apollo 11 spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 is the United States' first lunar landing mission. This view of the liftoff was taken by a camera mounted on the mobile launch tower. While astronauts Armstrong and Aldrin descend in the Lunar Module (LM) "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins will remain with the Command and Service Modules (CSM) "Columbia" in lunar orbit. Photo credit: NASA

  6. Investigations of acoustic-seismic effects at long range - Early-arriving seismic waves from Apollo 16

    NASA Technical Reports Server (NTRS)

    Dalins, I.; Mccarty, V. M.; Kaschak, G.; Donn, W. L.

    1974-01-01

    A reasonably comprehensive technical effort is described dealing with the investigations of acoustically generated seismic waves of Apollo 16 and Apollo 17 origin along the eastern seabord of the United States. This expanded effort is a continuation of earlier, rather successful detections of rocket-generated seismic disturbances on Skidaway Island, Georgia. The more recent effort has yielded few positive results other than a recording of an early-arriving seismic wave from Apollo 16 that was detected in Jacksonville. Evaluation of the negative results obtained in the Fort Monmouth area, with earlier studies of infrasound, local weather conditions, and geology, could be advantageous in the process of trying to gain a better insight into the acoustic-seismic resonance mechanism requiring phase-velocity matching at the atmosphere-ground interface.

  7. Montage of Apollo Crew Patches

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This montage depicts the flight crew patches for the manned Apollo 7 thru Apollo 17 missions. The Apollo 7 through 10 missions were basically manned test flights that paved the way for lunar landing missions. Primary objectives met included the demonstration of the Command Service Module (CSM) crew performance; crew/space vehicle/mission support facilities performance and testing during a manned CSM mission; CSM rendezvous capability; translunar injection demonstration; the first manned Apollo docking, the first Apollo Extra Vehicular Activity (EVA), performance of the first manned flight of the lunar module (LM); the CSM-LM docking in translunar trajectory, LM undocking in lunar orbit, LM staging in lunar orbit, and manned LM-CSM docking in lunar orbit. Apollo 11 through 17 were lunar landing missions with the exception of Apollo 13 which was forced to circle the moon without landing due to an onboard explosion. The craft was,however, able to return to Earth safely. Apollo 11 was the first manned lunar landing mission and performed the first lunar surface EVA. Landing site was the Sea of Tranquility. A message for mankind was delivered, the U.S. flag was planted, experiments were set up and 47 pounds of lunar surface material was collected for analysis back on Earth. Apollo 12, the 2nd manned lunar landing mission landed in the Ocean of Storms and retrieved parts of the unmanned Surveyor 3, which had landed on the Moon in April 1967. The Apollo Lunar Surface Experiments Package (ALSEP) was deployed, and 75 pounds of lunar material was gathered. Apollo 14, the 3rd lunar landing mission landed in Fra Mauro. ALSEP and other instruments were deployed, and 94 pounds of lunar materials were gathered, using a hand cart for first time to transport rocks. Apollo 15, the 4th lunar landing mission landed in the Hadley-Apennine region. With the first use of the Lunar Roving Vehicle (LRV), the crew was bale to gather 169 pounds of lunar material. Apollo 16, the 5th lunar landing mission, landed in the Descartes Highlands for the first study of highlands area. Selected surface experiments were deployed, the ultraviolet camera/spectrograph was used for first time on the Moon, and the LRV was used for second time for a collection of 213 pounds of lunar material. The Apollo program came to a close with Apollo 17, the 6th and final manned lunar landing mission that landed in the Taurus-Littrow highlands and valley area. This mission hosted the first scientist-astronaut, Schmitt, to land on the Moon. The 6th automated research station was set up, and 243 ponds of lunar material was gathered using the LRV.

  8. Training and Health. Leonardo da Vinci Series: Good Practices.

    ERIC Educational Resources Information Center

    Commission of the European Communities, Brussels (Belgium). Directorate-General for Education and Culture.

    This document profiles programs in the fields of health and medicine that are offered through the European Commission's Leonardo da Vinci program. The following programs are profiled: (1) CYTOTRAIN (a transnational vocational training program in cervical cancer screening); (2) Apollo (a program of open and distance learning for paramedical…

  9. Saturn Apollo Program

    NASA Image and Video Library

    1964-09-01

    This image depicts a high angle view of technicians working on the instrument unit (IU) component assembly for the SA-8 mission in Marshall Space Flight Center's building 4705. A thin, circular structure, only 1-meter high and 7.6 meters in diameter, the IU was sandwiched between the S-IV and Apollo spacecraft. Packed inside were the computers, gyroscopes, and assorted black boxes necessary to keep the launch vehicle properly functioning and on its course.

  10. Apollo Lunar Sample Photographs: Digitizing the Moon Rock Collection

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary E.; Todd, Nancy S.; Runco, S. K.; Stefanov, W. L.

    2011-01-01

    The Acquisition and Curation Office at JSC has undertaken a 4-year data restoration project effort for the lunar science community funded by the LASER program (Lunar Advanced Science and Exploration Research) to digitize photographs of the Apollo lunar rock samples and create high resolution digital images. These sample photographs are not easily accessible outside of JSC, and currently exist only on degradable film in the Curation Data Storage Facility

  11. KSC-69P-200

    NASA Image and Video Library

    1969-03-13

    ABOARD THE USS GUADALCANAL -- Bearded Apollo 9 commander James A. McDivitt speaks to personnel aboard the USS Guadalcanal, prime recovery ship, an hour after he and astronauts David R. Scott and Russell L. Schweickart splashed down today in the Atlantic Ocean, 780 nautical miles southeast of Cape Kennedy. Their 10-day Earth orbital flight verified a lunar landing later this year. The National Aeronautics and Space Administration directs the Apollo program.

  12. Worden Ambassador of Exploration Award

    NASA Image and Video Library

    2009-07-29

    Apollo astronaut Al Worden, center, is flanked by NASA Administrator Charles Bolden, right, and Kennedy Space Center Director Bob Cabana at a ceremony, Thursday, July 30, 2009, where Worden was honored with the presentation of the an Ambassador of Exploration Award for his contributions to the U.S. space program at Kennedy Space Center, Fla. Worden served as command module pilot for the Apollo 15 mission. Photo Credit: (NASA/Bill Ingalls)

  13. Evaluation report for toggle switches: Texas Instruments, Inc., Apollo-type, and Daven Measurements part number 45000-XXX, job order 32-139

    NASA Technical Reports Server (NTRS)

    Labberton, D.

    1974-01-01

    A preliminary evaluation of environmental capabilities was undertaken on toggle switches and on Apollo-type toggle switches. The purpose of this evaluation was to take a first look at their tested capabilities for the purpose of determining whether the candidate hardware appears to have a good chance of successfully completing a detailed envrionmental qualification test program.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1964-12-01

    The fuel tank assembly of the Saturn V S-IC (first) stage is readied to be mated to the liquid oxygen tank at the Marshall Space Flight Center. The fuel tank carried kerosene as its fuel. The S-IC stage utilized five F-1 engines that used kerosene and liquid oxygen as propellant. Each engine provided 1,500,000 pounds of thrust. This stage lifted the entire vehicle and Apollo spacecraft from the launch pad.

  15. Saturn Apollo Program

    NASA Image and Video Library

    1964-12-01

    The fuel tank assembly for the Saturn V S-IC (first) stage arrived at the Marshall Space Flight Center, building 4707, for mating to the liquid oxygen tank. The fuel tank carried kerosene as its fuel. The S-IC stage used five F-1 engines, that used kerosene and liquid oxygen as propellant and each engine provided 1,500,000 pounds of thrust. This stage lifted the entire vehicle and Apollo spacecraft from the launch pad.

  16. Saturn Apollo Program

    NASA Image and Video Library

    1967-11-07

    A technician checks the systems of the Saturn V instrument unit in a test facility in Huntsville. This instrument unit was flown aboard Apollo 4 on November 7, 1967, which was the first test flight of the Saturn V. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  17. KSC-2014-3226

    NASA Image and Video Library

    2014-07-21

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, NASA officials and Apollo astronauts tour the refurbished Operations and Checkout Building, newly named for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. From left, are Apollo 11 astronaut Buzz Aldrin, Mark Geyer, Orion Program manager, and Scott Wilson, manager, production operations for the Orion Program. Also at the renaming ceremony were Apollo astronauts Michael Collins and Jim Lovell. The building's high bay is being used to support the agency's new Orion spacecraft, which will lift off atop the Space Launch System. Orion is designed to take humans farther than they've ever gone before, serving as the exploration vehicle that will carry astronauts to deep space and sustain the crew during travel to destinations such as an asteroid or Mars. The visit of the former astronauts was part of NASA's 45th anniversary celebration of the moon landing. As the world watched, Neil Armstrong and Aldrin landed in the moon's Sea of Tranquility aboard the lunar module Eagle on July 20, 1969. Meanwhile, crewmate Collins orbited above in the command module Columbia. For more, visit http://www.nasa.gov/press/2014/july/nasa-honors-historic-first-moon-landing-eyes-first-mars-mission. Photo credit: NASA/Kim Shiflett

  18. KSC-2014-3227

    NASA Image and Video Library

    2014-07-21

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, NASA officials and Apollo astronauts tour the refurbished Operations and Checkout Building, newly named for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. Leading the way at left is Kennedy Center Director Bob Cabana, Scott Wilson, manager, production operations for the Orion Program, and Apollo 11 astronaut Michael Collins. At right is Apollo 11 astronaut Buzz Aldrin, and Mark Geyer, Orion Program manager. The building's high bay is being used to support the agency's new Orion spacecraft, which will lift off atop the Space Launch System. Orion is designed to take humans farther than they've ever gone before, serving as the exploration vehicle that will carry astronauts to deep space and sustain the crew during travel to destinations such as an asteroid or Mars. The visit of the former astronauts was part of NASA's 45th anniversary celebration of the moon landing. As the world watched, Neil Armstrong and Aldrin landed in the moon's Sea of Tranquility aboard the lunar module Eagle on July 20, 1969. Meanwhile, crewmate Collins orbited above in the command module Columbia. For more, visit http://www.nasa.gov/press/2014/july/nasa-honors-historic-first-moon-landing-eyes-first-mars-mission. Photo credit: NASA/Kim Shiflett

  19. Man-rated flight software for the F-8 DFBW program

    NASA Technical Reports Server (NTRS)

    Bairnsfather, R. R.

    1975-01-01

    The design, implementation, and verification of the flight control software used in the F-8 DFBW program are discussed. Since the DFBW utilizes an Apollo computer and hardware, the procedures, controls, and basic management techniques employed are based on those developed for the Apollo software system. Program Assembly Control, simulator configuration control, erasable-memory load generation, change procedures and anomaly reporting are discussed. The primary verification tools--the all-digital simulator, the hybrid simulator, and the Iron Bird simulator--are described, as well as the program test plans and their implementation on the various simulators. Failure-effects analysis and the creation of special failure-generating software for testing purposes are described. The quality of the end product is evidenced by the F-8 DFBW flight test program in which 42 flights, totaling 58 hours of flight time, were successfully made without any DFCS inflight software, or hardware, failures.

  20. Engineering study for pallet adapting the Apollo laser altimeter and photographic camera system for the Lidar Test Experiment on orbital flight tests 2 and 4

    NASA Technical Reports Server (NTRS)

    Kuebert, E. J.

    1977-01-01

    A Laser Altimeter and Mapping Camera System was included in the Apollo Lunar Orbital Experiment Missions. The backup system, never used in the Apollo Program, is available for use in the Lidar Test Experiments on the STS Orbital Flight Tests 2 and 4. Studies were performed to assess the problem associated with installation and operation of the Mapping Camera System in the STS. They were conducted on the photographic capabilities of the Mapping Camera System, its mechanical and electrical interface with the STS, documentation, operation and survivability in the expected environments, ground support equipment, test and field support.

  1. Precision Selenodesy via Differential Very-Long-Baseline Interferometry. Ph.D. Thesis; [Apollo lunar surface experiments package

    NASA Technical Reports Server (NTRS)

    King, R. W., Jr.

    1975-01-01

    The technique of differential very-long baseline interferometry was used to measure the relative positions of the ALSEP transmitters at the Apollo 12, 14, 15, 16, and 17 lunar landing sites with uncertainties less than 0.005 of geocentric arc. These measurements yielded improved determinations of the selenodetic coordinates of the Apollo landing sites, and of the physical libration of the moon. By means of a new device, the differential Doppler receiver (DDR), instrumental errors were reduced to less than the equivalent of 0.001. DDRs were installed in six stations of the NASA spaceflight tracking and data network and used in an extensive program of observations beginning in March 1973.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1967-03-01

    The Saturn V configuration is shown in inches and meters as illustrated by the Boeing Company. The Saturn V vehicle consisted of three stages: the S-IC (first) stage powered by five F-1 engines, the S-II (second) stage powered by five J-2 engines, the S-IVB (third) stage powered by one J-2 engine. A top for the first three stages was designed to contain the instrument unit, the guidance system, the Apollo spacecraft, and the escape system. The Apollo spacecraft consisted of the lunar module, the service module, and the command module. The Saturn V was designed perform lunar and planetary missions and it was capable of placing 280,000 pounds into Earth orbit.

  3. Brazil, Atlantic Ocean, Africa & Antarctica seen from Apollo 4

    NASA Image and Video Library

    1967-11-09

    AS04-01-580 (9 Nov. 1967) --- Earth as viewed from 10,000 miles. In 1969, the Apollo 4 (Spacecraft 017/Saturn 501) unmanned test flight made a great ellipse around Earth as a test of the translunar motors and of the high speed entry required of a manned flight returning from the moon. A 70mm camera was programmed to look out a window toward Earth, and take a series of photographs from "high apogee". Coastal Brazil, Atlantic Ocean, West Africa, Antarctica, looking west. This photograph was made when the Apollo 4 spacecraft, still attached to the S-IVB (third) stage, was orbiting Earth at an altitude of 9,544 miles.

  4. Inflight - Apollo XI (Mission Control Center [MCC]) - MSC

    NASA Image and Video Library

    1969-07-24

    S69-40302 (24 July 1969) --- A group of NASA and Manned Spacecraft Center (MSC) officials join in with the flight controllers in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, in celebrating the successful conclusion of the Apollo 11 lunar landing mission. From left foreground are Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director of Flight Operations; Julian Scheer (in back), Assistant Administrator, Office of Public Affairs, NASA Headquarters; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA Headquarters.

  5. Gene Kranz Visits Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2006-01-01

    On October 19, 2006, former NASA director of Mission Operations Gene Kranz was a keynote speaker at the Marshall Space Flight Center's (MSFC's) 2006 Annual Safety Day program. The best selling author of 'Failure Is Not An Option' and past Apollo flight director was featured during a morning session called 'Coffee and Kranz'. Marshall employees hung on his every word as he told the fascinating story of Apollo 13. Kranz was the acting flight director during the Apollo 13 mission, a mission that seemed doomed to fail due to an onboard explosion. Kranz and his flight control team worked around the clock relentlessly, solving problem after problem, until the crew was returned safely to Earth.

  6. Around Marshall

    NASA Image and Video Library

    2006-10-19

    On October 19, 2006, former NASA director of Mission Operations Gene Kranz was a keynote speaker at the Marshall Space Flight Center’s (MSFC’s) 2006 Annual Safety Day program. The best selling author of “Failure Is Not An Option” and past Apollo flight director was featured during a morning session called “Coffee and Kranz”. Marshall employees hung on his every word as he told the fascinating story of Apollo 13. Kranz was the acting flight director during the Apollo 13 mission, a mission that seemed doomed to fail due to an onboard explosion. Kranz and his flight control team worked around the clock relentlessly, solving problem after problem, until the crew was returned safely to Earth.

  7. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    Workers at McDornel-Douglas install the Saturn IB S-IVB (second) stage for the Apollo-Soyuz mission into the company's S-IVB assembly and checkout tower in Huntington Beach, California. The Saturn IB launch vehicle was developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in its "building block" approach to Saturn rocket development. This vehicle utilized the Saturn I technology to further develop and refine the capabilities of a larger booster and the Apollo spacecraft required for the manned lunar missions. The S-IVB stage, later used as the third stage of the Saturn V launch vehicle, was powered by a single J-2 engine initially capable of 200,000 pounds of thrust.

  8. PDS Archive Release of Apollo 11, Apollo 12, and Apollo 17 Lunar Rock Sample Images

    NASA Technical Reports Server (NTRS)

    Garcia, P. A.; Stefanov, W. L.; Lofgren, G. E.; Todd, N. S.; Gaddis, L. R.

    2013-01-01

    Scientists at the Johnson Space Center (JSC) Lunar Sample Laboratory, Information Resources Directorate, and Image Science & Analysis Laboratory have been working to digitize (scan) the original film negatives of Apollo Lunar Rock Sample photographs [1, 2]. The rock samples, and associated regolith and lunar core samples, were obtained during the Apollo 11, 12, 14, 15, 16 and 17 missions. The images allow scientists to view the individual rock samples in their original or subdivided state prior to requesting physical samples for their research. In cases where access to the actual physical samples is not practical, the images provide an alternate mechanism for study of the subject samples. As the negatives are being scanned, they have been formatted and documented for permanent archive in the NASA Planetary Data System (PDS). The Astromaterials Research and Exploration Science Directorate (which includes the Lunar Sample Laboratory and Image Science & Analysis Laboratory) at JSC is working collaboratively with the Imaging Node of the PDS on the archiving of these valuable data. The PDS Imaging Node is now pleased to announce the release of the image archives for Apollo missions 11, 12, and 17.

  9. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-09

    In this photograph, laboratory technician Bart Ruark visually inspects a Japanese Qail confined within a class III cabinet in the Intervertebrae, Aves, and Fish Laboratory of the Lunar Receiving Laboratory, Building 37 of the Manned Spacecraft Center (MSC) in Houston, Texas. This laboratory was part of the overall physical, chemical, and biological test program of the Apollo 11 returned lunar samples. Aboard the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of astronauts Neil A. Armstrong, commander; Edwin Aldrin, Lunar Module (LM) pilot; and Michael Collins, Command Module (CM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. In 2 1/2 hours, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-09

    In this photograph, a laboratory technician handles a portion of the more than 20 different plant lines that were used within the Lunar Receiving Laboratory, Building 37 of the Manned Spacecraft Center (MSC) in Houston, Texas. This laboratory was part of the overall physical, chemical, and biological test program of the Apollo 11 returned lunar samples. Aboard the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of astronauts Neil A. Armstrong, commander; Edwin Aldrin, Lunar Module (LM) pilot; and Michael Collins, Command Module (CM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. In 2 1/2 hours, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis.

  11. The State of Space Propulsion Research

    NASA Technical Reports Server (NTRS)

    Sackheim, R. L.; Cole, J. W.; Litchford, R. J.

    2006-01-01

    The current state of space propulsion research is assessed from both a historical perspective, spanning the decades since Apollo, and a forward-looking perspective, as defined by the enabling technologies required for a meaningful and sustainable human and robotic exploration program over the forthcoming decades. Previous research and technology investment approaches are examined and a course of action suggested for obtaining a more balanced portfolio of basic and applied research. The central recommendation is the establishment of a robust national Space Propulsion Research Initiative that would run parallel with systems development and include basic research activities. The basic framework and technical approach for this proposed initiative are defined and a potential implementation approach is recommended.

  12. Programmer's guide for the GNAT computer program (numerical analysis of stratification in supercritical oxygen)

    NASA Technical Reports Server (NTRS)

    Heinmiller, J. P.

    1971-01-01

    This document is the programmer's guide for the GNAT computer program developed under MSC/TRW Task 705-2, Apollo cryogenic storage system analysis, subtask 2, is reported. Detailed logic flow charts and compiled program listings are provided for all program elements.

  13. Six degree of freedom FORTRAN program, ASTP docking dynamics, users guide

    NASA Technical Reports Server (NTRS)

    Mount, G. O., Jr.; Mikhalkin, B.

    1974-01-01

    The digital program ASTP Docking Dynamics as outlined is intended to aid the engineer using the program to determine the docking system loads and attendant vehicular motion resulting from docking two vehicles that have an androgynous, six-hydraulic-attenuator, guide ring, docking interface similar to that designed for the Apollo/Soyuz Test Project (ASTP). This program is set up to analyze two different vehicle combinations: the Apollo CSM docking to Soyuz and the shuttle orbiter docking to another orbiter. The subroutine modifies the vehicle control systems to describe one or the other vehicle combinations; the rest of the vehicle characteristics are changed by input data. To date, the program has been used to predict and correlate ASTP docking loads and performance with docking test program results from dynamic testing. The program modified for use on IBM 360 computers. Parts of the original docking system equations in the areas of hydraulic damping and capture latches are modified to better describe the detail design of the ASTP docking system.

  14. Members of House Committee on Science and Astronautics Visited MSFC

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. The subcommittee was briefed on MSFC's manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. In this photograph, MSFC Director, Dr. Wernher von Braun, bids farewell to Texas Democratic Representative Olin E. Teague before departure at the Redstone Arsenal Airstrip.

  15. KSC-2012-4668

    NASA Image and Video Library

    2012-08-27

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett

  16. KSC-2012-4666

    NASA Image and Video Library

    2012-08-27

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett

  17. KSC-2012-4667

    NASA Image and Video Library

    2012-08-27

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett

  18. KSC-2012-4664

    NASA Image and Video Library

    2012-08-27

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett

  19. KSC-2012-4665

    NASA Image and Video Library

    2012-08-27

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett

  20. n/a

    NASA Image and Video Library

    1962-03-08

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. They were briefed on MSFC's manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. Pictured left-to-right are Dieter Grau, MSFC; Konrad Dannenberg, MSFC; James G. Fulton, Republican representative for Pennsylvania; Joe Waggoner, Democratic representative for Louisiana; and Dr. Wernher von Braun, Director of MSFC.

  1. Apollo experience report: Manned thermal-vacuum testing of spacecraft

    NASA Technical Reports Server (NTRS)

    Mclane, J. C., Jr.

    1974-01-01

    Manned thermal-vacuum tests of the Apollo spacecraft presented many first-time problems in the areas of test philosophy, operational concepts, and program implementation. The rationale used to resolve these problems is explained and examined critically in view of actual experience. The series of 12 tests involving 1517 hours of chamber operating time resulted in the disclosure of numerous equipment and procedural deficiencies of significance to the flight mission. Test experience and results in view of subsequent flight experience confirmed that thermal-vacuum testing of integrated manned spacecraft provides a feasible, cost-effective, and safe technique with which to obtain maximum confidence in spacecraft flight worthiness early in the program.

  2. The Apollo Accreditation Program: A web-based Joint Commission International standards compliance management tool.

    PubMed

    Dewan, Shaveta; Sibal, Anupam; Uberoi, R S; Kaur, Ishneet; Nayak, Yogamaya; Kar, Sujoy; Loria, Gaurav; Yatheesh, G; Balaji, V

    2014-01-01

    Creating and implementing processes to deliver quality care in compliance with accreditation standards is a challenging task but even more daunting is sustaining these processes and systems. There is need for frequent monitoring of the gap between the expected level of care and the level of care actually delivered so as to achieve consistent level of care. The Apollo Accreditation Program (AAP) was implemented as a web-based single measurable dashboard to display, measure and compare compliance levels for established standards of care in JCI accredited hospitals every quarter and resulted in an overall 15.5% improvement in compliance levels over one year.

  3. KSC-04PD-1016

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Frederick (Rick) Hauck acknowledges the warm response to his introduction as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russias Mir space station; the late Francis R. 'Dick' Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Hauck flew on three Space Shuttle missions, including command of the redesigned spaceship on its critical first flight after the explosion of Challenger. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  4. KSC-04PD-1000

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Kathryn D. Sullivan, the first American woman to walk in space, responds to a reporters question at a press conference in the Apollo/Saturn V Center following the induction ceremony of five space program heroes into the Astronaut Hall of Fame. Seated (left to right) with her are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory (second from left), the first African-American to command a space mission and the current NASA deputy administrator; Sullivan; June Scobee, representing her late husband Francis R. 'Dick' Scobee, commander of the ill-fated 1986 Challenger mission; and Norman E. Thagard, the first American to occupy Russias Mir space station. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  5. KSC-04PD-0999

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Frederick D. Gregory (second from left), the first African-American to command a space mission and the current NASA deputy administrator, responds to a reporters question at a press conference in the Apollo/Saturn V Center following the induction ceremony of five space program heroes into the Astronaut Hall of Fame. Seated (left to right) with him on the platform are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Gregory; Kathryn D. Sullivan, the first American woman to walk in space; June Scobee, representing her late husband Francis R. 'Dick' Scobee, commander of the ill- fated 1986 Challenger mission; and Norman E. Thagard, the first American to occupy Russias Mir space station. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  6. KSC-04pd1016

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Frederick (Rick) Hauck acknowledges the warm response to his introduction as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Hauck flew on three Space Shuttle missions, including command of the redesigned spaceship on its critical first flight after the explosion of Challenger. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  7. KSC-04pd0999

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Frederick D. Gregory (second from left), the first African-American to command a space mission and the current NASA deputy administrator, responds to a reporter’s question at a press conference in the Apollo/Saturn V Center following the induction ceremony of five space program heroes into the Astronaut Hall of Fame. Seated (left to right) with him on the platform are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Gregory; Kathryn D. Sullivan, the first American woman to walk in space; June Scobee, representing her late husband Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; and Norman E. Thagard, the first American to occupy Russia’s Mir space station. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  8. KSC-04pd1017

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Ed Gibson acknowledges the warm response to his introduction as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Gibson orbited the Earth for 84 days during the final manned flight of the Skylab Space Station in 1973 and 1974. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  9. KSC-04pd1000

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Kathryn D. Sullivan, the first American woman to walk in space, responds to a reporter’s question at a press conference in the Apollo/Saturn V Center following the induction ceremony of five space program heroes into the Astronaut Hall of Fame. Seated (left to right) with her are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory (second from left), the first African-American to command a space mission and the current NASA deputy administrator; Sullivan; June Scobee, representing her late husband Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; and Norman E. Thagard, the first American to occupy Russia’s Mir space station. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  10. KSC-04pd1003

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Before the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame, former astronaut John Glenn Jr. is greeted with applause as he is introduced as a previous inductee. One of America's original Mercury Seven astronauts, in 1962 he became the first American to orbit the Earth. Twenty-six years later, at age 77, he spent nine days in space aboard Space Shuttle Discovery. The ceremony was held at the Apollo/Saturn V Center at KSC. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  11. Complex Indigenous Organic Matter Embedded in Apollo 17 Volcanic Black Glass Surface Deposits

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Clemett, S. J.; Ross, D. K.; Le, L.; Rahman, Z.; Gonzalez, C.; McKay, D. S.; Gibson, E. K.

    2013-01-01

    Papers presented at the first Lunar Science Conference [1] and those published in the subsequent Science Moon Issue [2] reported the C content of Apollo II soils, breccias, and igneous rocks as rang-ing from approx.50 to 250 parts per million (ppm). Later Fegley & Swindle [3] summarized the C content of bulk soils from all the Apollo missions as ranging from 2.5 (Apollo 15) to 280 ppm (Apollo 16) with an overall average of 124+/- 45 ppm. These values are unexpectedly low given that multiple processes should have contributed (and in some cases continue to contribute) to the lunar C inventory. These include exogenous accretion of cometary and asteroidal dust, solar wind implantation, and synthesis of C-bearing species during early lunar volcanism. We estimate the contribution of C from exogenous sources alone is approx.500 ppm, which is approx.4x greater than the reported average. While the assessm ent of indigenous organic matter (OM) in returned lunar samples was one of the primary scientific goals of the Apollo program, extensive analysis of Apollo samples yielded no evidence of any significant indigenous organic species. Furthermore, with such low concentrations of OM reported, the importance of discriminating indigenous OM from terrestrial contamination (e.g., lunar module exhaust, sample processing and handling) became a formidable task. After more than 40 years, with the exception of CH4 [5-7], the presence of indigenous lunar organics still remains a subject of considerable debate. We report for the first time the identification of arguably indigenous OM present within surface deposits of black glass grains collected on the rim of Shorty crater during the Apollo 17 mission by astronauts Eugene Cernan and Harrison Schmitt.

  12. Houston Operations Predictor/Estimator (HOPE) programming manual, volume 1. [Apollo orbit determination

    NASA Technical Reports Server (NTRS)

    Daly, J. K.

    1974-01-01

    The programming techniques used to implement the equations and mathematical techniques of the Houston Operations Predictor/Estimator (HOPE) orbit determination program on the UNIVAC 1108 computer are described. Detailed descriptions are given of the program structure, the internal program structure, the internal program tables and program COMMON, modification and maintainence techniques, and individual subroutine documentation.

  13. Recovery - Apollo 11

    NASA Image and Video Library

    1969-07-24

    S69-21698 (24 July 1969) --- The three Apollo 11 crew men await pickup by a helicopter from the USS Hornet, prime recovery ship for the historic Apollo 11 lunar landing mission. The fourth man in the life raft is a United States Navy underwater demolition team swimmer. All four men are wearing biological isolation garments. Apollo 11, with astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot, onboard, splashed down at 11:49 a.m. (CDT), July 24, 1969, about 812 nautical miles southwest of Hawaii and only 12 nautical miles from the USS Hornet. While astronauts Armstrong and Aldrin descended in the Lunar Module (LM) "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules (CSM) "Columbia" in lunar orbit.

  14. Impact of workstations on criticality analyses at ABB combustion engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarko, L.B.; Freeman, R.S.; O'Donnell, P.F.

    1993-01-01

    During 1991, ABB Combustion Engineering (ABB C-E) made the transition from a CDC Cyber 990 mainframe for nuclear criticality safety analyses to Hewlett Packard (HP)/Apollo workstations. The primary motivation for this change was improved economics of the workstation and maintaining state-of-the-art technology. The Cyber 990 utilized the NOS operating system with a 60-bit word size. The CPU memory size was limited to 131 100 words of directly addressable memory with an extended 250000 words available. The Apollo workstation environment at ABB consists of HP/Apollo-9000/400 series desktop units used by most application engineers, networked with HP/Apollo DN10000 platforms that use 32-bitmore » word size and function as the computer servers and network administrative CPUS, providing a virtual memory system.« less

  15. Southeastern United States and Caribbean Sea from Apollo 8 spacecraft

    NASA Image and Video Library

    1968-12-22

    AS08-16-2581 (21-27 Dec. 1968) --- This photograph of Earth was taken from the Apollo 8 spacecraft while it was in Earth orbit. Most of the southeastern United States and the Caribbean Sea area, the U.S. coastline from Chesapeake Bay to the Florida Peninsula can be seen. The Bahamas and the islands of Cuba, Jamaica, Hispaniola and Puerto Rico extend across the Caribbean, the light blue of the shallow Bahama banks contrasting sharply with the darker hue of the deeper water, especially in the Tongue of the Ocean area.

  16. Saturn Apollo Program

    NASA Image and Video Library

    1967-05-25

    Artist’s concept of the Local Scientific Survey Module (LSSM), one of two designs for a Lunar Roving Vehicle (LRV), depicted on the lunar surface A Bendix Corporation concept, this configuration weighs more than 8,000 pounds, is 21-feet long, 15-feet wide and has 6 wheels with 5-foot diameters. The LRV was developed under the direction of the Marshall Space Flight Center (MSFC) to give Apollo astronauts a wider range of mobility on the lunar surface.

  17. Apollo Operations Handbook Lunar Module (LM 11 and Subsequent) Vol. 2 Operational Procedures

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Apollo Operations Handbook (AOH) is the primary means of documenting LM descriptions and procedures. The AOH is published in two separately bound volumes. This information is useful in support of program management, engineering, test, flight simulation, and real time flight support efforts. This volume contains crew operational procedures: normal, backup, abort, malfunction, and emergency. These procedures define the sequence of actions necessary for safe and efficient subsystem operation.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1968-01-01

    This illustration shows the major components of the instrument unit (IU). Developed and manufactured by International Business Machines, the IU is 3 feet high and 21 feet in diameter and mounted atop an S-IVB, between the third stage and the Apollo spacecraft. It contained the computers, all guidance, control, and sequencing equipment to keep the the launch vehicle properly functioning and on its course. The IU was essentially the same in both the Saturn IB and the Saturn V.

  19. Around Marshall

    NASA Image and Video Library

    1974-02-01

    Huntsville’s Jack Giles, Alabama State Senator (left), and Dr. Rocco Petrone, Marshall Space Flight Center Director (Middle), speak with Astronaut Owen Garriott who is inside the Apollo 16 Command Module on display at the Alabama Space and Rocket Center in Huntsville, Alabama. The successful Apollo 16 manned lunar landing mission took place April 16, 1972 through April 27, 1972. (Photograph courtesy of Huntsville/Madison County Public Library)

  20. Pacific coast southwestern Mexico as seen from the Apollo 7 spacecraft

    NASA Image and Video Library

    1968-10-13

    AS07-05-1652 (13 Oct. 1968) --- Pacific coast area of southwestern Mexico, State of Guerrero, from Acapulco to Tecoanapa, as seen from the Apollo 7 spacecraft during its 34th revolution of Earth. Photographed from an altitude of 125 nautical miles, at ground elapsed time of 54 hours and 10 minutes. Much cloud cover in area.

  1. LRO Finds Apollo 16 Booster Rocket Impact Site

    NASA Image and Video Library

    2017-12-08

    After decades of uncertainty, the Apollo 16 S-IVB impact site on the lunar surface has been identified. S-IVBs were portions of the Saturn V rockets that brought astronauts to the moon. The site was identified in imagery from the high-resolution LROC Narrow Angle Camera aboard NASA's Lunar Reconnaissance Orbiter. Beginning with Apollo 13, the S-IVB rocket stages were deliberately impacted on the lunar surface after they were used. Seismometers placed on the moon by earlier Apollo astronauts measured the energy of these impacts to shed light on the internal lunar structure. Locations of the craters that the boosters left behind were estimated from tracking data collected just prior to the impacts. Earlier in the LRO mission, the Apollo 13, 14, 15 and 17 impact sites were successfully identified, but Apollo 16's remained elusive. In the case of Apollo 16, radio contact with the booster was lost before the impact, so the location was only poorly known. Positive identification of the Apollo 16 S-IVB site took more time than the other four impact craters because the location ended up differing by about 30 km (about 19 miles) from the Apollo-era tracking estimate. (For comparison, the other four S-IVB craters were all within 7 km -- about four miles -- of their estimated locations.) Apollo 16's S-IVB stage is on Mare Insularum, about 160 miles southwest of Copernicus Crater (more precisely: 1.921 degrees north, 335.377 degrees east, minus 1,104 meters elevation). Credit: NASA/Goddard/Arizona State University NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Development of the J-2X Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle: Building on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Snoddy, Jim

    2006-01-01

    The United States (U.S.) Vision for Space Exploration directs NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020, by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. This decision was reached after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by building on the Apollo Program and other lessons lived to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.

  3. Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-16

    Chief astronaut and director of flight crew operations, Donald K. Slayton (right front) reviews lunar charts with Apollo 11 astronauts Michael Collins (left), Neil Armstrong, and Edwin Aldrin (next to Slayton) during breakfast a short time before the three men launched for the first Moon landing mission. Sharing breakfast with the crew was William Anders (left rear), Lunar Module pilot for the Apollo 8 lunar orbit mission. The Apollo 11 mission launched from the NASA Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1969-03-05

    The third stage (S-IVB) of the Saturn V launch vehicle for the Apollo 11 lunar landing mission is hoisted in the vehicle assembly building at the NASA Kennedy Space Center (KSC) for mating with the second stage (S-II). The vehicle, designated as AS-506, projected the first lunar landing mission, Apollo 11, on a trajectory for the Moon. The Apollo 11 mission launched from KSC in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Astronauts onboard included Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-20

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn Five launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. In this photograph, one of the astronauts on the Moon’s surface is holding a container of lunar soil. The other astronaut is seen reflected in his helmet. Apollo 12 safely returned to Earth on November 24, 1969.

  7. Apollo 7 to 11 - Medical Concerns and Results

    NASA Technical Reports Server (NTRS)

    Berry, C. A.

    1969-01-01

    The goal of the Apollo Program is to land men on the moon and safely return them to earth. The medical task thus outlined required confirmation of the Gemini findings and definition and solution of any problems encountered in the four Apollo flights prior to the Apollo 11 lunar landing. The medical concerns included the following: 1. The effect of decreased red blood cell mass and decreased exercise capacity and of cardiovascular de conditioning on the ability of the crew to do lunar-surface activity; 2. The capability to work effectively in one-sixth the force of gravity and the energy cost of such work; 3. The ability to get adequate rest and sleep in flight and on the lunar surface; 4. The prevention of preflight, inflight, and post-flight illness by proper preventive medicine; 5. The possible development of motion sickness of vestibular origin; 6. The conduct of a post-flight quarantine of crew and lunar samples. The results of the Apollo 7 to 11 missions, demonstrating the ability of man to handle this difficult task and the environment successfully, are discussed in detail and are related to the future of manned flight.

  8. Lesions in the wingless gene of the Apollo butterfly (Parnassius apollo, Lepidoptera: Papilionidae) individuals with deformed or reduced wings, coming from the isolated population in Pieniny (Poland).

    PubMed

    Łukasiewicz, Kinga; Sanak, Marek; Węgrzyn, Grzegorz

    2016-02-01

    Parnassius apollo (Lepidoptera: Papilionidae) is a butterfly species which was common in Europe in 19th century, but now it is considered as near threatened. Various programs devoted to protect and save P. apollo have been established, between others the one in Pieniny National Park (Poland). An isolated population of this butterfly has been restored there from a small group of 20-30 individuals in early 1990s. However, deformations or reductions of wings occur in this population in a relatively large number of insects, and the cause of this phenomenon is not known. In this report, the occurrence of lesions in the wingless (wg) gene is demonstrated in most of tested butterflies with deformed or reduced wings, but not in normal insects. Although the analyses indicated that wg lesion(s) cannot be the sole cause of the deformed or reduced wings in the population of P. apollo from Pieniny, the discovery that this genetic defect occurs in most of malformed individuals, can be considered as an important step in understanding this phenomenon. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. KSC-03PD-2020

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. At the KSC Visitor Complex, former astronaut James A. Lovell (standing left) applauds former astronaut Sally K. Ride at her induction ceremony into the U.S. Astronaut Hall of Fame. Seated on the dais, from left, are former astronauts Gordon Cooper, Scott Carpenter, and Buzz Aldrin, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert 'Hoot' Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  10. Nasa Langley Research Center seventy-fifth anniversary publications, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The following are presented: The National Advisory Committee for Aeronautics Charter; Exploring NASA's Roots, the History of NASA Langley Research Center; NASA Langley's National Historic Landmarks; The Mustang Story: Recollections of the XP-51; Testing the First Supersonic Aircraft: Memoirs of NACA Pilot Bob Champine; NASA Langley's Contributions to Spaceflight; The Rendezvous that was Almost Missed: Lunar Orbit Rendezvous and the Apollo Program; NASA Langley's Contributions to the Apollo Program; Scout Launch Vehicle Program; NASA Langley's Contributions to the Space Shuttle; 69 Months in Space: A History of the First LDEF; NACA TR No. 460: The Characteristics of 78 Related Airfoil Sections from Tests in the Variable-Density Wind Tunnel; NACA TR No. 755: Requirements for Satisfactory Flying Qualities of Airplanes; 'Happy Birthday Langley' NASA Magazine Summer 1992 Issue.

  11. Apollo 13 Astronaut Fred Haise and Apollo 13 Mission Patch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Astronaut Fred Haise Jr. of Biloxi, Miss., views his Apollo 13 mission patch, the flight on which he served in 1970, in a StenniSphere display donated to NASA by the American Needlepoint Guild. The exhibit is on permanent display at StenniSphere, the visitor center at John C. Stennis Space Center. In its first year of operation, more than 251,000 visitors representing over 40 countries have viewed the 123 hand-stitched patches in the exhibit. Forty-two guild members from 20 states made the trip to StenniSphere for the opening of the exhibit, one of the most popular at StenniSphere.

  12. Apollo 7/S-IVB Rendezvous in space

    NASA Technical Reports Server (NTRS)

    1968-01-01

    The expended Saturn IVB stage as photographed from the Apollo 7 spacecraft during transposition and docking maneuvers at an altitude of 126 nautical miles, at ground elapsed time of three hours, 11 minutes. The round, white disc inside the open panels of the Saturn IVB is a simulated docking target similar to that used on the lunar module for docking during lunar missions. The spacecraft is directly over Odessa-Midland, Texas. The view between the two panels (area of large puffy clouds) extends southwest across Texas into the Mexican State of Chihuahua. The distance between the Apollo 7 spacecraft and the S-(VB is approximately 50 feet.

  13. Destination MOON: A History of the Lunar Orbiter Program

    NASA Technical Reports Server (NTRS)

    Byers, B. A.

    1977-01-01

    The origins of the Lunar Orbiter Program and the activities of the missions then in progress are documented. The period 1963 - 1970 when lunar orbiters were providing the Apollo program with photographic and selenodetic data for evaluating proposed astronaut landing sites is covered.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1969-03-30

    This is the official crew portrait of the Apollo 11 astronauts. Pictured from left to right are: Neil A. Armstrong, Commander; Michael Collins, Module Pilot; Edwin E. "Buzz" Aldrin, Lunar Module Pilot. Apollo 11 was the first marned lunar landing mission that placed the first humans on the surface of the moon and returned them back to Earth. Astronaut Armstrong became the first man on the lunar surface, and astronaut Aldrin became the second. Astronaut Collins piloted the Command Module in a parking orbit around the Moon. Launched aboard the Saturn V launch vehicle (SA-506), the three astronauts began their journey to the moon with liftoff from launch complex 39A at the Kennedy Space Center at 8:32 am CDT, July 16, 1969.

  15. NASA honors Apollo 13 astronaut Fred Haise Jr.

    NASA Image and Video Library

    2009-12-02

    Apollo 13 astronaut and Biloxi native Fred Haise Jr. smiles during a Dec. 2 ceremony at Gorenflo Elementary School in Biloxi honoring his space career. During the ceremony, Haise was presented with NASA's Ambassador of Exploration Award (an encased moon rock). He subsequently presented the moon rock to Gorenflo officials for display at the school. Haise is best known as one of three astronauts who nursed a crippled Apollo 13 spacecraft back to Earth during a perilous 1970 mission. Although he was unable to walk on the moon as planned for that mission, Haise ended his astronaut career having logged 142 hours and 54 minutes in space. During the ceremony, he praised all those who contributed to the space program.

  16. Space shuttle electrical power generation and reactant supply system

    NASA Technical Reports Server (NTRS)

    Simon, W. E.

    1985-01-01

    The design philosophy and development experience of fuel cell power generation and cryogenic reactant supply systems are reviewed, beginning with the state of technology at the conclusion of the Apollo Program. Technology advancements span a period of 10 years from initial definition phase to the most recent space transportation system (STS) flights. The development program encompassed prototype, verification, and qualification hardware, as well as post-STS-1 design improvements. Focus is on the problems encountered, the scientific and engineering approaches employed to meet the technological challenges, and the results obtained. Major technology barriers are discussed, and the evolving technology development paths are traced from their conceptual beginnings to the fully man-rated systems which are now an integral part of the shuttle vehicle.

  17. ASTRONAUT STAFFORD, THOMAS P. - PLAQUES - JSC

    NASA Image and Video Library

    1975-02-01

    S75-25823 (February 1975) --- Cosmonaut Aleksei A. Leonov (left) and astronaut Thomas P. Stafford display the Apollo Soyuz Test Project (ASTP) commemorative plaque. The two commanders, of their respective crews, are in the Apollo Command Module (CM) trainer at Building 35 at NASA's Johnson Space Center (JSC). Two plaques divided into four quarters each will be flown on the ASTP mission. The American ASTP Apollo crew will carry the four United States quarter pieces aboard Apollo; and the Soviet ASTP Soyuz 19 crew will carry the four USSR quarter sections aboard Soyuz. The eight quarter pieces will be joined together to form two complete commemorative plaques after the two spacecraft rendezvous and dock in Earth orbit. One complete plaque then will be returned to Earth by the astronauts; and the other complete plaque will be brought back by the cosmonauts. The plaque is written in both English and Russian. The Apollo crew will consist of astronauts Thomas P. Stafford, commander; Donald K. "Deke" Slayton, docking module pilot; Vance D. Brand, command module pilot. The Soyuz 19 crew will consist of cosmonauts Aleksei A. Leonov, command pilot; and Valeri N. Kubasov, flight engineer.

  18. The Apollo Lunar Sample Image Collection: Digital Archiving and Online Access

    NASA Technical Reports Server (NTRS)

    Todd, Nancy S.; Lofgren, Gary E.; Stefanov, William L.; Garcia, Patricia A.

    2014-01-01

    The primary goal of the Apollo Program was to land human beings on the Moon and bring them safely back to Earth. This goal was achieved during six missions - Apollo 11, 12, 14, 15, 16, and 17 - that took place between 1969 and 1972. Among the many noteworthy engineering and scientific accomplishments of these missions, perhaps the most important in terms of scientific impact was the return of 382 kg (842 lb.) of lunar rocks, core samples, pebbles, sand, and dust from the lunar surface to Earth. Returned samples were curated at JSC (then known as the Manned Spacecraft Center) and, as part of the original processing, high-quality photographs were taken of each sample. The top, bottom, and sides of each rock sample were photographed, along with 16 stereo image pairs taken at 45-degree intervals. Photographs were also taken whenever a sample was subdivided and when thin sections were made. This collection of lunar sample images consists of roughly 36,000 photographs; all six Apollo missions are represented.

  19. Verification test results of Apollo stabilization and control systems during undocked operations

    NASA Technical Reports Server (NTRS)

    Copeland, E. L.; Haken, R. L.

    1974-01-01

    The results are presented of analysis and simulation testing of both the Skylark 1 reaction control system digital autopilot (RCS DAP) and the thrust vector control (TVC) autopilot for use during the undocked portions of the Apollo/Soyuz Test Project Mission. The RCS DAP testing was performed using the Skylab Functional Simulator (SLFS), a digital computer program capable of simulating the Apollo and Skylab autopilots along with vehicle dynamics including bending and sloshing. The model is used to simulate three-axis automatic maneuvers along with pilot controlled manual maneuvers using the RCS DAP. The TVC autopilot was tested in two parts. A classical stability analysis was performed on the vehicle considering the effects of structural bending and sloshing when under control of the TVC autopilot. The time response of the TVC autopilot was tested using the SLFS. Results indicate that adequate performance stability margins can be expected for the CSM/DM configuration when under the control of the Apollo control systems tested.

  20. ART CONCEPTS - ASTP

    NASA Image and Video Library

    1975-04-01

    S75-27289 (May 1975) --- An artist?s concept depicting the American Apollo spacecraft docked with a Soviet Soyuz spacecraft in Earth orbit. During the joint U.S.-USSR Apollo-Soyuz Test Project mission, scheduled for July 1975, the American and Soviet crews will visit one another?s spacecraft while the Soyuz and Apollo are docked for a maximum period of two days. The mission is designed to test equipment and techniques that will establish international crew rescue capability in space, as well as permit future cooperative scientific missions. Each nation has developed separately docking systems based on a mutually agreeable single set of interface design specifications. The major new U.S. program elements are the docking module and docking system necessary to achieve compatibility of rendezvous and docking systems with the USSR-developed hardware to be used on the Soyuz spacecraft. The DM and docking system together with an Apollo Command/Service Module will be launched by a Saturn 1B launch vehicle. This artwork is by Paul Fjeld.

Top