NASA Astrophysics Data System (ADS)
Sreenivas, Bura; Nayak, H. Gurudath; Venkatarathnam, G.
2017-01-01
The composition of the refrigerant mixture in circulation during steady state operation of J-T and allied refrigerators is not the same as that charged due to liquid hold up in the heat exchangers and phase separators, as well as the differential solubility of different refrigerant components in the compressor lubricating oil. The performance of refrigerators/liquefiers operating on mixed refrigerant cycles is dependent on the mixture composition. It is therefore important to charge the right mixture that results in an optimum composition in circulation during steady state operation. The relationship between the charged and circulating composition has been experimentally studied in a J-T refrigerator operating in the liquid refrigerant supply (LRS) mode and an auto refrigerant cascade refrigerator (with a phase separator) operating in the gas refrigerant supply (GRS) mode. The results of the study are presented in this work. The results show that the method presented earlier for J-T refrigerators operating in GRS mode is also applicable in the case of refrigerators studied in this work.
Development of a Composite Measure of State-Level Malpractice Environment
Chung, Jeanette W; Sohn, Min-Woong; Merkow, Ryan P; Oh, Elissa H; Minami, Christina; Black, Bernard S; Bilimoria, Karl Y
2014-01-01
Objective To develop a composite measure of state-level malpractice environment. Data Sources Public use data from the National Practitioner Data Bank, Medical Liability Monitor, the National Conference of State Legislatures, and the American Bar Association. Study Design Principal component analysis of state-level indicators (paid claims rate, malpractice premiums, lawyers per capita, average award size, and malpractice laws), with indirect validation of the composite using receiver-operating characteristic curves to determine how accurately the composite could identify states with high-tort activity and costs. Principal Findings A single composite accounted for over 73 percent of total variance in the seven indicators and demonstrated reasonable criterion validity. Conclusion An empirical composite measure of state-level malpractice risk may offer advantages over single indicators in measuring overall risk and may facilitate cross-state comparisons of malpractice environments. PMID:24117397
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-27
... Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound Reinforced Plastics...) emissions from reinforced plastic composites production operations to Ohio's State Implementation plan (SIP). This rule applies to any facility that has reinforced plastic composites production operations. This...
Composite boson mapping for lattice boson systems.
Huerga, Daniel; Dukelsky, Jorge; Scuseria, Gustavo E
2013-07-26
We present a canonical mapping transforming physical boson operators into quadratic products of cluster composite bosons that preserves matrix elements of operators when a physical constraint is enforced. We map the 2D lattice Bose-Hubbard Hamiltonian into 2×2 composite bosons and solve it within a generalized Hartree-Bogoliubov approximation. The resulting Mott insulator-superfluid phase diagram reproduces well quantum Monte Carlo results. The Higgs boson behavior in the superfluid phase along the unit density line is unraveled and in remarkable agreement with experiments. Results for the properties of the ground and excited states are competitive with other state-of-the-art approaches, but at a fraction of their computational cost. The composite boson mapping here introduced can be readily applied to frustrated many-body systems where most methodologies face significant hurdles.
Light composite scalar in twelve-flavor QCD on the lattice.
Aoki, Yasumichi; Aoyama, Tatsumi; Kurachi, Masafumi; Maskawa, Toshihide; Nagai, Kei-ichi; Ohki, Hiroshi; Rinaldi, Enrico; Shibata, Akihiro; Yamawaki, Koichi; Yamazaki, Takeshi
2013-10-18
On the basis of lattice simulations using highly improved staggered quarks for twelve-flavor QCD with several bare fermion masses, we observe a flavor-singlet scalar state lighter than the pion in the correlators of fermionic interpolating operators. The same state is also investigated using correlators of gluonic interpolating operators. Combined with our previous study that showed twelve-flavor QCD to be consistent with being in the conformal window, we infer that the lightness of the scalar state is due to infrared conformality. This result shed some light on the possibility of a light composite Higgs boson ("technidilaton") in walking technicolor theories.
Dargatz, David A; Marshall, Katherine L; Fedorka-Cray, Paula J; Erdman, Matthew M; Kopral, Christine A
2015-12-01
Salmonella is a major cause of foodborne illness and can cause clinical disease in animals. Understanding the on-farm ecology of Salmonella will be helpful in decreasing the risk of foodborne transmission. An objective of this study was to determine the prevalence of Salmonella among fecal samples collected on sheep operations in the United States. Another objective was to compare the use of composite fecal samples with fecal samples collected from individual sheep as a tool for screening sheep flocks for Salmonella. Sheep fecal samples (individual and composite) were collected on operations in 22 states. Salmonella isolates were characterized with regard to species, serotype, and antimicrobial susceptibility profile. Most operations (72.1%) had at least one positive sample and overall 26.9% of samples were positive. The percentage of positive samples varied by animal age class. Composite and individual samples gave similar results. The majority of the isolates (94%) were Salmonella enterica subspecies diarizonae serotype 61:-:1,5,7. Nearly all of the isolates (91.2%) tested for antimicrobial susceptibility were susceptible to all antimicrobials in the panel. The findings suggest that salmonellae typically associated with foodborne disease transmission are infrequently found on sheep operations in the United States.
Srikanth, Vadali V S S; Ramana, Gedela Venkata; Kumar, Puttapati Sampath
2016-03-01
Supercapacitors are attractive alternative energy storage sources. They offer high energy/power density with other characteristics like fast discharge/charge time, long operation stability, safety etc. In a supercapacitor, working electrode material is the principal constituent. At present there are numerous electrode materials (with properties) suitable for their use in hybrid type supercapacitors. Carbon/polyaniline (PANi) composites are one class of such electrode materials. Here, perspectives on state-of-the-art carbon/PANi composites namely carbon nanotube/polyaniline and graphene/polyaniline composites expedient as hybrid type supercapacitor electrode materials will be presented.
Multihop teleportation of two-qubit state via the composite GHZ-Bell channel
NASA Astrophysics Data System (ADS)
Zou, Zhen-Zhen; Yu, Xu-Tao; Gong, Yan-Xiao; Zhang, Zai-Chen
2017-01-01
A multihop teleportation protocol in quantum communication network is introduced to teleport an arbitrary two-qubit state, between two nodes without directly sharing entanglement pairs. Quantum channels are built among neighbor nodes based on a five-qubit entangled system composed of GHZ and Bell pairs. The von Neumann measurements in all intermediate nodes and the source node are implemented, and then the measurement outcomes are sent to the destination node independently. After collecting all the measurement outcomes at the destination node, an efficient method is proposed to calculate the unitary operations for transforming the receiver's states to the state teleported. Therefore, only adopting the proper unitary operations at the destination node, the desired quantum state can be recovered perfectly. The transmission flexibility and efficiency of quantum network with composite GHZ-Bell channel are improved by transmitting measurement outcomes of all nodes in parallelism and reducing hop-by-hop teleportation delay.
Fault-tolerant composite Householder reflection
NASA Astrophysics Data System (ADS)
Torosov, Boyan T.; Kyoseva, Elica; Vitanov, Nikolay V.
2015-07-01
We propose a fault-tolerant implementation of the quantum Householder reflection, which is a key operation in various quantum algorithms, quantum-state engineering, generation of arbitrary unitaries, and entanglement characterization. We construct this operation using the modular approach of composite pulses and a relation between the Householder reflection and the quantum phase gate. The proposed implementation is highly insensitive to variations in the experimental parameters, which makes it suitable for high-fidelity quantum information processing.
NASA Astrophysics Data System (ADS)
Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.
2014-05-01
Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01
Bidirectional Teleportation Protocol in Quantum Wireless Multi-hop Network
NASA Astrophysics Data System (ADS)
Cai, Rui; Yu, Xu-Tao; Zhang, Zai-Chen
2018-06-01
We propose a bidirectional quantum teleportation protocol based on a composite GHZ-Bell state. In this protocol, the composite GHZ-Bell state channel is transformed into two-Bell state channel through gate operations and single qubit measurements. The channel transformation will lead to different kinds of quantum channel states, so a method is proposed to help determine the unitary matrices effectively under different quantum channels. Furthermore, we discuss the bidirectional teleportation protocol in the quantum wireless multi-hop network. This paper is aimed to provide a bidirectional teleportation protocol and study the bidirectional multi-hop teleportation in the quantum wireless communication network.
Bidirectional Teleportation Protocol in Quantum Wireless Multi-hop Network
NASA Astrophysics Data System (ADS)
Cai, Rui; Yu, Xu-Tao; Zhang, Zai-Chen
2018-02-01
We propose a bidirectional quantum teleportation protocol based on a composite GHZ-Bell state. In this protocol, the composite GHZ-Bell state channel is transformed into two-Bell state channel through gate operations and single qubit measurements. The channel transformation will lead to different kinds of quantum channel states, so a method is proposed to help determine the unitary matrices effectively under different quantum channels. Furthermore, we discuss the bidirectional teleportation protocol in the quantum wireless multi-hop network. This paper is aimed to provide a bidirectional teleportation protocol and study the bidirectional multi-hop teleportation in the quantum wireless communication network.
NASA Astrophysics Data System (ADS)
Degenhardt, Richard
2014-06-01
Space industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite space and aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis. Currently, the potential of composite light weight structures, which are prone to buckling, is not fully exploited as appropriate guidelines in the field of space applications do not exist. This paper deals with the state-of-the-art advances and challenges related to coupled stability analysis of composite structures which show very complex stability behaviour. Improved design guidelines for composites structures are still under development. This paper gives a short state-of-the-art and presents a proposal for a future design guideline.
1994-06-01
to the simulations, we get a proof of correct concept that matches the mathematical foundation of the microchip. 108 Vill. APPLICATIONS A. WHERE AND...ORGANIZATION (if applicable ) 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS Ivogru Elewwn No. Pro8a No. Task No. Wor Unit Acess L...necessary and identify by block number) ’ FIELD GROUP SUBGROUP Mathematical derivation of circuit transfer functions, Composite Operational Amplifiers
Can a quantum state over time resemble a quantum state at a single time?
NASA Astrophysics Data System (ADS)
Horsman, Dominic; Heunen, Chris; Pusey, Matthew F.; Barrett, Jonathan; Spekkens, Robert W.
2017-09-01
The standard formalism of quantum theory treats space and time in fundamentally different ways. In particular, a composite system at a given time is represented by a joint state, but the formalism does not prescribe a joint state for a composite of systems at different times. If there were a way of defining such a joint state, this would potentially permit a more even-handed treatment of space and time, and would strengthen the existing analogy between quantum states and classical probability distributions. Under the assumption that the joint state over time is an operator on the tensor product of single-time Hilbert spaces, we analyse various proposals for such a joint state, including one due to Leifer and Spekkens, one due to Fitzsimons, Jones and Vedral, and another based on discrete Wigner functions. Finding various problems with each, we identify five criteria for a quantum joint state over time to satisfy if it is to play a role similar to the standard joint state for a composite system: that it is a Hermitian operator on the tensor product of the single-time Hilbert spaces; that it represents probabilistic mixing appropriately; that it has the appropriate classical limit; that it has the appropriate single-time marginals; that composing over multiple time steps is associative. We show that no construction satisfies all these requirements. If Hermiticity is dropped, then there is an essentially unique construction that satisfies the remaining four criteria.
Nondestructive and Strain Testing of Composite Sandwich Panels
NASA Astrophysics Data System (ADS)
Goyings, Ryan
In April 2006, Sikorsky Aircraft received a contract from the United States Marine Corps (USMC) to develop a successor to their CH-53E heavy-lift helicopter. The new designation is the CH-53K "Super Stallion" and provides increased operating capabilities through the use of design revisions that incorporate extensive use of carbon fiber composites and composite sandwich panels. "The CH-53K will have five times the capability at half of the operational cost of the aircraft it's replacing. It will be the most capable helicopter ever produced. With more than twice the combat radius of the CH-53E, the CH-53K uses mature technology to deliver a fully shipboard compatible platform to meet current and future Marine Corps requirements". Upon introduction, it will be the largest rotary wing aircraft in the United States Department of Defense. The USMC will incorporate the CH-53K into the Joint Operations Concept of Full Spectrum Dominance and Sea Power 21 thereby enabling rapid, decisive operations and the early termination of conflict by projecting and sustaining forces to distant anti-access, area-denial environments. Even with an increased lift capability, the CH-53K is a slow moving, low flying helicopter susceptible to damage from small arms fire. There is no field level composite repair capability within any maintained documents published by the Department of Defense. Purdue University has developed a field level rapid repair technique capable of returning strength and integrity to damaged carbon composite structural components. The patch is made from carbon fiber weave that is applied using a field capable Vacuum Assisted Resin Transfer Molding (VARTM). This thesis seeks to validate, using nondestructive testing methods and strain monitoring, the manufacturing, damage, and repair process of composite sandwich panels representative of the CH-53K structural panels.
Entanglement branching operator
NASA Astrophysics Data System (ADS)
Harada, Kenji
2018-01-01
We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.
NASA Astrophysics Data System (ADS)
Duxbury, Geoffrey; Hay, Kenneth G.; Langford, Nigel; Johnson, Mark P.; Black, John D.
2011-09-01
It has been demonstrated that an intra-pulse scanned quantum cascade laser spectrometer may be used to obtain real-time diagnostics of the amounts of carbon monoxide, carbon dioxide, and water, in the exhaust of an aero gas turbine (turbojet) engine operated in a sea level test cell. Measurements have been made of the rapid changes in composition following ignition, the composition under steady state operating conditions, and the composition changes across the exhaust plume. The minimum detection limit for CO in a double pass through a typical gas turbine plume of 50 cm in diameter, with 0.4 seconds integration time, is approximately 2 ppm.
NASA Astrophysics Data System (ADS)
Abouzari-lotf, Ebrahim; Jacob, Mohan V.; Ghassemi, Hossein; Ahmad, Arshad; Nasef, Mohamed Mahmoud; Zakeri, Masoumeh; Mehdipour-Ataei, Shahram
2016-09-01
Polyoxometalate immobilized nanofiber was used to fabricate low gas permeable layer for composite membranes designed for proton exchange membrane fuel cell (PEMFC) operating at low relative humidity (RH). The composite membranes revealed enhanced proton conductivity in dry conditions compared with state-of-the-art pristine membrane (Nafion 112, N112). This was coupled with a low fuel crossover inheriting the composite membranes about 100 mV higher OCV than N112 when tested in PEMFC at 60 °C and 40% RH. A maximum power density of up to 930 mW cm-2 was also achieved which is substantially higher than the N112 under similar conditions (577 mW cm-2). Such remarkable performance enhancement along with undetectable leaching of immobilized polyoxometalate, high dimensional stability and low water uptake of the composite membranes suggest a strong potential for PEMFC under low RH operation.
Global satellite composites - 20 years of evolution
NASA Astrophysics Data System (ADS)
Kohrs, Richard A.; Lazzara, Matthew A.; Robaidek, Jerrold O.; Santek, David A.; Knuth, Shelley L.
2014-01-01
For two decades, the University of Wisconsin Space Science and Engineering Center (SSEC) and the Antarctic Meteorological Research Center (AMRC) have been creating global, regional and hemispheric satellite composites. These composites have proven useful in research, operational forecasting, commercial applications and educational outreach. Using the Man computer Interactive Data System (McIDAS) software developed at SSEC, infrared window composites were created by combining Geostationary Operational Environmental Satellite (GOES), and polar orbiting data from the SSEC Data Center and polar data acquired at McMurdo and Palmer stations, Antarctica. Increased computer processing speed has allowed for more advanced algorithms to address the decision making process for co-located pixels. The algorithms have evolved from a simplistic maximum brightness temperature to those that account for distance from the sub-satellite point, parallax displacement, pixel time and resolution. The composites are the state-of-the-art means for merging/mosaicking satellite imagery.
Chen, Ru-Jun; Zhang, Yi-Bo; Liu, Ting; Xu, Bing-Qing; Lin, Yuan-Hua; Nan, Ce-Wen; Shen, Yang
2017-03-22
All-solid-state bulk-type lithium ion batteries (LIBs) are considered ultimate solutions to the safety issues associated with conventional LIBs using flammable liquid electrolyte. The development of bulk-type all-solid-state LIBs has been hindered by the low loading of active cathode materials, hence low specific surface capacity, and by the high interface resistance, which results in low rate and cyclic performance. In this contribution, we propose and demonstrate a synergistic all-composite approach to fabricating flexible all-solid-state LIBs. PEO-based composite cathode layers (filled with LiFePO 4 particles) of ∼300 μm in thickness and composite electrolyte layers (filled with Al-LLZTO particles) are stacked layer-by-layer with lithium foils as negative layer and hot-pressed into a monolithic all-solid-state LIB. The flexible LIB delivers a high specific discharge capacity of 155 mAh/g, which corresponds to an ultrahigh surface capacity of 10.8 mAh/cm 2 , exhibits excellent capacity retention up to at least 10 cycles and could work properly under harsh operating conditions such as bending or being sectioned into pieces. The all-composite approach is favorable for improving both mesoscopic and microscopic interfaces inside the all-solid-state LIB and may provide a new toolbox for design and fabrication of all-solid-state LIBs.
Composite power system well-being analysis
NASA Astrophysics Data System (ADS)
Aboreshaid, Saleh Abdulrahman Saleh
The evaluation of composite system reliability is extremely complex as it is necessary to include detailed modeling of both generation and transmission facilities and their auxiliary elements. The most significant quantitative indices in composite power system adequacy evaluation are those which relate to load curtailment. Many utilities have difficulty in interpreting the expected load curtailment indices as the existing models are based on adequacy analysis and in many cases do not consider realistic operating conditions in the system under study. This thesis presents a security based approach which alleviates this difficulty and provides the ability to evaluate the well-being of customer load points and the overall composite generation and transmission power system. Acceptable deterministic criteria are included in the probabilistic evaluation of the composite system reliability indices to monitor load point well-being. The degree of load point well-being is quantified in terms of the healthy and marginal state indices in addition to the traditional risk indices. The individual well-being indices of the different system load points are aggregated to produce system indices. This thesis presents new models and techniques to quantify the well-being of composite generation and, direct and alternating current transmission systems. Security constraints are basically the operating limits which must be satisfied for normal system operation. These constraints depend mainly on the purpose behind the study. The constraints which govern the practical operation of a power system are divided, in this thesis, into three sets namely, steady-state, voltage stability and transient stability constraints. The inclusion of an appropriate transient stability constraint will lead to a more accurate appraisal of the overall power system well-being. This thesis illustrates the utilization of a bisection method in the analytical evaluation of the critical clearing time which forms the basis of most existing stability assessments. The effect of employing high-speed-simultaneous or adaptive reclosing schemes is presented in this thesis. An effective and fast technique to incorporate voltage stability considerations in composite generation and transmission system reliability evaluation is also presented. The proposed technique can be easily incorporated in an existing composite power system reliability program using voltage stability constraints that are constructed for individual load points based on a relatively simple risk index. It is believed that the concepts, procedures and indices presented in this thesis will provide useful tools for power system designers, planners and operators and assist them to perform composite system well-being analysis in addition to traditional risk assessment.
Hu, Pengfei; Cao, Yali
2012-08-07
The room-temperature solid-state chemical reaction technique has been used to synthesize the silver nanoparticle-loaded semiconductor silver@silver chloride for the first time. It has the advantages of convenient operation, lower cost, less pollution, and mass production. This simple technique created a wide array of nanosized silver particles which had a strong surface plasmon resonance effect in the visible region, and built up an excellent composite structure of silver@silver chloride hybrid which exhibited high photocatalytic activity and stability towards decomposition of organic methyl orange under visible-light illumination. Moreover, this work achieved the control of composition of the silver@silver chloride composite simply by adjusting the feed ratio of reactants. It offers an alternative method for synthesising metal@semiconductor composites.
NASA Astrophysics Data System (ADS)
Wang, Juven; Ohmori, Kantaro; Putrov, Pavel; Zheng, Yunqin; Wan, Zheyan; Guo, Meng; Lin, Hai; Gao, Peng; Yau, Shing-Tung
2018-05-01
Distinct quantum vacua of topologically ordered states can be tunneled into each other via extended operators. The possible applications include condensed matter and quantum cosmology. We present a straightforward approach to calculate the partition function on various manifolds and ground state degeneracy (GSD), mainly based on continuum/cochain topological quantum field theories (TQFTs), in any dimension. This information can be related to the counting of extended operators of bosonic/fermionic TQFTs. On the lattice scale, anyonic particles/strings live at the ends of line/surface operators. Certain systems in different dimensions are related to each other through dimensional reduction schemes, analogous to (de)categorification. Examples include spin TQFTs derived from gauging the interacting fermionic symmetry-protected topological states (with fermion parity {Z}_2^f) of symmetry groups {Z}_4× {Z}_2 and ({Z}_4)^2 in 3+1D, also {Z}_2 and ({Z}_2)^2 in 2+1D. Gauging the last three cases begets non-Abelian spin TQFTs (fermionic topological order). We consider situations where a TQFT lives on (1) a closed spacetime or (2) a spacetime with a boundary, such that the bulk and boundary are fully gapped and short- or long-range entangled (SRE/LRE). Anyonic excitations can be deconfined on the boundary. We introduce new exotic topological interfaces on which neither particle nor string excitations alone condense, but only fuzzy-composite objects of extended operators can end (e.g., a string-like composite object formed by a set of particles can end on a special 2+1D boundary of 3+1D bulk). We explore the relations between group extension constructions and partially breaking constructions (e.g., 0-form/higher-form/"composite" breaking) of topological boundaries, after gauging. We comment on the implications of entanglement entropy for some such LRE systems.
Classification of multipartite entanglement via negativity fonts
NASA Astrophysics Data System (ADS)
Sharma, S. Shelly; Sharma, N. K.
2012-04-01
Partial transposition of state operator is a well-known tool to detect quantum correlations between two parts of a composite system. In this paper, the global partial transpose (GPT) is linked to conceptually multipartite underlying structures in a state—the negativity fonts. If K-way negativity fonts with nonzero determinants exist, then selective partial transposition of a pure state, involving K of the N qubits (K⩽N), yields an operator with negative eigenvalues, identifying K-body correlations in the state. Expansion of GPT in terms of K-way partially transposed (KPT) operators reveals the nature of intricate intrinsic correlations in the state. Classification criteria for multipartite entangled states based on the underlying structure of global partial transpose of canonical state are proposed. The number of N-partite entanglement types for an N-qubit system is found to be 2N-1-N+2, while the number of major entanglement classes is 2N-1-1. Major classes for three- and four-qubit states are listed. Subclasses are determined by the number and type of negativity fonts in canonical states.
Datta, Dipayan; Mukherjee, Debashis
2009-07-28
In this paper, we present a comprehensive account of an explicitly spin-free compact state-universal multireference coupled cluster (CC) formalism for computing the state energies of simple open-shell systems, e.g., doublets and biradicals, where the target open-shell states can be described by a few configuration state functions spanning a model space. The cluster operators in this formalism are defined in terms of the spin-free unitary generators with respect to the common closed-shell component of all model functions (core) as vacuum. The spin-free cluster operators are either closed-shell-like n hole-n particle excitations (denoted by T(mu)) or involve excitations from the doubly occupied (nonvalence) orbitals to the singly occupied (valence) orbitals (denoted by S(e)(mu)). In addition, there are cluster operators with exchange spectator scatterings involving the valence orbitals (denoted by S(re)(mu)). We propose a new multireference cluster expansion ansatz for the wave operator with the above generally noncommuting cluster operators which essentially has the same physical content as the Jeziorski-Monkhorst ansatz with the commuting cluster operators defined in the spin-orbital basis. The T(mu) operators in our ansatz are taken to commute with all other operators, while the S(e)(mu) and S(re)(mu) operators are allowed to contract among themselves through the spectator valence orbitals. An important innovation of this ansatz is the choice of an appropriate automorphic factor accompanying each contracted composite of cluster operators in order to ensure that each distinct excitation generated by this composite appears only once in the wave operator. The resulting CC equations consist of two types of terms: a "direct" term and a "normalization" term containing the effective Hamiltonian operator. It is emphasized that the direct term is almost quartic in the cluster amplitudes, barring only a handful of terms and termination of the normalization term depends on the valence rank of the effective Hamiltonian operator and the excitation rank of the cluster operators at which the theory is truncated. Illustrative applications are presented by computing the state energies of neutral doublet radicals and doublet molecular cations and ionization energies of neutral molecules and comparing our results with the other open-shell CC theories, benchmark full CI results (when available) in the same basis, and the experimental results. Highly encouraging results show the efficacy of the method.
Centrarchid assemblages in Mississippi state-operated fishing lakes
Olive, J.A.; Miranda, L.E.; Hubbard, W.D.
2005-01-01
We evaluated electrofishing catch per effort in 27 state-operated fishing lakes in Mississippi to identify patterns of centrarchid community composition and to determine whether those patterns were related to selected environmental characteristics and to artificial nutrient enrichment. Ordination with detrended correspondence analysis recognized two major axes accounting for 77% of the variability in species ordination. Axis 1 showed a distinct separation between the body sizes of various species. A notable exception was the density of small (<30 cm) largemouth bass Micropterus salmoides, which aligned with the large individuals of other centrarchid species. This pattern suggested that through predation, high densities of small largemouth bass exerted significant control over the size structure of fish communities. Axis 2 separated species of crappies Pomoxis spp., suggesting that conditions other than strong species interactions also moderated the composition of crappies in the assemblages. However, neither lake morphometry nor watershed composition exhibited a major influence over axes 1 or 2. In small, intensively managed lakes with low habitat complexity, the regulatory importance of biotic interactions may overwhelm that of abiotic factors. Nutrient enrichment influenced community structure by changing the densities of bluegill Lepomis macrochirus and largemouth bass substantially but had a minor or no effect on other species. The management techniques used in these state-operated lakes are usually targeted toward a particular species without adequately considering the other species within the community. Our results show that attention to community-level interactions could provide valuable insight into factors that affect the quality of the fishery, insight that is not available through traditional population-level assessments. ?? Copyright by the American Fisheries Society 2005.
Advanced composites: Fabrication processes for selected resin matrix materials
NASA Technical Reports Server (NTRS)
Welhart, E. K.
1976-01-01
This design note is based on present state of the art for epoxy and polyimide matrix composite fabrication technology. Boron/epoxy and polyimide and graphite/epoxy and polyimide structural parts can be successfully fabricated. Fabrication cycles for polyimide matrix composites have been shortened to near epoxy cycle times. Nondestructive testing has proven useful in detecting defects and anomalies in composite structure elements. Fabrication methods and tooling materials are discussed along with the advantages and disadvantages of different tooling materials. Types of honeycomb core, material costs and fabrication methods are shown in table form for comparison. Fabrication limits based on tooling size, pressure capabilities and various machining operations are also discussed.
FTIR Monitoring Of Curing Of Composites
NASA Technical Reports Server (NTRS)
Druy, Mark A.; Stevenson, William A.; Young, Philip R.
1990-01-01
Infrared-sensing optical fiber system developed to monitor principal infrared absorption bands resulting from vibrations of atoms and molecules as chemical bonds form when resin cured. System monitors resin chemistry more directly. Used to obtain Fourier transform infrared (FTIR) spectrum from graphite fiber/polyimide matrix resin prepreg. Embedded fiber optic FTIR sensor used to indicate state of cure of thermosetting composite material. Developed primarily to improve quality of advanced composites, many additional potential applications exist because principal of operation applicable to all organic materials and most inorganic gases. Includes monitoring integrities of composite materials in service, remote sensing of hazardous materials, and examination of processes in industrial reactors and furnaces.
NASA Astrophysics Data System (ADS)
Liao, L. M.; Wang, Z. Q.; Liang, H.; Feng, J.; Zhang, D.
2016-08-01
Supported nano-TiO2photocatalysts play an important role in water environment restoration because of their potential application to photocatalytic degradation of organic contaminants in waste water. With sepiolite as the support, the nano-TiO2/sepiolite composite photocatalysts were synthesized by an easily operated and mild solid-state sintering process.The microstructureand photocatalytic property of the sepiolite supportednano-TiO2 composites were characterized and analyzed by X-ray diffraction spectroscopy, UV-Visible spectroscopy and fluorescence spectroscopy. In addition, the influences of calcination temperature and load ratios on the photocatalytic activity of sepiolite supported nano-TiO2 composites were studied.The results indicated that appropriate ratios of sepiolite supports to nano-TiO2contributed to uniform dispersion of nanoparticles, and enhanced the absorption ability within the UV-Vis range, and consequently increased the photocatalytic activity of the composites.Under the preparation conditions of 90 wt. % TiO2 loading and calcinated at 400 °C, a maximum in photocatalytic activity ofnano-TiO2 sepiolite composite was obtained.
Smits, Marianne; Vanpachtenbeke, Floris; Horemans, Benjamin; De Wael, Karolien; Hauchecorne, Birger; Van Langenhove, Herman; Demeestere, Kristof; Lenaerts, Silvia
2012-01-01
Small stationary diesel engines, like in generator sets, have limited emission control measures and are therefore responsible for 44% of the particulate matter (PM) emissions in the United States. The diesel exhaust composition depends on operating conditions of the combustion engine. Furthermore, the measurements are influenced by the used sampling method. This study examines the effect of engine loading and exhaust gas dilution on the composition of small-scale power generators. These generators are used in different operating conditions than road-transport vehicles, resulting in different emission characteristics. Experimental data were obtained for gaseous volatile organic compounds (VOC) and PM mass concentration, elemental composition and nitrate content. The exhaust composition depends on load condition because of its effect on fuel consumption, engine wear and combustion temperature. Higher load conditions result in lower PM concentration and sharper edged particles with larger aerodynamic diameters. A positive correlation with load condition was found for K, Ca, Sr, Mn, Cu, Zn and Pb adsorbed on PM, elements that originate from lubricating oil or engine corrosion. The nitrate concentration decreases at higher load conditions, due to enhanced nitrate dissociation to gaseous NO at higher engine temperatures. Dilution on the other hand decreases PM and nitrate concentration and increases gaseous VOC and adsorbed metal content. In conclusion, these data show that operating and sampling conditions have a major effect on the exhaust gas composition of small-scale diesel generators. Therefore, care must be taken when designing new experiments or comparing literature results. PMID:22442670
NASA Technical Reports Server (NTRS)
Maples, A. L.
1980-01-01
The operation of solidification model 1 is described. Model 1 calculates the macrosegregation in a rectangular ingot of a binary alloy as a result of horizontal axisymmetric bidirectional solidification. The calculation is restricted to steady-state solidification; there is no variation in final local average composition in the direction of isotherm movement. The physics of the model are given.
Manufacturing of 57cm carbon-carbon composite ion optics for the NEXIS ion engine
NASA Technical Reports Server (NTRS)
Beatty, John S.; Snyder, John Steven; Shih, Wei
2005-01-01
Exploration of the outer planets can be taxing on the ion optics of ion propulsion systems because of the higher power and propellant throughout than the present state-of-the art. Carbon-carbon composite ion optics are an enabling technology extending the life of ion optics operated at high specific impulse, power, and propellant throughout because of their low erosion rates compared to molybdenum ion optics.
Fuel composition effect on cathode airflow control in fuel cell gas turbine hybrid systems
NASA Astrophysics Data System (ADS)
Zhou, Nana; Zaccaria, Valentina; Tucker, David
2018-04-01
Cathode airflow regulation is considered an effective means for thermal management in solid oxide fuel cell gas turbine (SOFC-GT) hybrid system. However, performance and controllability are observed to vary significantly with different fuel compositions. Because a complete system characterization with any possible fuel composition is not feasible, the need arises for robust controllers. The sufficiency of robust control is dictated by the effective change of operating state given the new composition used. It is possible that controller response could become unstable without a change in the gains from one state to the other. In this paper, cathode airflow transients are analyzed in a SOFC-GT system using syngas as fuel composition, comparing with previous work which used humidified hydrogen. Transfer functions are developed to map the relationship between the airflow bypass and several key variables. The impact of fuel composition on system control is quantified by evaluating the difference between gains and poles in transfer functions. Significant variations in the gains and the poles, more than 20% in most cases, are found in turbine rotational speed and cathode airflow. The results of this work provide a guideline for the development of future control strategies to face fuel composition changes.
ERIC Educational Resources Information Center
Stemnock, Suzanne K.
1968-01-01
This document contains the results of a national survey designed to determine the composition and location of permanent citizens advisory committees operating within the nation's school districts. The 52 district-wide, continuing citizens advisory bodies identified by 290 responding school systems are listed alphabetically by State. The following…
NASA Astrophysics Data System (ADS)
Nair, Nirmal-Kumar
As open access market principles are applied to power systems, significant changes are happening in their planning, operation and control. In the emerging marketplace, systems are operating under higher loading conditions as markets focus greater attention to operating costs than stability and security margins. Since operating stability is a basic requirement for any power system, there is need for newer tools to ensure stability and security margins being strictly enforced in the competitive marketplace. This dissertation investigates issues associated with incorporating voltage security into the unbundled operating environment of electricity markets. It includes addressing voltage security in the monitoring, operational and planning horizons of restructured power system. This dissertation presents a new decomposition procedure to estimate voltage security usage by transactions. The procedure follows physical law and uses an index that can be monitored knowing the state of the system. The expression derived is based on composite market coordination models that have both PoolCo and OpCo transactions, in a shared stressed transmission grid. Our procedure is able to equitably distinguish the impacts of individual transactions on voltage stability, at load buses, in a simple and fast manner. This dissertation formulates a new voltage stability constrained optimal power flow (VSCOPF) using a simple voltage security index. In modern planning, composite power system reliability analysis that encompasses both adequacy and security issues is being developed. We have illustrated the applicability of our VSCOPF into composite reliability analysis. This dissertation also delves into the various applications of voltage security index. Increasingly, FACT devices are being used in restructured markets to mitigate a variety of operational problems. Their control effects on voltage security would be demonstrated using our VSCOPF procedure. Further, this dissertation investigates the application of steady state voltage stability index to detect potential dynamic voltage collapse. Finally, this dissertation examines developments in representation, standardization, communication and exchange of power system data. Power system data is the key input to all analytical engines for system operation, monitoring and control. Data exchange and dissemination could impact voltage security evaluation and therefore needs to be critically examined.
2011-03-01
2010). Ferreri’s research on characterizing burnt carbon composite material entailed a similar approach to evaluate a bench top experiment with the...However, it made it difficult to collect the needed data for comparison. A chop saw, similar to a concrete saw used in construction, was the tool...representative of that to which crash recovery members might be exposed. It is acknowledged that the diesel exhaust from the excavator and concrete saw may
Hwang, Tae Hoon; Jung, Dae Soo; Kim, Joo-Seong; Kim, Byung Gon; Choi, Jang Wook
2013-09-11
Na-S batteries are one type of molten salt battery and have been used to support stationary energy storage systems for several decades. Despite their successful applications based on long cycle lives and low cost of raw materials, Na-S cells require high temperatures above 300 °C for their operations, limiting their propagation into a wide range of applications. Herein, we demonstrate that Na-S cells with solid state active materials can perform well even at room temperature when sulfur-containing carbon composites generated from a simple thermal reaction were used as sulfur positive electrodes. Furthermore, this structure turned out to be robust during repeated (de)sodiation for ~500 cycles and enabled extraordinarily high rate performance when one-dimensional morphology is adopted using scalable electrospinning processes. The current study suggests that solid-state Na-S cells with appropriate atomic configurations of sulfur active materials could cover diverse battery applications where cost of raw materials is critical.
1994-09-23
States Army Inrtntry Center, Fort Beanning Georgia, served as the MSF 0-3. MAY Kevin Lee, Course Manager, United States Army ntelligence Center, Fort...possess mobility and protei levels sufficent for it to operate in conjunction with the FMBT. Firepower will include a lnran-mge minkge (TOW follow...Experience has shown that composite artillery battalions don’t work very well due to logistics resupply and ammo problem. £ To achieve effectivenus vith deep
NATIONAL SCREENING SURVEY OF EDCS IN MUNICIPAL WASTEWATER TREATMENT FACILITIES
In 2002 and 2003 the USEPA's Office of Research and Development asked Regional EPA inspectors, state EPA inspectors and municipal plant operators to collect four gallons effluent, either as a grab or composite sample, from up to 50 wastewater treatment plants (WWTP), and ship the...
Composite pulses for interferometry in a thermal cold atom cloud
NASA Astrophysics Data System (ADS)
Dunning, Alexander; Gregory, Rachel; Bateman, James; Cooper, Nathan; Himsworth, Matthew; Jones, Jonathan A.; Freegarde, Tim
2014-09-01
Atom interferometric sensors and quantum information processors must maintain coherence while the evolving quantum wave function is split, transformed, and recombined, but suffer from experimental inhomogeneities and uncertainties in the speeds and paths of these operations. Several error-correction techniques have been proposed to isolate the variable of interest. Here we apply composite pulse methods to velocity-sensitive Raman state manipulation in a freely expanding thermal atom cloud. We compare several established pulse sequences, and follow the state evolution within them. The agreement between measurements and simple predictions shows the underlying coherence of the atom ensemble, and the inversion infidelity in a ˜80μK atom cloud is halved. Composite pulse techniques, especially if tailored for atom interferometric applications, should allow greater interferometer areas, larger atomic samples, and longer interaction times, and hence improve the sensitivity of quantum technologies from inertial sensing and clocks to quantum information processors and tests of fundamental physics.
Improving the reliability of road materials based on micronized sulfur composites
NASA Astrophysics Data System (ADS)
Abdrakhmanova, K. K.
2015-01-01
The work contains the results of a nano-structural modification of sulfur that prevents polymorphic transformations from influencing the properties of sulfur composites where sulfur is present in a thermodynamic stable condition that precludes destruction when operated. It has been established that the properties of sulfur-based composite materials can be significantly improved by modifying sulfur and structuring sulfur binder by nano-dispersed fiber particles and ultra-dispersed state filler. The paper shows the possibility of modifying Tengiz sulfur by its fragmenting which ensures that the structured sulfur is structurally changed and stabilized through reinforcement by ultra-dispersed fiber particles allowing the phase contact area to be multiplied. Interaction between nano-dispersed fibers of chrysotile asbestos and sulfur ensures the implementation of the mechanical properties of chrysotile asbestos tubes in reinforced composite and its integrity provided that the surface of chrysotile asbestos tubes are highly moistened with molten sulfur and there is high adhesion between the tubes and the matrix that, in addition to sulfur, contains limestone microparticles. Ability to apply materials in severe operation conditions and possibility of exposure in both aggressive medium and mechanical loads makes produced sulfur composites required by the road construction industry.
Oxygen and iron production by electrolytic smelting of lunar soil
NASA Technical Reports Server (NTRS)
Colson, R. O.; Haskin, L. A.
1991-01-01
Oxygen, present in abundance in nearly all lunar materials, can theoretically be extracted by molten silicate electrolysis from any known lunar rock. Derivation of oxygen by this method has been amply demonstrated experimentally in silicate melts of a variety of compositions. This work can be divided into three categories: (1) measurement of solubilities of metals (atomic) in silicate melts; (2) electrolysis experiments under various conditions of temperature, container material, electrode configuration, current density, melt composition, and sample mass (100 to 2000 mg) measuring energy required and character of resulting products; and (3) theoretical assessment of compositional requirements for steady state operations of an electrolysis cell.
ISAAC - A Testbed for Advanced Composites Research
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.
2014-01-01
The NASA Langley Research Center is acquiring a state-of-art composites fabrication environment to support the Center's research and technology development mission. This overall system described in this paper is named ISAAC, or Integrated Structural Assembly of Advanced Composites. ISAAC's initial operational capability is a commercial robotic automated fiber placement system from Electroimpact, Inc. that consists of a multi-degree of freedom commercial robot platform, a tool changer mechanism, and a specialized automated fiber placement end effector. Examples are presented of how development of advanced composite materials, structures, fabrication processes and technology are enabled by utilizing the fiber placement end effector directly or with appropriate modifications. Alternatively, end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.
Anarchy with linear and bilinear interactions
NASA Astrophysics Data System (ADS)
Da Rold, Leandro
2017-10-01
Composite Higgs models with anarchic partial compositeness require a scale of new physics O(10-100) TeV, with the bounds being dominated by the dipole moments and ɛ K . The presence of anarchic bilinear interactions can change this picture. We show a solution to the SM flavor puzzle where the electron and the Right-handed quarks of the first generation have negligible linear interactions, and the bilinear interactions account for most of their masses, whereas the other chiral fermions follow a similar pattern to anarchic partial compositeness. We compute the bounds from flavor and CP violation and show that neutron and electron dipole moments, as well as ɛ K and μ → eγ, are compatible with a new physics scale below the TeV. Δ F = 2 operators involving Left-handed quarks and Δ F = 1 operators with d L give the most stringent bounds in this scenario. Their Wilson coefficients have the same origin as in anarchic partial compositeness, requiring the masses of the new states to be larger than O(6-7) TeV.
Sainato, Michela; Strambini, Lucanos Marsilio; Rella, Simona; Mazzotta, Elisabetta; Barillaro, Giuseppe
2015-04-08
Surface doping of nano/mesostructured materials with metal nanoparticles to promote and optimize chemi-transistor sensing performance represents the most advanced research trend in the field of solid-state chemical sensing. In spite of the promising results emerging from metal-doping of a number of nanostructured semiconductors, its applicability to silicon-based chemi-transistor sensors has been hindered so far by the difficulties in integrating the composite metal-silicon nanostructures using the complementary metal-oxide-semiconductor (CMOS) technology. Here we propose a facile and effective top-down method for the high-yield fabrication of chemi-transistor sensors making use of composite porous silicon/gold nanostructures (cSiAuNs) acting as sensing gate. In particular, we investigate the integration of cSiAuNs synthesized by metal-assisted etching (MAE), using gold nanoparticles (NPs) as catalyst, in solid-state junction-field-effect transistors (JFETs), aimed at the detection of NO2 down to 100 parts per billion (ppb). The chemi-transistor sensors, namely cSiAuJFETs, are CMOS compatible, operate at room temperature, and are reliable, sensitive, and fully recoverable for the detection of NO2 at concentrations between 100 and 500 ppb, up to 48 h of continuous operation.
30 CFR 49.11 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-07-01
... TEAMS Mine Rescue Teams for Underground Coal Mines § 49.11 Purpose and scope. (a) This subpart... recovery. (b) The following Table 49.11 summarizes the new requirements for mine rescue teams contained in... Operators and Mine Rescue Teams Requirement Type of mine rescue team Mine-site Composite Contract State...
30 CFR 49.11 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-07-01
... TEAMS Mine Rescue Teams for Underground Coal Mines § 49.11 Purpose and scope. (a) This subpart... recovery. (b) The following Table 49.11 summarizes the new requirements for mine rescue teams contained in... Operators and Mine Rescue Teams Requirement Type of mine rescue team Mine-site Composite Contract State...
30 CFR 49.11 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-07-01
... TEAMS Mine Rescue Teams for Underground Coal Mines § 49.11 Purpose and scope. (a) This subpart... recovery. (b) The following Table 49.11 summarizes the new requirements for mine rescue teams contained in... Operators and Mine Rescue Teams Requirement Type of mine rescue team Mine-site Composite Contract State...
30 CFR 49.11 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-07-01
... TEAMS Mine Rescue Teams for Underground Coal Mines § 49.11 Purpose and scope. (a) This subpart... recovery. (b) The following Table 49.11 summarizes the new requirements for mine rescue teams contained in... Operators and Mine Rescue Teams Requirement Type of mine rescue team Mine-site Composite Contract State...
30 CFR 49.11 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-07-01
... TEAMS Mine Rescue Teams for Underground Coal Mines § 49.11 Purpose and scope. (a) This subpart... recovery. (b) The following Table 49.11 summarizes the new requirements for mine rescue teams contained in... Operators and Mine Rescue Teams Requirement Type of mine rescue team Mine-site Composite Contract State...
Fine tuning GPS clock estimation in the MCS
NASA Technical Reports Server (NTRS)
Hutsell, Steven T.
1995-01-01
With the completion of a 24 operational satellite constellation, GPS is fast approaching the critical milestone, Full Operational Capability (FOC). Although GPS is well capable of providing the timing accuracy and stability figures required by system specifications, the GPS community will continue to strive for further improvements in performance. The GPS Master Control Station (MCS) recently demonstrated that timing improvements are always composite Clock, and hence, Kalman Filter state estimation, providing a small improvement to user accuracy.
Liu, Yongchuan; Miao, Xiaofei; Fang, Jianhui; Zhang, Xiangxin; Chen, Sujing; Li, Wei; Feng, Wendou; Chen, Yuanqiang; Wang, Wei; Zhang, Yining
2016-03-02
Flexible solid-state supercapacitors provide a promising energy-storage alternative for the rapidly growing flexible and wearable electronic industry. Further improving device energy density and developing a cheap flexible current collector are two major challenges in pushing the technology forward. In this work, we synthesize a nitrogen-doped graphene/MnO2 nanosheet (NGMn) composite by a simple hydrothermal method. Nitrogen-doped graphene acts as a template to induce the growth of layered δ-MnO2 and improves the electronic conductivity of the composite. The NGMn composite exhibits a large specific capacitance of about 305 F g(-1) at a scan rate of 5 mV s(-1). We also create a cheap and highly conductive flexible current collector using Scotch tape. Flexible solid-state asymmetric supercapacitors are fabricated with NGMn cathode, activated carbon anode, and PVA-LiCl gel electrolyte. The device can achieve a high operation voltage of 1.8 V and exhibits a maximum energy density of 3.5 mWh cm(-3) at a power density of 0.019 W cm(-3). Moreover, it retains >90% of its initial capacitance after 1500 cycles. Because of its flexibility, high energy density, and good cycle life, NGMn-based flexible solid state asymmetric supercapacitors have great potential for application in next-generation portable and wearable electronics.
ABC of ladder operators for rationally extended quantum harmonic oscillator systems
NASA Astrophysics Data System (ADS)
Cariñena, José F.; Plyushchay, Mikhail S.
2017-07-01
The problem of construction of ladder operators for rationally extended quantum harmonic oscillator (REQHO) systems of a general form is investigated in the light of existence of different schemes of the Darboux-Crum-Krein-Adler transformations by which such systems can be generated from the quantum harmonic oscillator. Any REQHO system is characterized by the number of separated states in its spectrum, the number of ‘valence bands’ in which the separated states are organized, and by the total number of the missing energy levels and their position. All these peculiarities of a REQHO system are shown to be detected and reflected by a trinity (A^+/- , B^+/- , C^+/-) of the basic (primary) lowering and raising ladder operators related between themselves by certain algebraic identities with coefficients polynomially-dependent on the Hamiltonian. We show that all the secondary, higher-order ladder operators are obtainable by a composition of the basic ladder operators of the trinity which form the set of the spectrum-generating operators. Each trinity, in turn, can be constructed from the intertwining operators of the two complementary minimal schemes of the Darboux-Crum-Krein-Adler transformations.
NASA Astrophysics Data System (ADS)
Hirai, T.; Bekris, N.; Coad, J. P.; Grisolia, C.; Linke, J.; Maier, H.; Matthews, G. F.; Philipps, V.; Wessel, E.
2009-07-01
Vacuum plasma spray tungsten (VPS-W) coating created on a carbon fibre reinforced composite (CFC) was tested under two thermal load schemes in the electron beam facility to examine the operation limits and failure modes. In cyclic ELM-like short transient thermal loads, the VPS-W coating was destroyed sub-layer by sub-layer at 0.33 GW/m 2 for 1 ms pulse duration. At longer single pulses, simulating steady-state thermal loads, the coating was destroyed at surface temperatures above 2700 °C by melting of the rhenium containing multilayer at the interface between VPS-W and CFC. The operation limits and failure modes of the VPS-W coating in the thermal load schemes are discussed in detail.
Cross, Eben S; Sappok, Alexander G; Wong, Victor W; Kroll, Jesse H
2015-11-17
A detailed understanding of the climate and air quality impacts of mobile-source emissions requires the characterization of intermediate-volatility organic compounds (IVOCs), relatively-low-vapor-pressure gas-phase species that may generate secondary organic aerosol with high yields. Due to challenges associated with IVOC detection and quantification, IVOC emissions remain poorly understood at present. Here, we describe measurements of the magnitude and composition of IVOC emissions from a medium-duty diesel engine. Measurements are made on an engine dynamometer and utilize a new mass-spectrometric instrument to characterize the load dependence of the emissions in near-real-time. Results from steady-state engine operation indicate that IVOC emissions are highly dependent on engine power, with highest emissions at engine idle and low-load operation (≤25% maximum rated power) with a chemical composition dominated by saturated hydrocarbon species. Results suggest that unburned fuel components are the dominant IVOCs emitted at low loads. As engine load increases, IVOC emissions decline rapidly and become increasingly characterized by unsaturated hydrocarbons and oxygenated organics, newly formed from incomplete combustion processes at elevated engine temperatures and pressures. Engine transients, including a cold-start ignition and engine acceleration, show IVOC emission profiles that are different in amount or composition compared to steady-state combustion, underscoring the utility of characterizing IVOC emissions with high time resolution across realistic engine operating conditions. We find possible evidence for IVOC losses on unheated dilution and sampling surfaces, which need to be carefully accounted for in IVOC emission studies.
Method for destroying halocarbon compositions using a critical solvent
Ginosar, Daniel M.; Fox, Robert V.; Janikowski, Stuart K.
2006-01-10
A method for destroying halocarbons. Halocarbon materials are reacted in a dehalogenation process wherein they are combined with a solvent in the presence of a catalyst. A hydrogen-containing solvent is preferred which functions as both a solvating agent and hydrogen donor. To augment the hydrogen donation capacity of the solvent if needed (or when non-hydrogen-containing solvents are used), a supplemental hydrogen donor composition may be employed. In operation, at least one of the temperature and pressure of the solvent is maintained near, at, or above a critical level. For example, the solvent may be in (1) a supercritical state; (2) a state where one of the temperature or pressure thereof is at or above critical; or (3) a state where at least one of the temperature and pressure thereof is near-critical. This system provides numerous benefits including improved reaction rates, efficiency, and versatility.
NASA Technical Reports Server (NTRS)
Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming
2014-01-01
Due to their high temperature capabilities, Ceramic Matrix Composite (CMC) components are being developed for use in hot-section aerospace engine applications. Harsh engine environments have led to the development of Environmental Barrier Coatings (EBCs) for silicon-based CMCs to further increase thermal and environmental capabilities. This study aims at understanding the damage mechanisms associated with these materials under simulated operating conditions. A high heat-flux laser testing rig capable of imposing large through-thickness thermal gradients by means of controlled laser beam heating and back-side air cooling is used. Tests are performed on uncoated composites, as well as CMC substrates that have been coated with state-of-the-art ceramic EBC systems. Results show that the use of the EBCs may help increase temperature capability and creep resistance by reducing the effects of stressed oxidation and environmental degradation. Also, the ability of electrical resistance (ER) and acoustic emission (AE) measurements to monitor material condition and damage state during high temperature testing is shown; suggesting their usefulness as a valuable health monitoring technique. Micromechanics models are used to describe the localized stress state of the composite system, which is utilized along with ER modeling concepts to develop an electromechanical model capable of characterizing material behavior.
Entanglement Entropy of the ν=1/2 Composite Fermion Non-Fermi Liquid State.
Shao, Junping; Kim, Eun-Ah; Haldane, F D M; Rezayi, Edward H
2015-05-22
The so-called "non-Fermi liquid" behavior is very common in strongly correlated systems. However, its operational definition in terms of "what it is not" is a major obstacle for the theoretical understanding of this fascinating correlated state. Recently there has been much interest in entanglement entropy as a theoretical tool to study non-Fermi liquids. So far explicit calculations have been limited to models without direct experimental realizations. Here we focus on a two-dimensional electron fluid under magnetic field and filling fraction ν=1/2, which is believed to be a non-Fermi liquid state. Using a composite fermion wave function which captures the ν=1/2 state very accurately, we compute the second Rényi entropy using the variational Monte Carlo technique. We find the entanglement entropy scales as LlogL with the length of the boundary L as it does for free fermions, but has a prefactor twice that of free fermions.
Zhu, Zhiqiang; Hong, Meiling; Guo, Dongsheng; Shi, Jifu; Tao, Zhanliang; Chen, Jun
2014-11-26
The cathode capacity of common lithium ion batteries (LIBs) using inorganic electrodes and liquid electrolytes must be further improved. Alternatively, all-solid-state lithium batteries comprising the electrode of organic compounds can offer much higher capacity. Herein, we successfully fabricated an all-solid-state lithium battery based on organic pillar[5]quinone (C35H20O10) cathode and composite polymer electrolyte (CPE). The poly(methacrylate) (PMA)/poly(ethylene glycol) (PEG)-LiClO4-3 wt % SiO2 CPE has an optimum ionic conductivity of 0.26 mS cm(-1) at room temperature. Furthermore, pillar[5]quinine cathode in all-solid-state battery rendered an average operation voltage of ∼2.6 V and a high initial capacity of 418 mAh g(-1) with a stable cyclability (94.7% capacity retention after 50 cycles at 0.2C rate) through the reversible redox reactions of enolate/quinonid carbonyl groups, showing favorable prospect for the device application with high capacity.
Thermal Conductivity of Carbon Nanotube Composite Films
NASA Technical Reports Server (NTRS)
Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.
2004-01-01
State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.
Alaska's timber harvest and forest products industry, 2005
Jeff M. Halbrook; Todd A. Morgan; Jason P. Brandt; Charles E. Keegan; Thale Dillon; Tara M. Barrett
2009-01-01
This report traces the flow of timber harvested in Alaska during calendar year 2005, describes the composition and operations of the state's primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as trends in timber harvest, production, and sales of primary wood products....
The Four Corners timber harvest and forest products industry, 2007
Steven W. Hayes; Todd A. Morgan; Erik C. Berg; Jean M. Daniels; Mike Thompson
2012-01-01
This report traces the flow of timber harvested in the "Four Corners" States (Arizona, Colorado, New Mexico, and Utah) during calendar year 2007, describes the composition and operations of the region's primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as...
POTW Expert is a PCX-based software program modeled after EPA/s Handbook Retrofitting POTWs (EPA-625/6-89/020) (formerly, Handbook for Improving POTW Performance Using the Composite Correction Program Approach). POTW Expert assists POTW owners and operators, state and local regu...
The Four Corners timber harvest and forest products industry, 2002
Todd A. Morgan; Thale Dillon; Charles E. Keegan; Alfred L. Chase; Mike T. Thompson
2006-01-01
This report traces the flow of timber harvested in the "Four Corners" States (Arizona, Colorado, New Mexico, and Utah) during calendar year 2002, describes the composition and operations of the region's primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as...
Cooled Ceramic Matrix Composite Propulsion Structures Demonstrated
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.; Dickens, Kevin W.
2005-01-01
NASA's Next Generation Launch Technology (NGLT) Program has successfully demonstrated cooled ceramic matrix composite (CMC) technology in a scramjet engine test. This demonstration represented the world s largest cooled nonmetallic matrix composite panel fabricated for a scramjet engine and the first cooled nonmetallic composite to be tested in a scramjet facility. Lightweight, high-temperature, actively cooled structures have been identified as a key technology for enabling reliable and low-cost space access. Tradeoff studies have shown this to be the case for a variety of launch platforms, including rockets and hypersonic cruise vehicles. Actively cooled carbon and CMC structures may meet high-performance goals at significantly lower weight, while improving safety by operating with a higher margin between the design temperature and material upper-use temperature. Studies have shown that using actively cooled CMCs can reduce the weight of the cooled flow-path component from 4.5 to 1.6 lb/sq ft and the weight of the propulsion system s cooled surface area by more than 50 percent. This weight savings enables advanced concepts, increased payload, and increased range. The ability of the cooled CMC flow-path components to operate over 1000 F hotter than the state-of-the-art metallic concept adds system design flexibility to space-access vehicle concepts. Other potential system-level benefits include smaller fuel pumps, lower part count, lower cost, and increased operating margin.
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1982-01-01
The promise of filamentary composite materials, whose development may be considered as entering its second generation, continues to generate intense interest and applications activity. Fiber reinforced composite materials offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been achieved since the initial developments in the mid 1960's. Rather limited applications to primary aircraft structure have been made, however, mainly in a material-substitution mode on military aircraft, except for a few experiments currently underway on large passenger airplanes in commercial operation. To fulfill the promise of composite materials completely requires a strong technology base. NASA and AFOSR recognize the present state of the art to be such that to fully exploit composites in sophisticated aerospace structures, the technology base must be improved. This, in turn, calls for expanding fundamental knowledge and the means by which it can be successfully applied in design and manufacture.
Designing and synthesis of a polymer matrix piezoelectric composite for energy harvesting
NASA Astrophysics Data System (ADS)
Biswal, Asutya Kumar; Das, Satyabati; Roy, Amritendu
2017-02-01
Now a day, a large variety of electronic and network devices require small yet steady power supply for operation. Traditionally, these devices are battery operated and the batteries are periodically charged for continuous operation. Often, the devices are so located that supply of power to recharge the batteries becomes challenging. Electrical energy harvesting by means of principle of piezoelectricity could be a viable solution to the above problem by means of providing a permanent power source. In this regard, piezoelectric lead zirconium titanate (PZT) was found to be a potential material. However, poor mechanical properties (brittleness) of bulk ceramic materials have been a concern for energy harvesting by means of mechanical motion (footsteps). In the present work, Pb(Zr 0.52 Ti 0.48)1-x NbxO 3 at x=0.05 was prepared by conventional solid state synthesis route. XRD and SEM analyses were performed for structural characterization. PZT powders were found to be in single phase with tetragonal symmetry without any trace of a second phase. To render the required mechanical properties (flexibility), in the present work, we designed a polymer matrix ceramic composite without much compromising the piezoelectric properties. We prepared composite thick films of lead zirconium titanate (PZT) ceramic in poly vinylidene fluoride (PVDF) polymer matrix with varied composition of PZT from 10-50 vol %. The study of surface morphology by scanning electron microscope (SEM) shows good degree of dispersion of PZT in PVDF matrix. Ferroelectric characteristics of the composite films were studied by measuring the polarization-electric field hysteresis loops. Generated output voltage and current from the composite films are found to be approximately 0.35 volt and 4 nA, respectively.
Damage Detection Response Characteristics of Open Circuit Resonant (SansEC) Sensors
NASA Technical Reports Server (NTRS)
Dudley, Kenneth L.; Szatkowski, George N.; Smith, Laura J.; Koppen, Sandra V.; Ely, Jay J.; Nguyen, Truong X.; Wang, Chuantong; Ticatch, Larry A.; Mielnik, John J.
2013-01-01
The capability to assess the current or future state of the health of an aircraft to improve safety, availability, and reliability while reducing maintenance costs has been a continuous goal for decades. Many companies, commercial entities, and academic institutions have become interested in Integrated Vehicle Health Management (IVHM) and a growing effort of research into "smart" vehicle sensing systems has emerged. Methods to detect damage to aircraft materials and structures have historically relied on visual inspection during pre-flight or post-flight operations by flight and ground crews. More quantitative non-destructive investigations with various instruments and sensors have traditionally been performed when the aircraft is out of operational service during major scheduled maintenance. Through the use of reliable sensors coupled with data monitoring, data mining, and data analysis techniques, the health state of a vehicle can be detected in-situ. NASA Langley Research Center (LaRC) is developing a composite aircraft skin damage detection method and system based on open circuit SansEC (Sans Electric Connection) sensor technology. Composite materials are increasingly used in modern aircraft for reducing weight, improving fuel efficiency, and enhancing the overall design, performance, and manufacturability of airborne vehicles. Materials such as fiberglass reinforced composites (FRC) and carbon-fiber-reinforced polymers (CFRP) are being used to great advantage in airframes, wings, engine nacelles, turbine blades, fairings, fuselage structures, empennage structures, control surfaces and aircraft skins. SansEC sensor technology is a new technical framework for designing, powering, and interrogating sensors to detect various types of damage in composite materials. The source cause of the in-service damage (lightning strike, impact damage, material fatigue, etc.) to the aircraft composite is not relevant. The sensor will detect damage independent of the cause. Damage in composite material is generally associated with a localized change in material permittivity and/or conductivity. These changes are sensed using SansEC. The unique electrical signatures (amplitude, frequency, bandwidth, and phase) are used for damage detection and diagnosis. An operational system and method would incorporate a SansEC sensor array on select areas of the aircraft exterior surfaces to form a "Smart skin" sensing surface. In this paper a new method and system for aircraft in-situ damage detection and diagnosis is presented. Experimental test results on seeded fault damage coupons and computational modeling simulation results are presented. NASA LaRC has demonstrated with individual sensors that SansEC sensors can be effectively used for in-situ composite damage detection of delamination, voids, fractures, and rips. Keywords: Damage Detection, Composites, Integrated Vehicle Health Monitoring (IVHM), Aviation Safety, SansEC Sensors
Current and future data assimilation development in the Copernicus Atmosphere Monitoring Service
NASA Astrophysics Data System (ADS)
Engelen, R. J.; Ades, M.; Agusti-panareda, A.; Flemming, J.; Inness, A.; Kipling, Z.; Parrington, M.; Peuch, V. H.
2017-12-01
The European Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition and regional air quality. The global forecasting system is using ECMWF's Integrated Forecasting System (IFS), which is used for numerical weather prediction and which has been extended with modules for atmospheric chemistry, aerosols and greenhouse gases. The system assimilates observations from more than 60 satellite sensors to constrain both the meteorology and the atmospheric composition species. While an operational forecasting system needs to be robust and reliable, it also needs to stay state-of-the-art to provide the best possible forecasts. Continuous development is therefore an important component of the CAMS systems. We will present on-going efforts on improving the 4D-Var data assimilation system, such as using ensemble data assimilation to improve the background error covariances and more accurate use of satellite observations. We will also outline plans for including emissions in the daily CAMS analyses, which is an area where research activities have a large potential to feed into operational applications.
Price, William D; Underhill, Lynne
2013-09-04
With the development of recombinant DNA techniques for genetically modifying plants to exhibit beneficial traits, laws and regulations were adopted to ensure the safety of food and feed derived from such plants. This paper focuses on the regulation of genetically modified (GM) plants in Canada and the United States, with emphasis on the results of the compositional analysis routinely utilized as an indicator of possible unintended effects resulting from genetic modification. This work discusses the mandate of Health Canada and the Canadian Food Inspection Agency as well as the U.S. Food and Drug Administration's approach to regulating food and feed derived from GM plants. This work also addresses how publications by the Organisation for Economic Co-operation and Development and Codex Alimentarius fit, particularly with defining the importance and purpose of compositional analysis. The importance of study design, selection of comparators, use of literature, and commercial variety reference values is also discussed.
NASA Astrophysics Data System (ADS)
Kuleshova, E. A.; Gurovich, B. A.; Lavrukhina, Z. V.; Saltykov, M. A.; Fedotova, S. V.; Khodan, A. N.
2016-08-01
In reactor pressure vessel (RPV) bcc-lattice steels temper embrittlement is developed under the influence of both operating temperature of ∼300 °C and neutron irradiation. Segregation processes in the grain boundaries (GB) begin to play a special role in the assessment of the safe operation of the RPV in case of its lifetime extension up to 60 years or more. The most reliable information on the RPV material condition can be obtained by investigating the surveillance specimens (SS) that are exposed to operational factors simultaneously with the RPV itself. In this paper the GB composition in the specimens with different thermal exposure time at the RPV operating temperature as well as irradiated by fast neutrons (E ≥ 0.5 MeV) to different fluences (20-71)·1022 m-2 was studied by means of Auger electron spectroscopy (AES) including both impurity and main alloying elements content. The data obtained allowed to trace the trend of the operating temperature and radiation-stimulated diffusion influence on the overall segregants level in GB. The revealed differences in the concentration levels of GB segregants in different steels, are due to the different chemical composition of the steels and also due to different grain boundary segregation levels in initial (unexposed) state. The data were used to estimate the RPV steels working capacity for 60 years. The estimation was carried out using both the well-known Langmuir-McLean model and the one specially developed for RPV steels, which takes into account the structure and phase composition of VVER-1000 RPV steels, as well as the long-term influence of operational factors.
Cell for making secondary batteries
Visco, Steven J.; Liu, Meilin; DeJonghe, Lutgard C.
1992-01-01
The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.
Cell for making secondary batteries
Visco, S.J.; Liu, M.; DeJonghe, L.C.
1992-11-10
The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.
NASA Technical Reports Server (NTRS)
Zamula, G. N.; Ierusalimsky, K. M.; Kalmykova, G. S.; Fomin, V. P.
1998-01-01
The present paper is a final technical report within the NCCW-1-233 research program (dated June 1, 1997) accomplished as a part of co-operation between United States' NASA and Russia's Goskomoboronprom in aeronautics, and continues similar NCCW-73 and NCC-1-233 programs accomplished in 1996 and 1997, respectively. The report concludes studies in two domains, "Analyzing the effect of skin postbuckling on general stresses and strains in a composite structure" and "Evaluating the effect of skin postbuckling behavior on general stability of a composite structure"; the work was fulfilled in compliance with NCC-1-233 requirements (as of June 1, 1997). Also, the present studies may be regarded as a partial generalization of efforts in [1, 2] conducted within the above programs in what concerns postbuckling behavior of composite structures.
Representation Learning of Logic Words by an RNN: From Word Sequences to Robot Actions
Yamada, Tatsuro; Murata, Shingo; Arie, Hiroaki; Ogata, Tetsuya
2017-01-01
An important characteristic of human language is compositionality. We can efficiently express a wide variety of real-world situations, events, and behaviors by compositionally constructing the meaning of a complex expression from a finite number of elements. Previous studies have analyzed how machine-learning models, particularly neural networks, can learn from experience to represent compositional relationships between language and robot actions with the aim of understanding the symbol grounding structure and achieving intelligent communicative agents. Such studies have mainly dealt with the words (nouns, adjectives, and verbs) that directly refer to real-world matters. In addition to these words, the current study deals with logic words, such as “not,” “and,” and “or” simultaneously. These words are not directly referring to the real world, but are logical operators that contribute to the construction of meaning in sentences. In human–robot communication, these words may be used often. The current study builds a recurrent neural network model with long short-term memory units and trains it to learn to translate sentences including logic words into robot actions. We investigate what kind of compositional representations, which mediate sentences and robot actions, emerge as the network's internal states via the learning process. Analysis after learning shows that referential words are merged with visual information and the robot's own current state, and the logical words are represented by the model in accordance with their functions as logical operators. Words such as “true,” “false,” and “not” work as non-linear transformations to encode orthogonal phrases into the same area in a memory cell state space. The word “and,” which required a robot to lift up both its hands, worked as if it was a universal quantifier. The word “or,” which required action generation that looked apparently random, was represented as an unstable space of the network's dynamical system. PMID:29311891
Representation Learning of Logic Words by an RNN: From Word Sequences to Robot Actions.
Yamada, Tatsuro; Murata, Shingo; Arie, Hiroaki; Ogata, Tetsuya
2017-01-01
An important characteristic of human language is compositionality. We can efficiently express a wide variety of real-world situations, events, and behaviors by compositionally constructing the meaning of a complex expression from a finite number of elements. Previous studies have analyzed how machine-learning models, particularly neural networks, can learn from experience to represent compositional relationships between language and robot actions with the aim of understanding the symbol grounding structure and achieving intelligent communicative agents. Such studies have mainly dealt with the words (nouns, adjectives, and verbs) that directly refer to real-world matters. In addition to these words, the current study deals with logic words, such as "not," "and," and "or" simultaneously. These words are not directly referring to the real world, but are logical operators that contribute to the construction of meaning in sentences. In human-robot communication, these words may be used often. The current study builds a recurrent neural network model with long short-term memory units and trains it to learn to translate sentences including logic words into robot actions. We investigate what kind of compositional representations, which mediate sentences and robot actions, emerge as the network's internal states via the learning process. Analysis after learning shows that referential words are merged with visual information and the robot's own current state, and the logical words are represented by the model in accordance with their functions as logical operators. Words such as "true," "false," and "not" work as non-linear transformations to encode orthogonal phrases into the same area in a memory cell state space. The word "and," which required a robot to lift up both its hands, worked as if it was a universal quantifier. The word "or," which required action generation that looked apparently random, was represented as an unstable space of the network's dynamical system.
State-and-transition prototype model of riparian vegetation downstream of Glen Canyon Dam, Arizona
Ralston, Barbara E.; Starfield, Anthony M.; Black, Ronald S.; Van Lonkhuyzen, Robert A.
2014-01-01
Facing an altered riparian plant community dominated by nonnative species, resource managers are increasingly interested in understanding how to manage and promote healthy riparian habitats in which native species dominate. For regulated rivers, managing flows is one tool resource managers consider to achieve these goals. Among many factors that can influence riparian community composition, hydrology is a primary forcing variable. Frame-based models, used successfully in grassland systems, provide an opportunity for stakeholders concerned with riparian systems to evaluate potential riparian vegetation responses to alternative flows. Frame-based, state-and-transition models of riparian vegetation for reattachment bars, separation bars, and the channel margin found on the Colorado River downstream of Glen Canyon Dam were constructed using information from the literature. Frame-based models can be simple spreadsheet models (created in Microsoft® Excel) or developed further with programming languages (for example, C-sharp). The models described here include seven community states and five dam operations that cause transitions between states. Each model divides operations into growing (April–September) and non-growing seasons (October–March) and incorporates upper and lower bar models, using stage elevation as a division. The inputs (operations) can be used by stakeholders to evaluate flows that may promote dynamic riparian vegetation states, or identify those flow options that may promote less desirable states (for example, Tamarisk [Tamarix sp.] temporarily flooded shrubland). This prototype model, although simple, can still elicit discussion about operational options and vegetation response.
NASA Astrophysics Data System (ADS)
Kulakov, V. L.; Terrasi, G. P.; Arnautov, A. K.; Portnov, G. G.; Kovalov, A. O.
2014-03-01
A finite element analysis is carried out to determine the stress-strain state of anchors for round rods made of a high- modulus, high-strength unidirectional carbon-fiber reinforced plastic. The rods have splitted ends in which Duralumin wedges are glued. Three types of contact between the composite rods and a potted epoxy compound are considered: adhesion, adhesion-friction, and friction ones. The corresponding three-dimensional problems in the elastic statement are solved by the finite-element method (FEM) with account of nonlinear Coulomb friction. An analysis of stresses on the surface of the composite rod revealed the locations of high concentrations of operating stresses. The results of FEM calculations agree with experimental data.
Chameleon Coatings: Adaptive Surfaces to Reduce Friction and Wear in Extreme Environments
NASA Astrophysics Data System (ADS)
Muratore, C.; Voevodin, A. A.
2009-08-01
Adaptive nanocomposite coating materials that automatically and reversibly adjust their surface composition and morphology via multiple mechanisms are a promising development for the reduction of friction and wear over broad ranges of ambient conditions encountered in aerospace applications, such as cycling of temperature and atmospheric composition. Materials selection for these composites is based on extensive study of interactions occurring between solid lubricants and their surroundings, especially with novel in situ surface characterization techniques used to identify adaptive behavior on size scales ranging from 10-10 to 10-4 m. Recent insights on operative solid-lubricant mechanisms and their dependency upon the ambient environment are reviewed as a basis for a discussion of the state of the art in solid-lubricant materials.
Determining the Compositions of Extraterrestrial Lava Flows
NASA Technical Reports Server (NTRS)
Fink, Jonathan H.
2002-01-01
The primary purpose of this research project has been to develop techniques that allow the emplacement conditions of volcanic landforms on other planets to be related to attributes that can be remotely detected with available instrumentation. The underlying assumption of our work is that the appearance of a volcano, lava flow, debris avalanche, or exhumed magmatic intrusion can provide clues about the conditions operating when that feature was first emplaced. Magma composition, amount of crustal heat flow, state of tectonic stress, and climatic conditions are among the important variables that can be inferred from the morphology and texture of an igneous body.
Nanostructural self-organization and dynamic adaptation of metal-polymer tribosystems
NASA Astrophysics Data System (ADS)
Mashkov, Yu. K.
2017-02-01
The results of investigating the effect of nanosize modifiers of a polymer matrix on the nanostructural self-organization of polymer composites and dynamic adaptation of metal-polymer tribosystems, which considerably affect the wear resistance of polymer composite materials, have been analyzed. It has been shown that the physicochemical nanostructural self-organization processes are developed in metal-polymer tribosystems with the formation of thermotropic liquid-crystal structures of the polymer matrix, followed by the transition of the system to the stationary state with a negative feedback that ensures dynamic adaptation of the tribosystem to given operating conditions.
Aerosolization properties, surface composition and physical state of spray-dried protein powders.
Bosquillon, Cynthia; Rouxhet, Paul G; Ahimou, François; Simon, Denis; Culot, Christine; Préat, Véronique; Vanbever, Rita
2004-10-19
Powder aerosols made of albumin, dipalmitoylphosphatidylcholine (DPPC) and a protein stabilizer (lactose, trehalose or mannitol) were prepared by spray-drying and analyzed for aerodynamic behavior, surface composition and physical state. The powders exited a Spinhaler inhaler as particle aggregates, the size of which depending on composition, spray-drying parameters and airflow rate. However, due to low bulk powder tap density (<0.15 g/cm3), the aerodynamic size of a large fraction of aggregates remained respirable (<5 microm). Fine particle fractions ranged between 21% and 41% in an Andersen cascade impactor operated at 28.3 l/min, with mannitol and lactose providing the most cohesive and free-flowing powders, respectively. Particle surface analysis by X-ray photoelectron spectroscopy (XPS) revealed a surface enrichment with DPPC relative to albumin for powders prepared under certain spray-drying conditions. DPPC self-organized in a gel phase in the particle and no sugar or mannitol crystals were detected by X-ray diffraction. Water sorption isotherms showed that albumin protected lactose from moisture-induced crystallization. In conclusion, a proper combination of composition and spray-drying parameters allowed to obtain dry powders with elevated fine particle fractions (FPFs) and a physical environment favorable to protein stability.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2014-01-01
Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned CMC components to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing advanced environmental barrier coating systems, the coating integrations with next generation CMC turbine components having improved environmental stability, cyclic durability and system performance will be described. The development trends for turbine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.
ERIC Educational Resources Information Center
Hermans, Daan; Ormel, E.; van Besselaar, Ria; van Hell, Janet
2011-01-01
Is the bilingual language production system a dynamic system that can operate in different language activation states? Three experiments investigated to what extent cross-language phonological co-activation effects in language production are sensitive to the composition of the stimulus list. L1 Dutch-L2 English bilinguals decided whether or not a…
Alaska’s timber harvest and forest products industry, 2011
Erik C. Berg; Charles B. Gale; Todd A. Morgan; Allen M. Brackley; Charles E. Keegan; Susan J. Alexander; Glenn A. Christensen; Chelsea P. McIver; Micah G. Scudder
2014-01-01
This report traces the flow of timber harvested in Alaska during calendar year 2011, describes the composition and operations of the stateâs primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as trends in timber harvest, production, export, sales of primary wood products,...
Current State of Military Hybrid Vehicle Development
2011-08-31
Integrated starter generator for engine shut down, regenerative braking and avoidance of inefficient engine operation [28]. FMTV VI Composite 6-9% Fuel...and eliminating the inefficiencies associated with idling, vehicle braking and low engine speed part load efficiency, many improvements could be...different drive cycles were being used to evaluate vehicle performance. These cycles can be divided into the following two categories : (1) Time
The Four Corners timber harvest and forest products industry, 2012
Colin B. Sorenson; Steven W. Hayes; Todd A. Morgan; Eric A. Simmons; Micah G. Scudder; Chelsea P. McIver; Mike T. Thompson
2016-01-01
This report traces the flow of timber harvested in the "Four Corners" States (Arizona, Colorado, New Mexico, and Utah) during calendar year 2012, describes the composition and operations of the regionâs primary forest products industry, and quantifies volumes and uses of wood fiber. Recent changes in the wood products industry are discussed, as well as trends...
Treatment of Spacecraft Wastewater Using a Hollow Fiber Membrane Biofilm Redox Control Reactor
NASA Technical Reports Server (NTRS)
Smith, Daniel P.
2003-01-01
The purpose of this project was to develop and evaluate design concepts for biological treatment reactors for the purification of spacecraft wastewater prior to reverse osmosis treatment. The motivating factor is that wastewater recovery represents the greatest single potential reduction in the resupply requirements for crewed space missions. Spacecraft wastewater composition was estimated from the characteristics of the three major component streams: urine/flush water, hygiene water, and atmospheric condensate. The key characteristics of composite spacecraft wastewater are a theoretical oxygen demand of 4519 mg/L, of which 65% is nitrogenous oxygen demand, in a volume of 11.5 liter/crew-day. The organic carbon to nitrogen ratio of composite wastewater is 0.86. Urine represents 93% of nitrogen and 49% of the organic carbon in the composite wastestream. Various bioreaction scenarios were evaluated to project stoichiometric oxygen demands and the ability of wastewater carbon to support denitrification. Ammonia nitrification to the nitrite oxidation state reduced the oxygen requirement and enabled wastewater carbon to provide nearly complete denitrification. A conceptual bioreactor design was established using hollow fiber membranes for bubbleless oxygen transfer in a gravity-free environment, in close spatial juxtaposition to a second interspaced hollow fiber array for supplying molecular hydrogen. Highly versatile redox control and an enhanced ability to engineer syntrophic associations are stated advantages. A prototype reactor was constructed using a microporous hollow fiber membrane module for aeration. Maintaining inlet gas pressure within 0.25 psi of the external water pressure resulted in bubble free operation with no water ingress into hollow fiber lumens. Recommendations include the design and operational testing of hollow fiber bioreactors using: 1) Partial nitrification/nitrite predenitrification; 2) Limited aeration for simultaneous nitrification/denitrification or for nitrite reduction/ammonia oxidation; 3) Hydrogenotrophic denitrification.
Constructing inorganic/polymer microsphere composite as lithium ion battery anode material
NASA Astrophysics Data System (ADS)
Zhou, Nan; Dong, Hui; Xu, Yunlong; Luo, Lei; Zhao, Chongjun; Wang, Di; Li, Haoran; Liu, Dong
2018-03-01
Spinel Li4Ti5O12 (LTO) holds great potential used as lithium ion battery(LIB) anode material for various hybrid, plug-in, and pure electrical vehicle applications. However, the low intrinsic conductivity and much underused capacity pose serious obstacles in practice for its wider and deeper utilization. Here we demonstrate a facile approach by which an LTO/Si/cyclized-polyacrylonitrile (PAN) inorganic/polymer composite is designed and implemented in attempt to tackle both challenges. Our results show that an optimal Si amount is needed in the composite so as to fully promote underused LTO capacity in a stable state while cyclized PAN not only improves conductivity, reaction kinetics and charge transfer resistance of the electrode through its turbostratic transition, but to much extent acts as a resilient binder to offset volumetric expansion caused by Si. The optimized composite exhibits admirable capacity and cycling performance during long-term operation.
NASA Astrophysics Data System (ADS)
Mastropasqua, L.; Campanari, S.; Brouwer, J.
2017-12-01
The need to experimentally understand the performance of Solid Oxide Fuel Cells (SOFC) stacks under Carbon Capture and Storage (CCS) mode operating conditions, hence with anode recirculation, has prompted this two-part study. The steady state performance of a 6-cell short stack of Y2O3 stabilised Zirconia (YSZ) with Ni/YSZ anodes and composite Sr-doped LaMnO3 (LSM)/YSZ cathodes is experimentally evaluated. In Part A, the electrical and environmental performance are assessed and the results are compared with the commercial full-scale micro-Combined Heat and Power system, which comprises the same cells. In Part B of this work, a specific set of stack operating conditions important to CCS applications is explored. The experimental inlet composition is changed in order to reproduce a simulated syngas in CCS mode operation for different fuel utilisation factors. Operation with the simulated anode recycle syngas leads to lower voltage when the anode recycle is lower, mainly due to higher internal reforming and polarisation losses. A clear voltage trend is observed when the amount of CO content in the inlet fuel is increased, signalling an improvement of the polarisation performance at constant current density and fixed inlet equivalent hydrogen content. Stack degradation is measured and results in line with manufacturer's data.
NASA Astrophysics Data System (ADS)
Kopsaftopoulos, Fotis; Nardari, Raphael; Li, Yu-Hung; Chang, Fu-Kuo
2018-01-01
In this work, a novel data-based stochastic "global" identification framework is introduced for aerospace structures operating under varying flight states and uncertainty. In this context, the term "global" refers to the identification of a model that is capable of representing the structure under any admissible flight state based on data recorded from a sample of these states. The proposed framework is based on stochastic time-series models for representing the structural dynamics and aeroelastic response under multiple flight states, with each state characterized by several variables, such as the airspeed, angle of attack, altitude and temperature, forming a flight state vector. The method's cornerstone lies in the new class of Vector-dependent Functionally Pooled (VFP) models which allow the explicit analytical inclusion of the flight state vector into the model parameters and, hence, system dynamics. This is achieved via the use of functional data pooling techniques for optimally treating - as a single entity - the data records corresponding to the various flight states. In this proof-of-concept study the flight state vector is defined by two variables, namely the airspeed and angle of attack of the vehicle. The experimental evaluation and assessment is based on a prototype bio-inspired self-sensing composite wing that is subjected to a series of wind tunnel experiments under multiple flight states. Distributed micro-sensors in the form of stretchable sensor networks are embedded in the composite layup of the wing in order to provide the sensing capabilities. Experimental data collected from piezoelectric sensors are employed for the identification of a stochastic global VFP model via appropriate parameter estimation and model structure selection methods. The estimated VFP model parameters constitute two-dimensional functions of the flight state vector defined by the airspeed and angle of attack. The identified model is able to successfully represent the wing's aeroelastic response under the admissible flight states via a minimum number of estimated parameters compared to standard identification approaches. The obtained results demonstrate the high accuracy and effectiveness of the proposed global identification framework, thus constituting a first step towards the next generation of "fly-by-feel" aerospace vehicles with state awareness capabilities.
More nonlocality with less purity.
Bandyopadhyay, Somshubhro
2011-05-27
Quantum information is nonlocal in the sense that local measurements on a composite quantum system, prepared in one of many mutually orthogonal states, may not reveal in which state the system was prepared. It is shown that in the many copy limit this kind of nonlocality is fundamentally different for pure and mixed quantum states. In particular, orthogonal mixed states may not be distinguishable by local operations and classical communication, no matter how many copies are supplied, whereas any set of N orthogonal pure states can be perfectly discriminated with m copies, where m
A posteriori operation detection in evolving software models
Langer, Philip; Wimmer, Manuel; Brosch, Petra; Herrmannsdörfer, Markus; Seidl, Martina; Wieland, Konrad; Kappel, Gerti
2013-01-01
As every software artifact, also software models are subject to continuous evolution. The operations applied between two successive versions of a model are crucial for understanding its evolution. Generic approaches for detecting operations a posteriori identify atomic operations, but neglect composite operations, such as refactorings, which leads to cluttered difference reports. To tackle this limitation, we present an orthogonal extension of existing atomic operation detection approaches for detecting also composite operations. Our approach searches for occurrences of composite operations within a set of detected atomic operations in a post-processing manner. One major benefit is the reuse of specifications available for executing composite operations also for detecting applications of them. We evaluate the accuracy of the approach in a real-world case study and investigate the scalability of our implementation in an experiment. PMID:23471366
Engine-Operating Load Influences Diesel Exhaust Composition and Cardiopulmonary and Immune Responses
Campen, Matthew J.; Harrod, Kevin S.; Seagrave, JeanClare; Seilkop, Steven K.; Mauderly, Joe L.
2011-01-01
Background: The composition of diesel engine exhaust (DEE) varies by engine type and condition, fuel, engine operation, and exhaust after treatment such as particle traps. DEE has been shown to increase inflammation, susceptibility to infection, and cardiovascular responses in experimentally exposed rodents and humans. Engines used in these studies have been operated at idle, at different steady-state loads, or on variable-load cycles, but exposures are often reported only as the mass concentration of particulate matter (PM), and the effects of different engine loads and the resulting differences in DEE composition are unknown. Objectives: We assessed the impacts of load-related differences in DEE composition on models of inflammation, susceptibility to infection, and cardiovascular toxicity. Methods: We assessed inflammation and susceptibility to viral infection in C57BL/6 mice and cardiovascular toxicity in APOE–/– mice after being exposed to DEE generated from a single-cylinder diesel generator operated at partial or full load. Results: At the same PM mass concentration, partial load resulted in higher proportions of particle organic carbon content and a smaller particle size than did high load. Vapor-phase hydrocarbon content was greater at partial load. Compared with high-load DEE, partial-load DEE caused greater responses in heart rate and T-wave morphology, in terms of both magnitude and rapidity of onset of effects, consistent with previous findings that systemic effects may be driven largely by the gas phase of the exposure atmospheres. However, high-load DEE caused more lung inflammation and greater susceptibility to viral infection than did partial load. Conclusions: Differences in engine load, as well as other operating variables, are important determinants of the type and magnitude of responses to inhaled DEE. PM mass concentration alone is not a sufficient basis for comparing or combining results from studies using DEE generated under different conditions. PMID:21524982
Compact Dual Ion Composition Experiment for space plasmas—CoDICE
NASA Astrophysics Data System (ADS)
Desai, M. I.; Ogasawara, K.; Ebert, R. W.; Allegrini, F.; McComas, D. J.; Livi, S.; Weidner, S. E.
2016-07-01
The Compact Dual Ion Composition Experiment—CoDICE—simultaneously provides high-quality plasma and energetic ion composition measurements over six decades in energy in a wide variety of space plasma environments. CoDICE measures two critical ion populations in space plasmas: (1) Elemental and charge state composition, and 3-D velocity distributions of <10 eV/q-40 keV/q plasma ions; and (2) Elemental composition, energy spectra, and angular distributions of ˜30 keV->10 MeV energetic ions. CoDICE uses a novel, integrated, common time-of-flight subsystem that provides several advantages over the commonly used separate plasma and energetic ion sensors currently flying on several space missions. These advantages include reduced mass and volume compared to two separate instruments, reduced shielding in high-radiation environments, and simplified spacecraft interface and accommodation requirements. This paper describes the operation principles, electro-optic simulation results and applies the CoDICE concept for measuring plasma and energetic ion populations in Jupiter's magnetosphere.
ISAAC Advanced Composites Research Testbed
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.
2014-01-01
The NASA Langley Research Center is acquiring a state-of-art composites fabrication capability to support the Center's advanced research and technology mission. The system introduced in this paper is named ISAAC (Integrated Structural Assembly of Advanced Composites). The initial operational capability of ISAAC is automated fiber placement, built around a commercial system from Electroimpact, Inc. that consists of a multi-degree of freedom robot platform, a tool changer mechanism, and a purpose-built fiber placement end effector. Examples are presented of the advanced materials, structures, structural concepts, fabrication processes and technology development that may be enabled using the ISAAC system. The fiber placement end effector may be used directly or with appropriate modifications for these studies, or other end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.
Thermal-mechanical properties of epoxy-impregnated Bi-2212/Ag composite
Li, Pei; Wang, Yang; Fermi National Accelerator Lab.; ...
2014-11-26
In this study, knowledge of the thermal-mechanical properties of epoxy/superconductor/insulation composite is important for designing, fabricating, and operating epoxy impregnated high field superconducting magnets near their ultimate potentials. We report measurements of the modulus of elasticity, Poisson's ratio, and the coefficient of thermal contraction of epoxy-impregnated composite made from the state-of-the-art powder-in-tube multifilamentary Ag/Bi 2Sr 2CaCu 2O x round wire at room temperature and cryogenic temperatures. Stress-strain curves of samples made from single-strand and Rutherford cables were tested under both monotonic and cyclic compressive loads, with single strands insulated using a thin TiO 2 insulation coating and the Rutherford cablemore » insulated with a braided ceramic sleeve.« less
Operational Axioms for Quantum Mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Ariano, Giacomo Mauro; Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208
2007-02-21
The mathematical formulation of Quantum Mechanics in terms of complex Hilbert space is derived for finite dimensions, starting from a general definition of physical experiment and from five simple Postulates concerning experimental accessibility and simplicity. For the infinite dimensional case, on the other hand, a C*-algebra representation of physical transformations is derived, starting from just four of the five Postulates via a Gelfand-Naimark-Segal (GNS) construction. The present paper simplifies and sharpens the previous derivation in Ref. [1]. The main ingredient of the axiomatization is the postulated existence of faithful states that allows one to calibrate the experimental apparatus. Such notionmore » is at the basis of the operational definitions of the scalar product and of the transposed of a physical transformation. What is new in the present paper with respect to Ref. [1], is the operational deduction of an involution corresponding to the complex-conjugation for effects, whose extension to transformations allows to define the adjoint of a transformation when the extension is composition-preserving. The existence of such composition-preserving extension among possible extensions is analyzed.« less
Multi-physics damage sensing in nano-engineered structural composites.
de Villoria, Roberto Guzmán; Yamamoto, Namiko; Miravete, Antonio; Wardle, Brian L
2011-05-06
Non-destructive evaluation techniques can offer viable diagnostic and prognostic routes to mitigating failures in engineered structures such as bridges, buildings and vehicles. However, existing techniques have significant drawbacks, including poor spatial resolution and limited in situ capabilities. We report here a novel approach where structural advanced composites containing electrically conductive aligned carbon nanotubes (CNTs) are ohmically heated via simple electrical contacts, and damage is visualized via thermographic imaging. Damage, in the form of cracks and other discontinuities, usefully increases resistance to both electrical and thermal transport in these materials, which enables tomographic full-field damage assessment in many cases. Characteristics of the technique include the ability for real-time measurement of the damage state during loading, low-power operation (e.g. 15 °C rise at 1 W), and beyond state-of-the-art spatial resolution for sensing damage in composites. The enhanced thermographic technique is a novel and practical approach for in situ monitoring to ascertain structural health and to prevent structural failures in engineered structures such as aerospace and automotive vehicles and wind turbine blades, among others.
Multi-physics damage sensing in nano-engineered structural composites
NASA Astrophysics Data System (ADS)
Guzmán de Villoria, Roberto; Yamamoto, Namiko; Miravete, Antonio; Wardle, Brian L.
2011-05-01
Non-destructive evaluation techniques can offer viable diagnostic and prognostic routes to mitigating failures in engineered structures such as bridges, buildings and vehicles. However, existing techniques have significant drawbacks, including poor spatial resolution and limited in situ capabilities. We report here a novel approach where structural advanced composites containing electrically conductive aligned carbon nanotubes (CNTs) are ohmically heated via simple electrical contacts, and damage is visualized via thermographic imaging. Damage, in the form of cracks and other discontinuities, usefully increases resistance to both electrical and thermal transport in these materials, which enables tomographic full-field damage assessment in many cases. Characteristics of the technique include the ability for real-time measurement of the damage state during loading, low-power operation (e.g. 15 °C rise at 1 W), and beyond state-of-the-art spatial resolution for sensing damage in composites. The enhanced thermographic technique is a novel and practical approach for in situ monitoring to ascertain structural health and to prevent structural failures in engineered structures such as aerospace and automotive vehicles and wind turbine blades, among others.
Metal Matrix Superconductor Composites for SMES-Driven, Ultra High Power BEP Applications: Part 2
NASA Astrophysics Data System (ADS)
Gross, Dan A.; Myrabo, Leik N.
2006-05-01
A 2.5 TJ superconducting magnetic energy storage (SMES) design presentation is continued from the preceding paper (Part 1) with electromagnetic and associated stress analysis. The application of interest is a rechargeable power-beaming infrastructure for manned microwave Lightcraft operations. It is demonstrated that while operational performance is within manageable parameter bounds, quench (loss of superconducting state) imposes enormous electrical stresses. Therefore, alternative multiple toroid modular configurations are identified, alleviating simultaneously all excessive stress conditions, operational and quench, in the structural, thermal and electromagnetic sense — at some reduction in specific energy, but presenting programmatic advantages for a lengthy technology development, demonstration and operation schedule. To this end several natural units, based on material properties and operating parameters are developed, in order to identify functional relationships and optimization paths more effectively.
NASA Astrophysics Data System (ADS)
Lee, H. C.; Meissner, O. R.; Meissner, H. E.
2005-06-01
Adhesive-free bonded (AFB®) composite crystals have proven to be useful components in diode-pumped solid-state lasers (DPSSL). The combination of a lasing medium of higher index of refraction with laser-inactive cladding layers of lower index results in light- or wave-guided slab architectures. The cladding layers also serve to provide mechanical support, thermal uniformity and a heat sink during laser operation. Therefore, the optical and mechanical properties of these components are of interest for the design of DPSSL, especially at high laser fluencies and output power. We report on process parameters and material attributes that result in stress-free AFB® composites that are resistant to thermally induced failure. Formation of stress-free and durable bonds between two dissimilar materials requires heat-treatment of composites to a temperature high enough to ensure durable bonds and low enough to prevent forming of permanent chemical bonds. The onset temperature for forming permanent bonds at the interface sets the upper limit for heat treatment. This limiting temperature is dependent on the chemical composition, crystallographic orientation, and surface characteristics. We have determined the upper temperature limits for forming stress-free bonds between YAG and sapphire, YAG and GGG, YAG and spinel, spinel and sapphire, spinel and GGG, and sapphire and GGG composites. We also deduce the relative magnitude of thermal expansion coefficients amongst the respective single crystals as αGGG > αsapp_c > αspinel > αYAG > αsapp_a from interferometric analysis.
Advanced surface chemical analysis of continuously manufactured drug loaded composite pellets.
Hossain, Akter; Nandi, Uttom; Fule, Ritesh; Nokhodchi, Ali; Maniruzzaman, Mohammed
2017-04-15
The aim of the present study was to develop and characterise polymeric composite pellets by means of continuous melt extrusion techniques. Powder blends of a steroid hormone (SH) as a model drug and either ethyl cellulose (EC N10 and EC P7 grades) or hydroxypropyl methylcellulose (HPMC AS grade) as polymeric carrier were extruded using a Pharma 11mm twin screw extruder in a continuous mode of operation to manufacture extruded composite pellets of 1mm length. Molecular modelling study using commercial Gaussian 09 software outlined a possible drug-polymer interaction in the molecular level to develop solid dispersions of the drug in the pellets. Solid-state analysis conducted via a differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray powder diffraction (XRPD) analyses revealed the amorphous state of the drug in the polymer matrices. Surface analysis using SEM/energy dispersive X-ray (EDX) of the produced pellets arguably showed a homogenous distribution of the C and O atoms in the pellet matrices. Moreover, advanced chemical surface analysis conducted via atomic force microscopy (AFM) showed a homogenous phase system having the drug molecule dispersed onto the amorphous matrices while Raman mapping confirmed the homogenous single-phase drug distribution in the manufactured composite pellets. Such composite pellets are expected to deliver multidisciplinary applications in drug delivery and medical sciences by e.g. modifying drug solubility/dissolutions or stabilizing the unstable drug (e.g. hormone, protein) in the composite network. Copyright © 2016. Published by Elsevier Inc.
Wen J. Wang; Hong S. He; Frank R. Thompson; Jacob S. Fraser; William D. Dijak
2016-01-01
Tree species distribution and abundance are affected by forces operating at multiple scales. Niche and biophysical process models have been commonly used to predict climate change effects at regional scales, however, these models have limited capability to include site-scale population dynamics and landscape- scale disturbance and dispersal. We applied a landscape...
A Summary Score for the Framingham Heart Study Neuropsychological Battery
Downer, Brian; Fardo, David W.; Schmitt, Frederick A.
2015-01-01
Objective To calculate three summary scores of the Framingham Heart Study neuropsychological battery and determine which score best differentiates between subjects classified as having normal cognition, test-based impaired learning and memory, test-based multidomain impairment, and dementia. Method The final sample included 2,503 participants. Three summary scores were assessed: (a) composite score that provided equal weight to each subtest, (b) composite score that provided equal weight to each cognitive domain assessed by the neuropsychological battery, and (c) abbreviated score comprised of subtests for learning and memory. Receiver operating characteristic analysis was used to determine which summary score best differentiated between the four cognitive states. Results The summary score that provided equal weight to each subtest best differentiated between the four cognitive states. Discussion A summary score that provides equal weight to each subtest is an efficient way to utilize all of the cognitive data collected by a neuropsychological battery. PMID:25804903
A Summary Score for the Framingham Heart Study Neuropsychological Battery.
Downer, Brian; Fardo, David W; Schmitt, Frederick A
2015-10-01
To calculate three summary scores of the Framingham Heart Study neuropsychological battery and determine which score best differentiates between subjects classified as having normal cognition, test-based impaired learning and memory, test-based multidomain impairment, and dementia. The final sample included 2,503 participants. Three summary scores were assessed: (a) composite score that provided equal weight to each subtest, (b) composite score that provided equal weight to each cognitive domain assessed by the neuropsychological battery, and (c) abbreviated score comprised of subtests for learning and memory. Receiver operating characteristic analysis was used to determine which summary score best differentiated between the four cognitive states. The summary score that provided equal weight to each subtest best differentiated between the four cognitive states. A summary score that provides equal weight to each subtest is an efficient way to utilize all of the cognitive data collected by a neuropsychological battery. © The Author(s) 2015.
Representation of natural numbers in quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, Paul
2001-03-01
This paper represents one approach to making explicit some of the assumptions and conditions implied in the widespread representation of numbers by composite quantum systems. Any nonempty set and associated operations is a set of natural numbers or a model of arithmetic if the set and operations satisfy the axioms of number theory or arithmetic. This paper is limited to k-ary representations of length L and to the axioms for arithmetic modulo k{sup L}. A model of the axioms is described based on an abstract L-fold tensor product Hilbert space H{sup arith}. Unitary maps of this space onto a physicalmore » parameter based product space H{sup phy} are then described. Each of these maps makes states in H{sup phy}, and the induced operators, a model of the axioms. Consequences of the existence of many of these maps are discussed along with the dependence of Grover's and Shor's algorithms on these maps. The importance of the main physical requirement, that the basic arithmetic operations are efficiently implementable, is discussed. This condition states that there exist physically realizable Hamiltonians that can implement the basic arithmetic operations and that the space-time and thermodynamic resources required are polynomial in L.« less
Managing storm water at airports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halm, M.J.
1996-09-01
Airports are active facilities with numerous on-going operations at their sites. The following operations may adversely affect the water quality of nearby aquatic environments: De-icing runways; de-icing taxiways; de-icing and anti-icing aircraft; aircraft maintenance; and salt de-icer application. Until the amendments to the Clean Water Act of 1972, referred to as the Water Quality Act of 1987, were passed by Congress, the majority of storm water discharges in the US were unregulated. The Water Quality Act of 1987 was promulgated as an effort to manage the pollution resulting from storm water runoff. Many industrial facilities, especially airports, were faced withmore » complex problems in attempting to comply with these new federal regulations. National Pollution Discharge Elimination System (NPDES) permits for airports with more than 50,000 flight operations per year require periodic monitoring of receiving waters and storm sewer outfalls. The federal government has given states jurisdiction in issuing NPDES permits for storm water discharges. States may require composite or grab samples.« less
Difficulty of distinguishing product states locally
NASA Astrophysics Data System (ADS)
Croke, Sarah; Barnett, Stephen M.
2017-01-01
Nonlocality without entanglement is a rather counterintuitive phenomenon in which information may be encoded entirely in product (unentangled) states of composite quantum systems in such a way that local measurement of the subsystems is not enough for optimal decoding. For simple examples of pure product states, the gap in performance is known to be rather small when arbitrary local strategies are allowed. Here we restrict to local strategies readily achievable with current technology: those requiring neither a quantum memory nor joint operations. We show that even for measurements on pure product states, there can be a large gap between such strategies and theoretically optimal performance. Thus, even in the absence of entanglement, physically realizable local strategies can be far from optimal for extracting quantum information.
Creep of Heat-Resistant Composites of an Oxide-Fiber/Ni-Matrix Family
NASA Astrophysics Data System (ADS)
Mileiko, S. T.
2001-09-01
A creep model of a composite with a creeping matrix and initially continuous elastic brittle fibers is developed. The model accounts for the fiber fragmentation in the stage of unsteady creep of the composite, which ends with a steady-state creep, where a minimum possible average length of the fiber is achieved. The model makes it possible to analyze the creep rate of the composite in relation to such parameters of its structure as the statistic characteristics of the fiber strength, the creep characteristics of the matrix, and the strength of the fiber-matrix interface, the latter being of fundamental importance. A comparison between the calculation results and the experimental ones obtained on composites with a Ni-matrix and monocrystalline and eutectic oxide fibers as well as on sapphire fiber/TiAl-matrix composites shows that the model is applicable to the computer simulation of the creep behavior of heat-resistant composites and to the optimization of the structure of such composites. By combining the experimental data with calculation results, it is possible to evaluate the heat resistance of composites and the potential of oxide-fiber/Ni-matrix composites. The composite specimens obtained and tested to date reveal their high creep resistance up to a temperature of 1150°C. The maximum operating temperature of the composites can be considerably raised by strengthening the fiber-matrix interface.
Subscale Test Methods for Combustion Devices
NASA Technical Reports Server (NTRS)
Anderson, W. E.; Sisco, J. C.; Long, M. R.; Sung, I.-K.
2005-01-01
Stated goals for long-life LRE s have been between 100 and 500 cycles: 1) Inherent technical difficulty of accurately defining the transient and steady state thermochemical environments and structural response (strain); 2) Limited statistical basis on failure mechanisms and effects of design and operational variability; and 3) Very high test costs and budget-driven need to protect test hardware (aversion to test-to-failure). Ambitious goals will require development of new databases: a) Advanced materials, e.g., tailored composites with virtually unlimited property variations; b) Innovative functional designs to exploit full capabilities of advanced materials; and c) Different cycles/operations. Subscale testing is one way to address technical and budget challenges: 1) Prototype subscale combustors exposed to controlled simulated conditions; 2) Complementary to conventional laboratory specimen database development; 3) Instrumented with sensors to measure thermostructural response; and 4) Coupled with analysis
ERIC Educational Resources Information Center
PETERSON, CLARENCE E.
THIS IS THE FIRST OF A SERIES DESIGNED TO PROVIDE AID TO STATES IN ORGANIZING AND OPERATING PROGRAMS UNDER TITLE VIII OF THE NATIONAL DEFENSE EDUCATION ACT, PUBLIC LAW 85-864. IT FURNISHES--(1) GENERAL INFORMATION ABOUT A TECHNOLOGY OR BROAD FIELD OF WORK, (2) COMPOSITE JOB DESCRIPTIONS OF REPRESENTATIVE OCCUPATIONS IN THAT FIELD OF WORK, (3) A…
Gasification reactor engineering approach to understanding the formation of biochar properties
2016-01-01
The correlation between thermochemical provenance and biochar functionality is poorly understood. To this end, operational reactor temperatures (spanning the reduction zone), pressure and product gas composition measurements were obtained from a downdraft gasifier and compared against elemental composition, surface morphology and polyaromatic hydrocarbon content (PAH) of the char produced. Pine feedstock moisture with values of 7% and 17% was the experimental variable. Moderately high steady-state temperatures were observed inside the reactor, with a ca 50°C difference in how the gasifier operated between the two feedstock types. Both chars exhibited surface properties comparable to activated carbon, but the relatively small differences in temperature caused significant variations in biochar surface area and morphology: micropore area 584 against 360 m2 g−1, and micropore volume 0.287 against 0.172 cm3 g−1. Differences in char extractable PAH content were also observed, with higher concentrations (187 µg g−1 ± 18 compared with 89 ± 19 µg g−1 Σ16EPA PAH) when the gasifier was operated with higher moisture content feedstock. It is recommended that greater detail on operational conditions during biochar production should be incorporated to future biochar characterization research as a consequence of these results. PMID:27616911
An, Seong Jin; Li, Jianlin; Daniel, Claus; ...
2016-04-09
An in-depth review is presented on the science of lithium-ion battery (LIB) solid electrolyte interphase (SEI) formation on the graphite anode, including structure, morphology, chemical composition, electrochemistry, formation mechanism, and LIB formation cycling. During initial operation of LIBs, the SEI layer forms on the graphite surfaces, the most commonly used anode material, due to side reactions with the electrolyte solvent/salt at low electro-reduction potentials. It is accepted that the SEI layer is essential to the long-term performance of LIBs, and it also has an impact on its initial capacity loss, self-discharge characteristics, cycle life, rate capability, and safety. While themore » presence of the anode SEI layer is vital, it is difficult to control its formation and growth, as the chemical composition, morphology, and stability depend on several factors. These factors include the type of graphite, electrolyte composition, electrochemical conditions, and cell temperature. Thus, SEI layer formation and electrochemical stability over long-term operation should be a primary topic of future investigation in the development of LIB technology. We review the progression of knowledge gained about the anode SEI, from its discovery in 1979 to the current state of understanding, and covers its formation process, differences in the chemical and structural makeup when cell materials and components are varied, methods of characterization, and associated reactions with the liquid electrolyte phase. It also discusses the relationship of the SEI layer to the LIB formation step, which involves both electrolyte wetting and subsequent slow charge-discharge cycles to grow the SEI.« less
A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munafò, A., E-mail: munafo@illinois.edu; Alfuhaid, S. A., E-mail: alfuhai2@illinois.edu; Panesi, M., E-mail: mpanesi@illinois.edu
2015-10-07
The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled systemmore » of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.« less
14 CFR 135.99 - Composition of flight crew.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Composition of flight crew. 135.99 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less...
14 CFR 135.99 - Composition of flight crew.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Composition of flight crew. 135.99 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less...
14 CFR 135.99 - Composition of flight crew.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Composition of flight crew. 135.99 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maswadeh, Yazan; Shan, Shiyao; Prasai, Binay
The activity and stability of nanoalloy catalysts for chemical reactions driving devices for clean energy conversion, in particular the oxygen reduction reaction (ORR), depend critically on optimizing major structural characteristics of the nanoalloys, such as the phase composition, surface area and bonding interactions between the constituent atoms, for the harsh operating conditions inside the devices. The effort requires good knowledge of the potential effect of changes in these characteristics on the catalytic functionality of the nanoalloys and, hence, on the devices' performance. We present the results from an in operando high-energy X-ray diffraction (HE-XRD) study on the concurrent changes inmore » the structural characteristics and ORR activity of Pd–Cu nanoalloy catalysts as they function at the cathode of a proton exchange membrane fuel cell (PEMFC). We find that the as-prepared Pd–Cu nanoalloys with a chemical composition close to Pd1Cu1 are better ORR catalysts in comparison with Pd1Cu2, i.e. Pd-poor, and Pd3Cu1, i.e. Pd-rich, nanoalloys. Under operating conditions though, the former suffers a big loss in ORR activity appearing as a slow-mode oscillation in the current output of the PEMFC. Losses in ORR activity suffered by the latter also exhibit sudden drops and rises during the PEMFC operation. Through atomic pair distribution function (PDF) analysis of the in operando HE-XRD data, we identify the structural changes of Pd–Cu alloy NPs that are behind the peculiar decay of their ORR activity. The results uncover the instant link between the ever-adapting structural state of ORR nanocatalysts inside an operating PEMFC and the performance of the PEMFC. Besides, our results indicate that, among others, taking control over the intra-particle diffusion of metallic species in nanoalloy catalysts may improve the performance of PEMFCs significantly and, furthermore, in operando HE-XRD can be an effective tool to guide the effort. Finally, we argue that, though showing less optimal ORR activity in the as-prepared state, monophase Pd–Cu alloy catalysts with a composition ranging between Pd1Cu1 and Pd3Cu1 may deliver optimal performance inside operating PEMFCs.« less
Bieda, Marcin S; Sobotka, Piotr; Woliński, Tomasz R
2017-02-20
A new sensor configuration is proposed for simultaneous strain and temperature monitoring in a composite material that is based on a chirped fiber Bragg grating (CFBG) written in a highly birefringent (HB) polarization-maintaining fiber. The sensor is designed in the reflective configuration in which the CFBG acts both as a reflector and a sensing element. Since CFBG and HB fiber induce changes in the state of polarization (SOP), interference between polarization modes in the reflected spectrum is observed and analyzed. We used a simple readout setup to enable fast, linear operation of strain sensing as well simultaneous strain and temperature measurements in the composite.
Second-order shaped pulsed for solid-state quantum computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Pinaki
2008-01-01
We present the construction and detailed analysis of highly optimized self-refocusing pulse shapes for several rotation angles. We characterize the constructed pulses by the coefficients appearing in the Magnus expansion up to second order. This allows a semianalytical analysis of the performance of the constructed shapes in sequences and composite pulses by computing the corresponding leading-order error operators. Higher orders can be analyzed with the numerical technique suggested by us previously. We illustrate the technique by analyzing several composite pulses designed to protect against pulse amplitude errors, and on decoupling sequences for potentially long chains of qubits with on-site andmore » nearest-neighbor couplings.« less
NASA Technical Reports Server (NTRS)
Zamula, G. N.; Ierusalimsky, K. M.; Fomin, V. P.; Grishin, V. I.; Kalmykova, G. S.
1999-01-01
The present document is a final technical report under the NCC-1-233 research program (dated September 15, 1998; see Appendix 5) carried out within co-operation between United States'NASA Langley RC and Russia's Goskomoboronprom in aeronautics, and continues similar programs, NCCW-73, NCC-1-233 and NCCW 1-233 accomplished in 1996, 1997, and 1998, respectively. The report provides results of "The study of stability of compression-loaded multispan composite panels upon failure of elements binding it to panel supports"; these comply with requirements established at TsAGI on 24 March 1998 and at NASA on 15 September 1998.
NASA Astrophysics Data System (ADS)
Zelenyuk, A.; Cuadra-Rodriguez, L. A.; Imre, D.; Shimpi, S.; Warey, A.
2006-12-01
The strong absorption of solar radiation by black carbon (BC) impacts the atmospheric radiative balance in a complex and significant manner. One of the most important sources of BC is vehicular emissions, of which diesel represents a significant fraction. To address this issue the EPA has issues new stringent regulations that will be in effect in 2007, limiting the amount of particulate mass that can be emitted by diesel engines. The new engines are equipped with aftertreatments that reduce PM emissions to the point, where filter measurements are subject to significant artifacts and characterization by other techniques presents new challenges. We will present the results of the multidisciplinary study conducted at the Cummins Technical Center in which a suite of instruments was deployed to yield comprehensive, temporally resolved information on the diesel exhaust particle loadings and properties in real-time: Particle size distributions were measured by Engine Exhaust Particle Sizer (EEPS) and Scanning Mobility Particle Sizer (SMPS). Total particle diameter concentration was obtained using Electrical Aerosol Detector (EAD). Laser Induced Incandescence and photoacoustic techniques were used to monitor the PM soot content. Single Particle Laser Ablation Time-of- flight Mass Spectrometer (SPLAT) provided the aerodynamic diameter and chemical composition of individual diesel exhaust particles. Measurements were conducted on a number of heavy duty diesel engines operated under variety of operating conditions, including FTP transient cycles, ramped-modal cycles and steady states runs. We have also characterized PM emissions during diesel particulate filter regeneration cycles. We will present a comparison of PM characteristics observed during identical cycles, but with and without the use of aftertreatment. A total of approximately 100,000 individual particles were sized and their composition characterized by SPLAT. The aerodynamic size distributions of the characterized particles were between 50 and 300 nm, depending on engine operating conditions and particle composition. We will show that while the drastically reduced diesel PM emissions often render the PM filter measurements inadequate due to organic vapor artifacts SPLAT demonstrated its capability to provide real-time information on size and composition of individual diesel exhaust particles as function of engine operating conditions with better than 1 minute resolution.
Nursing home quality and financial performance: does the racial composition of residents matter?
Chisholm, Latarsha; Weech-Maldonado, Robert; Laberge, Alex; Lin, Feng-Chang; Hyer, Kathryn
2013-12-01
To examine the effects of the racial composition of residents on nursing homes' financial and quality performance. The study examined Medicare and Medicaid-certified nursing homes across the United States that submitted Medicare cost reports between the years 1999 and 2004 (11,472 average per year). Data were obtained from the Minimum Data Set, the On-Line Survey Certification and Reporting, Medicare Cost Reports, and the Area Resource File. Panel data regression with random intercepts and negative binomial regression were conducted with state and year fixed effects. Financial and quality performance differed between nursing homes with high proportions of black residents and nursing homes with no or medium proportions of black residents. Nursing homes with no black residents had higher revenues and higher operating margins and total profit margins and they exhibited better processes and outcomes than nursing homes with high proportions of black residents. Nursing homes' financial viability and quality of care are influenced by the racial composition of residents. Policy makers should consider initiatives to improve both the financial and quality performance of nursing homes serving predominantly black residents. © Health Research and Educational Trust.
Simulating the Composite Propellant Manufacturing Process
NASA Technical Reports Server (NTRS)
Williamson, Suzanne; Love, Gregory
2000-01-01
There is a strategic interest in understanding how the propellant manufacturing process contributes to military capabilities outside the United States. The paper will discuss how system dynamics (SD) has been applied to rapidly assess the capabilities and vulnerabilities of a specific composite propellant production complex. These facilities produce a commonly used solid propellant with military applications. The authors will explain how an SD model can be configured to match a specific production facility followed by a series of scenarios designed to analyze operational vulnerabilities. By using the simulation model to rapidly analyze operational risks, the analyst gains a better understanding of production complexities. There are several benefits of developing SD models to simulate chemical production. SD is an effective tool for characterizing complex problems, especially the production process where the cascading effect of outages quickly taxes common understanding. By programming expert knowledge into an SD application, these tools are transformed into a knowledge management resource that facilitates rapid learning without requiring years of experience in production operations. It also permits the analyst to rapidly respond to crisis situations and other time-sensitive missions. Most importantly, the quantitative understanding gained from applying the SD model lends itself to strategic analysis and planning.
NASA Astrophysics Data System (ADS)
Schagerl, M.; Viechtbauer, C.; Hörrmann, S.
2015-07-01
Damage tolerance is a classical safety concept for the design of aircraft structures. Basically, this approach considers possible damages in the structure, predicts the damage growth under applied loading conditions and predicts the following decrease of the structural strength. As a fundamental result the damage tolerance approach yields the maximum inspection interval, which is the time a damage grows from a detectable to a critical level. The above formulation of the damage tolerance safety concept targets on metallic structures where the damage is typically a simple fatigue crack. Fiber-reinforced polymers show a much more complex damage behavior, such as delaminationsin laminated composites. Moreover, progressive damage in composites is often initiated by manufacturing defects. The complex manufacturing processes for composite structures almost certainly yield parts with defects, e.g. pores in the matrix or undulations of fibers. From such defects growing damages may start after a certain time of operation. The demand to simplify or even avoid the inspection of composite structures has therefore led to a comeback of the traditional safe-life safety concept. The aim of the so-called safe-life flaw tolerance concept is a structure that is capable of carrying the static loads during operation, despite significant damages and after a representative fatigue load spectrum. A structure with this property does not need to be inspected, respectively monitored at all during its service life. However, its load carrying capability is thereby not fully utilized. This article presents the possible refinement of the state-of-the-art safe-life flaw tolerance concept for composite structures towards a damage tolerance approach considering also the influence of manufacturing defects on damage initiation and growth. Based on fundamental physical relations and experimental observations the challenges when developing damage growth and residual strength curves are discussed.
A digital computer simulation and study of a direct-energy-transfer power-conditioning system
NASA Technical Reports Server (NTRS)
Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.
1974-01-01
A digital computer simulation technique, which can be used to study such composite power-conditioning systems, was applied to a spacecraft direct-energy-transfer power-processing system. The results obtained duplicate actual system performance with considerable accuracy. The validity of the approach and its usefulness in studying various aspects of system performance such as steady-state characteristics and transient responses to severely varying operating conditions are demonstrated experimentally.
Self-Deploying Trusses Containing Shape-Memory Polymers
NASA Technical Reports Server (NTRS)
Schueler, Robert M.
2008-01-01
Composite truss structures are being developed that can be compacted for stowage and later deploy themselves to full size and shape. In the target applications, these smart structures will precisely self-deploy and support a large, lightweight space-based antenna. Self-deploying trusses offer a simple, light, and affordable alternative to articulated mechanisms or inflatable structures. The trusses may also be useful in such terrestrial applications as variable-geometry aircraft components or shelters that can be compacted, transported, and deployed quickly in hostile environments. The truss technology uses high-performance shape-memory-polymer (SMP) thermoset resin reinforced with fibers to form a helical composite structure. At normal operating temperatures, the truss material has the structural properties of a conventional composite. This enables truss designs with required torsion, bending, and compression stiffness. However, when heated to its designed glass transition temperature (Tg), the SMP matrix acquires the flexibility of an elastomer. In this state, the truss can be compressed telescopically to a configuration encompassing a fraction of its original volume. When cooled below Tg, the SMP reverts to a rigid state and holds the truss in the stowed configuration without external constraint. Heating the materials above Tg activates truss deployment as the composite material releases strain energy, driving the truss to its original memorized configuration without the need for further actuation. Laboratory prototype trusses have demonstrated repeatable self-deployment cycles following linear compaction exceeding an 11:1 ratio (see figure).
Composition operators with weak hyponormality
NASA Astrophysics Data System (ADS)
Burnap, Charles; Jung, Il Bong
2008-01-01
There are many operator classes that are weaker than p-hyponormal. These include p-quasihyponormal, absolute p-paranormal, p-paranormal, normaloid, and spectraloid. In this note, we discuss measure theoretic composition operators in these classes.
14 CFR 135.99 - Composition of flight crew.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less...
NASA Astrophysics Data System (ADS)
Stajner, I.; Hou, Y. T.; McQueen, J.; Lee, P.; Stein, A. F.; Tong, D.; Pan, L.; Huang, J.; Huang, H. C.; Upadhayay, S.
2016-12-01
NOAA provides operational air quality predictions using the National Air Quality Forecast Capability (NAQFC): ozone and wildfire smoke for the United States and airborne dust for the contiguous 48 states at http://airquality.weather.gov. NOAA's predictions of fine particulate matter (PM2.5) became publicly available in February 2016. Ozone and PM2.5 predictions are produced using a system that operationally links the Community Multiscale Air Quality (CMAQ) model with meteorological inputs from the North American mesoscale forecast Model (NAM). Smoke and dust predictions are provided using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Current NAQFC focus is on updating CMAQ to version 5.0.2, improving PM2.5 predictions, and updating emissions estimates, especially for NOx using recently observed trends. Wildfire smoke emissions from a newer version of the USFS BlueSky system are being included in a new configuration of the NAQFC NAM-CMAQ system, which is re-run for the previous 24 hours when the wildfires were observed from satellites, to better represent wildfire emissions prior to initiating predictions for the next 48 hours. In addition, NOAA is developing the Next Generation Global Prediction System (NGGPS) to represent the earth system for extended weather prediction. NGGPS will include a representation of atmospheric dynamics, physics, aerosols and atmospheric composition as well as coupling with ocean, wave, ice and land components. NGGPS is being developed with a broad community involvement, including community developed components and academic research to develop and test potential improvements for potentially inclusion in NGGPS. Several investigators at NOAA's research laboratories and in academia are working to improve the aerosol and gaseous chemistry representation for NGGPS, to develop and evaluate the representation of atmospheric composition, and to establish and improve the coupling with radiation and microphysics. Additional efforts may include the improved use of predicted atmospheric composition in assimilation of observations and the linkage of full global atmospheric composition predictions with national air quality predictions.
Multiple switching modes and multiple level states in memristive devices
NASA Astrophysics Data System (ADS)
Miao, Feng; Yang, J. Joshua; Borghetti, Julien; Strachan, John Paul; Zhang, M.-X.; Goldfarb, Ilan; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley
2011-03-01
As one of the most promising technologies for next generation non-volatile memory, metal oxide based memristive devices have demonstrated great advantages on scalability, operating speed and power consumption. Here we report the observation of multiple switching modes and multiple level states in different memristive systems. The multiple switching modes can be obtained by limiting the current during electroforming, and related transport behaviors, including ionic and electronic motions, are characterized. Such observation can be rationalized by a model of two effective switching layers adjacent to the bottom and top electrodes. Multiple level states, corresponding to different composition of the conducting channel, will also be discussed in the context of multiple-level storage for high density, non-volatile memory applications.
Deployment of Large-Size Shell Constructions by Internal Pressure
NASA Astrophysics Data System (ADS)
Pestrenin, V. M.; Pestrenina, I. V.; Rusakov, S. V.; Kondyurin, A. V.
2015-11-01
A numerical study on the deployment pressure (the minimum internal pressure bringing a construction from the packed state to the operational one) of large laminated CFRP shell structures is performed using the ANSYS engineering package. The shell resists both membrane and bending deformations. Structures composed of shell elements whose median surface has an involute are considered. In the packed (natural) states of constituent elements, the median surfaces coincide with their involutes. Criteria for the termination of stepwise solution of the geometrically nonlinear problem on determination of the deployment pressure are formulated, and the deployment of cylindrical, conical (full and truncated cones), and large-size composite shells is studied. The results obtained are shown by graphs illustrating the deployment pressure in relation to the geometric and material parameters of the structure. These studies show that large pneumatic composite shells can be used as space and building structures, because the deployment pressure in them only slightly differs from the excess pressure in pneumatic articles made from films and soft materials.
Trends in auto emissions and gasoline composition.
Sawyer, R F
1993-01-01
The invention of the spark-ignited internal combustion engine provided a market for a petroleum middle distillate, gasoline, about 100 years ago. The internal combustion engine and gasoline have co-evolved until motor vehicles now annually consume about 110 billion gallons of gasoline in the United States. Continuing air pollution problems and resulting regulatory pressures are driving the need for further automotive emissions reductions. Engine and emissions control technology provided most earlier reductions. Changing the composition of gasoline will play a major role in the next round of reductions. The engineering and regulatory definition of a reformulated gasoline is proceeding rapidly, largely as the result of an auto and oil industry cooperative data generation program. It is likely that this new, reformulated gasoline will be introduced in high-ozone regions of the United States in the mid-1990s. Alternative clean fuels, primarily methane, methanol, and liquid petroleum gas, will become more widely used during this same period, probably first in fleet operations. PMID:7517353
Fabrication of highly selective tungsten oxide ammonia sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llobet, E.; Molas, G.; Molinas, P.
Tungsten oxide is shown to be a very promising material for the fabrication of highly selective ammonia sensors. Films of WO{sub 3} were deposited onto a silicon substrate by means of the drop-coating method. Then, the films were annealed in dry air at two different temperatures (300 and 400 C). X-ray photoelectron spectroscopy was used to investigate the composition of the films. Tungsten appeared both in WO{sub 2} and WO{sub 3} oxidation states, but the second state was clearly dominant. Scanning electron microscopy results showed that the oxide was amorphous or nanocrystalline. The WO{sub 3}-based devices were sensitive to ammoniamore » vapors when operated between 250 and 350 C. The optimal operating temperature for the highest sensitivity to ammonia was 300 C. Furthermore, when the devices were operated at 300 C, their sensitivity to other reducing species such as ethanol, methane, toluene, and water vapor was significantly lower, and this resulted in a high selectivity to ammonia. A model for the sensing mechanisms of the fabricated sensors is proposed.« less
Multi-scale chromatin state annotation using a hierarchical hidden Markov model
NASA Astrophysics Data System (ADS)
Marco, Eugenio; Meuleman, Wouter; Huang, Jialiang; Glass, Kimberly; Pinello, Luca; Wang, Jianrong; Kellis, Manolis; Yuan, Guo-Cheng
2017-04-01
Chromatin-state analysis is widely applied in the studies of development and diseases. However, existing methods operate at a single length scale, and therefore cannot distinguish large domains from isolated elements of the same type. To overcome this limitation, we present a hierarchical hidden Markov model, diHMM, to systematically annotate chromatin states at multiple length scales. We apply diHMM to analyse a public ChIP-seq data set. diHMM not only accurately captures nucleosome-level information, but identifies domain-level states that vary in nucleosome-level state composition, spatial distribution and functionality. The domain-level states recapitulate known patterns such as super-enhancers, bivalent promoters and Polycomb repressed regions, and identify additional patterns whose biological functions are not yet characterized. By integrating chromatin-state information with gene expression and Hi-C data, we identify context-dependent functions of nucleosome-level states. Thus, diHMM provides a powerful tool for investigating the role of higher-order chromatin structure in gene regulation.
The UltraLightweight Technology for Research in Astronomy (ULTRA) Project
NASA Astrophysics Data System (ADS)
Twarog, B. A.; Anthony-Twarog, B. J.; Shawl, S. J.; Hale, R.; Taghavi, R.; Fesen, R.; Etzel, P. B.; Martin, R.; Romeo, R.
2004-12-01
The collaborative focus of four academic departments (Univ. of Kansas Aerospace Engineering, Univ. of Kansas Physics & Astronomy, San Diego State University Astronomy and Dartmouth College Astronomy) and a private industry partner (Composite Mirror Applications, Inc.-CMA, Inc.) is a three-year plan to develop and test UltraLightweight Technology for Research in Astronomy (ULTRA). The ULTRA technology, using graphite fiber composites to fabricate mirrors and telescope structures, offers a versatile and cost-effective tool for optical astronomy, including the economical fabrication and operation of telescopes ranging from small (1m or smaller) aperture for education and research to extremely large (30m+) segmented telescopes (ELTs). The specific goal of this NSF-funded three-year Major Research Instrumentation project is to design, build, and test a 1m-class optical tube assembly (OTA) and mirrors constructed entirely from composites. In the first year of the project, the team has built and is field-testing two 0.4m prototypes to validate the optical surfaces and figures of the mirrors and to test and refine the structural dynamics of the OTA. Preparation for design and construction of the 1m telescope is underway. When completed in late 2005, the ULTRA telescope will be operated remotely from Mt. Laguna Observatory east of San Diego, where it will undergo a period of intensive optical and imaging tests. A 0.4m prototype OTA with mirrors (12 kg total weight) will be on display at the meeting. Support of this work by NSF through grants AST-0320784 and AST-0321247, NASA grant NCC5-600, the University of Kansas, and San Diego State University is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Korepanov, V. V.; Serovaev, G. S.
2017-06-01
Evaluation of the mechanical state of a structure or its components in the process of operation based on detection of internal damages (damage detection) becomes especially important in such rapidly developing spheres of production as machine building, aerospace industry, etc. One of the most important features of these industries is the application of new types of materials among which polymer based composite materials occupy a significant position. Hence, they must have sufficient operational rigidity and strength. However, defects of various kinds may arise during the manufacture. Delamination is the most common defect in structures made from composite materials and represents a phenomenon that involves the complex fracture of layers and interlayer compounds. Among the reasons of delamination occurrence are: disposition of anti-adhesive lubricants, films; insufficient content of binder, high content of volatile elements; violation of the molding regime; poor quality of anti-adhesive coating on the surface of the tooling. One of the effective methods for analyzing the influence of defects is numerical simulation. With the help of numerical methods, it is possible to track the evolution of various parameters when the defect size and quantity change. In the paper, a multilayered plate of an equally resistant carbon fiber reinforced plastic was considered, with a thickness of each layer equal to 0.2 mm. Various static loading cases are studied: uniaxial tension, three and four-point bending. For each type of loading, a numerical calculation of the stress-strain state was performed for healthy and delaminated plates, with different number and size of the defects. Contact interaction between adjacent surfaces in the zone of delamination was taken into account.
NASA Technical Reports Server (NTRS)
Lanzerotti, L. J.; Gold, R. E.; Anderson, K. A.; Armstrong, T. P.; Lin, R. P.; Krimigis, S. M.; Pick, M.; Roelof, E. C.; Sarris, E. T.; Simnett, G. M.
1983-01-01
The Heliosphere Instrument for Spectral, Composition, and Anisotropy at Low Energies (HI-SCALE) designed to measure interplanetary ions and electrons is described. Ions and electrons are detected by five separate solid-state detector telescopes oriented to give complete pitch angle coverage from the spinning spacecraft. Ion elemental abundances are determined by a telescope using a thin front detector element in a three-element telescope. Experiment operation is controlled by a microprocessor-based data system. Inflight calibration is provided by radioactive sources mounted on closable telescope covers. Ion and electron spectral information is determined using broad-energy-range rate channels, and a pulse-height analyzer for more detailed spectra. The instrument weighs 5.775 kg and uses 4.0 W power.
NASA Astrophysics Data System (ADS)
Song, Kun; Ding, Changlin; Su, Zhaoxian; Liu, Yahong; Luo, Chunrong; Zhao, Xiaopeng; Bhattarai, Khagendra; Zhou, Jiangfeng
2016-12-01
We propose a planar composite chiral metamaterial (CCMM) by symmetrically inserting a metallic mesh between two layers of conjugated gammadion resonators. As the elaborate CCMM operates at off-resonance frequencies, it therefore presents low-loss and low-dispersion polarization rotation features. The results show that the proposed CCMM can achieve pure and dispersionless polarization rotation with efficient transmission for a linearly polarized wave within a broad bandwidth. This off-resonance CCMM overcomes the drawbacks of high transmission losses and highly dispersive polarization rotation that exist in the previous resonance-type chiral metamaterials and also exhibits more simplicity of fabrication than the three-dimensional CMMs. The intriguing properties greatly improve the performance of chiral metamaterials in controlling the polarization state of electromagnetic waves.
NASA Astrophysics Data System (ADS)
Gavva, L. M.; Endogur, A. I.
2018-02-01
The mathematical model relations for stress-strain state and for buckling investigation of structurally-anisotropic panels made of composite materials are presented. The mathematical model of stiffening rib being torsioned under one-side contact with the skin is refined. One takes into account the influence of panel production technology: residual thermal stresses and reinforcing fibers preliminary tension. The resolved eight order equation and natural boundary conditions are obtained with variation Lagrange procedure. Exact analytical solutions for edge problems are considered. Computer program package is developed using operating MATLAB environment. The influence of the structure parameters on the level of stresses, displacements, of critical buckling forces for bending and for torsion modes has analyzed.
NASA Astrophysics Data System (ADS)
Ali, A.; Jakubowski, M.; Greuner, H.; Böswirth, B.; Moncada, V.; Sitjes, A. Puig; Neu, R.; Pedersen, T. S.; the W7-X Team
2017-12-01
One of the aims of stellarator Wendelstein 7-X (W7-X), is to investigate steady state operation, for which power exhaust is an important issue. The predominant fraction of the energy lost from the confined plasma region will be absorbed by an island divertors, which is designed for 10 {{MWm}}-2 steady state operation. In order to protect the divertor targets from overheating, 10 state-of-the-art infrared endoscopes will be installed at W7-X. In this work, we present the experimental results obtained at the high heat flux test facility GLADIS (Garching LArge DIvertor Sample test facility in IPP Garching) [1] during tests of a new plasma facing components (PFCs) protection algorithm designed for W7-X. The GLADIS device is equipped with two ion beams that can generate a heat load in the range from 3 MWm-2 to 55 MWm-2. The algorithms developed at W7-X to detect defects and hot spots are based on the analysis of surface temperature evolution and are adapted to work in near real-time. The aim of this work was to test the near real-time algorithms in conditions close to those expected in W7-X. The experiments were performed on W7-X pre-series tiles to detect CFC/Cu delaminations. For detection of surface layers, carbon fiber composite (CFC) blocks from the divertor of the Wendelstein 7-AS stellarator were used to observe temporal behavior of fully developed surface layers. These layers of re-deposited materials, like carbon, boron, oxygen and iron, were formed during the W7-AS operation. A detailed analysis of the composition and their thermal response to high heat fluxes (HHF) are described in [2]. The experiments indicate that the automatic detection of critical events works according to W7-X PFC protection requirements.
Fluorinated Carbon Composite Cathode for a High Energy Lithium Battery (Briefing Charts)
2011-02-16
REPORT DOCUMENTATION PAGE Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Form Approved OMB No. 0704-0188 The public reporting burden...monofluoride (Li/ CFx ) primary batteries have double energy density over state-of-the-art Li/MnO2 and Li/SO2 primary batteries (theoretically 2203 Wh/kg...temperature operating conditions. This invention relates to a high energy density Li/ CFx primary battery technology with substantial reduction in
On the kinetics of pack aluminization
NASA Technical Reports Server (NTRS)
Gupta, B. K.; Sarkhel, A. K.; Seigle, L. L.
1975-01-01
A theory of pack aluminization has been formulated by combining gaseous and solid-state diffusion rates. This theory relates the surface composition of the coating and therefore, in principle, the phase morphology and the growth rate of the coating, to pack operating parameters such as pack aluminum density, type of activator, temperature and others. Experimental data on the aluminization of unalloyed nickel in pure aluminum packs obtained to date are in good agreement with the predictions of the theory.
Heat Rejection Systems Utilizing Composites and Heat Pipes: Design and Performance Testing
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Beach, Duane E.; Sanzi, James L.
2007-01-01
Polymer matrix composites offer the promise of reducing the mass and increasing the performance of future heat rejection systems. With lifetimes for heat rejection systems reaching a decade or more in a micrometeoroid environment, use of multiple heat pipes for fault tolerant design is compelling. The combination of polymer matrix composites and heat pipes is of particular interest for heat rejection systems operating on the lunar surface. A technology development effort is under way to study the performance of two radiator demonstration units manufactured with different polymer matrix composite face sheet resin and bonding adhesives, along with different titanium-water heat pipe designs. Common to the two radiator demonstration units is the use of high thermal conductivity fibers in the face sheets and high thermal conductivity graphite saddles within a light weight aluminum honeycomb core. Testing of the radiator demonstration units included thermal vacuum exposure and thermal vacuum exposure with a simulated heat pipe failure. Steady state performance data were obtained at different operating temperatures to identify heat transfer and thermal resistance characteristics. Heat pipe failure was simulated by removing the input power from an individual heat pipe in order to identify the diminished performance characteristics of the entire panel after a micrometeoroid strike. Freeze-thaw performance was also of interest. This paper presents a summary of the two radiator demonstration units manufactured to support this technology development effort along with the thermal performance characteristics obtained to date. Future work will also be discussed.
Charge and discharge characteristics of lithium-ion graphite electrodes in solid-state cells
NASA Astrophysics Data System (ADS)
Lemont, S.; Billaud, D.
Lithium ions have been electrochemically intercalated into graphite in solid-state cells operating with solid polymer electrolytes based on poly(ethylene oxide) (PEO) complexed with lithium perchlorate (LiClO 4). The working composite electrode is composed of active-divided natural graphite associated with P(EO) 8-LiClO 4 acting as a binder and a Li + ionic conductor. Intercalation and de-intercalation of Li + were performed using galvanostatic or voltammetry techniques. The curves obtained in our solid-state cells were compared with those performed in liquid ethylene carbonate-LiClO 4 electrolyte. It is shown that in solid-state cells, side reactions occur both in the reduction and in the oxidation processes which leads to some uncertainty in the determination of the maximum reversible capacity of the graphite material.
Electrified Automotive Powertrain Architecture Using Composite DC–DC Converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hua; Kim, Hyeokjin; Erickson, Robert
In a hybrid or electric vehicle powertrain, a boost dc-dc converter enables reduction of the size of the electric machine and optimization of the battery system. Design of the powertrain boost converter is challenging because the converter must be rated at high peak power, while efficiency at medium-to-light load is critical for the vehicle system performance. By addressing only some of the loss mechanisms, previously proposed efficiency improvement approaches offer limited improvements in size, cost, and efficiency tradeoffs. This article shows how all dominant loss mechanisms in automotive powertrain applications can be mitigated using a new boost composite converter approach.more » In the composite dc-dc architecture, the loss mechanisms associated with indirect power conversion are addressed explicitly, resulting in fundamental efficiency improvements over wide ranges of operating conditions. Several composite converter topologies are presented and compared to state-of-the-art boost converter technologies. It is found that the selected boost composite converter results in a decrease in the total loss by a factor of 2-4 for typical drive cycles. Furthermore, the total system capacitor power rating and energy rating are substantially reduced, which implies potentials for significant reductions in system size and cost.« less
Electrified Automotive Powertrain Architecture Using Composite DC–DC Converters
Chen, Hua; Kim, Hyeokjin; Erickson, Robert; ...
2017-01-01
In a hybrid or electric vehicle powertrain, a boost dc-dc converter enables reduction of the size of the electric machine and optimization of the battery system. Design of the powertrain boost converter is challenging because the converter must be rated at high peak power, while efficiency at medium-to-light load is critical for the vehicle system performance. By addressing only some of the loss mechanisms, previously proposed efficiency improvement approaches offer limited improvements in size, cost, and efficiency tradeoffs. This article shows how all dominant loss mechanisms in automotive powertrain applications can be mitigated using a new boost composite converter approach.more » In the composite dc-dc architecture, the loss mechanisms associated with indirect power conversion are addressed explicitly, resulting in fundamental efficiency improvements over wide ranges of operating conditions. Several composite converter topologies are presented and compared to state-of-the-art boost converter technologies. It is found that the selected boost composite converter results in a decrease in the total loss by a factor of 2-4 for typical drive cycles. Furthermore, the total system capacitor power rating and energy rating are substantially reduced, which implies potentials for significant reductions in system size and cost.« less
Development of polysilsesquioxane composites
NASA Technical Reports Server (NTRS)
Srinivasan, K.; Tiwari, S. N.
1990-01-01
Polymer composites are increasingly being required to operate for prolonged durations at higher temperatures than in the past. Hence there have been increased efforts devoted to synthesizing and characterizing polymers capable of withstanding temperatures greater than 300 C for long periods. Several such organic polymers have been investigated in recent times. This research effort seeks to enquire if inorganic polymers can be utilized to provide the same result. Ceramics have long been recognized as providing superior thermal properties for demanding applications. However, the extremely high softening temperatures preclude their being shaped into complex shapes through melt processing techniques common to organic polymers. One approach towards solving this problem has been through the development of preceramic polymers. These are capable of being processed in the polymeric state with ease, and subsequently being pyrolyzed to ceramic structures. This experimental study is aimed at studying the feasibility of using preceramic polymers (that have not been subject to the pyrolysis step) as high performance composite matrices for high temperature applications. A preliminary study of this nature is not geared towards optimizing mechanical properties suitable for such composites. Rather, this study attempts to process such resins in composite form and suitably characterize their properties.
Dynamic Shock Compression of Copper to Multi-Megabar Pressure
NASA Astrophysics Data System (ADS)
Haill, T. A.; Furnish, M. D.; Twyeffort, L. L.; Arrington, C. L.; Lemke, R. W.; Knudson, M. D.; Davis, J.-P.
2015-11-01
Copper is an important material for a variety of shock and high energy density applications and experiments. Copper is used as a standard reference material to determine the EOS properties of other materials. The high conductivity of copper makes it useful as an MHD driver layer in high current dynamic materials experiments on Sandia National Laboratories Z machine. Composite aluminum/copper flyer plates increase the dwell time in plate impact experiments by taking advantage of the slower wave speeds in copper. This presentation reports on recent efforts to reinstate a composite Al/Cu flyer capability on Z and to extend the range of equation-of-state shock compression data through the use of hyper-velocity composite flyers and symmetric planar impact with copper targets. We will present results from multi-dimensional ALEGRA MHD simulations, as well as experimental designs and methods of composite flyer fabrication. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Ahmad, Azlan; Lajis, Mohd Amri
2017-01-01
Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future. PMID:28925963
Ahmad, Azlan; Lajis, Mohd Amri; Yusuf, Nur Kamilah
2017-09-19
Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future.
Optical Sensing of Polarization States Changes in Meat due to the Ageing
NASA Astrophysics Data System (ADS)
Tománek, Pavel; Mikláš, Jan; Abubaker, Hamed Mohamed; Grmela, Lubomír
2010-11-01
Food materials or biological materials display large compositional variations, inhomogeneities, and anisotropic structures. The biological tissues consist of cells which dimensions are bigger than a wavelength of visible light, therefore Mie scattering of transmitted and reflected light occurs and different polarization states arise. The meat industry needs reliable meat quality information throughout the production process in order to guarantee high-quality meat products for consumers. The minor importance is still given to the food quality control and inspection during processing operations or storing conditions. The paper presents a quite simple optical method allowing measure the freshness or ageing of products. The principle is to study temporal characteristics of polarization states of forward or backward scattered laser light in the samples in function of meat ageing.
Zang, Xining; Shen, Caiwei; Kao, Emmeline; Warren, Roseanne; Zhang, Ruopeng; Teh, Kwok Siong; Zhong, Junwen; Wei, Minsong; Li, Buxuan; Chu, Yao; Sanghadasa, Mohan; Schwartzberg, Adam; Lin, Liwei
2018-02-01
While electrochemical supercapacitors often show high power density and long operation lifetimes, they are plagued by limited energy density. Pseudocapacitive materials, in contrast, operate by fast surface redox reactions and are shown to enhance energy storage of supercapacitors. Furthermore, several reported systems exhibit high capacitance but restricted electrochemical voltage windows, usually no more than 1 V in aqueous electrolytes. Here, it is demonstrated that vertically aligned carbon nanotubes (VACNTs) with uniformly coated, pseudocapacitive titanium disulfide (TiS 2 ) composite electrodes can extend the stable working range to over 3 V to achieve a high capacitance of 195 F g -1 in an Li-rich electrolyte. A symmetric cell demonstrates an energy density of 60.9 Wh kg -1 -the highest among symmetric pseudocapacitors using metal oxides, conducting polymers, 2D transition metal carbides (MXene), and other transition metal dichalcogenides. Nanostructures prepared by an atomic layer deposition/sulfurization process facilitate ion transportation and surface reactions to result in a high power density of 1250 W kg -1 with stable operation over 10 000 cycles. A flexible solid-state supercapacitor prepared by transferring the TiS 2 -VACNT composite film onto Kapton tape is demonstrated to power a 2.2 V light emitting diode (LED) for 1 min. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound Reinforced Plastic Composites... compound (VOC) emissions from reinforced plastic composites production operations. This rule applies to any facility that has reinforced plastic composites production operations. This rule is approvable because it...
Financial statistics major US publicly owned electric utilities 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-03-01
The 1996 edition of The Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 5 years (1992 through 1996) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Five years of summary financial data are provided. Summaries of generators for fiscal yearsmore » ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 2 figs., 32 tabs.« less
Progress in aeronautical research and technology applicable to civil air transports
NASA Technical Reports Server (NTRS)
Bower, R. E.
1981-01-01
Recent progress in the aeronautical research and technology program being conducted by the United States National Aeronautics and Space Administration is discussed. Emphasis is on computational capability, new testing facilities, drag reduction, turbofan and turboprop propulsion, noise, composite materials, active controls, integrated avionics, cockpit displays, flight management, and operating problems. It is shown that this technology is significantly impacting the efficiency of the new civil air transports. The excitement of emerging research promises even greater benefits to future aircraft developments.
Si, Liang; Baier, Horst
2015-07-08
For the future design of smart aerospace structures, the development and application of a reliable, real-time and automatic monitoring and diagnostic technique is essential. Thus, with distributed sensor networks, a real-time automatic structural health monitoring (SHM) technique is designed and investigated to monitor and predict the locations and force magnitudes of unforeseen foreign impacts on composite structures and to estimate in real time mode the structural state when impacts occur. The proposed smart impact visualization inspection (IVI) technique mainly consists of five functional modules, which are the signal data preprocessing (SDP), the forward model generator (FMG), the impact positioning calculator (IPC), the inverse model operator (IMO) and structural state estimator (SSE). With regard to the verification of the practicality of the proposed IVI technique, various structure configurations are considered, which are a normal CFRP panel and another CFRP panel with "orange peel" surfaces and a cutout hole. Additionally, since robustness against several background disturbances is also an essential criterion for practical engineering demands, investigations and experimental tests are carried out under random vibration interfering noise (RVIN) conditions. The accuracy of the predictions for unknown impact events on composite structures using the IVI technique is validated under various structure configurations and under changing environmental conditions. The evaluated errors all fall well within a satisfactory limit range. Furthermore, it is concluded that the IVI technique is applicable for impact monitoring, diagnosis and assessment of aerospace composite structures in complex practical engineering environments.
Real-Time Impact Visualization Inspection of Aerospace Composite Structures with Distributed Sensors
Si, Liang; Baier, Horst
2015-01-01
For the future design of smart aerospace structures, the development and application of a reliable, real-time and automatic monitoring and diagnostic technique is essential. Thus, with distributed sensor networks, a real-time automatic structural health monitoring (SHM) technique is designed and investigated to monitor and predict the locations and force magnitudes of unforeseen foreign impacts on composite structures and to estimate in real time mode the structural state when impacts occur. The proposed smart impact visualization inspection (IVI) technique mainly consists of five functional modules, which are the signal data preprocessing (SDP), the forward model generator (FMG), the impact positioning calculator (IPC), the inverse model operator (IMO) and structural state estimator (SSE). With regard to the verification of the practicality of the proposed IVI technique, various structure configurations are considered, which are a normal CFRP panel and another CFRP panel with “orange peel” surfaces and a cutout hole. Additionally, since robustness against several background disturbances is also an essential criterion for practical engineering demands, investigations and experimental tests are carried out under random vibration interfering noise (RVIN) conditions. The accuracy of the predictions for unknown impact events on composite structures using the IVI technique is validated under various structure configurations and under changing environmental conditions. The evaluated errors all fall well within a satisfactory limit range. Furthermore, it is concluded that the IVI technique is applicable for impact monitoring, diagnosis and assessment of aerospace composite structures in complex practical engineering environments. PMID:26184196
NASA Astrophysics Data System (ADS)
Giorgini, Loris; Benelli, Tiziana; Mazzocchetti, Laura; Leonardi, Chiara; Zattini, Giorgio; Minak, Giangiacomo; Dolcini, Enrico; Tosi, Cristian; Montanari, Ivan
2014-05-01
Pyrolysis is shown to be an efficient method for recycling carbon fiber composites in the form of both uncured prepregs scraps or as cured end-of-life objects. The pyrolytic process leads to different products in three physical states of matter. The gaseous fraction, called syngas, can be used as energy feedstock in the process itself. The oil fraction can be used as fuel or chemical feedstock. The solid residue contains substantially unharmed carbon fibers that can be isolated and recovered for the production of new composite materials, thus closing the life cycle of the composite in a "cradle to cradle" approach. All the pyrolysis outputs were thoroughly analyzed and characterized in terms of composition for oil and gas fraction and surface characteristics of the fibers. In particular, it is of paramount importance to correlate the aspect and properties of the fibers obtained with different composite feedstock and operational conditions, that can be significantly different, with the reinforcing performance in the newly produced Recycled Carbon Fibers Reinforced Polymers. Present results have been obtained on a pyrolysis pilot plant that offers the possibility of treating up to 70kg of materials, thus leading to a significant amount of products to be tested in the further composites production, focused mainly on chopped carbon fiber reinforcement.
The X-15/HL-20 operations support comparison
NASA Technical Reports Server (NTRS)
Morris, W. Douglas
1993-01-01
During the 1960's, the United States X-15 rocket-plane research program successfully demonstrated the ability to support a reusable vehicle operating in a near-space environment. The similarity of the proposed HL-20 lifting body concept in general size, weight, and subsystem composition to that of the X-15 provided an opportunity for a comparison of the predicted support manpower and turnaround times with those experienced in the X-15 program. Information was drawn from both reports and discussions with X-15 program personnel to develop comparative operations and support data. Based on the assumption of comparability between the two systems, the predicted staffing levels, skill mix, and refurbishment times of an operational HL-20 appear to be similar to those experienced by the X-15 for ground support. However, safety, environmental, and support requirements have changed such that the HL-20 will face a different operating environment than existed at Edwards during the 1950's and 1960's. Today's operational standards may impose additional requirements on the HL-20 that will add to the maintenance and support burden estimate based on the X-15 analogy.
Innovative Self-Healing Seals for Solid Oxide Fuel Cells (SOFC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raj Singh
Solid oxide fuel cell (SOFC) technology is critical to several national initiatives. Solid State Energy Conversion Alliance (SECA) addresses the technology needs through its comprehensive programs on SOFC. A reliable and cost-effective seal that works at high temperatures is essential to the long-term performance of the SOFC for 40,000 hours at 800°C. Consequently, seals remain an area of highest priority for the SECA program and its industry teams. An innovative concept based on self-healing glasses was advanced and successfully demonstrated through seal tests for 3000 hours and 300 thermal cycles to minimize internal stresses under both steady state and thermalmore » transients for making reliable seals for the SECA program. The self-healing concept requires glasses with low viscosity at the SOFC operating temperature of 800°C but this requirement may lead to excessive flow of the glass in areas forming the seal. To address this challenge, a modification to glass properties by addition of particulate fillers is pursued in the project. The underlying idea is that a non-reactive ceramic particulate filler is expected to form glass-ceramic composite and increase the seal viscosity thereby increasing the creep resistance of the glass-composite seals under load. The objectives of the program are to select appropriate filler materials for making glass-composite, fabricate glass-composites, measure thermal expansion behaviors, and determine stability of the glass-composites in air and fuel environments of a SOFC. Self-healing glass-YSZ composites are further developed and tested over a longer time periods under conditions typical of the SOFCs to validate the long-term stability up to 2000 hours. The new concepts of glass-composite seals, developed and nurtured in this program, are expected to be cost-effective as these are based on conventional processing approaches and use of the inexpensive materials.« less
Yunger Halpern, Nicole; Faist, Philippe; Oppenheim, Jonathan; Winter, Andreas
2016-01-01
The grand canonical ensemble lies at the core of quantum and classical statistical mechanics. A small system thermalizes to this ensemble while exchanging heat and particles with a bath. A quantum system may exchange quantities represented by operators that fail to commute. Whether such a system thermalizes and what form the thermal state has are questions about truly quantum thermodynamics. Here we investigate this thermal state from three perspectives. First, we introduce an approximate microcanonical ensemble. If this ensemble characterizes the system-and-bath composite, tracing out the bath yields the system's thermal state. This state is expected to be the equilibrium point, we argue, of typical dynamics. Finally, we define a resource-theory model for thermodynamic exchanges of noncommuting observables. Complete passivity—the inability to extract work from equilibrium states—implies the thermal state's form, too. Our work opens new avenues into equilibrium in the presence of quantum noncommutation. PMID:27384494
Lankford, Jr., James
1988-01-01
A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.
Szabó, Enikö; Liébana, Raquel; Hermansson, Malte; Modin, Oskar; Persson, Frank; Wilén, Britt-Marie
2017-01-01
The granular sludge process is an effective, low-footprint alternative to conventional activated sludge wastewater treatment. The architecture of the microbial granules allows the co-existence of different functional groups, e.g., nitrifying and denitrifying communities, which permits compact reactor design. However, little is known about the factors influencing community assembly in granular sludge, such as the effects of reactor operation strategies and influent wastewater composition. Here, we analyze the development of the microbiomes in parallel laboratory-scale anoxic/aerobic granular sludge reactors operated at low (0.9 kg m-3d-1), moderate (1.9 kg m-3d-1) and high (3.7 kg m-3d-1) organic loading rates (OLRs) and the same ammonium loading rate (0.2 kg NH4-N m-3d-1) for 84 days. Complete removal of organic carbon and ammonium was achieved in all three reactors after start-up, while the nitrogen removal (denitrification) efficiency increased with the OLR: 0% at low, 38% at moderate, and 66% at high loading rate. The bacterial communities at different loading rates diverged rapidly after start-up and showed less than 50% similarity after 6 days, and below 40% similarity after 84 days. The three reactor microbiomes were dominated by different genera (mainly Meganema, Thauera, Paracoccus, and Zoogloea), but these genera have similar ecosystem functions of EPS production, denitrification and polyhydroxyalkanoate (PHA) storage. Many less abundant but persistent taxa were also detected within these functional groups. The bacterial communities were functionally redundant irrespective of the loading rate applied. At steady-state reactor operation, the identity of the core community members was rather stable, but their relative abundances changed considerably over time. Furthermore, nitrifying bacteria were low in relative abundance and diversity in all reactors, despite their large contribution to nitrogen turnover. The results suggest that the OLR has considerable impact on the composition of the granular sludge communities, but also that the granule communities can be dynamic even at steady-state reactor operation due to high functional redundancy of several key guilds. Knowledge about microbial diversity with specific functional guilds under different operating conditions can be important for engineers to predict the stability of reactor functions during the start-up and continued reactor operation. PMID:28507540
Dudek, Jozef J.; Edwards, Robert G.
2012-03-21
In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less
Elemental and charge state composition of the fast solar wind observed with SMS instruments on WIND
NASA Technical Reports Server (NTRS)
Gloeckler, G.; Galvin, A. B.; Ipavich, F. M.; Hamilton, D. C.; Bochsler, P.; Geiss, J.; Fisk, L. A.; Wilken, B.
1995-01-01
The elemental composition and charge state distributions of heavy ions of the solar wind provide essential information about: (1) atom-ion separation processes in the solar atmosphere leading to the 'FIP effect' (the overabundance of low First Ionization potential (FIP) elements in the solar wind compared to the photosphere); and (2) coronal temperature profiles, as well as mechanisms which heat the corona and accelerate the solar wind. This information is required for solar wind acceleration models. The SWICS instrument on Ulysses measures for all solar wind flow conditions the relative abundance of about 8 elements and 20 charge states of the solar wind. Furthermore, the Ulysses high-latitude orbit provides an unprecedented look at the solar wind from the polar coronal holes near solar minimum conditions. The MASS instrument on the WIND spacecraft is a high-mass resolution solar wind ion mass spectrometer that will provide routinely not only the abundances and charge state of all elements easily measured with SWICS, but also of N, Mg, S. The MASS sensor was fully operational at the end of 1994 and has sampled the in-ecliptic solar wind composition in both the slow and the corotating fast streams. This unique combination of SWICS on Ulysses and MASS on WIND allows us to view for the first time the solar wind from two regions of the large coronal hole. Observations with SWICS in the coronal hole wind: (1) indicate that the FIP effect is small; and (2) allow us determine the altitude of the maximum in the electron temperature profile, and indicate a maximum temperature of approximately 1.5 MK. New results from the SMS instruments on Wind will be compared with results from SWICS on Ulysses.
NASA Astrophysics Data System (ADS)
Gladshteyn, V. I.; Troitskiy, A. I.
2017-01-01
Research of a metal of the stop valve case (SVC) of the K-300-23.5 LMZ turbine (steel grade 15Kh1M1FL), destroyed after operation for 331000 hours, is performed. It's chemical composition and properties are determined as follows: a short-term mechanical tensile stress at 20°C and at elevated temperature, critical temperature, fragility, critical crack opening at elevated temperature, and long-term strength. Furthermore, nature of the microstructure, packing density of carbide particles and their size, and chemical composition of carbide sediment are estimated. A manifestation of metal properties for the main case components by comparison with a forecast of the respective characteristics made for the operating time of 331000 hours is tested. Property-time relationships are built for the forecast using statistical treatment of the test results for the samples cut out from more than 300 parts. Representativeness of the research results is proved: the statistical treatment of their differences are within the range of ±5%. It has been found that, after 150000 hours of operation, only the tensile strength insignificantly depends on the operating time at 20°C, whereas indicators of strength at elevated temperature significantly reduce, depending on the operating time. A brittle-to-ductile transition temperature (BDTT) raises, a critical notch opening changes in a complicated way, a long-term strength reduces. It has been found empirically that the limit of a long-term strength of the SVC metal at 540°C and the operating time of 105 hours is almost 1.6 times less than the required value in the as-delivered state. It is possible to evaluate a service life of the operating valves with the operating time of more than 330000 hours with respect to the long-term strength of the metal taking into account the actual temperature and stress. Guidelines for the control of similar parts are provided.
Movement of Fuel Ashore: Storage, Capacity, Throughput, and Distribution Analysis
2015-12-01
89 ix LIST OF FIGURES Figure 1. Principles of Operational Maneuver from the Sea ........................... 7 Figure 2. Compositing and...30 Table 2. Force Mix Composition ...procedures, and force composition . Such alterations represent an acceptance of operational risk to buy down the foundational risk that the logistics network
Stability analysis of hybrid-driven underwater glider
NASA Astrophysics Data System (ADS)
Niu, Wen-dong; Wang, Shu-xin; Wang, Yan-hui; Song, Yang; Zhu, Ya-qiang
2017-10-01
Hybrid-driven underwater glider is a new type of unmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steadystate operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulation, and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2015-01-01
Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned 2700-3000F EBC - CMC systems to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current NASA candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, cyclic durability, erosion-impact resistance, and long-term system performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.
Thermal Effects on the Bearing Behavior of Composite Joints
NASA Technical Reports Server (NTRS)
Walker, Sandra Polesky
2001-01-01
Thermal effects on the pin-bearing behavior of an IM7/PET15 composite laminate are studied comprehensively. A hypothesis presents factors influencing a change in pin-bearing strength with a change in temperature for a given joint design. The factors include the change in the state of residual cure stress, the material properties, and the fastener fit with a change in temperature. Experiments are conducted to determine necessary lamina and laminate material property data for the IM7/PET15 being utilized in this study. Lamina material properties are determined between the assumed stress free temperature of 460 F down to -200 F. Laminate strength properties are determined for several lay-ups at the operating temperatures of 350 F, 70 F, and -200 F. A three-dimensional finite element analysis model of a composite laminate subject to compressive loading is developed. Both the resin rich layer located between lamina and the thermal residual stresses present in the laminate due to curing are determined to influence the state of stress significantly. Pin-bearing tests of several lay-ups were conducted to develop an understanding on the effect of temperature changes on the pin-bearing behavior of the material. A computational study investigating the factors influencing pin-bearing strength was performed. A finite element model was developed and used to determine the residual thermal cure stresses in the laminate containing a hole. Very high interlaminar stress concentrations were observed two elements away from the hole boundary at all three operating temperatures. The pin-bearing problem was modeled assuming a rigid frictionless pin and restraining only radial displacements at the hole boundary. A uniform negative pressure load was then applied to the straight end of the model. A solution, where thermal residual stresses were combined with the state of stress due to pin-bearing loads was evaluated. The presence of thermal residual stresses intensified the interlaminar stresses predicted at the hole boundary in the pin-bearing problem. This dissertation shows that changes in material properties drives pin-bearing strength degradation with increasing temperature.
NASA Astrophysics Data System (ADS)
Halverson, G. H.; Fisher, J.; Magnuson, M.; John, L.
2017-12-01
An operational system to produce and disseminate remotely sensed evapotranspiration using the PT-JPL model and support its analysis and use in water resources decision making is being integrated into the New Mexico state government. A partnership between the NASA Western Water Applications Office (WWAO), the Jet Propulsion Laboratory (JPL), and the New Mexico Office of the State Engineer (NMOSE) has enabled collaboration with a variety of state agencies to inform decision making processes for agriculture, rangeland, and forest management. This system improves drought understanding and mobilization, litigation support, and economic, municipal, and ground-water planning through interactive mapping of daily rates of evapotranspiration at 1 km spatial resolution with near real-time latency. This is facilitated by daily remote sensing acquisitions of land-surface temperature and near-surface air temperature and humidity from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument on the Terra satellite as well as the short-term composites of Normalized Difference Vegetation Index (NDVI) and albedo provided by MODIS. Incorporating evapotranspiration data into agricultural water management better characterizes imbalances between water requirements and supplies. Monitoring evapotranspiration over rangeland areas improves remediation and prevention of aridification. Monitoring forest evapotranspiration improves wildlife management and response to wildfire risk. Continued implementation of this decision support system should enhance water and food security.
Heliosphere Instrument for Spectra, Composition and Anisotropy at Low Energies
NASA Technical Reports Server (NTRS)
Lanzerotti, L. J.; Gold, R. E.; Anderson, K. A.; Armstrong, T. P.; Lin, R. P.; Krimigis, S. M.; Pick, M.; Roelof, E. C.; Sarris, E. T.; Simnett, G. M.
1992-01-01
The Heliosphere Instrument for Spectra, Composition, and Anisotropy at Low Energies (HI-SCALE) is designed to make measurements of interplanetary ions and electrons throughout the entire Ulysses mission. The ions (E(i) greater than about 50 keV) and electrons (E(e) greater than about 30 keV) are identified uniquely and detected by five separate solid-state detector telescopes that are oriented to give nearly complete pitch-angle coverage from the spinning spacecraft. Ion elemental abundances are determined by Delta E vs E telescope using a thin (5 microns) front solid state detector element in a three-element telescope. Experimental operation is controlled by a microprocessor-based data system. Inflight calibration is provided by radioactive sources mounted on telescope covers which can be closed for calibration purposes and for radiation protection during the course of the mission. Ion and electron spectral information is determined using both broad-energy-range rate channels and a 32 channel pulse-height analyzer for more detailed spectra. Some initial in-ecliptic measurements are presented which demonstrate the features of the instrument.
NASA Astrophysics Data System (ADS)
Hegedűs, Árpád
2018-03-01
In this paper, using the light-cone lattice regularization, we compute the finite volume expectation values of the composite operator \\overline{Ψ}Ψ between pure fermion states in the Massive Thirring Model. In the light-cone regularized picture, this expectation value is related to 2-point functions of lattice spin operators being located at neighboring sites of the lattice. The operator \\overline{Ψ}Ψ is proportional to the trace of the stress-energy tensor. This is why the continuum finite volume expectation values can be computed also from the set of non-linear integral equations (NLIE) governing the finite volume spectrum of the theory. Our results for the expectation values coming from the computation of lattice correlators agree with those of the NLIE computations. Previous conjectures for the LeClair-Mussardo-type series representation of the expectation values are also checked.
Lin, Jingjing; Jing, Honglei
2016-01-01
Artificial immune system is one of the most recently introduced intelligence methods which was inspired by biological immune system. Most immune system inspired algorithms are based on the clonal selection principle, known as clonal selection algorithms (CSAs). When coping with complex optimization problems with the characteristics of multimodality, high dimension, rotation, and composition, the traditional CSAs often suffer from the premature convergence and unsatisfied accuracy. To address these concerning issues, a recombination operator inspired by the biological combinatorial recombination is proposed at first. The recombination operator could generate the promising candidate solution to enhance search ability of the CSA by fusing the information from random chosen parents. Furthermore, a modified hypermutation operator is introduced to construct more promising and efficient candidate solutions. A set of 16 common used benchmark functions are adopted to test the effectiveness and efficiency of the recombination and hypermutation operators. The comparisons with classic CSA, CSA with recombination operator (RCSA), and CSA with recombination and modified hypermutation operator (RHCSA) demonstrate that the proposed algorithm significantly improves the performance of classic CSA. Moreover, comparison with the state-of-the-art algorithms shows that the proposed algorithm is quite competitive. PMID:27698662
NASA Astrophysics Data System (ADS)
Milly, Hussam; Andiappan, Manoharan; Thompson, Ian; Banerjee, Avijit
2014-06-01
The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required "time taken". BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.
Quantum logic between remote quantum registers
NASA Astrophysics Data System (ADS)
Yao, N. Y.; Gong, Z.-X.; Laumann, C. R.; Bennett, S. D.; Duan, L.-M.; Lukin, M. D.; Jiang, L.; Gorshkov, A. V.
2013-02-01
We consider two approaches to dark-spin-mediated quantum computing in hybrid solid-state spin architectures. First, we review the notion of eigenmode-mediated unpolarized spin-chain state transfer and extend the analysis to various experimentally relevant imperfections: quenched disorder, dynamical decoherence, and uncompensated long-range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yields a natural optimal channel fidelity, which we calculate. Long-range dipolar couplings induce a finite intrinsic lifetime for the mediating eigenmode; extensive numerical simulations of dipolar chains of lengths up to L=12 show remarkably high fidelity despite these decay processes. We further briefly consider the extension of the protocol to bosonic systems of coupled oscillators. Second, we introduce a quantum mirror based architecture for universal quantum computing that exploits all of the dark spins in the system as potential qubits. While this dramatically increases the number of qubits available, the composite operations required to manipulate dark-spin qubits significantly raise the error threshold for robust operation. Finally, we demonstrate that eigenmode-mediated state transfer can enable robust long-range logic between spatially separated nitrogen-vacancy registers in diamond; disorder-averaged numerics confirm that high-fidelity gates are achievable even in the presence of moderate disorder.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2014-01-01
Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.
NASA Astrophysics Data System (ADS)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Varley, D.; Lochner, T.; Scheu, C.
2017-10-01
The work in hand presents an electron microscopy based in-depth study of micro- and nanoscale degradation processes that take place during the operation of high-temperature polymer-electrolyte-membrane fuel cells (HT-PEMFCs). Carbon supported Pt particles were used as cathodic catalyst material and the bimetallic, carbon supported Pt/Ru system was applied as anode. As membrane, cross-linked polybenzimidazole was used. Scanning electron microscopy analysis of cross-sections of as-prepared and long-term operated membrane-electrode-assemblies revealed insight into micrometer scale degradation processes: operation-caused catalyst redistribution and thinning of the membrane and electrodes. Transmission electron microscopy investigations were performed to unravel the nanometer scale phenomena: a band of Pt and Pt/Ru nanoparticles was detected in the membrane adjacent to the cathode catalyst layer. Quantification of the elemental composition of several individual nanoparticles and the overall band area revealed that they stem from both anode and cathode catalyst layers. The results presented do not demonstrate any catastrophic failure but rather intermediate states during fuel cell operation and indications to proceed with targeted HT-PEMFC optimization.
Evaluation of performance of a BLSS model in long-term operation in dynamic and steady states
NASA Astrophysics Data System (ADS)
Gros, Jean-Bernard; Tikhomirov, Alex; Ushakova, Sofya; Velitchko, Vladimir; Tikhomirova, Natalia; Lasseur, Christophe
Evaluation of performance of a BLSS model, including higher plants for food production and biodegradation of human waste, in long-term operation in dynamic and steady states was performed. The model system was conceived for supplying vegetarian food and oxygen to 0.07 human. The following data were obtained in steady-state operating conditions. Average rate of wheat, chufa, radish, lettuce and Salicornia edible biomass accumulation were 8.7, 5.5, 0.6, 0.6 and metricconverterProductID2.5 g2.5 g per day respectively. Thus, to mimic the vegetarian edible biomass consumption by a human it was necessary to withdraw 17.9 g/d from total mass ex-change. Simultaneously, human mineralized exometabolites (artificial mineralized urine, AMU) in the amount of approximately 7% of a daily norm were introduced into the nutrient solu-tion for irrigation of the plants cultivated on a neutral substrate (expanded clay aggregate). The estimated value of 5.8 g/d of wheat and Salicornia inedible biomass was introduced in the soil-like substrate (SLS) to fully meet the plants need in nitrogen. The rest of wheat and Salicornia inedible biomass, 5.7 g/d, was stored. Thus in all, 23.6g of vegetarian dry matter had been stored. Assuming edible biomass is eaten up by the human, the closure coefficient of the vegetarian biomass inclusion into matter recycling amounted to 88%. The analysis of the long-term model operation showed that the main factors limiting increase of recycling processes were the following: a) Partly unbalanced mineral composition of daily human waste with daily needs of plants culti-` vated in the system. Thus, when fully satisfied with respect to nitrogen, the plants experienced a lack of macro elements such as P, Mg and Ca by more than 50%; b) Partly unbalanced mineral composition of edible biomass of the plants cultivated in the SLS with that of inedible biomass of the plants cultivated by hydroponic method on neutral substrate introduced in the SLS; c) Accumulation of some salts, for example, calcium and phosphorus salts resulting in their inaccessibility for the plant root nutrition; d) Allelopathic effect of chufa inedible biomass on the growth and development of other plants which decreases their productivity.
How to select combination operators for fuzzy expert systems using CRI
NASA Technical Reports Server (NTRS)
Turksen, I. B.; Tian, Y.
1992-01-01
A method to select combination operators for fuzzy expert systems using the Compositional Rule of Inference (CRI) is proposed. First, fuzzy inference processes based on CRI are classified into three categories in terms of their inference results: the Expansion Type Inference, the Reduction Type Inference, and Other Type Inferences. Further, implication operators under Sup-T composition are classified as the Expansion Type Operator, the Reduction Type Operator, and the Other Type Operators. Finally, the combination of rules or their consequences is investigated for inference processes based on CRI.
Matrix product state representation of quasielectron wave functions
NASA Astrophysics Data System (ADS)
Kjäll, J.; Ardonne, E.; Dwivedi, V.; Hermanns, M.; Hansson, T. H.
2018-05-01
Matrix product state techniques provide a very efficient way to numerically evaluate certain classes of quantum Hall wave functions that can be written as correlators in two-dimensional conformal field theories. Important examples are the Laughlin and Moore-Read ground states and their quasihole excitations. In this paper, we extend the matrix product state techniques to evaluate quasielectron wave functions, a more complex task because the corresponding conformal field theory operator is not local. We use our method to obtain density profiles for states with multiple quasielectrons and quasiholes, and to calculate the (mutual) statistical phases of the excitations with high precision. The wave functions we study are subject to a known difficulty: the position of a quasielectron depends on the presence of other quasiparticles, even when their separation is large compared to the magnetic length. Quasielectron wave functions constructed using the composite fermion picture, which are topologically equivalent to the quasielectrons we study, have the same problem. This flaw is serious in that it gives wrong results for the statistical phases obtained by braiding distant quasiparticles. We analyze this problem in detail and show that it originates from an incomplete screening of the topological charges, which invalidates the plasma analogy. We demonstrate that this can be remedied in the case when the separation between the quasiparticles is large, which allows us to obtain the correct statistical phases. Finally, we propose that a modification of the Laughlin state, that allows for local quasielectron operators, should have good topological properties for arbitrary configurations of excitations.
Multilayer Electroactive Polymer Composite Material
NASA Technical Reports Server (NTRS)
Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Park, Cheol (Inventor); Draughon, Gregory K. (Inventor); Ounaies, Zoubeida (Inventor)
2011-01-01
An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.
Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)
2009-01-01
An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2016-01-01
This presentation reviews NASA environmental barrier coating (EBC) system development programs and the coating materials evolutions for protecting the SiC/SiC Ceramic Matrix Composites in order to meet the next generation engine performance requirements. The presentation focuses on several generations of NASA EBC systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. The current EBC development emphasis is placed on advanced NASA 2700F candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance are described. The research and development opportunities for advanced turbine airfoil environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling are discussed.
Flywheel Rotor Safe-Life Technology
NASA Technical Reports Server (NTRS)
Ratner, J. K. H.; Chang, J. B.; Christopher, D. A.; McLallin, Kerry L. (Technical Monitor)
2002-01-01
Since the 1960s, research has been conducted into the use of flywheels as energy storage systems. The-proposed applications include energy storage for hybrid and electric automobiles, attitude control and energy storage for satellites, and uninterruptible power supplies for hospitals and computer centers. For many years, however, the use of flywheels for space applications was restricted by the total weight of a system employing a metal rotor. With recent technological advances in the manufacturing of composite materials, however, lightweight composite rotors have begun to be proposed for such applications. Flywheels with composite rotors provide much higher power and energy storage capabilities than conventional chemical batteries. However, the failure of a high speed flywheel rotor could be a catastrophic event. For this reason, flywheel rotors are classified by the NASA Fracture Control Requirements Standard as fracture critical parts. Currently, there is no industry standard to certify a composite rotor for safe and reliable operation forth( required lifetime of the flywheel. Technical problems hindering the development of this standard include composite manufacturing inconsistencies, insufficient nondestructive evaluation (NDE) techniques for detecting defects and/or impact damage, lack of standard material test methods for characterizing composite rotor design allowables, and no unified proof (over-spin) test for flight rotors. As part of a flywheel rotor safe-life certification pro-ram funded b the government, a review of the state of the art in composite rotors is in progress. The goal of the review is to provide a clear picture of composite flywheel rotor technologies. The literature review has concentrated on the following topics concerning composites and composite rotors: durability (fatigue) and damage tolerance (safe-life) analysis/test methods, in-service NDE and health monitoring techniques, spin test methods/ procedures, and containment options. This report presents the papers selected for their relevance to this topic and summarizes them.
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin; Sikora, J. G.; Sankaran, S. N.
2001-01-01
Polymer Matrix Composite (PMC) hydrogen tanks have been proposed as an enabling technology for reducing the weight of Single-Stage-to-Orbit reusable launch vehicles where structural mass has a large impact on vehicle performance. A key development issue of these lightweight structures is the leakage of hydrogen through the composite material. The rate of hydrogen leakage can be a function of the material used, method of 6 fabrication used to manufacture the tank, mechanical load the tank must react, internal damage-state of the material, and the temperatures at which the tank must operate. A method for measuring leakage through a geometrically complex structure at cryogenic temperature and under mechanical load was developed, calibrated and used to measure hydrogen leakage through complex X-33 liquid-hydrogen tank structure sections.
Expert system for testing industrial processes and determining sensor status
Gross, K.C.; Singer, R.M.
1998-06-02
A method and system are disclosed for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 24 figs.
Expert system for testing industrial processes and determining sensor status
Gross, Kenneth C.; Singer, Ralph M.
1998-01-01
A method and system for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.
Fem and Experimental Analysis of Thin-Walled Composite Elements Under Compression
NASA Astrophysics Data System (ADS)
Różyło, P.; Wysmulski, P.; Falkowicz, K.
2017-05-01
Thin-walled steel elements in the form of openwork columns with variable geometrical parameters of holes were studied. The samples of thin-walled composite columns were modelled numerically. They were subjected to axial compression to examine their behavior in the critical and post-critical state. The numerical models were articulately supported on the upper and lower edges of the cross-section of the profiles. The numerical analysis was conducted only with respect to the non-linear stability of the structure. The FEM analysis was performed until the material achieved its yield stress. This was done to force the loss of stability by the structures. The numerical analysis was performed using the ABAQUS® software. The numerical analysis was performed only for the elastic range to ensure the operating stability of the tested thin-walled structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anandakumar, U.; Webb, J.E.; Singh, R.N.
The matrix cracking behavior of a zircon matrix - uniaxial SCS 6 fiber composite was studied as a function of initial flaw size and temperature. The composites were fabricated by a tape casting and hot pressing technique. Surface flaws of controlled size were introduced using a vicker`s indenter. The composite samples were tested in three point flexure at three different temperatures to study the non steady state and steady state matrix cracking behavior. The composite samples exhibited steady state and non steady matrix cracking behavior at all temperatures. The steady state matrix cracking stress and steady state crack size increasedmore » with increasing temperature. The results of the study correlated well with the results predicted by the matrix cracking models.« less
2009-06-01
Day-Night Levels in Urban Areas in the United States .................................4-31 4-5 Typical Construction Equipment and Composite Site...ramp 2 Reefer 4 1.5-ton Trailer 1 2.5-ton Trailer 1 5-ton Trailer 4 Mobile Kitchen Trailer 1 4-kilovolt (kV) Generator sets 3 10-kV generator...encountered in urban areas of the U.S. In general, 30 to 50 dB represents a quiet classification, 65 to 70 dB represents a moderately noisy
Effects of commercial aircraft operating environment on composite materials
NASA Technical Reports Server (NTRS)
Chapman, A. J.; Hoffman, D. J.; Hodges, W. T.
1980-01-01
Long term effects of commercial aircraft operating environment on the properties and durability of composite materials are being systematically explored. Composite specimens configured for various mechanical property tests are exposed to environmental conditions on aircraft in scheduled airline service, on racks at major airports, and to controlled environmental conditions in the laboratory. Results of tests following these exposures will identify critical parameters affecting composite durability, and correlation of the data will aid in developing methods for predicting durability. Interim results of these studies show that mass change of composite specimens on commercial aircraft depends upon the regional climate and season, and that mass loss from composite surfaces due to ultraviolet radiation can be largely prevented by aircraft paint.
NASA Astrophysics Data System (ADS)
Jain, Shilpi; Agarwal, Praveen; Kıymaz, I. Onur; ćetinkaya, Ayá¹£egül
2018-01-01
Authors presented some composition formulae for the Marichev-Saigo-Maeda (M-S-M) fractional integral operator with the multi-index Mittag-Leffler functions. Our results are generalizes the results obtained by Choi and Agarwal [3]. Here, we record some particular cases of our main result. Finally, we obtain Laplace transforms of the composition formulae.
NASA Astrophysics Data System (ADS)
Stajner, I.; McQueen, J.; Lee, P.; Stein, A. F.; Wilczak, J. M.; Upadhayay, S.; daSilva, A.; Lu, C. H.; Grell, G. A.; Pierce, R. B.
2017-12-01
NOAA's operational air quality predictions of ozone, fine particulate matter (PM2.5) and wildfire smoke over the United States and airborne dust over the contiguous 48 states are distributed at http://airquality.weather.gov. The National Air Quality Forecast Capability (NAQFC) providing these predictions was updated in June 2017. Ozone and PM2.5 predictions are now produced using the system linking the Community Multiscale Air Quality model (CMAQ) version 5.0.2 with meteorological inputs from the North American Mesoscale Forecast System (NAM) version 4. Predictions of PM2.5 include intermittent dust emissions and wildfire emissions from an updated version of BlueSky system. For the latter, the CMAQ system is initialized by rerunning it over the previous 24 hours to include wildfire emissions at the time when they were observed from the satellites. Post processing to reduce the bias in PM2.5 prediction was updated using the Kalman filter analog (KFAN) technique. Dust related aerosol species at the CMAQ domain lateral boundaries now come from the NEMS Global Aerosol Component (NGAC) v2 predictions. Further development of NAQFC includes testing of CMAQ predictions to 72 hours, Canadian fire emissions data from Environment and Climate Change Canada (ECCC) and the KFAN technique to reduce bias in ozone predictions. NOAA is developing the Next Generation Global Predictions System (NGGPS) with an aerosol and gaseous atmospheric composition component to improve and integrate aerosol and ozone predictions and evaluate their impacts on physics, data assimilation and weather prediction. Efforts are underway to improve cloud microphysics, investigate aerosol effects and include representations of atmospheric composition of varying complexity into NGGPS: from the operational ozone parameterization, GOCART aerosols, with simplified ozone chemistry, to CMAQ chemistry with aerosol modules. We will present progress on community building, planning and development of NGGPS.
Thermally Conductive Metal-Tube/Carbon-Composite Joints
NASA Technical Reports Server (NTRS)
Copeland, Robert J.
2004-01-01
An improved method of fabricating joints between metal and carbon-fiber-based composite materials in lightweight radiators and heat sinks has been devised. Carbon-fiber-based composite materials have been used in such heat-transfer devices because they offer a combination of high thermal conductivity and low mass density. Metal tubes are typically used to carry heat-transfer fluids to and from such heat-transfer devices. The present fabrication method helps to ensure that the joints between the metal tubes and the composite-material parts in such heat-transfer devices have both (1) the relatively high thermal conductances needed for efficient transfer of heat and (2) the flexibility needed to accommodate differences among thermal expansions of dissimilar materials in operation over wide temperature ranges. Techniques used previously to join metal tubes with carbon-fiber-based composite parts have included press fitting and bonding with epoxy. Both of these prior techniques have been found to yield joints characterized by relatively high thermal resistances. The present method involves the use of a solder (63 percent Sn, 37 percent Pb) to form a highly thermally conductive joint between a metal tube and a carbon-fiber-based composite structure. Ordinarily, the large differences among the coefficients of thermal expansion of the metal tube, solder, and carbon-fiber-based composite would cause the solder to pull away from the composite upon post-fabrication cooldown from the molten state. In the present method, the structure of the solder is modified (see figure) to enable it to deform readily to accommodate the differential thermal expansion.
Spectral Properties of Composite Excitations in the t-J Model
NASA Astrophysics Data System (ADS)
Otaki, Takashi; Yahagi, Yuta; Matsueda, Hiroaki
2017-08-01
In quantum many-body systems, the equation of motion for a simple fermionic operator does not close, and higher-order processes induce composite operators dressed with several types of nonlocal quantum fluctuation. We systematically examine the spectral properties of these composite excitations in the t-J model in one spatial dimension by both numerical and theoretical approaches. Of particular interest, with the help of the Bethe ansatz for the large-U Hubbard model, is the classification of which composite excitations are due to the string excitation, which is usually hidden in the single-particle spectrum, as well as the spinon and holon branches. We examine how the mixing between the spinon and string excitations is prohibited in terms of the composite operator method. Owing to the dimensionality independent nature of the present approach, we discuss the implications of the mixing in close connection with the pseudogap in high-Tc cuprates.
Mohan, S Venkata; Chandrasekhar, K
2011-07-01
Solid phase microbial fuel cells (SMFC; graphite electrodes; open-air cathode) were designed to evaluate the potential of bioelectricity production by stabilizing composite canteen based food waste. The performance was evaluated with three variable electrode-membrane assemblies. Experimental data depicted feasibility of bioelectricity generation from solid state fermentation of food waste. Distance between the electrodes and presence of proton exchange membrane (PEM) showed significant influence on the power yields. SMFC-B (anode placed 5 cm from cathode-PEM) depicted good power output (463 mV; 170.81 mW/m(2)) followed by SMFC-C (anode placed 5 cm from cathode; without PEM; 398 mV; 53.41 mW/m(2)). SMFC-A (PEM sandwiched between electrodes) recorded lowest performance (258 mV; 41.8 mW/m(2)). Sodium carbonate amendment documented marked improvement in power yields due to improvement in the system buffering capacity. SMFCs operation also documented good substrate degradation (COD, 76%) along with bio-ethanol production. The operation of SMFC mimicked solid-sate fermentation which might lead to sustainable solid waste management practices. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duran, Adam W; Kelly, Kenneth J; Kresse, John
When developing and designing new technology for integrated vehicle systems deployment, standard cycles have long existed for chassis dynamometer testing and tuning of the powertrain. However, to this day with recent developments and advancements in plug-in hybrid and battery electric vehicle technology, no true 'work day' cycles exist with which to tune and measure energy storage control and thermal management systems. To address these issues and in support of development of a range-extended pickup and delivery Class 6 commercial vehicle, researchers at the National Renewable Energy Laboratory in collaboration with Cummins analyzed 78,000 days of operational data captured from moremore » than 260 vehicles operating across the United States to characterize the typical daily performance requirements associated with Class 6 commercial pickup and delivery operation. In total, over 2.5 million miles of real-world vehicle operation were condensed into a pair of duty cycles, an 80-mile cycle and a 100-mile cycle representative of the daily operation of U.S. class 3-6 commercial pickup and delivery trucks. Using novel machine learning clustering methods combined with mileage-based weighting, these composite representative cycles correspond to 90th and 95th percentiles for daily vehicle miles traveled by the vehicles observed. In addition to including vehicle speed vs time drive cycles, in an effort to better represent the environmental factors encountered by pickup and delivery vehicles operating across the United States, a nationally representative grade profile and key status information were also appended to the speed vs. time profiles to produce a 'work day' cycle that captures the effects of vehicle dynamics, geography, and driver behavior which can be used for future design, development, and validation of technology.« less
Mission analysis and performance specification studies report, appendix A
NASA Technical Reports Server (NTRS)
1979-01-01
The Near Term Hybrid Passenger Vehicle Development Program tasks included defining missions, developing distributions of daily travel and composite driving cycles for these missions, providing information necessary to estimate the potential replacement of the existing fleet by hybrids, and estimating acceleration/gradeability performance requirements for safe operation. The data was then utilized to develop mission specifications, define reference vehicles, develop hybrid vehicle performance specifications, and make fuel consumption estimates for the vehicles. The major assumptions which underlie the approach taken to the mission analysis and development of performance specifications are the following: the daily operating range of a hybrid vehicle should not be limited by the stored energy capacity and the performance of such a vehicle should not be strongly dependent on the battery state of charge.
Witnessing entanglement without entanglement witness operators.
Pezzè, Luca; Li, Yan; Li, Weidong; Smerzi, Augusto
2016-10-11
Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables.
NASA Technical Reports Server (NTRS)
Schmer, F. A. (Principal Investigator); Isakson, R. E.; Eidenshink, J. C.
1977-01-01
The author has identified the following significant results. Successful operational applications of LANDSAT data were found for level 1 land use mapping, drainage network delineation, and aspen mapping. Visual LANDSAT interpretation using 1:125,000 color composite imagery was the least expensive method of obtaining timely level 1 land use data. With an average agricultural/rangeland interpretation accuracy in excess of 80%, such a data source was considered the most cost effective of those sources available to state agencies. Costs do not compare favorably with those incurred using the present method of extracting land use data from historical tabular summaries. The cost increase in advancing from the present procedure to a satellite-based data source was justified in terms of expanded data content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugimura, K.; Miyajima, Y.; Sonehara, M.
2016-05-15
This study focuses on the carbonyl-iron powder (CIP) used in the metal composite bulk magnetic core for high-efficient/light-weight SiC/GaN power device MHz switching dc-dc converter, where the fine CIP with a mean diameter of 1.1 μm is used to suppress the MHz band eddy current inside the CIP body. When applying the CIP to composite core together with the resin matrix, high electrical resistivity layer must be formed on the CIP-surface in order to suppress the overlapped eddy current between adjacent CIPs. In this study, tens nm thick silica (SiO{sub 2}) was successfully deposited on the CIP-surface by using hydrolysismore » of TEOS (Si(OC{sub 2}H{sub 5}){sub 4}). Also tens nm thick oxidized layer of the CIP-surface was successfully formed by using CIP annealing in dry air. The SiC/GaN power device can operate at ambient temperature over 200 degree-C, and the composite magnetic core is required to operate at such ambient temperature. The as-made CIP had small coercivity below 800 A/m (10 Oe) due to its nanocrystalline-structure and had a single vortex magnetic structure. From the experimental results, both nanocrystalline and single vortex magnetic structure were maintained after heat-exposure of 250 degree-C, and the powder coercivity after same heat-exposure was nearly same as that of the as-made CIP. Therefore, the CIP with thermally stable nanocrystalline-structure and vortex magnetic state was considered to be heat-resistant magnetic powder used in the iron-based composite core for SiC/GaN power electronics.« less
NASA Astrophysics Data System (ADS)
Sugimura, K.; Miyajima, Y.; Sonehara, M.; Sato, T.; Hayashi, F.; Zettsu, N.; Teshima, K.; Mizusaki, H.
2016-05-01
This study focuses on the carbonyl-iron powder (CIP) used in the metal composite bulk magnetic core for high-efficient/light-weight SiC/GaN power device MHz switching dc-dc converter, where the fine CIP with a mean diameter of 1.1 μm is used to suppress the MHz band eddy current inside the CIP body. When applying the CIP to composite core together with the resin matrix, high electrical resistivity layer must be formed on the CIP-surface in order to suppress the overlapped eddy current between adjacent CIPs. In this study, tens nm thick silica (SiO2) was successfully deposited on the CIP-surface by using hydrolysis of TEOS (Si(OC2H5)4). Also tens nm thick oxidized layer of the CIP-surface was successfully formed by using CIP annealing in dry air. The SiC/GaN power device can operate at ambient temperature over 200 degree-C, and the composite magnetic core is required to operate at such ambient temperature. The as-made CIP had small coercivity below 800 A/m (10 Oe) due to its nanocrystalline-structure and had a single vortex magnetic structure. From the experimental results, both nanocrystalline and single vortex magnetic structure were maintained after heat-exposure of 250 degree-C, and the powder coercivity after same heat-exposure was nearly same as that of the as-made CIP. Therefore, the CIP with thermally stable nanocrystalline-structure and vortex magnetic state was considered to be heat-resistant magnetic powder used in the iron-based composite core for SiC/GaN power electronics.
Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps.
Abdelrahman, Ahmed; Mukai, Tetsuya; Häffner, Hartmut; Byrnes, Tim
2014-02-10
We propose a hybrid architecture for quantum information processing based on magnetically trapped ultracold atoms coupled via optical fields. The ultracold atoms, which can be either Bose-Einstein condensates or ensembles, are trapped in permanent magnetic traps and are placed in microcavities, connected by silica based waveguides on an atom chip structure. At each trapping center, the ultracold atoms form spin coherent states, serving as a quantum memory. An all-optical scheme is used to initialize, measure and perform a universal set of quantum gates on the single and two spin-coherent states where entanglement can be generated addressably between spatially separated trapped ultracold atoms. This allows for universal quantum operations on the spin coherent state quantum memories. We give detailed derivations of the composite cavity system mediated by a silica waveguide as well as the control scheme. Estimates for the necessary experimental conditions for a working hybrid device are given.
Side draw control design for a high purity multi-component distillation column.
A Udugama, Isuru; Munir, M T; Kirkpatrick, Rob; Young, Brent R; Yu, Wei
2018-05-01
Industrial methanol production involves a multi component feed containing methanol, water and trace levels of ethanol being refined to produce AA grade methanol at high product recovery. Due to practical constraints, the bottoms discharge of the column is primarily water with only trace of methanol impurities. As a result of these constraints, ethanol, which is a non-key middle boiling component gets "trapped" near the side draw of the column forming an ethanol bulge, which in turn results in non-linear, inverse, time and state varying behaviour of the side draw ethanol composition. In this work, we established that the existence of the ethanol bulge creates the complex process behaviour of the side draw ethanol composition and that this bulge needs to be explicitly controlled. This type of explicit composition bulge analysis and subsequent control has not been attempted on methanol distillation columns before. For this purpose a novel, robust and practical side draw control scheme to detect and remedy the excess ethanol bulge movement using override control is presented. The side draw controller, together with other regulatory controllers is shown to maintain on-specification operations of the column. Disturbance rejection tests carried out illustrate that the side draw control scheme will keep the column operating within commercial specification. It is also shown that a traditional DV control structure is unable to achieve this objective. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ye, Xiao-Feng; Wang, S. R.; Wang, Z. R.; Hu, Q.; Sun, X. F.; Wen, T. L.; Wen, Z. Y.
The perovskite system La 1- xSr xCr 1- yM yO 3- δ (M, Mn, Fe and V) has recently attracted much attention as a candidate material for the fabrication of solid oxide fuel cells (SOFCs) due to its stability in both H 2 and CH 4 atmospheres at temperatures up to 1000 °C. In this paper, we report the synthesis of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3 (LSCM) by solid-state reaction and its employment as an alternative anode material for anode-supported SOFCs. Because LSCM shows a greatly decreased electronic conductivity in a reducing atmosphere compared to that in air, we have fabricated Cu-LSCM-ScSZ (scandia-stabilized zirconia) composite anodes by tape-casting and a wet-impregnation method. Additionally, a composite structure (support anode, functional anode and electrolyte) structure with a layer of Cu-LSCM-YSZ (yttria-stabilized zirconia) on the supported anode surface has been manufactured by tape-casting and screen-printing. Single cells with these two kinds of anodes have been fabricated, and their performance characteristics using hydrogen and ethanol have been measured. In the operation period, no obvious carbon deposition was observed when these cells were operated on ethanol. These results demonstrate the stability of LSCM in an ethanol atmosphere and its potential utilization in anode-supported SOFCs.
NASA Astrophysics Data System (ADS)
Zhang, Tao
Proton Exchange Membrane Fuel Cells (PEMFCs) are the leading candidate in the fuel cell technology due to the high power density, solid electrolyte, and low operational temperature. However, PEMFCs operating in the normal temperature range (60-80°C) face problems including poor carbon monoxide tolerance and heat rejection. The poisoning effect can be significantly relieved by operating the fuel cell at elevated temperature, which also improves the heat rejection and electrochemical kinetics. Low relative humidity (RH) operation is also desirable to simplify the reactant humidification system. However, at elevated temperatures, reduced RH PEMFC performance is seriously impaired due to irreversible water loss from presently employed state-of-the-art polymer membrane, Nafion. This thesis focuses on developing polymer electrolyte membranes with high water retention ability for operation in elevated temperature (110-150°C), reduced humidity (˜50%RH) PEMFCs. One approach is to alter Nafion by adding inorganic particles such as TiO2, SiO2, Zr(HPO 4)2, etc. While the presence of these materials in Nafion has proven beneficial, a reduction or no improvement in the PEMFC performance of Nafion/TiO2 and Nafion/Zr(HPO4)2 membranes is observed with reduced particle sizes or increased particle loadings in Nafion. It is concluded that the PEMFC performance enhancement associated with addition of these inorganic particles was not due to the particle hydrophilicity. Rather, the particle, partially located in the hydrophobic region of the membrane, benefits the cell performance by altering the membrane structure. Water transport properties of some Nafion composite membranes were investigated by NMR methods including pulsed field gradient spin echo diffusion, spin-lattice relaxation, and spectral measurements. Compared to unmodified Nafion, composite membranes materials exhibit longer longitudinal relaxation time constant T1. In addition to the Nafion material, sulfonated styrene-ethylene/butylene-styrene triblock copolymer (sSEBS) was investigated as an alternate membrane candidate. sSEBS was modified through introduction of polymer crosslinks using benzephenone as a photoinitiator and addition of a titania co-phase. A photocrosslinked membrane initially containing 15% benzophenone and 3% titania laminated with a 10 mum Nafion layer was found to produce the best PEMFC performance (120°C, 50%RH).
COMPARATIVE ASSESSMENT OF THE COMPOSITION AND CHARGE STATE OF NITROGENASE FeMo-COFACTOR
Harris, Travis V.; Szilagyi, Robert K.
2011-01-01
A significant limitation in our understanding of the molecular mechanism of biological nitrogen fixation is the uncertain composition of the FeMo-cofactor (FeMo-co) of nitrogenase. In this study we present a systematic, density functional theory-based evaluation of spin coupling schemes, iron oxidation states, ligand protonation states, and interstitial ligand composition using a wide range of experimental criteria. The employed functionals and basis sets were validated with molecular orbital information from X-ray absorption spectroscopic data of relevant iron-sulfur clusters. Independently from the employed level of theory, the electronic structure with the greatest number of antiferromagnetic interactions corresponds to the lowest energy state for a given charge and oxidation state distribution of the iron ions. The relative spin state energies of resting and oxidized FeMo-co already allowed the exclusion of certain iron oxidation state distributions and interstitial ligand compositions. Geometry optimized FeMo-co structures of several models further eliminated additional states and compositions, while reduction potentials indicated a strong preference for the most likely charge state of FeMo-co. Mössbauer and ENDOR parameter calculations were found to be remarkably dependent on the employed training set, density functional and basis set. Overall, we found that a more oxidized [MoIV-2FeII-5FeIII-9S2−-C4−] composition with a hydroxyl-protonated homocitrate ligand satisfies all of the available experimental criteria, and is thus favored over the currently preferred composition of [MoIV-4FeII-3FeIII-9S2−-N3−] from the literature. PMID:21545160
Micklash. II, Kenneth James; Dutton, Justin James; Kaye, Steven
2014-06-03
An apparatus for testing of multiple material samples includes a gas delivery control system operatively connectable to the multiple material samples and configured to provide gas to the multiple material samples. Both a gas composition measurement device and pressure measurement devices are included in the apparatus. The apparatus includes multiple selectively openable and closable valves and a series of conduits configured to selectively connect the multiple material samples individually to the gas composition device and the pressure measurement devices by operation of the valves. A mixing system is selectively connectable to the series of conduits and is operable to cause forced mixing of the gas within the series of conduits to achieve a predetermined uniformity of gas composition within the series of conduits and passages.
Dawn's Gamma Ray and Neutron Detector
NASA Astrophysics Data System (ADS)
Prettyman, Thomas H.; Feldman, William C.; McSween, Harry Y.; Dingler, Robert D.; Enemark, Donald C.; Patrick, Douglas E.; Storms, Steven A.; Hendricks, John S.; Morgenthaler, Jeffery P.; Pitman, Karly M.; Reedy, Robert C.
2011-12-01
The NASA Dawn Mission will determine the surface composition of 4 Vesta and 1 Ceres, providing constraints on their formation and thermal evolution. The payload includes a Gamma Ray and Neutron Detector (GRaND), which will map the surface elemental composition at regional spatial scales. Target elements include the constituents of silicate and oxide minerals, ices, and the products of volcanic exhalation and aqueous alteration. At Vesta, GRaND will map the mixing ratio of end-members of the howardite, diogenite, and eucrite (HED) meteorites, determine relative proportions of plagioclase and mafic minerals, and search for compositions not well sampled by the meteorite collection. The large south polar impact basin may provide an opportunity to determine the composition of Vesta’s mantle and lower crust. At Ceres, GRaND will provide chemical information needed to test different models of Ceres’ origin and thermal and aqueous evolution. GRaND is also sensitive to hydrogen layering and can determine the equivalent H2O/OH content of near-surface hydrous minerals as well as the depth and water abundance of an ice table, which may provide information about the state of water in the interior of Ceres. Here, we document the design and performance of GRaND with sufficient detail to interpret flight data archived in the Planetary Data System, including two new sensor designs: an array of CdZnTe semiconductors for gamma ray spectroscopy, and a loaded-plastic phosphor sandwich for neutron spectroscopy. An overview of operations and a description of data acquired from launch up to Vesta approach is provided, including annealing of the CdZnTe sensors to remove radiation damage accrued during cruise. The instrument is calibrated using data acquired on the ground and in flight during a close flyby of Mars. Results of Mars flyby show that GRaND has ample sensitivity to meet science objectives at Vesta and Ceres. Strategies for data analysis are described and prospective results for Vesta are presented for different operational scenarios and compositional models.
ACT Average Composite by State: 2000 ACT-Tested Graduates.
ERIC Educational Resources Information Center
American Coll. Testing Program, Iowa City, IA.
This table contains average composite scores by state for high school graduates who took the ACT Assessment in 2000. For each state the percentage of graduates taking the ACT Assessment and the average composite score are given, with the same information for those who completed the recommended core curriculum and those who did not, as well as for…
Interpretation of a compositional time series
NASA Astrophysics Data System (ADS)
Tolosana-Delgado, R.; van den Boogaart, K. G.
2012-04-01
Common methods for multivariate time series analysis use linear operations, from the definition of a time-lagged covariance/correlation to the prediction of new outcomes. However, when the time series response is a composition (a vector of positive components showing the relative importance of a set of parts in a total, like percentages and proportions), then linear operations are afflicted of several problems. For instance, it has been long recognised that (auto/cross-)correlations between raw percentages are spurious, more dependent on which other components are being considered than on any natural link between the components of interest. Also, a long-term forecast of a composition in models with a linear trend will ultimately predict negative components. In general terms, compositional data should not be treated in a raw scale, but after a log-ratio transformation (Aitchison, 1986: The statistical analysis of compositional data. Chapman and Hill). This is so because the information conveyed by a compositional data is relative, as stated in their definition. The principle of working in coordinates allows to apply any sort of multivariate analysis to a log-ratio transformed composition, as long as this transformation is invertible. This principle is of full application to time series analysis. We will discuss how results (both auto/cross-correlation functions and predictions) can be back-transformed, viewed and interpreted in a meaningful way. One view is to use the exhaustive set of all possible pairwise log-ratios, which allows to express the results into D(D - 1)/2 separate, interpretable sets of one-dimensional models showing the behaviour of each possible pairwise log-ratios. Another view is the interpretation of estimated coefficients or correlations back-transformed in terms of compositions. These two views are compatible and complementary. These issues are illustrated with time series of seasonal precipitation patterns at different rain gauges of the USA. In this data set, the proportion of annual precipitation falling in winter, spring, summer and autumn is considered a 4-component time series. Three invertible log-ratios are defined for calculations, balancing rainfall in autumn vs. winter, in summer vs. spring, and in autumn-winter vs. spring-summer. Results suggest a 2-year correlation range, and certain oscillatory behaviour in the last balance, which does not occur in the other two.
NASA Astrophysics Data System (ADS)
Pandey, Gaind P.; Klankowski, Steven A.; Liu, Tao; Wu, Judy; Li, Jun
2017-02-01
A novel solid-state battery-supercapacitor hybrid device is fabricated for high-performance electrical energy storage using a Si anode and a TiO2 cathode in conjunction with a flexible, solid-like gel polymer electrolyte film as the electrolyte and separator. The electrodes were fabricated as three-dimensional nanostructured vertical arrays by sputtering active materials as conformal shells on vertically aligned carbon nanofibers (VACNFs) which serve as the current collector and structural template. Such nanostructured vertical core-shell array-electrodes enable short Li-ion diffusion path and large pseudocapacitive contribution by fast surface reactions, leading to the hybrid features of batteries and supercapacitors that can provide high specific energy over a wide range of power rates. Due to the improved mechanical stability of the infiltrated composite structure, the hybrid cell shows excellent cycling stability and is able to retain more than 95% of the original capacity after 3500 cycles. More importantly, this solid-state device can stably operate in a temperature range from -20 to 60 °C with a very low self-discharge rate and an excellent shelf life. This solid-state architecture is promising for the development of highly stable thin-film hybrid energy storage devices for unconventional applications requiring largely varied power, wider operation temperature, long shelf-life and higher safety standards.
Impact damage resistance of composite fuselage structure, part 2
NASA Technical Reports Server (NTRS)
Dost, Ernest F.; Finn, Scott R.; Murphy, Daniel P.; Huisken, Amy B.
1993-01-01
The strength of laminated composite materials may be significantly reduced by foreign object impact induced damage. An understanding of the damage state is required in order to predict the behavior of structure under operational loads or to optimize the structural configuration. Types of damage typically induced in laminated materials during an impact event include transverse matrix cracking, delamination, and/or fiber breakage. The details of the damage state and its influence on structural behavior depend on the location of the impact. Damage in the skin may act as a soft inclusion or affect panel stability, while damage occurring over a stiffener may include debonding of the stiffener flange from the skin. An experiment to characterize impact damage resistance of fuselage structure as a function of structural configuration and impact threat was performed. A wide range of variables associated with aircraft fuselage structure such as material type and stiffener geometry (termed, intrinsic variables) and variables related to the operating environment such as impactor mass and diameter (termed, extrinsic variables) were studied using a statistically based design-of-experiments technique. The experimental design resulted in thirty-two different 3-stiffener panels. These configured panels were impacted in various locations with a number of impactor configurations, weights, and energies. The results obtained from an examination of impacts in the skin midbay and hail simulation impacts are documented. The current discussion is a continuation of that work with a focus on nondiscrete characterization of the midbay hail simulation impacts and discrete characterization of impact damage for impacts over the stiffener.
Decomposability and convex structure of thermal processes
NASA Astrophysics Data System (ADS)
Mazurek, Paweł; Horodecki, Michał
2018-05-01
We present an example of a thermal process (TP) for a system of d energy levels, which cannot be performed without an instant access to the whole energy space. This TP is uniquely connected with a transition between some states of the system, that cannot be performed without access to the whole energy space even when approximate transitions are allowed. Pursuing the question about the decomposability of TPs into convex combinations of compositions of processes acting non-trivially on smaller subspaces, we investigate transitions within the subspace of states diagonal in the energy basis. For three level systems, we determine the set of extremal points of these operations, as well as the minimal set of operations needed to perform an arbitrary TP, and connect the set of TPs with thermomajorization criterion. We show that the structure of the set depends on temperature, which is associated with the fact that TPs cannot increase deterministically extractable work from a state—the conclusion that holds for arbitrary d level system. We also connect the decomposability problem with detailed balance symmetry of an extremal TPs.
Coal derived fuel gases for molten carbonate fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-11-01
Product streams from state-of-the-art and future coal gasification systems are characterized to guide fuel cell program planners and researchers in establishing performance goals and developing materials for molten carbonate fuel cells that will be compatible with gasifier product gases. Results are presented on: (1) the range of gasifier raw-gas compositions available from the major classes of coal gasifiers; (2) the degree of gas clean-up achievable with state-of-the-art and future gas clean-up systems; and (3) the energy penalties associated with gas clean-up. The study encompasses fixed-bed, fluid-bed, entrained-bed, and molten salt gasifiers operating with Eastern bituminous and Western subbituminous coals. Gasifiersmore » operating with air and oxygen blowing are evaluated, and the coal gasification product streams are characterized with respect to: (1) major gas stream constituents, e.g., CO, H/sub 2/, CO/sub 2/, CH/sub 4/, N/sub 2/, H/sub 2/O; (2) major gas stream contaminants, e.g., H/sub 2/S, COS, particulates, tars, etc.; and (3) trace element contaminants, e.g., Na, K, V, Cl, Hg, etc.« less
A steady-state high-temperature apparatus for measuring thermal conductivity of ceramics
NASA Astrophysics Data System (ADS)
Filla, B. James
1997-07-01
A one-sided very-high-temperature guarded hot plate has been built to measure thermal conductivity of monolithic ceramics, ceramic composites, thermal barrier coatings, functional graded materials, and high-temperature metal alloys. It is an absolute, steady-state measurement device with an operational temperature range of 400-1400 K. Measurements are made in an atmosphere of low-pressure helium. Specimens examined in this apparatus are 70 mm in diameter, with thicknesses ranging between 1 and 8 mm. Optimal specimen thermal conductivities fall in the range of 0.5-30 W/(mK). Internal heated components are composed entirely of high-purity aluminum oxide, boron nitride, beryllium oxide, and fibrous alumina insulation board. Pure nickel and thermocouple-grade platinum-based alloys are the only metals used in the system. Apparatus design, modeling, and operation are described, along with the methods of data analysis that are unique to this system. An analysis of measurement uncertainty yields a combined measurement uncertainty of ±5%. Experimental measurements on several materials are presented to illustrate the precision and bias of the apparatus.
Composable Analytic Systems for next-generation intelligence analysis
NASA Astrophysics Data System (ADS)
DiBona, Phil; Llinas, James; Barry, Kevin
2015-05-01
Lockheed Martin Advanced Technology Laboratories (LM ATL) is collaborating with Professor James Llinas, Ph.D., of the Center for Multisource Information Fusion at the University at Buffalo (State of NY), researching concepts for a mixed-initiative associate system for intelligence analysts to facilitate reduced analysis and decision times while proactively discovering and presenting relevant information based on the analyst's needs, current tasks and cognitive state. Today's exploitation and analysis systems have largely been designed for a specific sensor, data type, and operational context, leading to difficulty in directly supporting the analyst's evolving tasking and work product development preferences across complex Operational Environments. Our interactions with analysts illuminate the need to impact the information fusion, exploitation, and analysis capabilities in a variety of ways, including understanding data options, algorithm composition, hypothesis validation, and work product development. Composable Analytic Systems, an analyst-driven system that increases flexibility and capability to effectively utilize Multi-INT fusion and analytics tailored to the analyst's mission needs, holds promise to addresses the current and future intelligence analysis needs, as US forces engage threats in contested and denied environments.
Impact of feedstock quality and variation on biochemical and thermochemical conversion
Li, Chenlin; Aston, John E.; Lacey, Jeffrey A.; ...
2016-07-21
The production of biofuels from lignocellulosic feedstock is attracting considerable attention in the United States and globally as a strategy to diversify energy resources, spur regional economic development and reduce greenhouse gas emissions. Because of the wide variation in feedstock types, compositions and content of convertible organics, there is a growing need to better understand correlations among feedstock quality attributes and conversion performance. Knowledge of the feedstock impact on conversion is essential to supply quality controlled, uniform and on-spec feedstocks to biorefineries. This review paper informs the development of meaningful feedstock quality specifications for different conversion processes. Discussions are focusedmore » on how compositional properties of feedstocks affect various unit operations in biochemical conversion processes, fast pyrolysis and hydrothermal liquefaction. In addition, future perspectives are discussed that focus on the challenges and prospects of addressing compositionally intrinsic inhibitors through feedstock preprocessing at regionally distributed depots. As a result, such preprocessing depots may allow for the commoditization of lignocellulosic feedstock and realization of stable, cost-effective and quality controlled biomass supply systems.« less
Human and rat gut microbiome composition is maintained following sleep restriction
Zhang, Shirley L.; Bai, Lei; Goel, Namni; Bailey, Aubrey; Jang, Christopher J.; Bushman, Frederic D.; Meerlo, Peter; Dinges, David F.; Sehgal, Amita
2017-01-01
Insufficient sleep increasingly characterizes modern society, contributing to a host of serious medical problems. Loss of sleep is associated with metabolic diseases such as obesity and diabetes, cardiovascular disorders, and neurological and cognitive impairments. Shifts in gut microbiome composition have also been associated with the same pathologies; therefore, we hypothesized that sleep restriction may perturb the gut microbiome to contribute to a disease state. In this study, we examined the fecal microbiome by using a cross-species approach in both rat and human studies of sleep restriction. We used DNA from hypervariable regions (V1-V2) of 16S bacteria rRNA to define operational taxonomic units (OTUs) of the microbiome. Although the OTU richness of the microbiome is decreased by sleep restriction in rats, major microbial populations are not altered. Only a single OTU, TM7-3a, was found to increase with sleep restriction of rats. In the human microbiome, we find no overt changes in the richness or composition induced by sleep restriction. Together, these results suggest that the microbiome is largely resistant to changes during sleep restriction. PMID:28179566
Human and rat gut microbiome composition is maintained following sleep restriction.
Zhang, Shirley L; Bai, Lei; Goel, Namni; Bailey, Aubrey; Jang, Christopher J; Bushman, Frederic D; Meerlo, Peter; Dinges, David F; Sehgal, Amita
2017-02-21
Insufficient sleep increasingly characterizes modern society, contributing to a host of serious medical problems. Loss of sleep is associated with metabolic diseases such as obesity and diabetes, cardiovascular disorders, and neurological and cognitive impairments. Shifts in gut microbiome composition have also been associated with the same pathologies; therefore, we hypothesized that sleep restriction may perturb the gut microbiome to contribute to a disease state. In this study, we examined the fecal microbiome by using a cross-species approach in both rat and human studies of sleep restriction. We used DNA from hypervariable regions (V1-V2) of 16S bacteria rRNA to define operational taxonomic units (OTUs) of the microbiome. Although the OTU richness of the microbiome is decreased by sleep restriction in rats, major microbial populations are not altered. Only a single OTU, TM7-3a, was found to increase with sleep restriction of rats. In the human microbiome, we find no overt changes in the richness or composition induced by sleep restriction. Together, these results suggest that the microbiome is largely resistant to changes during sleep restriction.
Impact of feedstock quality and variation on biochemical and thermochemical conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chenlin; Aston, John E.; Lacey, Jeffrey A.
The production of biofuels from lignocellulosic feedstock is attracting considerable attention in the United States and globally as a strategy to diversify energy resources, spur regional economic development and reduce greenhouse gas emissions. Because of the wide variation in feedstock types, compositions and content of convertible organics, there is a growing need to better understand correlations among feedstock quality attributes and conversion performance. Knowledge of the feedstock impact on conversion is essential to supply quality controlled, uniform and on-spec feedstocks to biorefineries. This review paper informs the development of meaningful feedstock quality specifications for different conversion processes. Discussions are focusedmore » on how compositional properties of feedstocks affect various unit operations in biochemical conversion processes, fast pyrolysis and hydrothermal liquefaction. In addition, future perspectives are discussed that focus on the challenges and prospects of addressing compositionally intrinsic inhibitors through feedstock preprocessing at regionally distributed depots. As a result, such preprocessing depots may allow for the commoditization of lignocellulosic feedstock and realization of stable, cost-effective and quality controlled biomass supply systems.« less
A Process Algebraic Approach to Software Architecture Design
NASA Astrophysics Data System (ADS)
Aldini, Alessandro; Bernardo, Marco; Corradini, Flavio
Process algebra is a formal tool for the specification and the verification of concurrent and distributed systems. It supports compositional modeling through a set of operators able to express concepts like sequential composition, alternative composition, and parallel composition of action-based descriptions. It also supports mathematical reasoning via a two-level semantics, which formalizes the behavior of a description by means of an abstract machine obtained from the application of structural operational rules and then introduces behavioral equivalences able to relate descriptions that are syntactically different. In this chapter, we present the typical behavioral operators and operational semantic rules for a process calculus in which no notion of time, probability, or priority is associated with actions. Then, we discuss the three most studied approaches to the definition of behavioral equivalences - bisimulation, testing, and trace - and we illustrate their congruence properties, sound and complete axiomatizations, modal logic characterizations, and verification algorithms. Finally, we show how these behavioral equivalences and some of their variants are related to each other on the basis of their discriminating power.
NASA Astrophysics Data System (ADS)
Yue, Lan; Meng, Fanxin; Chen, Jiarong
2018-01-01
The thin-film transistors (TFTs) with amorphous aluminum-indium-zinc-oxide (a-AIZO) active layer were prepared by dip coating method. The dependence of properties of TFTs on the active-layer composition and structure was investigated. The results indicate that Al atoms acted as a carrier suppressor in IZO films. Meanwhile, it was found that the on/off current ratio (I on/off) of TFT was improved by embedding a high-resistivity AIZO layer between the low-resistivity AIZO layer and gate insulator. The improvement in I on/off was attributed to the decrease in off-state current of double-active-layer TFT due to an increase in the active-layer resistance and the contact resistance between active layer and source/drain electrode. Moreover, on-state current and threshold voltage (V th) can be mainly controlled through thickness and Al content of the low-resistivity AIZO layer. In addition, the saturation mobility (μ sat) of TFTs was improved with reducing the size of channel width or/and length, which was attributed to the decrease in trap states in the semiconductor and at the semiconductor/gate-insulator interface with the smaller channel width or/and shorter channel length. Thus, we can demonstrate excellent TFTs via the design of active-layer composition and structure by utilizing a low cost solution-processed method. The resulting TFT, operating in enhancement mode, has a high μ sat of 14.16 cm2 V-1 s-1, a small SS of 0.40 V/decade, a close-to-zero V th of 0.50 V, and I on/off of more than 105.
On stress-state optimization in steel-concrete composite structures
NASA Astrophysics Data System (ADS)
Brauns, J.; Skadins, U.
2017-10-01
The plastic resistance of a concrete-filled column commonly is given as a sum of the components and taking into account the effect of confinement. The stress state in a composite column is determined by taking into account the non-linear relationship of modulus of elasticity and Poisson’s ratio on the stress level in the concrete core. The effect of confinement occurs at a high stress level when structural steel acts in tension and concrete in lateral compression. The stress state of a composite beam is determined taking into account non-linear dependence on the position of neutral axis. In order to improve the stress state of a composite element and increase the safety of the construction the appropriate strength of steel and concrete has to be applied. The safety of high-stressed composite structures can be achieved by using high-performance concrete (HPC). In this study stress analysis of the composite column and beam is performed with the purpose of obtaining the maximum load-bearing capacity and enhance the safety of the structure by using components with the appropriate strength and by taking into account the composite action. The effect of HPC on the stress state and load carrying capacity of composite elements is analysed.
1993-06-01
I-4 1. Polymer Matrix Composites ................................................... r -4 2. Continuous-Fiber-Reinforced MMCs...Manufacturing CASTEM Casting Analysis System (KOBELCO) C-C Carbon-Carbon ( Composite ) CERASEP SiC - SiC CMC Made by SEP CF Carbon Fiber CFRP Carbon-Fiber...curing operations are done in clean rooms). Most operations are highly automated, with minimal manpower required. Some preceramic polymers appear to have
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunting, Bruce G; Farrell, John T
2006-01-01
The effects of fuel properties on gasoline HCCI operation have been investigated in a single cylinder, 500 cc, 11.3 CR port fuel injected research engine, operated at lambda=1 and equipped with hydraulic valve actuation. HCCI is promoted by early exhaust valve closing to retain hot exhaust in the cylinder, thereby increasing the cylinder gas temperature. Test fuels were formulated with pure components to have the same RON, MON, and octane sensitivity as an indolene reference fuel, but with a wide range of fuel composition differences. Experiments have been carried out to determine if fuel composition plays a role in HCCImore » combustion properties, independent of octane numbers. Fuel economy, emissions, and combustion parameters have been measured at several fixed speed/load conditions over a range of exhaust valve closing angles. When the data are compared at constant combustion phasing, fuel effects on emissions and other combustion properties are small. However, when compared at constant exhaust valve closing angle, fuel composition effects are more pronounced, specifically regarding ignition. Operability range differences are also related to fuel composition. An all-paraffinic (normal, iso, and cycloparaffins) fuel exhibited distinctly earlier combustion phasing, increased rate of cylinder pressure rise, and increased rate of maximum heat release compared to the indolene reference fuel. Conversely, olefin-containing fuels exhibited retarded combustion phasing. The fuels with the most advanced ignition showed a wider operating range in terms of engine speed and load, irrespective of exhaust closing angle. These ignition differences reflect contributions from both fuel and EGR kinetics, the effects of which are discussed. The fuel composition variables are somewhat inter-correlated, which makes the experimental separation their effects imprecise with this small set of fuels, though clear trends are evident. The overall effects of fuel composition on engine performance and emissions are small. However, the results suggest that the effects on combustion phasing and engine operability range may need to be considered in the practical implementation of HCCI for fuels with large compositional variations.« less
Hornberger, John; Hirth, Richard A
2012-08-01
In 2011, the Medicare Improvements for Patients and Providers Act replaced the case-mix-adjusted composite payment system for Medicare outpatient dialysis facilities with a bundled end-stage renal disease prospective payment system (PPS). We assessed the economic implications for modality choice of the revised Medicare payment system. Microeconomic analyses. Patients eligible for dialysis in the United States. The perspective of this analysis is that of a financial administrator of a representative dialysis center in the United States. Data were obtained from the Medicare Payment Advisory Commission, the US Renal Data System, the DOPPS (Dialysis Outcomes and Practice Patterns Study) Practice Monitor, the US Bureau of Labor Statistics, and Medicare fee schedules. Recently implemented end-stage renal disease PPS versus the prior case-mix composite payment system. Medicare payment per month, center fixed and variable costs per month, net difference in revenue and variable costs (direct contribution), and net difference in revenue and total costs (operating margin). The direct contribution and operating margin for in-center hemodialysis and peritoneal dialysis are expected to be positive under the new bundled PPS. For Medicare fiscal intermediaries/administrators, paid treatments for home hemodialysis vary from 3.2 to more than 4.8 per week. The direct contribution and operating margin are expected to be negative for home hemodialysis if the number of paid treatments is similar between in-center and home hemodialysis; they are almost identical when the number of paid treatments increases for home hemodialysis by approximately 1 per week. Experience across centers and intermediaries/administrators may vary. Sensitivity analyses were conducted to assess the robustness of findings and determine which variables most influenced results. The new bundled PPS created a financial incentive for increased use of peritoneal dialysis. Use of home hemodialysis may be influenced by number of paid treatments per week. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Meng, Yong-Lu; Tian, Song-Jiang; Li, Shu-Fen; Wang, Bo-Yang; Zhang, Min-Hua
2013-05-01
A conventional trickle bed reactor and its modified type both packed with Ca/Al composite oxide-based alkaline catalysts were studied for biodiesel production by transesterification of rapeseed oil and methanol. The effects of the methanol usage and oil flow rate on the FAME yield were investigated under the normal pressure and methanol boiling state. The oil flow rate had a significant effect on the FAME yield for the both reactors. The modified trickle bed reactor kept over 94.5% FAME yield under 0.6 mL/min oil flow rate and 91 mL catalyst bed volume, showing a much higher conversion and operational stability than the conventional type. With the modified trickle bed reactor, both transesterification and methanol separation could be performed simultaneously, and glycerin and methyl esters were separated additionally by gravity separation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fourier transform infrared (FTIR) fiber optic monitoring of composites during cure in an autoclave
NASA Technical Reports Server (NTRS)
Druy, Mark A.; Elandjian, Lucy; Stevenson, William A.; Driver, Richard D.; Leskowitz, Garett M.
1990-01-01
Real-time in situ monitoring of the chemical states of epoxy resins was investigated during cure in an autoclave using infrared evanescent spectroscopy. Fiber evanescent sensors were developed which may be sandwiched between the plies of the prepreg sample. A short length of sapphire fiber was used as the sensor cell portion of the fiber probe. Heavy metal fluoride glass optical fiber cables were designed for connecting the FTIR spectrometer to the sensor fiber within the autoclave. The sapphire fibers have outstanding mechanical thermal properties which should permit their use as an embedded link in all thermoset composites. The system is capable of operation at a temperature of 250 C for periods up to 8 hours without major changes to the fiber transmission. A discussion of the selection of suitable sensor fibers, the construction of a fiber-optic interface, and the interpretation of in situ infrared spectra of the curing process is presented.
Continuous flow synthesis of VO2 nanoparticles or nanorods by using a microreactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jie; Sun, Yugang; Muehleisen, Ralph T.
The invention provides a method for producing composite nanoparticles, the method using a first compound capable of transitioning from a monoclinic to a tetragonal rutile crystal state upon heating, and having the steps of subjecting the first compound to a hydrothermal synthesis to create anisotropic crystals of the compound; encapsulating the first compound with a second compound to create a core-shell construct; and annealing the construct as needed. Also provided is a device for continuously synthesizing composite nanoparticles, the device having a first precursor supply and a second precursor supply; a mixer to homogeneously combine the first precursor and secondmore » precursor to create a liquor; a first microreactor to subject the liquor to hydrothermic conditions to create an\\isotropic particles in a continuous operation mode; and a second microreactor for coating the particles with a third precursor to create a core-shell construct.« less
The Neutron Star Interior Composition Explorer (NICER)
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Gendreau, K.; Arzoumanian, Z.
2014-01-01
The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear-physics environments embodied by neutron stars. Scheduled to be launched in 2016 as an International Space Station payload, NICER will explore the exotic states of matter, using rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft (0.2-12 keV) X-ray band. Grazing-incidence "concentrator" optics coupled with silicon drift detectors, actively pointed for a full hemisphere of sky coverage, will provide photon-counting spectroscopy and timing registered to GPS time and position, with high throughput and relatively low background. The NICER project plans to implement a Guest Observer Program, which includes competitively selected user targets after the first year of flight operations. I will describe NICER and discuss ideas for potential Be/X-ray binary science.
NASA Technical Reports Server (NTRS)
Noginov, Makhail A.; Loutts, G. B.
2002-01-01
We have grown neodymium doped mixed apatite crystals, (Sr(x)Ba(l-x)5(PO4)3F, Sr5(P(1-x)V(x)O4)3F, and Ba5(P(1-x)V(x)O4)3F, and spectroscopically studied them as potential gain media for a laser source for atmospheric water sensing operating at 944.11 nm0. We conclude that an appropriate apatite host material for a 944.11 nm laser should be a mixture of Sr5(PO4)3F with a small fraction of Ba5(PO4)3F. The precise wavelength tuning around 944.11 nm can be accomplished by varying the host composition, temperature, and threshold population inversion. In apatite crystals of mixed composition, the Amplified Spontaneous Emission (ASE) loss at 1.06 microns is predicted to be significantly smaller than that in the end members.
The first Earth Resources Technology Satellite - Nearly two years of operation
NASA Technical Reports Server (NTRS)
Nordberg, W.
1974-01-01
A brief status report is given of the ERTS-1 satellite system as of June, 1974, and some applications of the ERTS-1 images are discussed. The multispectral images make it possible to identify or measure the quality and composition of water, the potential water content of snow, the moisture and possible composition of soils, the types and state of vegetation cover, and factors relating to stresses on the environment. The orthographic view of the earth provided by the satellite makes it possible to rapidly produce thematic maps, on a scale of 1:250,000, of most areas of the world. The regular, repetitive coverage provided by ERTS-1 every 18 days is important in areas such as water-supply and flood-damage studies. The use of ERTS-1 imagery for land-use planning, wetlands surveying, assessing marine resources, and observing processes such as desertification in the African Sahel is discussed.
NASA Astrophysics Data System (ADS)
Selvaganesh, S. Vinod; Dhanasekaran, P.; Bhat, Santoshkumar D.
2017-12-01
Durability is a major issue and has been the growing focus of research for the commercialization of polymer electrolyte fuel cells (PEFCs). Corrosion of carbon support is a key parameter as it triggers the Pt catalyst degradation and affects cell performance, which in turn affects the longevity of the cells. Herein, we describe a hybrid composite support of TiO2-nanowires and Multiwalled carbon nanotubes (MWCNTs) that offers resistance to corrosion under stressful operating conditions. Titania nanowireswhich have been shown to be more efficient and catalytically active than spherically shaped TiO2. TiO2-MWCNT composites are prepared through a hydrothermal method, followed by Pt deposition using a polyol method. Crystal structure, morphology, and oxidation state are examined through various characterization techniques. Electrochemical performance of TiO2-nanowire/MWCNT composite-supported Pt at various ratios of TiO2/MWCNT is assessed in PEFCs. Pt on support with optimum composition of TiO2-nanowires to MWCNTs exhibits fuel cell performance superior to Pt onMWCNTs. Accelerated stress testing (AST) between 1 and 1.5 V reveals that the designed catalyst on nanocomposite support possesses superior electrochemical activity and shows only 16% loss in catalytic activity in relation to 35% for Pt/MWCNTs even after 6000 potential cycles. Subsequently, the samples were characterized after AST to correlate the loss in fuel cell performance
Certain composition formulae for the fractional integral operators
NASA Astrophysics Data System (ADS)
Agarwal, Praveen; Harjule, Priyanka
2017-09-01
In this paper we establish some (presumably new) interesting expressions for the composition of some well known fractional integral operators Ia+ μ,Da+ μ,Ia+ γ ,μ and also derive an integral operator ℋa+;p ,q ;β w ;m ,n ;α whose kernel involves the Fox's H- function. By suitably specializing the coefficients and the parameters in these functions we can get a large number of (new and known) interesting expressions for the composition formulae which occur rather frequently in many problems of engineering and mathematical analysis but here we can mention only those which follow as particular cases of the Srivastava et al.
NASA Astrophysics Data System (ADS)
Demerjian, K. L.
2002-12-01
In the summer of 2001, an intensive field measurement campaign was carried out in Queens, NY as part of the PM2.5 Technology Assessment and Characterization Study in New York (PMTACS-NY) to characterize the physical and chemical composition of particulate matter and related precursors utilizing conventional and advanced instrumentation technologies. The measurement program, involving a team of scientists from federal, state, university and private sector organizations, was designed to provide detailed time resolved chemical and physical characterization of the urban PM2.5/co-pollutant complex in relation to the regional environment. A summary of the chemical and meteorological data defining specific events during the field intensive is presented as are results addressing specific hypothesis designed around PMTACS-NY program objectives. These include initial findings and conclusions related to 1) performance testing and evaluation of emerging measurement technologies and comparison with EPA mandated PM federal reference methods currently operational as part of the New York State and national PM2.5 monitoring network; 2) emissions characterization of CNG, standard diesel and CRT (Continuously Regenerating Technology) diesel retrofit powered vehicles; and 3) compositional comparisons of urban and regional PM2.5.
Data Quality Objectives for Regulatory Requirements for Dangerous Waste Sampling and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
MULKEY, C.H.
1999-07-02
This document describes sampling and analytical requirements needed to meet state and federal regulations for dangerous waste (DW). The River Protection Project (RPP) is assigned to the task of storage and interim treatment of hazardous waste. Any final treatment or disposal operations, as well as requirements under the land disposal restrictions (LDRs), fall in the jurisdiction of another Hanford organization and are not part of this scope. The requirements for this Data Quality Objective (DQO) Process were developed using the RPP Data Quality Objective Procedure (Banning 1996), which is based on the U.S. Environmental Protection Agency's (EPA) Guidance for themore » Data Quality Objectives Process (EPA 1994). Hereafter, this document is referred to as the DW DQO. Federal and state laws and regulations pertaining to waste contain requirements that are dependent upon the composition of the waste stream. These regulatory drivers require that pertinent information be obtained. For many requirements, documented process knowledge of a waste composition can be used instead of analytical data to characterize or designate a waste. When process knowledge alone is used to characterize a waste, it is a best management practice to validate the information with analytical measurements.« less
Products of composite operators in the exact renormalization group formalism
NASA Astrophysics Data System (ADS)
Pagani, C.; Sonoda, H.
2018-02-01
We discuss a general method of constructing the products of composite operators using the exact renormalization group formalism. Considering mainly the Wilson action at a generic fixed point of the renormalization group, we give an argument for the validity of short-distance expansions of operator products. We show how to compute the expansion coefficients by solving differential equations, and test our method with some simple examples.
NASA Astrophysics Data System (ADS)
Touche, George Earl
The theoretical scope of this dissertation encompasses the ecological factors of equity and energy. Literature important to environmental justice and sustainability are reviewed, and a general integration of global concepts is delineated. The conceptual framework includes ecological integrity, quality human development, intra- and inter-generational equity and risk originating from human economic activity and modern energy production. The empirical focus of this study concentrates on environmental equity and electric power generation within the United States. Several designs are employed while using paired t-tests, independent t-tests, zero-order correlation coefficients and regression coefficients to test seven sets of hypotheses. Examinations are conducted at the census tract level within Texas and at the state level across the United States. At the community level within Texas, communities that host coal or natural gas utility power plants and corresponding comparison communities that do not host such power plants are tested for compositional differences. Comparisons are made both before and after the power plants began operating for purposes of assessing outcomes of the siting process and impacts of the power plants. Relationships between the compositions of the hosting communities and the risks and benefits originating from the observed power plants are also examined. At the statewide level across the United States, relationships between statewide composition variables and risks and benefits originating from statewide electric power generation are examined. Findings indicate the existence of some limited environmental inequities, but they do not indicate disparities that confirm the general thesis of environmental racism put forth by environmental justice advocates. Although environmental justice strategies that would utilize Title VI of the 1964 Civil Rights Act and the disparate impact standard do not appear to be applicable, some findings suggest potential inequities in institutional practices involving environmental compliance, monitoring and enforcement that are hardly justifiable within the context of market dynamics.
Evolution of clog formation with time in columns permeated with synthetic landfill leachate
NASA Astrophysics Data System (ADS)
VanGulck, Jamie F.; Rowe, R. Kerry
2004-11-01
Laboratory column tests conducted to gain insight regarding the biological and chemical clogging mechanisms in a porous medium are presented. To seed the porous medium with landfill bacteria, a mixture of Keele Valley Landfill and synthetic leachate permeated through the column under anaerobic conditions for the first 9 days of operation. After this, 100% synthetic leachate was used. The synthetic leachate approximated Keele Valley Landfill leachate in chemical composition but contained negligible suspended solids and bacteria compared with real leachate. The removal of volatile fatty acids (VFAs), primarily acetate, in leachate as it passed through the medium was highly correlated with the precipitation of calcium carbonate (CaCO 3(s)) from solution. The columns experienced a decrease in drainable porosity from an initial value of about 0.38 to less than 0.1 after steady state chemical oxygen demand (COD) removal, resulting in a five-order magnitude decrease in hydraulic conductivity. The decrease in drainable porosity prior to steady state COD removal was primarily due to the growth of a biofilm on the medium surface. After steady state COD removal, calcium precipitation was at least equally responsible for the decrease in drainable porosity as biofilm growth. Clog composition analyses showed that CaCO 3(s) was the dominant clog constituent and that 99% of the carbonate in the clog material was bound to calcium.
NASA Astrophysics Data System (ADS)
Danaie, Mohsen
The main focus of this thesis is the characterization of defects and microstructure in high-energy ball milled magnesium hydride powder and magnesium-based multilayered composites. Enhancement in kinetics of hydrogen cycling in magnesium can be achieved by applying severe plastic deformation. A literature survey reveals that, due to extreme instability of alpha-MgH 2 in transmission electron microscope (TEM), the physical parameters that researchers have studied are limited to particle size and grain size. By utilizing a cryogenic TEM sample holder, we extended the stability time of the hydride phase during TEM characterization. Milling for only 30 minutes resulted in a significant enhancement in desorption kinetics. A subsequent annealing cycle under pressurized hydrogen reverted the kinetics to its initial sluggish state. Cryo-TEM analysis of the milled hydride revealed that mechanical milling induces deformation twinning in the hydride microstructure. Milling did not alter the thermodynamics of desorption. Twins can enhance the kinetics by acting as preferential locations for the heterogeneous nucleation of metallic magnesium. We also looked at the phase transformation characteristics of desorption in MgH2. By using energy-filtered TEM, we investigated the morphology of the phases in a partially desorbed state. Our observations prove that desorption phase transformation in MgH2 is of "nucleation and growth" type, with a substantial energy barrier for nucleation. This is contrary to the generally assumed "core-shell" structure in most of the simulation models for this system. We also tested the hydrogen storage cycling behavior of bulk centimeter-scale Mg-Ti and Mg-SS multilayer composites synthesized by accumulative roll-bonding. Addition of either phase (Ti or SS) allows the reversible hydrogen sorption at 350°C, whereas identically roll-bonded pure magnesium cannot be absorbed. In the composites the first cycle of absorption (also called "activation") kinetics improve with increased number of fold and roll (FR) operations. With increasing FR operations the distribution of the Ti phase is progressively refined, and the shape of the absorption curve no longer remains sigmoidal. Up to a point, increasing the loading amount of the second phase also accelerates the kinetics. Microscopy analysis performed on 1--2 wt.% hydrogen absorbed composites demonstrates that MgH 2 formed exclusively on various heterogeneous nucleation sites. During activation, MgH2 nucleation occurred at the Mg-hard phase interfaces. On the subsequent absorption cycles, heterogeneous nucleation primarily occurred in the vicinity of "internal" free surfaces such as cracks.
NASA Technical Reports Server (NTRS)
Robinson, John E.
2014-01-01
The Federal Aviation Administration's Next Generation Air Transportation System will combine advanced air traffic management technologies, performance-based procedures, and state-of-the-art avionics to maintain efficient operations throughout the entire arrival phase of flight. Flight deck Interval Management (FIM) operations are expected to use sophisticated airborne spacing capabilities to meet precise in-trail spacing from top-of-descent to touchdown. Recent human-in-the-loop simulations by the National Aeronautics and Space Administration have found that selection of the assigned spacing goal using the runway schedule can lead to premature interruptions of the FIM operation during periods of high traffic demand. This study compares three methods for calculating the assigned spacing goal for a FIM operation that is also subject to time-based metering constraints. The particular paradigms investigated include: one based upon the desired runway spacing interval, one based upon the desired meter fix spacing interval, and a composite method that combines both intervals. These three paradigms are evaluated for the primary arrival procedures to Phoenix Sky Harbor International Airport using the entire set of Rapid Update Cycle wind forecasts from 2011. For typical meter fix and runway spacing intervals, the runway- and meter fix-based paradigms exhibit moderate FIM interruption rates due to their inability to consider multiple metering constraints. The addition of larger separation buffers decreases the FIM interruption rate but also significantly reduces the achievable runway throughput. The composite paradigm causes no FIM interruptions, and maintains higher runway throughput more often than the other paradigms. A key implication of the results with respect to time-based metering is that FIM operations using a single assigned spacing goal will not allow reduction of the arrival schedule's excess spacing buffer. Alternative solutions for conducting the FIM operation in a manner more compatible with the arrival schedule are discussed in detail.
NASA Technical Reports Server (NTRS)
Kezirian, Michael T.
2010-01-01
Introducing composite vessels into the Space Shuttle Program represented a significant technical achievement. Each Orbiter vehicle contains 24 (nominally) Kevlar tanks for storage of pressurized helium (for propulsion) and nitrogen (for life support). The use of composite cylinders saved 752 pounds per Orbiter vehicle compared with all-metal tanks. The weight savings is significant considering each Shuttle flight can deliver 54,000 pounds of payload to the International Space Station. In the wake of the Columbia accident and the ensuing Return to Flight activities, the Space Shuttle Program, in 2005, re-examined COPV hardware certification. Incorporating COPV data that had been generated over the last 30 years and recognizing differences between initial Shuttle Program requirements and current operation, a new failure mode was identified, as composite stress rupture was deemed credible. The Orbiter Project undertook a comprehensive investigation to quantify and mitigate this risk. First, the engineering team considered and later deemed as unfeasible the option to replace existing all flight tanks. Second, operational improvements to flight procedures were instituted to reduce the flight risk and the danger to personnel. Third, an Orbiter reliability model was developed to quantify flight risk. Laser profilometry inspection of several flight COPVs identified deep (up to 20 mil) depressions on the tank interior. A comprehensive analysis was performed and it confirmed that these observed depressions were far less than the criterion which was established as necessary to lead to liner buckling. Existing fleet vessels were exonerated from this failure mechanism. Because full validation of the Orbiter Reliability Model was not possible given limited hardware resources, an Accelerated Stress Rupture Test of a flown flight vessel was performed to provide increased confidence. A Bayesian statistical approach was developed to evaluate possible test results with respect to the model credibility and thus flight rationale for continued operation of the Space Shuttle with existing flight hardware. A non-destructive evaluation (NDE) technique utilizing Raman Spectroscopy was developed to directly measure the overwrap residual stress state. Preliminary results provide optimistic results that patterns of fluctuation in fiber elastic strains over the outside vessel surface could be directly correlated with increased fiber stress ratios and thus reduced reliability.
NASA Astrophysics Data System (ADS)
Ghoneim, M. T.; Hussain, M. M.
2015-08-01
Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ˜260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygen and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.
NASA Technical Reports Server (NTRS)
Drake, M. D.; Klingler, D. E.
1973-01-01
The use of PLZT ceramics with the 7/65/35 composition in block data composer (BDC) input devices for holographic memory systems has previously been described for operation in the strain biased, scattering, and edge effect modes. A new and promising mode of BDC operation is the differential phase mode in which each element of a matrix array BDC acts as a phase modulator. The phase modulation results from a phase difference in the optical path length between the electrically poled and depoled states of the PLZT. It is shown that a PLZT BDC can be used as a matrix-type phase modulator to record and process digital data by the differential phase mode in a holographic recording/processing system with readout contrast ratios of between 10:1 and 15:1. The differential phase mode has the advantages that strain bias is not required and that the thickness and strain variations in the PLZT are cancelled out.
Pure state consciousness and its local reduction to neuronal space
NASA Astrophysics Data System (ADS)
Duggins, A. J.
2013-01-01
The single neuronal state can be represented as a vector in a complex space, spanned by an orthonormal basis of integer spike counts. In this model a scalar element of experience is associated with the instantaneous firing rate of a single sensory neuron over repeated stimulus presentations. Here the model is extended to composite neural systems that are tensor products of single neuronal vector spaces. Depiction of the mental state as a vector on this tensor product space is intended to capture the unity of consciousness. The density operator is introduced as its local reduction to the single neuron level, from which the firing rate can again be derived as the objective correlate of a subjective element. However, the relational structure of perceptual experience only emerges when the non-local mental state is considered. A metric of phenomenal proximity between neuronal elements of experience is proposed, based on the cross-correlation function of neurophysiology, but constrained by the association of theoretical extremes of correlation/anticorrelation in inseparable 2-neuron states with identical and opponent elements respectively.
Kohrs, F; Heyer, R; Bissinger, T; Kottler, R; Schallert, K; Püttker, S; Behne, A; Rapp, E; Benndorf, D; Reichl, U
2017-08-01
Complex microbial communities are the functional core of anaerobic digestion processes taking place in biogas plants (BGP). So far, however, a comprehensive characterization of the microbiomes involved in methane formation is technically challenging. As an alternative, enriched communities from laboratory-scale experiments can be investigated that have a reduced number of organisms and are easier to characterize by state of the art mass spectrometric-based (MS) metaproteomic workflows. Six parallel laboratory digesters were inoculated with sludge from a full-scale BGP to study the development of enriched microbial communities under defined conditions. During the first three month of cultivation, all reactors (R1-R6) were functionally comparable regarding biogas productions (375-625 NL L reactor volume -1 d -1 ), methane yields (50-60%), pH values (7.1-7.3), and volatile fatty acids (VFA, <5 mM). Nevertheless, a clear impact of the temperature (R3, R4) and ammonia (R5, R6) shifts was observed for the respective reactors. In both reactors operated under thermophilic regime, acetic and propionic acid (10-20 mM) began to accumulate. While R4 recovered quickly from acidification, the levels of VFA remained to be high in R3 resulting in low pH values of 6.5-6.9. The digesters R5 and R6 operated under the high ammonia regime (>1 gNH 3 L -1 ) showed an increase to pH 7.5-8.0, accumulation of acetate (>10 mM), and decreasing biogas production (<125 NL L reactor volume -1 d -1 ). Tandem MS (MS/MS)-based proteotyping allowed the identification of taxonomic abundances and biological processes. Although all reactors showed similar performances, proteotyping and terminal restriction fragment length polymorphisms (T-RFLP) fingerprinting revealed significant differences in the composition of individual microbial communities, indicating multiple steady-states. Furthermore, cellulolytic enzymes and cellulosomal proteins of Clostridium thermocellum were identified to be specific markers for the thermophilic reactors (R3, R4). Metaproteins found in R3 indicated hydrogenothrophic methanogenesis, whereas metaproteins of acetoclastic methanogenesis were identified in R4. This suggests not only an individual evolution of microbial communities even for the case that BGPs are started at the same initial conditions under well controlled environmental conditions, but also a high compositional variance of microbiomes under extreme conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Witnessing entanglement without entanglement witness operators
Pezzè, Luca; Li, Yan; Li, Weidong; Smerzi, Augusto
2016-01-01
Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables. PMID:27681625
Improvements of MCT MBE Growth on GaAs
NASA Astrophysics Data System (ADS)
Ziegler, J.; Wenisch, J.; Breiter, R.; Eich, D.; Figgemeier, H.; Fries, P.; Lutz, H.; Wollrab, R.
2014-08-01
In recent years, continuous progress has been published in the development of HgCdTe (MCT) infrared (IR) focal plane arrays (FPAs) fabricated by molecular beam epitaxy on GaAs substrates. In this publication, further characterization of the state-of-the art 1280 × 1024 pixel, 15- μm pitch detector fabricated from this material in both the mid-wavelength (MWIR) and long-wavelength (LWIR) IR region will be presented. For MWIR FPAs, the percentage of defective pixel remains below 0.5% up to an operating temperature ( T OP) of around 100 K. For the LWIR FPA, an operability of 99.25% was achieved for a T OP of 76 K. Additionally, the beneficial effect of the inclusion of MCT layers with a graded composition region was investigated and demonstrated on current-voltage ( IV) characteristics on test diodes in a MWIR FPA.
Shuttle Atlantis to deploy Galileo probe toward Jupiter
NASA Technical Reports Server (NTRS)
1989-01-01
The objectives of Space Shuttle Mission STS-34 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objective of STS-34 is to deploy the Galileo planetary exploration spacecraft into low earth orbit. Following deployment, Galileo will be propelled on a trajectory, known as Venus-Earth-Earth Gravity Assist (VEEGA), by an inertial upper stage (IUS). The objectives of the Galileo mission are to study the chemical composition, state, and dynamics of the Jovian atmosphere and satellites, and investigate the structure and physical dynamics of the Jovian magnetosphere. Secondary STS-34 payloads include the Shuttle Solar Backscatter Ultraviolet (SSBUV) instrument; the Mesoscale Lightning Experiment (MLE); and various other payloads involving polymer morphology, the effects of microgravity on plant growth hormone, and the growth of ice crystals.
User's manual for the Composite HTGR Analysis Program (CHAP-1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, J.S.; Secker, P.A. Jr.; Vigil, J.C.
1977-03-01
CHAP-1 is the first release version of an HTGR overall plant simulation program with both steady-state and transient solution capabilities. It consists of a model-independent systems analysis program and a collection of linked modules, each representing one or more components of the HTGR plant. Detailed instructions on the operation of the code and detailed descriptions of the HTGR model are provided. Information is also provided to allow the user to easily incorporate additional component modules, to modify or replace existing modules, or to incorporate a completely new simulation model into the CHAP systems analysis framework.
Atmospheric science on the Galileo mission
NASA Technical Reports Server (NTRS)
Hunten, D. M.; Colin, L.; Hansen, J. E.
1986-01-01
The atmospheric science goals of the Galileo mission, and instruments of the probe and orbiter are described. The current data available, and the goals of the Galileo mission concerning the chemical composition of the Jovian atmosphere; the thermal structure of the atmosphere; the nature of cloud particles and cloud layering; the radiative energy balance; atmospheric dynamics; and the upper atmosphere are discussed. The objectives and operations of the atmospheric structure instrument, neutral mass spectrometer, helium abundance interferometer, nephelometer, net flux radiometer, lightning and radio emission detector, solid state imaging system, NIR mapping spectrometer, photopolarimeter radiometer, and UV spectrometer are examined.
Shearing, Paul R.; Brightman, Edward; Brett, Dan J. L.; Brandon, Nigel P.; Cohen, Lesley F.
2016-01-01
The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single‐step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance. PMID:27595058
Maher, Robert C; Shearing, Paul R; Brightman, Edward; Brett, Dan J L; Brandon, Nigel P; Cohen, Lesley F
2016-01-01
The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single-step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance.
Dynamic Shock Response of an S2 Glass/SC15 Epoxy Woven Fabric Composite Material System
NASA Astrophysics Data System (ADS)
Key, Christopher; Alexander, Scott; Harstad, Eric; Schumacher, Shane
2017-06-01
The use of S2 glass/SC15 epoxy woven fabric composite materials for blast and ballistic protection has been an area of on-going research over the past decade. In order to accurately model this material system within potential applications under extreme loading conditions, a well characterized and well understood anisotropic equation of state (EOS) is needed. This work details both an experimental program and associated analytical modelling efforts which aim to provide better physical understanding of the anisotropic EOS behavior of this material. Experimental testing focused on planar shock impact tests loading the composite to peak pressures of 15 GPa in both the through-thickness and on-fiber orientation. Test results highlighted the anisotropic response of the material and provided a basis by which the associated numeric micromechanical investigation was compared. Results of the combined experimental and numerical modelling investigation provided insights into not only the constituent material influence on the composite response but also the importance of the geometrical configuration of the plain weave microstructure and the stochastic significance of the microstructural configuration. Sandia National Laboratories is a multi-mission laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data
Gallo, Kevin P.; Ji, Lei; Reed, Bradley C.; Eidenshink, Jeffery C.; Dwyer, John L.
2005-01-01
The relationship between AVHRR-derived normalized difference vegetation index (NDVI) values and those of future sensors is critical to continued long-term monitoring of land surface properties. The follow-on operational sensor to the AVHRR, the Visible/Infrared Imager/Radiometer Suite (VIIRS), will be very similar to the NASA Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. NDVI data derived from visible and near-infrared data acquired by the MODIS (Terra and Aqua platforms) and AVHRR (NOAA-16 and NOAA-17) sensors were compared over the same time periods and a variety of land cover classes within the conterminous United States. The results indicate that the 16-day composite NDVI values are quite similar over the composite intervals of 2002 and 2003, and linear relationships exist between the NDVI values from the various sensors. The composite AVHRR NDVI data included water and cloud masks and adjustments for water vapor as did the MODIS NDVI data. When analyzed over a variety of land cover types and composite intervals, the AVHRR derived NDVI data were associated with 89% or more of the variation in the MODIS NDVI values. The results suggest that it may be possible to successfully reprocess historical AVHRR data sets to provide continuity of NDVI products through future sensor systems.
Preparing GMAT for Operational Maneuver Planning of the Advanced Composition Explorer (ACE)
NASA Technical Reports Server (NTRS)
Qureshi, Rizwan Hamid; Hughes, Steven P.
2014-01-01
The General Mission Analysis Tool (GMAT) is an open-source space mission design, analysis and trajectory optimization tool. GMAT is developed by a team of NASA, private industry, public and private contributors. GMAT is designed to model, optimize and estimate spacecraft trajectories in flight regimes ranging from low Earth orbit to lunar applications, interplanetary trajectories and other deep space missions. GMAT has also been flight qualified to support operational maneuver planning for the Advanced Composition Explorer (ACE) mission. ACE was launched in August, 1997 and is orbiting the Sun-Earth L1 libration point. The primary science objective of ACE is to study the composition of both the solar wind and the galactic cosmic rays. Operational orbit determination, maneuver operations and product generation for ACE are conducted by NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF). This paper discusses the entire engineering lifecycle and major operational certification milestones that GMAT successfully completed to obtain operational certification for the ACE mission. Operational certification milestones such as gathering of the requirements for ACE operational maneuver planning, gap analysis, test plans and procedures development, system design, pre-shadow operations, training to FDF ACE maneuver planners, shadow operations, Test Readiness Review (TRR) and finally Operational Readiness Review (ORR) are discussed. These efforts have demonstrated that GMAT is flight quality software ready to support ACE mission operations in the FDF.
Estimation and Detection with Chaotic Systems
1994-02-01
125 For each nonsingular transformation f: X - X on (X, /3, I), there is a unique operator Pf: Ll(/) Ll(p) known as the Frobenius - Perron operator which...satisfies lB Pf (p(x)) d.(x) = J (B) p(x) dl(x) (6.10) for each B E and p E L(u) [50, 55]. This rather abstract definition of the Frobenius - Perron ... Frobenius - Perron operator for the n-fold composition of the transformation f is the same as the n-fold composition of the Frobenius - Perron operator for f. As
Virtual containment system for composite flywheels
NASA Astrophysics Data System (ADS)
Shiue, Fuh-Wen
2001-07-01
There is much interest in advanced composite flywheel systems for use on satellites mainly because of the potential for considerable weight savings associated with combined energy and momentum management. The additional weight of a containment system needed to protect the satellite in the event of a flywheel failure, however, could negate the potential savings. Therefore, the development of a condition monitoring and virtual containment system is essential to ensure the wide acceptance of flywheel batteries for spacecraft applications. A virtual containment system is a near real-time condition monitoring system, plus additional logic to adjust the operating conditions (maximum rotational speed) accordingly when a flaw or fault is detected. Flaws of primary interest in this study are those unique to composite flywheels, such as delamination and debonding of interfaces. Such flaws change the balance state of a flywheel through small, but detectable, motion of the mass center and principal axes of inertia. A proposed monitoring technique determines the existence and the extent of such flaws by a method similar to the influence-coefficient rotor balancing method. Because of the speed-dependence of the imbalance caused by elastic flaws, a normalized imbalance change, which is a direct measure of the flaw size, was defined. To account for the possibility that flaw growth could actually improve the balance state of a rotor, a new concept of accumulated imbalance change was also introduced. Laboratory tests showed the proposed method was able to detect small simulated flaws that result in as little as 2--3 microns of mass center movement. Fracture mechanics concepts were used to evaluate the severity and growth rate of the detected flaw. An interesting discovery that coincided with some experimental observations reported in the literature was the energy release rate reduction with a large crack. This finding indicates a possible stress relief and crack arrest when a circumferential crack grows over certain size. This phenomenon is largely due to crack curvature unique to filament-wound composite flywheels. Several virtual containment strategies were investigated numerically to demonstrate the feasibility of virtual containment systems. Once a flaw is detected during flywheel operation, the maximum operating speed can be reduced to prevent catastrophic failure, achieve a specific design life, and maximize energy storage capacity over the remaining life. A numerical example showed 4--5 times of improvement in cumulative energy storage through lifetime with a virtual containment. A closed-loop speed controller using condition monitoring sensor feedback was investigated numerically to account for possible imperfection of the fracture mechanics model. Finally, an integrated virtual containment system without any complex fracture mechanics analysis was also developed and successfully demonstrated experimentally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Mohit Jain; Dr. Ganesh Skandan; Dr. Gordon E. Khose
Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 oC. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with variousmore » microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.« less
NASA Astrophysics Data System (ADS)
Foster, Kerwin Crayton
The fractional quantum Hall effect (FQHE) occurs when a two-dimensional electron gas is placed in a strong magnetic field at low temperatures. When this effect occurs the Hall resistance, RH, defined to be the Hall voltage divided by the current, is quantized, with RH = (1/nu)h/ e2 where nu = p/q is the Landau level filling fraction; and p and q are relatively prime integers. For almost all observed FQHE states, q is odd with one notable exception: the nu = 5/2 FQHE state. Understanding the nature of this incompressible even-denominator state is one of the central questions in the theory of the FQHE and is the subject of this Dissertation. We use a powerful theoretical tool for studying the FQHE: composite fermion theory. Composite fermions can be viewed as electrons bound to an even number of magnetic flux quanta. Jain has shown that the FQHE for electrons can be viewed as an integer quantum Hall effect (p = 1) for composite fermions. More recently, Halperin, Lee and Read developed a successful theory of the compressible nu = 1/2 state using composite fermions. There is now compelling theoretical evidence that the 5/2 state is a so-called Moore-Read state---a state which can be viewed as a spin-polarized p-wave superconductor of composite fermions. We have developed a semi-phenomenological description of this state by modifying the Halperin-Lee-Read theory, adding a p-wave pairing interaction between composite fermions by hand. The electromagnetic response functions for the resulting superconducting state of composite fermions are then calculated. We show that these response functions exhibit the expected BCS 'coherence factor' effects, such as the Hebel-Slichter peak. Using the composite fermion response functions, we then calculate the corresponding electronic response functions using Chern-Simons theory. We find that in the electronic response, the most striking coherence factor effects (e.g., the Hebel-Slichter peak) are strongly suppressed. However, the low-temperature o = 2Delta threshold behavior does show clear coherence factor effects. Finally, we use our model to predict the wave-vector and frequency dependence of the longitudinal conductivity, sigmaxx( q, o), which can be measured in surface-acoustic-wave propagation experiments.
NASA Astrophysics Data System (ADS)
McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.
2011-09-01
Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in urban plumes compared to regional aerosol (0.85 versus 0.9-0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.
Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK
NASA Astrophysics Data System (ADS)
McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.
2011-05-01
Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in urban plumes compared to regional aerosol (0.85 versus 0.9-0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.
Development of a Risk Prediction Model and Clinical Risk Score for Isolated Tricuspid Valve Surgery.
LaPar, Damien J; Likosky, Donald S; Zhang, Min; Theurer, Patty; Fonner, C Edwin; Kern, John A; Bolling, Stephen F; Drake, Daniel H; Speir, Alan M; Rich, Jeffrey B; Kron, Irving L; Prager, Richard L; Ailawadi, Gorav
2018-02-01
While tricuspid valve (TV) operations remain associated with high mortality (∼8-10%), no robust prediction models exist to support clinical decision-making. We developed a preoperative clinical risk model with an easily calculable clinical risk score (CRS) to predict mortality and major morbidity after isolated TV surgery. Multi-state Society of Thoracic Surgeons database records were evaluated for 2,050 isolated TV repair and replacement operations for any etiology performed at 50 hospitals (2002-2014). Parsimonious preoperative risk prediction models were developed using multi-level mixed effects regression to estimate mortality and composite major morbidity risk. Model results were utilized to establish a novel CRS for patients undergoing TV operations. Models were evaluated for discrimination and calibration. Operative mortality and composite major morbidity rates were 9% and 42%, respectively. Final regression models performed well (both P<0.001, AUC = 0.74 and 0.76) and included preoperative factors: age, gender, stroke, hemodialysis, ejection fraction, lung disease, NYHA class, reoperation and urgent or emergency status (all P<0.05). A simple CRS from 0-10+ was highly associated (P<0.001) with incremental increases in predicted mortality and major morbidity. Predicted mortality risk ranged from 2%-34% across CRS categories, while predicted major morbidity risk ranged from 13%-71%. Mortality and major morbidity after isolated TV surgery can be predicted using preoperative patient data from the STS Adult Cardiac Database. A simple clinical risk score predicts mortality and major morbidity after isolated TV surgery. This score may facilitate perioperative counseling and identification of suitable patients for TV surgery. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Preparation of acetazolamide composite microparticles by supercritical anti-solvent techniques.
Duarte, Ana Rita C; Roy, Christelle; Vega-González, Arlette; Duarte, Catarina M M; Subra-Paternault, Pascale
2007-03-06
The possibility of preparation of ophthalmic drug delivery systems using compressed anti-solvent technology was evaluated. Eudragit RS 100 and RL 100 were used as drug carriers, acetazolamide was the model drug processed. Compressed anti-solvent experiments were carried out as a semi-continuous or a batch operation from a liquid solution of polymer(s)+solute dissolved in acetone. Both techniques allowed the recovery of composite particles, but the semi-continuous operation yielded smaller and less aggregated populations than the batch operation. The release behaviour of acetazolamide from the prepared microparticles was studied and most products exhibited a slower release than the single drug. Moreover, the release could be controlled to some extent by varying the ratio of the two Eudragit used in the formulation and by selecting one or the other anti-solvent technique. Simple diffusion models satisfactorily described the release profiles. Composites specifically produced by semi-continuous technique have a drug release rate controlled by a diffusion mechanism, whereas for composites produced by the batch operation, the polymer swelling also contributes to the overall transport mechanism.
Composition at Washington State University: Building a Multimodal Bricolage
ERIC Educational Resources Information Center
Ericsson, Patricia; Hunter, Leeann Downing; Macklin, Tialitha Michelle; Edwards, Elizabeth Sue
2016-01-01
Multimodal pedagogy is increasingly accepted among composition scholars. However, putting such pedagogy into practice presents significant challenges. In this profile of Washington State University's first-year composition program, we suggest a multi-vocal and multi-theoretical approach to addressing the challenges of multimodal pedagogy. Patricia…
CellTrans: An R Package to Quantify Stochastic Cell State Transitions.
Buder, Thomas; Deutsch, Andreas; Seifert, Michael; Voss-Böhme, Anja
2017-01-01
Many normal and cancerous cell lines exhibit a stable composition of cells in distinct states which can, e.g., be defined on the basis of cell surface markers. There is evidence that such an equilibrium is associated with stochastic transitions between distinct states. Quantifying these transitions has the potential to better understand cell lineage compositions. We introduce CellTrans, an R package to quantify stochastic cell state transitions from cell state proportion data from fluorescence-activated cell sorting and flow cytometry experiments. The R package is based on a mathematical model in which cell state alterations occur due to stochastic transitions between distinct cell states whose rates only depend on the current state of a cell. CellTrans is an automated tool for estimating the underlying transition probabilities from appropriately prepared data. We point out potential analytical challenges in the quantification of these cell transitions and explain how CellTrans handles them. The applicability of CellTrans is demonstrated on publicly available data on the evolution of cell state compositions in cancer cell lines. We show that CellTrans can be used to (1) infer the transition probabilities between different cell states, (2) predict cell line compositions at a certain time, (3) predict equilibrium cell state compositions, and (4) estimate the time needed to reach this equilibrium. We provide an implementation of CellTrans in R, freely available via GitHub (https://github.com/tbuder/CellTrans).
NASA Astrophysics Data System (ADS)
Imran, M.; Mumtaz, M.; Naveed, M.; Khan, M. Nasir
2018-04-01
Cobalt oxide (Co3O4) nanoparticles and Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (CuTl-1223) superconducting phase were prepared by sol-gel and solid-state reaction methods, respectively. Co3O4 nanoparticles were added in CuTl-1223 superconducting matrix to get (Co3O4)x/CuTl-1223, x = 0-2.0 wt.%, nanoparticles-superconductor composites. The unchanged crystal structure of the host CuTl-1223 superconducting phase (i.e. tetragonal) revealed that Co3O4 nanoparticles were settled at the grain boundaries. Superconducting properties of the CuTl-1223 phase were overall suppressed due to hole-charge carriers interaction at the grain boundaries. The dielectric properties of (Co3O4)x/CuTl-1223 composites were investigated by varying the test frequencies from 40 Hz to 100 MHz and operating temperatures from 77 to 298 K. The values of dielectric properties were found maximal at lower frequencies and started to decrease at higher frequencies. So, the dielectric properties of the CuTl-1223 superconducting phase can be tuned by varying the contents of (Co3O4) nanoparticles, test frequencies as well as operating temperatures.
Thermal effect of diode-pumped solid state lasers based on composite crystals
NASA Astrophysics Data System (ADS)
Hao, Ming-ming; Lu, Guo-guang; Zhu, Hong-bo; Huang, Yun; En, Yun-fei
2013-12-01
Thermal effect of diode-pumped solid-state lasers (DPSSL) based on YAP/Tm:YAP composite crystal is studied by using of finite element method (FEM). It is found that the peak temperature in a composite rod decreases to less than 80% of that in a non-composite crystal. Thermal stress of composite rod is obviously reduced to less than 70% comparing with non-composite crystal. It is also demonstrated that length of thermal lens unchanged with increasing of un-doped crystal length, which means that beam quality of composite laser wouldn't be improved by non-composite crystal. Therefore, it is concluded that using composite crystal would benefit for the properties of temperature and heat stress while insignificance for beam quality of DPSSL.
NASA Astrophysics Data System (ADS)
De Mazière, Martine; Thompson, Anne M.; Kurylo, Michael J.; Wild, Jeannette D.; Bernhard, Germar; Blumenstock, Thomas; Braathen, Geir O.; Hannigan, James W.; Lambert, Jean-Christopher; Leblanc, Thierry; McGee, Thomas J.; Nedoluha, Gerald; Petropavlovskikh, Irina; Seckmeyer, Gunther; Simon, Paul C.; Steinbrecht, Wolfgang; Strahan, Susan E.
2018-04-01
The Network for the Detection of Atmospheric Composition Change (NDACC) is an international global network of more than 90 stations making high-quality measurements of atmospheric composition that began official operations in 1991 after 5 years of planning. Apart from sonde measurements, all measurements in the network are performed by ground-based remote-sensing techniques. Originally named the Network for the Detection of Stratospheric Change (NDSC), the name of the network was changed to NDACC in 2005 to better reflect the expanded scope of its measurements. The primary goal of NDACC is to establish long-term databases for detecting changes and trends in the chemical and physical state of the atmosphere (mesosphere, stratosphere, and troposphere) and to assess the coupling of such changes with climate and air quality. NDACC's origins, station locations, organizational structure, and data archiving are described. NDACC is structured around categories of ground-based observational techniques (sonde, lidar, microwave radiometers, Fourier-transform infrared, UV-visible DOAS (differential optical absorption spectroscopy)-type, and Dobson-Brewer spectrometers, as well as spectral UV radiometers), timely cross-cutting themes (ozone, water vapour, measurement strategies, cross-network data integration), satellite measurement systems, and theory and analyses. Participation in NDACC requires compliance with strict measurement and data protocols to ensure that the network data are of high and consistent quality. To widen its scope, NDACC has established formal collaborative agreements with eight other cooperating networks and Global Atmosphere Watch (GAW). A brief history is provided, major accomplishments of NDACC during its first 25 years of operation are reviewed, and a forward-looking perspective is presented.
NASA Technical Reports Server (NTRS)
Simon, Paul C.; De Maziere, Martine; Bernhard, Germar; Blumenstock, Thomas; McGee, Thomas J.; Petropavlovskikh, Irina; Steinbrecht, Wolfgang; Wild, Jeannette D.; Lambert, Jean-Christopher; Seckmeyer, Gunther;
2018-01-01
The Network for the Detection of Atmospheric Composition Change (NDACC) is an international global network of more than 90 stations making high-quality measurements of atmospheric composition that began official operations in 1991 after 5 years of planning. Apart from sonde measurements, all measurements in the network are performed by ground-based remote-sensing techniques. Originally named the Network for the Detection of Stratospheric Change (NDSC), the name of the network was changed to NDACC in 2005 to better reflect the expanded scope of its measurements. The primary goal of NDACC is to establish long-term databases for detecting changes and trends in the chemical and physical state of the atmosphere (mesosphere, stratosphere, and troposphere) and to assess the coupling of such changes with climate and air quality. NDACC's origins, station locations, organizational structure, and data archiving are described. NDACC is structured around categories of ground-based observational techniques (sonde, lidar, microwave radiometers, Fourier-transform infrared, UV-visible DOAS (differential optical absorption spectroscopy)-type, and Dobson-Brewer spectrometers, as well as spectral UV radiometers), timely cross-cutting themes (ozone, water vapour, measurement strategies, cross-network data integration), satellite measurement systems, and theory and analyses. Participation in NDACC requires compliance with strict measurement and data protocols to ensure that the network data are of high and consistent quality. To widen its scope, NDACC has established formal collaborative agreements with eight other cooperating networks and Global Atmosphere Watch (GAW). A brief history is provided, major accomplishments of NDACC during its first 25 years of operation are reviewed, and a forward-looking perspective is presented.
Damage accumulation in closed cross-section, laminated, composite structures
NASA Technical Reports Server (NTRS)
Bucinell, Ronald B.
1996-01-01
The need for safe, lightweight, less expensive, and more reliable launch vehicle components is being driven by the competitiveness of the commercial launch market. The United States has lost 2/3 of the commercial lunch market to Europe. As low cost Russian and Chinese vehicles become available, the US market share could be reduced even further. This international climate is driving the Single Stage To Orbit (SSTO) program at NASA. The goal of the SSTO program is to radically reduce the cost of safe, routine transportation to and from space with a totally reusable launch vehicle designed for low-cost aircraft-like operations. Achieving this goal will require more efficient uses of materials. Composite materials can provide this program with the material and structural efficiencies needed to stay competitive in the international launch market place. In satellite systems the high specific properties, design flexibility, improved corrosion and wear resistance, increased fatigue life, and low coefficient of thermal expansion that are characteristic of composite materials can all be used to improve the overall satellite performance. Some of the satellites that may be able to take advantage of these performance characteristics are the Tethered Satellite Systems (TOSCIFER, AIRSEDS, TSS2, SEDS1, and SEDS2), AXAF, GRO, and the next generation Hubble Space Telescope. These materials can also be utilized in projects at the NASAIMSFC Space Optics Technology and System Center of Excellence. The successful implementation of composite materials requires accurate performance characterization. Materials characterization data for composite materials is typically generated using flat coupons of finite width. At the free edge of these coupons the stress state is exacerbated by the presence of stiffness and geometric discontinuities. The exacerbated stress state has been shown to dominate the damage accumulation in these materials and to have a profound affect on the material constants. Space structures typically have closed cross-sections, absent of free edges. As a result, composite material characterization data generated using finite width flat specimens does not accurately reflect the performance of the composite materials used in a closed cross-section structural configuration. Several investigators have recognized the need to develop characterization techniques for composite materials in closed cross-sectioned structures. In these investigations test methods were developed and cylindrical specimens were evaluated. The behavior of the cylindrical specimens were observed to depart from behavior typical of flat coupons. However, no attempts were made to identify and monitor the progression of damage in these cylindrical specimens during loading. The identification and monitoring of damage is fundamental to the characterization of composite materials in closed cross-section configurations. In the study reported here, a closed cross-sectioned test method was developed to monitor damage progression in 2 in. diameter cylindrical specimens and 1.5 in. finite width flat coupons subjected to quasi-static, tensile loading conditions. Damage in these specimen configurations was monitored using pulse echo ultrasonic, acoustic emission, and X-ray techniques.
Evolution of superclusters and delocalized states in GaAs1-xNx
NASA Astrophysics Data System (ADS)
Fluegel, B.; Alberi, K.; Beaton, D. A.; Crooker, S. A.; Ptak, A. J.; Mascarenhas, A.
2012-11-01
The evolution of individual nitrogen cluster bound states into an extended state infinite supercluster in dilute GaAs1-xNx was probed through temperature and intensity-dependent, time-resolved and magnetophotoluminescence (PL) measurements. Samples with compositions less than 0.23% N exhibit PL behavior that is consistent with emission from the extended states of the conduction band. Near a composition of 0.23% N, a discontinuity develops between the extended state PL peak energy and the photoluminescence excitation absorption edge. The existence of dual localized/delocalized state behavior near this composition signals the formation of an N supercluster just below the conduction band edge. The infinite supercluster is fully developed by 0.32% N.
Composite load spectra for select space propulsion structural components
NASA Technical Reports Server (NTRS)
Newell, J. F.; Ho, H. W.; Kurth, R. E.
1991-01-01
The work performed to develop composite load spectra (CLS) for the Space Shuttle Main Engine (SSME) using probabilistic methods. The three methods were implemented to be the engine system influence model. RASCAL was chosen to be the principal method as most component load models were implemented with the method. Validation of RASCAL was performed. High accuracy comparable to the Monte Carlo method can be obtained if a large enough bin size is used. Generic probabilistic models were developed and implemented for load calculations using the probabilistic methods discussed above. Each engine mission, either a real fighter or a test, has three mission phases: the engine start transient phase, the steady state phase, and the engine cut off transient phase. Power level and engine operating inlet conditions change during a mission. The load calculation module provides the steady-state and quasi-steady state calculation procedures with duty-cycle-data option. The quasi-steady state procedure is for engine transient phase calculations. In addition, a few generic probabilistic load models were also developed for specific conditions. These include the fixed transient spike model, the poison arrival transient spike model, and the rare event model. These generic probabilistic load models provide sufficient latitude for simulating loads with specific conditions. For SSME components, turbine blades, transfer ducts, LOX post, and the high pressure oxidizer turbopump (HPOTP) discharge duct were selected for application of the CLS program. They include static pressure loads and dynamic pressure loads for all four components, centrifugal force for the turbine blade, temperatures of thermal loads for all four components, and structural vibration loads for the ducts and LOX posts.
Creating NDA working standards through high-fidelity spent fuel modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skutnik, Steven E; Gauld, Ian C; Romano, Catherine E
2012-01-01
The Next Generation Safeguards Initiative (NGSI) is developing advanced non-destructive assay (NDA) techniques for spent nuclear fuel assemblies to advance the state-of-the-art in safeguards measurements. These measurements aim beyond the capabilities of existing methods to include the evaluation of plutonium and fissile material inventory, independent of operator declarations. Testing and evaluation of advanced NDA performance will require reference assemblies with well-characterized compositions to serve as working standards against which the NDA methods can be benchmarked and for uncertainty quantification. To support the development of standards for the NGSI spent fuel NDA project, high-fidelity modeling of irradiated fuel assemblies is beingmore » performed to characterize fuel compositions and radiation emission data. The assembly depletion simulations apply detailed operating history information and core simulation data as it is available to perform high fidelity axial and pin-by-pin fuel characterization for more than 1600 nuclides. The resulting pin-by-pin isotopic inventories are used to optimize the NDA measurements and provide information necessary to unfold and interpret the measurement data, e.g., passive gamma emitters, neutron emitters, neutron absorbers, and fissile content. A key requirement of this study is the analysis of uncertainties associated with the calculated compositions and signatures for the standard assemblies; uncertainties introduced by the calculation methods, nuclear data, and operating information. An integral part of this assessment involves the application of experimental data from destructive radiochemical assay to assess the uncertainty and bias in computed inventories, the impact of parameters such as assembly burnup gradients and burnable poisons, and the influence of neighboring assemblies on periphery rods. This paper will present the results of high fidelity assembly depletion modeling and uncertainty analysis from independent calculations performed using SCALE and MCNP. This work is supported by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.« less
Kinetic Properties of Solar Wind Silicon and Iron Ions
NASA Astrophysics Data System (ADS)
Janitzek, N. P.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F.
2017-12-01
Heavy ions with atomic numbers Z>2 account for less than one percent of the solar wind ions. However, serving as test particles with differing mass and charge, they provide a unique experimental approach to major questions of solar and fundamental plasma physics such as coronal heating, the origin and acceleration of the solar wind and wave-particle interaction in magnetized plasma. Yet the low relative abundances of the heavy ions pose substantial challenges to the instrumentation measuring these species with reliable statistics and sufficient time resolution. As a consequence the numbers of independent measurements and studies are small. The Charge Time-Of-Flight (CTOF) mass spectrometer as part of the Charge, ELement and Isotope Analysis System (CELIAS) onboard the SOlar and Heliospheric Observatory (SOHO) is a linear time-of-flight mass spectrometer which was operated at Lagrangian point L1 in 1996 for a few months only, before it suffered an instrument failure. Despite its short operation time, the CTOF sensor measured solar wind heavy ions with excellent charge state separation, an unprecedented cadence of 5 minutes and very high counting statistics, exceeding similar state-of-the-art instruments by a factor of ten. In contrast to earlier CTOF studies which were based on reduced onboard post-processed data, in our current studies we use raw Pulse Height Analysis (PHA) data providing a significantly increased mass, mass-per-charge and velocity resolution. Focussing on silicon and iron ion measurements, we present an overview of our findings on (1) short time behavior of heavy ion 1D radial velocity distribution functions, (2) differential streaming between heavy ions and solar wind bulk protons, (3) kinetic temperatures of heavy ions. Finally, we compare the CTOF results with measurements of the Solar Wind Ion Composition Spectrometer (SWICS) instrument onboard the Advanced Composition Explorer (ACE).
Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery
Bockelmann, Thomas R [Battle Creek, MI; Beaty, Kevin D [Kalamazoo, MI; Zou, Zhanijang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI
2009-07-21
A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.
The Treatment of Composition in Secondary and Early Collegiate Mathematics Curricula
ERIC Educational Resources Information Center
Horvath, Aladar Karoly
2012-01-01
Composition has been described as essential for understanding functions (Carlson, Oehrtman, & Engelke, 2010; Cooney, Beckmann, & Lloyd, 2010). Studies of students' understanding of function composition have shown that students use multiplication and other operations in place of composition (Carlson et al., 2010; Horvath, 2010). While…
NASA Technical Reports Server (NTRS)
Premont, E. J.; Stubenrauch, K. R.
1973-01-01
The resistance of current-design Pratt and Whitney Aircraft low aspect ratio advanced fiber reinforced epoxy matrix composite fan blades to foreign object damage (FOD) at STOL operating conditions was investigated. Five graphite/epoxy and five boron/epoxy wide chord fan blades with nickel plated stainless steel leading edge sheath protection were fabricated and impact tested. The fan blades were individually tested in a vacuum whirlpit under FOD environments. The FOD environments were typical of those encountered in service operations. The impact objects were ice balls, gravel, stralings and gelatin simulated birds. Results of the damage sustained from each FOD impact are presented for both the graphite boron reinforced blades. Tests showed that the present design composite fan blades, with wrap around leading edge protection have inadequate FOD impact resistance at 244 m/sec (800 ft/sec) tip speed, a possible STOL operating condition.
NASA Astrophysics Data System (ADS)
Lee, B. Y.; Lee, C. H.; KIm, K. T.
2016-02-01
Since 2012 to present, the Tidal Power Plant (TPP) has been operated in Shihwa Coastal Reservoir (SCR) to improve the water quality. The tidal mixing volume increased about 5 times from 0.03 to 0.16 billion ton/day which represents about 50% of the SCR water volume. Water quality monitoring data showed that it break a strong stratification and hypoxia (≤3 mg/L Dissolved Oxygen) during summer season in main tidal channel. In addition, Total Phosphorus (TP), Total Nitrogen (TN) and Chemical Oxygen Demand concentrations in the main tidal channel reached to similar level with outside SCR concentrations. However, inner area with limited tidal mixing has not experienced improvement in TN and TP concentrations after the TPP operation. Trophic State Index (TSI) which was composite index of trophic condition also kept high score (>50) and remained in eutrophic state especially in summer season. Overall, an increase of seawater circulation has a positive effect on water quality in main tidal channel but not in inner area because of limited seawater mixing and effects of stormwater runoff. The stormwater runoff should be properly managed in this case because most point source pollution load is discharged outside of SCR. Acknowledgement : This research was a part of the project titled 'Development of integrated estuarine management system', funded by the Ministry of Oceans and Fisheries, Korea
Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou
2015-07-01
Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.
Development of a high-performance composite cathode for LT-SOFC
NASA Astrophysics Data System (ADS)
Lee, Byung Wook
Solid Oxide Fuel Cell (SOFC) has drawn considerable attention for decades due to its high efficiency and low pollution, which is made possible since chemical energy is directly converted to electrical energy through the system without combustion. However, successful commercialization of SOFC has been delayed due to its high production cost mainly related with using high cost of interconnecting materials and the other structural components required for high temperature operation. This is the reason that intermediate (IT) or low temperature (LT)-SOFC operating at 600~800°C or 650°C and below, respectively, is of particular significance because it allows the wider selection of cheaper materials such as stainless steel for interconnects and the other structural components. Also, extended lifetime and system reliability are expected due to less thermal stress through the system with reduced temperature. More rapid start-up/shut-down procedure is another advantage of lowering the operating temperatures. As a result, commercialization of SOFC will be more viable. However, there exists performance drop with reduced operating temperature due to increased polarization resistances from the electrode electrochemical reactions and decreased electrolyte conductivity. Since ohmic polarization of the electrolyte can be significantly reduced with state-of-the art thin film technology and cathode polarization has more drastic effect on total SOFC electrochemical performance than anode polarization as temperature decreases, development of the cathode with high performance operating at IT or LT range is thus essential. On the other hand, chemical stability of the cathode and its chemical compatibility with the electrolyte should also be considered for cathode development since instability and incompatibility of the cathode will also cause substantial performance loss. Based on requirements of the cathode mentioned above, in this study, several chemico-physical approaches were carried out to develop a high-performance composite cathode, in particular, for LT-SOFC operating 650°C and below since stability and compatibility of the materials in interest are secured at low temperatures. First, a nano-sized pyrochlore bismuth ruthenate (Bi2Ru 2O7 or BRO7 shortly), one of the promising cathode materials, was successfully synthesized using glycine-nitrate combustion (GNC) route. Stoichiometric Bi2Ru2O7 without any impurity phase was achieved with considerably improved processing condition, leading to the crystallite size of ~24nm in diameter. Even though the resulting powder tends to agglomerate, resulting in overall 200~400nm size range, it still showed better quality than the one prepared by solid state (SS) reaction route followed by extra milling steps such as vibro-milling and sonication for further particle size reduction. Glycine-to-nitrate (G/N) ratio was found to play a critical role in determining the reaction temperature and reaction duration, thus phase purity and particle morphology (particle size, shape, and agglomeration etc). Composite cathodes of such prepared BRO7 (GNC BRO7) combined with SS erbia-stabilized bismuth oxide, Bi1.6Er0.4O3 or ESB, showed better electrochemical performance than vibro-milled BRO7 (VM BRO7)-SS ESB. ASR values of 0.123Ocm2 at 700°C and 4.59cOm 2 at 500°C, respectively, were achieved, which follows well the trend of particle size effect on performance of composite cathodes. Additionally, the number of processing steps (thus time) was reduced by GNC route. Several issues in regard to synthesis process and characteristics of BRO7 material itself will be addressed in this dissertation. Secondly, a unique in-situ composite cathode synthesis was successfully developed and applied for BRO7-ESB composite cathodes to improve percolation and to reduce agglomeration of each phase inside the cathode so that the effective triple phase boundary (TPB) length was extended. To disperse and stabilize ESB powder in de-ionized (DI) water, zeta potential profile of ESB powder in DI water as a function of pH was first achieved. The effect of a dispersant (ammonium citrate dibasic) on the stability of ESB powder dispersed in DI water was also investigated. Knowledge of BRO7 wet chemical synthesis from previous study was utilized for final product of in-situ BRO7-ESB composite cathodes. Such prepared composite particles were characterized and the electrochemical performance of in-situ BRO7-ESB composite cathodes was examined as well. Performance enhancement was observed so that ASR values of 0.097Ocm2 and 3.58Ocm2 were achieved at 700°C and 500°C, respectively, which were 19% and 22% improvement, respectively compared to those of conventionally mixed composite cathodes of BRO7-ESB. Finally, a highly controlled nanostructured BRO7-ESB composite cathode was developed by infiltration of BRO7 onto ESB scaffolds to maximize the effective TPB length, to improve the connectivity of ESB phase inside the cathode for better oxygen-ion diffusion, and to minimize delamination between the electrolyte and cathode layers. ESB scaffolds were first established by adding a graphite pore-former and controlling heat treatment condition. Nano-sized BRO7 particles were successfully created on the surface of previously formed ESB scaffold by infiltration of concentrated (Bi, Ru) nitrate solution followed by the optimized heat treatment. Such prepared composite cathodes exhibited superior electrochemical performance to conventionally made BRO7-ESB composite cathodes and even better than GNC BRO7-SS ESB developed in this dissertation, e.g. 0.073Ocm2 at 700°C and 1.82Ocm2 at 500°C, respectively. This cathode system was revealed to be highly competitive among all the reported composite cathodes consisting of the same or different materials prepared by various processing techniques. It was demonstrated that the extended TPB length from continuous network of BRO7 nanoparticles and better connectivity of ESB scaffolds enabled the outstanding performance. Moreover, de-lamination of cathode from the electrolyte was prevented thanks to improved adhesion between ESB scaffolds and ESB electrolyte. Dissociative adsorption of oxygen gas were proposed to be the dominant rate-determining process for the overall oxygen reduction reaction at low temperatures (500-600°C) whereas all of the constituting sub-reactions such as oxygen gas dissociative adsorption, oxygen ion diffusion towards TPB region, and oxygen ion incorporation were found to play roles competitively in the overall reaction at relatively high operating temperature (650-700°C) based on analysis of impedance spectra.
Hanzlicek, Gregg A; Renter, David R; White, Brad J; Wagner, Bruce A; Dargatz, David A; Sanderson, Michael W; Scott, H Morgan; Larson, Robert E
2013-05-01
To assess associations between herd management practices and herd-level rates of bovine respiratory disease complex (BRDC) in preweaned beef calves in US cow-calf operations. Cross-sectional survey. 443 herds weighted to represent the US cow-calf population. Producers from 24 states were selected to participate in a 2-phase survey; 443 producers completed both survey phases and had calves born alive during the study period. Data from those respondents underwent multivariable negative binomial regression analyses. Bred heifer importation was associated with lower BRDC rates (incidence rate ratio [IRR], 0.40; confidence interval [CI], 0.19 to 0.82), whereas weaned steer importation was associated with higher BRDC rates (IRR, 2.62; CI, 1.15 to 5.97). Compared with single-breed herds, operations with calves of 2-breed crosses (IRR, 2.36; CI, 1.30 to 4.29) or 3-breed crosses (IRR, 4.00; CI, 1.93 to 8.31) or composite-herd calves (IRR, 2.27; CI, 1.00 to 5.16) had higher BRDC rates. Operations classified as supplemental sources of income had lower BRDC rates (IRR, 0.48; CI, 0.26 to 0.87) than did operations classified as primary sources of income. Reported feed supplementation with antimicrobials was positively associated with BRDC rates (IRR, 3.46; CI, 1.39 to 8.60). The reported number of visits by outsiders in an average month also was significantly associated with herd-level BRDC rates, but the magnitude and direction of the effects varied. Management practices associated with preweaning BRDC rates may be potential indicators or predictors of preweaning BRDC rates in cow-calf production systems.
ERIC Educational Resources Information Center
Tomezsko, Edward S. J.
A composite materials education program was established to train Boeing Helicopter Company employees in the special processing of new filament-reinforced polymer composite materials. During the personnel development phase of the joint Boeing-Penn State University project, an engineering instructor from Penn State completed a 5-month, full-time…
NASA Astrophysics Data System (ADS)
Tong, Lu; Wang, Xiao-Xiong; He, Xiao-Xiao; Nie, Guang-Di; Zhang, Jun; Zhang, Bin; Guo, Wen-Zhe; Long, Yun-Ze
2018-03-01
Highly stretchable and electrically conductive thermoplastic polyurethane (TPU) nanofibrous composite based on electrospinning for flexible strain sensor and stretchable conductor has been fabricated via in situ polymerization of polyaniline (PANI) on TPU nanofibrous membrane. The PANI/TPU membrane-based sensor could detect a strain from 0 to 160% with fast response and excellent stability. Meanwhile, the TPU composite has good stability and durability. Besides, the composite could be adapted to various non-flat working environments and could maintain opportune conductivity at different operating temperatures. This work provides an easy operating and low-cost method to fabricate highly stretchable and electrically conductive nanofibrous membrane, which could be applied to detect quick and tiny human actions.
Investigation into the effects of sulfur on syngas reforming inside a solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Li, Ting Shuai; Xu, Min; Gao, Chongxin; Wang, Baoqing; Liu, Xiyun; Li, Baihai; Wang, Wei Guo
2014-07-01
The electrochemical performance and long-term durability of a solid oxide fuel cell have been evaluated with a simulated coal syngas containing 2 ppm H2S as fuel. The resulting impedance spectra indicate that no observable power loss is caused by the addition of 2 ppm H2S, and the cell shows stability of nearly 500 h at 0.625 A cm-2. The composition of mixed gas is analyzed both at a current load of 0.625 A cm-2 and open circuit state. Hydrogen and carbon monoxide are directly consumed as fuels at the anode side, whereas methane stays unchanged during the operation. It seems the internal carbohydrate reforming and impurity poisoning interacts and weakens the poisoning effects. The oxidation of H2 and the water gas shift reaction take advantages over methane reforming at the cell operational conditions.
Materials selection guidelines for geothermal energy utilization systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, P.F. II; Conover, M.F.
1981-01-01
This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world aremore » presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)« less
A Robust Compositional Architecture for Autonomous Systems
NASA Technical Reports Server (NTRS)
Brat, Guillaume; Deney, Ewen; Farrell, Kimberley; Giannakopoulos, Dimitra; Jonsson, Ari; Frank, Jeremy; Bobby, Mark; Carpenter, Todd; Estlin, Tara
2006-01-01
Space exploration applications can benefit greatly from autonomous systems. Great distances, limited communications and high costs make direct operations impossible while mandating operations reliability and efficiency beyond what traditional commanding can provide. Autonomous systems can improve reliability and enhance spacecraft capability significantly. However, there is reluctance to utilizing autonomous systems. In part this is due to general hesitation about new technologies, but a more tangible concern is that of reliability of predictability of autonomous software. In this paper, we describe ongoing work aimed at increasing robustness and predictability of autonomous software, with the ultimate goal of building trust in such systems. The work combines state-of-the-art technologies and capabilities in autonomous systems with advanced validation and synthesis techniques. The focus of this paper is on the autonomous system architecture that has been defined, and on how it enables the application of validation techniques for resulting autonomous systems.
Croce, Anna C; Ferrigno, Andrea; Santin, Giada; Piccolini, Valeria M; Bottiroli, Giovanni; Vairetti, Mariapia
2014-07-01
Autofluorescence (AF) based optical biopsy of liver tissue is a powerful approach for the real-time diagnosis of its functionality. Since increasing attention is given to the bile production and composition to monitor the liver metabolic engagement in surgery and transplantation, we have investigated the bile AF properties as a potential, additional diagnostic parameter. Spectrofluorometric analysis has been performed in real time on a rat liver model of warm ischemia and reperfusion-60 minutes partial portal vein and hepatic artery clamping and subsequent restoration of blood circulation-in comparison with sham operated rats. The AF spectra have been recorded through a single fiber optic probe (366 nm excitation) from both liver tissue and bile, collected from the cannulated bile duct, and analyzed by means of curve fitting procedures. Bile composition has been also analyzed through biochemical assays of bilirubin, total bile acids (TBA) and proteins. Both liver and bile AF signal amplitude and spectral shape undergo changes during induction of ischemia and subsequent reperfusion. The liver tissue response is mainly ascribable to changes in NAD(P)H and flavins and their redox state, largely dependent on oxygen supply, and to the decrease of both vitamin A and fatty acid AF contributions. During comparable times, sham operated rat livers undergo smaller alterations in AF spectral shape, indicating a continuous, slight increase in the oxidized state. Bile AF emission shows a region in the 510-600 nm range ascribable to bilirubin, and resulting from the contribution of two bands, centered at about 515-523 and 570 nm, consistently with its bichromophore nature. Variations in the balance between these two bands depend on the influence of microenvironment on bilirubin intramolecular interchromophore energy transfer efficiency and are likely indicating alteration in a bile composition. This event is supported also by changes observed in the 400-500 nm emission region, ascribable to other bile components. In parallel with the intratissue AF properties, mainly reflecting redox metabolic activities, the bile AF analysis can provide additional information to assess alterations and recovery in the balance of liver metabolic activities. © 2014 Wiley Periodicals, Inc.
Analysis of Sensory/Active Piezoelectric Composite Structures in Thermal Environments
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun; Saravanos, Dimitris A.
1996-01-01
Although there has been extensive development of analytical methods for modeling the behavior of piezoelectric structures, only a limited amount of research has been performed concerning the implications of thermal effects on both the active and sensory response of smart structures. Thermal effects become important when the piezoelectric structure has to operate in either extremely hot or cold temperature environments. Consequently, the purpose of this paper is to extend the previously developed discrete layer formulation of Saravanos and Heyliger to account for the coupled mechanical, electrical, and thermal response in modern smart composite beams. The mechanics accounts for thermal effects which may arise in the elastic and piezoelectric media at the material level through the constitutive equations. The displacements, electric potentials, and temperatures are introduced as state variables, allowing them to be modeled as variable fields through the laminate thickness. This unified representation leads to an inherent capability to model both the active compensation of thermal distortions in smart structures and the resultant sensory voltage when thermal loads are applied. The corresponding finite element formulation is developed and numerical results demonstrate the ability to model both the active and sensory modes of composite beams with heterogeneous plies with attached piezoelectric layers under thermal loadings.
1986-05-01
Composites Using Ultrasonic Nondestructive Evaluation Annual Technical Report I by Vikrai K. Kinra Depdrtment of Aerospace Engineering r and Mechanics...and identify by b ko number) 7It is well known that composite materials suffer complex damage when they are.-ub- jected to either monotonic or...Characterization of Damage States in Continuous Fiber Composites Using Ultrasonic Nondestructive Evaluation Annual Technical Report by Vikram K. Kinra Department
[Response to US review rules on patent subject matter of traditional Chinese medicine compositions].
Liu, Pan; Cao, Ya-di; Gong, Rui-Juan; Liu, Wei
2018-02-01
The United States Patent and Trademark Office(USPTO) issued Interim Guidance on Patent Subject Matter Eligibility on December 16, 2014, bringing certain effects to the review rules on patent application of Chinese medicine compositions. Based on the Interim Guidance, cases analysis was used in this paper to analyze the patent subject matter issues of traditional Chinese medicine compositions in the United States. The researches have shown that the application documents should be properly written in the United States when the patent for Chinese medicine compositions is applied, which can improve the probability of authorization. Copyright© by the Chinese Pharmaceutical Association.
Processing EOS MLS Level-2 Data
NASA Technical Reports Server (NTRS)
Snyder, W. Van; Wu, Dong; Read, William; Jiang, Jonathan; Wagner, Paul; Livesey, Nathaniel; Schwartz, Michael; Filipiak, Mark; Pumphrey, Hugh; Shippony, Zvi
2006-01-01
A computer program performs level-2 processing of thermal-microwave-radiance data from observations of the limb of the Earth by the Earth Observing System (EOS) Microwave Limb Sounder (MLS). The purpose of the processing is to estimate the composition and temperature of the atmosphere versus altitude from .8 to .90 km. "Level-2" as used here is a specialists f term signifying both vertical profiles of geophysical parameters along the measurement track of the instrument and processing performed by this or other software to generate such profiles. Designed to be flexible, the program is controlled via a configuration file that defines all aspects of processing, including contents of state and measurement vectors, configurations of forward models, measurement and calibration data to be read, and the manner of inverting the models to obtain the desired estimates. The program can operate in a parallel form in which one instance of the program acts a master, coordinating the work of multiple slave instances on a cluster of computers, each slave operating on a portion of the data. Optionally, the configuration file can be made to instruct the software to produce files of simulated radiances based on state vectors formed from sets of geophysical data-product files taken as input.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gemain, F.; Robin, I. C.; Feuillet, G.
2013-12-07
HgCdTe films grown by liquid phase epitaxy with different Cd compositions were post-annealed to control the Hg vacancy concentration. Then temperature-dependent Hall measurements and photoluminescence measurements allowed us to study the evolution of the Hg vacancy acceptor levels with the cadmium composition. For Cd compositions below 33% the Hg vacancies in HgCdTe present a negative-U property with the ionized state V{sup −} stabilized compared to the neutral state V{sup 0}. For Cd compositions higher than 45%, the Hg vacancies in HgCdTe present a more standard level ordering with the ionized state V{sup −} at higher energy than the neutral statemore » V{sup 0}.« less
Field testing the Raman gas composition sensor for gas turbine operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buric, M.; Chorpening, B.; Mullem, J.
2012-01-01
A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class Imore » Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.« less
Wang, Song; Cottrill, Anton L; Kunai, Yuichiro; Toland, Aubrey R; Liu, Pingwei; Wang, Wen-Jun; Strano, Michael S
2017-05-24
Thermal diodes, or devices that transport thermal energy asymmetrically, analogous to electrical diodes, hold promise for thermal energy harvesting and conservation, as well as for phononics or information processing. The junction of a phase change material and phase invariant material can form a thermal diode; however, there are limited constituent materials available for a given target temperature, particularly near ambient. In this work, we demonstrate that a micro and nanoporous polystyrene foam can house a paraffin-based phase change material, fused to PMMA, to produce mechanically robust, solid-state thermal diodes capable of ambient operation with Young's moduli larger than 11.5 MPa and 55.2 MPa above and below the melting transition point, respectively. Moreover, the composites show significant changes in thermal conductivity above and below the melting point of the constituent paraffin and rectification that is well-described by our previous theory and the Maxwell-Eucken model. Maximum thermal rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences - analogous to an electrical diode bridge with widespread implications for transient thermal energy harvesting and conservation. Overall, our approach yields mechanically robust, solid-state thermal diodes capable of engineering design from a mathematical model of phase change and thermal transport, with implications for energy harvesting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, T.; Peeler, D.
2014-10-28
EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested that the glass formulation team of Savannah River National Laboratory (SRNL) and ES-VSL develop a technical basis that validates the current Product Composition Control System models for use during the processing of the coupled flowsheet or that leads to the refinements of or modifications tomore » the models that are needed so that they may be used during the processing of the coupled flowsheet. SRNL has developed a matrix of test glasses that are to be batched and fabricated by ES-VSL as part of this effort. This document provides two analytical plans for use by ES-VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses based upon the results of testing by ASTM’s Product Consistency Test (PCT) Method A.« less
Labeled trees and the efficient computation of derivations
NASA Technical Reports Server (NTRS)
Grossman, Robert; Larson, Richard G.
1989-01-01
The effective parallel symbolic computation of operators under composition is discussed. Examples include differential operators under composition and vector fields under the Lie bracket. Data structures consisting of formal linear combinations of rooted labeled trees are discussed. A multiplication on rooted labeled trees is defined, thereby making the set of these data structures into an associative algebra. An algebra homomorphism is defined from the original algebra of operators into this algebra of trees. An algebra homomorphism from the algebra of trees into the algebra of differential operators is then described. The cancellation which occurs when noncommuting operators are expressed in terms of commuting ones occurs naturally when the operators are represented using this data structure. This leads to an algorithm which, for operators which are derivations, speeds up the computation exponentially in the degree of the operator. It is shown that the algebra of trees leads naturally to a parallel version of the algorithm.
ERIC Educational Resources Information Center
Reeve, Charlie L.; Basalik, Debra
2010-01-01
This study examined the degree to which differences in average IQ across the 50 states was associated with differences in health statistics independent of differences in wealth, health care expenditures and racial composition. Results show that even after controlling for differences in state wealth and health care expenditures, average IQ had…
Automatic Processing of Reactive Polymers
NASA Technical Reports Server (NTRS)
Roylance, D.
1985-01-01
A series of process modeling computer codes were examined. The codes use finite element techniques to determine the time-dependent process parameters operative during nonisothermal reactive flows such as can occur in reaction injection molding or composites fabrication. The use of these analytical codes to perform experimental control functions is examined; since the models can determine the state of all variables everywhere in the system, they can be used in a manner similar to currently available experimental probes. A small but well instrumented reaction vessel in which fiber-reinforced plaques are cured using computer control and data acquisition was used. The finite element codes were also extended to treat this particular process.
Natural Resources Inventory and Land Evaluation in Switzerland
NASA Technical Reports Server (NTRS)
Haefner, H. (Principal Investigator)
1975-01-01
The author has identified the following significant results. A system was developed to operationally map and measure the areal extent of various land use categories for updating existing and producing new and actual thematic maps showing the latest state of rural and urban landscapes and its changes. The processing system includes: (1) preprocessing steps for radiometric and geometric corrections; (2) classification of the data by a multivariate procedure, using a stepwise linear discriminant analysis based on carefully selected training cells; and (3) output in form of color maps by printing black and white theme overlays of a selected scale with photomation system and its coloring and combination into a color composite.
ERIC Educational Resources Information Center
Weiss, Stanley J.; Kearns, David N.; Antoshina, Maria
2009-01-01
According to the composite-stimulus control model (Weiss, 1969, 1972b), an individual discriminative stimulus (S[superscript D]) is composed of that S[superscript D]'s on-state plus the off-states of all other relevant S[superscript D]s. The present experiment investigated the reversibility of composite-stimulus control. Separate groups of rats…
Kids Count New Jersey 1994: State and County Profiles of Child Well-Being.
ERIC Educational Resources Information Center
Garland, Jane
This KIDS COUNT data book examines statewide trends in the well-being of New Jersey's children. The report begins with general state facts and trends in child well-being, county composite and quartile rankings for 1994, state composite rankings for the years 1991 through 1994, and state quartile rankings by county for the years 1993 and 1994. The…
A composite score associated with spontaneous operational tolerance in kidney transplant recipients.
Danger, Richard; Chesneau, Mélanie; Paul, Chloé; Guérif, Pierrick; Durand, Maxim; Newell, Kenneth A; Kanaparthi, Sai; Turka, Laurence A; Soulillou, Jean-Paul; Houlgatte, Rémi; Giral, Magali; Ramstein, Gérard; Brouard, Sophie
2017-06-01
New challenges in renal transplantation include using biological information to devise a useful clinical test for discerning high- and low-risk patients for individual therapy and ascertaining the best combination and appropriate dosages of drugs. Based on a 20-gene signature from a microarray meta-analysis performed on 46 operationally tolerant patients and 266 renal transplant recipients with stable function, we applied the sparse Bolasso methodology to identify a minimal and robust combination of six genes and two demographic parameters associated with operational tolerance. This composite score of operational tolerance discriminated operationally tolerant patients with an area under the curve of 0.97 (95% confidence interval 0.94-1.00). The score was not influenced by immunosuppressive treatment, center of origin, donor type, or post-transplant lymphoproliferative disorder history of the patients. This composite score of operational tolerance was significantly associated with both de novo anti-HLA antibodies and tolerance loss. It was validated by quantitative polymerase chain reaction using independent samples and demonstrated specificity toward a model of tolerance induction. Thus, our score would allow clinicians to improve follow-up of patients, paving the way for individual therapy. Copyright © 2017 International Society of Nephrology. All rights reserved.
A composite score associated with spontaneous operational tolerance in kidney transplant recipients
Danger, Richard; Chesneau, Mélanie; Paul, Chloé; Guérif, Pierrick; Durand, Maxim; Newell, Kenneth A; Kanaparthi, Sai; Turka, Laurence A; Soulillou, Jean-Paul; Houlgatte, Rémi; Giral, Magali; Ramstein, Gérard; Brouard, Sophie
2017-01-01
New challenges in renal transplantation include using biological information to devise a useful clinical test for discerning high- and low-risk patients for individual therapy and ascertaining the best combination and appropriate dosages of drugs. Based on a 20-gene signature from a microarray meta-analysis performed on 46 operationally tolerant patients and 266 renal transplanted recipients with stable function, we applied the sparse Bolasso methodology to identify a minimal and robust combination of six genes and two demographic parameters associated with operational tolerance. This composite score of operational tolerance discriminated operationally tolerant patients with an area under the curve of 0.97 (95% confidence interval 0.94–1.00). The score was not influenced by immunosuppressive treatment, center of origin, donor type, or post-transplant lymphoproliferative disorder history of the patients. This composite score of operational tolerance was significantly associated with both de novo anti-HLA antibodies and tolerance loss. It was validated by quantitative polymerase chain reaction using independent samples and demonstrated specificity toward a model of tolerance induction. Thus, our score would allow clinicians to improve follow-up of patients, paving the way for individual therapy. PMID:28242033
Synthesis of improved phenolic and polyester resins
NASA Technical Reports Server (NTRS)
Delano, C. B.
1980-01-01
Thirty-seven cured phenolic resin compositions were prepared and tested for their ability to provide improved char residues and moisture resistance over state of the art epoxy resin composite matrices. Cyanate, epoxy novolac and vinyl ester resins were investigated. Char promoter additives were found to increase the anaerobic char yield at 800 C of epoxy novolacs and vinyl esters. Moisture resistant cyanate and vinyl ester compositions were investigated as composite matrices with Thornel 300 graphite fiber. A cyanate composite matrix provided state of the art composite mechanical properties before and after humidity exposure and an anaerobic char yield of 46 percent at 800 C. The outstanding moisture resistance of the matrix was not completely realized in the composite. Vinyl ester resins showed promise as candidates for improved composite matrix systems.
Resource Prospector, the Decadal Survey and the Scientific Context for the Exploration of the Moon
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Colaprete, A.; Andrews, D. R.
2017-01-01
The Inner Planets Panel of the Planetary Exploration Decadal Survey defined several science questions related to the origins, emplacement, and sequestration of lunar polar volatiles: 1. What is the lateral and vertical distribution of the volatile deposits? 2. What is the chemical composition and variability of polar volatiles? 3. What is the isotopic composition of the volatiles? 4. What is the physical form of the volatiles? 5. What is the rate of the current volatile deposition? A mission concept study, the Lunar Polar Volatiles Explorer (LPVE), defined a approximately $1B New Frontiers mission to address these questions. The NAS/NRC report, 'Scientific Context for the Exploration of the Moon' identified he lunar poles as special environments with important implications. It put forth the following goals: Science Goal 4a-Determine the compositional state (elemental, isotopic, mineralogic) and compositional distribution (lateral and depth) of the volatile component in lunar polar regions. Science Goal 4b-Determine the source(s) for lunar polar volatiles. Science Goal 4c-Understand the transport, retention, alteration, and loss processes that operate on volatile materials at permanently shaded lunar regions. Science Goal 4d-Understand the physical properties of the extremely cold (and possibly volatile rich) polar regolith. Science Goal 4e-Determine what the cold polar regolith reveals about the ancient solar environment.
The Hemolymph Proteome of Fed and Starved Drosophila Larvae
Goetze, Sandra; Ahrens, Christian H.; Omasits, Ulrich; Marty, Florian; Simigdala, Nikiana; Meyer, Imke; Wollscheid, Bernd; Brunner, Erich; Hafen, Ernst; Lehner, Christian F.
2013-01-01
The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid) contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics. PMID:23840627
The hemolymph proteome of fed and starved Drosophila larvae.
Handke, Björn; Poernbacher, Ingrid; Goetze, Sandra; Ahrens, Christian H; Omasits, Ulrich; Marty, Florian; Simigdala, Nikiana; Meyer, Imke; Wollscheid, Bernd; Brunner, Erich; Hafen, Ernst; Lehner, Christian F
2013-01-01
The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid) contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics.
Fitousi, Daniel
2016-03-01
Composite faces combine the top half of one face with the bottom half of another to create a compelling illusion of a new face. Evidence for holistic processing with composite faces comes primarily from a matching procedure in a selective attention task. In the present study, a dual-task approach has been employed to study whether composite faces reflect genuine holistic (i.e., fusion of parts) or non-holistic processing strategies (i.e., switching, resource sharing). This has been accomplished by applying the Attention Operation Characteristic methodology (AOC, Sperling & Melchner, 1978a, 1978b) and cross-contingency correlations (Bonnel & Prinzmetal, 1998) to composite faces. Overall, the results converged on the following conclusions: (a) observers can voluntarily allocate differential amounts of attention to the top and bottom parts in both spatially aligned and misaligned composite faces, (b) the interaction between composite face halves is due to attentional limitations, not due to switching or fusion strategies, and (c) the processing of aligned and misaligned composite faces is quantitatively and qualitatively similar. Taken together, these results challenge the holistic interpretation of the composite face illusion. Copyright © 2015 Elsevier B.V. All rights reserved.
Evolution of superclusters and delocalized states in GaAs 1–xN x
Fluegel, B.; Alberi, K.; Beaton, D. A.; ...
2012-11-21
The evolution of individual nitrogen cluster bound states into an extended state infinite supercluster in dilute GaAs 1–xN x was probed through temperature and intensity-dependent, time-resolved and magnetophotoluminescence (PL) measurements. Samples with compositions less than 0.23% N exhibit PL behavior that is consistent with emission from the extended states of the conduction band. Near a composition of 0.23% N, a discontinuity develops between the extended state PL peak energy and the photoluminescence excitation absorption edge. The existence of dual localized/delocalized state behavior near this composition signals the formation of an N supercluster just below the conduction band edge. The infinitemore » supercluster is fully developed by 0.32% N.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Eun Seon; Ruminski, Anne M.; Aloni, Shaul
Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H 2 per litre inmore » the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. In conclusion, these multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.« less
Cho, Eun Seon; Ruminski, Anne M; Aloni, Shaul; Liu, Yi-Sheng; Guo, Jinghua; Urban, Jeffrey J
2016-02-23
Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H2 per litre in the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.
Fabrication and Testing of Mo-Re Heat Pipes Embedded in Carbon/Carbon
NASA Technical Reports Server (NTRS)
Glass, David E.; Merrigan, Michael A.; Sena, J. Tom
1998-01-01
Refractory-composite/heat-pipe-cooled wing an tail leading edges are being considered for use on hypersonic vehicles to limit maximum temperatures to values below material reuse limits and to eliminate the need to actively cool the leading edges. The development of a refractory-composite/heat-pipe-cooled leading edge has evolved from the design stage to the fabrication and testing of heat pipes embedded in carbon/carbon (C/C). A three-foot-long, molybdenum-rhenium heat pipe with a lithium working fluid was fabricated and tested at an operating temperature of 2460 F to verify the individual heat-pipe design. Following the fabrication of this heat pipe, three additional heat pipes were fabricated and embedded in C/C. The C/C heat-pipe test article was successfully tested using quartz lamps in a vacuum chamber in both a horizontal and vertical orientation. Start up and steady state data are presented for the C/C heat-pipe test article. Radiography and eddy current evaluations were performed on the test article.
NASA Technical Reports Server (NTRS)
Saleeb, Atef F.; Arnold, Steven M.; Al-Zoubi, Nasser R.
2003-01-01
The influence of material time dependency and anisotropy in the context of two specific flywheel designs-preload and multi-directional composite (MDC)--is investigated. In particular, we focus on the following aspects: 1) geometric constraints, 2) material constraints, 3) loading type, and 4) the fundamental character of the time-dependent response, i.e., reversible or irreversible. The bulk of the results presented were obtained using a composite (PMC IM7/8552 at 135 C) material system. The material was characterized using a general multimechanism hereditary (viscoelastoplastic) model. As a general conclusion, the results have clearly shown that both the preload and the MDC rotor designs are significantly affected by time-dependent material behavior, which may impact the state of rotor balance and potentially reduce its operating life. In view of the results of the parametric studies and predictions made in the present study, the need for actual experimentation focusing on the time-dependent behavior of full-scale flywheel rotors is self-evident.
Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells.
Fan, L; Wang, C; Di, J; Chen, M; Zheng, J; Zhu, B
2012-06-01
Composite and nanocomposite samarium doped ceria-carbonates powders were prepared by solid-state reaction, citric acid-nitrate combustion and modified nanocomposite approaches and used as electrolytes for low temperature solid oxide fuel cells. X-ray Diffraction, Scanning Electron Microscope, low-temperature Nitrogen Adsorption/desorption Experiments, Electrochemical Impedance Spectroscopy and fuel cell performance test were employed in characterization of these materials. All powders are nano-size particles with slight aggregation and carbonates are amorphous in composites. Nanocomposite electrolyte exhibits much lower impedance resistance and higher ionic conductivity than those of the other electrolytes at lower temperature. Fuel cell using the electrolyte prepared by modified nanocomposite approach exhibits the best performance in the whole operation temperature range and achieves a maximum power density of 839 mW cm(-2) at 600 degrees C with H2 as fuel. The excellent physical and electrochemical performances of nanocomposite electrolyte make it a promising candidate for low-temperature solid oxide fuel cells.
NASA Technical Reports Server (NTRS)
Verrilli, Michael; Calomino, Anthony; Thomas, David J.; Robinson, R. Craig
2004-01-01
Vane subelements were fabricated from a silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite. A cross-sectional slice of an aircraft engine metal vane was the basis of the vane subelement geometry. To fabricate the small radius of the vane's trailing edge using stiff Sylramic SiC fibers, a unique SiC fiber architecture was developed. A test configuration for the vanes in a high pressure gas turbine environment was designed and fabricated. Testing was conducted using a pressure of 6 atm and combustion flow rate of 0.5 kg/sec, and consisted of fifty hours of steady state operation followed by 102 2-minute thermal cycles. A surface temperature of 1320 C was obtained for the EBC-coated SiC/SiC vane subelement. This paper will briefly discuss the vane fabrication, test configuration, and results of the vane testing. The emphasis of the paper is on characterization of the post-test condition of the vanes.
Nonstoichiometric fluorides—Solid electrolytes for electrochemical devices: A review
NASA Astrophysics Data System (ADS)
Sorokin, N. I.; Sobolev, B. P.
2007-09-01
The solid electrolytes with fluorine-ion conductivity that were revealed during the analysis of the phase diagrams of the MF m - RF n systems within the program of search for new multicomponent fluoride crystalline materials carried out at the Shubnikov Institute of Crystallography, Russian Academy of Sciences, are described. The most widespread and promising materials are the nonstoichiometric phases with fluorite (CaF2) and tysonite (LaF3) structures, which are formed in the MF2- RF3 systems ( M = Ca, Sr, Ba, Cd, or Pb; R = Sc, Y, or La-Lu). These phases have superionic fluorine conductivity due to the anion sublattice disorder. The ionic conductivity of crystals of both structure types has been studied and the limits of its change with composition and temperature are determined. Nonstoichiometric fluorides are used as solid electrolytes in chemical sensors, fluorine sources, and batteries. The prospects of the use of fluorine-ion conductors in solid-state electrochemical devices, principles of their operation, and the problems of optimization of their composition are discussed.
Analytical Micromechanics Modeling Technique Developed for Ceramic Matrix Composites Analysis
NASA Technical Reports Server (NTRS)
Min, James B.
2005-01-01
Ceramic matrix composites (CMCs) promise many advantages for next-generation aerospace propulsion systems. Specifically, carbon-reinforced silicon carbide (C/SiC) CMCs enable higher operational temperatures and provide potential component weight savings by virtue of their high specific strength. These attributes may provide systemwide benefits. Higher operating temperatures lessen or eliminate the need for cooling, thereby reducing both fuel consumption and the complex hardware and plumbing required for heat management. This, in turn, lowers system weight, size, and complexity, while improving efficiency, reliability, and service life, resulting in overall lower operating costs.
Static Feed Water Electrolysis Subsystem Testing and Component Development
NASA Technical Reports Server (NTRS)
Koszenski, E. P.; Schubert, F. H.; Burke, K. A.
1983-01-01
A program was carried out to develop and test advanced electrochemical cells/modules and critical electromechanical components for a static feed (alkaline electrolyte) water electrolysis oxygen generation subsystem. The accomplishments were refurbishment of a previously developed subsystem and successful demonstration for a total of 2980 hours of normal operation; achievement of sustained one-person level oxygen generation performance with state-of-the-art cell voltages averaging 1.61 V at 191 ASF for an operating temperature of 128F (equivalent to 1.51V when normalized to 180F); endurance testing and demonstration of reliable performance of the three-fluid pressure controller for 8650 hours; design and development of a fluid control assembly for this subsystem and demonstration of its performance; development and demonstration at the single cell and module levels of a unitized core composite cell that provides expanded differential pressure tolerance capability; fabrication and evaluation of a feed water electrolyte elimination five-cell module; and successful demonstration of an electrolysis module pressurization technique that can be used in place of nitrogen gas during the standby mode of operation to maintain system pressure and differential pressures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoneim, M. T.; Hussain, M. M., E-mail: muhammadmustafa.hussain@kaust.edu.sa
Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ∼260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygenmore » and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.« less
Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.
Ju, Jiangwei; Wang, Yantao; Chen, Bingbing; Ma, Jun; Dong, Shanmu; Chai, Jingchao; Qu, Hongtao; Cui, Longfei; Wu, Xiuxiu; Cui, Guanglei
2018-04-25
Solid-state lithium batteries have drawn wide attention to address the safety issues of power batteries. However, the development of solid-state lithium batteries is substantially limited by the poor electrochemical performances originating from the rigid interface between solid electrodes and solid-state electrolytes. In this work, a composite of poly(vinyl carbonate) and Li 10 SnP 2 S 12 solid-state electrolyte is fabricated successfully via in situ polymerization to improve the rigid interface issues. The composite electrolyte presents a considerable room temperature conductivity of 0.2 mS cm -1 , an electrochemical window exceeding 4.5 V, and a Li + transport number of 0.6. It is demonstrated that solid-state lithium metal battery of LiFe 0.2 Mn 0.8 PO 4 (LFMP)/composite electrolyte/Li can deliver a high capacity of 130 mA h g -1 with considerable capacity retention of 88% and Coulombic efficiency of exceeding 99% after 140 cycles at the rate of 0.5 C at room temperature. The superior electrochemical performance can be ascribed to the good compatibility of the composite electrolyte with Li metal and the integrated compatible interface between solid electrodes and the composite electrolyte engineered by in situ polymerization, which leads to a significant interfacial impedance decrease from 1292 to 213 Ω cm 2 in solid-state Li-Li symmetrical cells. This work provides vital reference for improving the interface compatibility for room temperature solid-state lithium batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeler, D; Tommy Edwards, T; Kevin Fox, K
The Savannah River National Laboratory (SRNL) has developed, and continues to enhance, its integrated capability to evaluate the impact of proposed sludge preparation plans on the Defense Waste Processing Facility's (DWPF's) operation. One of the components of this integrated capability focuses on frit development which identifies a viable frit or frits for each sludge option being contemplated for DWPF processing. A frit is considered viable if its composition allows for economic fabrication and if, when it is combined with the sludge option under consideration, the DWPF property/composition models (the models of DWPF's Product Composition Control System (PCCS)) indicate that themore » combination has the potential for an operating window (a waste loading (WL) interval over which the sludge/frit glass system satisfies processability and durability constraints) that would allow DWPF to meet its goals for waste loading and canister production. This report documents the results of SRNL's efforts to identify candidate frit compositions and corresponding predicted operating windows (defined in terms of WL intervals) for the February 2007 compositional projection of Sludge Batch 4 (SB4) developed by the Liquid Waste Organization (LWO). The nominal compositional projection was used to assess projected operating windows (in terms of a waste loading interval over which all predicted properties were classified as acceptable) for various frits, evaluate the applicability of the 0.6 wt% SO{sub 4}{sup =} PCCS limit to the glass systems of interest, and determine the impact (or lack thereof) to the previous SB4 variability studies. It should be mentioned that the information from this report will be coupled with assessments of melt rate to recommend a frit for SB4 processing. The results of this paper study suggest that candidate frits are available to process the nominal SB4 composition over attractive waste loadings of interest to DWPF. Specifically, two primary candidate frits for SB4 processing, Frit 510 and Frit 418, have projected operating windows that should allow for successful processing at DWPF. While Frit 418 has been utilized at DWPF, Frit 510 is a higher B{sub 2}O{sub 3} based frit which could lead to improvements in melt rate. These frits provide relatively large operating windows and demonstrate robustness to possible sludge compositional variation while avoiding potential nepheline formation issues. In addition, assessments of SO{sub 4}{sup =} solubility indicate that the 0.6 wt% SO{sub 4}{sup =} limit in PCCS is applicable for the Frit 418 and the Frit 510 based SB4 glass systems.« less
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2000-01-01
Aircraft engines are assemblies of dynamically interacting components. Engine updates to keep present aircraft flying safely and engines for new aircraft are progressively required to operate in more demanding technological and environmental requirements. Designs to effectively meet those requirements are necessarily collections of multi-scale, multi-level, multi-disciplinary analysis and optimization methods and probabilistic methods are necessary to quantify respective uncertainties. These types of methods are the only ones that can formally evaluate advanced composite designs which satisfy those progressively demanding requirements while assuring minimum cost, maximum reliability and maximum durability. Recent research activities at NASA Glenn Research Center have focused on developing multi-scale, multi-level, multidisciplinary analysis and optimization methods. Multi-scale refers to formal methods which describe complex material behavior metal or composite; multi-level refers to integration of participating disciplines to describe a structural response at the scale of interest; multidisciplinary refers to open-ended for various existing and yet to be developed discipline constructs required to formally predict/describe a structural response in engine operating environments. For example, these include but are not limited to: multi-factor models for material behavior, multi-scale composite mechanics, general purpose structural analysis, progressive structural fracture for evaluating durability and integrity, noise and acoustic fatigue, emission requirements, hot fluid mechanics, heat-transfer and probabilistic simulations. Many of these, as well as others, are encompassed in an integrated computer code identified as Engine Structures Technology Benefits Estimator (EST/BEST) or Multi-faceted/Engine Structures Optimization (MP/ESTOP). The discipline modules integrated in MP/ESTOP include: engine cycle (thermodynamics), engine weights, internal fluid mechanics, cost, mission and coupled structural/thermal, various composite property simulators and probabilistic methods to evaluate uncertainty effects (scatter ranges) in all the design parameters. The objective of the proposed paper is to briefly describe a multi-faceted design analysis and optimization capability for coupled multi-discipline engine structures optimization. Results are presented for engine and aircraft type metrics to illustrate the versatility of that capability. Results are also presented for reliability, noise and fatigue to illustrate its inclusiveness. For example, replacing metal rotors with composites reduces the engine weight by 20 percent, 15 percent noise reduction, and an order of magnitude improvement in reliability. Composite designs exist to increase fatigue life by at least two orders of magnitude compared to state-of-the-art metals.
Minami, Christina A; Sheils, Catherine R; Pavey, Emily; Chung, Jeanette W; Stulberg, Jonah J; Odell, David D; Yang, Anthony D; Bentrem, David J; Bilimoria, Karl Y
2017-03-01
The US medical malpractice system assumes that the threat of liability should deter negligence, but it is unclear whether malpractice environment affects health care quality. We sought to explore the association between state malpractice environment and postoperative complication rates. This observational study included Medicare fee-for-service beneficiaries undergoing one of the following operations in 2010: colorectal, lung, esophageal, or pancreatic resection, total knee arthroplasty, craniotomy, gastric bypass, abdominal aortic aneurysm repair, coronary artery bypass grafting, or cystectomy. The state-specific malpractice environment was measured by 2010 medical malpractice insurance premiums, state average award size, paid malpractice claims/100 physicians, and a composite malpractice measure. Outcomes of interest included 30-day readmission, mortality, and postoperative complications (eg sepsis, myocardial infarction [MI], pneumonia). Using Medicare administrative claims data, associations between malpractice environment and postoperative outcomes were estimated using hierarchical logistic regression models with hospital random-intercepts. Measures of malpractice environment did not have significant, consistent associations with postoperative outcomes. No individual tort reform law was consistently associated with improved postoperative outcomes. Higher-risk state malpractice environment, based on the composite measure, was associated with higher likelihood of sepsis (odds ratio [OR] 1.22; 95% CI 1.07 to 1.39), MI (OR 1.14; 95% CI 1.06 to 1.23), pneumonia (OR 1.09; 95% CI 1.03 to 1.16), acute renal failure (OR 1.15; 95% CI 1.08 to 1.22), deep vein thrombosis/pulmonary embolism (OR 1.22; 95% CI 1.13 to 1.32), and gastrointestinal bleed (OR 1.18; 95% CI 1.08 to 1.30). Higher risk malpractice environments were not consistently associated with a lower likelihood of surgical postoperative complications, bringing into question the ability of malpractice lawsuits to promote health care quality. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Buckley, John D. (Editor)
1992-01-01
This document is a compilation of papers presented at a joint NASA/North Carolina State University/DoD/Clemson University/Drexel University conference on Fibers, Textile Technology, and Composites Structures held at the College of Textiles Building on Centennial Campus of North Carolina State University, Raleigh, North Carolina on October 15-17, 1991. Conference papers presented information on advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, pultruded composites, and the latest requirements for the use of textiles in the production of composite materials and structures.
1991-12-01
GSE) and Mechanical (GSM), 4- and 6-year obligor ( 4YO / 6YO) programs. The ASVAB consists of the following ten tests: General Science (GS), Arithmetic...Mathematics Knowledge (MK), Mechanical Comprehension (MC), and Electronics Information (El). The study recommends that (1) GSE 4YO retain the operational...composite, AR+MK+EI+GS, but raise the minimum qualifying score (MQS) from 200 to 204, (2) GSM 4YO replace the operational composite, MK+AS, with AR+MK
NASA Technical Reports Server (NTRS)
1990-01-01
Spang & Company's new configuration of converter transformer cores is a composite of gapped and ungapped cores assembled together in concentric relationship. The net effect of the composite design is to combine the protection from saturation offered by the gapped core with the lower magnetizing requirement of the ungapped core. The uncut core functions under normal operating conditions and the cut core takes over during abnormal operation to prevent power surges and their potentially destructive effect on transistors. Principal customers are aerospace and defense manufacturers. Cores also have applicability in commercial products where precise power regulation is required, as in the power supplies for large mainframe computers.
SiC-Based Composite Materials Obtained by Siliconizing Carbon Matrices
NASA Astrophysics Data System (ADS)
Shikunov, S. L.; Kurlov, V. N.
2017-12-01
We have developed a method for fabrication of parts of complicated configuration from composite materials based on SiC ceramics, which employs the interaction of silicon melt with the carbon matrix having a certain composition and porosity. For elevating the operating temperatures of ceramic components, we have developed a method for depositing protective silicon-carbide coatings that is based on the interaction of the silicon melt and vapor with carbon obtained during thermal splitting of hydrocarbon molecules. The new structural ceramics are characterized by higher operating temperatures; chemical stability; mechanical strength; thermal shock, wear and radiation resistance; and parameters stability.
Tier One Performance Screen Initial Operational Test and Evaluation: 2011 Annual Report
2013-01-01
OPERATIONAL TEST AND EVALUATION: 2011 ANNUAL REPORT EXECUTIVE SUMMARY Research Requirement: In addition to educational, physical , and...34 Table 5.4. Incremental Validity Estimates for the TAPAS and TOPS Composite Scales over the AFQT for Predicting IMT Physical Fitness Criteria by...Validity Estimates for the TAPAS and TOPS Composite Scales over the AFQT for Predicting In-Unit Physical Fitness Criteria by Education Tier
QCD constituent counting rules for neutral vector mesons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; Lebed, Richard F.; Lyubovitskij, Valery E.
QCD constituent counting rules define the scaling behavior of exclusive hadronic scattering and electromagnetic scattering amplitudes at high momentum transfer in terms of the total number of fundamental constituents in the initial and final states participating in the hard subprocess. The scaling laws reflect the twist of the leading Fock state for each hadron and hence the leading operator that creates the composite state from the vacuum. Thus, the constituent counting scaling laws can be used to identify the twist of exotic hadronic candidates such as tetraquarks and pentaquarks. Effective field theories must consistently implement the scaling rules in ordermore » to be consistent with the fundamental theory. Here in this paper, we examine how one can apply constituent counting rules for the exclusive production of one or two neutral vector mesons V 0 in e + e - annihilation, processes in which the V 0 can couple via intermediate photons. In the case of a (narrow) real V 0, the photon virtuality is fixed to a precise value s 1 = m2V 0, thus treating the V 0 as a single fundamental particle. Each real V 0 thus contributes to the constituent counting rules with NV0 = 1 . In effect, the leading operator underlying the V 0 has twist 1. Thus, in the specific physical case of single or double on-shell V 0 production via intermediate photons, the predicted scaling from counting rules coincides with vector-meson dominance (VMD), an effective theory that treats V 0 as an elementary field. However, the VMD prediction fails in the general case where the V 0 is not coupled through an elementary photon field, and then the leading-twist interpolating operator has twist NV 0 = 2 . Analogous effects appear in pp scattering processes.« less
QCD constituent counting rules for neutral vector mesons
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.; Lebed, Richard F.; Lyubovitskij, Valery E.
2018-02-01
QCD constituent counting rules define the scaling behavior of exclusive hadronic scattering and electromagnetic scattering amplitudes at high momentum transfer in terms of the total number of fundamental constituents in the initial and final states participating in the hard subprocess. The scaling laws reflect the twist of the leading Fock state for each hadron and hence the leading operator that creates the composite state from the vacuum. Thus, the constituent counting scaling laws can be used to identify the twist of exotic hadronic candidates such as tetraquarks and pentaquarks. Effective field theories must consistently implement the scaling rules in order to be consistent with the fundamental theory. Here, we examine how one can apply constituent counting rules for the exclusive production of one or two neutral vector mesons V0 in e+e- annihilation, processes in which the V0 can couple via intermediate photons. In the case of a (narrow) real V0, the photon virtuality is fixed to a precise value s1=mV02, thus treating the V0 as a single fundamental particle. Each real V0 thus contributes to the constituent counting rules with NV0=1. In effect, the leading operator underlying the V0 has twist 1. Thus, in the specific physical case of single or double on-shell V0 production via intermediate photons, the predicted scaling from counting rules coincides with vector-meson dominance (VMD), an effective theory that treats V0 as an elementary field. However, the VMD prediction fails in the general case where the V0 is not coupled through an elementary photon field, and then the leading-twist interpolating operator has twist NV 0=2 . Analogous effects appear in p p scattering processes.
QCD constituent counting rules for neutral vector mesons
Brodsky, Stanley J.; Lebed, Richard F.; Lyubovitskij, Valery E.
2018-02-08
QCD constituent counting rules define the scaling behavior of exclusive hadronic scattering and electromagnetic scattering amplitudes at high momentum transfer in terms of the total number of fundamental constituents in the initial and final states participating in the hard subprocess. The scaling laws reflect the twist of the leading Fock state for each hadron and hence the leading operator that creates the composite state from the vacuum. Thus, the constituent counting scaling laws can be used to identify the twist of exotic hadronic candidates such as tetraquarks and pentaquarks. Effective field theories must consistently implement the scaling rules in ordermore » to be consistent with the fundamental theory. Here in this paper, we examine how one can apply constituent counting rules for the exclusive production of one or two neutral vector mesons V 0 in e + e - annihilation, processes in which the V 0 can couple via intermediate photons. In the case of a (narrow) real V 0, the photon virtuality is fixed to a precise value s 1 = m2V 0, thus treating the V 0 as a single fundamental particle. Each real V 0 thus contributes to the constituent counting rules with NV0 = 1 . In effect, the leading operator underlying the V 0 has twist 1. Thus, in the specific physical case of single or double on-shell V 0 production via intermediate photons, the predicted scaling from counting rules coincides with vector-meson dominance (VMD), an effective theory that treats V 0 as an elementary field. However, the VMD prediction fails in the general case where the V 0 is not coupled through an elementary photon field, and then the leading-twist interpolating operator has twist NV 0 = 2 . Analogous effects appear in pp scattering processes.« less
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Shuart, Mark J.
2001-01-01
An assessment of the State-of-the-Art in the design and manufacturing of large composite structures has been conducted. The focus of the assessment is large structural components in commercial and military aircraft. Applications of composites are reviewed for commercial transport aircraft, general aviation aircraft, rotorcraft, and military aircraft.
Investigation of early timber–concrete composite bridges in the United States
James P. Wacker; Alfredo Dias; Travis K. Hosteng
2017-01-01
The use of timberâconcrete composite (TCC) bridges in the United States dates back to circa 1925. Two different TCC systems were constructed during this early period. The first system included a longitudinal nail-laminated deck composite with a concrete deck top layer. The second system included sawn timber stringers supporting a concrete deck top layer. Records...
DOE Office of Scientific and Technical Information (OSTI.GOV)
John J. Gangloff Jr; Shatil Sinha; Suresh G. Advani
The formation and transport of voids in composite materials remains a key research area in composite manufacturing science. Knowledge of how voids, resin, and fiber reinforcement propagate throughout a composite material continuum from green state to cured state during an automated tape layup process is key to minimizing defects induced by void-initiated stress concentrations under applied loads for a wide variety of composite applications. This paper focuses on modeling resin flow in a deforming fiber tow during an automated process of partially impregnated thermoset prepreg composite material tapes. In this work, a tow unit cell based model has been presentedmore » that determines the consolidation and impregnation of a thermoset prepreg tape under an input pressure profile. A parametric study has been performed to characterize the behavior of varying tow speed and compaction forces on the degree of consolidation. Results indicate that increased tow consolidation is achieved with slower tow speeds and higher compaction forces although the relationship is not linear. The overall modeling of this project is motivated to address optimization of the 'green state' composite properties and processing parameters to reduce or eliminate 'cured state' defects, such as porosity and de-lamination. This work is partially funded by the Department of Energy under Award number DE-EE0001367.« less
Overton, Edgar Turner; Kauwe, John S K; Paul, Robert; Tashima, Karen; Tate, David F; Patel, Pragna; Carpenter, Charles C J; Patty, David; Brooks, John T; Clifford, David B
2011-11-01
HIV-associated neurocognitive disorders remain prevalent but challenging to diagnose particularly among non-demented individuals. To determine whether a brief computerized battery correlates with formal neurocognitive testing, we identified 46 HIV-infected persons who had undergone both formal neurocognitive testing and a brief computerized battery. Simple detection tests correlated best with formal neuropsychological testing. By multivariable regression model, 53% of the variance in the composite Global Deficit Score was accounted for by elements from the brief computerized tool (P < 0.01). These data confirm previous correlation data with the computerized battery. Using the five significant parameters from the regression model in a Receiver Operating Characteristic curve, 90% of persons were accurately classified as being cognitively impaired or not. The test battery requires additional evaluation, specifically for identifying persons with mild impairment, a state upon which interventions may be effective.
Mapping coastal vegetation, land use and environmental impact from ERTS-1. [Delaware Bay area
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Vegetation map overlays at a scale of 1:24,000 compiled by multispectral analysis from NASA aircraft imagery for all of Delaware's wetlands are being used as ground truth for ERTS-1 mapping and by state agencies for wetlands management. Six major vegetation species were discriminated and mapped, including percentages of minor species. Analogue enhancements of wetlands vegetation and dredge-fill operations have been produced using General Electric's GEMS data processing and ERTS-1 false color composites. Digital, thematic land use, and vegetation mapping of entire Delaware Bay area is in progress using Bendix Corporation's Earth Resources Data System and ERTS-1 digital tapes. Statistical evaluation of target-group selection reliability has been completed. Three papers have been published on ERTS-1 coastal vegetation and land use. Local and state officials are participating in the ERTS-1 program as co-investigators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyar, M. Darby; McCanta, Molly; Breves, Elly
2016-03-01
Pre-edge features in the K absorption edge of X-ray absorption spectra are commonly used to predict Fe3+ valence state in silicate glasses. However, this study shows that using the entire spectral region from the pre-edge into the extended X-ray absorption fine-structure region provides more accurate results when combined with multivariate analysis techniques. The least absolute shrinkage and selection operator (lasso) regression technique yields %Fe3+ values that are accurate to ±3.6% absolute when the full spectral region is employed. This method can be used across a broad range of glass compositions, is easily automated, and is demonstrated to yield accurate resultsmore » from different synchrotrons. It will enable future studies involving X-ray mapping of redox gradients on standard thin sections at 1 × 1 μm pixel sizes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyar, M. Darby; McCanta, Molly; Breves, Elly
2016-03-01
Pre-edge features in the K absorption edge of X-ray absorption spectra are commonly used to predict Fe 3+ valence state in silicate glasses. However, this study shows that using the entire spectral region from the pre-edge into the extended X-ray absorption fine-structure region provides more accurate results when combined with multivariate analysis techniques. The least absolute shrinkage and selection operator (lasso) regression technique yields %Fe 3+ values that are accurate to ±3.6% absolute when the full spectral region is employed. This method can be used across a broad range of glass compositions, is easily automated, and is demonstrated to yieldmore » accurate results from different synchrotrons. It will enable future studies involving X-ray mapping of redox gradients on standard thin sections at 1 × 1 μm pixel sizes.« less
40 CFR 63.5785 - Am I subject to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers... reinforced plastic composites production facility that is located at a major source of HAP emissions. Reinforced plastic composites production is limited to operations in which reinforced and/or nonreinforced...
NASA Astrophysics Data System (ADS)
Beck, A. J.; Hodzic, A.; Soutis, C.; Wilson, C. W.
2011-12-01
Computer-based Life Cycle Analysis (LCA) models were carried out to compare lightweight composites with the traditional aluminium over their useful lifetime. The analysis included raw materials, production, useful life in operation and disposal at the end of the material's useful life. The carbon fibre epoxy resin composite could in some cases reduce the weight of a component by up to 40 % compared to aluminium. As the fuel consumption of an aircraft is strongly influenced by its total weight, the emissions can be significantly reduced by increasing the proportion of composites used in the aircraft structure. Higher emissions, compared to aluminium, produced during composites production meet their 'break even' point after certain number of time units when used in aircraft structures, and continue to save emissions over their long-term operation. The study highlighted the environmental benefits of using lightweight structures in aircraft design, and also showed that utilisation of composites in products without energy saving may lead to increased emissions in the environment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CAMEL composite rating by NCUA; or (ii) A federally insured, state-chartered credit union that has been assigned a 4 or 5 CAMEL composite rating by either NCUA, after an on-site contact, or its state supervisor... union that has been assigned a 4 or 5 CAMEL rating by NCUA; or (ii) A federally insured, state-chartered...
NASA Astrophysics Data System (ADS)
Alhroob, M.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Boyd, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; Di Girolamo, B.; Doubek, M.; Favre, G.; Hallewell, G.; Katunin, S.; Lombard, D.; Madsen, A.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Stanecka, E.; Strauss, M.; Vacek, V.; Vaglio, R.; Young, J.; Zwalinski, L.
2017-01-01
The development of custom ultrasonic instrumentation was motivated by the need for continuous real-time monitoring of possible leaks and mass flow measurement in the evaporative cooling systems of the ATLAS silicon trackers. The instruments use pairs of ultrasonic transducers transmitting sound bursts and measuring transit times in opposite directions. The gas flow rate is calculated from the difference in transit times, while the sound velocity is deduced from their average. The gas composition is then evaluated by comparison with a molar composition vs. sound velocity database, based on the direct dependence between sound velocity and component molar concentration in a gas mixture at a known temperature and pressure. The instrumentation has been developed in several geometries, with five instruments now integrated and in continuous operation within the ATLAS Detector Control System (DCS) and its finite state machine. One instrument monitors C3F8 coolant leaks into the Pixel detector N2 envelope with a molar resolution better than 2ṡ 10-5, and has indicated a level of 0.14 % when all the cooling loops of the recently re-installed Pixel detector are operational. Another instrument monitors air ingress into the C3F8 condenser of the new C3F8 thermosiphon coolant recirculator, with sub-percent precision. The recent effect of the introduction of a small quantity of N2 volume into the 9.5 m3 total volume of the thermosiphon system was clearly seen with this instrument. Custom microcontroller-based readout has been developed for the instruments, allowing readout into the ATLAS DCS via Modbus TCP/IP on Ethernet. The instrumentation has many potential applications where continuous binary gas composition is required, including in hydrocarbon and anaesthetic gas mixtures.
NASA Technical Reports Server (NTRS)
Shenk, William E.; Hope, William A.
1994-01-01
The impact of time compositing on infrared profiling from geosynchronous orbit was evaluated for two convective outbreak cases. Time compositing is the accumulation of the data from several successive images taken at short intervals to provide a single field of measurements with the temporal resolution equal to the time to take all of the images. This is especially effective when the variability of the measurements is slow compared to the image interval. Time compositing should be able to reduce the interference of clouds for infrared measurments since clouds move and change. The convective outbreak cases were on 4 and 21 May 1990 over the eastern Midwest and southeastern United States, respectively. Geostationary Operational Environmental (GOES) Satellite imagery was used to outline clear areas at hourly intervals by two independent analysts. Time compositing was done every 3 h (1330-1530 UTC; 1630-1830 UTC) and over the full 5-h period. For both cases, a significant increase in coverage was measured with each 3-h compositing (about a factor of 2) and a further increase over the full period (approximately a factor of 3). The increase was especially useful in areas of broken cloud cover where large gaps between potential profiling areas on each image were reduced. To provide information on measurement variability over local areas, the regions where the clear-area analyses were done were subdivided into 0.5 deg latitude-longitude boxes, and if some portion of each box was clear, it was assumed that at least one profile could be obtained within the box. In the largest clear areas, at least some portion was clear every hour. Even in the cloudier regions, multiple clear looks possible during the entire period.
Electromagnetic properties of metal-dielectric media and their applications
NASA Astrophysics Data System (ADS)
Animilli, Shravan Rakesh
The main objective of this dissertation is to investigate nano-structured random composite materials, which exhibit anomalous phenomena, such as the extraordinary enhancements of linear and non-linear optical processes due to excitation of collective electronic states, surface plasmons (SP). The main goal is to develop a time and memory efficient novel numerical method to study the properties of these random media in three dimensions (3D) by utilization of multi core processing and packages such as MPI for parallel execution. The developed numerical studies are then utilized to provide a comprehensive characterization and optimization of a surface plasmon enhanced solar cell (SPESC) and to serve as a test bed for enhanced bio and chemical sensing. In this context, this thesis work develops an efficient and exact numerical algorithm here referred to as Block Elimination Method (BE) which provides the unique capability of modeling extremely large scale composite materials (with up to 1 million strongly interacting metal or dielectric particles). This capability is crucial in order to study the electromagnetic response of large scale inhomogeneous (fractal) films and bulk composites at critical concentrations (percolation). The developed numerical method is used to accurately estimate parameters that describe the composite materials, including the effective conductivity and correlation length scaling exponents, as well as density of states and localization length exponents at the band center. This works reveals, for a first time, a unique de-localization mechanism that plays an important role in the excitation of charge-density waves, i.e. surface plasmons (SP), in metal-dielectric composites. It also shows that in 3D metal-dielectric percolation systems the local fields distribution function for frequencies close to the single particle plasmon resonance is log-normal which is a signature of a metal-dielectric phase transition manifested in the optical response of the composites. Based on the obtained numerical data a scaling theory for the higher order electric field moments is developed. A distinct evidence of singularities in the surface plasmon density of states and localization length is obtained, correlating with results previously obtained for two dimensional systems. This leads to the main finding of this work; i.e., the delocalization of surface plasmon states in percolating metal-dielectric composite materials is universally present regardless of the dimensionality of the problem. This dissertation also proposes a new approach toward developing highly efficient inorganic/organic solar cell, by presenting a method for enhancement in the optical absorption and overall cell efficiency. Specifically, the approach improves the operation characteristics of inorganic semiconductor (e.g. Si and a-Si) and organic (P3HT:PCBM) thin film solar cells by integrating a thin, inhomogeneous, metal-dielectric composite (MDC) electrode at the interface between the transparent electrode and active layer. Through numerical simulations, we show that under solar illumination, surface plasmons are excited within the fractal MDC electrode across an extremely broad range of optical frequencies, trapping the incoming light and ensuring an optimal absorption into the active layer of the solar cells. An analytical model is developed to study the I-V characteristics of the cells, providing a pathway toward achieving optimal efficiency and better understanding of the behavior of charge carriers. Using this model, it is shown that including gold MDC electrodes can lead to an enhancement in solar cell power conversion efficiency up to 33% higher compared to the benchmark device.
Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.
The National Energy Technology Laboratory’s Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, in–house patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, andmore » operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of biodiesel into mostly hydrogen and carbon monoxide (syngas.) The syngas was fed to the STF and fuel cell stack. The results presented in this experimental report document one of the first times a SOFC has been operated on syngas from reformed biodiesel.« less
Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility.
Yu, Shicheng; Mertens, Andreas; Tempel, Hermann; Schierholz, Roland; Kungl, Hans; Eichel, Rüdiger-A
2018-06-22
High interfacial resistance between solid electrolyte and electrode of ceramic all-solid-state batteries is a major reason for the reduced performance of these batteries. A solid-state battery using a monolithic all-phosphate concept based on screen printed thick LiTi 2 (PO 4 ) 3 anode and Li 3 V 2 (PO 4 ) 3 cathode composite layers on a densely sintered Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte has been realized with competitive cycling performance. The choice of materials was primarily based on the (electro-)chemical and mechanical matching of the components instead of solely focusing on high-performance of individual components. Thus, the battery utilized a phosphate backbone in combination with tailored morphology of the electrode materials to ensure good interfacial matching for a durable mechanical stability. Moreover, the operating voltage range of the active materials matches with the intrinsic electrochemical window of the electrolyte which resulted in high electrochemical stability. A highly competitive discharge capacity of 63.5 mAh g -1 at 0.39 C after 500 cycles, corresponding to 84% of the initial discharge capacity, was achieved. The analysis of interfacial charge transfer kinetics confirmed the structural and electrical properties of the electrodes and their interfaces with the electrolyte, as evidenced by the excellent cycling performance of the all-phosphate solid-state battery. These interfaces have been studied via impedance analysis with subsequent distribution of relaxation times analysis. Moreover, the prepared solid-state battery could be processed and operated in air atmosphere owing to the low oxygen sensitivity of the phosphate materials. The analysis of electrolyte/electrode interfaces after cycling demonstrates that the interfaces remained stable during cycling.
Mamoun, John
2015-01-01
Use of magnification, such as 6x to 8x binocular surgical loupes or the surgical operating microscope, combined with co-axial illumination, may facilitate the creation of stable composite resin restorations that are less likely to develop caries, cracks or margin stains over years of service. Microscopes facilitate observation of clinically relevant microscopic visual details, such as microscopic amounts of demineralization or caries at preparation margins; microscopic areas of soft, decayed tooth structure; microscopic amounts of moisture contamination of the preparation during bonding; or microscopic marginal gaps in the composite. Preventing microscope-level errors in composite fabrication can result in a composite restoration that, at initial placement, appears perfect when viewed under 6x to 8x magnification and which also is free of secondary caries, marginal staining or cracks at multi-year follow-up visits.
On Nth roots of positive operators
NASA Technical Reports Server (NTRS)
Brown, D. R.; Omalley, M. J.
1978-01-01
A bounded operator A on a Hilbert space H was positive. These operators were symmetric, and as such constitute a natural generalization of nonnegative real diagonal matrices. The following result is thus both well known and not surprising: A positive operator has a unique positive square root (under operator composition).
23 CFR 450.314 - Metropolitan planning agreements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Metropolitan planning agreements. (a) The MPO, the State(s), and the public transportation operator(s) shall...(s), and the public transportation operator(s) serving the MPA. To the extent possible, a single... agreement among the MPOs, the State(s), and the public transportation operator(s) describing how the...
High-Temperature Treatments For Polyimide/Graphite Composite
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; Lowell, Carl
1992-01-01
Combination of inert-gas heat treatment and coating with material impermeable by oxygen proposed to increase thermo-oxidative and high-temperature structural stabilities of composite materials made of graphite fibers in matrices of PMR-15 polyimide. Proposal directed toward development of lightweight matrix/fiber composites for use in aircraft engines, wherein composites exposed to maximum operating temperatures between 371 and 427 degrees C.
23 CFR 450.330 - Project selection from the TIP.
Code of Federal Regulations, 2010 CFR
2010-04-01
... projects shall be jointly developed by the MPO, the State, and the public transportation operator(s) if requested by the MPO, the State, or the public transportation operator(s). If the State or public... the MPO, the State, and the public transportation operator(s) jointly develop expedited project...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-25
... Composites Production (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: In...: NESHAP for Reinforced Plastic Composites Production (Renewal) ICR Numbers: EPA ICR Number 1976.05, OMB...: Owners or operators of reinforced plastic composites production facilities. Estimated Number of...
High Temperature Composite Heat Exchangers
NASA Technical Reports Server (NTRS)
Eckel, Andrew J.; Jaskowiak, Martha H.
2002-01-01
High temperature composite heat exchangers are an enabling technology for a number of aeropropulsion applications. They offer the potential for mass reductions of greater than fifty percent over traditional metallics designs and enable vehicle and engine designs. Since they offer the ability to operate at significantly higher operating temperatures, they facilitate operation at reduced coolant flows and make possible temporary uncooled operation in temperature regimes, such as experienced during vehicle reentry, where traditional heat exchangers require coolant flow. This reduction in coolant requirements can translate into enhanced range or system payload. A brief review of the approaches and challengers to exploiting this important technology are presented, along with a status of recent government-funded projects.
Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model.
Ekama, G A
2009-05-01
Steady-state models are useful for design of wastewater treatment plants (WWTPs) because they allow reactor sizes and interconnecting flows to be simply determined from explicit equations in terms of unit operation performance criteria. Once the overall WWTP scheme is established and the main system defining parameters of the individual unit operations estimated, dynamic models can be applied to the connected unit operations to refine their design and evaluate their performance under dynamic flow and load conditions. To model anaerobic digestion (AD) within plant-wide WWTP models, not only COD and nitrogen (N) but also carbon (C) fluxes entering the AD need to be defined. Current plant-wide models, like benchmark simulation model No 2 (BSM2), impose a C flux at the AD influent. In this paper, the COD and N mass balance steady-state models of activated sludge (AS) organics degradation, nitrification and denitrification (ND) and anaerobic (AD) and aerobic (AerD) digestion of wastewater sludge are extended and linked with bioprocess transformation stoichiometry to form C, H, O, N, chemical oxygen demand (COD) and charge mass balance based models so that also C (and H and O) can be tracked through the whole WWTP. By assigning a stoichiometric composition (x, y, z and a in C(x)H(y)O(z)N(a)) to each of the five main influent wastewater organic fractions and ammonia, these, and the products generated from them via the biological processes, are tracked through the WWTP. The model is applied to two theoretical case study WWTPs treating the same raw wastewater (WW) to the same final sludge residual biodegradable COD. It is demonstrated that much useful information can be generated with the relatively simple steady-state models to aid WWTP layout design and track the different products exiting the WWTP via the solid, liquid and gas streams, such as aerobic versus anaerobic digestion of waste activated sludge, N loads in recycle streams, methane production for energy recovery and green house gas (CO(2), CH(4)) generation. To reduce trial and error usage of WWTP simulation software, it is recommended that they are extended to include pre-processors based on mass balance steady-state models to assist with WWTP layout design, unit operation selection, reactor sizing, option evaluation and comparison and wastewater characterization before dynamic simulation.
23 CFR 450.308 - Funding for transportation planning and unified planning work programs.
Code of Federal Regulations, 2010 CFR
2010-04-01
... MPO, in cooperation with the State(s) and public transportation operator(s), shall develop a UPWP that... cooperation with the State(s) and the public transportation operator(s), in lieu of a UPWP. A simplified...- or two-year period, who (e.g., State, MPO, public transportation operator, local government, or...
An effective strong-coupling theory of composite particles in UV-domain
NASA Astrophysics Data System (ADS)
Xue, She-Sheng
2017-05-01
We briefly review the effective field theory of massive composite particles, their gauge couplings and characteristic energy scale in the UV-domain of UV-stable fixed point of strong four-fermion coupling, then mainly focus the discussions on the decay channels of composite particles into the final states of the SM gauge bosons, leptons and quarks. We calculate the rates of composite bosons decaying into two gauge bosons γγ, γZ 0, W + W -, Z 0 Z 0 and give the ratios of decay rates of different channels depending on gauge couplings only. It is shown that a composite fermion decays into an elementary fermion and a composite boson, the latter being an intermediate state decays into two gauge bosons, leading to a peculiar kinematics of final states of a quark (or a lepton) and two gauge bosons. These provide experimental implications of such an effective theory of composite particles beyond the SM. We also present some speculative discussions on the channels of composite fermions decaying into W W , W Z and ZZ two boson-tagged jets with quark jets, or to four-quark jets. Moreover, at the same energy scale of composite particles produced in high-energy experiments, composite particles are also produced by high-energy sterile neutrino (dark matter) collisions, their decays lead to excesses of cosmic ray particles in space and signals of SM particles in underground laboratories.
Municipal solid waste landfills harbor distinct microbiomes
Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.
2016-01-01
Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.
Municipal Solid Waste Landfills Harbor Distinct Microbiomes
Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.
2016-01-01
Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity. PMID:27148222
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Starnes, James H., Jr.; Shuart, Mark J.
2001-01-01
The results of an assessment of the state-of-the-art in the design and manufacturing of large composite structures are described. The focus of the assessment is on the use of polymeric matrix composite materials for large airframe structural components. such as those in commercial and military aircraft and space transportation vehicles. Applications of composite materials for large commercial transport aircraft, general aviation aircraft, rotorcraft, military aircraft. and unmanned rocket launch vehicles are reviewed. The results of the assessment of the state-of-the-art include a summary of lessons learned, examples of current practice, and an assessment of advanced technologies under development. The results of the assessment conclude with an evaluation of the future technology challenges associated with applications of composite materials to the primary structures of commercial transport aircraft and advanced space transportation vehicles.
Chernysheva, Maria; Araimi, Mohammed Al; Rance, Graham A; Weston, Nicola J; Shi, Baogui; Saied, Sayah; Sullivan, John L; Marsh, Nicholas; Rozhin, Aleksey
2018-05-10
Composites of single-walled carbon nanotubes (SWNTs) and water-soluble polymers (WSP) are the focus of significant worldwide research due to a number of applications in biotechnology and photonics, particularly for ultrashort pulse generation. Despite the unique possibility of constructing non-linear optical SWNT-WSP composites with controlled optical properties, their thermal degradation threshold and limit of operational power remain unexplored. In this study, we discover the nature of the SWNT-polyvinyl alcohol (PVA) film thermal degradation and evaluate the modification of the composite properties under continuous high-power ultrashort pulse laser operation. Using high-precision optical microscopy and micro-Raman spectroscopy, we have examined SWNT-PVA films before and after continuous laser radiation exposure (up to 40 hours) with a maximum optical fluence of 2.3 mJ·cm -2 . We demonstrate that high-intensity laser radiation results in measurable changes in the composition and morphology of the SWNT-PVA film due to efficient heat transfer from SWNTs to the polymer matrix. The saturable absorber modification does not affect the laser operational performance. We anticipate our work to be a starting point for more sophisticated research aimed at the enhancement of SWNT-PVA films fabrication for their operation as reliable saturable absorbers in high-power ultrafast lasers.
Research on torsional friction behavior and fluid load support of PVA/HA composite hydrogel.
Chen, Kai; Zhang, Dekun; Yang, Xuehui; Cui, Xiaotong; Zhang, Xin; Wang, Qingliang
2016-09-01
Hydrogels have been extensively studied for use as synthetic articular cartilage. This study aimed to investigate (1) the torsional friction contact state and the transformation mechanism of PVA/HA composite hydrogel against CoCrMo femoral head and (2) effects of load and torsional angle on torsional friction behavior. The finite element method was used to study fluid load support of PVA/HA composite hydrogel. Results show fluid loss increases gradually of PVA/HA composite hydrogel with torsional friction time, leading to fluid load support decreases. The contact state changes from full slip state to stick-slip mixed state. As the load increases, friction coefficient and adhesion zone increase gradually. As the torsional angle increases, friction coefficient and slip trend of the contact interface increase, resulting in the increase of the slip zone and the reduction of the adhesion zone. Fluid loss increases of PVA/HA composite hydrogel as the load and the torsional angle increase, which causes the decrease of fluid load support and the increase of friction coefficient. Copyright © 2016 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Federally insured credit union has been assigned: (1) In the case of a Federal credit union, 4 or 5 CAMEL... equivalent 4 or 5 CAMEL composite rating by the state supervisor; or (3) In the case of a Federally insured state chartered credit union in a state that does not use the CAMEL system, a 4 or 5 CAMEL composite...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Federally insured credit union has been assigned: (1) In the case of a Federal credit union, 4 or 5 CAMEL... equivalent 4 or 5 CAMEL composite rating by the state supervisor; or (3) In the case of a Federally insured state chartered credit union in a state that does not use the CAMEL system, a 4 or 5 CAMEL composite...
Design study of prestressed rotor spar concept
NASA Technical Reports Server (NTRS)
Gleich, D.
1980-01-01
Studies on the Bell Helicopter 540 Rotor System of the AH-1G helicopter were performed. The stiffness, mass and geometric configurations of the Bell blade were matched to give a dynamically similar prestressed composite blade. A multi-tube, prestressed composite spar blade configuration was designed for superior ballistic survivability at low life cycle cost. The composite spar prestresses, imparted during fabrication, are chosen to maintain compression in the high strength cryogenically stretchformed 304-L stainless steel liner and tension in the overwrapped HTS graphite fibers under operating loads. This prestressing results in greatly improved crack propagation and fatigue resistance as well as enhanced fiber stiffness properties. Advantages projected for the prestressed composite rotor spar concept include increased operational life and improved ballistic survivability at low life cycle cost.
An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications
NASA Technical Reports Server (NTRS)
Hagh, Nader; Skandan, Ganesh
2012-01-01
At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation of the composite. High columbic efficiency (greater than 99%) upon cycling may indicate the formation of a stable SEI (solid-electrolyte interface) layer, which can contribute to long cycle life. The innovation in the current program, when further developed, will enable the system to maintain high energy and power densities at low temperatures, improve efficiency, and further stabilize and enhance the safety of the cell.
14 CFR 121.385 - Composition of flight crew.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that type...
14 CFR 121.385 - Composition of flight crew.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that type...
14 CFR 121.385 - Composition of flight crew.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that type...
14 CFR 121.385 - Composition of flight crew.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that type...
14 CFR 121.385 - Composition of flight crew.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that type...
24 CFR 882.515 - Reexamination of family income and composition.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Reexamination of family income and... Moderate Rehabilitation-Program Development and Operation § 882.515 Reexamination of family income and composition. (a) Regular reexaminations. The PHA must reexamine the income and composition of all families at...
Pistons and Cylinders Made of Carbon-Carbon Composite Materials
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)
2000-01-01
An improved reciprocating internal combustion engine has a plurality of engine pistons, which are fabricated from carbon-carbon composite materials, in operative association with an engine cylinder block, or an engine cylinder tube, or an engine cylinder jug, all of which are also fabricated from carbon-carbon composite materials.
Projections of limiting states for load-bearing structures of reflectors made of polymer composites
NASA Astrophysics Data System (ADS)
Doronin, S. V.
2017-12-01
This paper deals with limiting states typical for reflector antennas for terrestrial satellite communication systems. Reflectors made of polymer composites are studied. These limiting states are projected by results of the numerical analysis of the stress and strain states. The analysis is executed for reflectors under conditions of static and dynamic loading. It takes into account both overshoot of the state variables of allowed level and the processes of long-term structural material degradation.
Supercapacitor Operating At 200 Degrees Celsius
Borges, Raquel S.; Reddy, Arava Leela Mohana; Rodrigues, Marco-Tulio F.; Gullapalli, Hemtej; Balakrishnan, Kaushik; Silva, Glaura G.; Ajayan, Pulickel M.
2013-01-01
The operating temperatures of current electrochemical energy storage devices are limited due to electrolyte degradation and separator instability at higher temperatures. Here we demonstrate that a tailored mixture of materials can facilitate operation of supercapacitors at record temperatures, as high as 200°C. Composite electrolyte/separator structures made from naturally occurring clay and room temperature ionic liquids, with graphitic carbon electrodes, show stable supercapacitor performance at 200°C with good cyclic stability. Free standing films of such high temperature composite electrolyte systems can become versatile functional membranes in several high temperature energy conversion and storage applications. PMID:23999206
Ultra-thin solid oxide fuel cells: Materials and devices
NASA Astrophysics Data System (ADS)
Kerman, Kian
Solid oxide fuel cells are electrochemical energy conversion devices utilizing solid electrolytes transporting O2- that typically operate in the 800 -- 1000 °C temperature range due to the large activation barrier for ionic transport. Reducing electrolyte thickness or increasing ionic conductivity can enable lower temperature operation for both stationary and portable applications. This thesis is focused on the fabrication of free standing ultrathin (<100 nm) oxide membranes of prototypical O 2- conducting electrolytes, namely Y2O3-doped ZrO2 and Gd2O3-doped CeO2. Fabrication of such membranes requires an understanding of thin plate mechanics coupled with controllable thin film deposition processes. Integration of free standing membranes into proof-of-concept fuel cell devices necessitates ideal electrode assemblies as well as creative processing schemes to experimentally test devices in a high temperature dual environment chamber. We present a simple elastic model to determine stable buckling configurations for free standing oxide membranes. This guides the experimental methodology for Y 2O3-doped ZrO2 film processing, which enables tunable internal stress in the films. Using these criteria, we fabricate robust Y2O3-doped ZrO2 membranes on Si and composite polymeric substrates by semiconductor and micro-machining processes, respectively. Fuel cell devices integrating these membranes with metallic electrodes are demonstrated to operate in the 300 -- 500 °C range, exhibiting record performance at such temperatures. A model combining physical transport of electronic carriers in an insulating film and electrochemical aspects of transport is developed to determine the limits of performance enhancement expected via electrolyte thickness reduction. Free standing oxide heterostructures, i.e. electrolyte membrane and oxide electrodes, are demonstrated. Lastly, using Y2O3-doped ZrO2 and Gd2O 3-doped CeO2, novel electrolyte fabrication schemes are explored to develop oxide alloys and nanoscale compositionally graded membranes that are thermomechanically robust and provide added interfacial functionality. The work in this thesis advances experimental state-of-the-art with respect to solid oxide fuel cell operation temperature, provides fundamental boundaries expected for ultrathin electrolytes, develops the ability to integrate highly dissimilar material (such as oxide-polymer) heterostructures, and introduces nanoscale compositionally graded electrolyte membranes that can lead to monolithic materials having multiple functionalities.
New materials for high temperature turbines; ONERA's DS composites confronted with blade problems
NASA Technical Reports Server (NTRS)
Bibring, H.
1977-01-01
ONERA's refractory DS composites were cited as materials required for use in advanced aircraft turbines, operating at high temperatures. These materials were found to be reliable in the construction of turbine blades. Requirements for a blade material in aircraft turbines operating at higher temperatures were compared with the actual performance as found in COTAC DS composite testing. The structure and properties of the more fully developed 74 and 741 types were specified. High temperature structural stability, impact of thermal and mechanical fatigue, oxidation resistance and coating capability were thoroughly evaluated. The problem of cooling passages in DS eutectic blades is also outlined.
The Coming Paradigm-Shift in Maintenance: From Metals to Composites
NASA Technical Reports Server (NTRS)
Hobbs, Alan; Brasil, Connie; Kanki, Barbara
2009-01-01
The purpose of this study is to examine the current maintenance practices of airline operators in the detection and repair of damage to composite structures, with the aim of learning lessons that will be applicable to the maintenance of future advanced composite airplanes. A process map was created to capture the events and activities that occur from the moment a damage event occurs, through damage detection, assessment and repair. The study is identifying areas where operational risks may negatively impact the process, where personnel are required to make judgments in the absence of procedural guidance, and areas where future tools or techniques may be of assistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalaskar, Vickey B; Szybist, James P; Splitter, Derek A
In recent years a number of studies have demonstrated that boosted operation combined with external EGR is a path forward for expanding the high load limit of homogeneous charge compression ignition (HCCI) operation with the negative valve overlap (NVO) valve strategy. However, the effects of fuel composition with this strategy have not been fully explored. In this study boosted HCCI combustion is investigated in a single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), laboratory pressurized intake air, and a fully-variable hydraulic valve actuation (HVA) valve train. Three fuels with significant compositional differences aremore » investigated: regular grade gasoline (RON = 90.2), 30% ethanol-gasoline blend (E30, RON = 100.3), and 24% iso-butanol-gasoline blend (IB24, RON = 96.6). Results include engine loads from 350 to 800 kPa IMEPg for all fuels at three engine speeds 1600, 2000, and 2500 rpm. All operating conditions achieved thermal efficiency (gross indicated efficiency) between 38 and 47%, low NOX emissions ( 0.1 g/kWh), and high combustion efficiency ( 96.5%). Detailed sweeps of intake manifold pressure (atmospheric to 250 kPaa), EGR (0 25% EGR), and injection timing are conducted to identify fuel-specific effects. The major finding of this study is that while significant fuel compositional differences exist, in boosted HCCI operation only minor changes in operational conditions are required to achieve comparable operation for all fuels. In boosted HCCI operation all fuels were able to achieve matched load-speed operation, whereas in conventional SI operation the fuel-specific knock differences resulted in significant differences in the operable load-speed space. Although all fuels were operable in boosted HCCI, the respective air handling requirements are also discussed, including an analysis of the demanded turbocharger efficiency.« less
NASA Astrophysics Data System (ADS)
Ren, J.; Zhang, F.
2017-12-01
Abstract.Understanding aerosol chemical composition and mixing state on CCN activity in polluted urban area is crucial to determine NCCN accurately and thus to quantify aerosol indirect effects. Aerosol hrgroscopicity, size-resolved cloud condensation nuclei (CCN) concentration and chemical composition are measured under polluted and background conditions in Beijing based on the Air Pollution and Human Health (APHH) field campaign in winter 2016. The CCN number concentration (NCCN) is predicted by using κ-Köhler theory from the PNSD and five simplified of the mixing state and chemical composition. The assumption of EIS (sulfate, nitrate and SOA internally mixed, and POA and BC externally mixed with size-resolved chemical composition) shows the best closure to predict NCCN with the ratio of predicted to measured NCCN of 0.96-1.12 both in POL and BG conditions. Under BG conditions, IB (internal mixture with bulk chemical composition) scheme achieves the best CCN closure during any periods of a day. In polluted days, EIS and IS (internal mixture with size-resolved chemical composition) scheme may achieve better closure than IB scheme due to the heterogeneity in particles composition across different size. ES (external mixture with size-resolved chemical composition) and EB (external mixture with bulk chemical composition) scheme markedly underestimate the NCCN with the ratio of predicted to measured NCCN of 0.6-0.8. In addition, we note that assumptions of size-resolved composition (IS or ES) show very limited promotes by comparing with the assumptions of bulk composition (IB or EB), furthermore, the prediction becomes worse by using size-resolved assumption in clean days. The predicted NCCN during eve-rush periods shows the most sensitivity to the five different assumptions, with ratios of the predicted and measured NCCN ranging from 0.5 to 1.4, reflecting great impacts from evening traffic and cooking sources. The result from the sensitivity examination of predict NCCN to particles mixing state and organic volume fractions with the aging of organic particles suggests that the mixing state of particles plays a minor role when the κorg exceeds 0.1. Our study could provide new dataset to evaluate the CCN parameterization in models in those heavily polluted regions with large fraction of POA and BC.
State-of-the-Art Fuel Cell Voltage Durability and Cost Status: 2018 Composite Data Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saur, Genevieve; Kurtz, Jennifer M; Dinh, Huyen N
This publication includes 18 composite data products (CDPs) for fuel cell technology status, focusing on state-of-the-art fuel cell voltage durability and cost with data through the fourth quarter of 2017.
Composite fermion theory for bosonic quantum Hall states on lattices.
Möller, G; Cooper, N R
2009-09-04
We study the ground states of the Bose-Hubbard model in a uniform magnetic field, motivated by the physics of cold atomic gases on lattices at high vortex density. Mapping the bosons to composite fermions (CF) leads to the prediction of quantum Hall fluids that have no counterpart in the continuum. We construct trial states for these phases and test numerically the predictions of the CF model. We establish the existence of strongly correlated phases beyond those in the continuum limit and provide evidence for a wider scope of the composite fermion approach beyond its application to the lowest Landau level.
Culvert rehabilitation & invert lining using fiber reinforced polymer (FRP) composites.
DOT National Transportation Integrated Search
2010-06-01
As part of the state of Maine bridge funding initiative, MaineDOT has partnered with the University of : Maines AEWC Advanced Structures and Composite Center and the Maine composites industry to : incorporate composite technologies into bridge con...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, R.S.; Arkin, W.M.
The US. nuclear stockpile is at its lowest level since late 1958 or early 1959. In the past year, many weapons were returned to central military storage depots in the United States and funneled to the Energy Department's Pantex facility for final disassembly and disposal. This article presents a table showing the author's current estimate of the composition of the current operational stockpile, which contains some 10,500 warheads. Also categorized are warheads in [open quotes]inactive reserve[close quotes] and warheads awaiting eventual disassembly. The warheads are generally grouped as bombs, submarine-launched ballistic missiles, intercontinental ballistic missiles, air-launched cruise missiles, and sea-launchedmore » cruise missiles. Initial production dates and yield are listed for the warheads.« less
XAFSmass: a program for calculating the optimal mass of XAFS samples
NASA Astrophysics Data System (ADS)
Klementiev, K.; Chernikov, R.
2016-05-01
We present a new implementation of the XAFSmass program that calculates the optimal mass of XAFS samples. It has several improvements as compared to the old Windows based program XAFSmass: 1) it is truly platform independent, as provided by Python language, 2) it has an improved parser of chemical formulas that enables parentheses and nested inclusion-to-matrix weight percentages. The program calculates the absorption edge height given the total optical thickness, operates with differently determined sample amounts (mass, pressure, density or sample area) depending on the aggregate state of the sample and solves the inverse problem of finding the elemental composition given the experimental absorption edge jump and the chemical formula.
The charge-energy-mass spectrometer for 0.3-300 keV/e ions on the AMPTE CCE
NASA Technical Reports Server (NTRS)
Gloeckler, G.; Ipavich, F. M.; Hamilton, D. C.; Lundgren, R. A.; Studemann, W.; Wilken, B.; Kremser, G.; Hovestadt, D.; Gliem, F.; Rieck, W.
1985-01-01
The charge-energy-mass (CHEM) spectrometer on the Charge Composition Explorer (CCE) has the function to measure the energy spectra, pitch-angle distributions, and ionization states of ions in the earth's magnetosphere and magnetosheath in the energy range from 0.3 to 300 keV/charge with a time resolution of less than 1 min. The obtained data will provide essential information on outstanding problems related to ion sources and dynamical processes of space plasmas and of suprathermal ions. A description of the CHEM experiment is given, taking into account the principle of operation, the sensor, the electronics, instrument characteristics, specifications, and requirements. Questions of postlaunch performance are also discussed.
Wu, Chong-Yin; Zou, Yi-Hong; Timofeev, Ivan; Lin, Yu-Ting; Zyryanov, Victor Ya; Hsu, Jy-Shan; Lee, Wei
2011-04-11
We investigated the optical properties of a one-dimensional photonic crystal infiltrated with a bistable chiral tilted homeotropic nematic liquid crystal as the central defect layer. By modulating the nematic director orientation with applied voltage, the electrical tunability of the defect modes was observed in the transmission spectrum. The composite not only is a general tunable device but also involves the green concept in that it can operate in two stable states at 0 V. Under the parallel-polarizer scheme, the spectral characteristics suggest a potential application for this device as an energy-efficient multichannel optical switch. © 2011 Optical Society of America
Simonin, Kevin A; Roddy, Adam B; Link, Percy; Apodaca, Randy; Tu, Kevin P; Hu, Jia; Dawson, Todd E; Barbour, Margaret M
2013-12-01
During daylight hours, the isotope composition of leaf water generally approximates steady-state leaf water isotope enrichment model predictions. However, until very recently there was little direct confirmation that isotopic steady-state (ISS) transpiration in fact exists. Using isotope ratio infrared spectroscopy (IRIS) and leaf gas exchange systems we evaluated the isotope composition of transpiration and the rate of change in leaf water isotopologue storage (isostorage) when leaves were exposed to variable environments. In doing so, we developed a method for controlling the absolute humidity entering the gas exchange cuvette for a wide range of concentrations without changing the isotope composition of water vapour. The measurement system allowed estimation of (18)O enrichment both at the evaporation site and for bulk leaf water, in the steady state and the non-steady state. We show that non-steady-state effects dominate the transpiration isoflux even when leaves are at physiological steady state. Our results suggest that a variable environment likely prevents ISS transpiration from being achieved and that this effect may be exacerbated by lengthy leaf water turnover times due to high leaf water contents. © 2013 John Wiley & Sons Ltd.
Operational Planning for Multiple Heterogeneous Unmanned Aerial Vehicles in Three Dimensions
2009-06-01
human input in the planning process. Two solution methods are presented: (1) a mixed-integer program, and (2) an algorithm that utilizes a metaheuristic ...and (2) an algorithm that utilizes a metaheuristic to generate composite variables for a linear program, called the Composite Operations Planning...that represent a path and an associated type of UAV. The reformulation is incorporated into an algorithm that uses a metaheuristic to generate the
Recycling Endosomes and Viral Infection.
Vale-Costa, Sílvia; Amorim, Maria João
2016-03-08
Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral-host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition.
Impact of a vegan diet on the human salivary microbiota.
Hansen, Tue H; Kern, Timo; Bak, Emilie G; Kashani, Alireza; Allin, Kristine H; Nielsen, Trine; Hansen, Torben; Pedersen, Oluf
2018-04-11
Little is known about the effect of long-term diet patterns on the composition and functional potential of the human salivary microbiota. In the present study, we sought to contribute to the ongoing elucidation of dietary effects on the oral microbial community by examining the diversity, composition and functional potential of the salivary microbiota in 160 healthy vegans and omnivores using 16S rRNA gene amplicon sequencing. We further sought to identify bacterial taxa in saliva associated with host inflammatory markers. We show that compositional differences in the salivary microbiota of vegans and omnivores is present at all taxonomic levels below phylum level and includes upper respiratory tract commensals (e.g. Neisseria subflava, Haemophilus parainfluenzae, and Rothia mucilaginosa) and species associated with periodontal disease (e.g. Campylobacter rectus and Porphyromonas endodontalis). Dietary intake of medium chain fatty acids, piscine mono- and polyunsaturated fatty acids, and dietary fibre was associated with bacterial diversity, community structure, as well as relative abundance of several species-level operational taxonomic units. Analysis of imputed genomic potential revealed several metabolic pathways differentially abundant in vegans and omnivores indicating possible effects of macro- and micro-nutrient intake. We also show that certain oral bacteria are associated with the systemic inflammatory state of the host.
Peng, Huan-Kai; Marculescu, Radu
2015-01-01
Social media exhibit rich yet distinct temporal dynamics which cover a wide range of different scales. In order to study this complex dynamics, two fundamental questions revolve around (1) the signatures of social dynamics at different time scales, and (2) the way in which these signatures interact and form higher-level meanings. In this paper, we propose the Recursive Convolutional Bayesian Model (RCBM) to address both of these fundamental questions. The key idea behind our approach consists of constructing a deep-learning framework using specialized convolution operators that are designed to exploit the inherent heterogeneity of social dynamics. RCBM's runtime and convergence properties are guaranteed by formal analyses. Experimental results show that the proposed method outperforms the state-of-the-art approaches both in terms of solution quality and computational efficiency. Indeed, by applying the proposed method on two social network datasets, Twitter and Yelp, we are able to identify the compositional structures that can accurately characterize the complex social dynamics from these two social media. We further show that identifying these patterns can enable new applications such as anomaly detection and improved social dynamics forecasting. Finally, our analysis offers new insights on understanding and engineering social media dynamics, with direct applications to opinion spreading and online content promotion.
Kathiele Poppe, Jakeline; Matte, Carla Roberta; Olave de Freitas, Vitória; Fernandez-Lafuente, Roberto; Rodrigues, Rafael C; Záchia Ayub, Marco Antônio
2018-04-30
This work describes the continuous synthesis of ethyl esters via enzymatic catalysis on a packed-bed continuous reactor, using mixtures of immobilized lipases (combi-lipases) of Candida antarctica (CALB), Thermomyces lanuginosus (TLL), and Rhizomucor miehei (RML). The influence of the addition of glass beads to the reactor bed, evaluation of the use of different solvents, and flow rate on reaction conditions were studied. All experiments were conducted using the best combination of lipases according to the fatty acid composition of the waste oil (combi-lipase composition: 40% of TLL, 35% of CALB, and 25% of RML), and soybean oil (combi-lipase composition: 22.5% of TLL, 50% of CALB, and 27.5% of RML). The best general reaction conditions were found to be using tert-butanol as solvent, and the flow rate of 0.08 mL min -1 . The combi-lipase reactors operating at steady state for over 30 days (720 h), kept conversion yields of approximately 50%, with average productivity of 1.94 g ethyl esters g substrate -1 h -1 , regardless of the type of oil in use. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.
Peng, Huan-Kai; Marculescu, Radu
2015-01-01
Objective Social media exhibit rich yet distinct temporal dynamics which cover a wide range of different scales. In order to study this complex dynamics, two fundamental questions revolve around (1) the signatures of social dynamics at different time scales, and (2) the way in which these signatures interact and form higher-level meanings. Method In this paper, we propose the Recursive Convolutional Bayesian Model (RCBM) to address both of these fundamental questions. The key idea behind our approach consists of constructing a deep-learning framework using specialized convolution operators that are designed to exploit the inherent heterogeneity of social dynamics. RCBM’s runtime and convergence properties are guaranteed by formal analyses. Results Experimental results show that the proposed method outperforms the state-of-the-art approaches both in terms of solution quality and computational efficiency. Indeed, by applying the proposed method on two social network datasets, Twitter and Yelp, we are able to identify the compositional structures that can accurately characterize the complex social dynamics from these two social media. We further show that identifying these patterns can enable new applications such as anomaly detection and improved social dynamics forecasting. Finally, our analysis offers new insights on understanding and engineering social media dynamics, with direct applications to opinion spreading and online content promotion. PMID:25830775
Liu, Yina; Kujawinski, Elizabeth B.
2015-01-01
Polar petroleum components enter marine environments through oil spills and natural seepages each year. Lately, they are receiving increased attention due to their potential toxicity to marine organisms and persistence in the environment. We conducted a laboratory experiment and employed state-of-the-art Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to characterize the polar petroleum components within two operationally-defined seawater fractions: the water-soluble fraction (WSF), which includes only water-soluble molecules, and the water-accommodated fraction (WAF), which includes WSF and microscopic oil droplets. Our results show that compounds with higher heteroatom (N, S, O) to carbon ratios (NSO:C) than the parent oil were selectively partitioned into seawater in both fractions, reflecting the influence of polarity on aqueous solubility. WAF and WSF were compositionally distinct, with unique distributions of compounds across a range of hydrophobicity. These compositional differences will likely result in disparate impacts on environmental health and organismal toxicity, and thus highlight the need to distinguish between these often-interchangeable terminologies in toxicology studies. We use an empirical model to estimate hydrophobicity character for individual molecules within these complex mixtures and provide an estimate of the potential environmental impacts of different crude oil components. PMID:26327219
Recycling Endosomes and Viral Infection
Vale-Costa, Sílvia; Amorim, Maria João
2016-01-01
Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral–host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition. PMID:27005655
NASA Astrophysics Data System (ADS)
Sannino, Francesco
I discuss the impact of the discovery of a Higgs-like state on composite dynamics starting by critically examining the reasons in favour of either an elementary or composite nature of this state. Accepting the standard model interpretation I re-address the standard model vacuum stability within a Weyl-consistent computation. I will carefully examine the fundamental reasons why what has been discovered might not be the standard model Higgs. Dynamical electroweak breaking naturally addresses a number of the fundamental issues unsolved by the standard model interpretation. However this paradigm has been challenged by the discovery of a not-so-heavy Higgs-like state. I will therefore review the recent discovery1 that the standard model top-induced radiative corrections naturally reduce the intrinsic non-perturbative mass of the composite Higgs state towards the desired experimental value. Not only we have a natural and testable working framework but we have also suggested specic gauge theories that can realise, at the fundamental level, these minimal models of dynamical electroweak symmetry breaking. These strongly coupled gauge theories are now being heavily investigated via first principle lattice simulations with encouraging results. The new findings show that the recent naive claims made about new strong dynamics at the electroweak scale being disfavoured by the discovery of a not-so-heavy composite Higgs are unwarranted. I will then introduce the more speculative idea of extreme compositeness according to which not only the Higgs sector of the standard model is composite but also quarks and leptons, and provide a toy example in the form of gauge-gauge duality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giampaolo, Salvatore M.; CNR-INFM Coherentia, Naples; CNISM Unita di Salerno and INFN Sezione di Napoli, Gruppo collegato di Salerno, Baronissi
2007-10-15
We investigate the geometric characterization of pure state bipartite entanglement of (2xD)- and (3xD)-dimensional composite quantum systems. To this aim, we analyze the relationship between states and their images under the action of particular classes of local unitary operations. We find that invariance of states under the action of single-qubit and single-qutrit transformations is a necessary and sufficient condition for separability. We demonstrate that in the (2xD)-dimensional case the von Neumann entropy of entanglement is a monotonic function of the minimum squared Euclidean distance between states and their images over the set of single qubit unitary transformations. Moreover, both inmore » the (2xD)- and in the (3xD)-dimensional cases the minimum squared Euclidean distance exactly coincides with the linear entropy [and thus as well with the tangle measure of entanglement in the (2xD)-dimensional case]. These results provide a geometric characterization of entanglement measures originally established in informational frameworks. Consequences and applications of the formalism to quantum critical phenomena in spin systems are discussed.« less
Pair production processes and flavor in gauge-invariant perturbation theory
NASA Astrophysics Data System (ADS)
Egger, Larissa; Maas, Axel; Sondenheimer, René
2017-12-01
Gauge-invariant perturbation theory is an extension of ordinary perturbation theory which describes strictly gauge-invariant states in theories with a Brout-Englert-Higgs effect. Such gauge-invariant states are composite operators which have necessarily only global quantum numbers. As a consequence, flavor is exchanged for custodial quantum numbers in the Standard Model, recreating the fermion spectrum in the process. Here, we study the implications of such a description, possibly also for the generation structure of the Standard Model. In particular, this implies that scattering processes are essentially bound-state-bound-state interactions, and require a suitable description. We analyze the implications for the pair-production process e+e-→f¯f at a linear collider to leading order. We show how ordinary perturbation theory is recovered as the leading contribution. Using a PDF-type language, we also assess the impact of sub-leading contributions. To lowest order, we find that the result is mainly influenced by how large the contribution of the Higgs at large x is. This gives an interesting, possibly experimentally testable, scenario for the formal field theory underlying the electroweak sector of the Standard Model.
Goring, Simon; Mladenoff, David J.; Cogbill, Charles; Record, Sydne; Paciorek, Christopher J.; Dietze, Michael C.; Dawson, Andria; Matthes, Jaclyn; McLachlan, Jason S.; Williams, John W.
2016-01-01
EuroAmerican land-use and its legacies have transformed forest structure and composition across the United States (US). More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Here we present new gridded (8x8km) reconstructions of pre-settlement (1800s) forest composition and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan), using 19th Century Public Land Survey System (PLSS), with estimates of relative composition, above-ground biomass, stem density, and basal area for 28 tree types. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection.
EOS MLS Level 2 Data Processing Software Version 3
NASA Technical Reports Server (NTRS)
Livesey, Nathaniel J.; VanSnyder, Livesey W.; Read, William G.; Schwartz, Michael J.; Lambert, Alyn; Santee, Michelle L.; Nguyen, Honghanh T.; Froidevaux, Lucien; wang, Shuhui; Manney, Gloria L.;
2011-01-01
This software accepts the EOS MLS calibrated measurements of microwave radiances products and operational meteorological data, and produces a set of estimates of atmospheric temperature and composition. This version has been designed to be as flexible as possible. The software is controlled by a Level 2 Configuration File that controls all aspects of the software: defining the contents of state and measurement vectors, defining the configurations of the various forward models available, reading appropriate a priori spectroscopic and calibration data, performing retrievals, post-processing results, computing diagnostics, and outputting results in appropriate files. In production mode, the software operates in a parallel form, with one instance of the program acting as a master, coordinating the work of multiple slave instances on a cluster of computers, each computing the results for individual chunks of data. In addition, to do conventional retrieval calculations and producing geophysical products, the Level 2 Configuration File can instruct the software to produce files of simulated radiances based on a state vector formed from a set of geophysical product files taken as input. Combining both the retrieval and simulation tasks in a single piece of software makes it far easier to ensure that identical forward model algorithms and parameters are used in both tasks. This also dramatically reduces the complexity of the code maintenance effort.
NASA Technical Reports Server (NTRS)
Houston, Johnny L.
1990-01-01
Program EAGLE (Eglin Arbitrary Geometry Implicit Euler) is a multiblock grid generation and steady-state flow solver system. This system combines a boundary conforming surface generation, a composite block structure grid generation scheme, and a multiblock implicit Euler flow solver algorithm. The three codes are intended to be used sequentially from the definition of the configuration under study to the flow solution about the configuration. EAGLE was specifically designed to aid in the analysis of both freestream and interference flow field configurations. These configurations can be comprised of single or multiple bodies ranging from simple axisymmetric airframes to complex aircraft shapes with external weapons. Each body can be arbitrarily shaped with or without multiple lifting surfaces. Program EAGLE is written to compile and execute efficiently on any CRAY machine with or without Solid State Disk (SSD) devices. Also, the code uses namelist inputs which are supported by all CRAY machines using the FORTRAN Compiler CF177. The use of namelist inputs makes it easier for the user to understand the inputs and to operate Program EAGLE. Recently, the Code was modified to operate on other computers, especially the Sun Spare4 Workstation. Several two-dimensional grid configurations were completely and successfully developed using EAGLE. Currently, EAGLE is being used for three-dimension grid applications.
Study on Thermal and Mechanical Properties of EPDM Insulation
NASA Astrophysics Data System (ADS)
Zhang, Zhong-Shui; Xu, Jin-Sheng; Chen, Xiong; Jiang, Jing
As the most common insulation material of solid rocket motors, thermal and mechanical properties of ethylene propylene diene monomer (EPDM) composite are inspected in the study. Referring to the results of thermogravimetric analysis (TGA), composition and morphology of EPDM composite in different thermal degradation degree are investigated by scanning electron microscope (SEM) to inspect the mechanism of thermal insulation. Mechanical properties of EPDM composite in the state of pyrolysis are investigated by uniaxial tensile tests. At the state of initial pyrolysis, composite belongs to the category of hyperelastic-viscoelastic material. The tendency of tensile strength increased and elongation decreased with increasing of heating temperature. Composite behaves as the linear rule at the state of late pyrolysis, which belongs to the category of bittle. The elasticity modulus of curves are almost the same while the heating temperature ranges from 200°C to 300°C, and then gradually go down. The tensile strength of pyrolytic material reach the highest at the heating temperature of 300°C, and the virgin material has the largest elongation.
Limb Correction of Polar-Orbiting Imagery for the Improved Interpretation of RGB Composites
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Elmer, Nicholas
2016-01-01
Red-Green-Blue (RGB) composite imagery combines information from several spectral channels into one image to aid in the operational analysis of atmospheric processes. However, infrared channels are adversely affected by the limb effect, the result of an increase in optical path length of the absorbing atmosphere between the satellite and the earth as viewing zenith angle increases. This paper reviews a newly developed technique to quickly correct for limb effects in both clear and cloudy regions using latitudinally and seasonally varying limb correction coefficients for real-time applications. These limb correction coefficients account for the increase in optical path length in order to produce limb-corrected RGB composites. The improved utility of a limb-corrected Air Mass RGB composite from the application of this approach is demonstrated using Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. However, the limb correction can be applied to any polar-orbiting sensor infrared channels, provided the proper limb correction coefficients are calculated. Corrected RGB composites provide multiple advantages over uncorrected RGB composites, including increased confidence in the interpretation of RGB features, improved situational awareness for operational forecasters, and the ability to use RGB composites from multiple sensors jointly to increase the temporal frequency of observations.
Microstructural Characterisation and Wear Behaviour of Diamond Composite Materials
Boland, James N.; Li, Xing S.
2010-01-01
Since the initial research leading to the production of diamond composite materials, there have been several important developments leading to significant improvements in the properties of these superhard composite materials. Apart from the fact that diamonds, whether originating from natural resources or synthesised commercially, are the hardest and most wear-resistant materials commonly available, there are other mechanical properties that limit their industrial application. These include the low fracture toughness and low impact strength of diamond. By incorporating a range of binder phases into the sintering production process of these composites, these critically important properties have been radically improved. These new composites can withstand much higher operating temperatures without markedly reducing their strength and wear resistance. Further innovative steps are now being made to improve the properties of diamond composites by reducing grain and particle sizes into the nano range. This review will cover recent developments in diamond composite materials with special emphasis on microstructural characterisation. The results of such studies should assist in the design of new, innovative diamond tools as well as leading to radical improvements in the productivity of cutting, drilling and sawing operations in the exploration, mining, civil construction and manufacturing industries.
Projected Impact of Compositional Verification on Current and Future Aviation Safety Risk
NASA Technical Reports Server (NTRS)
Reveley, Mary S.; Withrow, Colleen A.; Leone, Karen M.; Jones, Sharon M.
2014-01-01
The projected impact of compositional verification research conducted by the National Aeronautic and Space Administration System-Wide Safety and Assurance Technologies on aviation safety risk was assessed. Software and compositional verification was described. Traditional verification techniques have two major problems: testing at the prototype stage where error discovery can be quite costly and the inability to test for all potential interactions leaving some errors undetected until used by the end user. Increasingly complex and nondeterministic aviation systems are becoming too large for these tools to check and verify. Compositional verification is a "divide and conquer" solution to addressing increasingly larger and more complex systems. A review of compositional verification research being conducted by academia, industry, and Government agencies is provided. Forty-four aviation safety risks in the Biennial NextGen Safety Issues Survey were identified that could be impacted by compositional verification and grouped into five categories: automation design; system complexity; software, flight control, or equipment failure or malfunction; new technology or operations; and verification and validation. One capability, 1 research action, 5 operational improvements, and 13 enablers within the Federal Aviation Administration Joint Planning and Development Office Integrated Work Plan that could be addressed by compositional verification were identified.
USDA-ARS?s Scientific Manuscript database
In the US, wood plastic composites (WPC) represent one of the successful markets for natural fiber-filled thermoplastic composites. The WPC typically use virgin or recycled thermoplastic as the substrate and wood fiber as the filler. A major application of the WPC is in non-structural building appli...
12 CFR 7.5003 - Composite authority to engage in electronic activities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Composite authority to engage in electronic activities. 7.5003 Section 7.5003 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5003 Composite authority to engage in...
12 CFR 7.5003 - Composite authority to engage in electronic activities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Composite authority to engage in electronic activities. 7.5003 Section 7.5003 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5003 Composite authority to engage in...
USDA-ARS?s Scientific Manuscript database
In the US, wood plastic composites (WPC) represent one of the successful markets for natural fiber-filled thermoplastic composites. In the past several years, the availability of good quality wood fiber has been diminishing and prices of wood and plastic have been increasing. Therefore, the vast qua...
Hydraulic fracturing: paving the way for a sustainable future?
Chen, Jiangang; Al-Wadei, Mohammed H; Kennedy, Rebekah C M; Terry, Paul D
2014-01-01
With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.
Hydraulic Fracturing: Paving the Way for a Sustainable Future?
Chen, Jiangang; Al-Wadei, Mohammed H.; Kennedy, Rebekah C. M.; Terry, Paul D.
2014-01-01
With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment. PMID:24790614
NASA Astrophysics Data System (ADS)
Panin, S. V.; Kornienko, L. A.; Buslovich, D. G.; Alexenko, V. O.; Ivanova, L. R.
2017-12-01
To determine the limits of the operation loading intervals appropriate for the use of solid lubricant UHMWPE composites in tribounits for mechanical engineering and medicine, the tribotechnical properties of UHMWPE blends with the optimum solid lubricant filler content (polytetrafluoroethylene, calcium stearate, molybdenum disulfide, colloidal graphite, boron nitride) are studied under dry sliding friction at different velocities (V = 0.3 and 0.5 m/s) and loads (P = 60 and 140 N). It is shown that the wear resistance of solid lubricant UHMWPE composites at moderate sliding velocities (V = 0.3 m/s) and loads (P = 60 N) increases 2-3 times in comparison with pure UHMWPE, while at high load P = 140 N wear resistance of both neat UHMWPE and its composites is reduced almost twice. At high sliding velocities and loads (up to P = 140 N), multiple increasing of the wear of pure UHMWPE and its composites takes place (by the factor of 5 to 10). The operational conditions of UHMWPE composites in tribounits in engineering and medicine are discussed.
Rodrigures, Moreno S; Batista, Elis P; Silva, Alexandre A; Costa, Fábio M; Neto, Verissimo A S; Gil, Luiz Herman S
2017-02-22
Anopheles mosquitoes are the only vectors of human malaria. Anopheles species use standing water as breeding sites. Human activities, like the creation of an artificial lake during the implementation of hydroelectric power plants, lead to changes in environmental characteristics and, therefore, may changes the species richness and composition of Anopheles mosquitoes. The aim of the present study was to verify whether or not there is an association between the artificial flooding resulting from the construction of the Jirau hydroelectric power plant, and the richness and composition of anophelines. Mosquitoes samples were obtained monthly from the Jirau hydroelectric power plant area located at Porto Velho, Rondônia State, using Human Landing Catch (06:00-10:00 PM). Mosquitoes collected were transported to Laboratório de Entomologia Médica FIOCRUZ-RO where they were identified until species using dichotomous key. A total of 6347 anophelines belonging to eight different species were collected. The anophelines species richness was significantly lower during the first flooding stage. Differences in anophelines species composition were found when comparing the first flooding stage with the other stages. Furthermore, the mean number of Anopheles darlingi, the main vector of malaria in the region, increases during the first and the third flooding stages. The continual monitoring of these vectors during the late operational phase may be useful in order to understand how anophelines will behave in this area.
Air Quality Forecasts Using the NASA GEOS Model
NASA Technical Reports Server (NTRS)
Keller, Christoph A.; Knowland, K. Emma; Nielsen, Jon E.; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Follette-Cook, Melanie; Liu, Junhua;
2018-01-01
We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.
NASA Astrophysics Data System (ADS)
He, Xin; Yang, Wenyao; Mao, Xiling; Xu, Lu; Zhou, Yujiu; Chen, Yan; Zhao, Yuetao; Yang, Yajie; Xu, Jianhua
2018-02-01
Flexible supercapacitors that maintain electrochemical performance under deformation have attracted much attention for the potential application in the flexible electronics market. A compressible and flexible free-standing electrodes sponge and all-solid-state symmetric supercapacitors based on as-prepared electrodes are presented. The carbon nanotubes (CNTs) framework is synthesized by chemical vapor deposition (CVD) method, and then composited with poly (3,4-ethylenedioxythiophene) PEDOT by the electrodeposition. This CNTs/PEDOT sponge electrode shows highest mass-specific capacitance of 147 Fg-1 at 0.5 A g-1, tuned by the PEDOT mass loading, and exhibits good cyclic stability with the evidence that more than 95% of capacitance is remained after 3000 cycles. Furthermore, the symmetric supercapacitor shows the highest energy density of 12.6 Wh kg-1 under the power density of 1 kW kg-1 and highest power density of 10.2 kW kg-1 with energy density of 8 Wh kg-1, which exhibits both high energy density and power density. The electrochemical performance of composite electrode also indicates that the operate voltage of device could be extend to 1.4 V by the n-doping and p-doping process in different potential of PEDOT component. This flexible supercapacitor maintains stable electrochemical performance working on different bending condition, which shows promising prospect for wearable energy storage applications.
Li3PO4 Matrix Enables a Long Cycle Life and High Energy Efficiency Bismuth-Based Battery.
Sun, Chuan-Fu; Hu, Junkai; Wang, Peng; Cheng, Xi-Yuan; Lee, Sang Bok; Wang, YuHuang
2016-09-14
Bismuth is a lithium-ion battery anode material that can operate at an equilibrium potential higher than graphite and provide a capacity twice as high as that of Li4Ti5O12, making it intrinsically free from lithium plating that may cause catastrophic battery failure. However, the potential of bismuth is hampered by its inferior cyclability (limited to tens of cycles). Here, we propose an "ion conductive solid-state matrix" approach to address this issue. By homogeneously confining bismuth nanoparticles in a solid-state γ-Li3PO4 matrix that is electrochemically formed in situ, the resulting composite anode exhibits a reversible capacity of 280 mA hours per gram (mA h/g) at a rate of 100 mA/g and a record cyclability among bismuth-based anodes up to 500 cycles with a capacity decay rate of merely 0.071% per cycle. We further show that full-cell batteries fabricated from this composite anode and commercial LiFePO4 cathode deliver a stable cell voltage of ∼2.5 V and remarkable energy efficiency up to 86.3%, on par with practical batteries (80-90%). This work paves a way for harnessing bismuth-based battery chemistry for the design of high capacity, safer lithium-ion batteries to meet demanding applications such as electric vehicles.
Non-unitary probabilistic quantum computing circuit and method
NASA Technical Reports Server (NTRS)
Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)
2009-01-01
A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.
9 CFR 205.201 - System operator.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false System operator. 205.201 Section 205... Interpretive Opinions § 205.201 System operator. The system operator can be the Secretary of State of a State... system refers to operation by the Secretary of State of a State, but the definition in (c)(11) of...
9 CFR 205.201 - System operator.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false System operator. 205.201 Section 205... Interpretive Opinions § 205.201 System operator. The system operator can be the Secretary of State of a State... system refers to operation by the Secretary of State of a State, but the definition in (c)(11) of...
9 CFR 205.201 - System operator.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false System operator. 205.201 Section 205... Interpretive Opinions § 205.201 System operator. The system operator can be the Secretary of State of a State... system refers to operation by the Secretary of State of a State, but the definition in (c)(11) of...
9 CFR 205.201 - System operator.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false System operator. 205.201 Section 205... Interpretive Opinions § 205.201 System operator. The system operator can be the Secretary of State of a State... system refers to operation by the Secretary of State of a State, but the definition in (c)(11) of...
Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; LaBerge, Kelsen E.; DeLuca, Samuel; Pelagalli, Ryan
2014-01-01
Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was sensitive to the level of load and rotational speed.
Chen, I-Wen Peter; Yang, Ming-Chia; Yang, Chia-Hui; Zhong, Dai-Xuan; Hsu, Ming-Chun; Chen, YiWen
2017-02-15
This is a study on the development of carbon nanotube-based composite actuators using a new ionic liquid-doped electroactive ionic polymer. For scalable production purposes, a simple hot-pressing method was used. Carbon nanotube/ionic liquid-Nafion/carbon nanotube composite films were fabricated that exhibited a large output blocking force and a stable cycling life with low alternating voltage stimuli in air. Of particular interest and importance, a blocking force of 1.5 N was achieved at an applied voltage of 6 V. Operational durability was confirmed by testing in air for over 30 000 cycles (or 43 h). The superior actuation performance of the carbon nanotube/ionic liquid-Nafion/carbon nanotube composite, coupled with easy manufacturability, low driving voltage, and reliable operation, promises great potential for artificial muscle and biomimetic applications.
Evaluation of several additional dry lubricants for spacecraft applications
NASA Technical Reports Server (NTRS)
Vest, C. E.
1973-01-01
Four transfer-film ball-bearing retainer materials were evaluated for their lubricating ability and wear capability under conditions of 120-gram radial load, 450-gram axial load, 3600-rpm unidirectional rotation, 23 C ambient temperature, and less than .1 microtorr pressure, using R-2 sized unshielded ball bearings. The 'stop-test' criterion was a total of one billion revolutions or a torque buildup greater than 18 gm-cm per bearing pair. A PTFE-fiberglass-MoS2 composite, a PTFE-bronze composite, and a tantalum-molybdenum-MoS2 composite operated for one billion revolutions without reaching the 18-gram torque limit. A p-oxybenzoyl polymer-MoS2 composite operated sixteen million revolutions before reaching the 18-gm cm stop-test torque. The first three materials are considered as suitable lubricants under the test conditions employed.
Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi
2013-01-01
The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11–18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5–38.2 mg-C g-VSS−1 h−1). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode. PMID:23257912
Determination of principal stress in birefringent composites by hole-drilling method
NASA Technical Reports Server (NTRS)
Prabhakaran, R.
1981-01-01
The application of transmission photoelasticity to stress analysis of composite materials is discussed.The method consists in drilling very small holes at points where the state of stress has to be determined. Experiments are described which verify the theoretical predicitons. The limitations of the method are discussed and it is concluded that valuable information concerning the state of stress in a composite model can be obtained through the suggested method.
Code of Federal Regulations, 2012 CFR
2012-01-01
... following conditions: (i) Has been assigned (A) A 4 or 5 CAMEL composite rating by the NCUA in the case of a federal credit union, or (B) An equivalent 4 or 5 CAMEL composite rating by the state supervisor in the case of a federally insured, state-chartered credit union, or (C) A 4 or 5 CAMEL composite rating by...
Code of Federal Regulations, 2013 CFR
2013-01-01
... following conditions: (i) Has been assigned (A) A 4 or 5 CAMEL composite rating by the NCUA in the case of a federal credit union, or (B) An equivalent 4 or 5 CAMEL composite rating by the state supervisor in the case of a federally insured, state-chartered credit union, or (C) A 4 or 5 CAMEL composite rating by...
Code of Federal Regulations, 2011 CFR
2011-01-01
... following conditions: (i) Has been assigned (A) A 4 or 5 CAMEL composite rating by the NCUA in the case of a federal credit union, or (B) An equivalent 4 or 5 CAMEL composite rating by the state supervisor in the case of a federally insured, state-chartered credit union, or (C) A 4 or 5 CAMEL composite rating by...
NASA Astrophysics Data System (ADS)
Cheng, Feiyue; Yin, Hui; Xiang, Quanjun
2017-01-01
Low-temperature solid-state method were gradually demonstrated as a high efficiency, energy saving and environmental protection strategy to fabricate composite semiconductor materials. CdS-based multiple composite photocatalytic materials have attracted increasing concern owning to the heterostructure constituents with tunable band gaps. In this study, the ternary CdS/g-C3N4/CuS composite photocatalysts were prepared by a facile and novel low-temperature solid-state strategy. The optimal ternary CdS/g-C3N4/CuS composite exhibits a high visible-light photocatalytic H2-production rate of 57.56 μmol h-1 with the corresponding apparent quantum efficiency reaches 16.5% at 420 nm with Na2S/Na2SO3 mixed aqueous solution as sacrificial agent. The ternary CdS/g-C3N4/CuS composites show the enhanced visible-light photocatalytic H2-evolution activity comparing with the binary CdS-based composites or simplex CdS. The enhanced photocatalytic activity is ascribed to the heterojunctions and the synergistic effect of CuS and g-C3N4 in promotion of the charge separation and charge mobility. This work shows that the low-temperature solid-state method is efficient and environmentally benign for the preparation of CdS-based multiple composite photocatalytic materials with enhanced visible-light photocatalytic H2-production activity.
40 CFR 72.72 - Criteria for State operating permit program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.72 Criteria for State operating permit program. A State operating permit program (including a State Acid Rain program) shall meet... withdrawal of all or part of the Acid Rain portion of an approved State operating permit program by the...
40 CFR 72.72 - Criteria for State operating permit program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.72 Criteria for State operating permit program. A State operating permit program (including a State Acid Rain program) shall meet... withdrawal of all or part of the Acid Rain portion of an approved State operating permit program by the...
40 CFR 72.72 - Criteria for State operating permit program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.72 Criteria for State operating permit program. A State operating permit program (including a State Acid Rain program) shall meet... withdrawal of all or part of the Acid Rain portion of an approved State operating permit program by the...
40 CFR 72.72 - Criteria for State operating permit program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.72 Criteria for State operating permit program. A State operating permit program (including a State Acid Rain program) shall meet... withdrawal of all or part of the Acid Rain portion of an approved State operating permit program by the...
40 CFR 72.72 - Criteria for State operating permit program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.72 Criteria for State operating permit program. A State operating permit program (including a State Acid Rain program) shall meet... withdrawal of all or part of the Acid Rain portion of an approved State operating permit program by the...
Study of utilization of advanced composites in fuselage structures of large transports
NASA Technical Reports Server (NTRS)
Jackson, A. C.; Campion, M. C.; Pei, G.
1984-01-01
The effort required by the transport aircraft manufacturers to support the introduction of advanced composite materials into the fuselage structure of future commercial and military transport aircraft is investigated. Technology issues, potential benefits to military life cycle costs and commercial operating costs, and development plans are examined. The most urgent technology issues defined are impact dynamics, acoustic transmission, pressure containment and damage tolerance, post-buckling, cutouts, and joints and splices. A technology demonstration program is defined and a rough cost and schedule identified. The fabrication and test of a full-scale fuselage barrel section is presented. Commercial and military benefits are identified. Fuselage structure weight savings from use of advanced composites are 16.4 percent for the commercial and 21.8 percent for the military. For the all-composite airplanes the savings are 26 percent and 29 percent, respectively. Commercial/operating costs are reduced by 5 percent for the all-composite airplane and military life cycle costs by 10 percent.
Off-Resonance Photosensitization of a Photorefractive Polymer Composite Using PbS Nanocrystals
Moon, Jong-Sik; Liang, Yichen; Stevens, Tyler E.; ...
2015-05-26
The photosensitization of photorefractive polymeric composites for operation at 633 nm is accomplished through the inclusion of narrow band gap semiconductor nanocrystals composed of PbS. Unlike previous studies involving photosensitization of photorefractive polymer composites with inorganic nanocrystals, we employ an off-resonance approach where the first excitonic transition associated with the PbS nanocrystals lies at ~1220 nm and not the wavelength of operation. Using this methodology, internal diffraction efficiencies exceeding 82%, two-beam-coupling gain coefficients of 211 cm –1, and response times of 34 ms have been observed, representing some of the best figures of merit reported for this class of materials.more » Furthermore, these data demonstrate the ability of semiconductor nanocrystals to compete effectively with traditional organic photosensitizers. In addition to superior performance, this approach also offers an inexpensive and easy means by which to photosensitize composite materials. Additionally, the photoconductive characteristics of the composites used for this study will also be considered.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiser, J.R.; Taljat, B.; Wang, X.L.
Cracking of co-extruded (generally identified as composite) floor tubes in kraft black liquor recovery boilers was first observed in Scandinavia, but this problem has now been found in many North American boilers. In most cases, cracking in the outer 304L stainless steel has not progressed into the carbon steel, but the potential for such crack propagation is a cause of concern. A multidimensional study has been initiated to characterize the cracking seen in composite floor tubes, to measure the residual stresses resulting from composite tube fabrication, and to predict the stresses in tubes under operating conditions. The characterization studies includemore » review of available reports and documents on composite tube cracking, metallographic examination of a substantial number of cracked tubes, and evaluation of the dislocation structure in cracked tubes. Neutron and X-ray diffraction are being used to determine the residual stresses in composite tubes from two major manufacturers, and finite element analysis is being used to predict the stresses in the tubes during normal operation and under conditions where thermal fluctuations occur.« less
NASA Technical Reports Server (NTRS)
Camarda, Charles J.; Glass, David E.
1992-01-01
Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the NASP vehicle uses cryogenic hydrogen to cool structural components and then burns this fuel in the combustor, hydrogen necessary for descent cooling only, when the vehicle is unpowered, is considered to be a weight penalty. Details of the design of the refractory-composite/heat-pipe-cooled wing leading edge are currently being investigated. Issues such as thermal contact resistance and thermal stress are also being investigated.
NASA Astrophysics Data System (ADS)
Camarda, Charles J.; Glass, David E.
1992-10-01
Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the NASP vehicle uses cryogenic hydrogen to cool structural components and then burns this fuel in the combustor, hydrogen necessary for descent cooling only, when the vehicle is unpowered, is considered to be a weight penalty. Details of the design of the refractory-composite/heat-pipe-cooled wing leading edge are currently being investigated. Issues such as thermal contact resistance and thermal stress are also being investigated.
Synthesis and processing of composites by reactive metal penetration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loehman, R.E.; Ewsuk, K.G.; Tomsia, A.P.
1997-04-01
Achieving better performance in commercial products and processes often is dependent on availability of new and improved materials. Ceramic-metal composites have advantages over more conventional materials because of their high stiffness-to-weight ratios, good fracture toughness, and because their electrical and thermal properties can be varied through control of their compositions and microstructures. However, ceramic composites will be more widely used only when their costs are competitive with other materials and when designers have more confidence in their reliability. Over the past four years reactive metal penetration has been shown to be a promising technique for making ceramic and metal-matrix compositesmore » to near-net-shape with control of both composition and microstructure. It appears that, with sufficient development, reactive metal penetration could be an economical process for manufacturing many of the advanced ceramic composites that are needed for light-weight structural and wear applications for transportation and energy conversion devices. Near-net-shape fabrication of parts is a significant advantage because costly and energy intensive grinding and machining operations are substantially reduced, and the waste generated from such finishing operations is minimized. The most promising compositions to date consist of Al and Al{sub 2}O{sub 3}; thus, these composites should be of particular interest to the aluminum industry. The goals of this ceramic-metal composite research and development program are: (1) to identify compositions favorable for making composites by reactive metal penetration; (2) to understand the mechanism(s) by which these composites are formed; (3) to control and optimize the process so that composites and composite coatings can be made economically; and (4) to apply R&D results to problems of interest to the aluminum industry.« less
Tracking the Key Constituents of Concern of the WTP LAW Stream
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mabrouki, Ridha B.; Matlack, Keith S.; Abramowitz, Howard
The testing results presented in the present report were also obtained on a DM10 melter system operated with the primary WTP LAW offgas system components with recycle, as specified in the statement of work (SOW) [6] and detailed in the Test Plan for this work [7]. The primary offgas system components include the SBS, the WESP, and a recycle system that allows recycle of liquid effluents back to the melter, as in the present baseline for the WTP LAW vitrification. The partitioning of technetium and other key constituents between the glass waste form, the offgas system liquid effluents, the offgasmore » stream that exits the WESP, and the liquid condensate from the vacuum evaporator were quantified in this work. The tests employed three different LAW streams spanning a range of waste compositions anticipated for WTP. Modifications to the offgas system and operational strategy were made to expedite the approach to steady state concentrations of key constituents in the glass and offgas effluent solutions during each test.« less
A high power ion thruster for deep space missions
NASA Astrophysics Data System (ADS)
Polk, James E.; Goebel, Dan M.; Snyder, John S.; Schneider, Analyn C.; Johnson, Lee K.; Sengupta, Anita
2012-07-01
The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.
A high power ion thruster for deep space missions.
Polk, James E; Goebel, Dan M; Snyder, John S; Schneider, Analyn C; Johnson, Lee K; Sengupta, Anita
2012-07-01
The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.
Modelling of steady state erosion of CFC actively water-cooled mock-up for the ITER divertor
NASA Astrophysics Data System (ADS)
Ogorodnikova, O. V.
2008-04-01
Calculations of the physical and chemical erosion of CFC (carbon fibre composite) monoblocks as outer vertical target of the ITER divertor during normal operation regimes have been done. Off-normal events and ELM's are not considered here. For a set of components under thermal and particles loads at glancing incident angle, variations in the material properties and/or assembly of defects could result in different erosion of actively-cooled components and, thus, in temperature instabilities. Operation regimes where the temperature instability takes place are investigated. It is shown that the temperature and erosion instabilities, probably, are not a critical point for the present design of ITER vertical target if a realistic variation of material properties is assumed, namely, the difference in the thermal conductivities of the neighbouring monoblocks is 20% and the maximum allowable size of a defect between CFC armour and cooling tube is +/-90° in circumferential direction from the apex.
Special features of large-size resistors for high-voltage pulsed installations
NASA Astrophysics Data System (ADS)
Minakova, N. N.; Ushakov, V. Ya.
2017-12-01
Many structural materials in pulsed power engineering operate under extreme conditions. For example, in high-voltage electrophysical installations among which there are multistage high-voltage pulse generators (HVPG), rigid requirements are imposed on characteristics of solid-state resistors that are more promising in comparison with widely used liquid resistors. Materials of such resistors shall be able to withstand strong electric fields, operate at elevated temperatures, in transformer oil, etc. Effective charge of high-voltage capacitors distributed over the HVPG steps (levels) requires uniform voltage distribution along the steps of the installation that can be obtained using large-size resistors. For such applications, polymer composite materials are considered rather promising. They can work in transformer oil and have small mass in comparison with bulky resistors on inorganic basis. This allows technical solutions already developed and implemented in HVPG with liquid resistors to be employed. This paper is devoted to the solution of some tasks related to the application of filled polymers in high-voltage engineering.
Crawshaw, Benjamin P; Keller, Deborah S; Brady, Justin T; Augestad, Knut M; Schiltz, Nicholas K; Koroukian, Siran M; Navale, Suparna M; Steele, Scott R; Delaney, Conor P
2017-03-01
The HospitAl length of stay, Readmissions and Mortality (HARM) score is a simple, inexpensive quality tool, linked directly to patient outcomes. We assess the HARM score for measuring surgical quality across multiple surgical populations. Upper gastrointestinal, hepatobiliary, and colorectal surgery cases between 2005 and 2009 were identified from the Healthcare Cost and Utilization Project California State Inpatient Database. Composite and individual HARM scores were calculated from length of stay, 30-day readmission and mortality, correlated to complication rates for each hospital and stratified by operative type. 71,419 admissions were analyzed. Higher HARM scores correlated with higher complication rates for all cases after risk adjustment and stratification by operation type, elective or emergent status. The HARM score is a simple and valid quality measurement for upper gastrointestinal, hepatobiliary and colorectal surgery. The HARM score could facilitate benchmarking to improve patient outcomes and resource utilization, and may facilitate outcome improvement. Copyright © 2016 Elsevier Inc. All rights reserved.
EuroFIR Guideline on calculation of nutrient content of foods for food business operators.
Machackova, Marie; Giertlova, Anna; Porubska, Janka; Roe, Mark; Ramos, Carlos; Finglas, Paul
2018-01-01
This paper presents a Guideline for calculating nutrient content of foods by calculation methods for food business operators and presents data on compliance between calculated values and analytically determined values. In the EU, calculation methods are legally valid to determine the nutrient values of foods for nutrition labelling (Regulation (EU) No 1169/2011). However, neither a specific calculation method nor rules for use of retention factors are defined. EuroFIR AISBL (European Food Information Resource) has introduced a Recipe Calculation Guideline based on the EuroFIR harmonized procedure for recipe calculation. The aim is to provide food businesses with a step-by-step tool for calculating nutrient content of foods for the purpose of nutrition declaration. The development of this Guideline and use in the Czech Republic is described and future application to other Member States is discussed. Limitations of calculation methods and the importance of high quality food composition data are discussed. Copyright © 2017. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.
1987-01-01
The overall energy conversion efficiency of a hydrogen-bromine energy storage system is highly dependent upon the characteristics and performance of the ion-exchange membrane utilized as a half-cell separator. The electrochemical performance and transport properties of a duPont Nafion membrane in an aqueous HBr-Br2 environment were investigated. Membrane conductivity data are presented as a function of HBr concentration and temperature for the determination of ohmic voltage losses across the membrane in an operational cell. Diffusion-controlled bromine permeation rates and permeabilities are presented as functions of solution composition and temperature. Relationships between the degree of membrane hydration and the membrane transport characteristics are discussed. The solution chemistry of an operational hydrogen-bromine cell undergoing charge from 45% HBr to 5% HBr is discussed, and, based upon the experimentally observed bromine permeation behavior, predicted cell coulombic losses due to bromine diffusion through the membrane are presented as a function of the cell state-of-charge.
NASA Astrophysics Data System (ADS)
Bernstein, A.; Allen, M.; Bowden, N.; Brennan, J.; Carr, D. J.; Estrada, J.; Hagmann, C.; Lund, J. C.; Madden, N. W.; Winant, C. D.
2005-09-01
Our Lawrence Livermore National Laboratory/Sandia National Laboratories collaboration has deployed a cubic-meter-scale antineutrino detector to demonstrate non-intrusive and automatic monitoring of the power levels and plutonium content of a nuclear reactor. Reactor monitoring of this kind is required for all non-nuclear weapons states under the Nuclear Nonproliferation Treaty (NPT), and is implemented by the International Atomic Energy Agency (IAEA). Since the antineutrino count rate and energy spectrum depend on the relative yields of fissioning isotopes in the reactor core, changes in isotopic composition can be observed without ever directly accessing the core. Data from a cubic meter scale antineutrino detector, coupled with the well-understood principles that govern the core's evolution in time, can be used to determine whether the reactor is being operated in an illegitimate way. Our group has deployed a detector at the San Onofre reactor site in California to demonstrate this concept. This paper describes the concept and shows preliminary results from 8 months of operation.
Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions
NASA Astrophysics Data System (ADS)
Nam, Minwoo; Cha, Minjeong; Lee, Hyun Hwi; Hur, Kahyun; Lee, Kyu-Tae; Yoo, Jaehong; Han, Il Ki; Kwon, S. Joon; Ko, Doo-Hyun
2017-01-01
A major impediment to the commercialization of organic photovoltaics (OPVs) is attaining long-term morphological stability of the bulk heterojunction (BHJ) layer. To secure the stability while pursuing optimized performance, multi-component BHJ-based OPVs have been strategically explored. Here we demonstrate the use of quaternary BHJs (q-BHJs) composed of two conjugated polymer donors and two fullerene acceptors as a novel platform to produce high-efficiency and long-term durable OPVs. A q-BHJ OPV (q-OPV) with an experimentally optimized composition exhibits an enhanced efficiency and extended operational lifetime than does the binary reference OPV. The q-OPV would retain more than 72% of its initial efficiency (for example, 8.42-6.06%) after a 1-year operation at an elevated temperature of 65 °C. This is superior to those of the state-of-the-art BHJ-based OPVs. We attribute the enhanced stability to the significant suppression of domain growth and phase separation between the components via kinetic trapping effect.
Telescopes in Near Space: Balloon Exoplanet Nulling Interferometer (BigBENI)
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Mauk, Robin
2012-01-01
A significant and often overlooked path to advancing both science and technology for direct imaging and spectroscopic characterization of exosolar planets is to fly "near space" missions, i.e. balloon borne exosolar missions. A near space balloon mission with two or more telescopes, coherently combined, is capable of achieving a subset of the mission science goals of a single large space telescope at a small fraction of the cost. Additionally such an approach advances technologies toward flight readiness for space flight. Herein we discuss the feasibility of flying two 1.2 meter telescopes, with a baseline separation of 3.6 meters, operating in visible light, on a composite boom structure coupled to a modified visible nulling coronagraph operating to achieve an inner working angle of 60 milli-arcseconds. We discuss the potential science return, atmospheric residuals at 135,000 feet, pointing control and visible nulling and evaluate the state-or-art of these technologies with regards to balloon missions.
NASA Astrophysics Data System (ADS)
Lobanov, D. S.; Slovikov, S. V.
2017-01-01
The results of experimental investigations of unidirectional composites based on basalt fibers and different marks of epoxy resins are presented. Uniaxial tensile tests were carried out using a specimen fixation technique simulating the operation conditions of structures. The mechanical properties of the basalt-fiber-reinforced plastics (BFRPs) were determined. The diagrams of loading and deformation of BFRP specimens were obtain. The formulations of the composites with the highest mechanical properties were revealed.
Distributed multifunctional sensor network for composite structural state sensing
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Wang, Yishou; Gao, Limin; Kumar, Amrita
2012-04-01
Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and strong designability. In order to take full advantages of composite materials, there is a need to develop an embeddable multifunctional sensing system to allow a structure to "feel" and "think" its structural state. In this paper, the concept of multifunctional sensor network integrated with a structure, similar to the human nervous system, has been developed. Different types of network sensors are permanently integrated within a composite structure to sense structural strain, temperature, moisture, aerodynamic pressure; monitor external impact on the structure; and detect structural damages. Utilizing this revolutionary concept, future composite structures can be designed and manufactured to provide multiple modes of information, so that the structures have the capabilities for intelligent sensing, environmental adaptation and multi-functionality. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the paper.
NASA Astrophysics Data System (ADS)
Canright, David; Osvik, Dag Arne
We explore ways to reduce the number of bit operations required to implement AES. One way involves optimizing the composite field approach for entire rounds of AES. Another way is integrating the Galois multiplications of MixColumns with the linear transformations of the S-box. Combined with careful optimizations, these reduce the number of bit operations to encrypt one block by 9.0%, compared to earlier work that used the composite field only in the S-box. For decryption, the improvement is 13.5%. This work may be useful both as a starting point for a bit-sliced software implementation, where reducing operations increases speed, and also for hardware with limited resources.
NASA Technical Reports Server (NTRS)
1997-01-01
HyComp(R), Inc. development a line of high temperature carbon fiber composite products to solve wear problems in the harsh environment of steel and aluminum mills. WearComp(R), self-lubricating composite wear liners and bushings, combines carbon graphite fibers with a polyimide binder. The binder, in conjunction with the fibers, provides the slippery surface, one that demands no lubrication, yet wears at a very slow rate. WearComp(R) typically lasts six to ten times longer than aluminum bronze. Unlike bronze, WearComp polishes the same surface and imparts a self-lube film for years of service. It is designed for continuous operation at temperatures of 550 degrees Fahrenheit and can operate under high compressive loads.
NASA Astrophysics Data System (ADS)
Campbell, M.; Doležal, Z.; Greiffenberg, D.; Heijne, E.; Holy, T.; Idárraga, J.; Jakůbek, J.; Král, V.; Králík, M.; Lebel, C.; Leroy, C.; Llopart, X.; Lord, G.; Maneuski, D.; Ouellette, O.; Sochor, V.; Pospíšil, S.; Suk, M.; Tlustos, L.; Vykydal, Z.; Wilhelm, I.
2008-06-01
A network of devices to perform real-time measurements of the spectral characteristics and composition of radiation in the ATLAS detector and cavern during its operation is being built. This system of detectors will be a stand alone system fully capable of delivering real-time images of fluxes and spectral composition of different particle species including slow and fast neutrons. The devices are based on MEDIPIX2 pixel silicon detectors that will be operated via active USB cables and USB-Ethernet extenders through an Ethernet network by a PC located in the USA15 ATLAS control room. The installation of 14 devices inside ATLAS (detector and cavern) is in progress.
Cao, Xiehong; Zheng, Bing; Shi, Wenhui; Yang, Jian; Fan, Zhanxi; Luo, Zhimin; Rui, Xianhong; Chen, Bo; Yan, Qingyu; Zhang, Hua
2015-08-26
Reduced graphene oxide-wrapped MoO3M (rGO/MoO3 ) is prepared by a novel and simple method that is developed by using a metal-organic framework as the precursor. After a two-step annealing process, the obtained rGO/MoO3 composite is used for a high-performance supercapacitor electrode. Moreover, an all-solid-state flexible supercapacitor is fabricated based on the rGO/MoO3 composite, which shows stable performance under different bending states. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
O'Byrne, Michael L; Kim, Sunghee; Hornik, Christoph P; Yerokun, Babatunde A; Matsouaka, Roland A; Jacobs, Jeffrey P; Jacobs, Marshall L; Jonas, Richard A
2017-08-22
Extreme body mass index (BMI; either very high or very low) has been associated with increased risk of adverse perioperative outcome in adults undergoing cardiac surgery. The effect of BMI on perioperative outcomes in congenital heart disease patients has not been evaluated. A multicenter retrospective cohort study was performed studying patients 10 to 35 years of age undergoing a congenital heart disease operation in the Society of Thoracic Surgeons Congenital Heart Surgery Database between January 1, 2010, and December 31, 2015. The primary outcomes were operative mortality and a composite outcome (1 or more of operative mortality, major adverse event, prolonged hospital length of stay, and wound infection/dehiscence). The associations between age- and sex-adjusted BMI percentiles and these outcomes were assessed, with adjustment for patient-level risk factors, with multivariate logistic regression. Of 18 337 patients (118 centers), 16% were obese, 15% were overweight, 53% were normal weight, 7% were underweight, and 9% were severely underweight. Observed risks of operative mortality ( P =0.04) and composite outcome ( P <0.0001) were higher in severely underweight and obese subjects. Severely underweight BMI was associated with increased unplanned cardiac operation and reoperation for bleeding. Obesity was associated with increased risk of wound infection. In multivariable analysis, the association between BMI and operative mortality was no longer significant. Obese (odds ratio, 1.28; P =0.008), severely underweight (odds ratio, 1.29; P <0.0001), and underweight (odds ratio, 1.39; P =0.002) subjects were associated with increased risk of composite outcome. Obesity and underweight BMI were associated with increased risk of composite adverse outcome independently of other risk factors. Further research is necessary to determine whether BMI represents a modifiable risk factor for perioperative outcome. © 2017 American Heart Association, Inc.
Aging Effects in Polymer Composites
NASA Technical Reports Server (NTRS)
Chamis, Chistos C.; McManus, Hugh L.
1999-01-01
Simulation of composites degradation due to aging are described. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. Aging effects at the laminate, ply, and micro levels are evaluated, to determine failure of any kind. The results obtained show substantial ply stress built up as a result of aging accompanied by comparable laminate strength degradation in matrix dominated composite strengths.
Full-field inspection of a wind turbine blade using three-dimensional digital image correlation
NASA Astrophysics Data System (ADS)
LeBlanc, Bruce; Niezrecki, Christopher; Avitabile, Peter; Chen, Julie; Sherwood, James; Hughes, Scott
2011-04-01
Increasing demand and deployment of wind power has led to a significant increase in the number of wind-turbine blades manufactured globally. As the physical size and number of turbines deployed grows, the probability of manufacturing defects being present in composite turbine blade fleets also increases. As both capital blade costs, and operational and maintenance costs, increase for larger turbine systems the need for large-scale inspection and monitoring of the state of structural health of turbine blades during manufacturing and operation critically increase. One method for locating and quantifying manufacturing defects, while also allowing for the in-situ measurement of the structural health of blades, is through the observation of the full-field state of deformation and strain of the blade. Static tests were performed on a nine-meter CX-100 composite turbine blade to extract full-field displacement and strain measurements using threedimensional digital image correlation (3D DIC). Measurements were taken at several angles near the blade root, including along the high-pressure surface, low-pressure surface, and along the trailing edge of the blade. The overall results indicate that the measurement approach can clearly identify failure locations and discontinuities in the blade curvature under load. Post-processing of the data using a stitching technique enables the shape and curvature of the entire blade to be observed for a large-scale wind turbine blade for the first time. The experiment demonstrates the feasibility of the approach and reveals that the technique readily can be scaled up to accommodate utility-scale blades. As long as a trackable pattern is applied to the surface of the blade, measurements can be made in-situ when a blade is on a manufacturing floor, installed in a test fixture, or installed on a rotating turbine. The results demonstrate the great potential of the optical measurement technique and its capability for use in the wind industry for large-area inspection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raszewski, F; Tommy Edwards, T; David Peeler, D
The Liquid Waste Organization (LWO) has requested that the Savannah River National Laboratory (SRNL) to assess the impact of a 100K gallon decant volume from Tank 40H on the existing sludge-only Sludge Batch 4 (SB4)-Frit 510 flowsheet and the coupled operations flowsheet (SB4 with the Actinide Removal Process (ARP)). Another potential SB4 flowsheet modification of interest includes the addition of 3 wt% sodium (on a calcined oxide basis) to a decanted sludge-only or coupled operations flowsheet. These potential SB4 flowsheet modifications could result in significant compositional shifts to the SB4 system. This paper study provides an assessment of the impactmore » of these compositional changes to the projected glass operating windows and to the variability study for the Frit 510-SB4 system. The influence of the compositional changes on melt rate was not assessed in this study nor was it requested. Nominal Stage paper study assessments were completed using the projected compositions for the various flowsheet options coupled with Frit 510 (i.e., variation was not applied to the sludge and frit compositions). In order to gain insight into the impacts of sludge variation and/or frit variation (due to the procurement specifications) on the projected operating windows, three versions of the Variation Stage assessment were performed: (1) the traditional Variation Stage assessment in which the nominal Frit 510 composition was coupled with the extreme vertices (EVs) of each sludge, (2) an assessment of the impact of possible frit variation (within the accepted frit specification tolerances) on each nominal SB4 option, and (3) an assessment of the impact of possible variation in the Frit 510 composition due to the vendor's acceptance specifications coupled with the EVs of each sludge case. The results of the Nominal Stage assessment indicate very little difference among the various flowsheet options. All of the flowsheets provide DWPF with the possibility of targeting waste loadings (WLs) from the low 30s to the low 40s with Frit 510. In general, the Tank 40H decant has a slight negative impact on the operating window, but DWPF still has the ability to target current WLs (34%) and higher WLs if needed. While the decant does not affect practical WL targets in DWPF, melt rate could be reduced due to the lower Na{sub 2}O content. If true, the addition of 3 wt% Na{sub 2}O to the glass system may regain melt rate, assuming that the source of alkali is independent of the impact on melt rate. Coupled operations with Frit 510 via the addition of ARP to the decanted SB4 flowsheet also appears to be viable based on the projected operating windows. The addition of both ARP and 3 wt% Na{sub 2}O to a decanted Tank 40H sludge may be problematic using Frit 510. Although the Nominal Stage assessments provide reasonable operating windows for the SB4 flowsheets being considered with Frit 510, introduction of potential sludge and/or frit compositional variation does have a negative impact. The magnitude of the impact on the projected operating windows is dependent on the specific flowsheet options as well as the applied variation. The results of the traditional Variation Stage assessments indicate that the three proposed Tank 40H decanted flowsheet options (Case No.2--100K gallon decant, Case No.3--100K gallon decant and 3 wt% Na{sub 2}O addition and Case No.4--100K gallon decant and ARP) demonstrate a relatively high degree of robustness to possible sludge variation over WLs of interest with Frit 510. However, the case where the addition of both ARP and 3 wt% Na{sub 2}O is considered was problematic during the traditional Variation Stage assessment. The impact of coupling the frit specifications with the nominal SB4 flowsheet options on the projected operating windows is highly dependent on whether the upper WLs are low viscosity or liquidus temperature limited in the Nominal Stage assessments. Systems that are liquidus temperature limited exhibit a high degree of robustness to the applied frit and sludge variation, while those that are low viscosity limited show significant reductions (6 percentage points) in the upper WLs that can be obtained. When both frit and sludge variations are applied, the paper study results indicate that DWPF could be severely restricted in terms of projected operating windows for the ARP and Na{sub 2}O addition options. An experimental variability study was not performed using the final SB4 composition and Frit 510 since glasses in the ComPro{trademark} data base were identified that bounded the potential operating window of this system. The bounding ARP case was not considered in that assessment. After the flowsheet cases were identified, an electronic search of ComPro{trademark} identified approximately 12 historical glasses within the compositional regions defined by at least one of the five flowsheet options, but the compositional coverage did not appear adequate to bound all cases.« less
NASA Astrophysics Data System (ADS)
Rudskoy, A. I.; Kondrat'ev, S. Yu.; Sokolov, Yu. A.
2016-05-01
Possibilities of electron beam synthesis of structural and tool composite materials are considered. It is shown that a novel process involving mathematical modeling of each individual operation makes it possible to create materials with programmable structure and predictable properties from granules of various specified chemical compositions and sizes.
MSFC Combustion Devices in 2001
NASA Technical Reports Server (NTRS)
Dexter, Carol; Turner, James (Technical Monitor)
2001-01-01
The objectives of the project detailed in this viewgraph presentation were to reduce thrust assembly weights to create lighter engines and to increase the cycle life and/or operating temperatures. Information is given on material options (metal matrix composites and polymer matrix composites), ceramic matrix composites subscale liners, lightweight linear chambers, lightweight injector development, liquid/liquid preburner tasks, and vortex chamber tasks.
Quasispecies in population of compositional assemblies.
Gross, Renan; Fouxon, Itzhak; Lancet, Doron; Markovitch, Omer
2014-12-30
The quasispecies model refers to information carriers that undergo self-replication with errors. A quasispecies is a steady-state population of biopolymer sequence variants generated by mutations from a master sequence. A quasispecies error threshold is a minimal replication accuracy below which the population structure breaks down. Theory and experimentation of this model often refer to biopolymers, e.g. RNA molecules or viral genomes, while its prebiotic context is often associated with an RNA world scenario. Here, we study the possibility that compositional entities which code for compositional information, intrinsically different from biopolymers coding for sequential information, could show quasispecies dynamics. We employed a chemistry-based model, graded autocatalysis replication domain (GARD), which simulates the network dynamics within compositional molecular assemblies. In GARD, a compotype represents a population of similar assemblies that constitute a quasi-stationary state in compositional space. A compotype's center-of-mass is found to be analogous to a master sequence for a sequential quasispecies. Using single-cycle GARD dynamics, we measured the quasispecies transition matrix (Q) for the probabilities of transition from one center-of-mass Euclidean distance to another. Similarly, the quasispecies' growth rate vector (A) was obtained. This allowed computing a steady state distribution of distances to the center of mass, as derived from the quasispecies equation. In parallel, a steady state distribution was obtained via the GARD equation kinetics. Rewardingly, a significant correlation was observed between the distributions obtained by these two methods. This was only seen for distances to the compotype center-of-mass, and not to randomly selected compositions. A similar correspondence was found when comparing the quasispecies time dependent dynamics towards steady state. Further, changing the error rate by modifying basal assembly joining rate of GARD kinetics was found to display an error catastrophe, similar to the standard quasispecies model. Additional augmentation of compositional mutations leads to the complete disappearance of the master-like composition. Our results show that compositional assemblies, as simulated by the GARD formalism, portray significant attributes of quasispecies dynamics. This expands the applicability of the quasispecies model beyond sequence-based entities, and potentially enhances validity of GARD as a model for prebiotic evolution.
NASA Astrophysics Data System (ADS)
Román, Sebastián; Lund, Fernando; Bustos, Javier; Palza, Humberto
2018-01-01
In several technological applications, carbon nanotubes (CNT) are added to a polymer matrix in order to develop electrically conductive composite materials upon percolation of the CNT network. This percolation state depends on several parameters such as particle characteristics, degree of dispersion, and filler orientation. For instance, CNT aggregation is currently avoided because it is thought that it will have a negative effect on the electrical behavior despite some experimental evidence showing the contrary. In this study, the effect of CNT waviness, degree of agglomeration, and external strain, on the electrical percolation of polymer composites is studied by a three dimensional Monte-Carlo simulation. The simulation shows that the percolation threshold of CNT depends on the particle waviness, with rigid particles displaying the lowest values. Regarding the effect of CNT dispersion, our numerical results confirm that low levels of agglomeration reduce the percolation threshold of the composite. However, the threshold is shifted to larger values at high agglomeration states because of the appearance of isolated areas of high CNT concentrations. These results imply, therefore, an optimum of agglomeration that further depends on the waviness and concentration of CNT. Significantly, CNT agglomeration can further explain the broad percolation transition found in these systems. When an external strain is applied to the composites, the percolation concentration shifts to higher values because CNT alignment increases the inter-particle distances. The strain sensitivity of the composites is affected by the percolation state of CNT showing a maximum value at certain filler concentration. These results open up the discussion about the relevance in polymer composites of the dispersion state of CNT and filler flexibility towards electrically conductive composites.
Tofte, Josef N; Westerlind, Brian O; Martin, Kevin D; Guetschow, Brian L; Uribe-Echevarria, Bastián; Rungprai, Chamnanni; Phisitkul, Phinit
2017-03-01
To validate the knee, shoulder, and virtual Fundamentals of Arthroscopic Training (FAST) modules on a virtual arthroscopy simulator via correlations with arthroscopy case experience and postgraduate year. Orthopaedic residents and faculty from one institution performed a standardized sequence of knee, shoulder, and FAST modules to evaluate baseline arthroscopy skills. Total operation time, camera path length, and composite total score (metric derived from multiple simulator measurements) were compared with case experience and postgraduate level. Values reported are Pearson r; alpha = 0.05. 35 orthopaedic residents (6 per postgraduate year), 2 fellows, and 3 faculty members (2 sports, 1 foot and ankle), including 30 male and 5 female residents, were voluntarily enrolled March to June 2015. Knee: training year correlated significantly with year-averaged knee composite score, r = 0.92, P = .004, 95% confidence interval (CI) = 0.84, 0.96; operation time, r = -0.92, P = .004, 95% CI = -0.96, -0.84; and camera path length, r = -0.97, P = .0004, 95% CI = -0.98, -0.93. Knee arthroscopy case experience correlated significantly with composite score, r = 0.58, P = .0008, 95% CI = 0.27, 0.77; operation time, r = -0.54, P = .002, 95% CI = -0.75, -0.22; and camera path length, r = -0.62, P = .0003, 95% CI = -0.8, -0.33. Shoulder: training year correlated strongly with average shoulder composite score, r = 0.90, P = .006, 95% CI = 0.81, 0.95; operation time, r = -0.94, P = .001, 95% CI = -0.97, -0.89; and camera path length, r = -0.89, P = .007, 95% CI = -0.95, -0.80. Shoulder arthroscopy case experience correlated significantly with average composite score, r = 0.52, P = .003, 95% CI = 0.2, 0.74; strongly with operation time, r = -0.62, P = .0002, 95% CI = -0.8, -0.33; and camera path length, r = -0.37, P = .044, 95% CI = -0.64, -0.01, by training year. FAST: training year correlated significantly with 3 combined FAST activity average composite scores, r = 0.81, P = .0279, 95% CI = 0.65, 0.90; operation times, r = -0.86, P = .012, 95% CI = -0.93, -0.74; and camera path lengths, r = -0.85, P = .015, 95% CI = -0.92, -0.72. Total arthroscopy cases performed did not correlate significantly with overall FAST performance. We found significant correlations between both training year and knee and shoulder arthroscopy experience when compared with performance as measured by composite score, camera path length, and operation time during a simulated diagnostic knee and shoulder arthroscopy, respectively. Three FAST activities demonstrated significant correlations with training year but not arthroscopy case experience as measured by composite score, camera path length, and operation time. We attempt to validate an arthroscopy simulator that could be used to supplement arthroscopy skills training for orthopaedic residents. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Tiwari, Anil
1995-01-01
Research effort was directed towards developing a near real-time, acousto-ultrasonic (AU), nondestructive evaluation (NDE) tool to study the failure mechanisms of ceramic composites. Progression of damage is monitored in real-time by observing the changes in the received AU signal during the actual test. During the real-time AU test, the AU signals are generated and received by the AU transducers attached to the specimen while it is being subjected to increasing quasi-static loads or cyclic loads (10 Hz, R = 1.0). The received AU signals for 64 successive pulses were gated in the time domain (T = 40.96 micro sec) and then averaged every second over ten load cycles and stored in a computer file during fatigue tests. These averaged gated signals are representative of the damage state of the specimen at that point of its fatigue life. This is also the first major attempt in the development and application of real-time AU for continuously monitoring damage accumulation during fatigue without interrupting the test. The present work has verified the capability of the AU technique to assess the damage state in silicon carbide/calcium aluminosilicate (SiC/CAS) and silicon carbide/ magnesium aluminosilicate (SiC/MAS) ceramic composites. Continuous monitoring of damage initiation and progression under quasi-static ramp loading in tension to failure of unidirectional and cross-ply SiC/CAS and quasi-isotropic SiC/MAS ceramic composite specimens at room temperature was accomplished using near real-time AU parameters. The AU technique was shown to be able to detect the stress levels for the onset and saturation of matrix cracks, respectively. The critical cracking stress level is used as a design stress for brittle matrix composites operating at elevated temperatures. The AU technique has found that the critical cracking stress level is 10-15% below the level presently obtained for design purposes from analytical models. An acousto-ultrasonic stress-strain response (AUSSR) model for unidirectional and cross-ply ceramic composites was formulated. The AUSSR model predicts the strain response to increasing stress levels using real-time AU data and classical laminated plate theory. The Weibull parameters of the AUSSR model are used to calculate the design stress for thermo-structural applications. Real-time AU together with the AUSSR model was used to study the failure mechanisms of SiC/CAS ceramic composites under static and fatigue loading. An S-N curve was generated for a cross-ply SiC/CAS ceramic composite material. The AU results are corroborated and complemented by other NDE techniques, namely, in-situ optical microscope video recordings and edge replication.
New technology innovations with potential for space applications
NASA Astrophysics Data System (ADS)
Krishen, Kumar
2008-07-01
Human exploration and development of space is being pursued by spacefaring nations to explore, use, and enable the development of space and expand the human experience there. The goals include: increasing human knowledge of nature's processes using the space environment; exploring and settling the solar system; achieving routine space travel; and enriching life on Earth through living and working in space. A crucial aspect of future space missions is the development of infrastructure to optimize safety, productivity, and costs. A major component of mission execution is operations management. NASA's International Space Station is providing extensive experience in both infrastructure and operations. In view of this, a vigorously organized approach is needed to implement successful space-, planet-, and ground-based research and operations that entails wise and efficient use of technical and human resources. Many revolutionary technologies being pursued by researchers and technologists may be vital in making space missions safe, reliable, cost-effective, and productive. These include: ionic polymer-metal composite technology; solid-state lasers; time-domain sensors and communication systems; high-temperature superconductivity; nanotechnology; variable specific impulse magneto plasma rocket; fuzzy logic; wavelet technology; and neural networks. An overview of some of these will be presented, along with their application to space missions.
Advanced Gas Turbine (AGT) Technology Project
NASA Technical Reports Server (NTRS)
1986-01-01
Engine testing, ceramic component fabrication and evaluation, component performance rig testing, and analytical studies comprised AGT 100 activities during the 1985 year. Ten experimental assemblies (builds) were evaluated using two engines. Accrued operating time was 120 hr of burning and 170 hr total, bringing cumulative total operating time to 395 hr, all devoid of major failures. Tests identified the generator seals as the primary working fluid leakage sources. Power transfer clutch operation was demonstrated. An alpha SiC gasifier rotor engine test resulted in blade tip failures. Recurring case vibration and shaft whip have limited gasifier shaft speeds to 84%. Ceramic components successfully engine tested now include the SiC scroll assembly, Si3N3 turbine rotor, combustor assembly, regenerator disk bulkhead, turbine vanes, piston rings, and couplings. A compressor shroud design change to reduce heat recirculation back to the inlet was executed. Ceramic components activity continues to focus on the development of state-of-the-art material strength characteristics in full-scale engine hardware. Fiber reinforced glass-ceramic composite turbine (inner) backplates were fabricated by Corning Glass Works. The BMAS/III material performed well in engine testing. Backplates of MAS material have not been engine tested.
Brunton, Paul A; Ghazali, Amna; Tarif, Zahidah H; Loch, Carolina; Lynch, Christopher; Wilson, Nairn; Blum, Igor R
2017-04-01
To evaluate the teaching and operative techniques for the repair and/or replacement of direct resin-based composite restorations (DCRs) in dental schools in Oceania. A 14-item questionnaire was mailed to the heads of operative dentistry in 16 dental schools in Oceania (Australia, New Zealand, Fiji and Papua New Guinea). The survey asked whether the repair of DCRs was taught within the curriculum; the rationale behind the teaching; how techniques were taught, indications for repair, operative techniques, materials used, patient acceptability, expected longevity and recall systems. All 16 schools participated in the study. Thirteen (81%) reported the teaching of composite repairs as an alternative to replacement. Most schools taught the theoretical and practical aspects of repair at a clinical level only. All 13 schools (100%) agreed on tooth substance preservation being the main reason for teaching repair. The main indications for repair were marginal defects (100%), followed by secondary caries (69%). All 13 schools that performed repairs reported high patient acceptability, and considered it a definitive measure. Only three schools (23%) claimed to have a recall system in place following repair of DCRs. Most respondents either did not know or did not answer when asked about the longevity of DCRs. Repair of DCRs seems to be a viable alternative to replacement, which is actively taught within Oceania. Advantages include it being minimally invasive, preserving tooth structure, and time and money saving. However, standardised guidelines need to be developed and further clinical long-term studies need to be carried out. The decision between replacing or repairing a defective composite restoration tends to be based on what clinicians have been taught, tempered by experience and judgement. This study investigated the current status of teaching and operative techniques of repair of direct composite restorations in dental schools in Oceania. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evolution of light hydrocarbon gases in subsurface processes: Constraints from chemical equilibrium
NASA Astrophysics Data System (ADS)
Sugisaki, Ryuichi; Nagamine, Koichiro
1995-06-01
The behaviour of CH 4, C 2H 6 and C 3H 8 in subsurface processes such as magma intrusion, volcanic gas discharge and natural gas generation have been examined from the viewpoint of chemical equilibrium. It seems that equilibrium among these three hydrocarbons is attainable at about 200°C. When a system at high temperatures is cooled, re-equilibration is continued until a low temperature is reached. The rate at which re-equilibration is achieved, however, steadily diminishes and, below 200°C, the reaction between the hydrocarbons stops and the gas composition at this time is frozen in, and it remains unchanged in a metastable state for a long period of geological time. Natural gas compositions from various fields have shown that, when a hydrocarbon system out of chemical equilibrium is heated, it gradually approaches equilibrium above 150°C. On the way towards equilibration, compositions of thermogenic gases apparently temporarily show a thermodynamic equilibrium constant at a temperature that is higher than the real equilibrium temperature expected from the ambient temperature of the samples; in contrast, biogenic gases indicate a lower temperature. In lower temperature regions, kinetic effects probably control the gas composition; the compositions are essentially subjected to genetic processes operating on the gases (such as pyrolysis of organic material and bacterial activity) and they fluctuate substantially. Examination of volcanic gases and pyrolysis experimental data, however, have suggested that the equilibration rate of these hydrocarbons is sluggish in comparison with that of reactive inorganic species such as H 2S and SO 2. The view presented in this study will be helpful in understanding the genetic processes that create oil and gas and the migration of these hydrocarbons and in interpreting the origins of magmatic gases.
Kiepper, B H; Merka, W C; Fletcher, D L
2008-08-01
An experiment was conducted to compare the proximate composition of particulate matter recovered from poultry processing wastewater (PPW) generated by broiler slaughter plants. Poultry processing wastewater is the cumulative wastewater stream generated during the processing of poultry following primary and secondary physical screening (typically to 500 mum) that removes gross offal. Composite samples of PPW from 3 broiler slaughter plants (southeast United States) were collected over 8 consecutive weeks. All 3 broiler slaughter plants process young chickens with an average live weight of 2.0 kg. At each plant, a single 72-L composite sample was collected using an automatic sampler programmed to collect 1 L of wastewater every 20 min for 24 h during one normal processing day each week. Each composite sample was thoroughly mixed, and 60 L was passed through a series of sieves (2.0 mm, 1.0 mm, 500 mum, and 53 mum). The amount of particulate solids collected on the 2.0 mm, 1.0 mm, and 500 mum sieves was insignificant. The solids recovered from the 53-mum sieve were subjected to proximate analysis to determine percent moisture, fat, protein, ash, and fiber. The average percentages of fat, protein, ash, and fiber for all samples on a dry-weight basis were 55.3, 27.1, 6.1, and 4.1, respectively. Fat made up over half of the dry-weight matter recovered, representing PPW particulate matter between 500 and 53 mum. Despite the variation in number of birds processed daily, further processing operations, and number and type of wastewater screens utilized, there were no significance differences in percentage of fat and fiber between the slaughter plants. There were significant differences in percent protein and ash between the slaughter plants.
Recursive flexible multibody system dynamics using spatial operators
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1992-01-01
This paper uses spatial operators to develop new spatially recursive dynamics algorithms for flexible multibody systems. The operator description of the dynamics is identical to that for rigid multibody systems. Assumed-mode models are used for the deformation of each individual body. The algorithms are based on two spatial operator factorizations of the system mass matrix. The first (Newton-Euler) factorization of the mass matrix leads to recursive algorithms for the inverse dynamics, mass matrix evaluation, and composite-body forward dynamics for the systems. The second (innovations) factorization of the mass matrix, leads to an operator expression for the mass matrix inverse and to a recursive articulated-body forward dynamics algorithm. The primary focus is on serial chains, but extensions to general topologies are also described. A comparison of computational costs shows that the articulated-body, forward dynamics algorithm is much more efficient than the composite-body algorithm for most flexible multibody systems.
Ceramic matrix composite article and process of fabricating a ceramic matrix composite article
Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert
2016-01-12
A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.
Dynamic Sampling of Trace Contaminants During the Mission Operations Test of the Deep Space Habitat
NASA Technical Reports Server (NTRS)
Monje, Oscar; Valling, Simo; Cornish, Jim
2013-01-01
The atmospheric composition inside spacecraft during long duration space missions is dynamic due to changes in the living and working environment of crew members, crew metabolism and payload operations. A portable FTIR gas analyzer was used to monitor the atmospheric composition within the Deep Space Habitat (DSH) during the Mission Operations Test (MOT) conducted at the Johnson Space Center (JSC). The FTIR monitored up to 20 gases in near- real time. The procedures developed for operating the FTIR were successful and data was collected with the FTIR at 5 minute intervals. Not all the 20 gases sampled were detected in all the modules and it was possible to measure dynamic changes in trace contaminant concentrations that were related to crew activities involving exercise and meal preparation.
Electrolytes for Low-Temperature Operation of Li-CFx Cells
NASA Technical Reports Server (NTRS)
Smart, Marshall C.; Whitacre, Jay F.; Bugga, Ratnakumar V.; Prakash, G. K. Surya; Bhalla, Pooja; Smith, Kiah
2009-01-01
A report describes a study of electrolyte compositions selected as candidates for improving the low-temperature performances of primary electrochemical cells that contain lithium anodes and fluorinated carbonaceous (CFx) cathodes. This study complements the developments reported in Additive for Low-Temperature Operation of Li-(CF)n Cells (NPO- 43579) and Li/CFx Cells Optimized for Low-Temperature Operation (NPO- 43585), which appear elsewhere in this issue of NASA Tech Briefs. Similar to lithium-based electrolytes described in several previous NASA Tech Briefs articles, each of these electrolytes consisted of a lithium salt dissolved in a nonaqueous solvent mixture. Each such mixture consisted of two or more of the following ingredients: propylene carbonate (PC); 1,2-dimethoxyethane (DME); trifluoropropylene carbonate; bis(2,2,2-trifluoroethyl) ether; diethyl carbonate; dimethyl carbonate; and ethyl methyl carbonate. The report describes the physical and chemical principles underlying the selection of the compositions (which were not optimized) and presents results of preliminary tests made to determine effects of the compositions upon the low-temperature capabilities of Li-CFx cells, relative to a baseline composition of LiBF4 at a concentration of 1.0 M in a solvent comprising equal volume parts of PC and DME.
NASA Astrophysics Data System (ADS)
Shin, Dongwon; Han, Myungseong; Shul, Yong-Gun; Lee, Hyejin; Bae, Byungchan
2018-02-01
The oxidative stability of membranes constructed from a composite of pristine sulfonated poly(arylene ether sulfone) and cerium was investigated by conducting an accelerated oxidative-stability test at the open-circuit voltage (OCV). The membranes were analyzed in situ through OCV and impedance measurements, cyclic voltammetry, and linear-sweep voltammetry to monitor the electrochemical properties during the stability test. Although the high-frequency resistance of a composite membrane was slightly higher than that of a pristine membrane because of the exchange of protons from the sulfonic acid with cerium ions, the composite membrane maintained its potential for much longer than the pristine membrane. The effect of the cerium ions as radical scavengers was confirmed by analyzing the drain water and chemical structure after operation. These post-operation analyses confirmed that cerium ions improved the oxidative stability of the hydrocarbon-based polymer during fuel-cell operation. It is clear that the cerium-based radical scavengers prevented chemical degradation of the polymer membrane as well as the electrode in terms of hydrogen cross-over, polymer-chain scission, and the electrochemical surface area, while they rarely diffused outward from the membrane.
Graphite/Polyimide Composites. [conference on Composites for Advanced Space Transportation Systems
NASA Technical Reports Server (NTRS)
Dexter, H. B. (Editor); Davis, J. G., Jr. (Editor)
1979-01-01
Technology developed under the Composites for Advanced Space Transportation System Project is reported. Specific topics covered include fabrication, adhesives, test methods, structural integrity, design and analysis, advanced technology developments, high temperature polymer research, and the state of the art of graphite/polyimide composites.
NASA Astrophysics Data System (ADS)
Jia, Zhi-Yong; Shu, Fang-Zhou; Gao, Ya-Jun; Cheng, Feng; Peng, Ru-Wen; Fan, Ren-Hao; Liu, Yongmin; Wang, Mu
2018-03-01
There have been great endeavors devoted to manipulating the polarization state of light by plasmonic nanostructures in recent decades. However, the topic of active polarizers has attracted much less attention. We present a composite plasmonic nanostructure consisting of vanadium dioxide that can dynamically modulate the polarization state of the reflected light through a thermally induced phase transition of vanadium dioxide. We design a system consisting of anisotropic plasmonic nanostructures with vanadium dioxide that exhibits distinct reflections subjected to different linearly polarized incidence at room temperature and in the heated state. Under a particular linearly polarized incidence, the polarization state of the reflected light changes at room temperature, and reverts to its original polarization state above the phase-transition temperature. The composite structure can also be used to realize a dynamically switchable infrared image, wherein a pattern can be visualized at room temperature while it disappears above the phase-transition temperature. The composite structure could be potentially used for versatile optical modulators, molecular detection, and polarimetric imaging.
Forest composition change in the eastern United States
Songlin Fei; Peilin. Yang
2011-01-01
Forest ecosystems in the eastern United States are believed to be experiencing a species composition change, but most evidence is anecdotal or localized. We used U.S. Forest Service Forest Inventory and Analysis data to quantify the annual changes of three common genera: Acer (maple), carya (hickory), and Quercus...
Solid-state radioluminescent compositions
Clough, Roger L.; Gill, John T.; Hawkins, Daniel B.; Renschler, Clifford L.; Shepodd, Timothy J.; Smith, Henry M.
1991-01-01
A solid state radioluminescent composition for light source comprises an optically clear polymer organic matrix containing tritiated organic materials and dyes capable of "red" shifting primary scintillation emissions from the polymer matrix. The tritiated organic materials are made by reducing, with tritium, an unsaturated organic compound that prior to reduction contains olefinic or alkynylic bonds.
40 CFR 63.3081 - Am I subject to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... is located at a plastic or composites molding facility; (ii) All of the body parts topcoated at your....) at your facility or at another plastic or composites molding facility which you own or operate, and...
Lithium thionyl chloride high rate discharge
NASA Technical Reports Server (NTRS)
Klinedinst, K. A.
1980-01-01
Improvements in high rate lithium thionyl chloride power technology achieved by varying the electrolyte composition, operating temperature, cathode design, and cathode composition are discussed. Discharge capacities are plotted as a function of current density, cell voltage, and temperature.
Small Spacecraft Active Thermal Control: Micro-Vascular Composites Enable Small Satellite Cooling
NASA Technical Reports Server (NTRS)
Ghosh, Alexander
2016-01-01
The Small Spacecraft Integrated Power System with Active Thermal Control project endeavors to achieve active thermal control for small spacecraft in a practical and lightweight structure by circulating a coolant through embedded micro-vascular channels in deployable composite panels. Typically, small spacecraft rely on small body mounted passive radiators to discard heat. This limits cooling capacity and leads to the necessity to design for limited mission operations. These restrictions severely limit the ability of the system to dissipate large amounts of heat from radios, propulsion systems, etc. An actively pumped cooling system combined with a large deployable radiator brings two key advantages over the state of the art for small spacecraft: capacity and flexibility. The use of a large deployable radiator increases the surface area of the spacecraft and allows the radiation surface to be pointed in a direction allowing the most cooling, drastically increasing cooling capacity. With active coolant circulation, throttling of the coolant flow can enable high heat transfer rates during periods of increased heat load, or isolate the radiator during periods of low heat dissipation.
Chitosan and alginate types of bio-membrane in fuel cell application: An overview
NASA Astrophysics Data System (ADS)
Shaari, N.; Kamarudin, S. K.
2015-09-01
The major problems of polymer electrolyte membrane fuel cell technology that need to be highlighted are fuel crossovers (e.g., methanol or hydrogen leaking across fuel cell membranes), CO poisoning, low durability, and high cost. Chitosan and alginate-based biopolymer membranes have recently been used to solve these problems with promising results. Current research in biopolymer membrane materials and systems has focused on the following: 1) the development of novel and efficient biopolymer materials; and 2) increasing the processing capacity of membrane operations. Consequently, chitosan and alginate-based biopolymers seek to enhance fuel cell performance by improving proton conductivity, membrane durability, and reducing fuel crossover and electro-osmotic drag. There are four groups of chitosan-based membranes (categorized according to their reaction and preparation): self-cross-linked and salt-complexed chitosans, chitosan-based polymer blends, chitosan/inorganic filler composites, and chitosan/polymer composites. There are only three alginate-based membranes that have been synthesized for fuel cell application. This work aims to review the state-of-the-art in the growth of chitosan and alginate-based biopolymer membranes for fuel cell applications.
Cho, Eun Seon; Ruminski, Anne M.; Aloni, Shaul; ...
2016-02-23
Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H 2 per litre inmore » the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. In conclusion, these multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.« less
NASA Astrophysics Data System (ADS)
Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.
2009-03-01
Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.
Flavor-singlet spectrum in multi-flavor QCD
NASA Astrophysics Data System (ADS)
Aoki, Yasumichi; Aoyama, Tatsumi; Bennett, Ed; Kurachi, Masafumi; Maskawa, Toshihide; Miura, Kohtaroh; Nagai, Kei-ichi; Ohki, Hiroshi; Rinaldi, Enrico; Shibata, Akihiro; Yamawaki, Koichi; Yamazaki, Takeshi
2018-03-01
Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs models). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixed number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.
Kumar, Amit; Dewulf, Jo; Vercruyssen, Aline; Van Langenhove, Herman
2009-04-01
In this study, a membrane biofilm reactor performance for toluene as a model pollutant is presented. A composite membrane consisting of a porous polyacrylonitrile (PAN) support layer coated with a very thin (0.3 microm) dense polydimethylsiloxane (PDMS) top layer was used. Batch experiments were performed to select an appropriate inocula (slaughterhouse wastewater treatment sludge with a specific toluene consumption rate of 118+/-23 microg g(-1) VSS L(-1)) among the three available sources of inoculums. The maximum elimination capacity gas-side reactor volume based (EC)v and membrane based (EC)(m, max) obtained were 609 g m(-3) h(-1) and 1.2 g m(-2) h(-1) respectively, which is much higher than other membrane bioreactors. Further experiments involved the study of the membrane biofilm reactor flexibility when operational parameters as temperature, loading rate etc. were modified. In all cases, the membrane biofilm reactor showed a rapid adaptation and new steady-states were obtained within hours. Overall, the results illustrate that membrane bioreactors can potentially be a good option for treatment of air pollutants such as toluene.
Flavor-singlet spectrum in multi-flavor QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Yasamichi; Rinaldi, Enrico
2017-06-18
Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs models). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixedmore » number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.« less
Testing of the 3M Company Composite Conductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stovall, John P; Rizy, D Tom; Kisner, Roger A
2010-10-01
The 3M Company has developed a high-temperature low-sag conductor referred to as Aluminum-Conductor Composite-Reinforced or ACCR. The conductor uses an aluminum metal matrix material to replace the steel in conventional conductors. The objective of this work is to accelerate the commercial acceptance by electric utilities of this new conductor design by testing four representative conductor classes in controlled conditions. A unique facility called the Powerline Conductor Accelerated Testing (PCAT) Facility was built at ORNL for testing overhead conductors. The PCAT has been uniquely designed for testing overhead bare transmission line conductors at high currents and temperatures after they have beenmore » installed and tensioned to the manufacturer's specifications. The ability to operate a transmission line conductor in this manner does not exist elsewhere in the United States. Four classes of ACCR cable designed by the 3M Company have been successfully test at ORNL small, medium, large and small/compact. Based on these and other manufacturer tests, the 3M Company has successfully introduced the ACCR into the commercial market and has completed over twenty installations for utility companies.« less
Ethane-xenon mixtures under shock conditions
NASA Astrophysics Data System (ADS)
Flicker, Dawn; Magyar, Rudolph; Root, Seth; Cochrane, Kyle; Mattsson, Thomas
2015-06-01
Mixtures of light and heavy elements arise in inertial confinement fusion and planetary science. We present results on the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT/QMD) at elevated-temperature and pressure is used to obtain the properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate the QMD simulations, we performed high-precision shock compression experiments using Sandia's Z-Machine. A bond tracking analysis of the simulations correlates the sharp rise in the Hugoniot curve with completion of dissociation in ethane. DFT-based simulation results compare well with experimental data and are used to provide insight into the dissociation as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for ethane, Xe-ethane, polymethyl-pentene, and polystyrene, suggesting that a limiting compression exists for C-C bonded systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
De Rosa, Benedetto; Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Mancini, Ignazio
2016-06-01
In November 2012 the University of BASILicata Raman Lidar system (BASIL) was approved to enter the International Network for the Detection of Atmospheric Composition Change (NDACC). This network includes more than 70 high-quality, remote-sensing research stations for observing and understanding the physical and chemical state of the upper troposphere and stratosphere and for assessing the impact of stratosphere changes on the underlying troposphere and on global climate. As part of this network, more than thirty groundbased Lidars deployed worldwide are routinely operated to monitor atmospheric ozone, temperature, aerosols, water vapour, and polar stratospheric clouds. In the frame of NDACC, BASIL performs measurements on a routine basis each Thursday, typically from local noon to midnight, covering a large portion of the daily cycle. Measurements from BASIL are included in the NDACC database both in terms of water vapour mixing ratio and temperature. This paper illustrates some measurement examples from BASIL, with a specific focus on water vapour measurements, with the goal to try and characterize the system performances.