Science.gov

Sample records for states coulomb excitations

  1. Lifetime and g-factor measurements of excited states using Coulomb excitation and alpha transfer reactions

    NASA Astrophysics Data System (ADS)

    Guevara, Z. E.; Torres, D. A.

    2016-07-01

    In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will be discussed. An example of a setup that makes use of a beam of 106Cd to study excited states of 110Sn and the beam nuclei itself will be presented.

  2. Coulomb excitation of 107In

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cederkall, J.; Fahlander, C.; Ekström, A.; Hjorth-Jensen, M.; Albers, M.; Bildstein, V.; Blazhev, A.; Darby, I.; Davinson, T.; De Witte, H.; Diriken, J.; Fransen, Ch.; Geibel, K.; Gernhäuser, R.; Görgen, A.; Hess, H.; Heyde, K.; Iwanicki, J.; Lutter, R.; Reiter, P.; Scheck, M.; Seidlitz, M.; Siem, S.; Taprogge, J.; Tveten, G. M.; Van de Walle, J.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.

    2013-01-01

    The radioactive isotope 107In was studied using sub-barrier Coulomb excitation at the REX-ISOLDE facility at CERN. Two γ rays were observed during the experiment, corresponding to the low-lying 11/2+ and 3/2- states. The reduced transition probability of the 11/2+ state was determined with the semiclassical Coulomb excitation code gosia2. The result is discussed in comparison to large-scale shell-model calculations, previous unified-model calculations, and earlier Coulomb excitation measurements in the odd-mass In isotopes.

  3. Coulomb excitation of 31Mg

    NASA Astrophysics Data System (ADS)

    Seidlitz, M.; Mücher, D.; Reiter, P.; Bildstein, V.; Blazhev, A.; Bree, N.; Bruyneel, B.; Cederkäll, J.; Clement, E.; Davinson, T.; Van Duppen, P.; Ekström, A.; Finke, F.; Fraile, L. M.; Geibel, K.; Gernhäuser, R.; Hess, H.; Holler, A.; Huyse, M.; Ivanov, O.; Jolie, J.; Kalkühler, M.; Kotthaus, T.; Krücken, R.; Lutter, R.; Piselli, E.; Scheit, H.; Stefanescu, I.; Van de Walle, J.; Voulot, D.; Warr, N.; Wenander, F.; Wiens, A.

    2011-06-01

    The ground state properties of 31Mg indicate a change of nuclear shape at N = 19 with a deformed Jπ = 1 /2+ intruder state as a ground state, implying that 31Mg is part of the "island of inversion". The collective properties of excited states were the subject of a Coulomb excitation experiment at REX-ISOLDE, CERN, employing a radioactive 31Mg beam. De-excitation γ-rays were detected by the MINIBALL γ-spectrometer in coincidence with scattered particles in a segmented Si-detector. The level scheme of 31Mg was extended. Spin and parity assignment of the 945 keV state yielded 5 /2+ and its de-excitation is dominated by a strong collective M1 transition. Comparison of the transition probabilities of 30,31,32Mg establishes that for the N = 19 magnesium isotope not only the ground state but also excited states are largely dominated by a deformed pf intruder configuration.

  4. Structure of low-lying states in 140Sm studied by Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Klintefjord, M.; Hadyńska-KlÈ©k, K.; Görgen, A.; Bauer, C.; Bello Garrote, F. L.; Bönig, S.; Bounthong, B.; Damyanova, A.; Delaroche, J.-P.; Fedosseev, V.; Fink, D. A.; Giacoppo, F.; Girod, M.; Hoff, P.; Imai, N.; Korten, W.; Larsen, A.-C.; Libert, J.; Lutter, R.; Marsh, B. A.; Molkanov, P. L.; Naïdja, H.; Napiorkowski, P.; Nowacki, F.; Pakarinen, J.; Rapisarda, E.; Reiter, P.; Renstrøm, T.; Rothe, S.; Seliverstov, M. D.; Siebeck, B.; Siem, S.; Srebrny, J.; Stora, T.; Thöle, P.; Tornyi, T. G.; Tveten, G. M.; Van Duppen, P.; Vermeulen, M. J.; Voulot, D.; Warr, N.; Wenander, F.; De Witte, H.; Zielińska, M.

    2016-05-01

    The electromagnetic structure of 140Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The 2+ and 4+ states of the ground-state band and a second 2+ state were populated by multistep excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the 21+ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and algebraic models are also employed to interpret the experimental data. The results indicate that 140Sm shows considerable γ softness, but in contrast to earlier speculation no signs of shape coexistence at low excitation energy. This work sheds more light on the onset of deformation and collectivity in this mass region.

  5. Coulomb excitation of 107Sn

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cederkall, J.; Fahlander, C.; Ekström, A.; Hjorth-Jensen, M.; Albers, M.; Bildstein, V.; Blazhev, A.; Darby, I.; Davinson, T.; De Witte, H.; Diriken, J.; Fransen, Ch.; Geibel, K.; Gernhäuser, R.; Görgen, A.; Hess, H.; Iwanicki, J.; Lutter, R.; Reiter, P.; Scheck, M.; Seidlitz, M.; Siem, S.; Taprogge, J.; Tveten, G. M.; Van de Walle, J.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.

    2012-07-01

    The radioactive isotope 107Sn was studied using Coulomb excitation at the REX-ISOLDE facility at CERN. This is the lightest odd-Sn nucleus examined using this technique. The reduced transition probability of the lowest-lying 3/2+ state was measured and is compared to shell-model predictions based on several sets of single-neutron energies relative to 100Sn . Similar to the transition probabilities for the 2+ states in the neutron-deficient even-even Sn nuclei, the measured value is underestimated by shell-model calculations. Part of the strength may be recovered by considering the ordering of the d_{5/2} and g_{7/2} single-neutron states.

  6. Magnetic moment and lifetime measurements of Coulomb-excited states in Cd106

    DOE PAGES

    Benczer-Koller, N.; Kumbartzki, G. J.; Speidel, K. -H.; Torres, D. A.; Robinson, S. J. Q.; Sharon, Y. Y.; Allmond, J. M.; Fallon, P.; Abramovic, I.; Bernstein, L. A.; et al

    2016-09-06

    The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in 106Cd. Methods: In an inverse kinematics reaction, a 106Cd beam impinging on a 12C target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for 106Cd. As a result, the g factorsmore » of the 2+1 and 4+1 states in 106Cd were measured to be g(2+1) = +0.398(22) and g(4+1) = +0.23(5). A lineshape analysis yielded lifetimes in disagreement with published values. The new results are τ(106Cd; 2+1) = 7.0(3) ps and τ(106Cd; 4+1) = 2.5(2) ps. The mean life τ(106Cd; 2+2) = 0.28(2) ps was determined from the fully-Doppler-shifted γ line. Mean lives of τ(106Cd; 4+3) = 1.1(1) ps and τ(106Cd; 3–1) = 0.16(1) ps were determined for the first time. In conclusion, the newly measured g(4+1) of 106Cd is found to be only 59% of the g(2+1). This difference cannot be explained by either shell-model or collective-model calculations.« less

  7. Magnetic moment and lifetime measurements of Coulomb-excited states in 106Cd

    NASA Astrophysics Data System (ADS)

    Benczer-Koller, N.; Kumbartzki, G. J.; Speidel, K.-H.; Torres, D. A.; Robinson, S. J. Q.; Sharon, Y. Y.; Allmond, J. M.; Fallon, P.; Abramovic, I.; Bernstein, L. A.; Bevins, J. E.; Crawford, H. L.; Guevara, Z. E.; Hurst, A. M.; Kirsch, L.; Laplace, T. A.; Lo, A.; Matthews, E. F.; Mayers, I.; Phair, L. W.; Ramirez, F.; Wiens, A.

    2016-09-01

    Background: The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Purpose: Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in 106Cd. Methods: In an inverse kinematics reaction, a 106Cd beam impinging on a 12C target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for 106Cd. Results: The g factors of the 21+ and 41+ states in 106Cd were measured to be g (21+)=+0.398 (22 ) and g (41+)=+0.23 (5 ) . A lineshape analysis yielded lifetimes in disagreement with published values. The new results are τ (106Cd;21+)=7.0 (3 )ps and τ (106Cd;41+)=2.5 (2 )ps . The mean life τ (106Cd;22+)=0.28 (2 )ps was determined from the fully-Doppler-shifted γ line. Mean lives of τ (106Cd;43+)=1.1 (1 )ps and τ (106Cd;31-)=0.16 (1 )ps were determined for the first time. Conclusions: The newly measured g (41+) of 106Cd is found to be only 59% of the g (21+) . This difference cannot be explained by either shell-model or collective-model calculations.

  8. Coulomb excitation of Ga73

    NASA Astrophysics Data System (ADS)

    Diriken, J.; Stefanescu, I.; Balabanski, D.; Blasi, N.; Blazhev, A.; Bree, N.; Cederkäll, J.; Cocolios, T. E.; Davinson, T.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Georgiev, G.; Gladnishki, K.; Huyse, M.; Ivanov, O. V.; Ivanov, V. S.; Iwanicki, J.; Jolie, J.; Konstantinopoulos, T.; Kröll, Th.; Krücken, R.; Köster, U.; Lagoyannis, A.; Lo Bianco, G.; Maierbeck, P.; Marsh, B. A.; Napiorkowski, P.; Patronis, N.; Pauwels, D.; Reiter, P.; Seliverstov, M.; Sletten, G.; van de Walle, J.; van Duppen, P.; Voulot, D.; Walters, W. B.; Warr, N.; Wenander, F.; Wrzosek, K.

    2010-12-01

    The B(E2;Ii→If) values for transitions in 3171Ga40 and 3173Ga42 were deduced from a Coulomb excitation experiment at the safe energy of 2.95 MeV/nucleon using post-accelerated beams of Ga71,73 at the REX-ISOLDE on-line isotope mass separator facility. The emitted γ rays were detected by the MINIBALL γ-detector array, and B(E2;Ii→If) values were obtained from the yields normalized to the known strength of the 2+→0+ transition in the Sn120 target. The comparison of these new results with the data of less neutron-rich gallium isotopes shows a shift of the E2 collectivity toward lower excitation energy when adding neutrons beyond N=40. This supports conclusions from previous studies of the gallium isotopes, which indicated a structural change in this isotopic chain between N=40 and 42. Combined with recent measurements from collinear laser spectroscopy showing a 1/2- spin and parity for the ground state, the extracted results revealed evidence for a 1/2-,3/2- doublet near the ground state in 3173Ga42 differing by at most 0.8 keV in energy.

  9. "Safe" Coulomb excitation of 30Mg.

    PubMed

    Niedermaier, O; Scheit, H; Bildstein, V; Boie, H; Fitting, J; von Hahn, R; Köck, F; Lauer, M; Pal, U K; Podlech, H; Repnow, R; Schwalm, D; Alvarez, C; Ames, F; Bollen, G; Emhofer, S; Habs, D; Kester, O; Lutter, R; Rudolph, K; Pasini, M; Thirolf, P G; Wolf, B H; Eberth, J; Gersch, G; Hess, H; Reiter, P; Thelen, O; Warr, N; Weisshaar, D; Aksouh, F; Van den Bergh, P; Van Duppen, P; Huyse, M; Ivanov, O; Mayet, P; Van de Walle, J; Aystö, J; Butler, P A; Cederkäll, J; Delahaye, P; Fynbo, H O U; Fraile, L M; Forstner, O; Franchoo, S; Köster, U; Nilsson, T; Oinonen, M; Sieber, T; Wenander, F; Pantea, M; Richter, A; Schrieder, G; Simon, H; Behrens, T; Gernhäuser, R; Kröll, T; Krücken, R; Münch, M; Davinson, T; Gerl, J; Huber, G; Hurst, A; Iwanicki, J; Jonson, B; Lieb, P; Liljeby, L; Schempp, A; Scherillo, A; Schmidt, P; Walter, G

    2005-05-01

    We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient gamma spectrometer MINIBALL. Using 30Mg ions accelerated to an energy of 2.25 MeV/u together with a thin (nat)Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative deexcitation gamma-ray yields the B(E2;0(+)gs-->2(+)1) value of 30Mg was determined to be 241(31)e2 fm4. Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the theoretical conjecture that the neutron-rich magnesium isotope 30Mg resides outside the "island of inversion."

  10. Coulomb excitation of radioactive {sup 79}Pb

    SciTech Connect

    Lister, C.J.; Blumenthal, D.; Davids, C.N.

    1995-08-01

    The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.

  11. Coulomb excitation of neutron-rich Zn isotopes: first observation of the 2(1)+ state in 80Zn.

    PubMed

    Van de Walle, J; Aksouh, F; Ames, F; Behrens, T; Bildstein, V; Blazhev, A; Cederkäll, J; Clément, E; Cocolios, T E; Davinson, T; Delahaye, P; Eberth, J; Ekström, A; Fedorov, D V; Fedosseev, V N; Fraile, L M; Franchoo, S; Gernhauser, R; Georgiev, G; Habs, D; Heyde, K; Huber, G; Huyse, M; Ibrahim, F; Ivanov, O; Iwanicki, J; Jolie, J; Kester, O; Köster, U; Kröll, T; Krücken, R; Lauer, M; Lisetskiy, A F; Lutter, R; Marsh, B A; Mayet, P; Niedermaier, O; Nilsson, T; Pantea, M; Perru, O; Raabe, R; Reiter, P; Sawicka, M; Scheit, H; Schrieder, G; Schwalm, D; Seliverstov, M D; Sieber, T; Sletten, G; Smirnova, N; Stanoiu, M; Stefanescu, I; Thomas, J-C; Valiente-Dobón, J J; Van Duppen, P; Verney, D; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Wolf, B H; Zielińska, M

    2007-10-01

    Neutron-rich, radioactive Zn isotopes were investigated at the Radioactive Ion Beam facility REX-ISOLDE (CERN) using low-energy Coulomb excitation. The energy of the 2(1)+ state in 78Zn could be firmly established and for the first time the 2+ --> 0(1)+ transition in 80Zn was observed at 1492(1) keV. B(E2,2(1)+ --> 0(1)+) values were extracted for (74,76,78,80)Zn and compared to large scale shell model calculations. With only two protons outside the Z=28 proton core, 80Zn is the lightest N=50 isotone for which spectroscopic information has been obtained to date. Two sets of advanced shell model calculations reproduce the observed B(E2) systematics. The results for N=50 isotones indicate a good N=50 shell closure and a strong Z=28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni.

  12. Coulomb Excitation of Neutron-Rich Zn Isotopes: First Observation of the 21+ State in Zn80

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2007-10-01

    Neutron-rich, radioactive Zn isotopes were investigated at the Radioactive Ion Beam facility REX-ISOLDE (CERN) using low-energy Coulomb excitation. The energy of the 21+ state in Zn78 could be firmly established and for the first time the 2+→01+ transition in Zn80 was observed at 1492(1) keV. B(E2,21+→01+) values were extracted for Zn74,76,78,80 and compared to large scale shell model calculations. With only two protons outside the Z=28 proton core, Zn80 is the lightest N=50 isotone for which spectroscopic information has been obtained to date. Two sets of advanced shell model calculations reproduce the observed B(E2) systematics. The results for N=50 isotones indicate a good N=50 shell closure and a strong Z=28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus Ni78.

  13. Lifetime Measurements and Coulomb Excitation of Light Hg Nuclei

    NASA Astrophysics Data System (ADS)

    Petts, A.; Butler, P. A.; Grahn, T.; Blazhev, A.; Bree, N.; Bruyneel, B.; Cederkäll, J.; Clement, E.; Cocolios, T. E.; Dewald, A.; Eberth, J.; Fraile, L.; Fransen, C.; Hornillos, M. B. Gómez; Greenlees, P. T.; Görgen, A.; Guttormsen, M.; Hadynska, K.; Helariutta, K.; Herzberg, R.-D.; Huyse, M.; Jenkins, D. G.; Jolie, J.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Knapen, S.; Kröll, T.; Krü; cken, R.; Larsen, A. C.; Leino, M.; Ljungvall, J.; Maierbeck, P.; Marley, P. L.; Melon, B.; Napiorkowski, P. J.; Nyman, M.; Page, R. D.; Pakarinen, J.; Pascovici, G.; Patronis, N.; Peura, P. J.; Piselli, E.; Pissulla, Th.; Rahkila, P.; Reiter, P.; Sarén, J.; Scheck, M.; Scholey, C.; Semchenkov, A.; Siem, S.; Stefanescu, I.; Sorri, J.; Uusitalo, J.; Van de Walle, J.; Van Duppen, P.; Voulot, D.; Wadsworth, R.; Warr, N.; Weisshaar, D.; Wenander, F.; Zielinska, M.

    2009-01-01

    Two complementary experimental programs have taken place to investigate the origin and evolution of shape coexistence in the light mercury region. Recoil Distance Doppler-shift measurements were performed at the University of Jyväskylä utilizing the Köln plunger device in conjunction with the JUROGAM+RITU+GREAT setup. In addition, Coulomb excitation measurements of 184,186,188Hg were performed at REX-ISOLDE using the MINIBALL Ge-detector array. The results of the lifetime measurements of the yrast states up to Iπ = 10+ in 182Hg are reported. Preliminary analysis of the Coulomb excitation data is also discussed.

  14. Lifetime Measurements and Coulomb Excitation of Light Hg Nuclei

    SciTech Connect

    Petts, A.; Butler, P. A.; Grahn, T.; Herzberg, R.-D.; Page, R. D.; Pakarinen, J.; Scheck, M.; Blazhev, A.; Bruyneel, B.; Dewald, A.; Eberth, J.; Fransen, C.; Jolie, J.; Melon, B.; Pascovici, G.; Pissulla, Th.; Reiter, P.; Warr, N.; Weisshaar, D.; Bree, N.

    2009-01-28

    Two complementary experimental programs have taken place to investigate the origin and evolution of shape coexistence in the light mercury region. Recoil Distance Doppler-shift measurements were performed at the University of Jyvaeskylae utilizing the Koeln plunger device in conjunction with the JUROGAM+RITU+GREAT setup. In addition, Coulomb excitation measurements of {sup 184,186,188}Hg were performed at REX-ISOLDE using the MINIBALL Ge-detector array. The results of the lifetime measurements of the yrast states up to I{sup {pi}} = 10{sup +} in {sup 182}Hg are reported. Preliminary analysis of the Coulomb excitation data is also discussed.

  15. Low-energy Coulomb excitation of radioactive ^70Se

    NASA Astrophysics Data System (ADS)

    Hurst, Aaron

    2007-10-01

    An isobarically pure beam of ^70Se ions was post accelerated to an energy of 206 MeV using REX-ISOLDE. Coulomb-excitation yields for states in the beam and target nuclei were deduced by recording de-excitation γ rays in the highly segmented MINIBALL γ-ray spectrometer in coincidence with scattered particles in a silicon detector. At these energies, the Coulomb-excitation yield for the 2^+1 state in ^70Se is expected to be strongly sensitive to the sign of the spectroscopic quadrupole moment through the nuclear reorientation effect. Experimental evidence is presented here for a prolate shape for this state, using an earlier published lifetime measurement, reopening the question over whether there are deformed oblate shapes close to the ground state in the neutron-deficient selenium isotopes.

  16. Intermediate-energy Coulomb excitation of {sup 52}Fe

    SciTech Connect

    Yurkewicz, K.L.; Brown, B.A.; Campbell, C.M.; Church, J.A.; Dinca, D.-C.; Glasmacher, T.; Olliver, H.; Terry, J.R.; Bazin, D.; Gade, A.; Mueller, W.F.; Honma, M.; Mizusaki, T.; Otsuka, T.; Riley, L.A.

    2004-09-01

    The nucleus {sup 52}Fe with (N=Z=26) has been investigated using intermediate-energy Coulomb excitation in inverse kinematics. A reduced transition probability of B(E2;0{sub 1}{sup +}{yields}2{sub 1}{sup +})=817(102) e{sup 2} fm{sup 4} to the first excited 2{sup +} state at 849.0(5) keV was deduced. The increase in excitation strength B(E2{up_arrow}) with respect to the even-mass neighbor {sup 54}Fe (B(E2{up_arrow})=620(50) e{sup 2} fm{sup 4}) agrees with shell-model expectations as the magic number N=28 is approached. This measurement completes the systematics of reduced transition strengths to the first excited 2{sup +} state for the even-even N=Z nuclei up to mass A=56.

  17. Coulomb excitation of neutron-rich Cd isotopes

    NASA Astrophysics Data System (ADS)

    Ilieva, S.; Thürauf, M.; Kröll, Th.; Krücken, R.; Behrens, T.; Bildstein, V.; Blazhev, A.; Bönig, S.; Butler, P. A.; Cederkäll, J.; Davinson, T.; Delahaye, P.; Diriken, J.; Ekström, A.; Finke, F.; Fraile, L. M.; Franchoo, S.; Fransen, Ch.; Georgiev, G.; Gernhäuser, R.; Habs, D.; Hess, H.; Hurst, A. M.; Huyse, M.; Ivanov, O.; Iwanicki, J.; Kent, P.; Kester, O.; Köster, U.; Lutter, R.; Mahgoub, M.; Martin, D.; Mayet, P.; Maierbeck, P.; Morgan, T.; Niedermeier, O.; Pantea, M.; Reiter, P.; Rodríguez, T. R.; Rolke, Th.; Scheit, H.; Scherillo, A.; Schwalm, D.; Seidlitz, M.; Sieber, T.; Simpson, G. S.; Stefanescu, I.; Thiel, S.; Thirolf, P. G.; Van de Walle, J.; Van Duppen, P.; Voulot, D.; Warr, N.; Weinzierl, W.; Weisshaar, D.; Wenander, F.; Wiens, A.; Winkler, S.

    2014-01-01

    The isotopes Cd122,124,126 were studied in a "safe" Coulomb-excitation experiment at the radioactive ion-beam facility REX-ISOLDE at CERN. The reduced transition probabilities B (E2;0g .s.+→21+) and limits for the quadrupole moments of the first 2+ excited states in the three isotopes were determined. The onset of collectivity in the vicinity of the Z =50 and N =82 shell closures is discussed by comparison with shell model and beyond mean-field calculations.

  18. Coulomb Excitation of the N = 50 nucleus 80Zn

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2008-05-01

    Neutron rich Zinc isotopes, including the N = 50 nucleus 80Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2+ states. For the first time, an excited state in 80Zn was observed and the 21+ state in 78Zn was established. The measured B(E2,21+-->01+) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni.

  19. Coulomb excitation of a {sup 78}Rb radioactive beam.

    SciTech Connect

    Schwartz, J.

    1998-11-18

    In order to test the feasibility of Coulomb excitation of radioactive projectiles with low beam energies and intensities, they have produced a secondary radioactive beam of {sup 78}Rb and Coulomb re-excited it. The beam was produced in the fusion evaporation reaction {sup 24}Mg({sup 58}Ni,3pn){sup 78}Rb at a beam energy of 260 MeV, using the Argonne National Laboratory ATLAS accelerator. The residues of interest were separated from other reaction products and non-interacting beam using the Fragment Mass Analyzer (FMA). The beam leaving the FMA was {sup 78}Kr and {sup 78}Rb{sup gs,m1,m2}, which was refocused onto a {sup 58}Ni secondary target. They have extracted a spectrum of {gamma}-rays associated with re-excitation of A = 78 isobars. The re-excitation of stable {sup 78}Kr was observed, which serves as a reference. Gamma-rays associated with excitation of {sup 78}Rb{sup gs,m1,m2} were also seen. The measured yields indicate that all the {sup 78}Rb states are highly deformed.

  20. Sub-barrier Coulomb excitation of 107Sn

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cederkall, J.; Ekström, A.; Fahlander, C.; Hjorth-Jensen, M.; Is459 Collaboration

    2012-09-01

    A Coulomb excitation experiment in inverse kinematics has been carried out at the REX-ISOLDE facility in order to study the properties of low-lying excited states in 107Sn. The measured γ ray spectrum has been compared with predicted γ ray spectra from a combined shell-model and GOSIA analysis. In this approach, a set of matrix elements, generated within the shell-model framework, based on a realistic nucleon-nucleon interaction and a set of single-particle energies relative to 100Sn, is used as input. Comparison between the calculated and predicted spectra can be used to help identify the placement of the single-neutron states in 101Sn. In particular, the results can potentially provide clues on the ordering of the two lowest-lying orbits; the g7/2 and d5/2 states.

  1. Coulomb and nuclear excitations of narrow resonances in 17Ne

    NASA Astrophysics Data System (ADS)

    Marganiec, J.; Wamers, F.; Aksouh, F.; Aksyutina, Yu.; Álvarez-Pol, H.; Aumann, T.; Beceiro-Novo, S.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Chartier, M.; Chatillon, A.; Chulkov, L. V.; Cortina-Gil, D.; Emling, H.; Ershova, O.; Fraile, L. M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Heil, M.; Hoffmann, D. H. H.; Hoffmann, J.; Johansson, H. T.; Jonson, B.; Karagiannis, C.; Kiselev, O. A.; Kratz, J. V.; Kulessa, R.; Kurz, N.; Langer, C.; Lantz, M.; Le Bleis, T.; Lemmon, R.; Litvinov, Yu. A.; Mahata, K.; Müntz, C.; Nilsson, T.; Nociforo, C.; Nyman, G.; Ott, W.; Panin, V.; Paschalis, S.; Perea, A.; Plag, R.; Reifarth, R.; Richter, A.; Rodriguez-Tajes, C.; Rossi, D.; Riisager, K.; Savran, D.; Schrieder, G.; Simon, H.; Stroth, J.; Sümmerer, K.; Tengblad, O.; Typel, S.; Weick, H.; Wiescher, M.; Wimmer, C.

    2016-08-01

    New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the 15O + p + p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.

  2. Intermediate-energy Coulomb excitation of {sup 30}Na

    SciTech Connect

    Ettenauer, S.; Adrich, P.; Bazin, D.; Campbell, C. M.; Lecouey, J.-L.; Mueller, W. F.; Yoneda, K.; Zwahlen, H.; Cook, J. M.; Davies, A. D.; Dinca, D.-C.; Gade, A.; Glasmacher, T.; Terry, J. R.; Otsuka, T.; Reynolds, R. R.; Riley, L. A.; Utsuno, Y.

    2008-07-15

    The neutron-rich nucleus {sup 30}Na in the vicinity of the 'Island of Inversion' was investigated using intermediate-energy Coulomb excitation. A single {gamma}-ray transition was observed and attributed to the 3{sub 1}{sup +}{yields}2{sub gs}{sup +} decay. A transition probability of B(E2;2{sub gs}{sup +}{yields}3{sub 1}{sup +})=147(21) e{sup 2} fm{sup 4} was determined and found in agreement with a previous experiment and with large-scale shell-model calculations. Evidence for the strong excitation of the 4{sub 1}{sup +} state predicted by the shell-model calculations was not observed.

  3. Characterizing intra-exciton Coulomb scattering in terahertz excitations

    SciTech Connect

    Zybell, S.; Eßer, F.; Helm, M.; Bhattacharyya, J.; Winnerl, S.; Schneider, H.; Schneebeli, L.; Böttge, C. N.; Kira, M.; Koch, S. W.; Andrews, A. M.; Strasser, G.

    2014-11-17

    An intense terahertz field is applied to excite semiconductor quantum wells yielding strong non-equilibrium exciton distributions. Even though the relaxation channels involve a complicated quantum kinetics of Coulomb and phonon effects, distinct relaxation signatures of Coulomb scattering are identified within time-resolved photoluminescence by comparing the experiment with a reduced model that contains all relevant microscopic processes. The analysis uncovers a unique time scale for the Coulomb scattering directly from experiments and reveals the influence of phonon relaxation as well as radiative decay.

  4. Characterizing intra-exciton Coulomb scattering in terahertz excitations

    NASA Astrophysics Data System (ADS)

    Zybell, S.; Bhattacharyya, J.; Winnerl, S.; Eßer, F.; Helm, M.; Schneider, H.; Schneebeli, L.; Böttge, C. N.; Kira, M.; Koch, S. W.; Andrews, A. M.; Strasser, G.

    2014-11-01

    An intense terahertz field is applied to excite semiconductor quantum wells yielding strong non-equilibrium exciton distributions. Even though the relaxation channels involve a complicated quantum kinetics of Coulomb and phonon effects, distinct relaxation signatures of Coulomb scattering are identified within time-resolved photoluminescence by comparing the experiment with a reduced model that contains all relevant microscopic processes. The analysis uncovers a unique time scale for the Coulomb scattering directly from experiments and reveals the influence of phonon relaxation as well as radiative decay.

  5. Coulomb excitation of neutron-rich 138,140,142Xe at REX-ISOLDE

    NASA Astrophysics Data System (ADS)

    Kröll, Th.; Behrens, T.; Krücken, R.; Bildstein, V.; Gernhäuser, R.; Maierbeck, P.; Stefanescu, I.; Ivanov, O.; van de Walle, J.; Warr, N.; Butler, P. A.; Cederkäll, J.; Delahaye, P.; Fraile, L. M.; Georgiev, G.; Köster, U.; Sieber, T.; Voulot, D.; Wenander, F.; Kent, P. E.; Ekström, A.; Speidel, K.-H.; Leske, J.; Schielke, S.; Habs, D.; Lutter, R.; Thirolf, P.; Scheit, H.; Davinson, T.

    2007-11-01

    We report on “safe” Coulomb excitation of neutron-rich 138,140,142Xe nuclei. The radioactive nuclei have been produced by ISOLDE at CERN and post-accelerated by the REX-ISOLDE facility. The γ-rays emitted by the decay of excited states have been detected by the MINIBALL array. Recent results are presented.

  6. Plunger lifetime measurements after Coulomb excitation at intermediate beam energies

    SciTech Connect

    Dewald, A.; Hackstein, M.; Rother, W.; Jolie, J.; Melon, B.; Pissulla, T.; Shimbara, Y.; Starosta, K.; Adrich, P.; Amthor, A. M.; Baumann, T.; Bazin, D.; Bowen, M.; Chester, A.; Dunomes, A.; Gade, A.; Galaviz, D.; Glasmacher, T.; Ginter, T.; Hausmann, M.

    2009-01-28

    Absolute transition probabilities of the first 2{sup +} state in {sup 110,114}Pd were remeasured using the recoil distance Doppler shift technique following projectile Coulomb excitation at intermediate beam energies for the first time. The {sup 110}Pd experiment served to check the novel technique as well as the method used for the data analysis which is based on the examination of {gamma}-ray lineshapes. Whereas the measured B(E2) value for {sup 110}Pd agrees very well with the literature, the value obtained for {sup 114}Pd differs considerably. The data is also used to test a novel concept, called the valence proton symmetry, which allows one to extrapolate nuclear properties to very neutron rich nuclei.

  7. Coulomb excitation of C{sub 60} molecules

    SciTech Connect

    Esbensen, H.; Berry, H.G.; Cheng, S.

    1995-08-01

    The ionization and dissociation of C{sub 60} molecules in the Coulomb field from fast, highly-charged xenon ions was measured recently at ATLAS. The Coulomb excitation was modeled as a coherent excitation of the giant plasmon resonance. Guided by photo-absorption measurements, single-plasmon excitations were identified with the production of single-charged C{sub 60}{sup +} molecular ions. The calculated cross sections do indeed reproduce the beam energy-dependence of the measured C{sub 60}{sup +} yield. The calculations show that single-plasmon excitations are responsible for about half of the total reaction cross section. The other half, i.e., multiplasmon excitations, leads to multiple ionization and dissociation of the molecule.

  8. A multiconfigurational time-dependent Hartree-Fock method for excited electronic states. II. Coulomb interaction effects in single conjugated polymer chains

    NASA Astrophysics Data System (ADS)

    Miranda, R. P.; Fisher, A. J.; Stella, L.; Horsfield, A. P.

    2011-06-01

    Conjugated polymers have attracted considerable attention in the last few decades due to their potential for optoelectronic applications. A key step that needs optimisation is charge carrier separation following photoexcitation. To understand better the dynamics of the exciton prior to charge separation, we have performed simulations of the formation and dynamics of localised excitations in single conjugated polymer strands. We use a nonadiabatic molecular dynamics method which allows for the coupled evolution of the nuclear degrees of freedom and of multiconfigurational electronic wavefunctions. We show the relaxation of electron-hole pairs to form excitons and oppositely charged polaron pairs and discuss the modifications to the relaxation process predicted by the inclusion of the Coulomb interaction between the carriers. The issue of charge photogeneration in conjugated polymers in dilute solution is also addressed.

  9. Coulomb Excitation of Neutron-Rich Cd Isotopes at REX-ISOLDE

    SciTech Connect

    Kroell, Th.; Behrens, T.; Kruecken, R.; Faestermann, T.; Gernhaeuser, R.; Mahgoub, M.; Maierbeck, P.; Habs, D.; Kester, O.; Lutter, R.; Morgan, T.; Pasini, M.; Rudolph, K.; Thirolf, P.; Bildstein, V.; Niedermaier, O.; Scheit, H.; Schwalm, D.; Martin, D.; Warr, N.

    2005-11-21

    We report on the 'safe' Coulomb excitation of neutron-rich Cd isotopes in the vicinity of the doubly magic nucleus 132Sn. The radioactive nuclei have been produced by ISOLDE at CERN and postaccelerated by the REX-ISOLDE facility. The {gamma}-decay of excited states has been detected by the MINIBALL array. Preliminary results for the B(E2) values of 122,124Cd are consistent with expectations from phenomenological systematics.

  10. Testing refined shell-model interactions in the s d shell: Coulomb excitation of 26Na

    NASA Astrophysics Data System (ADS)

    Siebeck, B.; Seidlitz, M.; Blazhev, A.; Reiter, P.; Altenkirch, R.; Bauer, C.; Butler, P. A.; de Witte, H.; Elseviers, J.; Gaffney, L. P.; Hess, H.; Huyse, M.; Kröll, T.; Lutter, R.; Pakarinen, J.; Pietralla, N.; Radeck, F.; Scheck, M.; Schneiders, D.; Sotty, C.; van Duppen, P.; Vermeulen, M.; Voulot, D.; Warr, N.; Wenander, F.; Miniball Collaboration; Rex-Isolde Collaboration

    2015-01-01

    Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal s d interaction (USD) describing nuclei within the s d shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus 26Na with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with 26Na (T1 /2=1 ,07 s ) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections of the beam have been obtained by normalization to the well known Coulomb excitation cross sections of the 104Pd target. Results: The observation of three γ -ray transitions in 26Na together with available spectroscopic data allows us to determine E 2 - and M 1 -transitional matrix elements. Results are compared to theoretical predictions. Conclusion: The improved theoretical description of 26Na could be validated. Remaining discrepancies between experimental data and theoretical predictions indicate the need for future experiments and possibly further theoretical improvements.

  11. The Coulomb excitations of Bernal bilayer graphene under external fields

    SciTech Connect

    Wu, Jhao-Ying; Lin, Ming-Fa

    2014-03-31

    We study the field effects on the Coulomb excitation spectrum of Bernal bilayer graphene by using the tight-binding model and the random-phase approximation. The electric field opens the band gap and creates the saddle points, the latter brings about a prominent interband plasmon. On the other hand, the magnetic field induces the dispersionless Landau levels (LLs) that causes the inter-LL plasmons. The two kinds of field-induced plasmon modes can be further tuned by the magnitude of momentum transfer and the field strength. The predicted results may be further validated by the inelastic light-scattering or high-resolution electron-energy-loss spectroscopy (HREELLS)

  12. Coulomb Bound States of Strongly Interacting Photons

    NASA Astrophysics Data System (ADS)

    Maghrebi, M. F.; Gullans, M. J.; Bienias, P.; Choi, S.; Martin, I.; Firstenberg, O.; Lukin, M. D.; Büchler, H. P.; Gorshkov, A. V.

    2015-09-01

    We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasibound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wave function resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms.

  13. Do nuclei go pear-shaped? Coulomb excitation of 220Rn and 224Ra at REX-ISOLDE (CERN)

    NASA Astrophysics Data System (ADS)

    Scheck, M.; Gaffney, L. P.; Butler, P. A.; Hayes, A. B.; Wenander, F.; Albers, M.; Bastin, B.; Bauer, C.; Blazhev, A.; Boenig, S.; Bree, N.; Cederkall, J.; Chupp, T.; Cline, D.; Cocolios, T. E.; Davinson, T.; De Witte, H.; Diriken, J.; Grahn, T.; Herzan, A.; Huyse, M.; Jenkins, D. G.; Joss, D. T.; Kesteloot, N.; Konki, J.; Kowalczyk, M.; Kroell, Th.; Kwan, E.; Lutter, R.; Moschner, K.; Napiorkowski, P.; Pakarinen, J.; Pfeiffer, M.; Radeck, D.; Reiter, P.; Reynders, K.; Rigby, S. V.; Robledo, L. M.; Rudigier, M.; Sambi, S.; Seidlitz, M.; Siebeck, B.; Stora, T.; Thoele, P.; Van Duppen, P.; Vermeulen, M. J.; von Schmid, M.; Voulot, D.; Warr, N.; Wimmer, K.; Wrzosek-Lipska, K.; Wu, C. Y.; Zielinska, M.

    2015-05-01

    The IS475 collaboration conducted Coulomb-excitation experiments with post-accelerated radioactive 220Rn and 224Ra beams at the REX-ISOLDE facility. The beam particles (Ebeam: 2.83 MeV/u) were Coulomb excited using 60Ni, 114Cd, and 120Sn scattering targets. De-excitation γ-rays were detected employing the Miniball array and scattered particles were detected in a silicon detector. Exploiting the Coulomb-excitation code GOSIA for each nucleus several matrix elements could be obtained from the measured γ-ray yields. The extracted ‹3-||E3||0+› matrix element allows for the conclusion that, while 220Rn represents an octupole vibrational system, 224Ra has already substantial octupole correlations in its ground state. This finding has implications for the search of CP-violating Schiff moments in the atomic systems of the adjacent odd-mass nuclei.

  14. Coulomb excitation of 29,30Na: Mapping the borders of the island of inversion

    NASA Astrophysics Data System (ADS)

    Seidlitz, M.; Reiter, P.; Altenkirch, R.; Bastin, B.; Bauer, C.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Cederkäll, J.; Davinson, T.; De Witte, H.; DiJulio, D. D.; Diriken, J.; Gaffney, L. P.; Geibel, K.; Georgiev, G.; Gernhäuser, R.; Huyse, M.; Kesteloot, N.; Kröll, T.; Krücken, R.; Lutter, R.; Pakarinen, J.; Radeck, F.; Scheck, M.; Schneiders, D.; Siebeck, B.; Sotty, C.; Steinbach, T.; Taprogge, J.; Van Duppen, P.; Van de Walle, J.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.; Woods, P. J.; Wrzosek-Lipska, K.

    2014-02-01

    Nuclear shell evolution in neutron-rich Na nuclei around N =20 was studied by determining reduced transition probabilities, i.e., B (E2) and B (M1) values, in order to map the border of the island of inversion. To this end Coulomb-excitation experiments, employing radioactive 29,30Na beams with a final beam energy of 2.85 MeV/nucleon, were performed at REX-ISOLDE, CERN. De-excitation γ rays were detected by the MINIBALL γ-ray spectrometer in coincidence with scattered particles in a segmented Si detector. Transition probabilities to excited states were deduced. The measured B (E2) values agree well with shell-model predictions, supporting the idea that in the Na isotopic chain the ground-state wave function contains significant intruder admixture already at N =18, with N =19 having an almost pure two-particle-two-hole deformed ground-state configuration.

  15. Unique and complementary information on shape coexistence in the neutron-deficient Pb region derived from Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Wrzosek-Lipska, K.; Gaffney, L. P.

    2016-02-01

    Neutron-deficient isotopes of Pt-Hg-Pb-Po-Rn are the classic region in the investigation of shape coexistence in atomic nuclei. A large programme of Coulomb-excitation experiments has been undertaken at the REX-ISOLDE facility in CERN with a number of even-even isotopes in this region. These experiments have been used to probe the electromagnetic properties of yrast and non-yrast states of even-even exotic nuclei, above and below Z = 82. Amongst a large amount of different complementary techniques used to study nuclear structure, Coulomb excitation brings substantial and unique information detailing shape coexistence. In this paper we review the Coulomb-excitation campaign at REX-ISOLDE in the light-lead region together with most recently obtained results. Furthermore, we present some new interpretations that arise from this data and show testing comparisons to state-of-the-art nuclear models.

  16. Effects of Coulomb quadrupole excitation in heavy-ion reactions

    NASA Astrophysics Data System (ADS)

    Cheoun, Myung-Ki; Choi, K. S.; Kim, K. S.; Kim, T. H.; So, W. Y.

    2016-09-01

    For 12C + 184W, 18O + 184W, and 20Ne + 208Pb systems, we investigate the suppression of the ratios P E = σ el/ σ RU by using the Coulomb quadrupole excitation (CQE) potentials. In order to explain the effect of the CQE potentials, we first use a well-known Love's CQE potential, and reproduce the experimental P E data well by using this potential. We also introduce a simple CQE potential written as W CQE( r) = - W P / r n , which is much simpler than the conventional Love's potential, to investigate the suppression of the P E ratios. Using this potential, we perform a χ2 analysis to find the adjustable parameter n, then, we find that the best fit parameters n ≈ 5 is close to the lowest order term, 1/ r 5. Consequently, we find that using the simple CQE potential explains the experimental P E data and that the ratio P E depends on the n values sensitively.

  17. B(E1) Strengths from Coulomb excitation of 11Be

    SciTech Connect

    Summers, N C; Pain, S D; Orr, N A; Catford, W N; Angelique, J C; Ashwood, N I; Bouchat, V; Clarke, N M; Curtis, N; Freer, M; Fulton, B R; Hanappe, F; Labiche, M; Loucey, J L; Lemmon, R C; Mahboub, D; Ninane, A; Normand, G; Nunes, F M; Soic, N; Stuttge, L; Timis, C N; Thompson, I; Winfield, J S; Ziman, V

    2007-03-06

    The B(E1;1/2{sup +}{yields} 1/2{sup -}) strength for {sup 11}Be has been extracted from intermediate energy Coulomb excitation measurements, over a range of beam energies using a new reaction model, the extended continuum discretized coupled channels (XCDCC) method. In addition, a measurement of the excitation cross section for {sup 11}Be+{sup 208}Pb at 38.6 MeV/nucleon is reported. The B(E1) strength of 0.105(12) e{sup 2}fm{sup 2} derived from this measurement is consistent with those made previously at 60 and 64 MeV/nucleon, in contrast to an anomalously low result obtained at 43 MeV/nucleon. By coupling a multi-configuration description of the projectile structure with realistic reaction theory, the XCDCC model provides for the first time a fully quantum mechanical description of Coulomb excitation. The XCDCC calculations reveal that the excitation process involves significant contributions from nuclear, continuum, and higher-order effects. An analysis of the present and two earlier intermediate energy measurements yields a combined B(E1) strength of 0.105(7) e{sup 2}fm{sup 2}. This value is in good agreement with the value deduced independently from the lifetime of the 1/2{sup -} state in {sup 11}Be, and has a comparable precision.

  18. Low-energy Coulomb excitation of neutron-rich zinc isotopes

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Pantea, M.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; Duppen, P. Van; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2009-01-01

    At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,21+→01+) values in Zn74-80, B(E2,41+→21+) values in Zn74,76 and the determination of the energy of the first excited 21+ states in Zn78,80. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of U238, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, including a recent empirical residual interaction constructed to describe the present experimental data up to 2004 in this region of the nuclear chart.

  19. Coulomb excitation of 68,70Cu: first use of postaccelerated isomeric beams.

    PubMed

    Stefanescu, I; Georgiev, G; Ames, F; Aystö, J; Balabanski, D L; Bollen, G; Butler, P A; Cederkäll, J; Champault, N; Davinson, T; De Maesschalck, A; Delahaye, P; Eberth, J; Fedorov, D; Fedosseev, V N; Fraile, L M; Franchoo, S; Gladnishki, K; Habs, D; Heyde, K; Huyse, M; Ivanov, O; Iwanicki, J; Jolie, J; Jonson, B; Kröll, Th; Krücken, R; Kester, O; Köster, U; Lagoyannis, A; Liljeby, L; Lo Bianco, G; Marsh, B A; Niedermaier, O; Nilsson, T; Oinonen, M; Pascovici, G; Reiter, P; Saltarelli, A; Scheit, H; Schwalm, D; Sieber, T; Smirnova, N; Van De Walle, J; Van Duppen, P; Zemlyanoi, S; Warr, N; Weisshaar, D; Wenander, F

    2007-03-23

    We report on the first low-energy Coulomb excitation measurements with radioactive Ipi=6- beams of odd-odd nuclei 68,70Cu. The beams were produced at ISOLDE, CERN and were post-accelerated by REX-ISOLDE to 2.83 MeV/nucleon. Gamma rays were detected with the MINIBALL spectrometer. The 6- beam was used to study the multiplet of states (3-, 4-, 5-, 6-) arising from the pi2p3/2 nu 1g9/2 configuration. The 4- state of the multiplet was populated via Coulomb excitation and the B(E2;6--->4-) value was determined in both nuclei. The results obtained illustrate the fragile stability of the Z=28 shell and N=40 subshell closures. A comparison with large-scale shell-model calculations using the 56Ni core shows the importance of the proton excitations across the Z=28 shell gap to the understanding of the nuclear structure in the neutron-rich nuclei with N approximately 40.

  20. Analytical expressions for partial wave two-body Coulomb transition matrices at ground-state energy

    NASA Astrophysics Data System (ADS)

    Kharchenko, V. F.

    2016-11-01

    Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states.

  1. Electron-pair excitations and the molecular Coulomb continuum

    SciTech Connect

    Colgan, James

    2009-01-01

    Electron-pair excitations in the molecular hydrogen continuum are described by quantizing rotations of the momentum plane of the electron pair about by the pair's relative momentum. A helium-like description of the molecular pi.Joto double ionization is thus extended to higher angular momenta of the electron pair. A simple three-state superposition is found to account surprisingly well for recent observations of noncoplanar electron-pair, molecular-axis angular distributions.

  2. Coulomb excitation of the odd-odd isotopes 106, 108In

    NASA Astrophysics Data System (ADS)

    Ekström, A.; Cederkäll, J.; Fahlander, C.; Hjorth-Jensen, M.; Engeland, T.; Blazhev, A.; Butler, P. A.; Davinson, T.; Eberth, J.; Finke, F.; Görgen, A.; Górska, M.; Hurst, A. M.; Ivanov, O.; Iwanicki, J.; Köster, U.; Marsh, B. A.; Mierzejewski, J.; Reiter, P.; Siem, S.; Sletten, G.; Stefanescu, I.; Tveten, G. M.; van de Walle, J.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Zielińska, M.

    2010-06-01

    The low-lying states in the odd-odd and unstable isotopes 106, 108In have been Coulomb excited from the ground state and the first excited isomeric state at the REX-ISOLDE facility at CERN. With the additional data provided here the π g 9/2 -1 ⊗ ν d 5/2 and π g 9/2 -1 ⊗ ν g 7/2 multiplets have been re-analyzed and are modified compared to previous results. The observed γ -ray de-excitation patterns were interpreted within a shell model calculation based on a realistic effective interaction. The agreement between theory and experiment is satisfactory and the calculations reproduce the observed differences in the excitation pattern of the two isotopes. The calculations exclude a 6+ ground state in 106In . This is in agreement with the conclusions drawn using other techniques. Furthermore, based on the experimental results, it is also concluded that the ordering of the isomeric and ground state in 108In is inverted compared to the shell model prediction. Limits on B( E2) values have been extracted where possible. A previously unknown low-lying state at 367keV in 106In is also reported.

  3. Investigating shape evolution and the emergence of collectivity through the synergy of Coulomb excitation and β decay

    NASA Astrophysics Data System (ADS)

    Allmond, J. M.

    2016-09-01

    The synthesis of Coulomb excitation and β decay offers very practical advantages in the study of nuclear shapes and collectivity. For instance, Coulomb excitation is unique in its ability to measure the electric quadrupole moments, i.e., < I_2^π allel M(E2)allel I_1^π > matrix elements, of excited, non-isomeric states in atomic nuclei, providing information on the intrinsic shape. However, the Coulomb excitation analysis and structural interpretation can be strongly dependent upon weak transitions or decay branches, which are often obscured by the Compton background. Transitions of particular interest are those low in energy and weak in intensity due to the Eγ5 attenuation factor. These weak decay branches can often be determined with high precision from β-decay studies. Recently, 106Mo and 110Cd were studied by both Coulomb excitation and β decay. Preliminary results of new weak decay branches following β decay of 110mAg to 110Cd are presented; these results will challenge competing interpretations based on vibrations and configuration mixing.

  4. Investigating shape evolution and the emergence of collectivity through the synergy of Coulomb excitation and beta decay

    SciTech Connect

    Allmond, James M

    2016-01-01

    The synthesis of Coulomb excitation and decay offers very practical advantages in the study of nuclear shapes and collectivity. For instance, Coulomb excitation is unique in its ability to measure the electric quadrupole moments, i.e., I2 ||M(E2)||I1 matrix elements, of excited, non-isomeric states in atomic nuclei, providing information on the intrinsic shape. However, the Coulomb excitation analysis and structural inter- pretation can be strongly dependent upon weak transitions or decay branches, which are often obscured by the Compton background. Transitions of particular interest are those low in energy and weak in intensity due to the E 5 attenuation factor. These weak decay branches can often be determined with high precision from -decay studies. Recently, 106Mo and 110Cd were studied by both Coulomb excitation and decay. Preliminary results of new weak decay branches following decay of 110mAg to 110Cd are presented; these results will challenge competing interpretations based on vibrations and configuration mixing.

  5. Analysis methods of safe Coulomb-excitation experiments with radioactive ion beams using the GOSIA code

    NASA Astrophysics Data System (ADS)

    Zielińska, M.; Gaffney, L. P.; Wrzosek-Lipska, K.; Clément, E.; Grahn, T.; Kesteloot, N.; Napiorkowski, P.; Pakarinen, J.; Van Duppen, P.; Warr, N.

    2016-04-01

    With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies becomes an important experimental tool in nuclear-structure physics. The usefulness of the technique to extract key information on the electromagnetic properties of nuclei has been demonstrated since the 1960s with stable beam and target combinations. New challenges present themselves when studying exotic nuclei with this technique, including dealing with low statistics or number of data points, absolute and relative normalisation of the measured cross-sections and a lack of complementary experimental data, such as excited-state lifetimes and branching ratios. This paper addresses some of these common issues and presents analysis techniques to extract transition strengths and quadrupole moments utilising the least-squares fit code, GOSIA.

  6. Development of a new Recoil Distance Technique using Coulomb Excitation in Inverse Kinematics

    SciTech Connect

    Rother, Wolfram; Dewald, Alfred; Ilie, Gabriela; Pissulla, Thomas; Melon, Barbara; Jolie, Jan; Pascovici, Gheorghe; Iwasaki, Hironori; Hackstein, Matthias; Zell, Karl-Oskar; Julin, Rauno; Jones, Peter; Greenlees, Paul; Rahkila, Panu; Uusitalo, Juha; Scholey, Cath; Harissopulos, Sotirios; Lagoyannis, Anastasios; Konstantinopoulos, Theodore; Grahn, Tuomas

    2009-01-28

    We report on an experiment using Coulomb excitation in inverse kinematics in combination with the plunger technique for measuring lifetimes of excited states of the projectiles. Aside from the investigation of E(5) features in {sup 128}Xe, the aim was to explore the special features of such experiments which are also suited to be used with radioactive beams. The measurement was performed at the JYFL with the Koeln coincidence plunger device and the JUROGAM spectrometer using a {sup 128}Xe beam impinging on a {sup nat}Fe target at a beam energy of 525 MeV. Recoils were detected by means of 32 solar cells placed at extreme forward angles. Particle-gated {gamma}-singles and {gamma}{gamma}-coincidences were measured at different target-degrader distances. Details of the experiment and first results are presented.

  7. Comparative study of the bound states of static screened Coulomb and cut-off Coulomb potentials

    NASA Astrophysics Data System (ADS)

    Singh, David; Varshni, Y. P.

    1984-05-01

    Accurate eigenvalues (eight to six significant figures) and critical screening parameters are calculated for a two-particle system interacting through (a) a static screened Coulomb potential (SSCP), and (b) a cut-off Coulomb potential (COCP). A comparison of the results shows that as far as bound states are concerned it is not possible to simulate a SSCP by a COCP by a suitable scaling of the screening length.

  8. Coulomb excitation of radioactive {sup 21}Na and its stable mirror {sup 21}Ne

    SciTech Connect

    Schumaker, M. A.; Svensson, C. E.; Demand, G. A.; Finlay, P.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Leach, K. G.; Phillips, A. A.; Wong, J.; Cline, D.; Hayes, A. B.; Whitbeck, A.; Hackman, G.; Morton, A. C.; Pearson, C. J.; Andreyev, A.; Ball, G. C.; Buchmann, L.; Churchman, R.

    2008-10-15

    The low-energy structures of the mirror nuclei {sup 21}Ne and radioactive {sup 21}Na have been examined by using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. Beams of {approx}5x10{sup 6} ions/s were accelerated to 1.7 MeV/A and Coulomb excited in a 0.5 mg/cm{sup 2} {sup nat}Ti target. Scattered beam and target particles were detected by the segmented Si detector BAMBINO, while {gamma} rays were observed by using two TIGRESS HPGe clover detectors perpendicular to the beam axis. For each isobar, Coulomb excitation from the (3/2){sup +} ground state to the first excited (5/2){sup +} state was observed and B(E2) values were determined by using the 2{sup +}{yields}0{sup +} de-excitation in {sup 48}Ti as a reference. The {phi} segmentation of BAMBINO was used to deduce tentative assignments for the signs of the mixing ratios between the E2 and M1 components of the transitions. The resulting B(E2){up_arrow} values are 131{+-}9 e{sup 2} fm{sup 4} (25.4{+-}1.7 W.u.) for {sup 21}Ne and 205{+-}14 e{sup 2} fm{sup 4} (39.7{+-}2.7 W.u.) for {sup 21}Na. The fit to the present data and the known lifetimes determined E2/M1 mixing ratios and B(M1){down_arrow} values of {delta}=(-)0.0767{+-}0.0027 and 0.1274{+-}0.0025 {mu}{sub N}{sup 2} and {delta}=(+)0.0832{+-}0.0028 and 0.1513{+-}0.0017 {mu}{sub N}{sup 2} for {sup 21}Ne and {sup 21}Na, respectively (with Krane and Steffen sign convention). By using the effective charges e{sub p}=1.5e and e{sub n}=0.5e, the B(E2) values produced by the p-sd shell model are 30.7 and 36.4 W.u. for {sup 21}Ne and {sup 21}Na, respectively. This analysis resolves a significant discrepancy between a previous experimental result for {sup 21}Na and shell-model calculations.

  9. Collectivity in the light radon nuclei measured directly via Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Gaffney, L. P.; Robinson, A. P.; Jenkins, D. G.; Andreyev, A. N.; Bender, M.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Cocolios, T. E.; Davinson, T.; Deacon, A. N.; De Witte, H.; DiJulio, D.; Diriken, J.; Ekström, A.; Fransen, Ch.; Freeman, S. J.; Geibel, K.; Grahn, T.; Hadinia, B.; Hass, M.; Heenen, P.-H.; Hess, H.; Huyse, M.; Jakobsson, U.; Kesteloot, N.; Konki, J.; Kröll, Th.; Kumar, V.; Ivanov, O.; Martin-Haugh, S.; Mücher, D.; Orlandi, R.; Pakarinen, J.; Petts, A.; Peura, P.; Rahkila, P.; Reiter, P.; Scheck, M.; Seidlitz, M.; Singh, K.; Smith, J. F.; Van de Walle, J.; Van Duppen, P.; Voulot, D.; Wadsworth, R.; Warr, N.; Wenander, F.; Wimmer, K.; Wrzosek-Lipska, K.; Zielińska, M.

    2015-06-01

    Background: Shape coexistence in heavy nuclei poses a strong challenge to state-of-the-art nuclear models, where several competing shape minima are found close to the ground state. A classic region for investigating this phenomenon is in the region around Z =82 and the neutron midshell at N =104 . Purpose: Evidence for shape coexistence has been inferred from α -decay measurements, laser spectroscopy, and in-beam measurements. While the latter allow the pattern of excited states and rotational band structures to be mapped out, a detailed understanding of shape coexistence can only come from measurements of electromagnetic matrix elements. Method: Secondary, radioactive ion beams of 202Rn and 204Rn were studied by means of low-energy Coulomb excitation at the REX-ISOLDE in CERN. Results: The electric-quadrupole (E 2 ) matrix element connecting the ground state and first excited 21+ state was extracted for both 202Rn and 204Rn, corresponding to B (E 2 ;21+→01+) =29-8+8 and 43-12+17 W.u., respectively. Additionally, E 2 matrix elements connecting the 21+ state with the 41+ and 22+ states were determined in 202Rn. No excited 0+ states were observed in the current data set, possibly owing to a limited population of second-order processes at the currently available beam energies. Conclusions: The results are discussed in terms of collectivity and the deformation of both nuclei studied is deduced to be weak, as expected from the low-lying level-energy schemes. Comparisons are also made to state-of-the-art beyond-mean-field model calculations and the magnitude of the transitional quadrupole moments are well reproduced.

  10. In-depth analysis of Coulomb Volkov approaches to ionization and excitation by laser pulses

    NASA Astrophysics Data System (ADS)

    R, Guichard; H, Bachau; E, Cormier; R, Gayet; D, Rodriguez V.

    2007-10-01

    In perturbation conditions, above-threshold ionization spectra produced in the interaction of atoms with femtosecond short-wavelength laser pulses are well predicted by a theoretical approach called CV2-, which is based on Coulomb-Volkov-type states. However, when resonant intermediate states play a significant role in a multiphoton transition, the CV2- transition amplitude does not take their influence into account. In a previous paper, this influence has been introduced separately as a series of additional sequential processes interfering with the direct process. To give more credit to this procedure, called modified CV2- (MCV2-), a perturbation expansion of the standard CV2- transition amplitude is compared here to the standard time-dependent perturbation series and the strong field approximation. It is shown that the CV2- transition amplitude consists merely in a simultaneous absorption of all photons involved in the transition, thus avoiding all intermediate resonant state influence. The present analysis supports the MCV2- procedure that consists in introducing explicitly the other quantum paths, which contribute significantly to ionization, such as passing through intermediate resonances. Further, this analysis permits to show that multiphoton excitation may be addressed by a Coulomb-Volkov approach akin to MCV2-.

  11. Coulomb expansion of laser-excited ion plasmas.

    PubMed

    Feldbaum, D; Morrow, N V; Dutta, S K; Raithel, G

    2002-10-21

    We determine the electric field in mm-sized clouds of cold Rb+ ions, produced by photoionization of laser-cooled 87Rb atoms in a magneto-optical trap, using the Stark effect of embedded Rydberg atoms. The dependence of the electric field on the time delay between the ion plasma production and the probe of the electric field reflects the Coulomb expansion of the plasma. Our experiments and models show expansion times <1micros.

  12. Energy spectrum of the low-lying gluon excitations in the Coulomb gauge

    SciTech Connect

    Szczepaniak, Adam P.; Krupinski, Pawel

    2006-06-01

    We compute the energy spectrum of low-lying gluonic excitations in the presence of static quark-antiquark sources using Coulomb gauge and the quasiparticle representation. Within the valence sector of the Fock space we reproduce both, the overall normalization and the ordering of the spin-parity multiplets. We discus how the interactions induced by the nonabelian Coulomb kernel are central in to fine structure of the spectrum.

  13. Sub-Barrier Coulomb Excitation of 106,108,110Sn

    NASA Astrophysics Data System (ADS)

    Ekström, A.; Cederkäll, J.; Fahlander, C.; Hjorth-Jensen, M.; Ames, F.; Butler, P. A.; Davinson, T.; Eberth, J.; Georgiev, G.; Gorgen, A.; Górska, M.; Habs, D.; Huyse, M.; Ivanov, O.; Iwanicki, J.; Kester, O.; Köster, U.; Marsh, B. A.; Reiter, P.; Scheit, H.; Schwalm, D.; Siem, S.; Stefanescu, I.; Tveten, G. M.; van de Walle, J.; van Duppen, P.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Zielinska, M.

    2008-05-01

    The reduced transition probabilities between the first excited 2+ state and the 0+ ground state, B(E20+-->2+), have been measured in 106,108,110Sn using sub-barrier Coulomb excitation in inverse kinematics at REX-ISOLDE. The results are, B(E20+-->2+) = 0.220(22), 0.226(17), and 0.228(32)e2b2, for 110Sn, 108Sn, and 106Sn, respectively. The results for 106,108Sn are preliminary. De-excitation γ-rays were detected by the MINIBALL Ge-array. The B(E2) reveals detailed information about the nuclear wave function. A shell model prediction based on an effective CD-Bonn interaction in the ν(0g7/2,2s,1d,0h11/2) model space using eeffν = 1.0 e follows the experimental values for the neutron rich Sn isotopes, but fails to reproduce the results presented here.

  14. Shell model based Coulomb excitation γ-ray intensity calculations in 107Sn

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cederkall, J.; Ekström, A.; Fahlander, C.; Hjorth-Jensen, M.

    2012-10-01

    In this work, we present recent shell model calculations, based on a realistic nucleon-nucleon interaction, for the light 107, 109Sn nuclei. By combining the calculations with the semi-classical Coulomb excitation code GOSIA, a set of γ-ray intensities has been generated. The calculated intensities are compared with the data from recent Coulomb excitation studies in inverse kinematics at the REX-ISOLDE facility with the nucleus 107Sn. The results are discussed in the context of the ordering of the single-particle orbits relative to 100Sn.

  15. Magnetic moment measurement in 72Zn using the Transient Field technique and Coulomb excitation in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Illana Sisón, A.; Jungclaus, A.; Orlandi, R.; Perea, A.; Briz, J. A.; Bauer, C.; Gernhäuser, R.; Leske, J.; Mücher, D.; Pakarinen, J.; Pietralla, N.; Rajabali, M. M.; Seiler, D.; Stahl, C.

    2014-03-01

    The g factor of the first excited 2+ state of 72Zn has been measured using the Low Velocity Transient Field (LVTF) technique in combination with Coulomb excitation in inverse kinematics. The aim of the experiment was to test the viability of this method when applied to short-lived radioactive ISOL beams, in particular in comparison to the alternative High Velocity Transient Field (HVTF) technique using fragment beams. The result obtained for g(2+) in 72Zn in the present experiment follows the trend observed for the lighter stables Zn isotopes.

  16. Interatomic Coulombic decay following resonant core excitation of Ar in argon dimer

    SciTech Connect

    Miteva, T.; Chiang, Y.-C.; Kuleff, A. I.; Gokhberg, K. Cederbaum, L. S.; Kolorenč, P.

    2014-08-14

    A scheme utilizing excitation of core electrons followed by the resonant-Auger – interatomic Coulombic decay (RA-ICD) cascade was recently proposed as a means of controlling the generation site and energies of slow ICD electrons. This control mechanism was verified in a series of experiments in rare gas dimers. In this article, we present fully ab initio computed ICD electron and kinetic energy release spectra produced following 2p{sub 3/2} → 4s, 2p{sub 1/2} → 4s, and 2p{sub 3/2} → 3d core excitations of Ar in Ar{sub 2}. We demonstrate that the manifold of ICD states populated in the resonant Auger process comprises two groups. One consists of lower energy ionization satellites characterized by fast interatomic decay, while the other consists of slow decaying higher energy ionization satellites. We show that accurate description of nuclear dynamics in the latter ICD states is crucial for obtaining theoretical electron and kinetic energy release spectra in good agreement with the experiment.

  17. Coulomb excitation of exotic nuclei at REX-ISOLDE with MINIBALL

    NASA Astrophysics Data System (ADS)

    Kröll, Th.

    2014-03-01

    In this contribution nuclear structure studies with post-accelerated radioactive ion beams from the REX-ISOLDE facility at CERN are presented. The method employed is γ-ray spectroscopy with the MINIBALL array following "safe" Coulomb excitation. Recent results concerning the investigation of nuclear shapes are presented and discussed.

  18. Excited states in hydrocarbons

    SciTech Connect

    Lipsky, S.

    1987-01-01

    In this brief review we first summarize some pertinent features of the photophysical properties of excited states of hydrocarbons and the mechanisms by which they transfer energy to solutes and then review their yields and their behavior under fast-electron irradiation conditions. 33 refs.

  19. Coulomb Excitation and One-Neutron Transfer Studies of Stable and Radioactive Nuclei at HRIBF-ORNL

    SciTech Connect

    Allmond, James M

    2015-01-01

    Several stable and radioactive nuclei ranging from $A=58$ to 208 were recently studied in inverse kinematics by Coulomb excitation and heavy-ion induced one-neutron transfer at the Holifield Radioactive Ion Beam Facility of Oak Ridge National Laboratory. These studies used a CsI-HPGe detector array to detect scattered charged particles and emitted $\\gamma$ rays from the in-beam reactions. A Bragg-curve detector was used to measure the energy loss of the various beams through the targets and to measure the radioactive beam compositions. Stable nickel, strontium, zirconium, molybdenum, tin, tellurium, and lead isotopes and neutron-rich radioactive tin and tellurium isotopes were among the nuclei recently studied. Coulomb excitation was used to measure the electromagnetic moments of the first excited states and heavy-ion induced one-neutron transfer was used to measure the absolute cross sections and lifetimes of the excited single-particle states. A sample of these results are presented here with an emphasis on the tin isotopes. In particular, a survey of the Bragg-curve measurements, Doppler corrections, and inconclusive $i_{13/2}$ candidate in $^{133}$\\textrm{Sn} are presented.

  20. Complex-Scaling Treatment for Doubly Excited Inter-Shell Resonances in H- Interacting with Screened Coulomb (Yukawa) Potentials

    NASA Astrophysics Data System (ADS)

    Ho, Y. K.; Kar, S.

    2012-10-01

    The doubly-excited inter-shell resonance states of the hydrogen negative ion with screened Coulomb potentials are investigated in the framework of complex-scaling method. Highly correlated wave functions with terms up to 1078 in Hylleraas coordinates are used. The resonance parameters for the 2 s3 s 1 S e associated with the H ( N = 2) threshold and the 3 s4 s 1 S e state associated with the H ( N = 3) threshold for various screening strengths are reported. Comparisons are made with other available data in the literature.

  1. On rate-state and Coulomb failure models

    USGS Publications Warehouse

    Gomberg, J.; Beeler, N.; Blanpied, M.

    2000-01-01

    We examine the predictions of Coulomb failure stress and rate-state frictional models. We study the change in failure time (clock advance) Δt due to stress step perturbations (i.e., coseismic static stress increases) added to "background" stressing at a constant rate (i.e., tectonic loading) at time t0. The predictability of Δt implies a predictable change in seismicity rate r(t)/r0, testable using earthquake catalogs, where r0 is the constant rate resulting from tectonic stressing. Models of r(t)/r0, consistent with general properties of aftershock sequences, must predict an Omori law seismicity decay rate, a sequence duration that is less than a few percent of the mainshock cycle time and a return directly to the background rate. A Coulomb model requires that a fault remains locked during loading, that failure occur instantaneously, and that Δt is independent of t0. These characteristics imply an instantaneous infinite seismicity rate increase of zero duration. Numerical calculations of r(t)/r0 for different state evolution laws show that aftershocks occur on faults extremely close to failure at the mainshock origin time, that these faults must be "Coulomb-like," and that the slip evolution law can be precluded. Real aftershock population characteristics also may constrain rate-state constitutive parameters; a may be lower than laboratory values, the stiffness may be high, and/or normal stress may be lower than lithostatic. We also compare Coulomb and rate-state models theoretically. Rate-state model fault behavior becomes more Coulomb-like as constitutive parameter a decreases relative to parameter b. This is because the slip initially decelerates, representing an initial healing of fault contacts. The deceleration is more pronounced for smaller a, more closely simulating a locked fault. Even when the rate-state Δt has Coulomb characteristics, its magnitude may differ by some constant dependent on b. In this case, a rate-state model behaves like a modified

  2. Determination of the B(E3, 0+ → 3-)-excitation strength in octupole-correlated nuclei near A ≈ 224 by the means of Coulomb excitation at REX-ISOLDE

    NASA Astrophysics Data System (ADS)

    Scheck, M.; Gaffney, L. P.; Butler, P. A.; Hayes, A. B.; Wenander, F.; Albers, M.; Bastin, B.; Bauer, C.; Blazhev, A.; Bönig, S.; Bree, N.; Cederkäil, J.; Chupp, T.; Cline, D.; Cocolios, T. E.; Davinson, T.; De Witte, H.; Diriken, J.; Grahn, T.; Gregor, E. T.; Herzan, A.; Huyse, M.; Jenkins, D. G.; Joss, D. T.; Kesteloot, N.; Konki, J.; Kowalczyk, M.; Kröll, Th; Kwan, E.; Lutter, R.; Moschner, K.; Napiorkowski, P.; Pakarinen, J.; Pfeiffer, M.; Radeck, D.; Reiter, P.; Reynders, K.; Rigby, S. V.; Robledo, L. M.; Rudigier, M.; Sambi, S.; Seidlitz, M.; Siebeck, B.; Stora, T.; Thoele, P.; Van Duppen, P.; Vermeulen, M. J.; von Schmid, M.; Voulot, D.; Warr, N.; Wimmer, K.; Wrzosek-Lipska, K.; Wu, C. Y.; Zielińska, M.

    2014-09-01

    The IS475 collaboration conducted Coulomb-excitation experiments with postaccelerated radioactive 220Rn and 224Ra beams at the REX-ISOLDE facility. The beam particles (Ebeam ≈ 2.83 MeV/u) were Coulomb excited using 60Ni, 114Cd, and 120Sn scattering targets. De-excitation γ-rays were detected employing the Miniball array and scattered particles were detected in a silicon detector. Exploiting the Coulomb-excitation code GOSIA for each nucleus several matrix elements could be obtained from the measured γ-ray yields. The extracted langle3-||Ê3||0+rangle matrix element allows for the conclusion that, while 220Rn represents an octupole vibrational system, 224Ra has already substantial octupole correlations in its ground state. An observation that has implications for the search of CP-violating Schiff moments in the atomic systems of the adjacent odd-mass nuclei.

  3. Octupole deformation in 144,146Ba measured by Coulomb excitation of radioactive beams

    NASA Astrophysics Data System (ADS)

    Bucher, Brian; Zhu, Shaofei; ANL, LBNL, LLNL, Rochester, Florida State, Liverpool, Maryland, Notre Dame, Ohio, W. Scotland Collaboration

    2015-10-01

    The exotic, neutron-rich 144Ba (t1 / 2 = 11.5 s) and 146Ba (t1 / 2 = 2.2 s) nuclei are expected to exhibit some of the strongest octupole correlations in A < 200 systems. Up to now, evidence for such strong octupole correlations has been inferred from observations of low-lying negative-parity states and from the interleaving of positive- and negative-parity levels in the ground-state band. However, the E1 transition strengths are very different in these two nuclei, with two orders of magnitude reduction in 146Ba. In this experiment, we measure the octupole strength directly by Coulomb excitation of post-accelerated 144,146Ba beams produced at CARIBU using CHICO2 and GRETINA. In 144Ba, we found B(E3;3 -->0) = 48(-34+ 25) W.u., a value considerably larger than theoretical predictions, while preliminary results for 146Ba are also indicative of strong octupole collectivity. The experimental conditions, the analysis, and the results from these challenging new measurements will be presented. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 (ANL), DE-AC02-05CH11231 (LBNL, GRETINA), DOE DE-AC52-07NA27344 (LLNL), and NSF.

  4. Shape coexistence in the neutron-deficient even-even (182-188)Hg isotopes studied via coulomb excitation.

    PubMed

    Bree, N; Wrzosek-Lipska, K; Petts, A; Andreyev, A; Bastin, B; Bender, M; Blazhev, A; Bruyneel, B; Butler, P A; Butterworth, J; Carpenter, M P; Cederkäll, J; Clément, E; Cocolios, T E; Deacon, A; Diriken, J; Ekström, A; Fitzpatrick, C; Fraile, L M; Fransen, Ch; Freeman, S J; Gaffney, L P; García-Ramos, J E; Geibel, K; Gernhäuser, R; Grahn, T; Guttormsen, M; Hadinia, B; Hadyńska-Kle K, K; Hass, M; Heenen, P-H; Herzberg, R-D; Hess, H; Heyde, K; Huyse, M; Ivanov, O; Jenkins, D G; Julin, R; Kesteloot, N; Kröll, Th; Krücken, R; Larsen, A C; Lutter, R; Marley, P; Napiorkowski, P J; Orlandi, R; Page, R D; Pakarinen, J; Patronis, N; Peura, P J; Piselli, E; Rahkila, P; Rapisarda, E; Reiter, P; Robinson, A P; Scheck, M; Siem, S; Singh Chakkal, K; Smith, J F; Srebrny, J; Stefanescu, I; Tveten, G M; Van Duppen, P; Van de Walle, J; Voulot, D; Warr, N; Wenander, F; Wiens, A; Wood, J L; Zielińska, M

    2014-04-25

    Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85  MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0+ states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0+ state was noted in Hg182,184. The results are compared to beyond mean field and interacting-boson based models and interpreted within a two-state mixing model. Partial agreement with the model calculations was obtained. The presence of two different structures in the light even-mass mercury isotopes that coexist at low excitation energy is firmly established.

  5. Shape Coexistence in the Neutron-Deficient Even-Even Hg182-188 Isotopes Studied via Coulomb Excitation

    NASA Astrophysics Data System (ADS)

    Bree, N.; Wrzosek-Lipska, K.; Petts, A.; Andreyev, A.; Bastin, B.; Bender, M.; Blazhev, A.; Bruyneel, B.; Butler, P. A.; Butterworth, J.; Carpenter, M. P.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Deacon, A.; Diriken, J.; Ekström, A.; Fitzpatrick, C.; Fraile, L. M.; Fransen, Ch.; Freeman, S. J.; Gaffney, L. P.; García-Ramos, J. E.; Geibel, K.; Gernhäuser, R.; Grahn, T.; Guttormsen, M.; Hadinia, B.; Hadyńska-KleÂķ, K.; Hass, M.; Heenen, P.-H.; Herzberg, R.-D.; Hess, H.; Heyde, K.; Huyse, M.; Ivanov, O.; Jenkins, D. G.; Julin, R.; Kesteloot, N.; Kröll, Th.; Krücken, R.; Larsen, A. C.; Lutter, R.; Marley, P.; Napiorkowski, P. J.; Orlandi, R.; Page, R. D.; Pakarinen, J.; Patronis, N.; Peura, P. J.; Piselli, E.; Rahkila, P.; Rapisarda, E.; Reiter, P.; Robinson, A. P.; Scheck, M.; Siem, S.; Singh Chakkal, K.; Smith, J. F.; Srebrny, J.; Stefanescu, I.; Tveten, G. M.; Van Duppen, P.; Van de Walle, J.; Voulot, D.; Warr, N.; Wenander, F.; Wiens, A.; Wood, J. L.; Zielińska, M.

    2014-04-01

    Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85 MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0+ states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0+ state was noted in Hg182,184. The results are compared to beyond mean field and interacting-boson based models and interpreted within a two-state mixing model. Partial agreement with the model calculations was obtained. The presence of two different structures in the light even-mass mercury isotopes that coexist at low excitation energy is firmly established.

  6. Shape coexistence in the neutron-deficient even-even (182-188)Hg isotopes studied via coulomb excitation.

    PubMed

    Bree, N; Wrzosek-Lipska, K; Petts, A; Andreyev, A; Bastin, B; Bender, M; Blazhev, A; Bruyneel, B; Butler, P A; Butterworth, J; Carpenter, M P; Cederkäll, J; Clément, E; Cocolios, T E; Deacon, A; Diriken, J; Ekström, A; Fitzpatrick, C; Fraile, L M; Fransen, Ch; Freeman, S J; Gaffney, L P; García-Ramos, J E; Geibel, K; Gernhäuser, R; Grahn, T; Guttormsen, M; Hadinia, B; Hadyńska-Kle K, K; Hass, M; Heenen, P-H; Herzberg, R-D; Hess, H; Heyde, K; Huyse, M; Ivanov, O; Jenkins, D G; Julin, R; Kesteloot, N; Kröll, Th; Krücken, R; Larsen, A C; Lutter, R; Marley, P; Napiorkowski, P J; Orlandi, R; Page, R D; Pakarinen, J; Patronis, N; Peura, P J; Piselli, E; Rahkila, P; Rapisarda, E; Reiter, P; Robinson, A P; Scheck, M; Siem, S; Singh Chakkal, K; Smith, J F; Srebrny, J; Stefanescu, I; Tveten, G M; Van Duppen, P; Van de Walle, J; Voulot, D; Warr, N; Wenander, F; Wiens, A; Wood, J L; Zielińska, M

    2014-04-25

    Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85  MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0+ states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0+ state was noted in Hg182,184. The results are compared to beyond mean field and interacting-boson based models and interpreted within a two-state mixing model. Partial agreement with the model calculations was obtained. The presence of two different structures in the light even-mass mercury isotopes that coexist at low excitation energy is firmly established. PMID:24815644

  7. Coulomb excitation of a {sup 242}Am isomeric target : E2, E3 strengths, rotational alignment, and collective enhancement.

    SciTech Connect

    Hayes, A. B.; Cline, D.; Moody, K. J.; Ragnarsson, I.; Wu, C. Y.; Becker, J. A.; Carpenter, M. P.; Carroll, J. J.; Gohlke, D.; Greene, J. P.; Hecht, A. A.; Janssens, R. V. F.; Karamian, S. A.; Lauritsen, T.; Lister, C. J.; Macri, R. A.; Propri, R.; Seweryniak, D.; Wang, X.; Wheeler, R.; Zhu, S.

    2010-10-29

    A 98% pure {sup 242m}Am (K=5{sup -}, t{sub 1/2} = 141 years) isomeric target was Coulomb excited with a 170.5-MeV {sup 40}Ar beam. The selectivity of Coulomb excitation, coupled with the sensitivity of Gammasphere plus CHICO, was sufficient to identify 46 new states up to spin 18 {h_bar} in at least four rotational bands; 11 of these new states lie in the isomer band, 13 in a previously unknown yrast K{sup {pi}} = 6{sup -} rotational band, and 13 in a band tentatively identified as the predicted yrast K{sup {pi}} = 5{sup +} band. The rotational bands based on the K{sup {pi}} = 5{sup -} isomer and the 6{sup -} bandhead were populated by Coulomb excitation with unexpectedly equal cross sections. The {gamma}-ray yields are reproduced by Coulomb excitation calculations using a two-particle plus rotor model (PRM), implying nearly complete {Delta}K = 1 mixing of the two almost-degenerate rotational bands, but recovering the Alaga rule for the unperturbed states. The degeneracy of the 5{sup -} and 6{sup -} bands allows for precise determination of the mixing interaction strength V, which approaches the strong-mixing limit; this agrees with the 50% attenuation of the Coriolis matrix element assumed in the model calculations. The fractional admixture of the I{sub K}{sup {pi}} = 6{sub 6{sup -}} state in the nominal 6{sub 5{sup -}} isomer band state is measured within the PRM as 45.6{sub -1.1}{sup +0.3}%. The E2 and M1 strengths coupling the 5{sup -} and 6{sup -} bands are enhanced significantly by the mixing, while E1 and E2 couplings to other low-K bands are not measurably enhanced. The yields of the 5{sup +} band are reproduced by an E3 strength of {approx}15 W.u., competitive with the interband E2 strength. Alignments of the identified two-particle Nilsson states in {sup 242}Am are compared with the single-particle alignments in {sup 241}Am.

  8. Onset of collectivity in 96,98Sr studied via Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Clément, E.; Görgen, A.; Dijon, A.; de France, G.; Bastin, B.; Blazhev, A.; Bree, N.; Butler, P.; Delahaye, P.; Ekstrom, A.; Georgiev, G.; Hasan, N.; Iwanicki, J.; Jenkins, D.; Korten, W.; Larsen, A. C.; Ljungvall, J.; Moschner, K.; Napiorkowski, P.; Pakarinen, J.; Petts, A.; Renstrom, T.; Seidlitz, M.; Siem, S.; Sotty, C.; Srebrny, J.; Stefanescu, I.; Tveten, G. M.; Van de Walle, J.; Warr, N.; Wrzosek-Lipska, K.; Zielińska, M.; Bauer, C.; Bruyneel, B.; Butterworth, J.; Fitzpatrick, C.; Fransen, C.; Gernhäuser, R.; Hess, H.; Lutter, R.; Marley, P.; Reiter, P.; Siebeck, B.; Vermeulen, M.; Wiens, A.; De Witte, H.

    2014-03-01

    A rapid onset of quadrupole deformation is known to occur around the neutron number 60 in the neutron-rich Zr and Sr isotopes. This shape change has made the neutron-rich A = 100 region an active area of experimental and theoretical studies for many decades now. We report in this contribution new experimental results in the neutron rich 96,98Sr investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross section supporting the scenario of shape coexistence/change at N=60. Future perspectives are presented including the recent experimental campaign performed at ILL-Grenoble.

  9. Coulomb Excitation of Isolde Neutron-Rich Beams Along the Z = 28 Chain

    NASA Astrophysics Data System (ADS)

    van Duppen, P.

    2008-04-01

    Results from the recently commissioned REX-ISOLDE (CERN) post-accelerator facility are reported. Coulomb excitation with purified beams of neutron-rich zinc isotopes (including N = 50 80Zn) and with isomeric beams of copper isotopes were performed using the MINIBALL germanium array. The data are compared to large scale shell-model calculations and provide information on the fragility of the N = 40 sub-shell closure, stability of the N = 50 shell closure and the onset of deformation in this region of the nuclear chart. The specific nuclear structure around the Z = 28, N = 40 shells make Coulomb excitation an experimental tool for induced depopulation of a nuclear isomer. The presentation is concluded with a brief overview of the REX-ISOLDE physics program and with an outlook towards the intensity and energy upgrade of the ISOLDE complex (so-called HIE-ISOLDE).

  10. First Results with TIGRESS and Accelerated Radioactive Ion Beams from ISAC: Coulomb Excitation of 20,21,29Na

    NASA Astrophysics Data System (ADS)

    Schumaker, M. A.; Hurst, A. M.; Svensson, C. E.; Wu, C. Y.; Becker, J. A.; Cline, D.; Hackman, G.; Pearson, C. J.; Stoyer, M. A.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Barton, C. J.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Colosimo, S. J.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Djongolov, M.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Gray-Jones, C.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Leach, K. G.; Kulp, W. D.; Lisetskiy, A. F.; Lee, G.; Lloyd, S.; Maharaj, R.; Martin, J.-P.; Millar, B. A.; Moisan, F.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Oxley, D. C.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Rigby, S. V.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Sumithrarachchi, C. S.; Triambak, S.; Waddington, J. C.; Walker, P. M.; Wan, J.; Whitbeck, A.; Williams, S. J.; Wong, J.; Wood, J. L.

    2009-03-01

    The TRIUMF-ISAC Gamma-Ray Escape Suppressed Spectrometer (TIGRESS) is a state-of-the-art γ-ray spectrometer being constructed at the ISAC-II radioactive ion beam facility at TRIUMF. TIGRESS will be comprised of twelve 32-fold segmented high-purity germanium (HPGe) clover-type γ-ray detectors, with BGO/CsI(Tl) Compton-suppression shields, and is currently operational at ISAC-II in an early-implementation configuration of six detectors. Results have been obtained for the first experiments performed using TIGRESS, which examined the A = 20, 21, and 29 isotopes of Na by Coulomb excitation.

  11. Low-energy Coulomb excitation of 62Fe and 62Mn following in-beam decay of 62Mn

    NASA Astrophysics Data System (ADS)

    Gaffney, L. P.; Van de Walle, J.; Bastin, B.; Bildstein, V.; Blazhev, A.; Bree, N.; Cederkäll, J.; Darby, I.; De Witte, H.; DiJulio, D.; Diriken, J.; Fedosseev, V. N.; Fransen, Ch.; Gernhäuser, R.; Gustafsson, A.; Hess, H.; Huyse, M.; Kesteloot, N.; Kröll, Th.; Lutter, R.; Marsh, B. A.; Reiter, P.; Seidlitz, M.; Van Duppen, P.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.; Wrzosek-Lipska, K.

    2015-10-01

    Sub-barrier Coulomb excitation was performed on a mixed beam of 62Mn and 62Fe, following in-trap β - decay of 62Mn at REX-ISOLDE, CERN. The trapping and charge breeding times were varied in order to alter the composition of the beam, which was measured by means of an ionisation chamber at the zero-angle position of the Miniball array. A new transition was observed at 418 keV, which has been tentatively associated to a (2+,3+)→ 1 g.s. + transition. This fixes the relative positions of the β-decaying 4+ and 1+ states in 62Mn for the first time. Population of the 2 1 + state was observed in 62Fe and the cross-section determined by normalisation to the 109Ag target excitation, confirming the B( E2) value measured in recoil-distance lifetime experiments.

  12. Coulomb Excitation of the Odd-A 67,69,71,73Cu Isotopes with Miniball and Rex-Isolde

    NASA Astrophysics Data System (ADS)

    Stefanescu, I.; Georgiev, G.; Bree, N.; Cocolios, T. E.; Diriken, J.; Huyse, M.; Ivanov, O.; Patronis, N.; van Duppen, P.; van de Walle, J.

    2008-08-01

    Collective properties of low-lying states in the neutron-rich 67,69,71,73Cu isotopes were investigated by Coulomb excitation with radioactive beams produced at ISOLDE and postaccelerated by REX-ISOLDE up to 2.99 MeV/A. Experimental B(E2; 1/2- → 3/2-g.s.), B(E2;5/2- → 3/2-g.s.) and B(E2;7/2- → 3/2-g.s.) were determined in all four investigated isotopes. Results show that the low-lying level schemes of these nuclei are governed by three different configurations: the expected proton single-particle excitations, core-coupled states and a surprisingly low-lying collective mode.

  13. Shape dynamics in neutron-rich Kr isotopes: Coulomb excitation of 92Kr, 94Kr and 96Kr

    NASA Astrophysics Data System (ADS)

    Albers, M.; Nomura, K.; Warr, N.; Blazhev, A.; Jolie, J.; Mücher, D.; Bastin, B.; Bauer, C.; Bernards, C.; Bettermann, L.; Bildstein, V.; Butterworth, J.; Cappellazzo, M.; Cederkäll, J.; Cline, D.; Darby, I.; Das Gupta, S.; Daugas, J. M.; Davinson, T.; De Witte, H.; Diriken, J.; Filipescu, D.; Fiori, E.; Fransen, C.; Gaffney, L. P.; Georgiev, G.; Gernhäuser, R.; Hackstein, M.; Heinze, S.; Hess, H.; Huyse, M.; Jenkins, D.; Konki, J.; Kowalczyk, M.; Kröll, T.; Krücken, R.; Litzinger, J.; Lutter, R.; Marginean, N.; Mihai, C.; Moschner, K.; Napiorkowski, P.; Nara Singh, B. S.; Nowak, K.; Pakarinen, J.; Pfeiffer, M.; Radeck, D.; Reiter, P.; Rigby, S.; Robledo, L. M.; Rodríguez-Guzmán, R.; Rudigier, M.; Scheck, M.; Seidlitz, M.; Siebeck, B.; Simpson, G. S.; Thöle, P.; Thomas, T.; Van de Walle, J.; Van Duppen, P.; Vermeulen, M.; Voulot, D.; Wadsworth, R.; Wenander, F.; Wimmer, K.; Zell, K. O.; Zielinska, M.

    2013-02-01

    We report on the study of excited states in 92,94,96Kr populated via projectile Coulomb excitation at safe energies. The radioactive ion beams at energies of 2.85 MeV/u were delivered by the REX-ISOLDE facility at CERN and impinged on self-supporting 194,196Pt targets. The emitted γ-rays were detected by the Miniball detector-array. A detailed description of the experimental techniques used for extracting diagonal and transitional matrix elements and of the theoretical framework is given. The present experiment reveals the moderate evolution of the collective structure in the considered neutron-rich Kr isotopic chain, which is supported by the interacting boson model combined with the self-consistent mean-field method using a microscopic Gogny energy-density functional. The theory also suggests possible shape coexistence in the exotic nucleus 96Kr.

  14. Relativistic Coulomb excitation within the time dependent superfluid local density approximation

    SciTech Connect

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.

    2015-01-06

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.

  15. Observation of intracluster Coulombic decay of Rydberg-like states triggered by intense near-infrared pulses

    NASA Astrophysics Data System (ADS)

    Schütte, Bernd; Arbeiter, Mathias; Fennel, Thomas; Jabbari, Ghazal; Gokhberg, Kirill; Kuleff, Alexander I.; Vrakking, Marc J. J.; Rouzée, Arnaud

    2015-05-01

    Interatomic Coulombic decay (ICD) describes a process, where an excited atom relaxes by transferring its energy to an atom in the environment that gets ionized. So far, ICD has been observed following XUV ionization or excitation of clusters. Here we present novel results of an intracluster Coulombic decay mechanism induced by intense NIR pulses and following Rydberg atom formation in the generated nanoplasma. When a highly-excited Rydberg atom relaxes to its ground state by transferring its excess energy to a weakly bound electron in the environment, electrons with kinetic energies close to the atomic ionization potential are emitted. We show evidence for such an intracluster Coulombic decay process that leaves clear signatures in the electron kinetic energy spectra. ICD is time-resolved in a pump-probe experiment, where a weak probe pulse depopulates the excited states, leading to a quenching of the ICD signal. We find a decay time of 87 ps, which is siginificantly longer than for previous ICD observations, where inner-shell holes were created by XUV pulses. Intracluster Coulombic decay is found to be a generic process that takes places in atomic and molecular clusters and at different wavelengths. It may play an important role in biological systems and in astronomical plasmas. Previous affiliation: Max-Born-Institut, Berlin, Germany.

  16. Dissociation of molecular chlorine in a Coulomb explosion: Potential curves, bound states, and deviation from Coulombic behavior for Cln+2 (n=2,3,4,6,8,10)

    NASA Astrophysics Data System (ADS)

    Wright, J. S.; Dilabio, G. A.; Matusek, D. R.; Corkum, P. B.; Ivanov, M. Yu.; Ellert, Ch.; Buenker, R. J.; Alekseyev, A. B.; Hirsch, G.

    1999-06-01

    Highly charged molecular ions are generated in Coulomb explosion experiments involving multielectron dissociative ionization, but little is known about the precise mechanisms involved in their formation. To help improve the understanding of such experiments, potential energy curves are calculated in this paper for diatomic chlorine (Cl2) and its ions Cln+2, where n=1,2,3,4,6,8,10. Bound vibrational states are obtained in three low-lying electronic states for Cl2+2 and one state for Cl3+2. Vertical excitation energies are given for stepwise excitations up to Cl10+2. For all the ions examined there is a significant energy defect (Δ) from the corresponding Coulomb potential, in one case reaching magnitudes of over 20 eV. We analyze the origin of these energy defects in terms of residual chemical bonding, and discuss the contribution of strongly bonding configurations at short internuclear distance. Finally, we present a simple physical model which describes the qualitative behavior of Δ(R,Q).

  17. Relativistic Coulomb excitation within the time dependent superfluid local density approximation

    DOE PAGES

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.

    2015-01-06

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, themore » dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.« less

  18. Photoionization of furan from the ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nada; Decleva, Piero

    2016-02-01

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.

  19. Photoionization of furan from the ground and excited electronic states.

    PubMed

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nađa; Decleva, Piero

    2016-02-28

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy. PMID:26931702

  20. In-trap decay of 61Mn and Coulomb excitation of 61Mn/61Fe

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Bildstein, V.; Bree, N.; Cederkäll, J.; Delahaye, P.; Diriken, J.; Ekström, A.; Fedosseev, V. N.; Gernhäuser, R.; Gustafsson, A.; Herlert, A.; Huyse, M.; Ivanov, O.; Kröll, T.; Krücken, R.; Marsh, B.; Partronis, N.; van Duppen, P.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.; Lenzi, S. M.

    2009-12-01

    At ISOL (Isotope Separator On-Line) facilities, which utilize thick primary production targets, beams of neutron-rich iron isotopes are difficult to obtain due to the long extraction time of these isotopes out of the target matrix. At REX-ISOLDE, an exploratory experiment was carried out to investigate the possibility of producing a post-accelerated beam of neutron-rich iron isotopes by the in-trap decay of neutron-rich manganese isotopes, which are available at ISOLDE using the Resonance Ionization Laser Ion Source (RILIS). This production mechanism was tested for the first time at REX-ISOLDE with an intense and short-lived beam of 61Mn isotopes. In this work, the proof of principle of this method is demonstrated, although the technical details of the trapping process are currently not well understood and are still under investigation. The first physics results on the Coulomb excitation of 61Mn and 61Fe are presented and compared to shell model calculations.

  1. Electronic ground state properties of Coulomb blockaded quantum dots

    NASA Astrophysics Data System (ADS)

    Patel, Satyadev Rajesh

    Conductance through quantum dots at low temperature exhibits random but repeatable fluctuations arising from quantum interference of electrons. The observed fluctuations follow universal statistics arising from the underlying universality of quantum chaos. Random matrix theory (RMT) has provided an accurate description of the observed universal conductance fluctuations (UCF) in "open" quantum dots (device conductance ≥e 2/h). The focus of this thesis is to search for and decipher the underlying origin of similar universal properties in "closed" quantum dots (device conductance ≤e2/ h). A series of experiments is presented on electronic ground state properties measured via conductance measurements in Coulomb blockaded quantum dots. The statistics of Coulomb blockade (CB) peak heights with zero and non-zero magnetic field measured in various devices agree qualitatively with predictions from Random Matrix Theory (RMT). The standard deviation of the peak height fluctuations for non-zero magnetic field is lower than predicted by RMT; the temperature dependence of the standard deviation of the peak height for non-zero magnetic field is also measured. The second experiment summarizes the statistics of CB peak spacings. The peak spacing distribution width is observed to be on the order of the single particle level spacing, Delta, for both zero and non-zero magnetic field. The ratio of the zero field peak spacing distribution width to the non-zero field peak spacing distribution width is ˜1.2; this is good agreement with predictions from spin-resolved RMT predictions. The standard deviation of the non-zero magnetic field peak spacing distribution width shows a T-1/2 dependence in agreement with a thermal averaging model. The final experiment summarizes the measurement of the peak height correlation length versus temperature for various quantum dots. The peak height correlation length versus temperature saturates in small quantum dots, suggesting spectral scrambling

  2. Z=50 Shell Gap near {sup 100}Sn from Intermediate-Energy Coulomb Excitations in Even-Mass {sup 106-112}Sn Isotopes

    SciTech Connect

    Vaman, C.; Bazin, D.; Galaviz, D.; Mueller, W. F.; Schiller, A.; Stolz, A.; Andreoiu, C.; Becerril, A.; Brown, B. A.; Campbell, C. M.; Chester, A.; Cook, J. M.; Dinca, D. C.; Gade, A.; Glasmacher, T.; Miller, D.; Moeller, V.; Starosta, K.; Terry, J. R.; Zelevinsky, V.

    2007-10-19

    Rare isotope beams of neutron-deficient {sup 106,108,110}Sn from the fragmentation of {sup 124}Xe were employed in an intermediate-energy Coulomb excitation experiment. The measured B(E2,0{sub 1}{sup +}{yields}2{sub 1}{sup +}) values for {sup 108}Sn and {sup 110}Sn and the results obtained for the {sup 106}Sn show that the transition strengths for these nuclei are larger than predicted by current state-of-the-art shell-model calculations. This discrepancy might be explained by contributions of the protons from within the Z=50 shell to the structure of low-energy excited states in this region.

  3. X-ray production with heavy post-accelerated radioactive-ion beams in the lead region of interest for Coulomb-excitation measurements

    NASA Astrophysics Data System (ADS)

    Bree, N.; Wrzosek-Lipska, K.; Butler, P. A.; Gaffney, L. P.; Grahn, T.; Huyse, M.; Kesteloot, N.; Pakarinen, J.; Petts, A.; Van Duppen, P.; Warr, N.

    2015-10-01

    Characteristic K X-rays have been observed in Coulomb-excitation experiments with heavy radioactive-ion beams in the lead region (Z = 82), produced at the REX-ISOLDE facility, and were used to identify the decay of strongly converted transitions as well as monopole 02+ → 01+ transitions. Different targets were used, and the X-rays were detected by the Miniball γ-ray spectrometer surrounding the target position. A stable mercury isotope, as well as neutron-deficient mercury, lead, polonium, and radon isotopes were studied, and a detailed description of the analysis using the radioactive 182,184,186,188Hg isotopes is presented. Apart from strongly converted transitions originating from the decay of excited states, the heavy-ion induced K-vacancy creation process has been identified as an extra source for K X-ray production. Isolating the atomic component of the observed K X-rays is essential for a correct analysis of the Coulomb-excitation experiment. Cross sections for the atomic reaction have been estimated and are compared to a theoretical approach.

  4. Calculation of screened Coulomb potential matrices and its application to He bound and resonant states

    NASA Astrophysics Data System (ADS)

    Jiao, Li Guang; Ho, Yew Kam

    2014-07-01

    We present two analytical methods, Taylor expansion and Gegenbauer expansion, to efficiently and accurately calculate the two-electron screened Coulomb potential matrix elements with Slater-type configuration-interaction basis functions. The former permits great advantages in fast computation of the potential matrices at small screening parameters and the latter allows accurate calculation of the matrices at all screening parameters. The bound and resonant states of a He atom embedded in the screening environment are calculated by employing the variational and complex-scaling methods, respectively, and the results are compared with other theoretical predictions. The expectation values of some physical quantities for He ground state are compared with the recent calculation of Ancarani and Rodriguez [Phys. Rev. A 89, 012507 (2014), 10.1103/PhysRevA.89.012507] and extended to stronger screening environment. The energies and widths for the doubly excited resonant states are in good agreement with previous calculations, while the interelectronic angle arccos show significant discrepancies with the Feshbach projection calculation of Ordóñez-Lasso et al. [Phys. Rev. A 88, 012702 (2013), 10.1103/PhysRevA.88.012702]. The expectation values of are also calculated for the resonant states investigated here. We conclude that the present methods in the framework of complex scaling enable us to get reliable energy, width, and other physical quantities of the resonant states in a variety of screening conditions.

  5. Theoretical studies of electronically excited states

    SciTech Connect

    Besley, Nicholas A.

    2014-10-06

    Time-dependent density functional theory is the most widely used quantum chemical method for studying molecules in electronically excited states. However, excited states can also be computed within Kohn-Sham density functional theory by exploiting methods that converge the self-consistent field equations to give excited state solutions. The usefulness of single reference self-consistent field based approaches for studying excited states is demonstrated by considering the calculation of several types of spectroscopy including the infrared spectroscopy of molecules in an electronically excited state, the rovibrational spectrum of the NO-Ar complex, core electron binding energies and the emission spectroscopy of BODIPY in water.

  6. Resource Paper: Molecular Excited State Relaxation Processes.

    ERIC Educational Resources Information Center

    Rhodes, William

    1979-01-01

    Develops the concept of oscillatory v dissipative limits as it applies to electronic excited state processes in molecular systems. Main emphasis is placed on the radiative and nonradiative dynamics of the excited state of a molecule prepared by interaction with light or some other excitation source. (BT)

  7. Excited State Properties of Hybrid Perovskites.

    PubMed

    Saba, Michele; Quochi, Francesco; Mura, Andrea; Bongiovanni, Giovanni

    2016-01-19

    Metal halide perovskites have come to the attention of the scientific community for the progress achieved in solar light conversion. Energy sustainability is one of the priorities of our society, and materials advancements resulting in low-cost but efficient solar cells and large-area lighting devices represent a major goal for applied research. From a basic point of view, perovskites are an exotic class of hybrid materials combining some merits of organic and inorganic semiconductors: large optical absorption, large mobilities, and tunable band gap together with the possibility to be processed in solution. When a novel class of promising semiconductors comes into the limelight, lively discussions ensue on the photophysics of band-edge excitations, because just the states close to the band edge are entailed in energy/charge transport and light emission. This was the case several decades ago for III-V semiconductors, it has been up to 10 years ago for organics, and it is currently the case for perovskites. Our aim in this Account is to rationalize the body of experimental evidence on perovskite photophysics in a coherent theoretical framework, borrowing from the knowledge acquired over the years in materials optoelectronics. A crucial question is whether photon absorption leads to a population of unbound, conductive free charges or instead excitons, neutral and insulating bound states created by Coulomb interaction just below the energy of the band gap. We first focus on the experimental estimates of the exciton binding energy (Eb): at room temperature, Eb is comparable to the thermal energy kBT in MAPbI3 and increases up to values 2-3kBT in wide band gap MAPbBr3 and MAPbCl3. Statistical considerations predict that these values, even though comparable to or larger than thermal energy, let free carriers prevail over bound excitons for all levels of excitation densities relevant for devices. The analysis of photophysics evidence confirms that all hybrid halide

  8. Coulomb interaction effects on the Majorana states in quantum wires.

    PubMed

    Manolescu, A; Marinescu, D C; Stanescu, T D

    2014-04-30

    The stability of the Majorana modes in the presence of a repulsive interaction is studied in the standard semiconductor wire-metallic superconductor configuration. The effects of short-range Coulomb interaction, which is incorporated using a purely repulsive δ-function to model the strong screening effect due to the presence of the superconductor, are determined within a Hartree-Fock approximation of the effective Bogoliubov-De Gennes Hamiltonian that describes the low-energy physics of the wire. Through a numerical diagonalization procedure we obtain interaction corrections to the single particle eigenstates and calculate the extended topological phase diagram in terms of the chemical potential and the Zeeman energy. We find that, for a fixed Zeeman energy, the interaction shifts the phase boundaries to a higher chemical potential, whereas for a fixed chemical potential this shift can occur either at lower or higher Zeeman energies. These effects can be interpreted as a renormalization of the g-factor due to the interaction. The minimum Zeeman energy needed to realize Majorana fermions decreases with the increasing strength of the Coulomb repulsion. Furthermore, we find that in wires with multi-band occupancy this effect can be enhanced by increasing the chemical potential, i.e. by occupying higher energy bands. PMID:24722427

  9. Solution of two-body relativistic bound state equations with confining plus Coulomb interactions

    NASA Technical Reports Server (NTRS)

    Maung, Khin Maung; Kahana, David E.; Norbury, John W.

    1992-01-01

    Studies of meson spectroscopy have often employed a nonrelativistic Coulomb plus Linear Confining potential in position space. However, because the quarks in mesons move at an appreciable fraction of the speed of light, it is necessary to use a relativistic treatment of the bound state problem. Such a treatment is most easily carried out in momentum space. However, the position space Linear and Coulomb potentials lead to singular kernels in momentum space. Using a subtraction procedure we show how to remove these singularities exactly and thereby solve the Schroedinger equation in momentum space for all partial waves. Furthermore, we generalize the Linear and Coulomb potentials to relativistic kernels in four dimensional momentum space. Again we use a subtraction procedure to remove the relativistic singularities exactly for all partial waves. This enables us to solve three dimensional reductions of the Bethe-Salpeter equation. We solve six such equations for Coulomb plus Confining interactions for all partial waves.

  10. Strong-field S -matrix theory with final-state Coulomb interaction in all orders

    NASA Astrophysics Data System (ADS)

    Faisal, F. H. M.

    2016-09-01

    During the last several decades the so-called Keldysh-Faisal-Reiss or strong-field approximation (SFA) has been highly useful for the analysis of atomic and molecular processes in intense laser fields. However, it is well known that SFA does not account for the final-state Coulomb interaction which is, however, unavoidable for the ubiquitous ionization process. In this Rapid Communication we solve this long-standing problem and give a complete strong-field S -matrix expansion that accounts for the final-state Coulomb interaction in all orders, explicitly.

  11. Interplay of strong chemical bonds and the repulsive Coulomb force in the metastable states of triply ionized homonuclear molecules: A theoretical study of N23+ and O23+

    NASA Astrophysics Data System (ADS)

    Imamura, Yutaka; Hatsui, Takaki

    2012-01-01

    We have studied metastable electronic states of trication molecules for N23+ and O23+ using the internally contracted multireference configuration interaction method with single and double excitations (icMRCISD). The metastable ground state for O23+ and metastable excited state for N23+ were obtained with the barriers of approximately 1.5 and 13.0 kcal/mol, respectively, although those metastable states were not found in previous calculations. The analysis on occupation numbers of natural orbitals demonstrates that the two metastable states are formed owing to the balance between the reduction of cationic Coulomb repulsion and the weakening of the chemical bonds. We have proposed to measure these metastable states by short-wavelength free-electron lasers (sFELs) that have the potential to produce excited states of multiply charged molecules.

  12. The Excited State Spectrum of QCD

    SciTech Connect

    Robert Edwards

    2010-08-01

    The determination of the highly excited state spectrum of baryons within QCD is a major theoretical and experimental challenge. I will present recent results from lattice QCD that give some indications on the structure of these highly excited states, and outline on-going and future work needed for a full determination of the spectrum, including strong decays.

  13. Prolate shape of 140Ba from a first combined Doppler-shift and Coulomb-excitation measurement at the REX-ISOLDE facility

    NASA Astrophysics Data System (ADS)

    Bauer, C.; Behrens, T.; Bildstein, V.; Blazhev, A.; Bruyneel, B.; Butterworth, J.; Clément, E.; Coquard, L.; Egido, J. L.; Ekström, A.; Fitzpatrick, C. R.; Fransen, C.; Gernhäuser, R.; Habs, D.; Hess, H.; Leske, J.; Kröll, T.; Krücken, R.; Lutter, R.; Marley, P.; Möller, T.; Otsuka, T.; Patronis, N.; Petts, A.; Pietralla, N.; Rodríguez, T. R.; Shimizu, N.; Stahl, C.; Stefanescu, I.; Stora, T.; Thirolf, P. G.; Voulot, D.; van de Walle, J.; Warr, N.; Wenander, F.; Wiens, A.

    2012-09-01

    Background: Quadrupole moments of excited nuclear states are important observables for geometrically interpreting nuclear structure in terms of deformed shapes, although data are scarce and sometimes ambiguous, in particular, in neutron-rich nuclides.Purpose: A measurement was performed for determining the spectroscopic quadrupole moment of the 21+ state of 140Ba in order to clarify the character of quadrupole deformation (prolate or oblate) of the state in its yrast sequence of levels.Method: We have utilized a new combined technique of lifetime measurement at REX-ISOLDE and MINIBALL using the Doppler-shift attenuation method (DSAM) and a reorientation analysis of Coulomb-excitation yields.Results: On the basis of the new lifetime of τ(21+)=10.4-0.8+2.2 ps the electric quadrupole moment was determined to be Q(21+)=-0.52(34) eb, indicating a predominant prolate deformation.Conclusions: This finding is in agreement with beyond-mean-field calculations using the Gogny D1S force and with results from the Monte Carlo shell-model approach.

  14. Doubly Excited States in Be III

    NASA Astrophysics Data System (ADS)

    Andersen, T.; Bentzen, S. M.; Poulsen, O.

    1980-01-01

    The triplet spectrum of doubly excited Be III has been studied in the wavelength region of 75-5000 Å in order to test the validity of the theoretical term values reported by Lipsky et al. The beam-foil excitation technique was applied to effectively populate the doubly excited states. The identified lower-lying, doubly excited states 2p2 3P, 2pnp 3P, or 3D, and 2pnd 3P, or 3D (n = 3, 4) show that the theoretical term values should be slightly modified.

  15. Coulomb energy averaged over the nl{sup N}-atomic states with a definite spin

    SciTech Connect

    Kibler, M.; Smirnov, Yu. F.

    1995-03-05

    A purely group-theoretical approach (for which the symmetric group plays a central role), based upon the use of properties of fractional-parentage coefficients and isoscalar factors, is developed for the derivation of the Coulomb energy averaged over the states, with a definite spin, arising from an atomic configuration nl{sup N}. 15 refs.

  16. Slow excited state phototautomerization in 3-hydroxyisoquinoline.

    PubMed

    Joshi, Neeraj Kumar; Arora, Priyanka; Pant, Sanjay; Joshi, Hem Chandra

    2014-06-01

    In the present work we report the spectral and photophysical properties of 3-hydroxyisoquinoline in various protic/aprotic solvents. Our steady state and time resolved fluorescence data indicates that in the monomer form of 3HIQ phototautomerization can take place in the excited state through excited state intramolecular proton, while as per earlier suggestions phototautomerization in 3HIQ occurs in dimer or complex (in the presence of acetic acid) form. Moreover, we find rather slow tautomerization (occurring on the nanosecond scale). It is found that proton transfer occurs both in the ground as well as excited states and is controlled by the polarity of the solvent.

  17. Hydrogen Bonds in Excited State Proton Transfer

    NASA Astrophysics Data System (ADS)

    Horke, D. A.; Watts, H. M.; Smith, A. D.; Jager, E.; Springate, E.; Alexander, O.; Cacho, C.; Chapman, R. T.; Minns, R. S.

    2016-10-01

    Hydrogen bonding interactions between biological chromophores and their surrounding protein and solvent environment significantly affect the photochemical pathways of the chromophore and its biological function. A common first step in the dynamics of these systems is excited state proton transfer between the noncovalently bound molecules, which stabilizes the system against dissociation and principally alters relaxation pathways. Despite such fundamental importance, studying excited state proton transfer across a hydrogen bond has proven difficult, leaving uncertainties about the mechanism. Through time-resolved photoelectron imaging measurements, we demonstrate how the addition of a single hydrogen bond and the opening of an excited state proton transfer channel dramatically changes the outcome of a photochemical reaction, from rapid dissociation in the isolated chromophore to efficient stabilization and ground state recovery in the hydrogen bonded case, and uncover the mechanism of excited state proton transfer at a hydrogen bond, which follows sequential hydrogen and charge transfer processes.

  18. New Insights in 4f(12)5d(1) Excited States of Tm(2+) through Excited State Excitation Spectroscopy.

    PubMed

    de Jong, Mathijs; Biner, Daniel; Krämer, Karl W; Barandiarán, Zoila; Seijo, Luis; Meijerink, Andries

    2016-07-21

    Optical excitation of ions or molecules typically leads to an expansion of the equilibrium bond lengths in the excited electronic state. However, for 4f(n-1)5d(1) excited states in lanthanide ions both expansion and contraction relative to the 4f(n) ground state have been reported, depending on the crystal field and nature of the 5d state. To probe the equilibrium distance offset between different 4f(n-1)5d(1) excited states, we report excited state excitation (ESE) spectra for Tm(2+) doped in CsCaBr3 and CsCaCl3 using two-color excited state excitation spectroscopy. The ESE spectra reveal sharp lines at low energies, confirming a similar distance offset for 4f(n-1)5d(t2g)(1) states. At higher energies, broader bands are observed, which indicate the presence of excited states with a different offset. On the basis of ab initio embedded-cluster calculations, the broad bands are assigned to two-photon d-d absorption from the excited state. In this work, we demonstrate that ESE is a powerful spectroscopic tool, giving access to information which cannot be obtained through regular one-photon spectroscopy. PMID:27347766

  19. New Insights in 4f(12)5d(1) Excited States of Tm(2+) through Excited State Excitation Spectroscopy.

    PubMed

    de Jong, Mathijs; Biner, Daniel; Krämer, Karl W; Barandiarán, Zoila; Seijo, Luis; Meijerink, Andries

    2016-07-21

    Optical excitation of ions or molecules typically leads to an expansion of the equilibrium bond lengths in the excited electronic state. However, for 4f(n-1)5d(1) excited states in lanthanide ions both expansion and contraction relative to the 4f(n) ground state have been reported, depending on the crystal field and nature of the 5d state. To probe the equilibrium distance offset between different 4f(n-1)5d(1) excited states, we report excited state excitation (ESE) spectra for Tm(2+) doped in CsCaBr3 and CsCaCl3 using two-color excited state excitation spectroscopy. The ESE spectra reveal sharp lines at low energies, confirming a similar distance offset for 4f(n-1)5d(t2g)(1) states. At higher energies, broader bands are observed, which indicate the presence of excited states with a different offset. On the basis of ab initio embedded-cluster calculations, the broad bands are assigned to two-photon d-d absorption from the excited state. In this work, we demonstrate that ESE is a powerful spectroscopic tool, giving access to information which cannot be obtained through regular one-photon spectroscopy.

  20. Coulomb charging energy of vacancy-induced states in graphene

    NASA Astrophysics Data System (ADS)

    Miranda, V. G.; Dias da Silva, Luis G. G. V.; Lewenkopf, C. H.

    2016-08-01

    Vacancies in graphene have been proposed to give rise to π -like magnetism in carbon materials, a conjecture which has been supported by recent experimental evidence. A key element in this "vacancy magnetism" is the formation of magnetic moments in vacancy-induced electronic states. In this work we compute the charging energy U of a single-vacancy-generated localized state for bulk graphene and graphene ribbons. We use a tight-binding model to calculate the dependency of the charging energy U on the amplitudes of the localized wave function on the graphene lattice sites. We show that for bulk graphene U scales with the system size L as (lnL) -2, confirming the predictions in the literature, based on heuristic arguments. In contrast, we find that for realistic system sizes U is of the order of eV, a value that is orders of magnitude higher than the previously reported estimates. Finally, when edges are considered, we show that U is very sensitive to the vacancy position with respect to the graphene flake boundaries. In the case of armchair nanoribbons, we find a strong enhancement of U in certain vacancy positions as compared to the value for vacancies in bulk graphene.

  1. Charmonium excited state spectrum in lattice QCD

    SciTech Connect

    Jozef Dudek; Robert Edwards; Nilmani Mathur; David Richards

    2008-02-01

    Working with a large basis of covariant derivative-based meson interpolating fields we demonstrate the feasibility of reliably extracting multiple excited states using a variational method. The study is performed on quenched anisotropic lattices with clover quarks at the charm mass. We demonstrate how a knowledge of the continuum limit of a lattice interpolating field can give additional spin-assignment information, even at a single lattice spacing, via the overlap factors of interpolating field and state. Excited state masses are systematically high with respect to quark potential model predictions and, where they exist, experimental states. We conclude that this is most likely a result of the quenched approximation.

  2. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    DOE PAGES

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-16

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Ourmore » findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.« less

  3. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    SciTech Connect

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-16

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Our findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.

  4. Coulomb-nuclear interference with {sup 6}Li: Isospin character of the 2{sub 1}{sup +} excitation in {sup 70,72,74}Ge

    SciTech Connect

    Barbosa, M.D.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Rodrigues, M.R.D.; Ukita, G.M.

    2005-02-01

    Ratios of B(E2) to B(IS2), that is, of the reduced quadrupole transition probabilities related, respectively, to charge and mass were extracted through Coulomb-nuclear interference (CNI) for the excitation of the 2{sub 1}{sup +} states in {sup 70,72,74}Ge, with a relative accuracy of less than 4%. For this purpose, the CNI angular distributions associated with the inelastic scattering of 28-MeV incident {sup 6}Li ions accelerated by the Sao Paulo Pelletron, and momentum analyzed by the Enge magnetic spectrograph were interpreted within the DWBA-DOMP approach (distorted wave approximation for the scattering process and deformed optical model for the structure representation) with global {sup 6}Li optical parameters. The present CNI results demonstrate an abrupt change in the B(E2)/B(IS2) ratio for {sup 74}Ge: although for {sup 70,72}Ge, values of the order of 1.0 or slightly higher were obtained, this ratio is 0.66 (7) for {sup 74}Ge. The heavier Ge isotope is thus one of the few nuclei that, so far, have been shown to present clear mixed symmetry components in their ground-state band.

  5. Electronic excited States of polynucleotides: a study by electroabsorption spectroscopy.

    PubMed

    Krawczyk, Stanislaw; Luchowski, Rafal

    2007-02-01

    Electroabsorption spectra were obtained for single-stranded polynucleotides poly(U), poly(C), poly(A), and poly(G) in glycerol/water glass at low temperature, and the differences in permanent dipole moment (Deltamu) and polarizability (Deltaalpha) were estimated for several spectral ranges covering the lowest energy absorption band around 260 nm. In each spectral range, the electrooptical parameters associated with apparent features in the absorption spectrum exhibit distinct values representing either a dominant single transition or the resultant value for a group of a relatively narrow cluster of overlapping transitions. The estimated spacing in energy between electronic origins of these transitions is larger than the electronic coupling within the Coulombic interaction model which is usually adopted in computational studies. The electroabsorption data allow us to distinguish a weak electronic transition associated with a wing in polynucleotide absorption spectra, at an energy below the electronic origin in absorption spectra of monomeric nucleobases. In poly(C) and poly(G), these low-energy transitions are related to increased values of Deltamu and Deltaalpha, possibly indicating a weak involvement of charge resonance in the respective excited states. A model capable of explaining the origin of low-energy excited states, based on the interaction of pipi* and npi* transitions in neighboring bases, is introduced and briefly discussed on the grounds of point dipole interaction. PMID:17266277

  6. Onset of collectivity in neutron-rich Sr and Kr isotopes: Prompt spectroscopy after Coulomb excitation at REX-ISOLDE, CERN

    NASA Astrophysics Data System (ADS)

    Clément, E.; Görgen, A.; Dijon, A.; de France, G.; Bastin, B.; Blazhev, A.; Bree, N.; Butler, P.; Delahaye, P.; Ekstrom, A.; Georgiev, G.; Hasan, N.; Iwanicki, J.; Jenkins, D.; Korten, W.; Larsen, A. C.; Ljungvall, J.; Moschner, K.; Napiorkowski, P.; Pakarinen, J.; Petts, A.; Renstrom, T.; Seidlitz, M.; Siem, S.; Sotty, C.; Srebrny, J.; Stefanescu, I.; Tveten, G. M.; Van de Walle, J.; Warr, N.; Wrzosek-Lipska, K.; Zielińska, M.; Bauer, C.; Bruyneel, B.; Butterworth, J.; Fitzpatrick, C.; Fransen, C.; Gernhäuser, R.; Hess, H.; Lutter, R.; Marley, P.; Reiter, P.; Siebeck, B.; Vermeulen, M.; Wiens, A.; De Witte, H.

    2013-12-01

    A rapid onset of quadrupole deformation is known to occur around the neutron number 60 in the neutron-rich Zr and Sr isotopes. This shape change has made the neutron-rich A = 100 region an active area of experimental and theoretical studies for many decades now. We report in this contribution new experimental results in the neutron rich 96,98Sr investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross section supporting the scenario of shape coexistence/change at N = 60. Future perspectives are presented including the recent experimental campaign performed at ILL-Grenoble.

  7. Impact of ground- and excited-state aromaticity on cyclopentadiene and silole excitation energies and excited-state polarities.

    PubMed

    Jorner, Kjell; Emanuelsson, Rikard; Dahlstrand, Christian; Tong, Hui; Denisova, Aleksandra V; Ottosson, Henrik

    2014-07-21

    A new qualitative model for estimating the properties of substituted cyclopentadienes and siloles in their lowest ππ* excited states is introduced and confirmed through quantum chemical calculations, and then applied to explain earlier reported experimental excitation energies. According to our model, which is based on excited-state aromaticity and antiaromaticity, siloles and cyclopentadienes are cross-hyperconjugated "aromatic chameleons" that adapt their electronic structures to conform to the various aromaticity rules in different electronic states (Hückel's rule in the π(2) electronic ground state (S0) and Baird's rule in the lowest ππ* excited singlet and triplet states (S1 and T1)). By using pen-and-paper arguments, one can explain polarity changes upon excitation of substituted cyclopentadienes and siloles, and one can tune their lowest excitation energies by combined considerations of ground- and excited-state aromaticity/antiaromaticity effects. Finally, the "aromatic chameleon" model can be extended to other monocyclic compound classes of potential use in organic electronics, thereby providing a unified view of the S0, T1, and S1 states of a range of different cyclic cross-π-conjugated and cross-hyperconjugated compound classes. PMID:25043523

  8. A relativistic time-dependent density functional study of the excited states of the mercury dimer.

    PubMed

    Kullie, Ossama

    2014-01-14

    In previous works on Zn2 and Cd2 dimers we found that the long-range corrected CAMB3LYP gives better results than other density functional approximations for the excited states, especially in the asymptotic region. In this paper, we use it to present a time-dependent density functional (TDDFT) study for the ground-state as well as the excited states corresponding to the (6s(2) + 6s6p), (6s(2) + 6s7s), and (6s(2) + 6s7p) atomic asymptotes for the mercury dimer Hg2. We analyze its spectrum obtained from all-electron calculations performed with the relativistic Dirac-Coulomb and relativistic spinfree Hamiltonian as implemented in DIRAC-PACKAGE. A comparison with the literature is given as far as available. Our result is excellent for the most of the lower excited states and very encouraging for the higher excited states, it shows generally good agreements with experimental results and outperforms other theoretical results. This enables us to give a detailed analysis of the spectrum of the Hg2 including a comparative analysis with the lighter dimers of the group 12, Cd2, and Zn2, especially for the relativistic effects, the spin-orbit interaction, and the performance of CAMB3LYP and is enlightened for similar systems. The result shows, as expected, that spinfree Hamiltonian is less efficient than Dirac-Coulomb Hamiltonian for systems containing heavy elements such as Hg2.

  9. A relativistic time-dependent density functional study of the excited states of the mercury dimer

    NASA Astrophysics Data System (ADS)

    Kullie, Ossama

    2014-01-01

    In previous works on Zn2 and Cd2 dimers we found that the long-range corrected CAMB3LYP gives better results than other density functional approximations for the excited states, especially in the asymptotic region. In this paper, we use it to present a time-dependent density functional (TDDFT) study for the ground-state as well as the excited states corresponding to the (6s2 + 6s6p), (6s2 + 6s7s), and (6s2 + 6s7p) atomic asymptotes for the mercury dimer Hg2. We analyze its spectrum obtained from all-electron calculations performed with the relativistic Dirac-Coulomb and relativistic spinfree Hamiltonian as implemented in DIRAC-PACKAGE. A comparison with the literature is given as far as available. Our result is excellent for the most of the lower excited states and very encouraging for the higher excited states, it shows generally good agreements with experimental results and outperforms other theoretical results. This enables us to give a detailed analysis of the spectrum of the Hg2 including a comparative analysis with the lighter dimers of the group 12, Cd2, and Zn2, especially for the relativistic effects, the spin-orbit interaction, and the performance of CAMB3LYP and is enlightened for similar systems. The result shows, as expected, that spinfree Hamiltonian is less efficient than Dirac-Coulomb Hamiltonian for systems containing heavy elements such as Hg2.

  10. Ab initio study on electronically excited states of lithium isocyanide, LiNC

    NASA Astrophysics Data System (ADS)

    Yasumatsu, Hisato; Jeung, Gwang-Hi

    2014-01-01

    The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ˜10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.

  11. Excited intruder states in {sup 32}Mg

    SciTech Connect

    Tripathi, Vandana; Tabor, S. L.; Bender, P.; Hoffman, C. R.; Lee, Sangjin; Pepper, K.; Perry, M.; Utsuno, Y.; Otsuka, T.; Mantica, P. F.; Pinter, J. S.; Stoker, J. B.; Cook, J. M.; Pereira, J.; Weisshaar, D.

    2008-03-15

    The low energy level structure of N=20 {sup 32}Mg obtained via {beta}-delayed {gamma} spectroscopy is reported. The level structure of {sup 32}Mg is found to be completely dominated by intruders. An inversion between the 1p-1h and 3p-3h states is observed for the negative parity states, similar to the 0p-0h and 2p-2h inversion for the positive parity states in these N{approx}20 nuclei. The intruder excited states, both positive and negative parity, are reasonably explained by Monte Carlo shell model calculations, which suggest a shrinking N=20 shell gap with decreasing Z.

  12. Paramagnetic excited vortex states in superconductors

    NASA Astrophysics Data System (ADS)

    Gomes, Rodolpho Ribeiro; Doria, Mauro M.; Romaguera, Antonio R. de C.

    2016-06-01

    We consider excited vortex states, which are vortex states left inside a superconductor once the external applied magnetic field is switched off and whose energy is lower than of the normal state. We show that this state is paramagnetic and develop here a general method to obtain its Gibbs free energy through conformal mapping. The solution for any number of vortices in any cross-section geometry can be read off from the Schwarz-Christoffel mapping. The method is based on the first-order equations used by Abrikosov to discover vortices.

  13. STIRAP on helium: Excitation to Rydberg states

    NASA Astrophysics Data System (ADS)

    Yuan, Deqian

    Research in optically induced transitions between dierent atomic levels has a long history. For transitions between states driven by a coherent optical eld, the theoretical eciency could be ideally high as 100% but there could be many factors preventing this. In the three state helium atom excitation process, i.e. 23S→33P→nL , the stimulated emission from intermediate state makes it hard to achieve ecient population transfer to the nal state through an intuitive excitation order. One technique to achieve a higher eciency is Stimulated Raman Adiabatic Passage (STIRAP) which is being studied and under research in our lab. Unlike traditional three level excitation processes, STIRAP actually uses a counter intuitive pulsed laser beams timing arrangement. The excitation objects are metastable helium atoms traveling in a vacuum system with a longitudinal velocity of ~ 1070 m/s. We are using a 389 nm UV laser to connect the 23S and the 33P state and a frequency tunable ~790 nm IR laser to connect the 33P state and the dierent Rydberg states. A third 1083 nm wavelength laser beam drives the 23S → 23P transition to transversely separate the residual metastable atoms and the Rydberg atoms for eciency measurements. The data is taken by a stainless steel detector in the vacuum system. As the Rydberg atoms will get ionized by blackbody radiation under room temperature, we can utilize this for their detection. An ion detector sitting on the eld plate is capable to collect the ion signals of the Rydberg atoms for detection. So far the whole system has not been ready for data collection and measurement, so here we are using data and results from previous theses for discussions. The highest transition frequency that has ever been achieved in our lab is around 70% after corrections.

  14. Accelerating slow excited state proton transfer.

    PubMed

    Stewart, David J; Concepcion, Javier J; Brennaman, M Kyle; Binstead, Robert A; Meyer, Thomas J

    2013-01-15

    Visible light excitation of the ligand-bridged assembly [(bpy)(2)Ru(a)(II)(L)Ru(b)(II)(bpy)(OH(2))(4+)] (bpy is 2,2'-bipyridine; L is the bridging ligand, 4-phen-tpy) results in emission from the lowest energy, bridge-based metal-to-ligand charge transfer excited state (L(-•))Ru(b)(III)-OH(2) with an excited-state lifetime of 13 ± 1 ns. Near-diffusion-controlled quenching of the emission occurs with added HPO(4)(2-) and partial quenching by added acetate anion (OAc(-)) in buffered solutions with pH control. A Stern-Volmer analysis of quenching by OAc(-) gave a quenching rate constant of k(q) = 4.1 × 10(8) M(-1) • s(-1) and an estimated pK(a)* value of ~5 ± 1 for the [(bpy)(2)Ru(a)(II)(L(•-))Ru(b)(III)(bpy)(OH(2))(4+)]* excited state. Following proton loss and rapid excited-state decay to give [(bpy)(2)Ru(a)(II)(L)Ru(b)(II)(bpy)(OH)(3+)] in a H(2)PO(4)(-)/HPO(4)(2-) buffer, back proton transfer occurs from H(2)PO(4)(-) to give [(bpy)(2)Ru(a)(II)(L)Ru(b)(bpy)(OH(2))(4+)] with k(PT,2) = 4.4 × 10(8) M(-1) • s(-1). From the intercept of a plot of k(obs) vs. [H(2)PO(4)(-)], k = 2.1 × 10(6) s(-1) for reprotonation by water providing a dramatic illustration of kinetically limiting, slow proton transfer for acids and bases with pK(a) values intermediate between pK(a)(H(3)O(+)) = -1.74 and pK(a)(H(2)O) = 15.7. PMID:23277551

  15. Accelerating slow excited state proton transfer

    PubMed Central

    Stewart, David J.; Concepcion, Javier J.; Brennaman, M. Kyle; Binstead, Robert A.; Meyer, Thomas J.

    2013-01-01

    Visible light excitation of the ligand-bridged assembly [(bpy)2RuaII(L)RubII(bpy)(OH2)4+] (bpy is 2,2′-bipyridine; L is the bridging ligand, 4-phen-tpy) results in emission from the lowest energy, bridge-based metal-to-ligand charge transfer excited state (L−•)RubIII-OH2 with an excited-state lifetime of 13 ± 1 ns. Near–diffusion-controlled quenching of the emission occurs with added HPO42− and partial quenching by added acetate anion (OAc−) in buffered solutions with pH control. A Stern–Volmer analysis of quenching by OAc− gave a quenching rate constant of kq = 4.1 × 108 M−1⋅s−1 and an estimated pKa* value of ∼5 ± 1 for the [(bpy)2RuaII(L•−)RubIII(bpy)(OH2)4+]* excited state. Following proton loss and rapid excited-state decay to give [(bpy)2RuaII(L)RubII(bpy)(OH)3+] in a H2PO4−/HPO42− buffer, back proton transfer occurs from H2PO4− to give [(bpy)2RuaII(L)Rub(bpy)(OH2)4+] with kPT,2 = 4.4 × 108 M−1⋅s−1. From the intercept of a plot of kobs vs. [H2PO4−], k = 2.1 × 106 s−1 for reprotonation by water providing a dramatic illustration of kinetically limiting, slow proton transfer for acids and bases with pKa values intermediate between pKa(H3O+) = −1.74 and pKa(H2O) = 15.7. PMID:23277551

  16. CHARMONIUM EXCITED STATES FROM LATTICE QCD

    SciTech Connect

    Jozef Dudek; Robert Edwards; Nilmani Mathur; David Richards

    2007-11-20

    We apply the variational method with a large basis of interpolating operators to demonstrate the feasibility of extracting multiple excited states in charmonium from lattice QCD. The calculation is performed in the quenched approximation to QCD, using the clover fermion action on an anisotropic lattice. A crucial element of our approach is a knowledge of the continuum limit of the interpolating operators, providing important additional information on the spin assignment of the states, even at a single value of the lattice spacing. Though we find excited-state masses that are systematically high with respect to the quark potential model, and the experimental masses where known, we attribute this as most likely an artifact of the quenched approximation.

  17. Pseudopotential Calculation of the Excited States of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Williamson, Andrew; Wang, Lin-Wang; Fu, Hiauxiang; Zunger, Alex

    1998-03-01

    We present the results of our pseudopotential calculations of up to 10 single-exciton states in free standing InP, InAs and CdSe quantum dots with diameters ranging from 10 to 50ÅIn the first step we solve for ≈20-40 single particle hole and electron states using a screened atomic pseudopotential Hamiltonian[1], solved within a plane wave basis using the Folded Spectrum Method[2]. In the second step, we calculate the electron-hole Coulomb energy[3] and the dipole transition probability for each of the ≈1000 possible single particle excitations. We present a comparison of the size scaling of the peaks in absorption and emission spectra obtained in our calculations with those from recent experiments and those of the effective mass based, k.p method. We also compare pseudopotential and k.p predictions of the character of the initial and final single particle states associated with each of these emission peaks. [1] J. Kim, A.J. Williamson, L.W. Wang, S.H-. Wei and A. Zunger, submitted to Phys. Rev. B [2] L. W. Wang and A. Zunger, J. Chem. Phys. 100, 2394 (1994). [3] A. Franceschetti and A. Zunger, Phys. Rev. Lett. 78, 915 (1997). *Supported under BES/OER/DMS contract No. DE---AC36---83CH10093

  18. Photoionization from excited states of helium

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.

    1973-01-01

    The cross sections for photoionization from the 2 1S, 2 3S, 2 1P and 2 3P excited states of helium are calculated for photoelectron energies below the n = 2 threshold of He(+) using Hylleraas bound state wave functions and 1s-2s-2p close coupling final state wave functions. The resonant structures associated with the lowest-lying 1S, 1P, 3P, and 1D autoionizing states of helium are found to be characterized by large values of the line profile parameter q. The cross sections and the photoelectron angular distribution asymmetry parameters for the P-states are calculated for various polarization states of the target atom and the incident photon. Experiments which would lead to the separate determinations of the S- and D- wave partial photoionization cross sections are discussed.

  19. Excited state baryon spectroscopy from lattice QCD

    DOE PAGES

    Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; Wallace, Stephen J.

    2011-10-31

    Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting ofmore » levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.« less

  20. Excited state baryon spectroscopy from lattice QCD

    SciTech Connect

    Edwards, Robert G.; Richards, David G.; Dudek, Jozef J.; Wallace, Stephen J.

    2011-10-01

    We present a calculation of the Nucleon and Delta excited state spectra on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including J=(7/2), of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of SU(6) x O(3) representations and a counting of levels that is consistent with the nonrelativistic qqq constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the 'missing resonance problem' and shows no signs of parity doubling of states.

  1. Excited state baryon spectroscopy from lattice QCD

    SciTech Connect

    Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; Wallace, Stephen J.

    2011-10-31

    Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting of levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.

  2. Coulomb interactions, Dirac sea polarization, and S U (4 ) symmetry breaking of the integer quantum Hall states of graphene

    NASA Astrophysics Data System (ADS)

    Lukose, Vinu; Shankar, R.

    2016-08-01

    We investigate effects of the filled Dirac sea on the S U (4 ) symmetry breaking for the integer quantum Hall states of graphene with long-ranged electrostatic Coulomb interactions. Our model also includes Hubbard and nearest-neighbor repulsive interactions with strengths U and V , respectively. We find the symmetry breaking of n =0 Landau level is accompanied by an S U (4 ) polarization of the filled Dirac sea. We compute the phase diagram for filling factor ν =0 ,±1 in the U -V space at magnetic fields relevant to experiments. The Dirac sea polarization significantly influences the phase diagram. It suppresses the Kekulé ordering at ν =0 and induces it at ν =±1 . We also calculate the excitation gaps at small tilted magnetic fields. This enables us to conclude that the ground state is a charge density wave at ν =0 and valley-spin polarized at ν =±1 . We delineate a region in the U -V space consistent with the experiments.

  3. Excited States of {sup 11}Be

    SciTech Connect

    Cappuzzello, F.; Cunsolo, A.; Fortier, S.; Foti, A.; Laurent, H.; Lenske, H.; Maison, J.M.; Melita, A.L.; Nociforo, C.; Rosier, L.; Stephan, C.; Tassan-Got, L.; Winfield, J.S.; Wolter, H.H.

    2000-12-31

    The {sup 11}B({sup 7}Li,{sup 7}Be){sup 11}Be reaction at 57 MeV incident energy was used to explore the {sup 11}Be excitation energy spectrum at forward angles. Angular distributions were extracted for the transitions to the ground and to the states of {sup 11}Be at excitation energies of E*=0.32, 1.78, 2.69, 3.41, 3.89, 3.96, 6.05 MeV combined with the ground and the first excited state of {sup 7}Be. Also the SDR [1][2] oscillation mode was observed at E*=9.5 MeV and FWHM{approx}9 MeV and a new peak at E*=6.05 MeV and FWHM{approx}0.3 MeV was observed. QRPA calculations in the G-matrix representation are in progress in order to describe the continuum structure of {sup 11}Be. DWBA calculations have been started to evaluate transferred angular momenta both in the one step and in the two steps dynamical framework.

  4. Ensemble density functional theory method correctly describes bond dissociation, excited state electron transfer, and double excitations

    SciTech Connect

    Filatov, Michael; Huix-Rotllant, Miquel; Burghardt, Irene

    2015-05-14

    State-averaged (SA) variants of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, SA-REKS and state-interaction (SI)-SA-REKS, implement ensemble density functional theory for variationally obtaining excitation energies of molecular systems. In this work, the currently existing version of the SA-REKS method, which included only one excited state into the ensemble averaging, is extended by adding more excited states to the averaged energy functional. A general strategy for extension of the REKS-type methods to larger ensembles of ground and excited states is outlined and implemented in extended versions of the SA-REKS and SI-SA-REKS methods. The newly developed methods are tested in the calculation of several excited states of ground-state multi-reference systems, such as dissociating hydrogen molecule, and excited states of donor–acceptor molecular systems. For hydrogen molecule, the new method correctly reproduces the distance dependence of the lowest excited state energies and describes an avoided crossing between the doubly excited and singly excited states. For bithiophene–perylenediimide stacked complex, the SI-SA-REKS method correctly describes crossing between the locally excited state and the charge transfer excited state and yields vertical excitation energies in good agreement with the ab initio wavefunction methods.

  5. Ensemble density functional theory method correctly describes bond dissociation, excited state electron transfer, and double excitations.

    PubMed

    Filatov, Michael; Huix-Rotllant, Miquel; Burghardt, Irene

    2015-05-14

    State-averaged (SA) variants of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, SA-REKS and state-interaction (SI)-SA-REKS, implement ensemble density functional theory for variationally obtaining excitation energies of molecular systems. In this work, the currently existing version of the SA-REKS method, which included only one excited state into the ensemble averaging, is extended by adding more excited states to the averaged energy functional. A general strategy for extension of the REKS-type methods to larger ensembles of ground and excited states is outlined and implemented in extended versions of the SA-REKS and SI-SA-REKS methods. The newly developed methods are tested in the calculation of several excited states of ground-state multi-reference systems, such as dissociating hydrogen molecule, and excited states of donor-acceptor molecular systems. For hydrogen molecule, the new method correctly reproduces the distance dependence of the lowest excited state energies and describes an avoided crossing between the doubly excited and singly excited states. For bithiophene-perylenediimide stacked complex, the SI-SA-REKS method correctly describes crossing between the locally excited state and the charge transfer excited state and yields vertical excitation energies in good agreement with the ab initio wavefunction methods.

  6. Aftershock triggering by postseismic stresses: A study based on Coulomb rate-and-state models

    NASA Astrophysics Data System (ADS)

    Cattania, Camilla; Hainzl, Sebastian; Wang, Lifeng; Enescu, Bogdan; Roth, Frank

    2015-04-01

    The spatiotemporal clustering of earthquakes is a feature of medium- and short-term seismicity, indicating that earthquakes interact. However, controversy exists about the physical mechanism behind aftershock triggering: static stress transfer and reloading by postseismic processes have been proposed as explanations. In this work, we use a Coulomb rate-and-state model to study the role of coseismic and postseismic stress changes on aftershocks and focus on two processes: creep on the main shock fault plane (afterslip) and secondary aftershock triggering by previous aftershocks. We model the seismic response to Coulomb stress changes using the Dieterich constitutive law and focus on two events: the Parkfield, Mw = 6.0, and the Tohoku, Mw = 9.0, earthquakes. We find that modeling secondary triggering systematically improves the maximum log likelihood fit of the sequences. The effect of afterslip is more subtle and difficult to assess for near-fault events, where model errors are largest. More robust conclusions can be drawn for off-fault aftershocks: following the Tohoku earthquake, afterslip promotes shallow crustal seismicity in the Fukushima region. Simple geometrical considerations indicate that afterslip-induced stress changes may have been significant on trench parallel crustal fault systems following several of the largest recorded subduction earthquakes. Moreover, the time dependence of afterslip strongly enhances its triggering potential: seismicity triggered by an instantaneous stress change decays more quickly than seismicity triggered by gradual loading, and as a result we find afterslip to be particularly important between few weeks and few months after the main shock.

  7. An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy

    SciTech Connect

    Kilcrease, D. P.; Colgan, J.; Hakel, P.; Fontes, C. J.; Sherrill, M. E.

    2015-06-20

    We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using the method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. Lastly, the corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.

  8. An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy

    DOE PAGES

    Kilcrease, D. P.; Colgan, J.; Hakel, P.; Fontes, C. J.; Sherrill, M. E.

    2015-06-20

    We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using themore » method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. Lastly, the corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.« less

  9. Final state interaction and Coulomb effect for neutrino-nucleus scattering in the quasielastic region

    SciTech Connect

    Kim, K. S.; Cheoun, M. K.

    2009-11-25

    We study the effect of final state interaction between outgoing nucleons and residual nuclei through total cross sections of neutrino-nucleus scattering within the framework of a relativistic single-particle model in the quasielastic region. To investigate the effect of the FSI, a relativistic phenomenological optical potential and a real potential for final nucleons are used. The real potential refers to no loss of flux while the optical potential indicates an absorption. We calculate both neutral-current reaction such as (v, v') and charged-current reactions like (v{sub e}, e{sup -}) and (v{sub {mu}}, {mu}{sup -}). In these calculations, {sup 12}C is used as a target nucleus and the incident neutrino (antineutrino) energies are exploited up to 2 GeV. We find that the effect of the FSI by the optical potential reduces cross sections about 50% and about 15% for the real potential. Furthermore, in the case of the charged-current reaction, we also calculate the Coulomb distortion of the outgoing leptons for {sup 12}C, {sup 40}Ca, and {sup 208}Pb. As a consequence, the effect of the Coulomb distortion is about a half by comparing with the case of electron scattering.

  10. An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy

    NASA Astrophysics Data System (ADS)

    Kilcrease, D. P.; Colgan, J.; Hakel, P.; Fontes, C. J.; Sherrill, M. E.

    2015-09-01

    We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using the method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. The corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.

  11. Doubly excited states in some light atoms

    SciTech Connect

    Berry, H.G.; Brooks, R.L.; Hardis, J.E.; Ray, W.J.

    1981-01-01

    We have identified a singlet transition in doubly excited helium: 2p/sup 2/ /sup 1/D - 2p3d /sup 1/D, at 3298 +- 2A with a full width of 54A or 0.061 +- 0.005 eV. This width is in good agreement with a previous measurement and theory for the width of the 2p/sup 2/ /sup 1/D/sub 2/ state. We have remeasured the decay rate of 1s/sup 2/2p/sup 2/P - 1s2p/sup 2/ /sup 2/P in Li I and find it is in good agreement with theory. Several transitions in doubly excited Li II have been identified in the 1000A region. No evidence was found for doubly excited quartet transitions in Li I in the vacuum ultraviolet. We present measurements of wavelengths and fine structure of the 1s2s2p/sup 2/ /sup 5/P - 1s2p/sup 3/ /sup 5/S transitions in C III, N IV and O V.

  12. Determination of the triton D-state parameter D2 from sub-Coulomb (d-->, t) measurements

    NASA Astrophysics Data System (ADS)

    Sen, S.; Knutson, L. D.

    1982-07-01

    Measurements of the tensor analyzing powers for sub-Coulomb (d-->, t) reactions on 91Zr at Ed=5 MeV and 147Sm at Ed=6.5 MeV are presented. The measurements are analyzed to obtain values of the triton D-state parameter D2. The results are found to be in good agreement with the D2 values derived from previous sub-Coulomb measurements, and lend support to the contention that analyzing power measurements for sub-Coulomb (d-->, t) reactions provide reliable information about the D-state components. NUCLEAR REACTIONS 91Zr(d-->, t), Ed=5.0 MeV, 147Sm(d-->, t), Ed=6.5 MeV; measured polarization parameters T20(θ), T21(θ), T22(θ) deduced D2. Enriched targets, DWBA analysis.

  13. Lifetime of the Excited State In Vivo

    PubMed Central

    Govindjee; Hammond, J. H.; Merkelo, H.

    1972-01-01

    Lifetime of the excited state (τ) of bacteriochlorophyll (BChl) in photosynthetic bacteria, measured with a mode-locked argon laser (oscillating at 488 nm; mode locked at 56 MHz) as light source, ranged from 0.3 to 2.5 nsec. These τ values are reported with a precision of ±0.1 nsec. The value of τ at high exciting light intensity (I) was two to three times that at low intensity. For young cultures of green bacterium Chloropseudomonas ethylicum, τ ranged from 0.5 (low I) to 1.0 nsec (high I); for those of the purple bacterium Rhodospirillum rubrum, from 0.4 (low I) to 1.0 nsec (high I); and for those of the BChl b-containing Rhodopseudomonas viridis, from 1.0 (low I) to 2.5 nsec (high I). These data provide information regarding the efficiencies of the photochemical process in these bacteria. Quantum yield (ø) of BChl fluorescence, calculated from ø = τ/τ0 (where τ0 is the intrinsic lifetime of fluorescence), ranges from 2-6% at low intensities to 6-14% at high intensities. PMID:4624833

  14. A relativistic time-dependent density functional study of the excited states of the mercury dimer

    SciTech Connect

    Kullie, Ossama E-mail: ossama.kullie@unistra.fr

    2014-01-14

    In previous works on Zn{sub 2} and Cd{sub 2} dimers we found that the long-range corrected CAMB3LYP gives better results than other density functional approximations for the excited states, especially in the asymptotic region. In this paper, we use it to present a time-dependent density functional (TDDFT) study for the ground-state as well as the excited states corresponding to the (6s{sup 2} + 6s6p), (6s{sup 2} + 6s7s), and (6s{sup 2} + 6s7p) atomic asymptotes for the mercury dimer Hg{sub 2}. We analyze its spectrum obtained from all-electron calculations performed with the relativistic Dirac-Coulomb and relativistic spinfree Hamiltonian as implemented in DIRAC-PACKAGE. A comparison with the literature is given as far as available. Our result is excellent for the most of the lower excited states and very encouraging for the higher excited states, it shows generally good agreements with experimental results and outperforms other theoretical results. This enables us to give a detailed analysis of the spectrum of the Hg{sub 2} including a comparative analysis with the lighter dimers of the group 12, Cd{sub 2}, and Zn{sub 2}, especially for the relativistic effects, the spin-orbit interaction, and the performance of CAMB3LYP and is enlightened for similar systems. The result shows, as expected, that spinfree Hamiltonian is less efficient than Dirac-Coulomb Hamiltonian for systems containing heavy elements such as Hg{sub 2}.

  15. Standoff alpha radiation detection via excited state absorption of air

    SciTech Connect

    Yao, Jimmy; Yin, Stuart Shizhuo; Brenizer, Jack; Hui, Rongqing

    2013-06-24

    A standoff alpha radiation detection technique based on the physical mechanism of excited state absorption of air molecules was explored and is presented in this paper. Instead of directly detecting the radiation via measuring the intensity of radiation induced air fluorescence, the radiation is detected via the excited state absorption of alpha radiation excited/ionized air molecules. Both theoretical analyses and experimental verifications were conducted. The experimental results confirmed that the radiation could be detected via excited state absorption of radiation excited/ionized air molecules at a 10 m standoff distance, which was consistent with the theoretical analyses.

  16. High-precision B(E2) measurements of semi-magic 58,60,62,64Ni by Coulomb excitation

    SciTech Connect

    Allmond, James M; Brown, Alex; Stuchbery, Andrew E; Galindo-Uribarri, Alfredo {nmn}; Padilla-Rodal, Elizabeth; Radford, David C; Batchelder, J. C.; Howard, Meredith E; Liang, J Felix; Manning, Brett M; Varner Jr, Robert L; Yu, Chang-Hong

    2014-01-01

    High-precision reduced electric-quadrupole transition probabilities B(E2) have been measured from single-step Coulomb excitation of semi-magic 58,60,62,64 Ni (Z = 28) beams at 1.8 MeV per nucleon on a natural carbon target. The energy loss of the nickel beams through the carbon target were directly measured with a zero-degree Bragg detector and the absolute B(E2) values were normalized by Rutherford scattering. The B(E2) values disagree with recent lifetime studies that employed the Doppler-shift attenuation method. The present high-precision B(E2) values reveal an asymmetry about 62 Ni, midshell between N = 28 and 40, with larger values towards 56 Ni (Z = N = 28). The experimental B(E2) values are compared with shell-model calculations in the full pf model space and the results indicate a soft 56 Ni core.

  17. Properties of chrysene in the higher triplet excited state

    NASA Astrophysics Data System (ADS)

    Cai, Xichen; Hara, Michihiro; Kawai, Kiyohiko; Tojo, Sachiko; Majima, Tetsuro

    2003-01-01

    Properties of chrysene in the higher triplet excited state were studied by the two-color two-laser flash photolysis method. Triplet energy transfers from chrysene in the higher triplet excited state to quenchers such as biphenyl and naphthalene, and from the quenchers in the triplet excited state back to chrysene in the ground state were observed to proceed at the diffusion-controlled rate. From dependence of the quenching efficiency on the quencher concentration, the lifetime of chrysene in the higher triplet excited state was estimated to be 60 ps with considering the time-dependent quenching.

  18. Excited state quantum phase transitions in many-body systems

    SciTech Connect

    Caprio, M.A. Cejnar, P.; Iachello, F.

    2008-05-15

    Phenomena analogous to ground state quantum phase transitions have recently been noted to occur among states throughout the excitation spectra of certain many-body models. These excited state phase transitions are manifested as simultaneous singularities in the eigenvalue spectrum (including the gap or level density), order parameters, and wave function properties. In this article, the characteristics of excited state quantum phase transitions are investigated. The finite-size scaling behavior is determined at the mean-field level. It is found that excited state quantum phase transitions are universal to two-level bosonic and fermionic models with pairing interactions.

  19. Computing electronic structures: A new multiconfiguration approach for excited states

    SciTech Connect

    Cances, Eric . E-mail: cances@cermics.enpc.fr; Galicher, Herve . E-mail: galicher@cermics.enpc.fr; Lewin, Mathieu . E-mail: lewin@cermic.enpc.fr

    2006-02-10

    We present a new method for the computation of electronic excited states of molecular systems. This method is based upon a recent theoretical definition of multiconfiguration excited states [due to one of us, see M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Rat. Mech. Anal. 171 (2004) 83-114]. Our algorithm, dedicated to the computation of the first excited state, always converges to a stationary state of the multiconfiguration model, which can be interpreted as an approximate excited state of the molecule. The definition of this approximate excited state is variational. An interesting feature is that it satisfies a non-linear Hylleraas-Undheim-MacDonald type principle: the energy of the approximate excited state is an upper bound to the true excited state energy of the N-body Hamiltonian. To compute the first excited state, one has to deform paths on a manifold, like this is usually done in the search for transition states between reactants and products on potential energy surfaces. We propose here a general method for the deformation of paths which could also be useful in other settings. We also compare our method to other approaches used in Quantum Chemistry and give some explanation of the unsatisfactory behaviours which are sometimes observed when using the latter. Numerical results for the special case of two-electron systems are provided: we compute the first singlet excited state potential energy surface of the H {sub 2} molecule.

  20. Proton release from Stentor photoreceptors in the excited states.

    PubMed Central

    Song, P S; Walker, E B; Auerbach, R A; Robinson, G W

    1981-01-01

    Steady-state and picosecond pulse excitations of the photophobic-phototactic receptors isolated from Stentor coeruleus produced anionic species predominantly in the excited singlet state, although neutral photoreceptors in the ground state were exclusively excited. The same photoreceptor in vivo also emits fluorescence from the excited state of its anionic species, with an excitation spectrum identical to the absorption spectrum of the neutral species in the ground state. The excited state dissociation of protons from the photoreceptor chromophore (stentorin; hypericin covalently linked to protein) efficiently occurs in less than 10 ps. A possible role of the transient-proton release from the photoreceptor, in the signal transduction photoresponse of Stentor, is briefly discussed. PMID:6791722

  1. Excited states in DNA strands investigated by ultrafast laser spectroscopy.

    PubMed

    Chen, Jinquan; Zhang, Yuyuan; Kohler, Bern

    2015-01-01

    Ultrafast laser experiments on carefully selected DNA model compounds probe the effects of base stacking, base pairing, and structural disorder on excited electronic states formed by UV absorption in single and double DNA strands. Direct π-orbital overlap between two stacked bases in a dinucleotide or in a longer single strand creates new excited states that decay orders of magnitude more slowly than the generally subpicosecond excited states of monomeric bases. Half or more of all excited states in single strands decay in this manner. Ultrafast mid-IR transient absorption experiments reveal that the long-lived excited states in a number of model compounds are charge transfer states formed by interbase electron transfer, which subsequently decay by charge recombination. The lifetimes of the charge transfer states are surprisingly independent of how the stacked bases are oriented, but disruption of π-stacking, either by elevating temperature or by adding a denaturing co-solvent, completely eliminates this decay channel. Time-resolved emission measurements support the conclusion that these states are populated very rapidly from initial excitons. These experiments also reveal the existence of populations of emissive excited states that decay on the nanosecond time scale. The quantum yield of these states is very small for UVB/UVC excitation, but increases at UVA wavelengths. In double strands, hydrogen bonding between bases perturbs, but does not quench, the long-lived excited states. Kinetic isotope effects on the excited-state dynamics suggest that intrastrand electron transfer may couple to interstrand proton transfer. By revealing how structure and non-covalent interactions affect excited-state dynamics, on-going experimental and theoretical studies of excited states in DNA strands can advance understanding of fundamental photophysics in other nanoscale systems.

  2. Excited-State Effective Masses in Lattice QCD

    SciTech Connect

    George Fleming, Saul Cohen, Huey-Wen Lin

    2009-10-01

    We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.

  3. Systematics of α -decay transitions to excited states

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Dumitrescu, A.

    2015-08-01

    We systematize the available experimental material concerning α -decay transitions to low-lying excited states in even-even and odd-mass emitters. We generalize our previous theoretical prediction concerning the linear dependence between hindrance factors and the excitation energy for transitions in even-even α emitters. Thus, we show that α intensities for transitions to excited states depend linearly upon the excitation energy for all known even-even and odd-mass α emitters. It turns out that the well-known Viola-Seaborg law for α -decay transitions between ground states can be generalized for transitions to excited states. This rule can be used to predict any α -decay half-life to a low-lying excited state.

  4. Correlation effects in EOM-CCSD for the excited states: evaluated by AIM localization index (LI) and delocalization index (DI).

    PubMed

    Wang, Yi-Gui; Wiberg, Kenneth B; Werstiuk, Nick H

    2007-05-10

    We have extended the evaluation and interpretation of QTAIM (quantum theory of atoms in molecules) localization and delocalization indices lambda (LI) and delta (DI) to electronic excited states by studying ground states (at HF and CCSD levels) and excited states (at CIS and EOM-CCSD) of H2C=CH2, HCCH, H2C=O, H2C=S, CO2, CS2, and SO2. These molecules undergo extensive geometrical changes upon the excitation to the valence adiabatic excited singlet state. The importance of Coulomb correlation effects was demonstrated by comparing the LIs and DIs at none-correlated levels (HF and CIS) and those at correlated levels (CCSD and EOM-CCSD). In interpreting the changes in the magnitudes of the LIs and DIs, we made use of simple molecular orbital and Walsh-diagram analyses. Coulomb correlation is important in determining the magnitude of the LIs and DIs and obtaining geometries that are close to experiment.

  5. The triplet excited state of Bodipy: formation, modulation and application.

    PubMed

    Zhao, Jianzhang; Xu, Kejing; Yang, Wenbo; Wang, Zhijia; Zhong, Fangfang

    2015-12-21

    Boron dipyrromethene (Bodipy) is one of the most extensively investigated organic chromophores. Most of the investigations are focused on the singlet excited state of Bodipy, such as fluorescence. In stark contrast, the study of the triplet excited state of Bodipy is limited, but it is an emerging area, since the triplet state of Bodipy is tremendously important for several areas, such as the fundamental photochemistry study, photodynamic therapy (PDT), photocatalysis and triplet-triplet annihilation (TTA) upconversion. The recent developments in the study of the production, modulation and application of the triplet excited state of Bodipy are discussed in this review article. The formation of the triplet state of Bodipy upon photoexcitation, via the well known approach such as the heavy atom effect (including I, Br, Ru, Ir, etc.), and the new methods, such as using a spin converter (e.g. C60), charge recombination, exciton coupling and the doubly substituted excited state, are summarized. All the Bodipy-based triplet photosensitizers show strong absorption of visible or near IR light and the long-lived triplet excited state, which are important for the application of the triplet excited state in PDT or photocatalysis. Moreover, the methods for switching (or modulation) of the triplet excited state of Bodipy were discussed, such as those based on the photo-induced electron transfer (PET), by controlling the competing Förster-resonance-energy-transfer (FRET), or the intermolecular charge transfer (ICT). Controlling the triplet excited state will give functional molecules such as activatable PDT reagents or molecular devices. It is worth noting that switching of the singlet excited state and the triplet state of Bodipy may follow different principles. Application of the triplet excited state of Bodipy in PDT, hydrogen (H2) production, photoredox catalytic organic reactions and TTA upconversion were discussed. The challenges and the opportunities in these areas were

  6. Excited state mass spectra of doubly heavy baryons {Ω _{cc}}, {Ω _{bb}}, and {Ω _{bc}}

    NASA Astrophysics Data System (ADS)

    Shah, Zalak; Thakkar, Kaushal; Rai, Ajay Kumar

    2016-10-01

    We discuss the mass spectrum of Ω baryon with two heavy quarks and one light quark ( ccs, bbs, and bcs). The main goal of the paper is to calculate the ground state masses and after that, the positive and negative parity excited states masses are also obtained within a hypercentral constituent quark model, using Coulomb plus linear potential framework. We also added a first order correction to the potential. The mass spectra up to 5S for radial excited states and 1P-5P, 1D-4D, and 1F-2F states for orbital excited states are computed for Ω _{cc}, Ω _{bb}, and Ω _{bc} baryons. Our obtained results are compared with other theoretical predictions, which could be a useful complementary tool for the interpretation of experimentally unknown heavy baryon spectra. The Regge trajectory is constructed in both the (n_r, M2) and the ( J, M2) planes for Ω _{cc}, Ω _{bb}, and Ω _{bc} baryons and their slopes and intercepts are also determined. Magnetic moments of doubly heavy Ω 's are also calculated.

  7. Probable nonexistence of a 3Pe metastable excited state of the positronium negative ion

    NASA Astrophysics Data System (ADS)

    Mills, Allen P., Jr.

    1981-12-01

    The H- ion is known to have a metastable 2p2 3Pe triplet excited state. To see if an analog of this state is present in the positronium negative ion Ps- the Coulomb binding energy Eb of the lowest-energy even-parity L=1 configuration of two identical-charge -e fermions of mass m1 plus one spinless particle of mass m2 and charge +e is calculated. We find a value of Eb below the n=2 level of the neutral atom for 0<=m2M<=0.17 and 0.90state exists for Ps-, where m2M=13.

  8. Excited-state charging energies in quantum dots investigated by terahertz photocurrent spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Shibata, K.; Nagai, N.; Ndebeka-Bandou, C.; Bastard, G.; Hirakawa, K.

    2016-06-01

    We have investigated the excited-state (ES) charging energies in quantum dots (QDs) by measuring a terahertz (THz)-induced photocurrent in a single-electron transistor (SET) geometry that contains a single InAs QD between metal nanogap electrodes. A photocurrent is produced in the QD SETs through THz intersublevel transitions and the subsequent resonant tunneling. We have found that the photocurrent exhibits stepwise change even within one Coulomb blockaded region as the electrochemical potential in the QD is swept by the gate voltage. From the threshold for the photocurrent generation, we have determined the charging energies for adding an electron in the photoexcited state in the QD. Furthermore, the charging energies for the ESs with different electron configurations are clearly resolved. The present THz photocurrent measurements are essentially dynamical experiments and allow us to analyze electronic properties in off-equilibrium states in the QD.

  9. Experimental Investigation of Excited-State Lifetimes in Atomic Ytterbium

    SciTech Connect

    Bowers, C.J.; Budker, D.; Commins, E.D.; DeMille, D.; Freedman, S.J.; Nguyen, A.-T.; Shang, S.-Q.; Zolotorev, M.; /SLAC

    2011-11-15

    Lifetimes of 21 excited states in atomic Yb were measured using time-resolved fluorescence detection following pulsed laser excitation. The lifetime of the 4f{sup 14}5d6s {sup 3}D{sub 1} state, which is of particular importance for a proposed study of parity nonconservation in atoms, was measured to be 380(30) ns.

  10. Charge-displacement analysis for excited states

    SciTech Connect

    Ronca, Enrico Tarantelli, Francesco; Pastore, Mariachiara Belpassi, Leonardo; De Angelis, Filippo; Angeli, Celestino; Cimiraglia, Renzo

    2014-02-07

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.

  11. Charge-displacement analysis for excited states

    NASA Astrophysics Data System (ADS)

    Ronca, Enrico; Pastore, Mariachiara; Belpassi, Leonardo; De Angelis, Filippo; Angeli, Celestino; Cimiraglia, Renzo; Tarantelli, Francesco

    2014-02-01

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.

  12. Excited-state dynamics of 3-hydroxyflavone anion in alcohols.

    PubMed

    Dereka, Bogdan; Letrun, Romain; Svechkarev, Denis; Rosspeintner, Arnulf; Vauthey, Eric

    2015-02-12

    The electronic absorption spectrum of 3-hydroxyflavone (3HF) in various solvents exhibits a long-wavelength (LW) band, whose origin has been debated. The excited-state dynamics of neutral and basic solutions of 3HF in alcohols upon excitation in this LW band has been investigated using a combination of fluorescence up-conversion and transient electronic and vibrational absorption spectroscopies. The ensemble of results reveals that, in neutral solutions, LW excitation results in the population of two excited species with similar fluorescence spectra but very different lifetimes, namely 40-100 ps and 2-3 ns, depending on the solvent. In basic solutions, the relative concentrations of these species change considerably in favor of that with the short-lived excited state. On the basis of the spectroscopic data and quantum chemistry calculations, the short lifetime is attributed to the excited state of 3HF anion, whereas the long one is tentatively assigned to an excited hydrogen-bonded complex with the solvent. Excited-state intermolecular proton transfer from the solvent to the anion yielding the tautomeric form of 3HF is not operative, as the excited anion decays to the ground state via an efficient nonradiative transition.

  13. Excited-State Deactivation of Branched Phthalocyanine Compounds.

    PubMed

    Zhu, Huaning; Li, Yang; Chen, Jun; Zhou, Meng; Niu, Yingli; Zhang, Xinxing; Guo, Qianjin; Wang, Shuangqing; Yang, Guoqiang; Xia, Andong

    2015-12-21

    The excited-state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis- and trisphthalocyanines) are studied by using steady-state and femtosecond transient absorption spectral measurements, where the excited-state energy-transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis-Pc). In trisphthalocyanine (tris-Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre-associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady-state spectra also show a face-to-face conformation in bis-Pc, whereas in tris-Pc, two of the three phthalocyanine branches form a pre-associated face-to-face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure-property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems.

  14. Photoionization of ground and excited states of Ti I

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2015-07-01

    Detailed photoionization of ground and many excited states with autoionizing resonances of neutral Ti are presented. Ti I with 22 electrons forms a large number of bound states, the present work finds a total of 908 bound states with n ⩽ 10 and l ⩽ 8 . Photoionization cross sections (σPI) for all these bound states have been obtained. Calculations were carried out in the close-coupling R-matrix method using a wave function expansion that included 36 states of core ion Ti II. It is found that the resonances enhance the low energy region of photoionization of the ground and low lying excited states. The resonant features will increase the opacity, as expected of astrophysical observation, and hence play important role in determination of abundances in the elements in the astronomical objects. The excited states also show prominent structures of Seaton or photo-excitation-of-core resonances.

  15. The influence of the mean charge state on the Coulomb heating of fast diclusters through the Si<1 1 1> direction

    NASA Astrophysics Data System (ADS)

    Nascimento, C. D.; Fadanelli, R. C.; Behar, M.

    2016-04-01

    In the present work, we report a theoretical and experimental study of the Coulomb heating of H2+ and C2+ in Si<1 1 1> channel, covering an energy range from 200 keV/ion to 2200 keV/ion. The experimental values for Coulomb heating were obtained by combining the Rutherford backscattering spectrometry (RBS) and the particle induced X-ray emission (PIXE) techniques under channeling conditions. Theoretical values were obtained by performing classical trajectory Monte-Carlo (CTMC) simulations of the ion paths inside the <1 1 1> Si channel, using Dirac-Hartree-Fock-Slater (DHFS) results for the interionic potential. As seen for the <1 1 0> case, it is shown that the use of a DHFS potential based on the ion mean charge states in amorphous targets leads to a disagreement between the Coulomb heating values and the expected potential energies stored in the dicluster prior to the Coulomb explosion. Therefore, a numerical procedure was used in order to calculate the mean charge state values for ions traveling in Si<1 1 1>. The use of the resulting charge states led to a linear relationship between the Coulomb heating values and the stored potential energy per ion of the diclusters. Finally, the Coulomb heating/stored potential energy ratio amounts to about 2/3, as expected from an isotropic Coulomb explosion.

  16. Excitation of weakly bound molecules to trilobitelike Rydberg states.

    PubMed

    Bellos, M A; Carollo, R; Banerjee, J; Eyler, E E; Gould, P L; Stwalley, W C

    2013-08-01

    We observe "trilobitelike" states of ultracold (85)Rb(2) molecules, in which a ground-state atom is bound by the electronic wave function of its Rydberg-atom partner. We populate these states through the ultraviolet excitation of weakly bound molecules, and access a regime of trilobitelike states at low principal quantum numbers and with vibrational turning points around 35 Bohr radii. This demonstrates that, unlike previous studies that used free-to-bound transitions, trilobitelike states can also be excited through bound-to-bound transitions. This approach provides high excitation probabilities without requiring high-density samples, and affords the ability to control the excitation radius by selection of the initial-state vibrational level.

  17. Disentangling intrinsic ultrafast excited-state dynamics of cytosine tautomers.

    PubMed

    Ho, Jr-Wei; Yen, Hung-Chien; Chou, Wei-Kuang; Weng, Chih-Nan; Cheng, Li-Hao; Shi, Hui-Qi; Lai, Szu-Hsueh; Cheng, Po-Yuan

    2011-08-01

    Gas-phase ultrafast excited-state dynamics of cytosine, 1-methylcytosine, and 5-fluorocytosine were investigated in molecular beams using femtosecond pump-probe photoionization spectroscopy to identify the intrinsic dynamics of the major cytosine tautomers. The results indicate that, upon photoexcitation in the first absorption band, the cytosine enol tautomer exhibits a significantly longer excited-state lifetime than its keto and imino counterparts. The initially excited states of the cytosine keto and imino tautomers decay with sub-picosecond dynamics for excitation wavelengths shorter than 300 nm, whereas that of the cytosine enol tautomer decays with time constants ranging from 3 to 45 ps for excitation between 260 and 285 nm.

  18. Study of excited nucleon states at EBAC: status and plans

    SciTech Connect

    Hiroyuki Kamano

    2009-12-01

    We present an overview of a research program for the excited nucleon states in Excited Baryon Analysis Center (EBAC) at Jefferson Lab. Current status of our analysis of the meson production reactions based on the unitary dynamical coupled-channels model is summarized, and the N* pole positions extracted from the constructed scattering amplitudes are presented. Our plans for future developments are also discussed.

  19. Excited-State Dynamics in Folic Acid and 6-CARBOXYPTERIN upon Uva Excitation

    NASA Astrophysics Data System (ADS)

    Huang, Huijuan; Vogt, R. Aaron; Crespo-Hernandez, Carlos E.

    2013-06-01

    The excited-state dynamics of folic acid (FA) and 6-carboxypterin (6CP) are poorly understood and work is needed to uncover the relaxation pathways that ultimately lead to their oxidative damage of DNA. In our approach, broad-band transient absorption spectroscopy was used to monitor the evolution of the excited states in FA and 6CP in basic aqueous solution upon excitation at 350 nm. In addition, quantum-chemical calculations were performed to assist in the interpretation of the experimental results and in the postulation of kinetic mechanisms. The combined experimental and computational results support a kinetic model where excitation of FA results in ultrafast charge separation (τ = 0.6 ps), which decays back to the ground state primarily by charge recombination with a lifetime of 2.2 ps. A small fraction of the charge transfer state undergoes intersystem crossing to populate the lowest-energy triplet state with a lifetime of 200 ps. On the other hand, a large fraction of the initially excited singlet state in 6CP decays by fluorescence emission with a lifetime of 100 ps, while intersystem crossing to the triplet state occurs with a lifetime of 4.4 ns. The potential implications of these results to the oxidative damage of DNA by FA and 6CP will be discussed. Funding from the National Science Foundation is gratefully acknowledged (CHE-1255084).

  20. A note on calm excited states of inflation

    SciTech Connect

    Ashoorioon, Amjad; Shiu, Gary E-mail: shiu@physics.wisc.edu

    2011-03-01

    We identify a two-parameter family of excited states within slow-roll inflation for which either the corrections to the two-point function or the characteristic signatures of excited states in the three-point function — i.e. the enhancement for the flattened momenta configurations– are absent. These excited states may nonetheless violate the adiabaticity condition maximally. We dub these initial states of inflation calm excited states. We show that these two sets do not intersect, i.e., those that leave the power-spectrum invariant can be distinguished from their bispectra, and vice versa. The same set of calm excited states that leave the two-point function invariant for slow-roll inflation, do the same task for DBI inflation. However, at the level of three-point function, the calm excited states whose flattened configuration signature is absent for slow-roll inflation, will lead to an enhancement for DBI inflation generally, although the signature is smaller than what suggested by earlier analysis. This example also illustrates that imposing the Wronskian condition is important for obtaining a correct estimate of the non-Gaussian signatures.

  1. Vibronic coupling in the excited-states of carotenoids.

    PubMed

    Miki, Takeshi; Buckup, Tiago; Krause, Marie S; Southall, June; Cogdell, Richard J; Motzkus, Marcus

    2016-04-28

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2 to the optically dark state S1. Extending this picture, some additional dark states (3A(g)(-) and 1B(u)(-)) and their interaction with the S2 state have also been suggested to play a major role in the ultrafast deactivation of carotenoids and their properties. Here, we investigate the interaction between such dark and bright electronic excited states of open chain carotenoids, particularly its dependence on the number of conjugated double bonds (N). We focus on the ultrafast wave packet motion on the excited potential surface, which is modified by the interaction between bright and dark electronic states. Such a coupling between electronic states leads to a shift of the vibrational frequency during the excited-state evolution. In this regard, pump-degenerate four-wave mixing (pump-DFWM) is applied to a series of carotenoids with different numbers of conjugated double bonds N = 9, 10, 11 and 13 (neurosporene, spheroidene, lycopene and spirilloxanthin, respectively). Moreover, we demonstrate in a closed-chain carotenoid (lutein) that the coupling strength and therefore the vibrational shift can be tailored by changing the energy degeneracy between the 1B(u)(+) and 1B(u)(-) states via solvent interaction.

  2. Bound states for a Coulomb-type potential induced by the interaction between a moving electric quadrupole moment and a magnetic field

    SciTech Connect

    Bakke, K.

    2014-02-15

    We discuss the arising of bound states solutions of the Schrödinger equation due to the presence of a Coulomb-type potential induced by the interaction between a moving electric quadrupole moment and a magnetic field. Furthermore, we study the influence of the Coulomb-type potential on the harmonic oscillator by showing a quantum effect characterized by the dependence of the angular frequency on the quantum numbers of the system, whose meaning is that not all values of the angular frequency are allowed. -- Highlights: • Interaction between a moving electric quadrupole moment and a magnetic field. • Arising of bound states solutions due to the presence of a Coulomb-type potential. • Influence of the Coulomb-type potential on the harmonic oscillator. • Dependence of the angular frequency on the quantum numbers of the system.

  3. The examination of berberine excited state by laser flash photolysis

    NASA Astrophysics Data System (ADS)

    Cheng, Lingli; Wang, Mei; Zhao, Ping; Zhu, Hui; Zhu, Rongrong; Sun, Xiaoyu; Yao, Side; Wang, Shilong

    2009-07-01

    The property of the excited triplet state of berberine (BBR) was investigated by using time-resolved laser flash photolysis of 355 nm in acetonitrile. The transient absorption spectra of the excited triplet BBR were obtained in acetonitrile, which have an absorption maximum at 420 nm. And the ratio of excitation to ionization of BBR in acetonitrile solvent was calculated. The self-decay and self-quenching rate constants, and the absorption coefficient of 3BBR* were investigated and the excited state quantum yield was determined. Furthermore utilizing the benzophenone (BEN) as a triplet sensitizer, and the β-carotene (Car) as an excited energy transfer acceptor, the assignment of 3BBR* was further confirmed and the related energy transfer rate constants were also determined.

  4. Peroxyacetyl radical: Electronic excitation energies, fundamental vibrational frequencies, and symmetry breaking in the first excited state

    SciTech Connect

    Copan, Andreas V.; Wiens, Avery E.; Nowara, Ewa M.; Schaefer, Henry F.; Agarwal, Jay

    2015-02-07

    Peroxyacetyl radical [CH{sub 3}C(O)O{sub 2}] is among the most abundant peroxy radicals in the atmosphere and is involved in OH-radical recycling along with peroxyacetyl nitrate formation. Herein, the ground (X{sup ~}) and first (A{sup ~}) excited state surfaces of cis and trans peroxyacetyl radical are characterized using high-level ab initio methods. Geometries, anharmonic vibrational frequencies, and adiabatic excitation energies extrapolated to the complete basis-set limit are reported from computations with coupled-cluster theory. Excitation of the trans conformer is found to induce a symmetry-breaking conformational change due to second-order Jahn-Teller interactions with higher-lying excited states. Additional benchmark computations are provided to aid future theoretical work on peroxy radicals.

  5. Characterizing RNA Excited States Using NMR Relaxation Dispersion.

    PubMed

    Xue, Yi; Kellogg, Dawn; Kimsey, Isaac J; Sathyamoorthy, Bharathwaj; Stein, Zachary W; McBrairty, Mitchell; Al-Hashimi, Hashim M

    2015-01-01

    Changes in RNA secondary structure play fundamental roles in the cellular functions of a growing number of noncoding RNAs. This chapter describes NMR-based approaches for characterizing microsecond-to-millisecond changes in RNA secondary structure that are directed toward short-lived and low-populated species often referred to as "excited states." Compared to larger scale changes in RNA secondary structure, transitions toward excited states do not require assistance from chaperones, are often orders of magnitude faster, and are localized to a small number of nearby base pairs in and around noncanonical motifs. Here, we describe a procedure for characterizing RNA excited states using off-resonance R1ρ NMR relaxation dispersion utilizing low-to-high spin-lock fields (25-3000 Hz). R1ρ NMR relaxation dispersion experiments are used to measure carbon and nitrogen chemical shifts in base and sugar moieties of the excited state. The chemical shift data are then interpreted with the aid of secondary structure prediction to infer potential excited states that feature alternative secondary structures. Candidate structures are then tested by using mutations, single-atom substitutions, or by changing physiochemical conditions, such as pH and temperature, to either stabilize or destabilize the candidate excited state. The resulting chemical shifts of the mutants or under different physiochemical conditions are then compared to those of the ground and excited states. Application is illustrated with a focus on the transactivation response element from the human immune deficiency virus type 1, which exists in dynamic equilibrium with at least two distinct excited states. PMID:26068737

  6. A simple formula for the energies of doubly excited states

    SciTech Connect

    Lin, C.D.; Watanabe, S.

    1986-11-01

    A simple formula for the energy levels of doubly excited states of atoms and multiply charged ions is derived and expressed in terms of a set of new correlation quantum numbers. The accuracy of the formula is checked by comparing with the results from other elaborate calculations. Modification of the formula for doubly excited states of multielectron atoms are also presented. 12 refs., 2 tabs.

  7. Characterizing RNA Excited States Using NMR Relaxation Dispersion.

    PubMed

    Xue, Yi; Kellogg, Dawn; Kimsey, Isaac J; Sathyamoorthy, Bharathwaj; Stein, Zachary W; McBrairty, Mitchell; Al-Hashimi, Hashim M

    2015-01-01

    Changes in RNA secondary structure play fundamental roles in the cellular functions of a growing number of noncoding RNAs. This chapter describes NMR-based approaches for characterizing microsecond-to-millisecond changes in RNA secondary structure that are directed toward short-lived and low-populated species often referred to as "excited states." Compared to larger scale changes in RNA secondary structure, transitions toward excited states do not require assistance from chaperones, are often orders of magnitude faster, and are localized to a small number of nearby base pairs in and around noncanonical motifs. Here, we describe a procedure for characterizing RNA excited states using off-resonance R1ρ NMR relaxation dispersion utilizing low-to-high spin-lock fields (25-3000 Hz). R1ρ NMR relaxation dispersion experiments are used to measure carbon and nitrogen chemical shifts in base and sugar moieties of the excited state. The chemical shift data are then interpreted with the aid of secondary structure prediction to infer potential excited states that feature alternative secondary structures. Candidate structures are then tested by using mutations, single-atom substitutions, or by changing physiochemical conditions, such as pH and temperature, to either stabilize or destabilize the candidate excited state. The resulting chemical shifts of the mutants or under different physiochemical conditions are then compared to those of the ground and excited states. Application is illustrated with a focus on the transactivation response element from the human immune deficiency virus type 1, which exists in dynamic equilibrium with at least two distinct excited states.

  8. Electron-impact excitation and ionization cross sections for ground state and excited helium atoms

    SciTech Connect

    Ralchenko, Yu. Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de

    2008-07-15

    Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n{<=}4 are treated individually, while the states with n{>=}5 are considered degenerate. For the processes involving transitions to and from n{>=}5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form.

  9. Investigation into chromophore excited-state coupling in allophycocyanin

    NASA Astrophysics Data System (ADS)

    Zheng, Xiguang; Zhao, Fuli; Wang, He Z.; Gao, Zhaolan; Yu, Zhenxin; Zhu, Jinchang; Xia, Andong; Jiang, Lijin

    1994-08-01

    Both theoretical and experimental studies are presented on chromophore excited-state coupling in linker-free allophycocyanin (APC), one of the antenna phycobiliproteins in algal photosynthesis. A three-site-coupling model has been introduced to describe the exciton interaction mechanism amoung the excited (beta) chromophore in APC, and the exciton energy splitting is estimated. Picosecond polarized fluorescence experiments both on monomeric and trimeric APC isolated from alga Spirulina platensis have been performed. The experimental results show that APC monomer and trimer exhibit remarkedly different spectropic characteristics, and satisfy the suggestion of strong excited- state coupling among chromophores in APC.

  10. Characterizing RNA Excited States using NMR Relaxation Dispersion

    PubMed Central

    Xue, Yi; Kellogg, Dawn; Kimsey, Isaac J; Sathyamoorthy, Bharathwaj; Stein, Zachary W; McBrairty, Mitchell; Al-Hashimi, Hashim M.

    2016-01-01

    Changes in RNA secondary structure play fundamental roles in the cellular functions of a growing number of non-coding RNAs. This chapter describes NMR-based approaches for characterizing microsecond-to-millisecond changes in RNA secondary structure that are directed toward short-lived and low-populated species often referred to as “excited states”. Compared to larger-scale changes in RNA secondary structure, transitions towards excited states do not require assistance from chaperones, are often orders of magnitude faster, and are localized to a small number of nearby base pairs in and around non-canonical motifs. Here we describe a procedure for characterizing RNA excited states using off-resonance R1ρ NMR relaxation dispersion utilizing low-to-high spin-lock fields (25–3000 Hz). R1ρ NMR relaxation dispersion experiments are used to measure carbon and nitrogen chemical shifts in base and sugar moieties of the excited state. The chemical shift data is then interpreted with the aid of secondary structure prediction to infer potential excited states that feature alternative secondary structures. Candidate structures are then tested by using mutations, single-atom substitutions, or by changing physiochemical conditions, such as pH and temperature, to either stabilize or destabilize the candidate excited state. The resulting chemical shifts of the mutants or under different physiochemical conditions are then compared to those of the ground and excited state. Application is illustrated with a focus on the transactivation response element (TAR) from the human immune deficiency virus type 1 (HIV-1), which exists in dynamic equilibrium with at least two distinct excited states. PMID:26068737

  11. Microwave spectroscopy of furfural in vibrationally excited states

    NASA Astrophysics Data System (ADS)

    Motiyenko, R. A.; Alekseev, E. A.; Dyubko, S. F.

    2007-07-01

    The results of microwave spectrum investigation of the excited vibrational states of furfural in the frequency range between 49 and 149 GHz are reported. In total 15 excited vibrational states (9 for trans-furfural and 6 for cis-furfural) were assigned and analyzed. Six of the 15 investigated states were assigned for the first time. Accurate values of rigid rotor and quartic centrifugal distortion constants of asymmetric top Hamiltonian have been determined for 13 excited states. Also for some states several sextic and octic level constants were needed in order to fit the data within experimental accuracy. The vt = 3 and vs = 1, va = 1 states of trans-furfural were found to be strongly perturbed and only rotational transitions with low Ka values can be reliably identified in this study.

  12. Excited States of the divacancy in SiC

    NASA Astrophysics Data System (ADS)

    Bockstedte, Michel; Garratt, Thomas; Ivady, Viktor; Gali, Adam

    2014-03-01

    The divacancy in SiC - a technologically mature material that fulfills the necessary requirements for hosting defect based quantum computing - is a good candidate for implementing a solid state quantum bit. Its ground state is isovalent to the NV center in diamond as demonstrated by density functional theory (DFT). Furthermore, coherent manipulation of divacancy spins in SiC has been demonstrated. The similarities to NV might indicate that the same inter system crossing (ICS) from the high to the low spin state is responsible for its spin-dependent fluorescent signal. By DFT and a DFT-based multi-reference hamiltonian we analyze the excited state spectrum of the defects. In contrast to the current picture of the spin dynamics of the NV center, we predict that a static Jahn-Teller effect in the first excited triplet states governs an ICS both with the excited and ground state of the divacancy.

  13. Neutral Excitations in the Gaffnian state

    NASA Astrophysics Data System (ADS)

    Kang, Byungmin; Moore, Joel E.

    The Fractional Quantum Hall Effect (FQHE) is one of the most well-studied systems having topological order. Starting with the pioneering work by Laughlin, the model wave function approach has been shown to provide essential information for understanding topological order in gapped incompressible states. We study a model wave function called the Gaffnian state which is believed to represent a gapless, strongly correlated state that is very different from conventional metals. To understand this exotic gapless state better, we provide a representation in which the pairing structure of the Gaffnian state becomes more explicit. We employ the single-mode approximation of the Girvin-MacDonald-Platzman (GMP) mode, which is a neutral collective exitation mode, in order to have a physical picture of the gaplessness of the Gaffnian state. In particular, we discuss how to extract systematically the relevant physics in the long-distance, large electron number limit of the FQH states using a numerical calculation with relatively few electrons.

  14. Dual state antiphase excitability in optically injected quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Kelleher, B.; Goulding, D.; Tykalewicz, B.; Fedorov, N.; Dubinkin, I.; Hegarty, S. P.; Huyet, G.; Erneux, T.; Viktorov, E. A.

    2016-04-01

    Depending on device and operating parameters, the emission of lasers based on InAs quantum dot (QD) material may come from the ground state (GS) only, from the first excited state (ES) only or simultaneously from both states. When the emission is from the ES only, optical injection at the GS frequency can completely suppress the ES output and instead, phase-locked emission from the GS can be obtained. We report on a variety of non-linear phenomena obtained when the frequency of the master laser is varied revealing two antiphase, dual-state excitable regimes.

  15. First observation of excited states in Li12

    NASA Astrophysics Data System (ADS)

    Hall, C. C.; Lunderberg, E. M.; Deyoung, P. A.; Baumann, T.; Bazin, D.; Blanchon, G.; Bonaccorso, A.; Brown, B. A.; Brown, J.; Christian, G.; Denby, D. H.; Finck, J.; Frank, N.; Gade, A.; Hinnefeld, J.; Hoffman, C. R.; Luther, B.; Mosby, S.; Peters, W. A.; Spyrou, A.; Thoennessen, M.

    2010-02-01

    The neutron-unbound ground state and two excited states of Li12 were formed by the two-proton removal reaction from a 53.4-MeV/u B14 beam. The decay energy spectrum of Li12 was measured with the Modular Neutron Array (MoNA) and the Sweeper dipole superconducting magnet at the National Superconducting Cyclotron Laboratory. Two excited states at resonance energies of 250 ± 20 keV and 555 ± 20 keV were observed for the first time and the data are consistent with the previously reported s-wave ground state with a scattering length of as=-13.7 fm.

  16. Direct observation of photoinduced bent nitrosyl excited-state complexes

    SciTech Connect

    Sawyer, Karma R.; Steele, Ryan P.; Glascoe, Elizabeth A.; Cahoon, James F.; Schlegel, Jacob P.; Head-Gordon, Martin; Harris, Charles B.

    2008-06-28

    Ground state structures with side-on nitrosyl ({eta}{sup 2}-NO) and isonitrosyl (ON) ligands have been observed in a variety of transition-metal complexes. In contrast, excited state structures with bent-NO ligands have been proposed for years but never directly observed. Here we use picosecond time-resolved infrared spectroscopy and density functional theory (DFT) modeling to study the photochemistry of Co(CO){sub 3}(NO), a model transition-metal-NO compound. Surprisingly, we have observed no evidence for ON and {eta}{sup 2}-NO structural isomers, but have observed two bent-NO complexes. DFT modeling of the ground and excited state potentials indicates that the bent-NO complexes correspond to triplet excited states. Photolysis of Co(CO){sub 3}(NO) with a 400-nm pump pulse leads to population of a manifold of excited states which decay to form an excited state triplet bent-NO complex within 1 ps. This structure relaxes to the ground triplet state in ca. 350 ps to form a second bent-NO structure.

  17. The excited state antiaromatic benzene ring: a molecular Mr Hyde?

    PubMed

    Papadakis, Raffaello; Ottosson, Henrik

    2015-09-21

    The antiaromatic character of benzene in its first ππ* excited triplet state (T1) was deduced more than four decades ago by Baird using perturbation molecular orbital (PMO) theory [J. Am. Chem. Soc. 1972, 94, 4941], and since then it has been confirmed through a range of high-level quantum chemical calculations. With focus on benzene we now first review theoretical and computational studies that examine and confirm Baird's rule on reversal in the electron count for aromaticity and antiaromaticity of annulenes in their lowest triplet states as compared to Hückel's rule for the ground state (S0). We also note that the rule according to quantum chemical calculations can be extended to the lowest singlet excited state (S1) of benzene. Importantly, Baird, as well as Aihara [Bull. Chem. Soc. Jpn. 1978, 51, 1788], early put forth that the destabilization and excited state antiaromaticity of the benzene ring should be reflected in its photochemical reactivity, yet, today these conclusions are often overlooked. Thus, in the second part of the article we review photochemical reactions of a series of benzene derivatives that to various extents should stem from the excited state antiaromatic character of the benzene ring. We argue that benzene can be viewed as a molecular "Dr Jekyll and Mr Hyde" with its largely unknown excited state antiaromaticity representing its "Mr Hyde" character. The recognition of the "Jekyll and Hyde" split personality feature of the benzene ring can likely be useful in a range of different areas. PMID:25960203

  18. The excited state antiaromatic benzene ring: a molecular Mr Hyde?

    PubMed

    Papadakis, Raffaello; Ottosson, Henrik

    2015-09-21

    The antiaromatic character of benzene in its first ππ* excited triplet state (T1) was deduced more than four decades ago by Baird using perturbation molecular orbital (PMO) theory [J. Am. Chem. Soc. 1972, 94, 4941], and since then it has been confirmed through a range of high-level quantum chemical calculations. With focus on benzene we now first review theoretical and computational studies that examine and confirm Baird's rule on reversal in the electron count for aromaticity and antiaromaticity of annulenes in their lowest triplet states as compared to Hückel's rule for the ground state (S0). We also note that the rule according to quantum chemical calculations can be extended to the lowest singlet excited state (S1) of benzene. Importantly, Baird, as well as Aihara [Bull. Chem. Soc. Jpn. 1978, 51, 1788], early put forth that the destabilization and excited state antiaromaticity of the benzene ring should be reflected in its photochemical reactivity, yet, today these conclusions are often overlooked. Thus, in the second part of the article we review photochemical reactions of a series of benzene derivatives that to various extents should stem from the excited state antiaromatic character of the benzene ring. We argue that benzene can be viewed as a molecular "Dr Jekyll and Mr Hyde" with its largely unknown excited state antiaromaticity representing its "Mr Hyde" character. The recognition of the "Jekyll and Hyde" split personality feature of the benzene ring can likely be useful in a range of different areas.

  19. Photocyclization Reactions of Diarylethenes via the Excited Triplet State.

    PubMed

    Murata, Ryutaro; Yago, Tomoaki; Wakasa, Masanobu

    2015-11-12

    Cyclization reactions of three diarylethene derivatives, 1,2-bis(2-methyl-3-benzothienyl)perfluorocyclopentene (BT), 1,2-bis(2-hexyl-3-benzothienyl)perfluorocyclopentene (BTHex), and 1,2-bis(2-isopropyl-3-benzothienyl)perfluorocyclopentene (BTiPr), via their excited triplet states were studied by means of steady-state and nanosecond transient absorption spectroscopy. The excited triplet states of BT, BTHex, and BTiPr were generated by energy transfer from the photoexcited triplet states of sensitizers such as xanthone, phenanthrene, and pyrene. The single-step quantum yields of the cyclization reactions from the excited triplet states of BT, BTHex, and BTiPr were determined to be 0.34, 0.53, and 0.65, respectively. The triplet energies of these three BTs were estimated to be 190-200 kJ mol(-1). PMID:26490486

  20. Controlling chimera states: The influence of excitable units.

    PubMed

    Isele, Thomas; Hizanidis, Johanne; Provata, Astero; Hövel, Philipp

    2016-02-01

    We explore the influence of a block of excitable units on the existence and behavior of chimera states in a nonlocally coupled ring-network of FitzHugh-Nagumo elements. The FitzHugh-Nagumo system, a paradigmatic model in many fields from neuroscience to chemical pattern formation and nonlinear electronics, exhibits oscillatory or excitable behavior depending on the values of its parameters. Until now, chimera states have been studied in networks of coupled oscillatory FitzHugh-Nagumo elements. In the present work, we find that introducing a block of excitable units into the network may lead to several interesting effects. It allows for controlling the position of a chimera state as well as for generating a chimera state directly from the synchronous state.

  1. Controlling chimera states: The influence of excitable units

    NASA Astrophysics Data System (ADS)

    Isele, Thomas; Hizanidis, Johanne; Provata, Astero; Hövel, Philipp

    2016-02-01

    We explore the influence of a block of excitable units on the existence and behavior of chimera states in a nonlocally coupled ring-network of FitzHugh-Nagumo elements. The FitzHugh-Nagumo system, a paradigmatic model in many fields from neuroscience to chemical pattern formation and nonlinear electronics, exhibits oscillatory or excitable behavior depending on the values of its parameters. Until now, chimera states have been studied in networks of coupled oscillatory FitzHugh-Nagumo elements. In the present work, we find that introducing a block of excitable units into the network may lead to several interesting effects. It allows for controlling the position of a chimera state as well as for generating a chimera state directly from the synchronous state.

  2. Coulomb drag

    NASA Astrophysics Data System (ADS)

    Narozhny, B. N.; Levchenko, A.

    2016-04-01

    Coulomb drag is a transport phenomenon whereby long-range Coulomb interaction between charge carriers in two closely spaced but electrically isolated conductors induces a voltage (or, in a closed circuit, a current) in one of the conductors when an electrical current is passed through the other. The magnitude of the effect depends on the exact nature of the charge carriers and the microscopic, many-body structure of the electronic systems in the two conductors. Drag measurements have become part of the standard toolbox in condensed matter physics that can be used to study fundamental properties of diverse physical systems including semiconductor heterostructures, graphene, quantum wires, quantum dots, and optical cavities.

  3. Nature of ground and electronic excited states of higher acenes.

    PubMed

    Yang, Yang; Davidson, Ernest R; Yang, Weitao

    2016-08-30

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle-particle random-phase approximation calculation. The (1)Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state (3)B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state (1)B2u is a zwitterionic state to the short axis. The excited (1)Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the (1)B2u and excited (1)Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved. PMID:27528690

  4. Nature of ground and electronic excited states of higher acenes.

    PubMed

    Yang, Yang; Davidson, Ernest R; Yang, Weitao

    2016-08-30

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle-particle random-phase approximation calculation. The (1)Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state (3)B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state (1)B2u is a zwitterionic state to the short axis. The excited (1)Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the (1)B2u and excited (1)Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved.

  5. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    NASA Astrophysics Data System (ADS)

    Theophilou, Iris; Tassi, M.; Thanos, S.

    2014-04-01

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations.

  6. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    SciTech Connect

    Theophilou, Iris; Tassi, M.; Thanos, S.

    2014-04-28

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations.

  7. Super-atom molecular orbital excited states of fullerenes.

    PubMed

    Johansson, J Olof; Bohl, Elvira; Campbell, Eleanor E B

    2016-09-13

    Super-atom molecular orbitals are orbitals that form diffuse hydrogenic excited electronic states of fullerenes with their electron density centred at the centre of the hollow carbon cage and a significant electron density inside the cage. This is a consequence of the high symmetry and hollow structure of the molecules and distinguishes them from typical low-lying molecular Rydberg states. This review summarizes the current experimental and theoretical studies related to these exotic excited electronic states with emphasis on femtosecond photoelectron spectroscopy experiments on gas-phase fullerenes.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'.

  8. Coulomb Damping

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  9. Lifetime of the Excited State In Vivo

    PubMed Central

    Mar, T.; Govindjee; Singhal, G. S.; Merkelo, H.

    1972-01-01

    Using a mode-locked laser (λ, 632.8 nm), fluorescence decay of chlorophyll (Chl) a in the green alga Chlorella pyrenoidosa, the red alga Porphyridium cruentum, and the blue-green alga Anacystis nidulans was measured by the phase-shift method under conditions when photosynthesis was not operative (3-(3,4-dichlorophenyl)-1,1-dimethylurea [DCMU] poisoning, or cooling to 77°K). In the presence of 10-5 M DCMU, the lifetime of Chl a fluorescence (τ) at room temperature is about 1.7 nsec in Chlorella, 1.0 nsec in Porphyridium, and 0.7 nsec in Anacystis. At 77°K, τ is 1.4 nsec (for fluorescence at about 685 nm, F-685) and 2.3 nsec (for F-730) in Chlorella, 0.9 nsec (F-685) and 1.2 nsec (F-730) in Porphyridium, and 0.8 nsec (F-685 and F-730) in Anacystis. From the above measurement, and the assumption that τ0 (the intrinsic fluorescence lifetime) for Chl a in all three algae is 15.2 nsec, we have calculated the rate constants of radiationless transition (that includes energy transfer to weakly fluorescent system I) processes competing with fluorescence at room temperature to be about 5 × 108 sec-1 in Chlorella, 9 × 108 sec-1 in Porphyridium, and 13 × 108 sec-1 in Anacystis. At 77°K, this rate constant for Chl a that fluoresces at 685 nm remains, in the first approximation, the same as at room temperature. From the τ data, the rate constant for the trapping of excitation energy is calculated to be about 1.2 × 109 sec-1 for Chlorella, 2 × 109 sec-1 for Porphyridium, and 2 × 109 sec-1 for Anacystis. The efficiency of trapping is calculated to be about 66% (Chlorella), 68% (Porphyridium), and 60% (Anacystis). (It is recognized that variations in the above values are to be expected if algae grown under different conditions are used for experimentation.) The maximum quantum yield of Chl a fluorescence for system II (λ, 632.8 nm), calculated from τ measurements, is about 10% in Chlorella, 6-7% in Porhyridium, and 5% in Anacystis under conditions when photosynthesis

  10. Multiscale excited state lifetimes of protonated dimethyl aminopyridines.

    PubMed

    Soorkia, Satchin; Broquier, Michel; Grégoire, Gilles

    2016-09-14

    The excited state dynamics of protonated ortho (2-) and para (4-) dimethyl aminopyridine molecules (DMAPH(+)) has been studied through pump-probe photofragmentation spectroscopy and excited state coupled-cluster CC2 calculations. Multiscale temporal dynamics has been recorded over 9 orders of magnitude from subpicosecond to millisecond. The initially locally excited ππ* state rapidly decays within about 100 fs into a charge transfer state following 90° twist motion of the dimethyl amino group. While this twisted intramolecular charge transfer (TICT) state does not trigger any fragmentation, it selectively leads to specific two-color photofragments through absorption of the probe photon at 355 nm. Besides, the optically dark TICT state provides an efficient deactivation path with high intersystem probability to non-dissociative long-lived triplet states. Such a multiscale pump-probe photodissociation scheme paves the way to systematic studies of charge transfer reactions in the excited state of cold ionic systems stored in a cryogenic cooled ion trap and probed continuously up to the millisecond time scale. PMID:27524459

  11. Multiscale excited state lifetimes of protonated dimethyl aminopyridines.

    PubMed

    Soorkia, Satchin; Broquier, Michel; Grégoire, Gilles

    2016-09-14

    The excited state dynamics of protonated ortho (2-) and para (4-) dimethyl aminopyridine molecules (DMAPH(+)) has been studied through pump-probe photofragmentation spectroscopy and excited state coupled-cluster CC2 calculations. Multiscale temporal dynamics has been recorded over 9 orders of magnitude from subpicosecond to millisecond. The initially locally excited ππ* state rapidly decays within about 100 fs into a charge transfer state following 90° twist motion of the dimethyl amino group. While this twisted intramolecular charge transfer (TICT) state does not trigger any fragmentation, it selectively leads to specific two-color photofragments through absorption of the probe photon at 355 nm. Besides, the optically dark TICT state provides an efficient deactivation path with high intersystem probability to non-dissociative long-lived triplet states. Such a multiscale pump-probe photodissociation scheme paves the way to systematic studies of charge transfer reactions in the excited state of cold ionic systems stored in a cryogenic cooled ion trap and probed continuously up to the millisecond time scale.

  12. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    NASA Astrophysics Data System (ADS)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally

  13. Spectroscopy and excited state dynamics of the HNF (DNF) molecule

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Dagdigian, Paul J.

    1992-05-01

    Laser fluorescence excitation has been employed to detect HNF and its isotopomer DNF in the F/HN3(DN3) system. The observation of this molecule in the F+HN3 reaction has confirmed that this reaction proceeds to form HNF+N2, as well as the well-known HF+N3 products. Laser fluorescence excitation scans were taken for a number of HNF and DNF à 2A'(0,v'2,0)-X˜ 2A`(0,0,0) bands. For DNF, excitation of the à (0,2,1) and (0,3,1) levels were also detected. A partial rotational analysis of the DNF bands was carried out. With the derived A rotational constants and previously determined HNF rotational constants, it was possible to derive ground and excited state vibrationally averaged geometries. The K structure of the bands was observed to become simpler with increasing v2, reflecting the reduction in the highest K' levels observable by fluorescence excitation. Decay lifetimes for a variety of HNF and DNF à 2A' excited levels were determined. It was found that the decay rate, scaled approximately by the ν3 factor, increases abruptly at an energy of 23 800±500 cm-1 above the HNF(X˜ 2A`) zero-point level. This threshold is tentatively assigned to the onset of a predissociation channel. The ground and excited states of HNF form a Renner-Teller pair, whose energies become degenerate at linear geometries. The excited state dynamics of HNF (DNF) is compared with the dynamics of the well-studied Renner-Teller molecules HCO and HNO.

  14. Effect of nuclear-reaction mechanisms on the population of excited nuclear states and isomeric ratios

    NASA Astrophysics Data System (ADS)

    Skobelev, N. K.

    2016-07-01

    Experimental data on the cross sections for channels of fusion and transfer reactions induced by beams of radioactive halo nuclei and clustered and stable loosely bound nuclei were analyzed, and the results of this analysis were summarized. The interplay of the excitation of single-particle states in reaction-product nuclei and direct reaction channels was established for transfer reactions. Respective experiments were performed in stable (6Li) and radioactive (6He) beams of the DRIBs accelerator complex at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, and in deuteron and 3He beams of the U-120M cyclotron at the Nuclear Physics Institute, Academy Sciences of Czech Republic (Řež and Prague, Czech Republic). Data on subbarrier and near-barrier fusion reactions involving clustered and loosely bound light nuclei (6Li and 3He) can be described quite reliably within simple evaporation models with allowance for different reaction Q-values and couple channels. In reactions involving halo nuclei, their structure manifests itself most strongly in the region of energies below the Coulomb barrier. Neutron transfer occurs with a high probability in the interactions of all loosely bound nuclei with light and heavy stable nuclei at positive Q-values. The cross sections for such reactions and the respective isomeric ratios differ drastically for nucleon stripping and nucleon pickup mechanisms. This is due to the difference in the population probabilities for excited single-particle states.

  15. State-Selective Excitation of Quantum Systems via Geometrical Optimization.

    PubMed

    Chang, Bo Y; Shin, Seokmin; Sola, Ignacio R

    2015-09-01

    We lay out the foundations of a general method of quantum control via geometrical optimization. We apply the method to state-selective population transfer using ultrashort transform-limited pulses between manifolds of levels that may represent, e.g., state-selective transitions in molecules. Assuming that certain states can be prepared, we develop three implementations: (i) preoptimization, which implies engineering the initial state within the ground manifold or electronic state before the pulse is applied; (ii) postoptimization, which implies engineering the final state within the excited manifold or target electronic state, after the pulse; and (iii) double-time optimization, which uses both types of time-ordered manipulations. We apply the schemes to two important dynamical problems: To prepare arbitrary vibrational superposition states on the target electronic state and to select weakly coupled vibrational states. Whereas full population inversion between the electronic states only requires control at initial time in all of the ground vibrational levels, only very specific superposition states can be prepared with high fidelity by either pre- or postoptimization mechanisms. Full state-selective population inversion requires manipulating the vibrational coherences in the ground electronic state before the optical pulse is applied and in the excited electronic state afterward, but not during all times.

  16. Accurate Excited State Geometries within Reduced Subspace TDDFT/TDA.

    PubMed

    Robinson, David

    2014-12-01

    A method for the calculation of TDDFT/TDA excited state geometries within a reduced subspace of Kohn-Sham orbitals has been implemented and tested. Accurate geometries are found for all of the fluorophore-like molecules tested, with at most all valence occupied orbitals and half of the virtual orbitals included but for some molecules even fewer orbitals. Efficiency gains of between 15 and 30% are found for essentially the same level of accuracy as a standard TDDFT/TDA excited state geometry optimization calculation. PMID:26583218

  17. 2{sup +} excitation of the {sup 12}C Hoyle state

    SciTech Connect

    Freer, M.; Fujita, H.; Carter, J.; Usman, I.; Buthelezi, Z.; Foertsch, S. V.; Neveling, R.; Perez, S. M.; Smit, F. D.; Fearick, R. W.; Papka, P.; Swartz, J. A.

    2009-10-15

    A high-energy-resolution magnetic spectrometer has been used to measure the {sup 12}C excitation energy spectrum to search for the 2{sup +} excitation of the 7.65 MeV, 0{sup +} Hoyle state. By measuring in the diffractive minimum of the angular distribution for the broad 0{sup +} background, evidence is found for a possible 2{sup +} state at 9.6(1) MeV with a width of 600(100) keV. The implications for the {sup 8}Be+{sup 4}He reaction rate in stellar environments are discussed.

  18. First-principles Calculation of Excited State Spectra in QCD

    SciTech Connect

    Jozef Dudek,Robert Edwards,Michael Peardon,David Richards,Christopher Thomas

    2011-05-01

    Recent progress at understanding the excited state spectra of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum of QCD, and then present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I emphasise the need to extend the calculation to encompass multi-hadron contributions, and describe a recent calculation of the I=2 pion-pion energy-dependent phase shifts as a precursor to the study of channels with resonant behavior. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.

  19. Coherent excitation of a single atom to a Rydberg state

    SciTech Connect

    Miroshnychenko, Y.; Gaeetan, A.; Evellin, C.; Grangier, P.; Wilk, T.; Browaeys, A.; Comparat, D.; Pillet, P.

    2010-07-15

    We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d{sub 3/2} using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between ground and Rydberg states of the atom. We analyze the observed oscillations in detail and compare them to numerical simulations which include imperfections of our experimental system. Strategies for future improvements on the coherent manipulation of a single atom in our settings are given.

  20. Formation of metastable excited states during sputtering of transition metals

    SciTech Connect

    Wucher, A.; Sroubek, Z.

    1997-01-01

    We propose a simple model which treats the formation of metastable excited neutral atoms during sputtering of a transition metal as a two step process. First, the energy deposited into the electronic system of the solid by electronic energy losses of all moving particles in the collision cascade is considered to lead to a locally altered equilibrium electronic state of the solid. It is found that this step is dominated by collective interaction with the conduction band electrons rather than by electron promotion in binary atom-atom collisions. Second, sputtered excited atoms are assumed to be formed by resonant neutralization of excited ions (reflecting the altered equilibrium state) while crossing the surface. It is shown that this model explains the total as well as the velocity dependent excitation probability observed in recent experiments on sputtered neutral silver atoms, which cannot be understood in terms of existing theories describing the formation of excited states in sputtering. {copyright} {ital 1996} {ital The American Physical Society}

  1. Formation of ground and excited states of antihydrogen

    SciTech Connect

    Nahar, S.N.; Wadehra, J.M.

    1988-06-01

    Differential and integrated cross sections for the formation of antihydrogen by the impact of intermediate-energy (20--500 keV) antiprotons on positronium are calculated using the first Born approximation. The calculations are carried out for the formation of antihydrogen in ground and various excited electronic states (n = 1--3) when positronium, the target atom, is in the ground state, and for the formation of antihydrogen in the ground state when the positronium is in various excited electronic states (n = 1--2). The 1/n/sup 3/ behavior for the capture cross sections is used to calculate the total (that is, all states added together) integrated cross sections. The cross sections for the formation of antihydrogen presented here are obtained from those for the formation of positronium by the impact of positrons on hydrogen atoms by using charge invariance and the principle of detailed balance.

  2. Equation of state calculations for two-dimensional dust coulomb crystal at near zero temperature by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Djouder, M.; Kermoun, F.; Mitiche, M. D.; Lamrous, O.

    2016-01-01

    Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere.

  3. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission.

    PubMed

    Sen, Ananya; Matthews, Edward M; Hou, Gao-Lei; Wang, Xue-Bin; Dessent, Caroline E H

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ∼1.7 eV, values that are lower than the RCB of the uncomplexed PtCl6 (2-) dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl6 (2-) ⋅ thymine and PtCl6 (2-) ⋅ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)4 (2-) ⋅ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl6 (2-) ⋅ nucleobase spectra obtained in this work, as for the previously studied Pt(CN)4 (2-) ⋅ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a "dynamic tag" which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to allow autodetachment.

  4. Photoelectron Spectroscopy of Hexachloroplatinate-Nucleobase Complexes: Nucleobase Excited State Decay Observed via Delayed Electron Emission

    SciTech Connect

    Sen, Ananya; Matthews, Edward M.; Hou, Gao-Lei; Wang, Xue B.; Dessent, Caroline

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ~1.7 eV, values that are lower than the RCB of the uncomplexed PtCl6 2- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl6 2-∙thymine and PtCl6 2-∙adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)4 2-∙nucleobase complexes [Sen et al, J. Phys. Chem. B, 119, 11626, 2015]. The observation of delayed electron emission bands in the PtCl6 2-∙nucleobase spectra obtained in this work, as for the previously studied Pt(CN)4 2-∙nucleobase complexes, is attributed to onephoton excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a timescale long enough to allow autodetachment.

  5. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission.

    PubMed

    Sen, Ananya; Matthews, Edward M; Hou, Gao-Lei; Wang, Xue-Bin; Dessent, Caroline E H

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ∼1.7 eV, values that are lower than the RCB of the uncomplexed PtCl6 (2-) dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl6 (2-) ⋅ thymine and PtCl6 (2-) ⋅ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)4 (2-) ⋅ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl6 (2-) ⋅ nucleobase spectra obtained in this work, as for the previously studied Pt(CN)4 (2-) ⋅ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a "dynamic tag" which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to allow autodetachment. PMID:26567662

  6. Tuning ground states and excitations in complex electronic materials

    SciTech Connect

    Bishop, A.R.

    1996-09-01

    Modern electronic materials are characterized by a great variety of broken-symmetry ground states and excitations. Their control requires understanding and tuning underlying driving forces of spin-charge-lattice coupling, critical to macroscopic properties and applications. We report representative model calculations which demonstrate some of the richness of the phenomena and the challenges for successful microscopic modeling.

  7. Suppression of excited-state absorption in laser crystals

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena; Kolesov, Roman; Kocharovskaya, Olga

    2004-10-01

    Currently, a lot of experimental effort in solid-state optics is devoted to searching for laser materials suitable for tunable lasing, primarily in UV and VUV spectral regions. Researchers mainly focus on optical crystals doped with either transition metal or rare-earth ions. The latter ones doped into wide bandgap dielectric crystals have spectrally broad vibronic emission bands associated with 4fn-15d â" 4fn interconfigurational transitions, whose energies lie mostly in UV and VUV regions of the spectrum. The transitions are electric-dipole-allowed, therefore have large absorption and emission cross-sections, and are promising for efficient tunable laser action. However, in almost all promising crystals laser action in UV and VUV is hindered or completely prohibited due to excited-state absorption (ESA), i.e. absorption from metastable laser levels to higher-energy states, which occurs at emission or/and pump wavelengths. A method of suppression of losses due to excited-state absorption (ESA) in laser crystals is proposed, based on a well-known phenomenon of electromagnetically induced transparency (EIT). Absorption from a populated excited electronic state can be reduced under the action of an additional driving coherent field, resonantly coupling the terminal state of ESA to some intermediate discrete state.

  8. Excitation energies of double isobar-analog states in heavy nuclei

    SciTech Connect

    Poplavskii, I. V.

    1988-12-01

    Several new relationships are established for isomultiplets on the basis of a theory in which the Coulomb coupling constant (CCC) is allowed to be complex. In particular, the following rule is formulated: the energies for fission or decay of members of an isomultiplet into a charged cluster and members of the corresponding daughter isomultiplet are equidistant. This relationship is well satisfied for isomultiplets with /ital A/less than or equal to60. By extrapolating the rule for fission and decay energies to the region of heavy nuclei, the excitation energies /ital E//sub /ital x// of double isobar-analog states (DIASs) are found for the nuclei /sup 197,199/Hg, /sup 205/Pb, /sup 205 - -209/Po, /sup 209/At, and /sup 238/Pu. A comparison of the computed energies /ital E//sub /ital x// with the experimentally measured values for /sup 208/Po attest to the reliability and good accuracy of the method proposed here when used to determine the excitation energies of DIASs in heavy nuclei.

  9. Two-Photon Excitation of trans-Stilbene: Spectroscopy and Dynamics of Electronically Excited States above S1.

    PubMed

    Houk, Amanda L; Zheldakov, Igor L; Tommey, Tyler A; Elles, Christopher G

    2015-07-23

    The photoisomerization dynamics of trans-stilbene have been well studied in the lowest excited state, but much less is known about the behavior following excitation to higher-lying electronically excited states. This contribution reports a combined study of the spectroscopy and dynamics of two-photon accessible states above S1. Two-photon absorption (2PA) measurements using a broadband pump-probe technique reveal distinct bands near 5.1 and 6.4 eV. The 2PA bands have absolute cross sections of 40 ± 16 and 270 ± 110 GM, respectively, and a pump-probe polarization dependence that suggests both of the transitions access Ag-symmetry excited states. Separate transient absorption measurements probe the excited-state dynamics following two-photon excitation into each of the bands using intense pulses of 475 and 380 nm light, respectively. The initially excited states rapidly relax via internal conversion, leading to the formation of an S1 excited-state absorption band that is centered near 585 nm and evolves on a time scale of 1-2 ps due to intramolecular vibrational relaxation. The subsequent evolution of the S1 excited-state absorption is identical to the behavior following direct one-photon excitation of the lowest excited state at 4.0 eV. The complementary spectroscopy and dynamics measurements provide new benchmarks for computational studies of the electronic structure and dynamics of this model system on excited states above S1. Probing the dynamics of molecules in their higher-lying excited states is an important frontier in chemical reaction dynamics.

  10. Excited state nucleon spectrum with two flavors of dynamical fermions

    SciTech Connect

    Bulava, John M.; Foley, Justin; Morningstar, Colin; Edwards, Robert G.; Joo, Balint; Lin, Huey-Wen; Richards, David G.; Engelson, Eric; Wallace, Stephen J.; Lichtl, Adam; Mathur, Nilmani

    2009-02-01

    Highly excited states for isospin (1/2) baryons are calculated for the first time using lattice QCD with two flavors of dynamical quarks. Anisotropic lattices are used with two pion masses, m{sub {pi}}=416(36) MeV and 578(29) MeV. The lowest four energies are reported in each of the six irreducible representations of the octahedral group at each pion mass. The lattices used have dimensions 24{sup 3}x64, spatial lattice spacing a{sub s}{approx_equal}0.11 fm, and temporal lattice spacing a{sub t}=(1/3)a{sub s}. Clear evidence is found for a (5{sup -}/2) state in the pattern of negative-parity excited states. This agrees with the pattern of physical states and spin (5/2) has been realized for the first time on the lattice.

  11. Lattice QCD determination of patterns of excited baryon states

    SciTech Connect

    Basak, Subhasish; Edwards, R. G.; Richards, D. G.; Fleming, G. T.; Juge, K. J.; Lichtl, A.; Morningstar, C.; Sato, I.; Wallace, S. J.

    2007-10-01

    Energies for excited isospin I=(1/2) and I=(3/2) states that include the nucleon and {delta} families of baryons are computed using quenched, anisotropic lattices. Baryon interpolating field operators that are used include nonlocal operators that provide G{sub 2} irreducible representations of the octahedral group. The decomposition of spin (5/2) or higher spin states is realized for the first time in a lattice QCD calculation. We observe patterns of degenerate energies in the irreducible representations of the octahedral group that correspond to the subduction of the continuum spin (5/2) or higher. The overall pattern of low-lying excited states corresponds well to the pattern of physical states subduced to the irreducible representations of the octahedral group.

  12. Lattice QCD determination of patterns of excited baryon states

    SciTech Connect

    Subhasish Basak; Robert Edwards; George Fleming; Keisuke Juge; Adam Lichtl; Colin Morningstar; David Richards; Ikuro Sato; Stephen Wallace

    2007-10-01

    Energies for excited isospin I = 1/2 and I = 3/2 states that include the nucleon and Delta families of baryons are computed using quenched, anisotropic lattices. Baryon interpolating field operators that are used include nonlocal operators that provide G2 irreducible representations of the octahedral group. The decomposition of spin 5/2 or higher spin states is realized for the first time in a lattice QCD calculation. We observe patterns of degenerate energies in the irreducible representations of the octahedral group that correspond to the subduction of the continuum spin 5/2 or higher. The overall pattern of low-lying excited states corresponds well to the pattern of physical states subduced to the irreducible representations of the octahedral group.

  13. Excited-state quantum phase transition in the Rabi model

    NASA Astrophysics Data System (ADS)

    Puebla, Ricardo; Hwang, Myung-Joong; Plenio, Martin B.

    2016-08-01

    The Rabi model, a two-level atom coupled to a harmonic oscillator, can undergo a second-order quantum phase transition (QPT) [M.-J. Hwang et al., Phys. Rev. Lett. 115, 180404 (2015), 10.1103/PhysRevLett.115.180404]. Here we show that the Rabi QPT accompanies critical behavior in the higher-energy excited states, i.e., the excited-state QPT (ESQPT). We derive analytic expressions for the semiclassical density of states, which show a logarithmic divergence at a critical energy eigenvalue in the broken symmetry (superradiant) phase. Moreover, we find that the logarithmic singularities in the density of states lead to singularities in the relevant observables in the system such as photon number and atomic polarization. We corroborate our analytical semiclassical prediction of the ESQPT in the Rabi model with its numerically exact quantum mechanical solution.

  14. Exotic nucleus helium 9 and its excited states

    SciTech Connect

    Seth, K.K.; Artuso, M.; Barlow, D.; Iversen, S.; Kaletka, M.; Nann, H.; Parker, B.; Soundranayagam, R.

    1987-05-11

    The ground state and several excited states of /sup 9/He, the most neutron-rich nucleus to date, have been identified by means of the reaction /sup 9/Be(..pi../sup -/,..pi../sup +/) /sup 9/He. The mass excess of the ground state has been measured and it is found that the nucleus is unbound against single-neutron decay by 1.13 +- 0.10 MeV only. It is found that the excited-state spectrum of this nucleus, which is very far from the valley of stability, is in good agreement with the predictions of ''no-core'' shell-model calculations whose parameters were optimized for the stable nuclei in the valley.

  15. Excited state cross sections for Er-doped glasses

    NASA Astrophysics Data System (ADS)

    Zemon, Stanley A.; Lambert, Gary M.; Miniscalco, William J.; Davies, Richard W.; Hall, Bruce T.; Folweiler, Robert C.; Wei, Ta-Sheng; Andrews, Leonard J.; Singh, Mahendra P.

    1991-01-01

    Excited-state-absorption (ESA) cross sections were determined for the region between 760 and 900 nm for Er-doped fluorophosphate phosphate and silicate glasses. Measurements were performed on multimode fibers pumping at 647 nm with powers 1 . 5 Wto invert the population into the saturation regime. Over much of the 800-nm band ground-state-absorption (GSA) cross sections are equal to or greater than ESA cross sections. For comparison ESA was also measured for singlemode Al/P-doped silica fiber. The cross sections were incorporated into an amplifier model and the phosphate and fluorophosphate glasses were found to provide higher gain than silica for pumping in the 800-nm band. Photoexcited fluorozirconates were found to have substantial populations in the first four excited states and ESA transitions originating from these states are identified.

  16. Direct excitation of butterfly states in Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Lippe, Carsten; Niederpruem, Thomas; Thomas, Oliver; Eichert, Tanita; Ott, Herwig

    2016-05-01

    Since their first theoretical prediction Rydberg molecules have become an increasing field of research. These exotic states originate from the binding of a ground state atom in the electronic wave function of a highly-excited Rydberg atom mediated by a Fermi contact type interaction. A special class of long-range molecular states, the butterfly states, were first proposed by Greene et al.. These states arise from a shape resonance in the p-wave scattering channel of a ground state atom and a Rydberg electron and are characterized by an electron wavefunction whose density distribution resembles the shape of a butterfly. We report on the direct observation of deeply bound butterfly states of Rydberg molecules of 87 Rb. The butterfly states are studied by high resolution spectroscopy of UV-excited Rydberg molecules. We find states bound up to - 50 GHz from the 25 P1/2 , F = 1 state, corresponding to binding lengths of 50a0 to 500a0 and with permanent electric dipole moments of up to 500 Debye. This distinguishes the observed butterfly states from the previously observed long range Rydberg molecules in rubidium.

  17. Ultrafast excited-state dynamics of copper(I) complexes.

    PubMed

    Iwamura, Munetaka; Takeuchi, Satoshi; Tahara, Tahei

    2015-03-17

    Bis-diimine Cu(I) complexes exhibit strong absorption in the visible region owing to the metal-to-ligand charge transfer (MLCT) transitions, and the triplet MLCT ((3)MLCT) states have long lifetimes. Because these characteristics are highly suitable for photosensitizers and photocatalysts, bis-diimine Cu(I) complexes have been attracting much interest. An intriguing feature of the Cu(I) complexes is the photoinduced structural change called "flattening". Bis-diimine Cu(I) complexes usually have tetrahedron-like D2d structures in the ground (S0) state, in which two ligands are perpendicularly attached to the Cu(I) ion. With MLCT excitation, the central Cu(I) ion is formally oxidized to Cu(II), which induces the structural change to the "flattened" square-planar-like structure that is seen for usual Cu(II) complexes. In this Account, we review our recent studies on ultrafast excited-state dynamics of bis-diimine Cu(I) complexes carried out using femtosecond time-resolved optical spectroscopy. Focusing on three prototypical bis-diimine Cu(I) complexes that have 1,10-phenanthroline ligands with different substituents at the 2,9-positions, i.e., [Cu(phen)2](+) (phen = 1,10-phenanthroline), [Cu(dmphen)2](+) (dmphen = 2,9-dimethyl-1,10-phenanthroline), and [Cu(dpphen)2](+) (dpphen = 2,9-diphenyl-1,10-phenanthroline), we examined their excited-state dynamics by time-resolved emission and absorption spectroscopies with 200 fs time resolution, observed the excited-state coherent nuclear motion with 30 fs time resolution and performed complementary theoretical calculations. This combined approach vividly visualizes excited-state processes in the MLCT state of bis-diimine Cu(I) complexes. It was demonstrated that flattening distortion, internal conversion, and intersystem crossing occur on the femtosecond-early picosecond time scale, and their dynamics is clearly identified separately. The flattening distortion predominantly occurs in the S1 state on the subpicosecond time

  18. Excited States of the Diatomic Molecule CrHe

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Ratschek, Martin; Hauser, Andreas W.; Ernst, Wolfgang E.

    2013-06-01

    Chromium (Cr) atoms embedded in superfluid helium nanodroplets (He_N) have been investigated by laser induced fluorescence, beam depletion and resonant two-photon ionization spectroscopy in current experiments at our institute. Cr is found to reside inside the He_N in the a^7S ground state. Two electronically excited states, z^7P and y^7P, are involved in a photoinduced ejection process which allowed us to study Fano resonances in the photoionisation spectra The need for a better understanding of the experimental observations triggered a theoretical approach towards the computation of electronically excited states via high-level methods of computational chemistry. Two well-established, wave function-based methods, CASSCF and MRCI, are combined to calculate the potential energy curves for the three states involved. The character of the two excited states z^7P and y^7P turns out to be significantly different. Theory predicts the ejection of the Cr atom in the case of an y^7P excitation as was observed experimentally. The quasi-inert helium environment is expected to weaken spin selection rules, allowing a coupling between different spin states especially during the ejection process. We therefore extend our theoretical analysis to the lowest state in the triplet- and quintet- manifold. Most of these alternative states show very weak bonding of only a few wn. A. Kautsch, M. Hasewend, M. Koch and W. E. Ernst, Phys. Rev. A 86, 033428 (2012). A. Kautsch, M. Koch and W. E. Ernst, J. Phys. Chem. A, accepted, doi:10.1021/jp312336m}.

  19. Doubly Excited Resonance States of Helium Atom: Complex Entropies

    NASA Astrophysics Data System (ADS)

    Kuroś, Arkadiusz; Kościk, Przemysław; Saha, Jayanta K.

    2016-09-01

    We provide a diagonal form of a reduced density matrix of S-symmetry resonance states of two electron systems determined under the framework of the complex scaling method. We have employed the variational Hylleraas type wavefunction to estimate the complex entropies in doubly excited resonance states of helium atom. Our results are in good agreement with the corresponding ones determined under the framework of the stabilization method (Lin and Ho in Few-Body Syst 56:157, 2015).

  20. Integrating proton coupled electron transfer (PCET) and excited states

    SciTech Connect

    Gagliardi, Christopher J.; Westlake, Brittany C.; Kent, Caleb A.; Paul, Jared J.; Papanikolas, John M.; Meyer, Thomas J.

    2010-11-01

    In many of the chemical steps in photosynthesis and artificial photosynthesis, proton coupled electron transfer (PCET) plays an essential role. An important issue is how excited state reactivity can be integrated with PCET to carry out solar fuel reactions such as water splitting into hydrogen and oxygen or water reduction of CO2 to methanol or hydrocarbons. The principles behind PCET and concerted electron–proton transfer (EPT) pathways are reasonably well understood. In Photosystem II antenna light absorption is followed by sensitization of chlorophyll P680 and electron transfer quenching to give P680+. The oxidized chlorophyll activates the oxygen evolving complex (OEC), a CaMn4 cluster, through an intervening tyrosine–histidine pair, YZ. EPT plays a major role in a series of four activation steps that ultimately result in loss of 4e-/4H+ from the OEC with oxygen evolution. The key elements in photosynthesis and artificial photosynthesis – light absorption, excited state energy and electron transfer, electron transfer activation of multiple-electron, multiple-proton catalysis – can also be assembled in dye sensitized photoelectrochemical synthesis cells (DS-PEC). In this approach, molecular or nanoscale assemblies are incorporated at separate electrodes for coupled, light driven oxidation and reduction. Separate excited state electron transfer followed by proton transfer can be combined in single semi-concerted steps (photo-EPT) by photolysis of organic charge transfer excited states with H-bonded bases or in metal-to-ligand charge transfer (MLCT) excited states in pre-associated assemblies with H-bonded electron transfer donors or acceptors. In these assemblies, photochemically induced electron and proton transfer occur in a single, semi-concerted event to give high-energy, redox active intermediates.

  1. Excited-state collisions of trapped 85Rb atoms

    NASA Astrophysics Data System (ADS)

    Hoffmann, D.; Feng, P.; Williamson, R. S., III; Walker, T.

    1992-08-01

    We descrbe a new method for measuring excited-state collisions between optically trapped atoms. With this method, trap-loss collision rates are deduced from the loading behavior of clouds of trapped atoms in the regime where radiation trapping limits the atom density. Our measurements indicate that 85Rb trap-loss collisions occur at significantly smaller rates than expected both from previous work on Cs and from recent models. In addition, the dependence of the trap-loss collisions on the frequency of the light used to excite the atom pairs is also different from that of Cs, suggesting that assumptions about the dynamics in these models need modification.

  2. Photodissociation of N2O: excitation of 1A" states.

    PubMed

    Schinke, Reinhard; Schmidt, Johan A

    2012-11-26

    We investigate the contributions of the lowest two (1)A" states in the UV photodissociation of N(2)O employing three-dimensional potential energy surfaces and transition dipole moment functions. Because the transition dipole moments are much smaller than for the 2 (1)A' state, we conclude that excitation of the (1)A" states has a marginal effect. The dense vibrational spectrum of the quasi-bound 2(1)A" state possibly explains some of the tiny, noise-like structures of the measured absorption spectrum. PMID:22536943

  3. Excited S-symmetry states of positronic lithium and beryllium

    NASA Astrophysics Data System (ADS)

    Strasburger, Krzysztof

    2016-04-01

    The possibility of the existence of excited S-symmetry states of positronic lithium and beryllium, resulting from the positron attachment to high-spin P parent atomic states, is examined and confirmed with variational calculations in the basis of explicitly correlated Gaussian functions. The unexpectedly different order of the energies of the S and P states is explained by the formation of the positronium cluster structure and associated disappearance of the destabilizing centrifugal force. The annihilation properties of newly discovered states are discussed in the context of prospective experimental detection.

  4. Excited S-symmetry states of positronic lithium and beryllium.

    PubMed

    Strasburger, Krzysztof

    2016-04-14

    The possibility of the existence of excited S-symmetry states of positronic lithium and beryllium, resulting from the positron attachment to high-spin P parent atomic states, is examined and confirmed with variational calculations in the basis of explicitly correlated Gaussian functions. The unexpectedly different order of the energies of the S and P states is explained by the formation of the positronium cluster structure and associated disappearance of the destabilizing centrifugal force. The annihilation properties of newly discovered states are discussed in the context of prospective experimental detection. PMID:27083730

  5. Intramolecular energy transfer and excitation coupling in metal-to-ligand charge transfer (MLCT) excited states

    NASA Astrophysics Data System (ADS)

    Riesen, Hans; Krausz, Elmars

    1995-02-01

    Several new spectroscopic studies relating to the coupling and dynamics in the spin-forbidden 3MLCT excited states of the chromophores [Ru(bpy)3]2+ and [Os(bpy)3]2+ (bpy equals 2,2'-bipyridine) in the racemic crystal lattices [Ru(bpy)3](PF6)2, [Ru(bpy)3](ClO4)2 and [Zn(bpy)3](ClO4)2 are presented. In the first of these lattices there are three closely related chromophoric sites at low temperatures, each with trigonal (C3) symmetry. In the two, isomorphic perchlorate salts there is a single chromophoric site, which has C2 symmetry. Using time resolved luminescence line narrowing, we have been able to directly measure the excitation transfer rate between two equivalent metal-ligand units in the [Ru(bpy)3]2+ chromophore doped in the [Zn(bpy)3](ClO4)2 lattice. The rate obtained (approximately equals 1 X 108 sec-1) is in excellent accord with estimates made from the observed linewidth in Stark swept transient hole-burning experiments made on the same system and confirm the single ligand, localized nature of the lowest emitting excited states and thus the very weak intramolecular coupling between metal ligand sub-units within this chromophore. The corresponding coupling in the [Os(bpy)3]2+ system is stronger and, in contrast to the ruthenium analogue, gives rise to additional features in the optical spectra in the origin region of the lowest 3MLCT excited states. The magnitude of the coupling can be probed and assessed by preparing modified chromophoric materials, in which one or two of the bpy ligands are perdeuterated (bpy-d8). This selective deuteration breaks the (near) degeneracy of excitations involving crystallographically equivalent ligands by approximately equals 30 - 40 cm-1 and this competes with or completely overrides the exciton coupling process. The exciton coupling is found to be approximately equals 2.4 cm-1 for [Os(bpy)3]2+ doped in [Ru(bpy)3](PF6)2 and can be understood within a mini-exciton description. Stronger couplings for the same chromophore in

  6. Magnetospectroscopy of excited states in charge-tunable GaAs/AlGaAs [111] quantum dots

    NASA Astrophysics Data System (ADS)

    Durnev, M. V.; Vidal, M.; Bouet, L.; Amand, T.; Glazov, M. M.; Ivchenko, E. L.; Zhou, P.; Wang, G.; Mano, T.; Ha, N.; Kuroda, T.; Marie, X.; Sakoda, K.; Urbaszek, B.

    2016-06-01

    We present a combined experimental and theoretical study of highly charged and excited electron-hole complexes in strain-free (111) GaAs/AlGaAs quantum dots grown by droplet epitaxy. We address the complexes with one of the charge carriers residing in the excited state, namely, the "hot" trions X-* and X+*, and the doubly negatively charged exciton X2 -. Our magnetophotoluminescence experiments performed on single quantum dots in the Faraday geometry uncover characteristic emission patterns for each excited electron-hole complex, which are very different from the photoluminescence spectra observed in (001)-grown quantum dots. We present a detailed theory of the fine structure and magnetophotoluminescence spectra of X-*,X+*, and X2 - complexes, governed by the interplay between the electron-hole Coulomb exchange interaction and the heavy-hole mixing, characteristic for these quantum dots with a trigonal symmetry. Comparison between experiment and theory allows for precise charge state identification, as well as extraction of electron-hole exchange interaction constants and g factors for the charge carriers occupying excited states.

  7. Description of electronic excited states using electron correlation operator.

    PubMed

    Nichols, Bryan; Rassolov, Vitaly A

    2013-09-14

    The electron correlation energy in a chemical system is defined as a difference between the energy of an exact energy for a given Hamiltonian, and a mean-field, or single determinant, approximation to it. A promising way to model electron correlation is through the expectation value of a linear two-electron operator for the Kohn-Sham single determinant wavefunction. For practical reasons, it is desirable for such an operator to be universal, i.e., independent of the positions and types of nuclei in a molecule. The correlation operator models the effect of electron correlation on the interaction energy in a electron pair. We choose an operator expanded in a small number of Gaussians as a model for electron correlation, and test it by computing atomic and molecular adiabatic excited states. The computations are performed within the Δ Self-Consistent Field (ΔSCF) formalism, and are compared to the time-dependent density functional theory model with popular density functionals. The simplest form of the correlation operator contains only one parameter derived from the helium atom ground state correlation energy. The correlation operator approach significantly outperforms other methods in computation of atomic excitation energies. The accuracy of molecular excitation energies computed with the correlation operator is limited by the shortcomings of the ΔSCF methodology in describing excited states.

  8. Link atom bond length effect in ONIOM excited state calculations.

    PubMed

    Caricato, Marco; Vreven, Thom; Trucks, Gary W; Frisch, Michael J

    2010-08-01

    We investigate how the choice of the link atom bond length affects an electronic transition energy calculation with the so-called our own N-layer integrated molecular orbital molecular mechanics (ONIOM) hybrid method. This follows our previous paper [M. Caricato et al., J. Chem. Phys. 131, 134105 (2009)], where we showed that ONIOM is able to accurately approximate electronic transition energies computed at a high level of theory such as the equation of motion coupled cluster singles and doubles (EOM-CCSD) method. In this study we show that the same guidelines used in ONIOM ground state calculations can also be followed in excited state calculations, and that the link atom bond length has little effect on the ONIOM energy when a sensible model system is chosen. We also suggest further guidelines for excited state calculations which can help in checking the effectiveness of the definition of the model system and controlling the noise in the calculation.

  9. Characterising a configuration interaction excited state using natural transition geminals

    NASA Astrophysics Data System (ADS)

    Coe, J. P.; Paterson, M. J.

    2014-03-01

    We introduce natural transition geminals as a means to qualitatively understand a transition where double excitations are important. The first two A1 singlet states of the CH cation are used as an initial example. We calculate these states with configuration interaction singles and state-averaged Monte Carlo configuration interaction (SA-MCCI). For each method, we compare the important natural transition geminals with the dominant natural transition orbitals. We then compare SA-MCCI and full configuration interaction with regards to the natural transition geminals using the beryllium atom. We compare using the natural transition geminals with analysing the important configurations in the CI expansion to give the dominant transition for the beryllium atom and the carbon dimer. Finally, we calculate the natural transition geminals for two electronic excitations of formamide.

  10. Controlling excited-state contamination in nucleon matrix elements

    NASA Astrophysics Data System (ADS)

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank; Nucleon Matrix Elements NME Collaboration

    2016-06-01

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2 +1 -flavor ensemble with lattices of size 323×64 generated using the rational hybrid Monte Carlo algorithm at a =0.081 fm and with Mπ=312 MeV . The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separation tsep. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of tsep needed to demonstrate convergence of the isovector charges of the nucleon to the tsep→∞ estimates is presented.

  11. Embedding potentials for excited states of embedded species

    SciTech Connect

    Wesolowski, Tomasz A.

    2014-05-14

    Frozen-Density-Embedding Theory (FDET) is a formalism to obtain the upper bound of the ground-state energy of the total system and the corresponding embedded wavefunction by means of Euler-Lagrange equations [T. A. Wesolowski, Phys. Rev. A 77(1), 012504 (2008)]. FDET provides the expression for the embedding potential as a functional of the electron density of the embedded species, electron density of the environment, and the field generated by other charges in the environment. Under certain conditions, FDET leads to the exact ground-state energy and density of the whole system. Following Perdew-Levy theorem on stationary states of the ground-state energy functional, the other-than-ground-state stationary states of the FDET energy functional correspond to excited states. In the present work, we analyze such use of other-than-ground-state embedded wavefunctions obtained in practical calculations, i.e., when the FDET embedding potential is approximated. Three computational approaches based on FDET, that assure self-consistent excitation energy and embedded wavefunction dealing with the issue of orthogonality of embedded wavefunctions for different states in a different manner, are proposed and discussed.

  12. Correlated wave functions for three-particle systems with Coulomb interaction - The muonic helium atom

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.

    1977-01-01

    A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.

  13. Reexamination of the excited states of C12

    NASA Astrophysics Data System (ADS)

    Freer, M.; Boztosun, I.; Bremner, C. A.; Chappell, S. P. G.; Cowin, R. L.; Dillon, G. K.; Fulton, B. R.; Greenhalgh, B. J.; Munoz-Britton, T.; Nicoli, M. P.; Rae, W. D. M.; Singer, S. M.; Sparks, N.; Watson, D. L.; Weisser, D. C.

    2007-09-01

    An analysis of the C12(C12,3α)C12 reaction was made at beam energies between 82 and 106 MeV. Decays to both the ground state and the excited states of Be8 were isolated, allowing states of different characters to be identified. In particular, evidence was found for a previously observed state at 11.16 MeV. An analysis of the angular distributions of the unnatural parity states at 11.83 and 13.35 MeV, previously assigned Jπ=2-, calls into question the validity of these assignments, suggesting that at least one of the states may correspond to Jπ=4-. Evidence is also found for 1- and 3- strengths associated with broad states between 11 and 14 MeV.

  14. Nonclassical properties of coherent states and excited coherent states for continuous spectra

    NASA Astrophysics Data System (ADS)

    Honarasa, G. R.; Tavassoly, M. K.; Hatami, M.; Roknizadeh, R.

    2011-02-01

    Based on the definition of coherent states for continuous spectra and analogous to photon-added coherent states for discrete spectra, we introduce the excited coherent states for continuous spectra. It is shown that the main axioms of Gazeau-Klauder coherent states will be satisfied, properly. Nonclassical properties and quantum statistics of coherent states, as well as the introduced excited coherent states, are discussed. In particular, through the study of quadrature squeezing and amplitude-squared squeezing, it will be observed that both classes of the above states can be classified in the intelligent states category.

  15. Bound states in disclinated graphene with Coulomb impurities in the presence of a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    de Souza, J. F. O.; de Lima Ribeiro, C. A.; Furtado, Claudio

    2014-06-01

    In this contribution, we study the effects caused by an impurity on the quantum dynamics of massive excitations in a disclinated graphene in the presence of an external magnetic field. Within a continuum approach, the problem is mathematically modeled by the definition of a special vector potential containing all the information about the topology and the interacting fields. The presence of disclination is introduced by a term in the Dirac equation that translates the appearance of a phase associated with the transport of the spinor around the apex of the cone. We solve exactly the Dirac equation for this problem and the eigenvalues are obtained. We observe the influence of the disclination on the spectrum of energy and the allowed values of magnetic field.

  16. Negative-parity nucleon excited state in nuclear matter

    NASA Astrophysics Data System (ADS)

    Ohtani, Keisuke; Gubler, Philipp; Oka, Makoto

    2016-10-01

    Spectral functions of the nucleon and its negative-parity excited state in nuclear matter are studied by using QCD sum rules and the maximum entropy method (MEM). It is found that in-medium modifications of the spectral functions are attributed mainly to density dependencies of the and condensates. The MEM reproduces the lowest-energy peaks of both the positive- and negative-parity nucleon states at finite density up to ρ ˜ρN (normal nuclear matter density). As the density grows, the residue of the nucleon ground state decreases gradually while the residue of the lowest negative-parity excited state increases slightly. On the other hand, the positions of the peaks, which correspond to the total energies of these states, are almost density independent for both parity states. The density dependencies of the effective masses and vector self-energies are also extracted by assuming phenomenological mean-field-type propagators for the peak states. We find that, as the density increases, the nucleon effective mass decreases while the vector self-energy increases. The density dependence of these quantities for the negative-parity state on the other hand turns out to be relatively weak.

  17. Excitation on the Coherent States of Pseudoharmonic Oscillator

    SciTech Connect

    Popov, Dusan; Pop, Nicolina; Sajfert, Vjekoslav

    2009-05-22

    In the last decades, much attention has been paid to the excitation on coherent states, especially for coherent states of the harmonic oscillator ([1] and references therein). But an interesting anharmonic oscillator with many potential applications is also the pseudoharmonic oscillator (PHO). So, in the present paper we have defined the excitation on the Klauder-Perelomov coherent states (E-KP-CSs) for the PHO. These states are obtained by repeatedly operating the raising operator K{sub +} on a usual Klauder-Perelomov coherent state (KP-CS) of the PHO [2]. We have verified that really, the E-KP-CSs fulfill all the properties of the coherent states, as stated by Klauder [3]. We have examined the nonclassical properties of the E-KP-CSs, by using the density matrix formalism and examining the dependence of the Mandel parameter Q{sub z,k;m}(|z|{sup 2}) on the |z|{sup 2} and on the m. It seems that these states can be used in optical communication field and in the physics of quantum information, as signal beams, due to the fact that in these fields the nonclassicality plays an important role.

  18. Higher excited states of acceptors in cubic semiconductors

    NASA Astrophysics Data System (ADS)

    Said, M.; Kanehisa, M. A.; Balkanski, M.

    1986-02-01

    For the first time, higher excited states of shallow acceptors up to the 3s and 4s states are calculated based on the Balderschi and Lipari theory including the cubic correction. The eigenvalues and eigenvectors of the effective mass Hamiltonian for shallow acceptor states were obtained by the finite element method. The resultant sparse matrix is diagonalized by a newly developed Saad's method based on Arnoldi's algorithm. Comparison with experimental spectra on ZnTe:Li and ZnTe:P gives best valence band parameters for ZnTe; μ = 0.60 and δ = 0.12.

  19. Excited-state quantum phase transitions in Dicke superradiance models.

    PubMed

    Brandes, Tobias

    2013-09-01

    We derive analytical results for various quantities related to the excited-state quantum phase transitions in a class of Dicke superradiance models in the semiclassical limit. Based on a calculation of a partition sum restricted to Dicke states, we discuss the singular behavior of the derivative of the density of states and find observables such as the mean (atomic) inversion and the boson (photon) number and its fluctuations at arbitrary energies. Criticality depends on energy and a parameter that quantifies the relative weight of rotating versus counterrotating terms, and we find a close analogy to the logarithmic and jump-type nonanalyticities known from the Lipkin-Meshkov-Glick model. PMID:24125239

  20. Strong-Field Photoionization as Excited-State Tunneling.

    PubMed

    Serebryannikov, E E; Zheltikov, A M

    2016-03-25

    We show that, in an intense laser field, ultrafast photoionization can occur through quantum pathways that cannot be categorized as multiphoton ionization or ground-state tunneling. In this regime, the subcycle electron-wave-packet dynamics leading to photoionization occurs via electron excited states, from where the electrons tunnel to the continuum within a tiny fraction of the field cycle. For high field intensities, this ionization pathway is shown to drastically enhance the dynamic leakage of the electron wave packet into the continuum, opening an ionization channel that dominates over ground-state electron tunneling. PMID:27058079

  1. Signature of nonadiabatic coupling in excited-state vibrational modes.

    PubMed

    Soler, Miguel A; Nelson, Tammie; Roitberg, Adrian E; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2014-11-13

    Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes. PMID:24844735

  2. Controlling autoionization in strontium two-electron-excited states

    NASA Astrophysics Data System (ADS)

    Fields, Robert; Zhang, Xinyue; Dunning, F. Barry; Yoshida, Shuhei; Burgdörfer, Joachim

    2016-05-01

    One challenge in engineering long-lived two-electron-excited states, i.e., so-called planetary atoms, is autoionization. Autoionization, however, can be suppressed if the outermost electron is placed in a high- n, n ~ 300 - 600 , high- L state because such states have only a very small overlap with the inner electron, even when this is also excited to a state of relatively high n and hence of relatively long lifetime. Here the L-dependence of the autoionization rate for high- n strontium Rydberg atoms is examined during excitation of the core ion 5 s 2S1 / 2 - 5 p 2P3 / 2 transition. Measurements in which the angular momentum of the Rydberg electron is controlled using a pulsed electric field show that the autoionization rate decreases rapidly with increasing L and becomes very small for values larger than ~ 20 . The data are analyzed with the aid of calculations undertaken using complex scaling. Research supported by the NSF and Robert A. Welch Foundation.

  3. Coulomb bound states and resonances due to groups of Ca dimers adsorbed on suspended graphene

    NASA Astrophysics Data System (ADS)

    Saffarzadeh, Alireza; Kirczenow, George

    2014-10-01

    The electronic bound states and resonances in the vicinity of the Dirac point energy due to the adsorption of calcium dimers on a suspended graphene monolayer are explored theoretically using density functional theory (DFT) and an improved extended Hückel model that includes electrostatic potentials. The Mulliken atomic charges and the electrostatic potentials are obtained from DFT calculations and reveal charge transfer from the Ca dimers to the graphene which is responsible for the emergence of resonant states in the electronic spectrum. The number of resonant states increases as the number of adsorbed dimers is increased. We find a bound "atomic-collapse" state in the graphene local density of states, as has been observed experimentally [Wang et al., Science 340, 734 (2013), 10.1126/science.1234320]. We find the formation of the atomic-collapse state and its population with electrons to require fewer adsorbed Ca dimers than in the experiment, possibly due to the different spacing between dimers and the dielectric screening by a boron nitride substrate in the experiment. We also predict the onset of filling of a second atomic-collapse state with electrons when six Ca dimers are adsorbed on the suspended graphene monolayer. Experiments testing these predictions would be of interest.

  4. Coulomb interactions and fermion condensation

    SciTech Connect

    Capstick, S.; Cutkosky, R.E.; Joensen, M.A. ); Wang, K.C. )

    1990-08-15

    The influence of the Coulomb interaction in states containing massless and flavorless fermion-antifermion pairs is studied, using a continuum formulation within the finite volume {ital S}{sup 3}. Several different forms for the Coulomb interaction are examined, including confining potentials as well as nonconfining potentials. The calculations show that if the interaction is strong enough, the Coulomb interaction leads to condensation of pairs, and that this condensation has a chiral character. The condensation does not depend on whether the interaction is confining. It is found that simplified variational approximations are not accurate enough for an adequate description of the states.

  5. Excited states in the heavy nuclide {sup 254}No

    SciTech Connect

    Kankaanpaeae, H.; Leino, M.; Cocks, J. F. C.; Dorvaux, O.; Helariutta, K.; Jones, P.; Julin, R.; Juutinen, S.; Kettunen, H.; Kuusiniemi, P.; Muikku, M.; Nieminen, P.; Rahkila, P.; Savelius, A.; Trzaska, W. H.; Herzberg, R.-D.; Chewter, A. J.; Butler, P. A.; Greenlees, P. T.; Jones, G. D.

    1999-11-16

    In-beam {gamma}-ray spectroscopy of the excited states in the heavy nuclide {sup 254}No have been studied in the reaction {sup 208}Pb({sup 48}Ca,2n){sup 254}No. The techniques of recoil-gating and recoil-decay-tagging were needed due to the dominant fission background. Prompt {gamma}-rays were detected with a Ge detector array, consisting of four clover detectors in close geometry, and a gas-filled recoil separator (RITU) was used for detecting recoils and their {alpha}-decays. The observed six {gamma}-rays were associated with E2-transitions in the ground state rotational band of {sup 254}No. The value {beta}{sub 2}=0.27{+-}0.03 was extracted for the quadrupole deformation from the extrapolated 2{sup +} excitation energy.

  6. Photoionization of potassium atoms from the ground and excited states

    SciTech Connect

    Zatsarinny, O.; Tayal, S. S.

    2010-04-15

    The Dirac-based B-spline R-matrix method is used to investigate the photoionization of atomic potassium from the 4s ground and 4p, 5s-7s, 3d-5d excited states. The effect of the core polarization by the outer electron is included through the polarized pseudostates. Besides the dipole core polarization, we also found a noticeable influence of the quadrupole core polarization. We obtained excellent agreement with experiment for cross sections of the 4s photoionization, including accurate description of the near-threshold Cooper-Seaton minimum. We also obtained close agreement with experiment for the 4p photoionization, but there are unexpectedly large discrepancies with available experimental data for photoionization of the 5d and 7s excited states.

  7. Tunable rubidium excited state Voigt atomic optical filter.

    PubMed

    Yin, Longfei; Luo, Bin; Xiong, Junyu; Guo, Hong

    2016-03-21

    A tunable rubidium excited state Voigt atomic optical filter working at optical communication wavelength (1.5 μm) is realized. The filter achieves a peak transmittance of 57.6% with a double-peak structure, in which each one has a bandwidth of 600 MHz. Benefiting from the Voigt type structure, the magnetic field of the filter can be tuned from 0 to 1600 gauss, and a peak transmittance tunability of 1.6 GHz can thus be realized. Different from the excited state Faraday type filter, the pump efficiency in the Voigt filter is affected a lot by the pump polarization. Measured absorption results of the pump laser and transmittances of the signal laser both prove that the vertical linear polarization pumping is the most efficient in the Voigt filter. PMID:27136803

  8. Excited states in large molecular systems through polarizable embedding.

    PubMed

    List, Nanna Holmgaard; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2016-07-27

    In this perspective, we provide an overview of recent work within the polarizable embedding scheme to describe properties of molecules in realistic environments of increasing complexity. After an outline of the theoretical basis for the polarizable embedding model, we discuss the importance of using an accurate embedding potential, and how this may be used to significantly reduce the size of the part of the system treated using quantum mechanics without compromising the accuracy of the final results. Furthermore, we discuss the calculation of local electronic excited states based on response theory. We finally discuss aspects related to two recent extensions of the model (i) effective external field and (ii) polarizable density embedding emphasizing their importance for efficient yet accurate description of excited-state properties in complex environments. PMID:27416749

  9. Compilation of giant electric dipole resonances built on excited states

    SciTech Connect

    Schiller, A. . E-mail: schiller@nscl.msu.edu; Thoennessen, M.

    2007-07-15

    Giant Electric Dipole Resonance (GDR) parameters for {gamma} decay to excited states with finite spin and temperature are compiled. Over 100 original works have been reviewed and from some 70 of them, about 350 sets of hot GDR parameters for different isotopes, excitation energies, and spin regions have been extracted. All parameter sets have been brought onto a common footing by calculating the equivalent Lorentzian parameters. The current compilation is complementary to an earlier compilation by Samuel S. Dietrich and Barry L. Berman (At. Data Nucl. Data Tables 38 (1988) 199-338) on ground-state photo-neutron and photo-absorption cross sections and their Lorentzian parameters. A comparison of the two may help shed light on the evolution of GDR parameters with temperature and spin. The present compilation is current as of July 2006.

  10. Physical Properties, Exciton Analysis, and Visualization of Core-Excited States: An Intermediate State Representation Approach.

    PubMed

    Wenzel, Jan; Dreuw, Andreas

    2016-03-01

    The theoretical simulation of X-ray absorption spectra is in general a challenging task. However, for small and medium-sized organic molecules, the algebraic diagrammatic construction scheme (ADC) for the polarization operator in combination with the core-valence separation approximation (CVS) has proven to yield core-excitation energies and transition moments with almost quantitative accuracy allowing for reliable construction of X-ray absorption spectra. Still, to understand core-excitation processes in detail, it is not sufficient to only compute energies, but also properties like static dipole moments and state densities are important as they provide deeper insight into the nature of core-excited states. Here, we present for the first time an implementation of the intermediate state representation (ISR) approach in combination with the CVS approximation (CVS-ISR), which gives, in combination with the CVS-ADC method, direct access to core-excited state properties. The performance of the CVS-ADC/CVS-ISR approach is demonstrated by means of small- and medium-sized organic molecules. Besides the calculation of core-excited state dipole moments, advanced analyses of core-excited state densities are performed using descriptors like exciton sizes and distances. Plotting electron and hole densities helps to determine the character of the state, and in particular, the investigation of detachment/attachment densities provides information about orbital relaxation effects that are crucial for understanding core excitations.

  11. Temperature dependence of the excited state absorption of alexandrite

    SciTech Connect

    Shand, M.L.; Jenssen, H.P.

    1983-03-01

    The temperature dependence from 28 to 290/sup 0/C of the excited-state absorption cross section sigma /SUB 2a/ (E) in the gain wavelength region of alexandrite has been determined from the temperature dependence of the single pass gain (SPG) and of the fluorescence. sigma /SUB 2a/ (E) and the emission cross section increase with temperature at approximately the same rate.

  12. Connection between decoherence and excited state quantum phase transitions

    SciTech Connect

    Perez-Fernandez, P.; Arias, J. M.; Relano, A.; Dukelsky, J.; Garcia-Ramos, J. E.

    2010-04-26

    In this work we explore the relationship between an excited state quantum phase transition (ESQPT) and the phenomenon of quantum decoherence. For this purpose, we study how the decoherence is affected by the presence of a continuous ESQPT in the environment. This one is modeled as a two level boson system described by a Lipkin Hamiltonian. We will show that the decoherence of the system is maximal when the environment undergoes a continuous ESQPT.

  13. Minimal-excitation states for electron quantum optics using levitons.

    PubMed

    Dubois, J; Jullien, T; Portier, F; Roche, P; Cavanna, A; Jin, Y; Wegscheider, W; Roulleau, P; Glattli, D C

    2013-10-31

    The on-demand generation of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago that a Lorentzian time-dependent potential with quantized flux generates a minimal excitation with only one particle and no hole. Here we report that such quasiparticles (hereafter termed levitons) can be generated on demand in a conductor by applying voltage pulses to a contact. Partitioning the excitations with an electronic beam splitter generates a current noise that we use to measure their number. Minimal-excitation states are observed for Lorentzian pulses, whereas for other pulse shapes there are significant contributions from holes. Further identification of levitons is provided in the energy domain with shot-noise spectroscopy, and in the time domain with electronic Hong-Ou-Mandel noise correlations. The latter, obtained by colliding synchronized levitons on a beam splitter, exemplifies the potential use of levitons for quantum information: using linear electron quantum optics in ballistic conductors, it is possible to imagine flying-qubit operation in which the Fermi statistics are exploited to entangle synchronized electrons emitted by distinct sources. Compared with electron sources based on quantum dots, the generation of levitons does not require delicate nanolithography, considerably simplifying the circuitry for scalability. Levitons are not limited to carrying a single charge, and so in a broader context n-particle levitons could find application in the study of full electron counting statistics. But they can also carry a fraction of charge if they are implemented in Luttinger liquids or in fractional quantum Hall edge channels; this allows the study of Abelian and non-Abelian quasiparticles in the

  14. Minimal-excitation states for electron quantum optics using levitons

    NASA Astrophysics Data System (ADS)

    Dubois, J.; Jullien, T.; Portier, F.; Roche, P.; Cavanna, A.; Jin, Y.; Wegscheider, W.; Roulleau, P.; Glattli, D. C.

    2013-10-01

    The on-demand generation of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago that a Lorentzian time-dependent potential with quantized flux generates a minimal excitation with only one particle and no hole. Here we report that such quasiparticles (hereafter termed levitons) can be generated on demand in a conductor by applying voltage pulses to a contact. Partitioning the excitations with an electronic beam splitter generates a current noise that we use to measure their number. Minimal-excitation states are observed for Lorentzian pulses, whereas for other pulse shapes there are significant contributions from holes. Further identification of levitons is provided in the energy domain with shot-noise spectroscopy, and in the time domain with electronic Hong-Ou-Mandel noise correlations. The latter, obtained by colliding synchronized levitons on a beam splitter, exemplifies the potential use of levitons for quantum information: using linear electron quantum optics in ballistic conductors, it is possible to imagine flying-qubit operation in which the Fermi statistics are exploited to entangle synchronized electrons emitted by distinct sources. Compared with electron sources based on quantum dots, the generation of levitons does not require delicate nanolithography, considerably simplifying the circuitry for scalability. Levitons are not limited to carrying a single charge, and so in a broader context n-particle levitons could find application in the study of full electron counting statistics. But they can also carry a fraction of charge if they are implemented in Luttinger liquids or in fractional quantum Hall edge channels; this allows the study of Abelian and non-Abelian quasiparticles in the

  15. Ultrafast internal conversion in ethylene. I. The excited state lifetime

    NASA Astrophysics Data System (ADS)

    Tao, H.; Allison, T. K.; Wright, T. W.; Stooke, A. M.; Khurmi, C.; van Tilborg, J.; Liu, Y.; Falcone, R. W.; Belkacem, A.; Martinez, T. J.

    2011-06-01

    Using a combined theoretical and experimental approach, we investigate the non-adiabatic dynamics of the prototypical ethylene (C2H4) molecule upon π → π* excitation. In this first part of a two part series, we focus on the lifetime of the excited electronic state. The femtosecond time-resolved photoelectron spectrum (TRPES) of ethylene is simulated based on our recent molecular dynamics simulation using the ab initio multiple spawning method with multi-state second order perturbation theory [H. Tao, B. G. Levine, and T. J. Martinez, J. Phys. Chem. A 113, 13656 (2009)], 10.1021/jp9063565. We find excellent agreement between the TRPES calculation and the photoion signal observed in a pump-probe experiment using femtosecond vacuum ultraviolet (hν = 7.7 eV) pulses for both pump and probe. These results explain the apparent discrepancy over the excited state lifetime between theory and experiment that has existed for ten years, with experiments [e.g., P. Farmanara, V. Stert, and W. Radloff, Chem. Phys. Lett. 288, 518 (1998), 10.1016/S0009-2614(98)00312-1 and K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, J. Phys. Chem. A 112, 7514 (2008)], 10.1021/jp803548c reporting much shorter lifetimes than predicted by theory. Investigation of the TRPES indicates that the fast decay of the photoion yield originates from both energetic and electronic factors, with the energetic factor playing a larger role in shaping the signal.

  16. Coulomb Driven New Bound States at the Integer Quantum Hall States in GaAs/Al(0.3)Ga(0.7)As Single Heterojunctions

    SciTech Connect

    Jiang, H.W.; Kim, Yongmin; Lee, Kyu-Seok; Lee, X.; Munteanu, F.M.; Perry, C.H.; Simmons, J.A.

    1999-05-25

    Coulomb driven, magneto-optically induced electron and hole bound states from a series of heavily doped GaAs/Al0.3Ga0.7As single heterojunctions (SHJ) are revealed in high magnetic fields. At low magnetic fields ({nu} >2), the photohuninescence spectra display Shubnikov de-Haas type oscillations associated with the empty second subband transition. In the regime of the Landau filling factor {nu} <1 and 1< {nu} <2, we found strong bound states due to Mott type Vocalizations. Since a SHJ has an open valence band structure, these bound states area unique property of the dynamic movement of the valence holes in strong magnetic fields.

  17. Note: Excited State Studies of Ozone using State-Specific Multireference Coupled Cluster Methods

    SciTech Connect

    Bhaskaran-Nair, Kiran; Kowalski, Karol

    2012-12-07

    Vertical excitation energies obtained with state-specific multi-reference coupled cluster (MRCC) methods are reported for the ozone molecule. Using state-specific MRCC non-iterative methods with singles, doubles, and non-iterative triples (MRCCSD(T)) we obtain 4.40 eV for the challenging doubly excited 21A1 state when using a reliable model space. This estimate is in good agreement with experiment (4.5 eV). We also compare our MRCC results with the excitation energies obtained with high-order equation-of-motion coupled cluster methods

  18. Excited State Dynamics of Protonated Phenylalanine and Tyrosine: Photo-Induced Reactions Following Electronic Excitation.

    PubMed

    Féraud, Géraldine; Broquier, Michel; Dedonder, Claude; Jouvet, Christophe; Grégoire, Gilles; Soorkia, Satchin

    2015-06-11

    The electronic spectroscopy and the electronic excited state properties of cold protonated phenylalanine and protonated tyrosine have been revisited on a large spectral domain and interpreted by comparison with ab initio calculations. The protonated species are stored in a cryogenically cooled Paul trap, maintained at ∼10 K, and the parent and all the photofragment ions are mass-analyzed in a time-of-flight mass spectrometer, which allows detecting the ionic species with an improved mass resolution compared to what is routinely achieved with a quadrupole mass spectrometer. These new results emphasize the competition around the band origin between two proton transfer reactions from the ammonium group toward either the aromatic chromophore or the carboxylic acid group. These reactions are initiated by the coupling of the locally excited ππ* state with higher charge transfer states, the positions and coupling of which depend on the conformation of the protonated molecules. Each of these reaction processes gives rise to specific fragmentation channels that supports the conformer selectivity observed in the photofragmentation spectra of protonated tyrosine and phenylalanine.

  19. Delayed fluorescence during the deactivation of highly excited triplet states

    SciTech Connect

    Skvortsov, V.I.; Alfimov, M.V.

    1987-06-01

    It has been suggested that the T state may be not only an electron donor but an acceptor, i.e., it may give a charge transfer state in a photoreduction reaction: A(T) + M ..-->.. /sup 3/(A/sup .-/M/sup +./). In this connection, it may be assumed that the quenching may also be connected with the nonradiative deactivation of excitation energy in charge transfer states (A/sup .-/M/sup +./). Aromatic molecules are characterized by an extremely low quantum yield for intramolecular intersystem crossing. However, in charge-transfer states the efficiency of intersystem crossing may be enhanced. The authors have investigated the laws governing DF in conditions where the deactivation of T states occurs. The systems studied were frozen (77 K) solutions of the aromatic additives naphthalene, diphenyl, and chrysene in toluene, MCH, and ethanol.

  20. An incompressible state of a photo-excited electron gas

    PubMed Central

    Chepelianskii, Alexei D.; Watanabe, Masamitsu; Nasyedkin, Kostyantyn; Kono, Kimitoshi; Konstantinov, Denis

    2015-01-01

    Two-dimensional electrons in a magnetic field can form new states of matter characterized by topological properties and strong electronic correlations as displayed in the integer and fractional quantum Hall states. In these states, the electron liquid displays several spectacular characteristics, which manifest themselves in transport experiments with the quantization of the Hall resistance and a vanishing longitudinal conductivity or in thermodynamic equilibrium when the electron fluid becomes incompressible. Several experiments have reported that dissipationless transport can be achieved even at weak, non-quantizing magnetic fields when the electrons absorb photons at specific energies related to their cyclotron frequency. Here we perform compressibility measurements on electrons on liquid helium demonstrating the formation of an incompressible electronic state under these resonant excitation conditions. This new state provides a striking example of irradiation-induced self-organization in a quantum system. PMID:26007282

  1. Excited states of the helium-antihydrogen system.

    PubMed

    Sharipov, Vasily; Labzowsky, Leonti N; Plunien, Günter

    2007-03-01

    Potential energy curves for excited leptonic states of the helium-antihydrogen system are calculated within the Ritz variational approach. An explicitly correlated ansatz for the leptonic wave function is employed describing accurately the motion of the leptons (two electrons and positron) in the field of the helium nucleus and of the antiproton with an arbitrary orbital angular momentum projection Lambda onto the internuclear axis. Results for Lambda=0, 1, and 30 are presented. For quasibound states with large values of Lambda and rotational quantum numbers J>Lambda no annihilation and rearrangement decay channels occur; i.e., they are metastable.

  2. Modular Hamiltonian for Excited States in Conformal Field Theory

    NASA Astrophysics Data System (ADS)

    Lashkari, Nima

    2016-07-01

    We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the Zn replica symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.

  3. Modular Hamiltonian for Excited States in Conformal Field Theory.

    PubMed

    Lashkari, Nima

    2016-07-22

    We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the Z_{n} replica symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories. PMID:27494465

  4. Leptonic partial widths of the excited {psi} states

    SciTech Connect

    Mo, X. H.; Yuan, C. Z.; Wang, P.

    2010-10-01

    The resonance parameters of the excited {psi}-family resonances, namely, the {psi}(4040), {psi}(4160), and {psi}(4415), were determined by fitting the R values measured by experiments. It is found that the previously reported leptonic partial widths of these states were merely one possible solution among a four-fold ambiguity. By fitting the most precise experimental data on the R values measured by the BES collaboration, this work presents all four sets of solutions. These results may affect the interpretation of the charmonium and charmonium-like states above 4 GeV/c{sup 2}.

  5. Modular Hamiltonian for Excited States in Conformal Field Theory.

    PubMed

    Lashkari, Nima

    2016-07-22

    We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the Z_{n} replica symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.

  6. Observation of the highly excited states of Lanthanum

    SciTech Connect

    Xue, P.; Xu, X. Y.; Huang, W.; Xu, C. B.; Zhao, R. C.; Xie, X. P.

    1997-01-15

    The highly excited states of Lanthanum are studied by means of laser resonance ionization time-of-flight spectrometer. Based on the two-step laser resonance excitation with intermediate state 5d{sup 2}({sup 3}F)6p {sup 2}D{sub 5/2}{sup 0}, three new Rydberg state (RS) series (5d{sup 2}(a{sup 3}F{sub 2})ns, 5d{sup 2}(a{sup 3}F{sub 3})nd and 5d{sup 2}(a{sup 1}D{sub 2})ns) and a number of autoionizing states (AIS) are obtained. Theoretical calculation leads the quantum defects of ns and nd series to the value {delta}s=4.35 and {delta}{sub d}=2.80 respectively, which are very close to the experimental results. The Rydberg state series 5d{sup 2}(a{sup 3}F{sub 2})ns gives the first ionization limit to be 44979.8{+-}0.3 cm{sup -1}, which is an order more accurate than ever.

  7. Observation of interference effects via four-photon excitation of highly excited Rydberg states in thermal cesium vapor

    NASA Astrophysics Data System (ADS)

    Kondo, Jorge M.; Šibalić, Nikola; Guttridge, Alexander; Wade, Christopher G.; De Melo, Natalia R.; Adams, Charles S.; Weatherill, Kevin J.

    2015-12-01

    We report on the observation of electromagnetically induced transparency (EIT) and absorption (EIA) of highly excited Rydberg states in thermal Cs vapor using a four-step excitation scheme. The advantage of this four-step scheme is that the final transition to the Rydberg state has a large dipole moment and one can achieve similar Rabi frequencies to two- or three-step excitation schemes using two orders of magnitude less laser power. This scheme enables new applications such as dephasing free Rydberg excitation. The observed lineshapes are in good agreement with simulations based on multilevel optical Bloch equations.

  8. Excited states in 146Sm and 147Sm

    NASA Astrophysics Data System (ADS)

    Kownacki, J.; Sujkowski, Z.; Hammarén, E.; Liukkonen, E.; Piiparinen, M.; Lindblad, Th.; Ryde, H.; Paar, V.

    1980-03-01

    The 144, 146Nd(α, χn) and 146,148Nd( 3He, χn) reactions with Eα = 20-43 MeV and E3He , = 19-27 MeV are used to investigate excited states in the isotopes 146Sm and 147Sm. The experiments involve measurements of singles γ-ray spectra and conversion electron spectra, γ-ray angular distributions and three-parameter ( Eγ- Eγ-time) coincidences. From these experiments information is obtained for states with spin up to I = 13 +and I = {27}/{2}-, respectively. These states are interpreted within the framework of the cluster-vibration model (CVM) as well as the shell model. In the latter approach, the energies of several well established states, in both isotopes, are calculated using empirical singleparticle energies, empirical two-particle interaction matrix elements and angular momentum algebra. The average deviation between the calculated and the experimental energies is less than 100 keV. The CVM calculations involve the coupling of a three-particle neutron cluster to the quadrupole vibration of the core. For 147Sm, these calculations reproduce the observed sequence of states based on the I π = {7}/{2}- ground state, as well as the sequence of states based on the I π = {13}/{2}+ excited state. The CVM calculations also reproduce the ground band in 146Sm, while for the negative parity states based on the cluster (f {7}/{2}i {13}/{2}) 3 --10 - an additional shift in energy is expected due to the mixing with octupole phonons.

  9. A parallel code to calculate rate-state seismicity evolution induced by time dependent, heterogeneous Coulomb stress changes

    NASA Astrophysics Data System (ADS)

    Cattania, C.; Khalid, F.

    2016-09-01

    The estimation of space and time-dependent earthquake probabilities, including aftershock sequences, has received increased attention in recent years, and Operational Earthquake Forecasting systems are currently being implemented in various countries. Physics based earthquake forecasting models compute time dependent earthquake rates based on Coulomb stress changes, coupled with seismicity evolution laws derived from rate-state friction. While early implementations of such models typically performed poorly compared to statistical models, recent studies indicate that significant performance improvements can be achieved by considering the spatial heterogeneity of the stress field and secondary sources of stress. However, the major drawback of these methods is a rapid increase in computational costs. Here we present a code to calculate seismicity induced by time dependent stress changes. An important feature of the code is the possibility to include aleatoric uncertainties due to the existence of multiple receiver faults and to the finite grid size, as well as epistemic uncertainties due to the choice of input slip model. To compensate for the growth in computational requirements, we have parallelized the code for shared memory systems (using OpenMP) and distributed memory systems (using MPI). Performance tests indicate that these parallelization strategies lead to a significant speedup for problems with different degrees of complexity, ranging from those which can be solved on standard multicore desktop computers, to those requiring a small cluster, to a large simulation that can be run using up to 1500 cores.

  10. Excited-State Properties of Molecular Solids from First Principles.

    PubMed

    Kronik, Leeor; Neaton, Jeffrey B

    2016-05-27

    Molecular solids have attracted attention recently in the context of organic (opto)electronics. These materials exhibit unique charge carrier generation and transport phenomena that are distinct from those of conventional semiconductors. Understanding these phenomena is fundamental to optoelectronics and requires a detailed description of the excited-state properties of molecular solids. Recent advances in many-body perturbation theory (MBPT) and density functional theory (DFT) have made such description possible and have revealed many surprising electronic and optical properties of molecular crystals. Here, we review this progress. We summarize the salient aspects of MBPT and DFT as well as various properties that can be described by these methods. These properties include the fundamental gap and its renormalization, hybridization and band dispersion, singlet and triplet excitations, optical spectra, and excitonic properties. For each, we present concrete examples, a comparison to experiments, and a critical discussion.

  11. Excited-State Properties of Molecular Solids from First Principles.

    PubMed

    Kronik, Leeor; Neaton, Jeffrey B

    2016-05-27

    Molecular solids have attracted attention recently in the context of organic (opto)electronics. These materials exhibit unique charge carrier generation and transport phenomena that are distinct from those of conventional semiconductors. Understanding these phenomena is fundamental to optoelectronics and requires a detailed description of the excited-state properties of molecular solids. Recent advances in many-body perturbation theory (MBPT) and density functional theory (DFT) have made such description possible and have revealed many surprising electronic and optical properties of molecular crystals. Here, we review this progress. We summarize the salient aspects of MBPT and DFT as well as various properties that can be described by these methods. These properties include the fundamental gap and its renormalization, hybridization and band dispersion, singlet and triplet excitations, optical spectra, and excitonic properties. For each, we present concrete examples, a comparison to experiments, and a critical discussion. PMID:27090844

  12. Excited-State Properties of Molecular Solids from First Principles

    NASA Astrophysics Data System (ADS)

    Kronik, Leeor; Neaton, Jeffrey B.

    2016-05-01

    Molecular solids have attracted attention recently in the context of organic (opto)electronics. These materials exhibit unique charge carrier generation and transport phenomena that are distinct from those of conventional semiconductors. Understanding these phenomena is fundamental to optoelectronics and requires a detailed description of the excited-state properties of molecular solids. Recent advances in many-body perturbation theory (MBPT) and density functional theory (DFT) have made such description possible and have revealed many surprising electronic and optical properties of molecular crystals. Here, we review this progress. We summarize the salient aspects of MBPT and DFT as well as various properties that can be described by these methods. These properties include the fundamental gap and its renormalization, hybridization and band dispersion, singlet and triplet excitations, optical spectra, and excitonic properties. For each, we present concrete examples, a comparison to experiments, and a critical discussion.

  13. Enhanced non-Gaussianity from excited initial states

    SciTech Connect

    Holman, R; Tolley, Andrew J E-mail: atolley@perimeterinstitute.ca

    2008-05-15

    We use the techniques of effective field theory in an expanding universe to examine the effect of choosing an excited inflationary initial state built over the Bunch-Davies state on the CMB bi-spectrum. We find that, even for Hadamard states, there are unexpected enhancements in the bi-spectrum for certain configurations in momentum space due to interactions of modes in the early stages of inflation. These enhancements can be parametrically larger than the standard ones and are potentially observable in future data. These initial state effects have a characteristic signature in l-space which distinguishes them from the usual contributions, with the enhancement being most pronounced for configurations corresponding to flattened triangles for which two momenta are collinear.

  14. Excitation of {sup 1}S and {sup 3}S Metastable Helium Atoms to Doubly Excited States

    SciTech Connect

    Alagia, M.; Coreno, M.; Farrokhpour, H.; Omidyan, R.; Tabrizchi, M.; Franceschi, P.; Mihelic, A.; Zitnik, M.; Moise, A.; Prince, K. C.; Richter, R.; Soederstroem, J.; Stranges, S.

    2009-04-17

    We present spectra of triplet and singlet metastable helium atoms resonantly photoexcited to doubly excited states. The first members of three dipole-allowed {sup 1,3}P{sup o} series have been observed and their relative photoionization cross sections determined, both in the triplet (from 1s2s {sup 3}S{sup e}) and singlet (from 1s2s {sup 1}S{sup e}) manifolds. The intensity ratios are drastically different with respect to transitions from the ground state. When radiation damping is included the results for the singlets are in agreement with theory, while for triplets spin-orbit interaction must also be taken into account.

  15. Computational Analysis of Intermolecular Coulombic Decay Effects in DNA nucleotide Photoionization

    NASA Astrophysics Data System (ADS)

    Vargas, E. L.; Robertson, J.; Andrianarijaona, V. M.

    2016-03-01

    Intermolecular Coulombic Decay (ICD) is the process of how electrons return to their original state after excitation and how this affects their immediate environment. In a previous research presentationwe had considered the hypothetical applications of Intermolecular Coulombic Decay on the adhesiveness of coding proteins within DNA molecules. This presentation is a continuation of the previous in that the results of our DFT-based computational calculations of the ionization potentials of nucleotides and their excitation energies will be presented, as well as how they influence their surroundings. Author would like to acknowledge the PUC Student Senate for financial assistance.

  16. Radiative lifetimes of the bound excited states of Pt-

    NASA Astrophysics Data System (ADS)

    Chartkunchand, K. C.; Kamińska, M.; Anderson, E. K.; Kristiansson, M. K.; Eklund, G.; Hole, O. M.; Nascimento, R. F.; Blom, M.; Björkhage, M.; Källberg, A.; Löfgren, P.; Reinhed, P.; Rosén, S.; Simonsson, A.; Thomas, R. D.; Mannervik, S.; Davis, V. T.; Neill, P. A.; Thompson, J. S.; Hanstorp, D.; Zettergren, H.; Cederquist, H.; Schmidt, H. T.

    2016-09-01

    The intrinsic radiative lifetimes of the 5 d106 s1/2 2S and 5 d96 s2 3/2 2D bound excited states in the platinum anion Pt-have been studied at cryogenic temperatures at the Double ElectroStatic Ion Ring Experiment (DESIREE) facility at Stockholm University. The intrinsic lifetime of the higher-lying 5 d106 s 1/2 2S state was measured to be 2.54 ±0.10 s , while only a lifetime in the range of 50-200 ms could be estimated for the 5 d96 s2 3/2 2D fine-structure level. The storage lifetime of the Pt- ion beam was measured to be a little over 15 min at a ring temperature of 13 K . The present study reports the lifetime of an atomic negative ion in an excited bound state with an electron configuration different from that of the ground state.

  17. Radiative lifetimes of the bound excited states of Pt-

    NASA Astrophysics Data System (ADS)

    Chartkunchand, K. C.; Kamińska, M.; Anderson, E. K.; Kristiansson, M. K.; Eklund, G.; Hole, O. M.; Nascimento, R. F.; Blom, M.; Björkhage, M.; Källberg, A.; Löfgren, P.; Reinhed, P.; Rosén, S.; Simonsson, A.; Thomas, R. D.; Mannervik, S.; Davis, V. T.; Neill, P. A.; Thompson, J. S.; Hanstorp, D.; Zettergren, H.; Cederquist, H.; Schmidt, H. T.

    2016-09-01

    The intrinsic radiative lifetimes of the 5 d106 s 1/2 2S and 5 d96 s2 3/2 2D bound excited states in the platinum anion Pt-have been studied at cryogenic temperatures at the Double ElectroStatic Ion Ring Experiment (DESIREE) facility at Stockholm University. The intrinsic lifetime of the higher-lying 5 d106 s 1/2 2S state was measured to be 2.54 ±0.10 s , while only a lifetime in the range of 50-200 ms could be estimated for the 5 d96 s2 3/2 2D fine-structure level. The storage lifetime of the Pt- ion beam was measured to be a little over 15 min at a ring temperature of 13 K . The present study reports the lifetime of an atomic negative ion in an excited bound state with an electron configuration different from that of the ground state.

  18. Self-scattering for Dark Matter with an excited state

    SciTech Connect

    Schutz, Katelin; Slatyer, Tracy R. E-mail: tslatyer@mit.edu

    2015-01-01

    Self-interacting dark matter scenarios have recently attracted much attention, as a possible means to alleviate the tension between N-body simulations and observations of the dark matter distribution on galactic and sub-galactic scales. The presence of internal structure for the dark matter—for example, a nearly-degenerate state in the spectrum that could decay, or be collisionally excited or de-excited—has also been proposed as a possible means to address these discrepancies. Such internal structure can be a source of interesting signatures in direct and indirect dark matter searches, for example providing a novel explanation for the 3.5 keV line recently observed in galaxies and galaxy clusters. We analyze a simple model of dark matter self-scattering including a nearly-degenerate excited state, and develop an accurate analytic approximation for the elastic and inelastic s-wave cross sections, which is valid outside the perturbative regime provided the particle velocity is sufficiently low (this condition is also required for the s-wave to dominate over higher partial waves). We anticipate our results will be useful in incorporating inelastic self-scattering into N-body simulations, in order to study the quantitative impact of nearly-degenerate states in the dark matter spectrum on galactic structure and dynamics, and in computing the indirect signatures of multi-state dark matter.

  19. Nonlocal quantum state engineering with the Cooper pair splitter beyond the Coulomb blockade regime

    NASA Astrophysics Data System (ADS)

    Amitai, Ehud; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L.; Nigg, Simon E.

    2016-02-01

    A Cooper pair splitter consists of two quantum dots side-coupled to a conventional superconductor. Usually, the quantum dots are assumed to have a large charging energy compared to the superconducting gap, in order to suppress processes other than the coherent splitting of Cooper pairs. In this work, in contrast, we investigate the limit in which the charging energy is smaller than the superconducting gap. This allows us, in particular, to study the effect of a Zeeman field comparable to the charging energy. We find analytically that in this parameter regime the superconductor mediates an interdot tunneling term with a spin symmetry determined by the Zeeman field. Together with electrostatically tunable quantum dots, we show that this makes it possible to engineer a spin triplet state shared between the quantum dots. Compared to previous works, we thus extend the capabilities of the Cooper pair splitter to create entangled nonlocal electron pairs.

  20. Search for intrinsic collective excitations in Sm152

    NASA Astrophysics Data System (ADS)

    Kulp, W. D.; Wood, J. L.; Garrett, P. E.; Wu, C. Y.; Cline, D.; Allmond, J. M.; Bandyopadhyay, D.; Dashdorj, D.; Choudry, S. N.; Hayes, A. B.; Hua, H.; Mynk, M. G.; McEllistrem, M. T.; McKay, C. J.; Orce, J. N.; Teng, R.; Yates, S. W.

    2008-06-01

    The 685 keV excitation energy of the first excited 0+ state in Sm152 makes it an attractive candidate to explore expected two-phonon excitations at low energy. Multiple-step Coulomb excitation and inelastic neutron scattering studies of Sm152 are used to probe the E2 collectivity of excited 0+ states in this “soft” nucleus and the results are compared with model predictions. No candidates for two-phonon Kπ=0+quadrupole vibrational states are found. A 2+,K=2 state with strong E2 decay to the first excited Kπ=0+ band and a probable 3+ band member are established.

  1. Excited state dynamics and isomerization in ruthenium sulfoxide complexes.

    PubMed

    King, Albert W; Wang, Lei; Rack, Jeffrey J

    2015-04-21

    Molecular photochromic compounds are those that interconvert between two isomeric forms with light. The two isomeric forms display distinct electronic and molecular structures and must not be in equilibrium with one another. These light-activated molecular switch compounds have found wide application in areas of study ranging from chemical biology to materials science, where conversion from one isomeric form to another by light prompts a response in the environment (e.g., protein or polymeric material). Certain ruthenium and osmium polypyridine sulfoxide complexes are photochromic. The mode of action is a phototriggered isomerization of the sulfoxide from S- to O-bonded. The change in ligation drastically alters both the spectroscopic and electrochemical properties of the metal complex. Our laboratory has pioneered the preparation and study of these complexes. In particular, we have applied femtosecond pump-probe spectroscopy to reveal excited state details of the isomerization mechanism. The data from numerous complexes allowed us to predict that the isomerization was nonadiabatic in nature, defined as occurring from a S-bonded triplet excited state (primarily metal-to-ligand charge transfer in character) to an O-bonded singlet ground state potential energy surface. This prediction was corroborated by high-level density functional theory calculations. An intriguing aspect of this reactivity is the coupling of nuclear motion to the electronic wave function and how this coupling affects motions productive for isomerization. In an effort to learn more about this coupling, we designed a project to examine phototriggered isomerization in bis-sulfoxide complexes. The goal of these studies was to determine whether certain complexes could be designed in which a single photon excitation event would prompt two sulfoxide isomerizations. We employed chelating sulfoxides in this study and found that both the nature of the chelate ring and the R group on the sulfoxide affect

  2. Output power of a quantum dot laser: Effects of excited states

    SciTech Connect

    Wu, Yuchang; Jiang, Li Asryan, Levon V.

    2015-11-14

    A theory of operating characteristics of quantum dot (QD) lasers is discussed in the presence of excited states in QDs. We consider three possible situations for lasing: (i) ground-state lasing only; (ii) ground-state lasing at first and then the onset of also excited-state lasing with increasing injection current; (iii) excited-state lasing only. The following characteristics are studied: occupancies of the ground-state and excited-state in QDs, free carrier density in the optical confinement layer, threshold currents for ground- and excited-state lasing, densities of photons emitted via ground- and excited-state stimulated transitions, output power, internal and external differential quantum efficiencies. Under the conditions of ground-state lasing only, the output power saturates with injection current. Under the conditions of both ground- and excited-state lasing, the output power of ground-state lasing remains pinned above the excited-state lasing threshold while the power of excited-state lasing increases. There is a kink in the light-current curve at the excited-state lasing threshold. The case of excited-state lasing only is qualitatively similar to that for single-state QDs—the role of ground-state transitions is simply reduced to increasing the threshold current.

  3. Stepwise two-photon excited fluorescence from higher excited states of chlorophylls in photosynthetic antenna complexes.

    PubMed

    Leupold, Dieter; Teuchner, Klaus; Ehlert, Jürgen; Irrgang, Klaus-Dieter; Renger, Gernot; Lokstein, Heiko

    2006-09-01

    Stepwise two-photon excited fluorescence (TPEF) spectra of the photosynthetic antenna complexes PCP, CP47, CP29, and light-harvesting complex II (LHC II) were measured. TPEF emitted from higher excited states of chlorophyll (Chl) a and b was elicited via consecutive absorption of two photons in the Chl a/b Qy range induced by tunable 100-fs laser pulses. Global analyses of the TPEF line shapes with a model function for monomeric Chl a in a proteinaceous environment allow distinction between contributions from monomeric Chls a and b, strongly excitonically coupled Chls a, and Chl a/b heterodimers/-oligomers. The analyses indicate that the longest wavelength-absorbing Chl species in the Qy region of LHC II is a Chl a homodimer with additional contributions from adjacent Chl b. Likewise, in CP47 a spectral form at approximately 680 nm (that is, however, not the red-most species) is also due to strongly coupled Chls a. In contrast to LHC II, the red-most Chl subband of CP29 is due to a monomeric Chl a. The two Chls b in CP29 exhibit marked differences: a Chl b absorbing at approximately 650 nm is not excitonically coupled to other Chls. Based on this finding, the refractive index of its microenvironment can be determined to be 1.48. The second Chl b in CP29 (absorbing at approximately 640 nm) is strongly coupled to Chl a. Implications of the findings with respect to excitation energy transfer pathways and rates are discussed. Moreover, the results will be related to most recent structural analyses.

  4. Radiative Decays of Low-Lying Excited-State Hyperons

    SciTech Connect

    Simon Taylor

    2000-05-01

    The quark wave-functions of the lower-lying excited-state hyperons Lambda(1405), Sigma(1385), and Lambda(1520) are not well understood. For example, the Lambda(1405) may not be a regular three-quark state but a {bar K}N molecule. Several competing models have been proposed, but none have been convincingly eliminated. Measuring radiative decays provides a means of discriminating between the models. The radiative branching of ratios are predicted to be small ({approx}1%), but the radiative widths vary by factors of 2-10 from model to model. The existing experimental data is sparse and inconsistent; moreover, the radiative decay of the Sigma(1385) has never been observed before (except for one event). These lower-lying excited state hypersons were produced in a tagged photon-beam experiment in the CLAS detector at TJNAF in the reaction gamma p {yields} K{sup +} Y* for photon energies from threshold to 2.4 GeV. The radiative branching ration for the Sigma{sup 0}(1385) relative to the Sigma{sup 0}(1385) {yields} Lambda pi{sup 0} channel was measured to be 0.021 {+-} 0.008{sub -0.007}{sup +0.004}, corresponding to a partial width of 640 {+-} 270{sub -220}{sup +130} keV.

  5. Excited State Effects in Nucleon Matrix Element Calculations

    SciTech Connect

    Constantia Alexandrou, Martha Constantinou, Simon Dinter, Vincent Drach, Karl Jansen, Theodoros Leontiou, Dru B Renner

    2011-12-01

    We perform a high-statistics precision calculation of nucleon matrix elements using an open sink method allowing us to explore a wide range of sink-source time separations. In this way the influence of excited states of nucleon matrix elements can be studied. As particular examples we present results for the nucleon axial charge g{sub A} and for the first moment of the isovector unpolarized parton distribution x{sub u-d}. In addition, we report on preliminary results using the generalized eigenvalue method for nucleon matrix elements. All calculations are performed using N{sub f} = 2+1+1 maximally twisted mass Wilson fermions.

  6. Excited-state relaxation in π-conjugated polymers

    NASA Astrophysics Data System (ADS)

    Frolov, S. V.; Bao, Z.; Wohlgenannt, M.; Vardeny, Z. V.

    2002-05-01

    We study ultrafast relaxation processes of odd- (Bu) and even-parity (Ag) exciton states in poly(p-phenylene vinylene) derivatives. The Bu states are studied using a regular two-beam pump-and-probe spectroscopy, which can monitor vibronic relaxation and exciton diffusion. In order to observe the Ag states, a three-beam femtosecond transient spectroscopy is developed, in which two different excitation pulses successively generate odd-parity (1Bu) excitons at 2.2 eV and then reexcite them to higher Ag states. We are able to distinguish two different classes of Ag states: one class (mAg) experiences ultrafast internal conversion back to the lowest singlet exciton, whereas the other class (kAg) in violation of the Vavilov-Kasha's rule undergoes a different relaxation pathway. The excitons subsequently dissociate into long-lived polaron pairs, which results in emission quenching with the action spectrum similar to that of the intrinsic photoconductivity. We conclude that the Ag states above 3.3 eV (kAg) are charge-transfer states, that mediate carrier photogeneration.

  7. Ground State and Excited State H-Atom Temperatures in a Microwave Plasma Diamond Deposition Reactor

    NASA Astrophysics Data System (ADS)

    Gicquel, A.; Chenevier, M.; Breton, Y.; Petiau, M.; Booth, J. P.; Hassouni, K.

    1996-09-01

    Ground electronic state and excited state H-atom temperatures are measured in a microwave plasma diamond deposition reactor as a function of a low percentage of methane introduced in the feed gas and the averaged input microwave power density. Ground state H-atom temperatures (T_H) and temperature of the H-atom in the n=3 excited state (T_{Hα}) are obtained from the measurements respectively of the excitation profile by Two-photon Allowed transition Laser Induced Fluorescence (TALIF) and the Hα line broadening by Optical Emission Spectroscopy (OES). They are compared to gas temperatures calculated with a 1D diffusive non equilibrium H{2} plasma flow model and to ground electronic state rotational temperatures of molecular hydrogen measured previously by Coherent Anti-Stokes Raman Spectroscopy.

  8. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission

    SciTech Connect

    Sen, Ananya; Matthews, Edward M.; Dessent, Caroline E. H. E-mail: xuebin.wang@pnnl.gov; Hou, Gao-Lei; Wang, Xue-Bin E-mail: xuebin.wang@pnnl.gov

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ∼1.7 eV, values that are lower than the RCB of the uncomplexed PtCl{sub 6}{sup 2−} dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl{sub 6}{sup 2−} ⋅ thymine and PtCl{sub 6}{sup 2−} ⋅ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN){sub 4}{sup 2−} ⋅ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl{sub 6}{sup 2−} ⋅ nucleobase spectra obtained in this work, as for the previously studied Pt(CN){sub 4}{sup 2−} ⋅ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to

  9. Calculating singlet excited states: Comparison with fast time-resolved infrared spectroscopy of coumarins

    NASA Astrophysics Data System (ADS)

    Hanson-Heine, Magnus W. D.; Wriglesworth, Alisdair; Uroos, Maliha; Calladine, James A.; Murphy, Thomas S.; Hamilton, Michelle; Clark, Ian P.; Towrie, Michael; Dowden, James; Besley, Nicholas A.; George, Michael W.

    2015-04-01

    In contrast to the ground state, the calculation of the infrared (IR) spectroscopy of molecular singlet excited states represents a substantial challenge. Here, we use the structural IR fingerprint of the singlet excited states of a range of coumarin dyes to assess the accuracy of density functional theory based methods for the calculation of excited state IR spectroscopy. It is shown that excited state Kohn-Sham density functional theory provides a high level of accuracy and represents an alternative approach to time-dependent density functional theory for simulating the IR spectroscopy of singlet excited states.

  10. Calculating singlet excited states: Comparison with fast time-resolved infrared spectroscopy of coumarins.

    PubMed

    Hanson-Heine, Magnus W D; Wriglesworth, Alisdair; Uroos, Maliha; Calladine, James A; Murphy, Thomas S; Hamilton, Michelle; Clark, Ian P; Towrie, Michael; Dowden, James; Besley, Nicholas A; George, Michael W

    2015-04-21

    In contrast to the ground state, the calculation of the infrared (IR) spectroscopy of molecular singlet excited states represents a substantial challenge. Here, we use the structural IR fingerprint of the singlet excited states of a range of coumarin dyes to assess the accuracy of density functional theory based methods for the calculation of excited state IR spectroscopy. It is shown that excited state Kohn-Sham density functional theory provides a high level of accuracy and represents an alternative approach to time-dependent density functional theory for simulating the IR spectroscopy of singlet excited states.

  11. Unbound Excited States in ^28Ne and ^25F

    NASA Astrophysics Data System (ADS)

    Smith, Jenna; Brown, B. Alex; Christian, Greg; Mosby, Shea; Novak, John F.; Quinn, Steven J.; Snyder, Jesse; Spyrou, Artemis; Strongman, Michael J.; Thoennessen, Michael; Baumann, Thomas; Kohley, Zachary; Finck, Joseph E.; Hoffman, Calem R.

    2012-10-01

    The neutron dripline has only been conclusively mapped out to Z=8. The unbound structure of isotopes with Z>8 has not been studied until recently, when multiple studies have focused on unbound states in neutron-rich fluorine isotopes. Unbound states in ^28Ne and ^25F were populated in the reaction of a 102 MeV/nucleon ^29Na beam on a beryllium target. This is the first such state in ^28Ne and the second such state in ^25F. The measured decay energy of 32(22) keV in the ^27Ne + n system corresponds to an unbound excited state in ^28Ne of 3.86(11) MeV. The decay energy of the ^24F + n system was measured as 300(170) keV, which places the second measured unbound state of ^25F at 4.66(17) MeV. Measured decay energy spectra and a discussion of results will be presented.

  12. Alpha decay widths of excited states of 16O

    NASA Astrophysics Data System (ADS)

    Haigh, P. J.; Freer, M.; Ashwood, N. I.; Bloxham, T.; Curtis, N.; Bohlen, H. G.; Dorsch, T.; Kokalova, Tz; Wheldon, C.; Catford, W. N.; Patterson, N. P.; Thomas, J. S.

    2010-03-01

    The 12C(13C, 9Be)16O reaction has been used to populate excited states in 16O. The 9Be nuclei were detected in a magnetic spectrometer and the 12C decay product of the recoiling excited 16O nucleus was detected in an array of silicon strip detectors. The large angular coverage of the strip detector array allowed the α-decay widths of the 14.66 MeV, 5-, and 16.275 MeV, 6+, states to be determined with good accuracy. The present results, together with earlier measurements, allow precise values for the branching ratios to be calculated: Ex(16O) = 14.66 MeV, Jπ = 5-, Γα0/Γ = 0.951 ± 0.049 and Γα1/Γ < 0.05; Ex(16O) = 16.275 MeV, Jπ = 6+, Γα0/Γ = 0.982 ± 0.048 and Γα1/Γ < 0.02.

  13. Probing the Locality of Excited States with Linear Algebra.

    PubMed

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable. PMID:26574379

  14. Probing the Locality of Excited States with Linear Algebra.

    PubMed

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.

  15. Surface hopping investigation of benzophenone excited state dynamics.

    PubMed

    Favero, Lucilla; Granucci, Giovanni; Persico, Maurizio

    2016-04-21

    We present a simulation of the photodynamics of benzophenone for the first 20 ps after n →π* excitation, performed by trajectory surface hopping calculations with on-the-fly semiempirical determination of potential energy surfaces and electronic wavefunctions. Both the dynamic and spin-orbit couplings are taken into account, and time-resolved fluorescence emission is also simulated. The computed decay time of the S1 state is in agreement with experimental observations. The direct S1→ T1 intersystem crossing (ISC) accounts for about 2/3 of the S1 decay rate. The remaining 1/3 goes through T2 or higher triplets. The nonadiabatic transitions within the triplet manifold are much faster than ISC and keep the population of T1 at about 3/4 of the total triplet population, and that of the other states (mainly T2) at 1/4. Two internal coordinates are vibrationally active immediately after n →π* excitation: one is the C[double bond, length as m-dash]O stretching and the other one is a combination of the conrotatory torsion of phenyl rings and of bending involving the carbonyl C atom. The period of the torsion-bending mode coincides with oscillations in the time-resolved photoelectron spectra of Spighi et al. and substantially confirms their assignment. PMID:27031566

  16. Excited state dynamics of thulium ions in yttrium aluminum garnets

    NASA Technical Reports Server (NTRS)

    Armagan, G.; Buoncristiani, A. M.; Dibartolo, B.

    1991-01-01

    The processes that take place in the excited states of a trivalent Thulium (Tm) ion in an Yttrium Aluminum Garnet (YAG) crystal, being relevant to the use of this system for laser applications, have been the object of several studies. We have reexamined this system focusing our attention on the dynamics of Tm following its excitation in the H-3(sub 4) level. Under these conditions the system relaxes through a cross-relaxation process. H-3(sub 4) yields F-3(sub 4), H-3(sub 6) yields F-3(sub 4), whose rate depends upon both the concentration of the Tm ion and the temperature of the crystal. The excitation spectrum obtained by monitoring the 1.8 micron emission of Tm (due to the F-3(sub 4) yields H-3(sub 6) transition) indicates an increase in the contribution to this emission from the H-3(sub 4) level relative to the H-3(sub 5) level as the Tm concentration increases; this shows the increased role played by the H-3(sub 4) level in pumping the infrared emission. Correspondingly, the duration of the luminescence originating in the H-3(sub 4) level is shortened as the concentration of Tm increases. The concentration quenching of this lifetime can be fit to a model which assumes that the cross-relaxation is due to a dipole-dipole interaction; from this fit, the intrinsic Tm lifetime in the absence of cross relaxation can be derived. We have used this lifetime to calculate the rate of the cross-relaxation process. We have evaluated this rate as a function of the temperature and found it to be fastest at 77 K. We have also calculated the microscopic interaction parameters for the cross-relaxation process by using two independent experimental features: (1) the time evolution of the emission from the H-3(sub 4) level; and (2) the spectral overlap between the H-3(sub 4) yields F-3(sub 4) emission and the H-3(sub 6) yields F-3(sub 4) absorption. We have also considered the migration of excitation among the Tm ions in the F-3(sub 4) level and calculated the relevant

  17. Excited state dynamics & optical control of molecular motors

    NASA Astrophysics Data System (ADS)

    Wiley, Ted; Sension, Roseanne

    2014-03-01

    Chiral overcrowded alkenes are likely candidates for light driven rotary molecular motors. At their core, these molecular motors are based on the chromophore stilbene, undergoing ultrafast cis/trans photoisomerization about their central double bond. Unlike stilbene, the photochemistry of molecular motors proceeds in one direction only. This unidirectional rotation is a result of helicity in the molecule induced by steric hindrance. However, the steric hindrance which ensures unidirectional excited state rotation, has the unfortunate consequence of producing large ground state barriers which dramatically decrease the overall rate of rotation. These molecular scale ultrafast motors have only recently been studied by ultrafast spectroscopy. Our lab has studied the photochemistry and photophysics of a ``first generation'' molecular motor with UV-visible transient absorption spectroscopy. We hope to use optical pulse shaping to enhance the efficiency and turnover rate of these molecular motors.

  18. Excitation gap of fractal quantum hall states in graphene

    NASA Astrophysics Data System (ADS)

    Luo, Wenchen; Chakraborty, Tapash

    2016-01-01

    In the presence of a magnetic field and an external periodic potential the Landau level spectrum of a two-dimensional electron gas exhibits a fractal pattern in the energy spectrum which is described as the Hofstadter’s butterfly. In this work, we develop a Hartree-Fock theory to deal with the electron-electron interaction in the Hofstadter’s butterfly state in a finite-size graphene with periodic boundary conditions, where we include both spin and valley degrees of freedom. We then treat the butterfly state as an electron crystal so that we could obtain the order parameters of the crystal in the momentum space and also in an infinite sample. A phase transition between the liquid phase and the fractal crystal phase can be observed. The excitation gaps obtained in the infinite sample is comparable to those in the finite-size study, and agree with a recent experimental observation.

  19. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    SciTech Connect

    Egidi, Franco Segado, Mireia; Barone, Vincenzo; Koch, Henrik; Cappelli, Chiara

    2014-12-14

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  20. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    NASA Astrophysics Data System (ADS)

    Egidi, Franco; Segado, Mireia; Koch, Henrik; Cappelli, Chiara; Barone, Vincenzo

    2014-12-01

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π*, π-π*, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  1. Neutron decay widths of excited states of Be11

    NASA Astrophysics Data System (ADS)

    Haigh, P. J.; Freer, M.; Ashwood, N. I.; Bloxham, T.; Curtis, N.; McEwan, P.; Bohlen, H. G.; Dorsch, T.; Kokalova, Tz.; Schulz, Ch.; Wheldon, C.

    2009-01-01

    The two-neutron transfer reaction Be9(O16, O14)Be11[Be10 +n] has been used to measure the branching ratios for the neutron decay of excited states of Be11. The O14 ejectile was detected by a Q3D spectrometer at forward angles. The energies and angles of the Be10 fragments of the decaying Be11* recoil were measured in coincidence with the O14 ejectile using a double-sided silicon strip detector array at backward angles. This enabled a kinematic reconstruction of the reaction to be performed. Theoretical decay branch ratios were calculated using barrier penetrability factors and were compared to the measured ratios to provide information on the relative reduced widths of the states. The decay widths have been used to link states in Be11 with a common structure and structurally to states in the daughter nucleus Be10. The 3/2-8.82-MeV state was identified as a candidate for a molecular band head.

  2. Ultrafast electronic relaxation of excited state vitamin B 12 in the gas phase

    NASA Astrophysics Data System (ADS)

    Shafizadeh, Niloufar; Poisson, Lionel; Soep, Benoıˆt

    2008-06-01

    The time evolution of electronically excited vitamin B 12 (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states.

  3. Relativistic Landau–He–McKellar–Wilkens quantization and relativistic bound states solutions for a Coulomb-like potential induced by the Lorentz symmetry breaking effects

    SciTech Connect

    Bakke, K.; Belich, H.

    2013-06-15

    In this work, we discuss the relativistic Landau–He–McKellar–Wilkens quantization and relativistic bound states solutions for a Dirac neutral particle under the influence of a Coulomb-like potential induced by the Lorentz symmetry breaking effects. We present new possible scenarios of studying Lorentz symmetry breaking effects by fixing the space-like vector field background in special configurations. It is worth mentioning that the criterion for studying the violation of Lorentz symmetry is preserving the gauge symmetry. -- Highlights: •Two new possible scenarios of studying Lorentz symmetry breaking effects. •Coulomb-like potential induced by the Lorentz symmetry breaking effects. •Relativistic Landau–He–McKellar–Wilkens quantization. •Exact solutions of the Dirac equation.

  4. Kinetics of excited states and radicals in a nanosecond pulse discharge and afterglow in nitrogen and air

    NASA Astrophysics Data System (ADS)

    Shkurenkov, Ivan; Burnette, David; Lempert, Walter R.; Adamovich, Igor V.

    2014-12-01

    The present kinetic modelling calculation results provide key new insights into the kinetics of vibrational excitation of nitrogen and plasma chemical reactions in nanosecond pulse, ‘diffuse filament’ discharges in nitrogen and dry air at a moderate energy loading per molecule, ˜0.1 eV per molecule. It is shown that it is very important to take into account Coulomb collisions between electrons because they change the electron energy distribution function and, as a result, strongly affect populations of excited states and radical concentrations in the discharge. The results demonstrate that the apparent transient rise of N2 ‘first level’ vibrational temperature after the discharge pulse, as detected in the experiments, is due to the net downward V-V energy transfer in N2-N2 collisions, which increases the N2(X 1Σ, v = 1) population. Finally, a comparison of the model's predictions with the experimental data shows that NO formation in the afterglow occurs via reactive quenching of multiple excited electronic levels of nitrogen molecule, N2\\ast , by O atoms. ) published in this volume, which focuses on the kinetic modelling of the experiments. This paper presents the results of the experiments.

  5. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion.

    PubMed

    Winghart, Marc-Oliver; Yang, Ji-Ping; Vonderach, Matthias; Unterreiner, Andreas-Neil; Huang, Dao-Ling; Wang, Lai-Sheng; Kruppa, Sebastian; Riehn, Christoph; Kappes, Manfred M

    2016-02-01

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt2(μ-P2O5H2)4 + 2H](2-) after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet (1)A2u state and concomitant rise in population of the triplet (3)A2u state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet (1)A2u state takes only a few picoseconds, ESETD from the triplet (3)A2u state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt2(μ-P2O5H2)4 + 2H](2-) is the first example of a photoexcited multianion for which ESETD has been observed following ISC.

  6. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion

    NASA Astrophysics Data System (ADS)

    Winghart, Marc-Oliver; Yang, Ji-Ping; Vonderach, Matthias; Unterreiner, Andreas-Neil; Huang, Dao-Ling; Wang, Lai-Sheng; Kruppa, Sebastian; Riehn, Christoph; Kappes, Manfred M.

    2016-02-01

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt2(μ-P2O5H2)4 + 2H]2- after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet 1A2u state and concomitant rise in population of the triplet 3A2u state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet 1A2u state takes only a few picoseconds, ESETD from the triplet 3A2u state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt2(μ-P2O5H2)4 + 2H]2- is the first example of a photoexcited multianion for which ESETD has been observed following ISC.

  7. Lowest singlet excited state and spectroscopy of α-carotene

    NASA Astrophysics Data System (ADS)

    Itoh, Takao

    2011-03-01

    Emission, excitation and absorption spectra of α-carotene have been measured in solvents with different polarizabilities. It is shown that in highly-polarized solvents α-carotene emits weak fluorescence from the S 1( π, π∗) state with the fluorescence origin observed at 14 800 ± 200 cm -1. The relative S 1/S 2 fluorescence intensity ratio tends to increase with increasing solvent polarizability or decreasing the S 1-S 2 energy separation. The obtained spectroscopic data include the Raman spectrum of α-carotene along with the vibrational analyses of the Raman spectrum based on the DFT calculation at the B3LYP/6-31G(d,p) level.

  8. Measurement of Atomic Oscillator Strength Distribution from the Excited States

    SciTech Connect

    Hussain, Shahid; Saleem, M.; Baig, M. A.

    2008-10-22

    Saturation technique has been employed to measure the oscillator strength distribution in spectra of helium lithium using an electrical discharge cell a thermionic diode ion detector respectively. The photoabsorption cross sections in the discrete or bound region (commonly known as f-values) have been determined form the Rydberg series accessed from a particular excited state calibrating it with the absolute value of the photoionization cross section measured at the ionization threshold. The extracted discrete f-values merge into the oscillator strength densities, estimated from the measured photoionization cross sections at different photon energies above the first ionization threshold. The experimental data on helium and lithium show continuity between the discrete and the continuous oscillator strengths across the ionization threshold.

  9. Chimera states and excitation waves in networks with complex topologies

    NASA Astrophysics Data System (ADS)

    Schöll, Eckehard

    2016-06-01

    Chimera patterns, which consist of coexisting spatial domains of coherent (synchronized) and incoherent (desyn- chronized) dynamics are studied in networks of FitzHugh-Nagumo systems with complex topologies. To test the robustness of chimera patterns with respect to changes in the structure of the network, we study the following network topologies: Regular ring topology with R nearest neigbors coupled to each side, small-world topology with additional long-range random links, and a hierarchical geometry in the connectivity matrix. We find that chimera states are generally robust with respect to these perturbations, but qualitative changes of the chimera patterns in form of nested coherent and incoherent regions can be induced by a hierarchical topology. The suppression of propagating excitation waves by a small-world topology is also reviewed.

  10. Entanglement thermodynamics for an excited state of Lifshitz system

    NASA Astrophysics Data System (ADS)

    Chakraborty, Somdeb; Dey, Parijat; Karar, Sourav; Roy, Shibaji

    2015-04-01

    A class of (2+1)-dimensional quantum many body system characterized by an anisotropic scaling symmetry (Lifshitz symmetry) near their quantum critical point can be described by a (3+1)-dimensional dual gravity theory with negative cosmological constant along with a massive vector field, where the scaling symmetry is realized by the metric as an isometry. We calculate the entanglement entropy of an excited state of such a system holographically, i.e., from the asymptotic perturbation of the gravity dual using the prescription of Ryu and Takayanagi, when the subsystem is sufficiently small. With suitable identifications, we show that this entanglement entropy satisfies an energy conservation relation analogous to the first law of thermodynamics. The non-trivial massive vector field here plays a crucial role and contributes to an additional term in the energy relation.

  11. Theoretical description of excited state dynamics in nanostructures

    NASA Astrophysics Data System (ADS)

    Rubio, Angel

    2009-03-01

    There has been much progress in the synthesis and characterization of nanostructures however, there remain immense challenges in understanding their properties and interactions with external probes in order to realize their tremendous potential for applications (molecular electronics, nanoscale opto-electronic devices, light harvesting and emitting nanostructures). We will review the recent implementations of TDDFT to study the optical absorption of biological chromophores, one-dimensional polymers and layered materials. In particular we will show the effect of electron-hole attraction in those systems. Applications to the optical properties of solvated nanostructures as well as excited state dynamics in some organic molecules will be used as text cases to illustrate the performance of the approach. Work done in collaboration with A. Castro, M. Marques, X. Andrade, J.L Alonso, Pablo Echenique, L. Wirtz, A. Marini, M. Gruning, C. Rozzi, D. Varsano and E.K.U. Gross.

  12. Theoretical study on the excited states of HCN

    SciTech Connect

    Nayak, Malaya K.; Chaudhuri, Rajat K.; Krishnamachari, S.N.L.G.

    2005-05-08

    In the flash-photolysis of oxazole, iso-oxazole, and thiozole a transient band system was observed in the region 2500-3050 A. This band system was attributed to a meta-stable form of HCN, i.e., either HNC or triplet HCN. Theoretical investigations have been carried out on the ground and excited states of HCN to characterize this and other experimentally observed transitions. The predicted geometries are compared with the experiment and earlier theoretical calculations. The present calculations show that the band system in the region 2500-3050 A corresponds to the transition 4 {sup 3}-A{sup '}<{sup -}1 {sup 3}-A{sup '} of HCN.

  13. UV excited-state photoresponse of biochromophore negative ions.

    PubMed

    Bochenkova, Anastasia V; Klærke, Benedikte; Rahbek, Dennis B; Rajput, Jyoti; Toker, Yoni; Andersen, Lars H

    2014-09-01

    Members of the green fluorescent protein (GFP) family may undergo irreversible phototransformation upon irradiation with UV light. This provides clear evidence for the importance of the higher-energy photophysics of the chromophore, which remains essentially unexplored. By using time-resolved action and photoelectron spectroscopy together with high-level electronic structure theory, we directly probe and identify higher electronically excited singlet states of the isolated para- and meta-chromophore anions of GFP. These molecular resonances are found to serve as a doorway for very efficient electron detachment in the gas phase. Inside the protein, this band is found to be resonant with the quasicontinuum of a solvated electron, thus enhancing electron transfer from the GFP to the solvent. This suggests a photophysical pathway for photoconversion of the protein, where GFP resonant photooxidation in solution triggers radical redox reactions inside these proteins. PMID:25044707

  14. Theoretical studies of excited state 1,3 dipolar cycloadditions

    NASA Astrophysics Data System (ADS)

    Belluccci, Michael A.

    The 1,3 dipolar photocycloaddition reaction between 3-hydroxy-4',5,7-trimethoxyflavone (3-HTMF) and methyl cinnamate is investigated in this work. Since its inception in 2004 [JACS, 124, 13260 (2004)], this reaction remains at the forefront in the synthetic design of the rocaglamide natural products. The reaction is multi-faceted in that it involves multiple excited states and is contingent upon excited state intramolecular proton transfer (ESIPT) in 3-HTMF. Given the complexity of the reaction, there remain many questions regarding the underlying mechanism. Consequently, throughout this work we investigate the mechanism of the reaction along with a number of other properties that directly influence it. To investigate the photocycloaddition reaction, we began by studying the effects of different solvent environments on the ESIPT reaction in 3-hydroxyflavone since this underlying reaction is sensitive to the solvent environment and directly influences the cycloaddition. To study the ESIPT reaction, we developed a parallel multi-level genetic program to fit accurate empirical valence bond (EVB) potentials to ab initio data. We found that simulations with our EVB potentials accurately reproduced experimentally determined reaction rates, fluorescence spectra, and vibrational frequency spectra in all solvents. Furthermore, we found that the ultrafast ESIPT process results from a combination of ballistic transfer and intramolecular vibrational redistribution. To investigate the cycloaddition reaction mechanism, we utilized the string method to obtain minimum energy paths on the ab initio potential. These calculations demonstrated that the reaction can proceed through formation of an exciplex in the S1 state, followed by a non-adiabatic transition to the ground state. In addition, we investigated the enantioselective catalysis of the reaction using alpha,alpha,alpha',alpha'-tetraaryl-1,3-dioxolan-4,5-dimethanol alcohol (TADDOL). We found that TADDOL lowered the energy

  15. Transfer matrices and excitations with matrix product states

    NASA Astrophysics Data System (ADS)

    Zauner, V.; Draxler, D.; Vanderstraeten, L.; Degroote, M.; Haegeman, J.; Rams, M. M.; Stojevic, V.; Schuch, N.; Verstraete, F.

    2015-05-01

    We use the formalism of tensor network states to investigate the relation between static correlation functions in the ground state of local quantum many-body Hamiltonians and the dispersion relations of the corresponding low-energy excitations. In particular, we show that the matrix product state transfer matrix (MPS-TM)—a central object in the computation of static correlation functions—provides important information about the location and magnitude of the minima of the low-energy dispersion relation(s), and we present supporting numerical data for one-dimensional lattice and continuum models as well as two-dimensional lattice models on a cylinder. We elaborate on the peculiar structure of the MPS-TM’s eigenspectrum and give several arguments for the close relation between the structure of the low-energy spectrum of the system and the form of the static correlation functions. Finally, we discuss how the MPS-TM connects to the exact quantum transfer matrix of the model at zero temperature. We present a renormalization group argument for obtaining finite bond dimension approximations of the MPS, which allows one to reinterpret variational MPS techniques (such as the density matrix renormalization group) as an application of Wilson’s numerical renormalization group along the virtual (imaginary time) dimension of the system.

  16. Excited states of the 5-chlorophyll photosystem II reaction center

    SciTech Connect

    Jankowiak, R.; Raetsep, M.; Picorel, R.; Seibert, M.; Small, G.J.

    1999-11-04

    Results of 4.2 K hole burning, chemical reduction (sodium dithionite, in dark and with illumination), and oxidation (ferricyanide) experiments are reported for the isolated PS II reaction center containing five chlorophyll (Chl) molecules (RC-5). Q{sub y} states at 679.6 and 668.3 nm are identified as being highly localized on pheophytin a of the D{sub 1} branch (Pheo{sub 1}) and pheophytin a of the D{sub 2} branch (Pheo{sub 2}), respectively. The Pheo{sub 1}-Q{sub x} and Pheo{sub 2}-Q{sub x} transitions were found to lie on the low and high energy sides of the single Pheo-Q{sub x} absorption band, at 544.4 and 541.2 nm, respectively. The Q{sub y} band of the 684 nm absorbing Chl, which is more apparent in absorption in RC-5 than in RC-6 samples, is assigned to the peripheral Chl on the D{sub 1} side. The results are consistent with that peripheral Chl being Chl{sub z}. The results indicate that P680, the primary electron donor, is the main acceptor for energy transfer from the Pheo{sub 1}-Q{sub y} state and that excitation energy transfer from the Pheo{sub 1}-Q{sub y} state and P680* to the 684 nm Chl is inefficient. It is concluded that the procedure used to prepare RC-5 has only a small effect on the energies of the Q{sub y} states associated with the core cofactors of the 6-Chl RC as well as the 684 nm Chl. Implications of the results for the multimer model are considered. In that model the Q{sub y}-states of the core are significantly delocalized over several cofactors. The results presented provide no support for this model.

  17. Microwave Spectroscopy of the Excited Vibrational States of Methanol

    NASA Astrophysics Data System (ADS)

    Pearson, John; Daly, Adam M.; Bermúdez, Celina

    2015-06-01

    Methanol is the simplest molecule with a three-fold internal rotation and the observation of its νb{8} band served the primary catalyst for the development of internal rotation theory(a,b). The 75 subsequent years of investigation into the νb{8} band region have yielded a large number assignments, numerous high precision energy levels and a great deal of insight into the coupling of νb{t}=3 & 4 with νb{8}, νb{7}, νb{11} and other nearby states(c). In spite of this progress numerous assignment mysteries persist, the origin of almost half the far infrared laser lines remain unknown and all attempts to model the region quantum mechanically have had very limited success. The C3V internal rotation Hamiltonian has successfully modeled the νb{t}=0,1 & 2 states of methanol and other internal rotors(d). However, successful modeling of the coupling between torsional bath states and excited small amplitude motion remains problematic and coupling of multiple interacting excited small amplitude vibrations featuring large amplitude motions remains almost completely unexplored. Before such modeling can be attempted, identifying the remaining low lying levels of νb{7} and νb{11} is necessary. We present an investigation into the microwave spectrum of νb{7}, νb{8} and νb{11} along with the underlying torsional bath states in νb{t}=3 and νb{t}= 4. (a) A. Borden, E.F. Barker J. Chem. Phys., 6, 553 (1938). (b) J. S. Koehler and D. M. Dennison, Phys. Rev. 57, 1006 (1940). (c) R. M. Lees, Li-Hong Xu, J. W. C. Johns, B. P. Winnewisser, and M. Lock, J. Mol. Spectrosc. 243, 168 (2007). (d) L.-H. Xu, J. Fisher, R.M. Lees, H.Y. Shi, J.T. Hougen, J.C. Pearson, B.J. Drouin, G.A. Blake, R. Braakman J. Mol. Spectrosc., 251, 305 (2008).

  18. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    SciTech Connect

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  19. Widespread seismicity excitation throughout central Japan following the 2011 M=9.0 Tohoku earthquake and its interpretation by Coulomb stress transfer

    USGS Publications Warehouse

    Toda, S.; Stein, R.S.; Lin, J.

    2011-01-01

    We report on a broad and unprecedented increase in seismicity rate following the M=9.0 Tohoku mainshock for M ≥ 2 earthquakes over inland Japan, parts of the Japan Sea and Izu islands, at distances of up to 425 km from the locus of high (≥15 m) seismic slip on the megathrust. Such an increase was not seen for the 2004 M=9.1 Sumatra or 2010 M=8.8 Chile earthquakes, but they lacked the seismic networks necessary to detect such small events. Here we explore the possibility that the rate changes are the product of static Coulomb stress transfer to small faults. We use the nodal planes of M ≥ 3.5 earthquakes as proxies for such small active faults, and find that of fifteen regions averaging ~80 by 80 km in size, 11 show a positive association between calculated stress changes and the observed seismicity rate change, 3 show a negative correlation, and for one the changes are too small to assess. This work demonstrates that seismicity can turn on in the nominal stress shadow of a mainshock as long as small geometrically diverse active faults exist there, which is likely quite common.

  20. Semiclassical Coulomb field

    SciTech Connect

    Polonyi, J.

    2008-06-15

    The contribution of different modes of the Coulomb field to decoherence and to the dynamical breakdown of the time reversal invariance is calculated in the one-loop approximation for nonrelativistic electron gas. The dominant contribution was found to come from the usual collective modes in the plasma, namely, the zero-sound and the plasmon oscillations. The length scale of the quantum-classical transition is found to be close to the Thomas-Fermi screening length. It is argued that the extension of these modes to the whole Fock space yields optimal pointer states.

  1. Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation

    SciTech Connect

    Kaptan, Y. Herzog, B.; Schöps, O.; Kolarczik, M.; Woggon, U.; Owschimikow, N.; Röhm, A.; Lingnau, B.; Lüdge, K.; Schmeckebier, H.; Arsenijević, D.; Bimberg, D.; Mikhelashvili, V.; Eisenstein, G.

    2014-11-10

    The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observed response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.

  2. Coherence, Energy and Charge Transfers in De-Excitation Pathways of Electronic Excited State of Biomolecules in Photosynthesis

    NASA Astrophysics Data System (ADS)

    Bohr, Henrik G.; Malik, F. Bary

    2013-11-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin-chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used Förster-Dexter theory, which does not allow for charge transfer, is a special case of B-A theory. The latter could, under appropriate circumstances, lead to excimers.

  3. Excited State Dynamics of 7-AZAINDOLE Homodimer in Frozen Nitrogen Matrix

    NASA Astrophysics Data System (ADS)

    Mukherjee, Moitrayee; Bandyopadhyay, Biman; Karmakar, Shreetama; Chakraborty, Tapas

    2011-06-01

    In a fluid medium (liquid or gas), the doubly hydrogen bonded dimer of 7-azaindole (7AI) undergoes tautomerization via simultaneous exchange of two H-atoms/protons between the two moieties upon UV excitation to lowest excited singlet state. The excited dimer emits exclusively visible fluorescence from tautomeric configuration, and no UV fluorescence is detected from the locally excited state. We show here for the first time that this generic excited state dynamics of 7AI dimer is totally altered if the species is synthesized and confined in frozen nitrogen at 8 K. The dimer has been found to emit only from the locally excited state, and the photophysical channel leading to excited state tautomerization is completely blocked. The formation of the centrosymmetric dimer in nitrogen matrix is ensured by recording the FTIR spectrum of the dimer before initiating the photophysical measurements. The details of our findings and interpretation of the measured data will be presented in the talk.

  4. Excited-State Dynamics in Colloidal Semiconductor Nanocrystals.

    PubMed

    Rabouw, Freddy T; de Mello Donega, Celso

    2016-10-01

    Colloidal semiconductor nanocrystals have attracted continuous worldwide interest over the last three decades owing to their remarkable and unique size- and shape-, dependent properties. The colloidal nature of these nanomaterials allows one to take full advantage of nanoscale effects to tailor their optoelectronic and physical-chemical properties, yielding materials that combine size-, shape-, and composition-dependent properties with easy surface manipulation and solution processing. These features have turned the study of colloidal semiconductor nanocrystals into a dynamic and multidisciplinary research field, with fascinating fundamental challenges and dazzling application prospects. This review focuses on the excited-state dynamics in these intriguing nanomaterials, covering a range of different relaxation mechanisms that span over 15 orders of magnitude, from a few femtoseconds to a few seconds after photoexcitation. In addition to reviewing the state of the art and highlighting the essential concepts in the field, we also discuss the relevance of the different relaxation processes to a number of potential applications, such as photovoltaics and LEDs. The fundamental physical and chemical principles needed to control and understand the properties of colloidal semiconductor nanocrystals are also addressed. PMID:27573500

  5. Investigation of excited 0+ states populated in the 162 Er (p,t) reaction

    NASA Astrophysics Data System (ADS)

    Burbadge, C.; Bildstein, V.; Diaz Varela, A.; Dunlop, M.; Dunlop, R.; Garrett, P. E.; Jamieson, D. S.; Kisliuk, D.; Leach, K. G.; Loranger, J.; Maclean, A.; Radich, A.; Rand, E.; Svensson, C. E.; Ball, G. C.; Triambak, S.; Faestermann, T.; Hertenberger, R.; Wirth, H.-F.

    2015-10-01

    A continuing challenge in nuclear structure physics is the determination of the nature of low-lying excited 0+ states. Various approaches have been implemented to interpret the occurence of these states, such as vibrational excitations in β and γ phonons or pairing excitations. One of the difficulties, however, in resolving the nature of these states is that there is a paucity of data; even the first excited state, 02+,is not always known. Direct two-neutron transfer reactions are a useful tool for locating and investigating the nature of excited 0+ states in well-deformed nuclei. Using the Q3D spectrograph at the Maier-Leibnitz Laboratory, the N = 92 nucleus 160Er was studied via (p , t) reactions with a highly-enriched 162Er target. Strong population of the 02+state was observed with large cross sections greater than any other excited 0+ state. Preliminary results will be presented.

  6. Contribution of the 4 f -core-excited states in determination of atomic properties in the Promethium Isoelectronic Sequence

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, Peter; Safronova, U. I.; Safronova, A. S.

    2014-05-01

    The atomic properties of Pm-like ions were comprehensively studied using relativistic atomic codes with the main emphasis on W ion. Excitation energies of the 4f14 nl (with nl = 5 s , 6 s , 5 p , 6 p , 5 d , 6 d , and 5 f) states in Pm-like ions with nuclear charge Z ranging from 74 to 100 are evaluated within the framework of relativistic many-body theory (RMBPT). First- and second-order Coulomb energies and first- and second-order Breit corrections to the energies are calculated. The important question of what is the ground state in Pm-like ions was answered. Properties of the 4 f -core-excited states are evaluated using the multiconfiguration relativistic Hebrew University Lawrence Livermore Atomic Code (HULLAC code) and the Hartree-Fock-Relativistic method (COWAN code). Our large scale calculations includes the following set of configurations: 4f14 5 s , 4f14 5 p , 4f13 5s2 , 4f13 5p2 , 4f13 5 s 5 p , 4f12 5s2 5 p , 4f12 5 s 5p2 , and 4f12 5p3 . Excitation energies, transition rates, and lifetimes in Pm-like tungsten are evaluated with additional inclusion of the 4f11 5s2 5p2 , 4f11 5 s 5p3 , 4f10 5s2 5p3 , and 4f10 5 s 5p4 configurations. Wavelengths of the 5 s - 5 p transitions are obtained by the COWAN, HULLAC, and RMBPT codes. This research was sponsored by DOE under the OFES grant DE-FG02-08ER54951 and in part by NNSA Cooperative Agreement DE-NA0001984. Work at Lawrence Livermore National Lab. was performed under the auspices of DOE under Contract DE-AC52-07NA27344.

  7. Linear energy relationships in ground state proton transfer and excited state proton-coupled electron transfer.

    PubMed

    Gamiz-Hernandez, Ana P; Magomedov, Artiom; Hummer, Gerhard; Kaila, Ville R I

    2015-02-12

    Proton-coupled electron transfer (PCET) processes are elementary chemical reactions involved in a broad range of radical and redox reactions. Elucidating fundamental PCET reaction mechanisms are thus of central importance for chemical and biochemical research. Here we use quantum chemical density functional theory (DFT), time-dependent density functional theory (TDDFT), and the algebraic diagrammatic-construction through second-order (ADC(2)) to study the mechanism, thermodynamic driving force effects, and reaction barriers of both ground state proton transfer (pT) and photoinduced proton-coupled electron transfer (PCET) between nitrosylated phenyl-phenol compounds and hydrogen-bonded t-butylamine as an external base. We show that the obtained reaction barriers for the ground state pT reactions depend linearly on the thermodynamic driving force, with a Brønsted slope of 1 or 0. Photoexcitation leads to a PCET reaction, for which we find that the excited state reaction barrier depends on the thermodynamic driving force with a Brønsted slope of 1/2. To support the mechanistic picture arising from the static potential energy surfaces, we perform additional molecular dynamics simulations on the excited state energy surface, in which we observe a spontaneous PCET between the donor and the acceptor groups. Our findings suggest that a Brønsted analysis may distinguish the ground state pT and excited state PCET processes.

  8. TDDFT study on the excited-state proton transfer of 8-hydroxyquinoline: Key role of the excited-state hydrogen-bond strengthening

    NASA Astrophysics Data System (ADS)

    Lan, Sheng-Cheng; Liu, Yu-Hui

    2015-03-01

    Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations have been employed to study the excited-state intramolecular proton transfer (ESIPT) reaction of 8-hydroxyquinoline (8HQ). Infrared spectra of 8HQ in both the ground and the lowest singlet excited states have been calculated, revealing a red-shift of the hydroxyl group (-OH) stretching band in the excited state. Hence, the intramolecular hydrogen bond (O-H···N) in 8HQ would be significantly strengthened upon photo-excitation to the S1 state. As the intramolecular proton-transfer reaction occurs through hydrogen bonding, the ESIPT reaction of 8HQ is effectively facilitated by strengthening of the electronic excited-state hydrogen bond (O-H···N). As a result, the intramolecular proton-transfer reaction would occur on an ultrafast timescale with a negligible barrier in the calculated potential energy curve for the ESIPT reaction. Therefore, although the intramolecular proton-transfer reaction is not favorable in the ground state, the ESIPT process is feasible in the excited state. Finally, we have identified that radiationless deactivation via internal conversion (IC) becomes the main dissipative channel for 8HQ by analyzing the energy gaps between the S1 and S0 states for the enol and keto forms.

  9. TDDFT study on the excited-state proton transfer of 8-hydroxyquinoline: key role of the excited-state hydrogen-bond strengthening.

    PubMed

    Lan, Sheng-Cheng; Liu, Yu-Hui

    2015-03-15

    Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations have been employed to study the excited-state intramolecular proton transfer (ESIPT) reaction of 8-hydroxyquinoline (8HQ). Infrared spectra of 8HQ in both the ground and the lowest singlet excited states have been calculated, revealing a red-shift of the hydroxyl group (-OH) stretching band in the excited state. Hence, the intramolecular hydrogen bond (O-H···N) in 8HQ would be significantly strengthened upon photo-excitation to the S1 state. As the intramolecular proton-transfer reaction occurs through hydrogen bonding, the ESIPT reaction of 8HQ is effectively facilitated by strengthening of the electronic excited-state hydrogen bond (O-H···N). As a result, the intramolecular proton-transfer reaction would occur on an ultrafast timescale with a negligible barrier in the calculated potential energy curve for the ESIPT reaction. Therefore, although the intramolecular proton-transfer reaction is not favorable in the ground state, the ESIPT process is feasible in the excited state. Finally, we have identified that radiationless deactivation via internal conversion (IC) becomes the main dissipative channel for 8HQ by analyzing the energy gaps between the S1 and S0 states for the enol and keto forms.

  10. Synthetic control of excited states. Nonchromophoric ligand variations in polypyridyl complexes of osmium(II)

    SciTech Connect

    Kober, E.M.; Marshall, J.L.; Dressick, W.J.; Sullivan, B.P.; Caspar, J.V.; Meyer, T.J.

    1985-08-28

    Two themes are explored with regard to the properties of the metal to ligand charge-transfer (MLCT) excited states of Os(II). For a series of Os(II) complexes it is shown that the MLCT excited states undergo facile oxidative or reductive quenching. Excited-state redox potentials have been estimated by both kinetic quenching and spectroscopic techniques for excited-state oxidative couples and excited-state reductive couples. The second theme, the manipulation of excited-state properties by synthetic changes, follows from a consideration of these factors that dictate excited-state redox potentials. It is shown that in the series (phen)OsL/sub 4//sup 2 +/ (L = pyridine, CH/sub 3/CN, PR/sub 3/, AsR/sub 3/, ... and phen = 1,10-phenanthroline) where the metal-ligand basis for the MLCT chromophore remains the same and variations are made in the nonchromophoric ligand, emission energies, excited-state redox potentials, and radiative and nonradiative rate constants all vary systematically with the potential of the ground-state Os(III/II) couple. The results show that it is possible through synthetic changes to control excited-state properties in a systematical way. 37 references, 6 figures, 5 tables.

  11. Low-velocity transient-field technique with radioactive ion beams: g factor of the first excited 2+ state in 72Zn

    NASA Astrophysics Data System (ADS)

    Illana, A.; Jungclaus, A.; Orlandi, R.; Perea, A.; Bauer, C.; Briz, J. A.; Egido, J. L.; Gernhäuser, R.; Leske, J.; Mücher, D.; Pakarinen, J.; Pietralla, N.; Rajabali, M.; Rodríguez, T. R.; Seiler, D.; Stahl, C.; Voulot, D.; Wenander, F.; Blazhev, A.; De Witte, H.; Reiter, P.; Seidlitz, M.; Siebeck, B.; Vermeulen, M. J.; Warr, N.

    2014-05-01

    The g factor of the first excited 2+ state in 72Zn has been measured using the transient-field (TF) technique in combination with Coulomb excitation in inverse kinematics. This experiment presents only the third successful application of the TF method to a short-lived radioactive beam in 10 y, highlighting the intricacies of applying this technique to present and future isotope separator on-line facilities. The significance of the experimental result, g(21+)=+0.47(14), for establishing the structure of the Zn isotopes near N =40 is discussed on the basis of shell-model and beyond-mean-field calculations, the latter accounting for the triaxial degree of freedom, configuration mixing, and particle number and angular momentum projections.

  12. The Structure of the Nucleon and it's Excited States

    SciTech Connect

    1995-02-20

    The past year has been an exciting and productive one for particle physics research at Abilene Christian University. The thrust of our experimental investigations is the study of the nucleon and its excited states. Laboratories where these investigations are presently being conducted are the AGS at Brookhaven, Fermilab and LAMPF. Some analysis of the data for experiments at the Petersburg Nuclear Physics Institute (Gatchina, Russia) is still in progress. Scheduling of activities at different laboratories inevitably leads to occasional conflicts. This likelihood is increased by the present budget uncertainties at the laboratories that make long-term scheduling difficult. For the most part, the investigators have been able to avoid such conflicts. Only one experiment received beam time in 1994 (E890 at the AGS). The situation for 1995-1996 also appears manageable at this point. E890 and another AGS experiment (E909) will run through May, 1995. El 178 at LAMPF is presently scheduled for August/September 1995. E866 at Fermilab is scheduled to start in Spring/Summer 1996. Undergraduate student involvement has been a key element in this research contract since its inception. Summer students participated at all of the above laboratories in 1994 and the same is planned in 1995. A transition to greater involvement by graduate students will provide cohesiveness to ACU involvement at a given laboratory and full-time on-site involvement in the longer running experiments at FNAL and BNL. Funds to support a full-time graduate student are requested this year. Finally, collaboration by Russian, Croatian and Bosnian scientists has proven to be mutually beneficial to these experimental programs and to the overall programs at the institutions involved. Past support has been augmented by other grants from government agencies and from the Research Council at Abilene Christian University. Additional funds are requested in this renewal to enable more programmatic support for these

  13. Population of isomeric states in fusion and transfer reactions in beams of loosely bound nuclei near the Coulomb barrier

    SciTech Connect

    Skobelev, N. K.

    2015-07-15

    The influence of the mechanisms of nuclear reactions on the population of {sup 195m}Hg and {sup 197m}Hg(7/2{sup −}), {sup 198m}Tl and {sup 196m}Tl(7{sup +}), and {sup 196m}Au and {sub 198m}Au(12{sup −}) isomeric nuclear states obtained in reactions induced by beams of {sup 3}He, {sup 6}Li, and {sup 6}He weakly bound nuclei is studied. The behavior of excitation functions and high values of isomeric ratios (δ{sub m}/δ{sub g}) for products of nuclear reactions proceeding through a compound nucleus and involving neutron evaporation are explained within statistical models. Reactions in which the emission of charged particles occurs have various isomeric ratios depending on the reaction type. The isomeric ratio is lower in direct transfer reactions involving charged-particle emission than in reactions where the evaporation of charged particles occurs. Reactions accompanied by neutron transfer usually have a lower isomeric ratio, which behaves differently for different direct-reaction types (stripping versus pickup reactions)

  14. Complete dissociation branching fractions and Coulomb explosion dynamics of SO2 induced by excitation of O 1s pre-edge resonances.

    PubMed

    Salén, Peter; Yatsyna, Vasyl; Schio, Luca; Feifel, Raimund; Af Ugglas, Magnus; Richter, Robert; Alagia, Michele; Stranges, Stefano; Zhaunerchyk, Vitali

    2015-10-01

    Fragmentation processes of SO2 following excitation of the six main O 1s pre-edge resonances, as well as above the ionization threshold and below the resonances, are studied using a position-sensitive time-of-flight ion imaging detector, and the associated dissociation branching ratios and break-up dynamics are determined. In order to distinguish between the O(+) and S(2+) fragments of equal mass-to-charge ratio, the measurements have been performed with the isotopically enriched S(18)O2 sample. By analysis of the complete set of the fragment momentum vectors, the β values for the fragments originating from the SO(+) + O(+) break-up and the kinetic energy release for fragmentation channels of both SO2 (2+) and SO2 (3+) parent ions are determined. We also present results on the three-body break-up dynamics.

  15. Excited state absorption spectrum of chlorophyll a obtained with white-light continuum.

    PubMed

    De Boni, L; Correa, D S; Pavinatto, F J; dos Santos, D S; Mendonça, C R

    2007-04-28

    The study of excited state properties of chlorophyll a is a subject of foremost interest, given that it plays important roles in biological process and has also been proposed for applications in photonics. This work reports on the excited state absorption spectrum of chlorophyll a solution from 460 to 700 nm, obtained through the white-light continuum Z-scan technique. Saturation of absorption was observed due to the ground state depletion, induced by the white-light continuum region that is resonant with the Q band of chlorophyll a. The authors also observed reverse saturation of absorption related to the excitation from the first excited state to a higher energy level for wavelengths below 640 nm. An energy-level diagram, based on the electronic states of chlorophyll a, was employed to interpret their results, revealing that more states than the ones related to the Q and B bands participate in the excited state absorption of this molecule.

  16. Coulomb chronometry to probe the decay mechanism of hot nuclei

    NASA Astrophysics Data System (ADS)

    Gruyer, D.; Frankland, J. D.; Bonnet, E.; Chbihi, A.; Ademard, G.; Boisjoli, M.; Borderie, B.; Bougault, R.; Galichet, E.; Gauthier, J.; Guinet, D.; Lautesse, P.; Le Neindre, N.; Legouée, E.; Lombardo, I.; Lopez, O.; Manduci, L.; Marini, P.; Mazurek, K.; Nadtochy, P. N.; Pârlog, M.; Rivet, M. F.; Roy, R.; Rosato, E.; Spadaccini, G.; Verde, G.; Vient, E.; Vigilante, M.; Wieleczko, J. P.; Indra Collaboration

    2015-12-01

    In 129Xe+natSn central collisions from 8 to 25 MeV/nucleon, the three-fragment exit channel occurs with a significant cross section. We show that these fragments arise from two successive binary splittings of a heavy composite system. The sequence of fragment production is determined. Strong Coulomb proximity effects are observed in the three-fragment final state. A comparison with Coulomb trajectory calculations shows that the time scale between the consecutive breakups decreases with increasing bombarding energy, becoming quasisimultaneous above excitation energy E*=4.0 ±0.5 MeV /nucleon . This transition from sequential to simultaneous breakup was interpreted as the signature of the onset of multifragmentation for the three-fragment exit channel in this system.

  17. Relativistic many-body calculations of excitation energies and transition rates from core-excited states in copperlike ions

    NASA Astrophysics Data System (ADS)

    Safronova, U. I.; Johnson, W. R.; Shlyaptseva, A.; Hamasha, S.

    2003-05-01

    Energies of (3s23p63d94l4l'), (3s23p53d104l4l'), and (3s3p63d104l4l') states for Cu-like ions with Z=30 100 are evaluated to second order in relativistic many-body perturbation theory (RMBPT) starting from a Ni-like Dirac-Fock potential. Second-order Coulomb and Breit-Coulomb interactions are included. Correction for the frequency dependence of the Breit interaction is taken into account in lowest order. The Lamb shift correction to energies is also included in lowest order. Intrinsic particle-particle-hole contributions to energies are found to be 20 30 % of the sum of one- and two-body contributions. Transition rates and line strengths are calculated for the 3l-4l' electric-dipole (E1) transitions in Cu-like ions with nuclear charge Z=30 100. RMBPT including the Breit interaction is used to evaluate retarded E1 matrix elements in length and velocity forms. First-order RMBPT is used to obtain intermediate coupling coefficients, and second-order RMBPT is used to calculate transition matrix elements. A detailed discussion of the various contributions to the dipole- matrix elements and energy levels is given for copperlike tungsten (Z=74). The transition energies used in the calculation of oscillator strengths and transition rates are from second-order RMBPT. Trends of the transition rates as functions of Z are illustrated graphically for selected transitions. Comparisons are made with available experimental data. These atomic data are important in the modeling of M-shell radiation spectra of heavy ions generated in electron-beam ion trap experiments and in M-shell diagnostics of plasmas.

  18. Excited state lifetime during photostimulated desorption of no from a Pt surface

    NASA Astrophysics Data System (ADS)

    Magkoev, T. T.

    1998-07-01

    We analyze the rotational energy distribution N(J) for NO molecules desorbed from a Pt (111) surface, taking into account the valence electron excitations, using a simple impulse model. We find a linear dependence between ln N(J) and (Er)1/2, where Er is the rotational energy of the desorbed molecules. The excited state lifetime and the critical residence time in the excited state, evaluated from the given dependences, are close to each other, and in order of magnitude are 10-15 s. We also estimate the frequency and amplitude of the tilting vibrations of the adsorbed molecules in the excited state.

  19. Ab Initio Calculations of Singlet and Triplet Excited States of Chlorine Nitrate and Nitric Acid

    NASA Technical Reports Server (NTRS)

    Grana, Ana M.; Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    Ab initio calculations of vertical excitations to singlet and triplet excited states of chlorine nitrate and nitric acid are reported. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low-lying singlet states of chlorine nitrate appear to be directly dissociative in the ClO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied.

  20. Instability of insulating states in optical lattices due to collective phonon excitations

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Ziegler, K.

    2015-02-01

    The effect of collective phonon excitations on the properties of cold atoms in optical lattices is investigated. These phonon excitations are collective excitations, whose appearance is caused by intersite atomic interactions correlating the atoms, and they do not arise without such interactions. These collective excitations should not be confused with lattice vibrations produced by an external force. No such force is assumed. But the considered phonons are purely self-organized collective excitations, characterizing atomic oscillations around lattice sites, due to intersite atomic interactions. It is shown that these excitations can essentially influence the possibility of atoms' being localized. The states that would be insulating in the absence of phonon excitations can become delocalized when these excitations are taken into account. This concerns long-range as well as local atomic interactions. To characterize the region of stability, the Lindemann criterion is used.

  1. Dissociative excitation of the N(+)(5S) state by electron impact on N2 - Excitation function and quenching

    NASA Technical Reports Server (NTRS)

    Erdman, P. W.; Zipf, E. C.

    1986-01-01

    Metastable N(+)(5S) ions were produced in the laboratory by dissociative excitation of N2 with energetic electrons. The resulting radiative decay of the N(+)(5S) state was observed with sufficient resolution to completely resolve the doublet from the nearby N2 molecular radiation. The excitation function was measured from threshold to 500 eV. The cross section peaks at a high electron energy and also exhibits a high threshold energy both of which are typical of dissociative excitation-ionization processes. This finding complicates the explanation of electron impact on N2 as the mechanism for the source of the 2145 A 'auroral mystery feature' by further increasing the required peak cross section. It is suggested that the apparent N(+)(5S) quenching in auroras may be an artifact due to the softening of the electron energy spectrum in the auroral E region.

  2. Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks of Electronically Excited States.

    PubMed

    Tuna, Deniz; Lu, You; Koslowski, Axel; Thiel, Walter

    2016-09-13

    The semiempirical orthogonalization-corrected OMx methods have recently been shown to perform well in extensive ground-state benchmarks. They can also be applied to the computation of electronically excited states when combined with a suitable multireference configuration interaction (MRCI) treatment. We report on a comprehensive evaluation of the performance of the OMx/MRCI methods for electronically excited states. The present benchmarks cover vertical excitation energies, excited-state equilibrium geometries (including an analysis of significant changes between ground- and excited-state geometries), minimum-energy conical intersections, ground- and excited-state zero-point vibrational energies, and 0-0 transition energies for a total of 520 molecular structures and 412 excited states. For comparison, we evaluate the TDDFT/B3LYP method for all benchmark sets, and the CC2, MRCISD, and CASPT2 methods for some of them. We find that the current OMx/MRCI methods perform reasonably well for many of the excited-state properties. However, in comparison to the first-principles methods, there are also a number of shortcomings that should be addressed in future developments. PMID:27380455

  3. THE PHOTOTOXOICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: A THEORETICAL STUDY OF EXCITED STATES AND CORRELATION TO EXPERIMENT

    EPA Science Inventory



    Investigators using models to determine the phototoxic effects of sunlight on polycyclic aromatic hydrocarbons (PAHS) have invoked the excited states of the molecule as important in elucidating the mechanism of these reactions. Energies of actual excited states were calcu...

  4. Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks of Electronically Excited States.

    PubMed

    Tuna, Deniz; Lu, You; Koslowski, Axel; Thiel, Walter

    2016-09-13

    The semiempirical orthogonalization-corrected OMx methods have recently been shown to perform well in extensive ground-state benchmarks. They can also be applied to the computation of electronically excited states when combined with a suitable multireference configuration interaction (MRCI) treatment. We report on a comprehensive evaluation of the performance of the OMx/MRCI methods for electronically excited states. The present benchmarks cover vertical excitation energies, excited-state equilibrium geometries (including an analysis of significant changes between ground- and excited-state geometries), minimum-energy conical intersections, ground- and excited-state zero-point vibrational energies, and 0-0 transition energies for a total of 520 molecular structures and 412 excited states. For comparison, we evaluate the TDDFT/B3LYP method for all benchmark sets, and the CC2, MRCISD, and CASPT2 methods for some of them. We find that the current OMx/MRCI methods perform reasonably well for many of the excited-state properties. However, in comparison to the first-principles methods, there are also a number of shortcomings that should be addressed in future developments.

  5. Excited State Absorption from Real-Time Time-Dependent Density Functional Theory.

    PubMed

    Fischer, Sean A; Cramer, Christopher J; Govind, Niranjan

    2015-09-01

    The optical response of excited states is a key property used to probe photophysical and photochemical dynamics. Additionally, materials with a large nonlinear absorption cross-section caused by two-photon (TPA) and excited state absorption (ESA) are desirable for optical limiting applications. The ability to predict the optical response of excited states would help in the interpretation of transient absorption experiments and aid in the search for and design of optical limiting materials. We have developed an approach to obtain excited state absorption spectra by combining real-time (RT) and linear-response (LR) time-dependent density functional theory (TDDFT). Being based on RT-TDDFT, our method is aimed at tackling larger molecular complexes and materials systems where excited state absorption is predominantly seen and many time-resolved experimental efforts are focused. To demonstrate our method, we have calculated the ground and excited state spectra of H₂⁺ and H₂ due to the simplicity in the interpretation of the spectra. We have validated our new approach by comparing our results for butadiene with previously published results based on quadratic response (QR). We also present results for oligofluorenes, where we compare our results with both QR-TDDFT and experimental measurements. Because our method directly measures the response of an excited state, stimulated emission features are also captured; although, these features are underestimated in energy which could be attributed to a change of the reference from the ground to the excited state.

  6. A Doubles Correction to Electronic Excited States from Configuration Interaction in the Space of Single Substitutions

    NASA Technical Reports Server (NTRS)

    Head-Gordon, Martin; Rico, Rudolph J.; Lee, Timothy J.; Oumi, Manabu

    1994-01-01

    A perturbative correction to the method of configuration interaction with single substitutions (CIS) is presented. This CIS(D) correction approximately introduces the effect of double substitutions which are absent in CIS excited states. CIS(D) is a second-order perturbation expansion of the coupled-cluster excited state method, restricted to single and double substitutions, in a series in which CIS is zeroth order, and the first-order correction vanishes. CIS (D) excitation energies are size consistent and the calculational complexity scales with the fifth power of molecular size, akin to second-order Moller-Plesset theory for the ground state. Calculations on singlet excited states of ethylene, formaldehyde, acetaldehyde, butadiene and benzene show that CIS (D) is a uniform improvement over CIS. CIS(D) appears to be a promising method for examining excited states of large molecules, where more accurate methods are not feasible.

  7. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  8. Coulomb clusters in RETRAP

    SciTech Connect

    Beck, B. R.; Church, D. A.; Gruber, L.; Holder, J. P.; Schneider, D.; Steiger, J.

    1998-10-22

    Storage rings and Penning traps are being used to study ions in their highest charge states. Both devices must have the capability for ion cooling in order to perform high precision measurements such as mass spectrometry and laser spectroscopy. This is accomplished in storage rings in a merged beam arrangement where a cold electron beam moves at the speed of the ions. In RETRAP, a Penning trap located at Lawrence Livermore National Laboratory, a sympathetic laser/ion cooling scheme has been implemented. In a first step, singly charged beryllium ions are cooled electronically by a tuned circuit and optically by a laser. Then hot, highly charged ions are merged into the cold Be plasma. By collisions, their kinetic energy is reduced to the temperature of the Be plasma. First experiments indicate that the highly charged ions form a strongly coupled plasma with a Coulomb coupling parameter.

  9. Vibrations of acrylonitrile in N 1s excited states

    NASA Astrophysics Data System (ADS)

    Ilakovac, V.; Carniato, S.; Gallet, J.-J.; Kukk, E.; Horvatić, D.; Ilakovac, A.

    2008-01-01

    The N 1s near edge x-ray absorption fine structure spectra of acrylonitrile gas are accurately reproduced by a complete ab initio multidimensional vibrational analysis. The role of π∗ -orbital localization and hybridization on vibrations accompanying core excitation is discussed. Transition to the π⊥∗(C=C-C≡N) delocalized orbital excites mostly stretching vibrations of the whole spinal column of the molecule. Promoting a core electron to the localized π∥∗(C≡N) produces C≡N stretching vibration combined with two strong bending modes of the C-C≡N end of the molecule, related to the change of carbon hybridization.

  10. Variational state specific solvent models for excited states from time dependent self-consistent field methods

    NASA Astrophysics Data System (ADS)

    Bjorgaard, Josiah; Velizhanin, Kirill; Tretiak, Sergei

    2015-03-01

    The effect of a dielectric environment on a molecule can be profound, causing changes in nuclear configuration and electronic structure. Quantum chemical simulation of a solute-solvent system can be prohibitively expensive due to the large number of degrees of freedom attributed to the solvent. To remedy this, the solvent can be treated as a dielectric cavity. Mutual polarization of the solute and solvent must be considered for accurate treatment of an optically excited state (ES) with a state-specific solvent model (SSM). In vacuum, time dependent self-consistent field (TD-SCF) methods (e,g, TD-HF, TD-DFT) give variational excitation energies. With the well known Z-vector equation, a variational ES energy is used to explore the ES potential energy surface (PES) with analytical gradients. Modification of the standard TD-SCF eigensystem to accommodate a SSM creates a nonlinear TD-SCF equation with non-variational excitation energies. This prevents analytical gradients from being formulated so that the ES PES cannot be explored. Here, we show how a variational formulation of existing SSMs can be derived from a Lagrangian formalism and give numerical results for the variability of calculated quantities. Model dynamics using SSMs are showcased.

  11. Electronically Excited States in Poly(p-phenylenevinylene): Vertical Excitations and Torsional Potentials from High-Level Ab Initio Calculations

    PubMed Central

    2013-01-01

    Ab initio second-order algebraic diagrammatic construction (ADC(2)) calculations using the resolution of the identity (RI) method have been performed on poly-(p-phenylenevinylene) (PPV) oligomers with chain lengths up to eight phenyl rings. Vertical excitation energies for the four lowest π–π* excitations and geometry relaxation effects for the lowest excited state (S1) are reported. Extrapolation to infinite chain length shows good agreement with analogous data derived from experiment. Analysis of the bond length alternation (BLA) based on the optimized S1 geometry provides conclusive evidence for the localization of the defect in the center of the oligomer chain. Torsional potentials have been computed for the four excited states investigated and the transition densities divided into fragment contributions have been used to identify excitonic interactions. The present investigation provides benchmark results, which can be used (i) as reference for lower level methods and (ii) give the possibility to parametrize an effective Frenkel exciton Hamiltonian for quantum dynamical simulations of ultrafast exciton transfer dynamics in PPV type systems. PMID:23427902

  12. Direct Visualization of Excited-State Symmetry Breaking Using Ultrafast Time-Resolved Infrared Spectroscopy.

    PubMed

    Dereka, Bogdan; Rosspeintner, Arnulf; Li, Zhiquan; Liska, Robert; Vauthey, Eric

    2016-04-01

    Most symmetric quadrupolar molecules designed for two-photon absorption behave as dipolar molecules in the S1 electronic excited state. This is usually explained by a breakup of the symmetry in the excited state. However, the origin of this process and its dynamics are still not fully understood. Here, excited-state symmetry breaking in a quadrupolar molecule with a D-π-A-π-D motif, where D and A are electron donating and accepting units, is observed in real time using ultrafast transient infrared absorption spectroscopy. The nature of the relaxed S1 state was found to strongly depend on the solvent polarity: (1) in nonpolar solvents, it is symmetric and quadrupolar; (2) in weakly polar media, the quadrupolar state observed directly after excitation transforms to a symmetry broken S1 state with one arm bearing more excitation than the other; and (3) in highly polar solvents, the excited state evolves further to a purely dipolar S1 state with the excitation localized entirely on one arm. The time scales associated with the transitions between these states coincide with those of solvation dynamics, indicating that symmetry breaking is governed by solvent fluctuations.

  13. Exotic and excited-state meson spectroscopy and radiative transitions from lattice QCD

    SciTech Connect

    Christopher Thomas

    2010-09-01

    We discuss recent progress in extracting the excited meson spectrum and radiative transition form factors using lattice QCD. We mention results in the charmonium sector, including the first lattice QCD calculation of radiative transition rates involving excited charmonium states, highlighting results for high spin and exotic states. We present recent results on a highly excited isovector meson spectrum from dynamical anisotropic lattices. Using carefully constructed operators we show how the continuum spin of extracted states can be reliably identified and confidently extract excited states, states with exotic quantum numbers and states of high spin. This spectrum includes the first spin-four state extracted from lattice QCD. We conclude with some comments on future prospects.

  14. The phototoxicity of polycyclic aromatic hydrocarbons: a theoretical study of excited states and correlation to experiment.

    PubMed

    Betowski, Leon D; Enlow, Mark; Riddick, Lee

    2002-06-01

    Investigators using models to determine the phototoxic effects of sunlight on polycyclic aromatic hydrocarbons (PAHs) have invoked the excited states of the molecule as important in elucidating the mechanism of these reactions. Energies of actual excited states were calculated for ten PAHs by several ab initio methods. The main method used for these calculations was the Configuration Interaction approach, modeling excited states as combinations of single substitutions out of the Hartree-Fock ground state. These calculations correlate well with both experimentally measured singlet and triplet state energies and also previous HOMO-LUMO gap energies that approximate the singlet state energies. The excited state calculations then correlate well with general models of photo-induced toxicity based for the PAHs.

  15. Lifetime measurement of excited states in /sup 105/Ag

    SciTech Connect

    Mittal, V.K.; Govil, I.M.

    1986-11-01

    The levels up to about 2.1 MeV in /sup 105/Ag were excited via /sup 105/Pd(p,n..gamma..) reaction. For the first time, lifetimes of energy levels at 1023, 1042, 1097, 1166, 1243, 1295, 1328, 1386, 1442, 1543, 1558, 1587, 1719, 1923, and 2081 keV have been measured using the Doppler shift attenuation technique.

  16. Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding.

    PubMed

    Kowalczyk, Tim; Le, Khoa; Irle, Stephan

    2016-01-12

    We present an implementation of energies and gradients for the ΔDFTB method, an analogue of Δ-self-consistent-field density functional theory (ΔSCF) within density-functional tight-binding, for the lowest singlet excited state of closed-shell molecules. Benchmarks of ΔDFTB excitation energies, optimized geometries, Stokes shifts, and vibrational frequencies reveal that ΔDFTB provides a qualitatively correct description of changes in molecular geometries and vibrational frequencies due to excited-state relaxation. The accuracy of ΔDFTB Stokes shifts is comparable to that of ΔSCF-DFT, and ΔDFTB performs similarly to ΔSCF with the PBE functional for vertical excitation energies of larger chromophores where the need for efficient excited-state methods is most urgent. We provide some justification for the use of an excited-state reference density in the DFTB expansion of the electronic energy and demonstrate that ΔDFTB preserves many of the properties of its parent ΔSCF approach. This implementation fills an important gap in the extended framework of DFTB, where access to excited states has been limited to the time-dependent linear-response approach, and affords access to rapid exploration of a valuable class of excited-state potential energy surfaces.

  17. Excited-state wavepacket and potential reconstruction by coherent anti-Stokes Raman scattering.

    PubMed

    Avisar, David; Tannor, David J

    2015-01-28

    Among the major challenges in the chemical sciences is controlling chemical reactions and deciphering their mechanisms. Since much of chemistry occurs in excited electronic states, in the last three decades scientists have employed a wide variety of experimental techniques and theoretical methods to recover excited-state potential energy surfaces and the wavepackets that evolve on them. These methods have been partially successful but generally do not provide a complete reconstruction of either the excited state wavepacket or potential. We have recently proposed a methodology for reconstructing excited-state molecular wavepackets and the corresponding potential energy surface [Avisar and Tannor, Phys. Rev. Lett., 2011, 106, 170405]. In our approach, the wavepacket is represented as a superposition of the set of vibrational eigenfunctions of the molecular ground-state Hamiltonian. We assume that the multidimensional ground-state potential surface is known, and therefore these vibrational eigenfunctions are known as well. The time-dependent coefficients of the basis functions are obtained by experimental measurement of the resonant coherent anti-Stokes Raman scattering (CARS) signal. Our reconstruction strategy has several significant advantages: (1) the methodology requires no a priori knowledge of any excited-state potential. (2) It applies to dissociative as well as to bound excited-state potentials. (3) It is general for polyatomics. (4) The excited-state potential surface is reconstructed simultaneously with the wavepacket. Apart from making a general contribution to the field of excited-state spectroscopy, our method provides the information on the excited-state wavepacket and potential necessary to design laser pulse sequences to control photochemical reactions.

  18. Protolytic dissociation of cyano derivatives of naphthol, biphenyl and phenol in the excited state: A review

    NASA Astrophysics Data System (ADS)

    Szczepanik, Beata

    2015-11-01

    The excited state proton transfer (ESPT) has been extensively studied for hydroxyarenes, phenols, naphthols, hydroxystilbenes, etc., which undergo large enhancement of acidity upon electronic excitation, thus classified as photoacids. The changes of acidic character in the excited state of cyano-substituted derivatives of phenol, hydroxybiphenyl and naphthol are reviewed in this paper. The acidity constants pKa in the ground state (S0), pKa∗ in the first singlet excited state (S1) and the change of the acidity constant in the excited state ΔpKa for the discussed compounds are summarized and compared. The results of the acidity studies show, that the "electro-withdrawing" CN group in the molecules of naphthol, hydroxybiphenyl and phenol causes dramatic increase of their acidity in the excited state in comparison to the ground state. This effect is greatest for the cyanonaphthols (the doubly substituted CN derivatives are almost as strong as a mineral acid in the excited state), comparable for cyanobiphenyls, and smaller for phenol derivatives. The increase of acidity enables proton transfer to various organic solvents, and the investigation of ESPT can be extended to a variety of solvents besides water. The results of theoretical investigations were also presented and used for understanding the protolytic equilibria of cyano derivatives of naphthol, hydroxybiphenyl and phenol.

  19. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2016-10-01

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  20. UV-induced DNA Damage: The Role of Electronic Excited States.

    PubMed

    Markovitsi, Dimitra

    2016-01-01

    The knowledge of the fundamental processes induced by the direct absorption of UV radiation by DNA allows extrapolating conclusions drawn from in vitro studies to the in-vivo DNA photoreactivity. In this respect, the characterization of the DNA electronic excited states plays a key role. For a long time, the mechanisms of DNA lesion formation were discussed in terms of generic "singlet" and "triplet" excited state reactivity. However, since the beginning of the 21(st) century, both experimental and theoretical studies revealed the existence of "collective" excited states, i.e. excited states delocalized over at least two bases. Two limiting cases are distinguished: Frenkel excitons (delocalized ππ* states) and charge-transfer states in which positive and negative charges are located on different bases. The importance of collective excited states in photon absorption (in particular in the UVA spectral domain), the redistribution of the excitation energy within DNA, and the formation of dimeric pyrimidine photoproducts is discussed. The dependence of the behavior of the collective excited states on conformational motions of the nucleic acids is highlighted.

  1. Two-electron excitation in slow ion-atom collisions: Excitation mechanisms and interferences among autoionizing states

    SciTech Connect

    Kimura, M. Rice Univ., Houston, TX . Dept. of Physics)

    1990-01-01

    The two-electron capture or excitation process resulting from collisions of H{sup +} and O{sup 6+} ions with He atoms in the energy range from 0.5 keV/amu to 5 keV/amu is studied within a molecular representation. The collision dynamics for formation of doubly excited O{sup 4+} ions and He** atoms and their (n{ell}, n{prime}{ell}{prime}) populations are analyzed in conjunction with electron correlations. Autoionizing states thus formed decay through the Auger process. An experimental study of an ejected electron energy spectrum shows ample structures in addition to two characteristic peaks that are identified by atomic and molecular autoionizations. These structures are attributable to various interferences among electronic states and trajectories. We examine the dominant sources of the interferences. 12 refs., 5 figs.

  2. Implosive Interatomic Coulombic decay in the simplest molecular anion

    NASA Astrophysics Data System (ADS)

    Greene, Chris H.; Perez-Rios, Jesus; Slipchenko, Lyudmila

    2016-05-01

    Interatomic Coulombic decay (ICD) has been extensively studied in different systems: from diatomic systems such as He2 up to more complex chemical systems with interest in biochemistry. Independently of the size and complexity of the system, the ICD process proposed involves the emission of an electron through exchange of a virtual photon. The present theoretical study investigates the ICD process in the helium hydride anion, which involves two final product states that can be produced through a Coulomb implosion following high energy ejection of a He 1s electron accompanied by excitation to He+(n = 2) . One of the subsequent decay channels is associated with the usual emission of a single electron, to produce a stable molecule: HeH+, which can compete with the usual dissociated final state of the system. The second channel involves the emission of two electrons, leading to the usual Coulomb explosion of the final product ions He+(1 s) + H + . In addition, the process of formation of the helium hydride anion is analyzed in terms of the existing technology of ionic molecular beams and buffer gas cooling techniques. This work is supported by the National Science Foundation under Grant PHY-1306905.

  3. Estimation of first excited singlet-state dipole moments of aminoanthraquinones by solvatochromic method.

    PubMed

    Siddlingeshwar, B; Hanagodimath, S M

    2009-04-01

    The ground state (micro(g)) and the excited state (micro(e)) dipole moments of three substituted anthraquinones, namely 1-aminoanthracene-9,10-dione (AAQ), 1-(methylamino)anthracence-9,10-dione (MAQ) and 1,5-diaminoanthracene-9,10-dione (DAQ) were estimated in various solvents. The dipole moments (micro(g) and micro(e)) were estimated from Lippert, Bakhshiev, Kawski-Chamma-Viallet, McRae and Suppan equations by using the variation of Stokes shift with the solvent dielectric constant and refractive index. The excited state dipole moments were also calculated by using the variation of Stokes shift with microscopic solvent polarity parameter (Epsilon(T)(N)). It was observed that dipole moment values of excited states (micro(e)) were higher than corresponding ground state values (micro(g)), indicating a substantial redistribution of the pi-electron densities in a more polar excited state for all the molecules investigated.

  4. Coulomb gap at finite temperatures

    NASA Astrophysics Data System (ADS)

    Sarvestani, Masoud; Schreiber, Michael; Vojta, Thomas

    1995-08-01

    The Coulomb glass, a model of interacting localized electrons in a random potential, exhibits a soft gap, the Coulomb gap, in the single-particle density of states (DOS) g(ɛ,T) close to the chemical potential μ. In this paper we investigate the Coulomb gap at finite temperatures T by means of a Monte Carlo method. We find that the Coulomb gap fills with increasing temperature. In contrast to previous results the temperature dependence is, however, much stronger than g(μ,T)~TD-1 as predicted analytically. It can be described by power laws with the exponents 1.75+/-0.1 for the two-dimensional model and 2.7+/-0.1 for the three-dimensional model. Nevertheless, the relation g(μ,T)~g(ɛ,T=0) with ||ɛ-μ||=kBT seems to be valid, since energy dependence of the DOS at low temperatures has also been found to follow power laws with these exponents.

  5. Investigating Coulomb's Law.

    ERIC Educational Resources Information Center

    Noll, Ellis; Koehlinger, Mervin; Kowalski, Ludwik; Swackhamer, Gregg

    1998-01-01

    Describes the use of a computer-linked camera to demonstrate Coulomb's law. Suggests a way of reducing the difficulties in presenting Coulomb's law by teaching the inverse square law of gravity and the inverse square law of electricity in the same unit. (AIM)

  6. Excited state absorption of pump radiation as a loss mechanism in solid-state lasers

    SciTech Connect

    Kliewer, M.L.; Powell, R.C.

    1989-08-01

    The characteristics of optical pumping dynamics occurring in laser-pumped rare earth-doped, solid-state laser materials were investigated by using a tunable alexandrite laser to pump Y/sub 3/Al/sub 5/O/sub 12/:Nd/sup 3+/ in an optical cavity. It was found that the slope efficiency of the Nd laser operation depends strongly on the wavelength of the pump laser. For pump wavelengths resulting in low slope efficiencies, intense fluorescence emission is observed from the sample in the blue-green spectral region. This is attributed to the excited state absorption of pump photons which occurs during radiationless relaxation from the pump band to the metastable state. This type of process will be an important loss mechanism for monochromatic pumping of laser systems at specific pump wavelengths.

  7. Excited-state absorption of pump radiation as a loss mechanism in solid-state lasers

    SciTech Connect

    Kliewer, M.L.; Powell, R.C.

    1989-08-01

    The characteristics of optical pumping dynamics occuring in laser-pumped rare earth-doped, solid-state laser materials were investigated by using a tunable alexandrite laser to pump Y3Al5O12:Nd(3+) in an optical cavity. It was found that the slope efficiency of the Nd laser operation depends strongly on the wavelength of the pump laser. For pump wavelength resulting in low slope efficiencies, intense fluorescence emission is observed form the sample in the blue-green spectral region. This is attributed to the excited state absorption of pump photons which occurs during radiationless relaxation from the pump band to the metastable state. This type of process will be an important loss mechanism for monochromatic pumping of laser systems at specific pump wavelengths.

  8. Excited state absorption of pump radiation as a loss mechanism in solid-state lasers

    NASA Technical Reports Server (NTRS)

    Kliewer, Michael L.; Powell, Richard C.

    1989-01-01

    The characteristics of optical pumping dynamics in laser-pumped, rare-earth-doped, solid-state laser materials are investigated by using a tunable alexandrite laser to pump Y3Al5O12:Nd(3+) in an optical cavity. It is found that the slope efficiency of the Nd laser operation depends strongly on the wavelength of the pump laser. For pump wavelengths resulting in low slope efficiencies, intense fluorescence emission is observed from the sample in the blue-green spectral region. This is attributed to the excited-state absorption of pump photons which occurs during radiationless relaxation from the pump band to the metastable state. This type of process is an important loss mechanism for monochromatic pumping of laser systems at specific pump wavelengths.

  9. Excited triplet states as photooxidants in surface waters

    NASA Astrophysics Data System (ADS)

    Canonica, S.

    2012-12-01

    The chromophoric components of dissolved organic matter (DOM) are generally the main absorbers of sunlight in surface waters and therefore a source of transient reactants under irradiation. Such short-lived species can be relevant for the fate of various classes of chemical contaminants in the aquatic environment. The present contribution focuses on the role of excited triplet states of chromophoric DOM, 3CDOM*, as transient photooxidants initiating the transformation and degradation of organic chemical contaminants. An early study [1] indicated that 3CDOM* may play a dominant role in the photo-induced transformation of electron-rich phenols, a conclusion which was later fortified by the results of transient absorption investigations using aromatic ketones as model photosensitizers [2] and by a recent careful analysis of the effect of oxygen concentration on transformation rates [3]. The variety of aquatic contaminants shown to be affected by triplet-induced oxidation has kept increasing, phenylurea herbicides [4], sulfonamide antibiotics [5] and some phytoestrogens [6] being prominent examples. Recent research has shown that the triplet-induced transformation of specific contaminants, especially aromatic nitrogen compounds, could be inhibited by the presence of DOM, very probably due to its antioxidant moieties [7]. While such moieties are not relevant for the quenching of 3CDOM*, they are expected to react with it in a similar way as the studied contaminants. Analogous reactions can be postulated to occur in liquid or solid phases of the atmospheric environment, as demonstrated in the case of HONO formation [8]. References 1. Canonica, S.; Jans, U.; Stemmler, K.; Hoigné, J. Transformation kinetics of phenols in water: Photosensitization by dissolved natural organic material and aromatic ketones. Environ. Sci. Technol. 1995, 29 (7), 1822-1831. 2. Canonica, S.; Hellrung, B.; Wirz, J. Oxidation of phenols by triplet aromatic ketones in aqueous solution. J. Phys

  10. Excited State Electronic Properties of Sodium Iodide and Cesium Iodide

    SciTech Connect

    Campbell, Luke W.; Gao, Fei

    2013-05-01

    We compute from first principles the dielectric function, loss function, lifetime and scattering rate of quasiparticles due to electronic losses, and secondary particle spectrum due to plasmon decay in two scintillating alkali halides, sodium iodide and cesium iodide. Particular emphasis is placed on quasiparticles within several multiples of the band gap from the band edges. A theory for the decay spectra of plasmons and other electronic excitations in crystals is presented. Applications to Monte Carlo radiation transport codes are discussed.

  11. "Inverted" Solvent Effect on Charge Transfer in the Excited State.

    PubMed

    Nau; Pischel

    1999-10-01

    Faster in cyclohexane than in acetonitrile is the fluorescence quenching of the azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by amines and sulfides. Although this photoreaction is induced by charge transfer (CT; see picture) and exciplexes are formed, the increase in the dipole moment of the exciplex is not large enough to offset the solvent stabilization of the excited reactants, and an "inverted" solvent effect results.

  12. Excited states in the active media of oxygen - iodine lasers

    SciTech Connect

    Azyazov, V N

    2009-11-30

    A review of investigations of kinetic processes in active media oxygen - iodine lasers (OILs) performed in the last decade is presented. The mechanisms of pumping and quenching of electronically and vibrationally excited O{sub 2} and I{sub 2} molecules are considered, and dissociation mechanisms of I{sub 2} in the active medium of the OIL are analysed. The values of kinetic constants of processes proceeding in the active media of OILs are recommended. (review)

  13. High-energy excited states in 98Cd

    NASA Astrophysics Data System (ADS)

    Blazhev, A.; Braun, N.; Grawe, H.; Boutachkov, P.; Nara Singh, B. S.; Brock, T.; Liu, Zh; Wadsworth, R.; Górska, M.; Jolie, J.; Nowacki, F.; Pietri, S.; Domingo-Pardo, C.; Kojouharov, I.; Caceres, L.; Engert, T.; Farinon, F.; Gerl, J.; Goel, N.; Grȩbosz, J.; Hoischen, R.; Kurz, N.; Nociforo, C.; Prochazka, A.; Schaffner, H.; Steer, S.; Weick, H.; Wollersheim, H.-J.; Ataç, A.; Bettermann, L.; Eppinger, K.; Faestermann, T.; Finke, F.; Geibel, K.; Hinke, C.; Gottardo, A.; Ilie, G.; Iwasaki, H.; Krücken, R.; Merchan, E.; Nyberg, J.; Pfützner, M.; Podolyák, Zs; Regan, P.; Reiter, P.; Rinta-Antila, S.; Rudolph, D.; Scholl, C.; Söderström, P.-A.; Warr, N.; Woods, P.

    2010-01-01

    In 98Cd a new high-energy isomeric γ-ray transition was identified, which confirms previous spin-parity assignments and enables for the first time the measurement of the E2 and E4 strength for the two decay branches of the isomer. Preliminary results on the 98Cd high-excitation level scheme are presented. A comparison to shell-model calculations as well as implications for the nuclear structure around 100Sn are discussed.

  14. Dark excited States of carotenoid regulated by bacteriochlorophyll in photosynthetic light harvesting.

    PubMed

    Nakamura, Ryosuke; Nakagawa, Katsunori; Nango, Mamoru; Hashimoto, Hideki; Yoshizawa, Masayuki

    2011-03-31

    In photosynthesis, carotenoids play important roles in light harvesting (LH) and photoprotective functions, which have been described mainly in terms of two singlet excited states of carotenoids: S(1) and S(2). In addition to the "dark" S(1) state, another dark state, S*, was recently identified and its involvement in photosynthetic functions was determined. However, there is no consistent picture concerning its nature or the mechanism of its formation. One particularly anomalous behavior obtained from femtosecond transient absorption (TA) spectroscopy is that the S*/S(1) population ratio depends on the excitation intensity. Here, we focus on the effect of nearby bacteriochlorophyll (BChl) on the relaxation dynamics of carotenoid in the LH complex. We performed femtosecond TA spectroscopy combined with pre-excitation of BChl in the reconstituted LH1 complex from Rhodospirillum rubrum S1. We observed that the energy flow from S(1), including its vibrationally excited hot states, to S* occurs only when nearby BChl is excited into Q(y), resulting in an increase in S*/S(1). We also examined the excitation-intensity dependence of S*/S(1) by conventional TA spectroscopy. A comparison between the pre-excitation effect and excitation-intensity dependence shows a strong correlation of S*/S(1) with the number of BChls excited into Q(y). In addition, we observed an increase in triplet formation as the S* population increased, indicating that S* is an electronic excited state that is the precursor to triplet formation. Our findings provide an explanation for observed spectroscopic features, including the excitation-intensity dependences debated so far, and offer new insights into energy deactivation mechanisms inherent in the LH antenna.

  15. Diffusion in Coulomb crystals.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous. PMID:21867316

  16. Diffusion in Coulomb crystals.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  17. Bound state - excitation in ion-ion collisions related to X-ray lasers modelling

    SciTech Connect

    Stancalie, V.; Sureau, A.; Klisnick, A.

    1995-12-31

    As in the earlier work of Walling and Weisheit we used the Seaton`s semi-classical, impact parameter formulation of Coulomb excitation for a variety of inelastic ion-ion collisions, involved in laser-produced soft X-ray lasers with Li-like aluminum ions, 1s{sup 2} nl configuration. Energy levels has been calculated by direct SCF method including the spin-orbit interaction. Our definition of the electric 2{sup {lambda}} - pole line strength, S{sup {lambda}}, is consistent with that of Sobelman. The ion-ion collision processes have been considered for a wide range of temperature between 500 eV to 30 eV, with a particular interest in the last part of plasma evolution time, when complications such as non-Maxwellian particle distributions, radiation fields and transient plasma conditions can be neglected, and when the plasma electrons and ions have comparable temperatures.

  18. Reconstruction of an excited-state molecular wave packet with attosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Chini, Michael; Wang, Xiaowei; González-Castrillo, Alberto; Palacios, Alicia; Argenti, Luca; Martín, Fernando; Chang, Zenghu

    2016-08-01

    Attosecond science promises to allow new forms of quantum control in which a broadband isolated attosecond pulse excites a molecular wave packet consisting of a coherent superposition of multiple excited electronic states. This electronic excitation triggers nuclear motion on the molecular manifold of potential energy surfaces and can result in permanent rearrangement of the constituent atoms. Here, we demonstrate attosecond transient absorption spectroscopy (ATAS) as a viable probe of the electronic and nuclear dynamics initiated in excited states of a neutral molecule by a broadband vacuum ultraviolet pulse. Owing to the high spectral and temporal resolution of ATAS, we are able to reconstruct the time evolution of a vibrational wave packet within the excited B'Σ1u+ electronic state of H2 via the laser-perturbed transient absorption spectrum.

  19. Solvent effects on the absorption and fluorescence spectra of quinine sulphate: Estimation of ground and excited-state dipole moments

    NASA Astrophysics Data System (ADS)

    Joshi, Sunita; Pant, Debi D.

    2012-06-01

    Ground and excited state dipole moments of probe quinine sulphate (QS) was obtained using Solvatochromic shift method. Higher dipole moment is observed for excited state as compared to the ground state which is attributed to the higher polarity of excited state.

  20. Entropy, chaos, and excited-state quantum phase transitions in the Dicke model.

    PubMed

    Lóbez, C M; Relaño, A

    2016-07-01

    We study nonequilibrium processes in an isolated quantum system-the Dicke model-focusing on the role played by the transition from integrability to chaos and the presence of excited-state quantum phase transitions. We show that both diagonal and entanglement entropies are abruptly increased by the onset of chaos. Also, this increase ends in both cases just after the system crosses the critical energy of the excited-state quantum phase transition. The link between entropy production, the development of chaos, and the excited-state quantum phase transition is more clear for the entanglement entropy. PMID:27575109

  1. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2016-04-01

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this work, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  2. {alpha} decays to ground and excited states of heavy deformed nuclei

    SciTech Connect

    Denisov, V. Yu.; Khudenko, A. A.

    2009-09-15

    The experimental data for {alpha}-decay half-lives to ground and excited states of deformed nuclei with 222{<=}A{<=}252 and 88{<=}Z{<=}102 are analyzed in the framework of the unified model for {alpha} decay and {alpha} capture. The branching ratios to excited states depend on the energy and the angular momentum of the {alpha} particle. The evaluated branching ratios for 0{sub g.s.}{sup +}{yields}0{sub g.s.}{sup +},2{sup +},4{sup +} {alpha} transitions in even-even nuclei agree with the experimental data. The experimental and calculated branching ratios for {alpha} transitions into more highly excited states are similar.

  3. Entropy, chaos, and excited-state quantum phase transitions in the Dicke model

    NASA Astrophysics Data System (ADS)

    Lóbez, C. M.; Relaño, A.

    2016-07-01

    We study nonequilibrium processes in an isolated quantum system—the Dicke model—focusing on the role played by the transition from integrability to chaos and the presence of excited-state quantum phase transitions. We show that both diagonal and entanglement entropies are abruptly increased by the onset of chaos. Also, this increase ends in both cases just after the system crosses the critical energy of the excited-state quantum phase transition. The link between entropy production, the development of chaos, and the excited-state quantum phase transition is more clear for the entanglement entropy.

  4. Properties of the first excited state of nonbipartite Heisenberg spin rings

    NASA Astrophysics Data System (ADS)

    Schnack, J.

    2000-12-01

    Systematic properties of the first excited state are presented for various ring sizes and spin quantum numbers which are only partly covered by the theorem of Lieb, Schultz, and Mattis. For odd ring sizes the first excited energy eigenvalue shows unexpected degeneracy and related shift quantum numbers. As a byproduct the ground state energy as well as the energy of the first excited state of infinite chains are calculated by extrapolating the properties of only a few, finite, antiferromagnetically coupled Heisenberg rings using the powerful Levin sequence acceleration method.

  5. Aurora Borealis: stochastic cellular automata simulations of the excited-state dynamics of oxygen atoms.

    NASA Astrophysics Data System (ADS)

    Seybold, P. G.; Kier, L. B.; Cheng, C.-K.

    1999-12-01

    Emissions from the 1S and 1D excited states of atomic oxygen play a prominent role in creating the dramatic light displays (aurora borealis) seen in the skies over polar regions of the Northern Hemisphere. A probabilistic asynchronous cellular automaton model described previously has been applied to the excited-state dynamics of atomic oxygen. The model simulates the time-dependent variations in ground (3P) and excited-state populations that occur under user-defined probabilistic transition rules for both pulse and steady-state conditions. Although each trial simulation is itself an independent "experiment", deterministic values for the excited-state emission lifetimes and quantum yields emerge as limiting cases for large numbers of cells or large numbers of trials. Stochastic variations in the lifetimes and emission yields can be estimated from repeated trials.

  6. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy.

    PubMed

    Shelby, Megan L; Lestrange, Patrick J; Jackson, Nicholas E; Haldrup, Kristoffer; Mara, Michael W; Stickrath, Andrew B; Zhu, Diling; Lemke, Henrik T; Chollet, Matthieu; Hoffman, Brian M; Li, Xiaosong; Chen, Lin X

    2016-07-20

    Photoexcited Nickel(II) tetramesitylporphyrin (NiTMP), like many open-shell metalloporphyrins, relaxes rapidly through multiple electronic states following an initial porphyrin-based excitation, some involving metal centered electronic configuration changes that could be harnessed catalytically before excited state relaxation. While a NiTMP excited state present at 100 ps was previously identified by X-ray transient absorption (XTA) spectroscopy at a synchrotron source as a relaxed (d,d) state, the lowest energy excited state (J. Am. Chem. Soc., 2007, 129, 9616 and Chem. Sci., 2010, 1, 642), structural dynamics before thermalization were not resolved due to the ∼100 ps duration of the available X-ray probe pulse. Using the femtosecond (fs) X-ray pulses of the Linac Coherent Light Source (LCLS), the Ni center electronic configuration from the initial excited state to the relaxed (d,d) state has been obtained via ultrafast Ni K-edge XANES (X-ray absorption near edge structure) on a time scale from hundreds of femtoseconds to 100 ps. This enabled the identification of a short-lived Ni(I) species aided by time-dependent density functional theory (TDDFT) methods. Computed electronic and nuclear structure for critical excited electronic states in the relaxation pathway characterize the dependence of the complex's geometry on the electron occupation of the 3d orbitals. Calculated XANES transitions for these excited states assign a short-lived transient signal to the spectroscopic signature of the Ni(I) species, resulting from intramolecular charge transfer on a time scale that has eluded previous synchrotron studies. These combined results enable us to examine the excited state structural dynamics of NiTMP prior to thermal relaxation and to capture intermediates of potential photocatalytic significance.

  7. Effect of xanthophyll composition on the chlorophyll excited state lifetime in plant leaves and isolated LHCII

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew P.; Zia, Ahmad; Horton, Peter; Ruban, Alexander V.

    2010-07-01

    Xanthophyll excited states have been implicated by transient absorption and two-photon excitation studies in playing a key role in the regulation of photosynthetic light harvesting via photoprotective energy dissipation. For any proposed quenching mechanism to be effective it must reduce the chlorophyll excited state lifetime from 2 ns to ˜0.5-0.4 ns. In the presented study the effect of xanthophyll composition on the chlorophyll excited state lifetime in Arabidopsis leaves in the light harvesting ( F m) and photoprotective (NPQ) states was determined. The data was compared to the chlorophyll excited state lifetime of native isolated LHCII and CP26 in detergent micelles with varying xanthophyll composition. It was found that although the differences in xanthophyll composition between LHC complexes from various Arabidopsis mutants were sufficient to explain the varying F m lifetime (and varying PSII efficiency), they were not of a sufficient scale to fully explain the observed differences in the NPQ lifetimes. Only when the LHC complexes were exposed to a low detergent/low pH media, a condition known to mimic the conformational state of LHCII associated with NPQ in vivo, were variations in excited state lifetime large enough to explain the differences observed in leaves. Furthermore, the data reveal that the replacement of lutein by either zeaxanthin or violaxanthin in the internal xanthophyll binding sites of LHCII and CP26 reduces the efficiency of energy dissipation in the photoprotective state in leaves and isolated complexes.

  8. Slow Intramolecular Vibrational Relaxation Leads to Long-Lived Excited-State Wavepackets.

    PubMed

    Rafiq, Shahnawaz; Scholes, Gregory D

    2016-09-01

    Broadband optical pump and compressed white light continuum probe were used to measure the transient excited-state absorption, ground-state bleach, and stimulated emission signals of cresyl violet solution in methanol. Amplitude oscillations caused by wavepacket motion in the ground and excited electronic states were analyzed. It was found that vibrational coherences in the excited state persist for more than the experimental waiting time window of 6 ps, and the strongest mode had a dephasing time constant of 2.4 ps. We hypothesize the dephasing of the wavepacket in the excited state is predominantly caused by intramolecular vibrational relaxation (IVR). Slow IVR indicates weak mode-mode coupling and therefore weak anharmonicity of the potential of this vibration. Thus, the initially prepared vibrational wavepacket in the excited state is not significantly perturbed by nonadiabatic coupling to other electronic states, and hence the diabatic and adiabatic representations of the system are essentially identical within the Born-Oppenheimer approximation. The wavepacket therefore evolves with time in an almost harmonic potential, slowly dephased by IVR and the pure vibrational decoherence. The consistency in the position of node (phase change in the wavepacket) in the excited-state absorption and stimulated emission signals without undergoing any frequency shift until the wavepacket is completely dephased conforms to the absence of any reactive internal conversion. PMID:27510098

  9. Slow Intramolecular Vibrational Relaxation Leads to Long-Lived Excited-State Wavepackets.

    PubMed

    Rafiq, Shahnawaz; Scholes, Gregory D

    2016-09-01

    Broadband optical pump and compressed white light continuum probe were used to measure the transient excited-state absorption, ground-state bleach, and stimulated emission signals of cresyl violet solution in methanol. Amplitude oscillations caused by wavepacket motion in the ground and excited electronic states were analyzed. It was found that vibrational coherences in the excited state persist for more than the experimental waiting time window of 6 ps, and the strongest mode had a dephasing time constant of 2.4 ps. We hypothesize the dephasing of the wavepacket in the excited state is predominantly caused by intramolecular vibrational relaxation (IVR). Slow IVR indicates weak mode-mode coupling and therefore weak anharmonicity of the potential of this vibration. Thus, the initially prepared vibrational wavepacket in the excited state is not significantly perturbed by nonadiabatic coupling to other electronic states, and hence the diabatic and adiabatic representations of the system are essentially identical within the Born-Oppenheimer approximation. The wavepacket therefore evolves with time in an almost harmonic potential, slowly dephased by IVR and the pure vibrational decoherence. The consistency in the position of node (phase change in the wavepacket) in the excited-state absorption and stimulated emission signals without undergoing any frequency shift until the wavepacket is completely dephased conforms to the absence of any reactive internal conversion.

  10. Interatomic Coulombic decay in nanodroplets

    NASA Astrophysics Data System (ADS)

    Sisourat, Nicolas

    2014-05-01

    Interatomic (molecular) Coulombic decay (ICD) is an ultrafast non-radiative electronic decay process for excited atoms or molecules embedded in a chemical environment. Via ICD, the excited system can get rid of the excess energy, which is transferred to one of the neighbors and ionize it. ICD produces two charged particles next to each other and thus leads to Coulomb explosion. Kinetic energy distribution of the ionic fragments gives information on the dynamics of the decay process. From the theoretical point of view general quantum mechanical equations for describing the decay processes and the subsequent fragmentations are known but are only applicable for rather small systems. During the presentation, a semiclassical approach for modeling ICD and the subsequent fragmentations will be presented. This approach involves a classical treatment for the nuclear motion while retaining a quantum description for the electron dynamics. Such approach has low computational costs and can be used to study much larger systems. Comparison of the results from semiclassical and from quantum mechanical calculations will be shown for simple systems, demonstrating the good performance of the semiclassical method. Results on ICD in nanodroplets will finally be reported.

  11. The Millimeter-Wave Spectrum of Methacrolein. Torsion-Rotation Effects in the Excited States

    NASA Astrophysics Data System (ADS)

    Zakharenko, Olena; Motiyenko, R. A.; Aviles Moreno, Juan-Ramon; Huet, T. R.

    2015-06-01

    Last year we reported the analysis of the rotational spectrum of s-trans conformer of methacrolein CH2=C(CH3)CHO in the ground vibrational state. In this talk we report the study of its low lying excited vibrational states. The study is based on room-temperature absorption spectra of methacrolein recorded in the frequency range 150 - 465 GHz using the spectrometer in Lille. The new results include assignment of the first excited torsional state (131 cm-1), and the joint analysis of the vt = 0 and vt = 1 states, that allowed us to improve the model in the frame of Rho-Axis-Method (RAM) Hamiltonian and to remove some strong correlations between parameters. Also we assigned the first excited vibrational state of the skeletal torsion mode (170 cm-1). The inverse sequence of A and E tunneling substates as well as anomalous A-E splittings observed for the rotational lines of vsk = 1 state clearly indicate a coupling between methyl torsion and skeletal torsion. However we were able to fit within experimental accuracy the rotational lines of vsk = 1 state using the RAM Hamiltonian. Because of the inversion of the A and E tunneling substates the rotational lines of the vsk = 1 states were assumed to belong to a virtual first excited torsional state. Finally, we assigned several low-Ka rotational transitions of the excited vibrational states above 200 cm-1 but their analysis is complicated by different rotation-vibration interactions. In particular there is an evidence of the Fermi-type resonance between the second excited torsional state and the first excited state of the in-plane skeletal bending mode (265 cm-1). Support from the French Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-0005 of the Programme d'Investissements d'Avenir is acknowledged. Zakharenko O. et al., 69th ISMS, 2014, TI01

  12. Permanent Magnet Synchronous Condenser with Solid State Excitation

    SciTech Connect

    Hsu, Ping; Muljadi, Eduard; Wu, Ziping; Gao, Wenzhong

    2015-10-05

    A synchronous condenser consists of a free-spinning wound-field synchronous generator and a field excitation controller. In this paper, we propose a synchronous generator that employs a permanent magnet synchronous generator (PMSG) instead of a wound-field machine. PMSGs have the advantages of higher efficiency and reliability. In the proposed configuration, the reactive power control is achieved by a voltage source converter connected in series with the PMSG and the grid. The converter varies the phase voltage of the PMSG so as to create the same effect of over or under excitation in a wound-field machine. The converter output voltage level controls the amount and the direction of the produced reactive power and the voltage's phase is kept in-phase with the grid voltage except a slight phase can be introduced so that some power can be drawn from the grid for maintaining the DC bus voltage level of the converter. Since the output voltage of the converter is only a fraction of the line voltage, its VA rating is only a fraction of the rating of the PMSG. The proposed scheme is shown to be effective by computer simulation.

  13. Excitation strengths in 109Sn: Single-neutron and collective excitations near 100Sn

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cederkall, J.; Fahlander, C.; Ekström, A.; Hjorth-Jensen, M.; Albers, M.; Bildstein, V.; Blazhev, A.; Darby, I.; Davinson, T.; De Witte, H.; Diriken, J.; Fransen, Ch.; Geibel, K.; Gernhäuser, R.; Görgen, A.; Hess, H.; Iwanicki, J.; Lutter, R.; Reiter, P.; Scheck, M.; Seidlitz, M.; Siem, S.; Taprogge, J.; Tveten, G. M.; Van de Walle, J.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.

    2012-09-01

    A set of B(E2) values for the low-lying excited states in the radioactive isotope 109Sn were deduced from a Coulomb excitation experiment. The 2.87-MeV/u radioactive beam was produced at the REX-ISOLDE facility at CERN and was incident on a secondary 58Ni target. The B(E2) values were determined using the known 2+→0+ reduced transition probability in 58Ni as normalization with the semiclassical Coulomb excitation code gosia2. The transition probabilities are compared to shell-model calculations based on a realistic nucleon-nucleon interaction and the predictions of a simple core-excitation model. This measurement represents the first determination of multiple B(E2) values in a light Sn nucleus using the Coulomb excitation technique with low-energy radioactive beams. The results provide constraints for the single-neutron states relative to 100Sn and also indicate the importance of both single-neutron and collective excitations in the light Sn isotopes.

  14. Static Coulomb stress load on a three-dimensional rate-and-state fault: Possible explanation of the anomalous delay of the 2004 Parkfield earthquake

    NASA Astrophysics Data System (ADS)

    Kostka, Filip; Gallovič, František

    2016-05-01

    We perform quasi-dynamic modeling of earthquake cycle using laboratory derived rate-and-state laws of friction on a homogeneous three-dimensional fault model. We study effects of the static Coulomb stress loading on clock advance and clock delay of the subsequent event. We carefully investigate dependences of the clock advance on the onset time of the stress load, its amplitude, areal extent, and place of application of the load. We find that these dependences are complex, being controlled by the actual ongoing slip velocity on the fault, especially at the domain of the stress load. In particular, the stress (un)load can initiate the occurrence of quasiperiodic creep-like episodes, which could be associated with episodic increases of microseismicity on real faults, such as observed on the locked Parkfield segment of the San Andreas Fault. Depending on the load parameters including its timing within the earthquake cycle, one of such creep-like events may trigger the next (clock advanced) system-size earthquake. In some cases, the nucleation of the main shock can fail, and the fault experiences one or several seismic events of smaller magnitudes instead. In such a case the next main shock becomes significantly delayed. We speculate that such mechanism could have contributed to the extreme delay of the M6 2004 Parkfield earthquake. Indeed, the Parkfield segment was subject to Coulomb stress unload due to the 1983 Coalinga-Nuñez earthquakes and then experienced M4.9 events in 1993-1994, when the system-size event was expected. Instead, these failed main shock nucleations delayed the Parkfield earthquake by another ~10 years.

  15. Excited-State Coordination Chemistry: Excited-State Basicity of Bis(2,2'-bipyridyl)(2,3-dipyridylpyrazine)ruthenium(II)

    NASA Astrophysics Data System (ADS)

    Zambrana, José L.; Ferloni, Elena X.; Gafney, Harry D.

    2009-10-01

    The proton dependencies of the absorption and emission spectra of bis(2,2'-bipyridyl)(2,3-bis(2-pyridyl)pyrazine)ruthenium(II), (bpy)2Ru(dpp)2+ indicate that population of the dpp-localized MLCT state increases the basicity of dpp peripheral nitrogens. NMR spectra reveal the protonation of the peripheral dpp pyridine in the ground state, pKa of 1.12 ± 0.03, occurs intermediate between the changes evident in the absorption and emission spectra. As a result, the emissivity of aqueous solutions of (bpy)2Ru(dpp)2+ as a function of [H+] derives from two emissive species: the unprotonated complex and the monoprotonated complex [(bpy)2Ru(dppHpy)]3+ with the proton attached to the peripheral dpp pyridine. Although protonation in the MLCT state generally quenches the emission, the emissivity of the monoprotonated complex, albeit weak, is attributed to the asymmetric distribution of the charge in the MLCT state. The majority of the transferred charge resides at the peripheral pyrazinyl nitrogen, and excited-state acid-base chemistry occurs predominantly at this site. Nonetheless, ground-state protonation of the peripheral dpp pyridine dramatically increases the nonradiative decay rate and significantly influences subsequent excited-state protonation processes. Protonation of the excited state changes from a bimolecular process to a combination of inter- and intramolecular processes where the proton transfers from the dpp pyridyl nitrogen to the dpp pyrazinyl nitrogen and from the surrounding aqueous solvent shell. Energetically, changes in the absorption spectra originally attributed to the first protonation of the complex and from which the ΔpKa of the excited state have been estimated, in fact, correspond to the second protonation of the complex.

  16. Ultrafast excited state dynamics of S2 and S1 states of triphenylmethane dyes.

    PubMed

    Singhal, Pallavi; Ghosh, Hirendra N

    2014-08-21

    Excited state dynamics of S2 and S1 states for a series of TPM dyes, pyrogallol red (PGR), bromopyrogallol red (Br-PGR) and aurin tricarboxylic acid (ATC), have been monitored by using ultrafast transient absorption and fluorescence up-conversion techniques. Optical absorption studies indicate that all the TPM dyes exist as keto-enol tautomers depending upon the pH of the solution. Interestingly, all the TPM dyes give S2 emission (major emitting state) in addition to weak S1 emission. S2 emission lifetimes as fast as ∼150-300 fs and S1 emission lifetimes of 2-5 ns were observed depending upon the molecular structure of the dyes. Femtosecond transient absorption studies suggest the presence of an ultrafast non-radiative decay channel from the S2 state in addition to S2 luminescence. The vibrational relaxation time from hot S1 state is found to be 2-6 ps. The heavy atom effect has been observed in ultrafast relaxation dynamics of Br-PGR.

  17. Multiple-Resonance Local Wave Functions for Accurate Excited States in Quantum Monte Carlo.

    PubMed

    Zulfikri, Habiburrahman; Amovilli, Claudio; Filippi, Claudia

    2016-03-01

    We introduce a novel class of local multideterminant Jastrow-Slater wave functions for the efficient and accurate treatment of excited states in quantum Monte Carlo. The wave function is expanded as a linear combination of excitations built from multiple sets of localized orbitals that correspond to the bonding patterns of the different Lewis resonance structures of the molecule. We capitalize on the concept of orbital domains of local coupled-cluster methods, which is here applied to the active space to select the orbitals to correlate and construct the important transitions. The excitations are further grouped into classes, which are ordered in importance and can be systematically included in the Jastrow-Slater wave function to ensure a balanced description of all states of interest. We assess the performance of the proposed wave function in the calculation of vertical excitation energies and excited-state geometry optimization of retinal models whose π → π* state has a strong intramolecular charge-transfer character. We find that our multiresonance wave functions recover the reference values of the total energies of the ground and excited states with only a small number of excitations and that the same expansion can be flexibly used at very different geometries. Furthermore, significant computational saving can also be gained in the orbital optimization step by selectively mixing occupied and virtual orbitals based on spatial considerations without loss of accuracy on the excitation energy. Our multiresonance wave functions are therefore compact, accurate, and very promising for the calculation of multiple excited states of different character in large molecules.

  18. Switching between ground and excited states by optical feedback in a quantum dot laser diode

    SciTech Connect

    Virte, Martin; Breuer, Stefan; Sciamanna, Marc; Panajotov, Krassimir

    2014-09-22

    We demonstrate switching between ground state and excited state emission in a quantum-dot laser subject to optical feedback. Even though the solitary laser emits only from the excited state, we can trigger the emission of the ground state by optical feedback. We observe recurrent but incomplete switching between the two emission states by variation of the external cavity length in the sub-micrometer scale. We obtain a good qualitative agreement of experimental results with simulation results obtained by a rate equation that accounts for the variations of the feedback phase.

  19. Counting the number of excited states in organic semiconductor systems using topology

    SciTech Connect

    Catanzaro, Michael J.; Shi, Tian; Tretiak, Sergei; Chernyak, Vladimir Y.

    2015-02-28

    Exciton scattering theory attributes excited electronic states to standing waves in quasi-one-dimensional molecular materials by assuming a quasi-particle picture of optical excitations. The quasi-particle properties at branching centers are described by the corresponding scattering matrices. Here, we identify the topological invariant of a scattering center, referred to as its winding number, and apply topological intersection theory to count the number of quantum states in a quasi-one-dimensional system.

  20. Counting the number of excited states in organic semiconductor systems using topology.

    PubMed

    Catanzaro, Michael J; Shi, Tian; Tretiak, Sergei; Chernyak, Vladimir Y

    2015-02-28

    Exciton scattering theory attributes excited electronic states to standing waves in quasi-one-dimensional molecular materials by assuming a quasi-particle picture of optical excitations. The quasi-particle properties at branching centers are described by the corresponding scattering matrices. Here, we identify the topological invariant of a scattering center, referred to as its winding number, and apply topological intersection theory to count the number of quantum states in a quasi-one-dimensional system. PMID:25725718

  1. An Efficient Variational Principle for the Direct Optimization of Excited States.

    PubMed

    Zhao, Luning; Neuscamman, Eric

    2016-08-01

    We present a variational principle that enables systematically improvable predictions for individual excited states through an efficient Monte Carlo evaluation. We demonstrate its compatibility with different ansatzes and with both real space and Fock space sampling and discuss its potential for use in the solid state. In numerical demonstrations for challenging molecular excitations, the method rivals or surpasses the accuracy of very high level methods using drastically more compact wave function approximations. PMID:27379468

  2. Excited states of154Nd studied through the decay of154Pr

    NASA Astrophysics Data System (ADS)

    Toh, Y.; Okano, K.; Taniguchi, A.; Yamada, S.; Kawase, Y.

    1996-12-01

    The neutron-rich isotope154Pr, the heaviest isotope of praseodymium, has been investigated by γ-ray multispectrum scaling and γ-γ-(t), X-γ-(t) coincidence experiments. The isotope154Pr was separated from235U fission products with the on-line isotope separator KUR-ISOL. The decay scheme of154Pr has been constructed consisting of 9 excited states and 12 transitions in154Nd, including 7 excited states newly found in the present experiment.

  3. Excited-state dynamics of guanosine in aqueous solution revealed by time-resolved photoelectron spectroscopy: experiment and theory.

    PubMed

    Buchner, Franziska; Heggen, Berit; Ritze, Hans-Hermann; Thiel, Walter; Lübcke, Andrea

    2015-12-21

    Time-resolved photoelectron spectroscopy is performed on aqueous guanosine solution to study its excited-state relaxation dynamics. Experimental results are complemented by surface hopping dynamic simulations and evaluation of the excited-state ionization energy by Koopmans' theorem. Two alternative models for the relaxation dynamics are discussed. The experimentally observed excited-state lifetime is about 2.5 ps if the molecule is excited at 266 nm and about 1.1 ps if the molecule is excited at 238 nm. The experimental probe photon energy dependence of the photoelectron kinetic energy distribution suggests that the probe step is not vertical and involves a doubly-excited autoionizing state.

  4. Intersystem crossing from highly excited states. rhodamine 6G

    SciTech Connect

    Ryl'kov, V.V.; Cheshev, E.A.

    1985-09-01

    The authors carried out an investigation of ethanolic solutions of Rhodamine 6G (R6G) at 20 C by laser flash photolysis. The excitation of dilute (3 /SUP ./ 10/sup -5/ M) solutions of R6G with an initial optical density of 1.5 up to an intensity of 100 MW/cm/sup 2/ resulted in only weak triplet-triplet absorption. The introduction of additions of lithium chloride or lithium bromide in 0.1 M concentrations into a solution of R6G (3.10/sup -5/ M) resulted in the appearance of induced absorption and the introduction of an addition of lithium nitrate in the same concentration into the solution did not result in enhancement of triplet-triplet absorption.

  5. Steady-state photoluminescent excitation characterization of semiconductor carrier recombination.

    PubMed

    Bhosale, J S; Moore, J E; Wang, X; Bermel, P; Lundstrom, M S

    2016-01-01

    Photoluminescence excitation spectroscopy is a contactless characterization technique that can provide valuable information about the surface and bulk recombination parameters of a semiconductor device, distinct from other sorts of photoluminescent measurements. For this technique, a temperature-tuned light emitting diode (LED) has several advantages over other light sources. The large radiation density offered by LEDs from near-infrared to ultraviolet region at a low cost enables efficient and fast photoluminescence measurements. A simple and inexpensive LED-based setup facilitates measurement of surface recombination velocity and bulk Shockley-Read-Hall lifetime, which are key parameters to assess device performance. Under the right conditions, this technique can also provide a contactless way to measure the external quantum efficiency of a solar cell. PMID:26827306

  6. Steady-state photoluminescent excitation characterization of semiconductor carrier recombination

    NASA Astrophysics Data System (ADS)

    Bhosale, J. S.; Moore, J. E.; Wang, X.; Bermel, P.; Lundstrom, M. S.

    2016-01-01

    Photoluminescence excitation spectroscopy is a contactless characterization technique that can provide valuable information about the surface and bulk recombination parameters of a semiconductor device, distinct from other sorts of photoluminescent measurements. For this technique, a temperature-tuned light emitting diode (LED) has several advantages over other light sources. The large radiation density offered by LEDs from near-infrared to ultraviolet region at a low cost enables efficient and fast photoluminescence measurements. A simple and inexpensive LED-based setup facilitates measurement of surface recombination velocity and bulk Shockley-Read-Hall lifetime, which are key parameters to assess device performance. Under the right conditions, this technique can also provide a contactless way to measure the external quantum efficiency of a solar cell.

  7. Highly excited {Sigma}{sup -} states of molecular hydrogen

    SciTech Connect

    Argoubi, F.; Bezzaouia, S.; Oueslati, H.; Telmini, M.; Jungen, Ch.

    2011-05-15

    We report calculations of H{sub 2} {Sigma}{sup -} states using a variational R-matrix approach combined with multichannel quantum defect theory. Several Rydberg series converging to the 2p{pi} state of the H{sub 2}{sup +} ion core are established and their mutual channel interactions characterized. The influence of the external electron on the chemical bond is found to be particularly strong in these electronically and chemically weakly bound states.

  8. Non-orthogonal configuration interaction for the calculation of multielectron excited states

    NASA Astrophysics Data System (ADS)

    Sundstrom, Eric J.; Head-Gordon, Martin

    2014-03-01

    We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing ⟨S2⟩ for the ground and excited states.

  9. Yields of excited states of solutes in irradiated benzene and cyclohexane

    SciTech Connect

    Choi, H.T.; Hirayama, F.; Lipsky, S.

    1984-09-13

    The yields of lowest excited singlet states of diphenyloxazole and p-terphenyl in benzene and of diphenyloxazole, p-terphenyl, and biphenyl in cyclohexane have been measured for excitation by using /sup 85/Kr ..beta.. particles. The dependence of the yield on solute concentration for benzene solutions is shown to be accurately represented by a Stern-Volmer function from 5 x 10/sup -4/ to 10/sup -2/ M and to extrapolate at infinite solute concentration to the yield of excited singlet states of neat liquid benzene. The presence of oxygen in the solution does not affect the extrapolation. The absolute efficiencies of energy transfer from irradiated benzene to the solutes are in good agreement with previous measurements made by using optical excitation below the ionization threshold. These results provide additional confirmation that the mechanism of formation of excited solute states in fast-electron-irradiated benzene does not significantly involve electron or hole capture by the solute. They also demonstrate that the inhomogeneity of energy deposition does not affect the ratio of probabilities of the decay of excited benzene by photon emission to its decay by nonradiative energy transfer to the solute. For cyclohexane solutions, it is confirmed that the yields of excited solute states are lower than in benzene solutions at comparable concentration, but larger than would be expected were the same nonionic mechanism to apply as it does in benzene. The consequences of these conclusions are discussed.

  10. State-resolved collisional relaxation of highly vibrationally excited CsH by CO2.

    PubMed

    Mu, Baoxia; Cui, Xiuhua; Shen, Yifan; Dai, Kang

    2015-09-01

    Quenching of highly vibrationally excited CsH(X(1)Σ(+), v=15-23) by collisions with CO2 was investigated. A significant fraction of the initial population of highly vibrationally excited CsH(v=22) was relaxed to a low vibrational level (Δv=-5). The near-resonant 5-1 vibration-to-vibration (V-V) energy was efficiently exchanged. The rate constants for the rotational levels of CO2(00(0)0) [J=36-60] and CO2(00(0)1) [J=5-31] from the collisions with excited CsH were determined. The experiments revealed that the collisions resulting in CO2(00(0)0) were accompanied by substantial excitation in rotation and translation. The vibrationally excited CO2(00(0)1) state exhibited rotational and translational energy distributions near those of the initial state. The total quenching rates relative to the probed state of excited CsH were determined for both CO2 states. The corresponding data indicated that the gains in the rotational and translational energies in CO2 were sensitive to the collisional depletion of excited CsH.

  11. Excited state absorption properties of Pt(II) terpyridyl complexes bearing π-conjugated arylacetylides.

    PubMed

    Wang, Xianghuai; Goeb, Sébastien; Ji, Zhiqiang; Castellano, Felix N

    2010-11-18

    The synthesis, photophysics, and excited state absorption properties of three platinum(II) terpyridyl acetylide charge transfer (CT) complexes possessing a lone ancillary ligand systematically varied in phenylacetylide (PA) π-conjugation length, [Pt((t)Bu(3)tpy)([C≡C-C(6)H(4)](n)-H)]ClO(4) (n = 1, 2, 3), are described. Density functional theory (DFT) calculations performed on the ground states of complexes 1, 2, and 3 reveal that their HOMOs reside mainly on the ancillary π-conjugated PA moiety, ranging from 86 to 97%, with LUMOs predominantly centered on the terpyridyl acceptor ligand (91-92%). This electronic structure leads to the production of a triplet ligand-to-ligand CT ((3)LLCT) excited state upon visible light excitation with minor contributions from the corresponding triplet metal-to-ligand CT ((3)MLCT) excited state. Unusually strong red-to-near-IR transient absorptions are produced in the excited states of these molecules following selective long wavelength visible excitation of the low energy CT bands that do not emanate from the terpyridyl radical anion produced in the CT excited state or from an arylacetylide-based triplet intraligand ((3)IL) excited state. The extinction coefficients of these low energy absorption transients were determined using the energy transfer method with anthracene serving as the triplet acceptor. A detailed theoretical investigation using DFT and TDDFT methods reveals that these intense near-IR transient absorptions involve transitions resulting from transient oxidation of the PA subunit. In essence, the production of the (3)LLCT excited state transiently oxidizes the PA moiety by one electron, producing the corresponding highly absorbing radical cation-like species, analogous to that experienced in related intramolecular photoinduced electron transfer reactions. The computational work successfully predicts the oscillator strength and peak wavelength of the measured excited state absorption transients across this series

  12. Excited state evolution towards ligand loss and ligand chelation at group 6 metal carbonyl centres.

    PubMed

    Manton, Jennifer C; Amirjalayer, Saeed; Coleman, Anthony C; McMahon, Suzanne; Harvey, Emma C; Greetham, Gregory M; Clark, Ian P; Buma, Wybren Jan; Woutersen, Sander; Pryce, Mary T; Long, Conor

    2014-12-21

    The photochemistry and photophysics of three model "half-sandwich" complexes (η(6)-benzophenone)Cr(CO)3, (η(6)-styrene)Cr(CO)3, and (η(6)-allylbenzene)Cr(CO)3 were investigated using pico-second time-resolved infrared spectroscopy and time-dependent density functional theory methods. The (η(6)-benzophenone)Cr(CO)3 complex was studied using two excitation wavelengths (470 and 320 nm) while the remaining complexes were irradiated using 400 nm light. Two independent excited states were detected spectroscopically for each complex, one an unreactive excited state of metal-to-arene charge-transfer character and the other with metal-to-carbonyl charge transfer character. This second excited state leads to an arrested release of CO on the pico-second time-scale. Low-energy excitation (470 nm) of (η(6)-benzophenone)Cr(CO)3 populated only the unreactive excited state which simply relaxes to the parent complex. Higher energy irradiation (320 nm) induced CO-loss. Irradiation of (η(6)-styrene)Cr(CO)3, or (η(6)-allylbenzene)Cr(CO)3 at 400 nm provided evidence for the simultaneous population of both the reactive and unreactive excited states. The efficiency at which the unreactive excited state is populated depends on the degree of conjugation of the substituent with the arene π-system and this affects the efficiency of the CO-loss process. The quantum yield of CO-loss is 0.50 for (η(6)-allylbenzene)Cr(CO)3 and 0.43 for (η(6)-styrene)Cr(CO)3. These studies provide evidence for the existence of two photophysical routes to CO loss, a minor ultrafast route and an arrested mechanism involving the intermediate population of a reactive excited state. This reactive excited state either relaxes to reform the parent species or eject CO. Thus the quantum yield of the CO-loss is strongly dependent on the excitation wavelength. Time-dependent density functional theory calculations confirm that the state responsible for ultrafast CO-loss has significant metal-centred character while

  13. Photochemistry of excited-state species in natural waters: a role for particulate organic matter.

    PubMed

    Cottrell, Barbara A; Timko, Stephen A; Devera, Lianne; Robinson, Alice K; Gonsior, Michael; Vizenor, Ashley E; Simpson, André J; Cooper, William J

    2013-09-15

    Laser flash photolysis (LFP) was used to characterize a triplet excited state species isolated from Black River and San Joaquin wetlands particulate organic matter (POM). The solubilized organic matter, isolated from POM by pH-independent diffusion in distilled water, was named PdOM. UV-visible absorption spectroscopy, excitation-emission matrix spectroscopy (EEMs), and (1)H NMR were used to characterize the PdOM. While LFP of dissolved organic matter (DOM) is known to generate the solvated electron, LFP of the PdOM transient in argon-, air-, and nitrous oxide-saturated solutions indicated that this was a triplet excited state species ((3)PdOM*). The lifetime and the reactivity of (3)PdOM* with sorbic acid, a triplet state quencher, were compared with that of the triplet excited state of benzophenone, a DOM proxy. A second excited state species (designated DOM*), with a longer lifetime, was reported in a number of previous studies but not characterized. The lifetime of DOM*, measured for seventeen organic matter isolates, lignin, tannic acid, and three wetlands plant extracts, was shown to differentiate allochthonous from autochthonous DOM. (3)POM* and DOM* were also observed in lake water and a constructed wetlands' water. Aqueous extracts of fresh and aged plant material from the same wetland were shown to be one source of these excited state species. This study provides evidence of a role for POM in the photochemistry of natural and constructed wetland waters.

  14. Size and shape dependent photoluminescence and excited state decay rates of diamondoids.

    PubMed

    Richter, Robert; Wolter, David; Zimmermann, Tobias; Landt, Lasse; Knecht, Andre; Heidrich, Christoph; Merli, Andrea; Dopfer, Otto; Reiss, Philipp; Ehresmann, Arno; Petersen, Jens; Dahl, Jeremy E; Carlson, Robert M K; Bostedt, Christoph; Möller, Thomas; Mitric, Roland; Rander, Torbjörn

    2014-02-21

    We present photoluminescence spectra and excited state decay rates of a series of diamondoids, which represent molecular structural analogues to hydrogen-passivated bulk diamond. Specific isomers of the five smallest diamondoids (adamantane-pentamantane) have been brought into the gas phase and irradiated with synchrotron radiation. All investigated compounds show intrinsic photoluminescence in the ultraviolet spectral region. The emission spectra exhibit pronounced vibrational fine structure which is analyzed using quantum chemical calculations. We show that the geometrical relaxation of the first excited state of adamantane, exhibiting Rydberg character, leads to the loss of Td symmetry. The luminescence of adamantane is attributed to a transition from the delocalized first excited state into different vibrational modes of the electronic ground state. Similar geometrical changes of the excited state structure have also been identified in the other investigated diamondoids. The excited state decay rates show a clear dependence on the size of the diamondoid, but are independent of the particle geometry, further indicating a loss of particle symmetry upon electronic excitation.

  15. Size and shape dependent photoluminescence and excited state decay rates of diamondoids.

    PubMed

    Richter, Robert; Wolter, David; Zimmermann, Tobias; Landt, Lasse; Knecht, Andre; Heidrich, Christoph; Merli, Andrea; Dopfer, Otto; Reiss, Philipp; Ehresmann, Arno; Petersen, Jens; Dahl, Jeremy E; Carlson, Robert M K; Bostedt, Christoph; Möller, Thomas; Mitric, Roland; Rander, Torbjörn

    2014-02-21

    We present photoluminescence spectra and excited state decay rates of a series of diamondoids, which represent molecular structural analogues to hydrogen-passivated bulk diamond. Specific isomers of the five smallest diamondoids (adamantane-pentamantane) have been brought into the gas phase and irradiated with synchrotron radiation. All investigated compounds show intrinsic photoluminescence in the ultraviolet spectral region. The emission spectra exhibit pronounced vibrational fine structure which is analyzed using quantum chemical calculations. We show that the geometrical relaxation of the first excited state of adamantane, exhibiting Rydberg character, leads to the loss of Td symmetry. The luminescence of adamantane is attributed to a transition from the delocalized first excited state into different vibrational modes of the electronic ground state. Similar geometrical changes of the excited state structure have also been identified in the other investigated diamondoids. The excited state decay rates show a clear dependence on the size of the diamondoid, but are independent of the particle geometry, further indicating a loss of particle symmetry upon electronic excitation. PMID:24398975

  16. Analysis of 8Li(α,n)11B below the Coulomb barrier in the potential model

    NASA Astrophysics Data System (ADS)

    Rauscher, T.; Grün, K.; Krauss, H.; Oberhummer, H.; Kwasniewicz, E.

    1992-04-01

    The reaction 8Li(α,n)11B is of interest in inhomogeneous big bang nucleosynthesis. A distorted wave Born approximation calculation employing folding potentials is presented for energies below the Coulomb barrier. The recently observed resonance at about 540 keV center-of-mass energy can be reproduced. The astrophysical S factor is calculated for the ground-state transition as well as for the transitions to the first four excited states of 11B. The reaction rate is derived and compared to literature data. The inclusion of the excited states increases the rate by a factor of 1.5 compared to the ground-state transition.

  17. Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum

    SciTech Connect

    Niedzwiedzki, Dariusz; Kobayashi, Masayuki; Blankenship, R. E.

    2011-01-13

    Light-harvesting complex 2 from the anoxygenic phototrophic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption, fluorescence and flash photolysis spectroscopy. Steady-state absorption and fluorescence measurements show that carotenoids play a negligible role as supportive energy donors and transfer excitation to bacteriochlorophyll-a with low energy transfer efficiency of ~30%. HPLC analysis determined that the dominant carotenoids in the complex are rhodopin and spirilloxanthin. Carotenoid excited triplet state formation upon direct (carotenoid) or indirect (bacteriochlorophyll-a Q{sub x} band) excitation shows that carotenoid triplets are mostly localized on spirilloxanthin. In addition, no triplet excitation transfer between carotenoids was observed. Such specific carotenoid composition and spectroscopic results strongly suggest that this organism optimized carotenoid composition in the light-harvesting complex 2 in order to maximize photoprotective capabilities of carotenoids but subsequently drastically suppressed their supporting role in light-harvesting process.

  18. First-order derivative couplings between excited states from adiabatic TDDFT response theory

    SciTech Connect

    Ou, Qi; Subotnik, Joseph E.; Bellchambers, Gregory D.; Furche, Filipp

    2015-02-14

    We present a complete derivation of derivative couplings between excited states in the framework of adiabatic time-dependent density functional response theory. Explicit working equations are given and the resulting derivative couplings are compared with derivative couplings from a pseudo-wavefunction ansatz. For degenerate excited states, i.e., close to a conical intersection (CI), the two approaches are identical apart from an antisymmetric overlap term. However, if the difference between two excitation energies equals another excitation energy, the couplings from response theory exhibit an unphysical divergence. This spurious behavior is a result of the adiabatic or static kernel approximation of time-dependent density functional theory leading to an incorrect analytical structure of the quadratic response function. Numerical examples for couplings close to a CI and for well-separated electronic states are given.

  19. Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite.

    PubMed

    Watanabe, Daiki; Sugii, Kaori; Shimozawa, Masaaki; Suzuki, Yoshitaka; Yajima, Takeshi; Ishikawa, Hajime; Hiroi, Zenji; Shibauchi, Takasada; Matsuda, Yuji; Yamashita, Minoru

    2016-08-01

    When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity [Formula: see text] which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2[Formula: see text]2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that [Formula: see text] is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that [Formula: see text] is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons. PMID:27439874

  20. Control of multiple excited image states around segmented carbon nanotubes

    SciTech Connect

    Knörzer, J. Fey, C.; Sadeghpour, H. R.; Schmelcher, P.

    2015-11-28

    Electronic image states around segmented carbon nanotubes can be confined and shaped along the nanotube axis by engineering the image potential. We show how several such image states can be prepared simultaneously along the same nanotube. The inter-electronic distance can be controlled a priori by engineering tubes of specific geometries. High sensitivity to external electric and magnetic fields can be exploited to manipulate these states and their mutual long-range interactions. These building blocks provide access to a new kind of tailored interacting quantum systems.

  1. Control of multiple excited Rydberg states around segmented carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Schmelcher, Peter; Sadeghpour, Hossein; Knoerzer, Johannes; Fey, Christian

    2016-05-01

    Electronic image Rydberg states around segmented carbon nanotubes can be confined and shaped along the nanotube axis by engineering the image potential. We show how several such image states can be prepared simultaneously along the same nanotube. The inter-electronic distance can be controlled a priori by engineering tubes of specific geometries. High sensitivity to external electric and magnetic fields can be exploited to manipulate these states and their mutual long-range interactions. These building blocks provide access to a new kind of tailored long-range interacting quantum systems.

  2. Multireference general-model-space state-universal and state-specific coupled-cluster approaches to excited states

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhu; Paldus, Josef

    2010-11-01

    The concept of C-conditions, originally introduced in the framework of the multireference (MR), general-model-space (GMS), state-universal (SU), coupled-cluster (CC) approach with singles and doubles (GMS-SU-CCSD) to account for the internal amplitudes that vanish in the case of a complete model space, is applied to a state-selective or state-specific Mukherjee MR-CC method (MkCCSD). In contrast to the existing applications, the emphasis is on the description of excited states, particularly those belonging to the same symmetry species. The applicability of the C-conditions in all MR-SU-CC approaches is emphasized. Convergence problems encountered in the MkCCSD method when handling higher-lying states are pointed out. The performance of the GMS-SU-CCSD and MkCCSD methods is illustrated by considering low-lying vertical excitation energies of the ethylene molecule and para-benzyne diradical. A comparison with the equation-of-motion CCSD results, as well as with the available experimental data and recent multireference configuration interaction theoretical results, is also provided.

  3. Gapped excitations of unconventional fractional quantum Hall effect states in the second Landau level

    NASA Astrophysics Data System (ADS)

    Wurstbauer, U.; Levy, A. L.; Pinczuk, A.; West, K. W.; Pfeiffer, L. N.; Manfra, M. J.; Gardner, G. C.; Watson, J. D.

    2015-12-01

    We report the observation of low-lying collective charge and spin excitations in the second Landau level at ν =2 +1 /3 and also for the very fragile states at ν =2 +2 /5 and 2 +3 /8 in inelastic light scattering experiments. These modes exhibit a clear dependence on filling factor and temperature substantiating the unique access to the characteristic neutral excitation spectra of the incompressible fractional quantum Hall effect (FQHE) states. A detailed mode analysis reveals low-energy modes at around 70 μ eV and a sharp mode slightly below the Zeeman energy interpreted as gap and spin-wave excitation, respectively. The lowest-energy collective charge excitation spectrum at ν =2 +1 /3 exhibits significant qualitative similarities with its cousin state in the lowest Landau level at ν =1 /3 suggesting similar magnetoroton minima in the neutral excitations. The mode energies differ by a scaling of 0.15 indicating different interaction physics in the N =0 and N =1 Landau levels. The striking polarization dependence in elastic and inelastic light scattering is discussed in the framework of anisotropic electron phases that allow for the stabilization of nematic FQHE states. The observed excitation spectra provide new insights by accessing quantum phases in the bulk of electron systems and facilitate comparison with different theoretical descriptions of those enigmatic FQHE states.

  4. Excited-state structure of oligothiophene dendrimers: computational and experimental study.

    PubMed

    Badaeva, Ekaterina; Harpham, Michael R; Guda, Ramakrishna; Süzer, Özgün; Ma, Chang-Qi; Bäuerle, Peter; Goodson, Theodore; Tretiak, Sergei

    2010-12-01

    The nature of one and two-photon absorption enhancement in a series of oligothiophene dendrimers, recently proposed for applications in entangled photon sensors and solar cells, has been analyzed using both theory (time dependent density functional theory calculations) and experiment (fluorescence upconversion measurements). The linear absorption spectra exhibit a red shift of the absorption maxima and broadening as a function of dendrimer generations. The two-photon absorption cross sections increase sharply with the number of thiophene units in the dendrimer. The cooperative enhancement in absorption two-photon cross sections is explained by (i) an increase in the excited-state density for larger molecules and (ii) delocalization of the low-lying excited states over extended thiophene chains. Fluorescence anisotropy measurements and examination of the calculated excited-state properties reveal that this delocalization is accompanied by a size-dependent decrease in excited-state symmetries. A substantial red shift of the emission maxima for larger dendrimers is explained through the vibronic planarization of the longest linear α-thiophene chain for the emitting excited state. For higher generations, the fluorescence quantum yield decreases due to increased nonradiative decay efficiency (e.g., intersystem crossing). The detailed information about the dendrimer 3D structure and excitations provides guidance for further optimizations of dendritic structures for nonlinear optical and opto-electronic applications. PMID:21077602

  5. Collision-induced energy transfer in intermediate excited states of cesium

    NASA Astrophysics Data System (ADS)

    Lukaszewski, M.; Jackowska, I.

    1993-09-01

    We report an application of laser spectroscopy techniques to a study of collision-induced interactions in atomic excited states. Due to pulsed dye laser excitation a considerable selective population of highly excited states of ccsium is obtained. Collision-induced transfer of excitation energy between the excited states results in modifications in time and spectral characteristics of observed atomic fluorescence. Quantitative information on the efficiency of collisional processes can be obtained from the measurements of time constants of the time-resolved fluorescence signals and/or from those of the integrated intensities of the fluorescence lines. Both possibilities are used in the present work. Perturbation of nD (n=8-14) and nS (n=1O-15) states of cesium in collisions with noble-gas atoms is investigated. The cross sections for the transfer of excitation between fine-structure substates of the nD states (J mixing) and for the nS-(n-4)F intermultiplet transfer are obtained.

  6. The electronic origin and vibrational levels of the first excited singlet state of isocyanic acid (HNCO)

    SciTech Connect

    Berghout, H. Laine; Crim, F. Fleming; Zyrianov, Mikhail; Reisler, Hanna

    2000-04-15

    The combination of vibrationally mediated photofragment yield spectroscopy, which excites molecules prepared in single vibrational states, and multiphoton fluorescence spectroscopy, which excites molecules cooled in a supersonic expansion, provides detailed information on the energetics and vibrational structure of the first excited singlet state (S{sub 1}) of isocyanic acid (HNCO). Dissociation of molecules prepared in individual vibrational states by stimulated Raman excitation probes vibrational levels near the origin of the electronically excited state. Detection of fluorescence from dissociation products formed by multiphoton excitation through S{sub 1} of molecules cooled in a supersonic expansion reveals the vibrational structure at higher energies. Both types of spectra show long, prominent progressions in the N-C-O bending vibration built on states with different amounts of N-C stretching excitation and H-N-C bending excitation. Analyzing the spectra locates the origin of the S{sub 1} state at 32 449{+-}20 cm{sup -1} and determines the harmonic vibrational frequencies of the N-C stretch ({omega}{sub 3}=1034{+-}20 cm{sup -1}), the H-N-C bend ({omega}{sub 4}=1192{+-}19 cm{sup -1}), and the N-C-O bend ({omega}{sub 5}=599{+-}7 cm{sup -1}), values that are consistent with several ab initio calculations. The assigned spectra strongly suggest that the N-C stretching vibration is a promoting mode for internal conversion from S{sub 1} to S{sub 0}. (c) 2000 American Institute of Physics.

  7. Permanent Magnet Synchronous Condenser with Solid State Excitation: Preprint

    SciTech Connect

    Hsu, P.; Muljadi, E.; Wu, Z.; Gao, W.

    2015-04-07

    A typical synchronous condenser (SC) consists of a free-spinning, wound-field synchronous generator and a field excitation controller. In this paper, we propose an SC that employs a permanent magnet synchronous generator (PMSG) instead of a wound-field machine. PMSGs have the advantages of higher efficiency and reliability. In the proposed configuration, the reactive power control is achieved by a voltage converter controller connected in series to the PMSG. The controller varies the phase voltage of the PMSG and creates the same effect on the reactive power flow as that of an over- or underexcited wound-field machine. The controller’s output voltage magnitude controls the amount of the reactive power produced by the SC. The phase of the controller’s output is kept within a small variation from the grid voltage phase. This small phase variation is introduced so that a small amount of power can be drawn from the grid into the controller to maintain its DC bus voltage. Because the output voltage of the controller is only a fraction of the line voltage, its VA rating is only a fraction of the rating of the PMSG. The proposed scheme is shown to be effective by computer simulations.

  8. A general ansatz for constructing quasi-diabatic states in electronically excited aggregated systems

    SciTech Connect

    Liu, Wenlan; Köhn, Andreas; Lunkenheimer, Bernd; Settels, Volker; Engels, Bernd; Fink, Reinhold F.

    2015-08-28

    We present a general method for analyzing the character of singly excited states in terms of charge transfer (CT) and locally excited (LE) configurations. The analysis is formulated for configuration interaction singles (CIS) singly excited wave functions of aggregate systems. It also approximately works for the second-order approximate coupled cluster singles and doubles and the second-order algebraic-diagrammatic construction methods [CC2 and ADC(2)]. The analysis method not only generates a weight of each character for an excited state, but also allows to define the related quasi-diabatic states and corresponding coupling matrix elements. In the character analysis approach, we divide the target system into domains and use a modified Pipek-Mezey algorithm to localize the canonical MOs on each domain, respectively. The CIS wavefunction is then transformed into the localized basis, which allows us to partition the wavefunction into LE configurations within domains and CT configuration between pairs of different domains. Quasi-diabatic states are then obtained by mixing excited states subject to the condition of maximizing the weight of one single LE or CT configuration (localization in configuration space). Different aims of such a procedure are discussed, either the construction of pure LE and CT states for analysis purposes (by including a large number of excited states) or the construction of effective models for dynamics calculations (by including a restricted number of excited states). Applications are given to LE/CT mixing in π-stacked systems, charge-recombination matrix elements in a hetero-dimer, and excitonic couplings in multi-chromophoric systems.

  9. A general ansatz for constructing quasi-diabatic states in electronically excited aggregated systems.

    PubMed

    Liu, Wenlan; Lunkenheimer, Bernd; Settels, Volker; Engels, Bernd; Fink, Reinhold F; Köhn, Andreas

    2015-08-28

    We present a general method for analyzing the character of singly excited states in terms of charge transfer (CT) and locally excited (LE) configurations. The analysis is formulated for configuration interaction singles (CIS) singly excited wave functions of aggregate systems. It also approximately works for the second-order approximate coupled cluster singles and doubles and the second-order algebraic-diagrammatic construction methods [CC2 and ADC(2)]. The analysis method not only generates a weight of each character for an excited state, but also allows to define the related quasi-diabatic states and corresponding coupling matrix elements. In the character analysis approach, we divide the target system into domains and use a modified Pipek-Mezey algorithm to localize the canonical MOs on each domain, respectively. The CIS wavefunction is then transformed into the localized basis, which allows us to partition the wavefunction into LE configurations within domains and CT configuration between pairs of different domains. Quasi-diabatic states are then obtained by mixing excited states subject to the condition of maximizing the weight of one single LE or CT configuration (localization in configuration space). Different aims of such a procedure are discussed, either the construction of pure LE and CT states for analysis purposes (by including a large number of excited states) or the construction of effective models for dynamics calculations (by including a restricted number of excited states). Applications are given to LE/CT mixing in π-stacked systems, charge-recombination matrix elements in a hetero-dimer, and excitonic couplings in multi-chromophoric systems.

  10. Electron Impact Excitation of Xenon from the Ground State and the Metastable State to the 5p57p Levels

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Dong, Chen-Zhong; Xie, Lu-You; Jiang, Jun

    2014-03-01

    Electron impact excitation cross sections from the ground state and the lowest metastable state 5p56s J = 2 to the excited states of the 5p57p configuration of xenon are calculated systematically using the fully relativistic distorted wave method. Special attention is paid to the configuration interaction effects in the wave-function expansion of target states. The results are in good agreement with the recent experimental data by Jung et al. [Phys. Rev. A 80 (2009) 062708] over the measured energy range. These accurate theoretical results can be used in the modeling and diagnosis of plasmas containing xenon.

  11. Mechanistic photodecarboxylation of pyruvic acid: Excited-state proton transfer and three-state intersection

    SciTech Connect

    Chang, Xue-Ping; Fang, Qiu Cui, Ganglong

    2014-10-21

    Photodissociation dynamics of pyruvic acid experimentally differs from that of commonly known ketones. We have employed the complete active space self-consistent field and its multi-state second-order perturbation methods to study its photodissociation mechanism in the S{sub 0}, T{sub 1}, and S{sub 1} states. We have uncovered four nonadiabatic photodecarboxylation paths. (i) The S{sub 1} system relaxes via an excited-state intramolecular proton transfer (ESIPT) to a hydrogen-transferred tautomer, near which an S{sub 1}/S{sub 0} conical intersection funnels the S{sub 1} to S{sub 0} state. Then, some trajectories continue completing the decarboxylation reaction in the S{sub 0} state; the remaining trajectories via a reverse hydrogen transfer return to the S{sub 0} minimum, from which a thermal decarboxylation reaction occurs. (ii) Due to a small S{sub 1} −T{sub 1} energy gap and a large S{sub 1}/T{sub 1} spin-orbit coupling, an efficient S{sub 1} → T{sub 1} intersystem crossing process happens again near this S{sub 1}/S{sub 0} conical intersection. When decaying to T{sub 1} state, a direct photodecarboxylation proceeds. (iii) Prior to ESIPT, the S{sub 1} system first decays to the T{sub 1} state via an S{sub 1} → T{sub 1} intersystem crossing; then, the T{sub 1} system evolves to a hydrogen-transferred tautomer. Therefrom, an adiabatic T{sub 1} decarboxylation takes place due to a small barrier of 7.7 kcal/mol. (iv) Besides the aforementioned T{sub 1} ESIPT process, there also exists a comparable Norrish type I reaction in the T{sub 1} state, which forms the ground-state products of CH{sub 3}CO and COOH. Finally, we have found that ESIPT plays an important role. It closes the S{sub 1}-T{sub 1} and S{sub 1}-S{sub 0} energy gaps, effecting an S{sub 1}/T{sub 1}/S{sub 0} three-state intersection region, and mediating nonadiabatic photodecarboxylation reactions of pyruvic acid.

  12. Mid-infrared ultrafast laser pulses induced third harmonic generation in nitrogen molecules on an excited state

    PubMed Central

    Xie, Hongqiang; Li, Guihua; Yao, Jinping; Chu, Wei; Li, Ziting; Zeng, Bin; Wang, Zhanshan; Cheng, Ya

    2015-01-01

    We report on generation of third harmonic from nitrogen molecules on the excited state with a weak driver laser pulse at a mid-infrared wavelength. The excited nitrogen molecules are generated using a circularly polarized intense femtosecond pulse which produces energetic electrons by photoionization to realize collisional excitation of nitrogen molecules. Furthermore, since the third harmonic is generated using a pump-probe scheme, it enables investigation of the excited-state dynamics of nitrogen molecules produced under different conditions. We also perform a comparative investigation in excited argon atoms, revealing different decay dynamics of the molecules and atoms from the excited states in femtosecond laser induced filaments. PMID:26522886

  13. Mid-infrared ultrafast laser pulses induced third harmonic generation in nitrogen molecules on an excited state.

    PubMed

    Xie, Hongqiang; Li, Guihua; Yao, Jinping; Chu, Wei; Li, Ziting; Zeng, Bin; Wang, Zhanshan; Cheng, Ya

    2015-11-02

    We report on generation of third harmonic from nitrogen molecules on the excited state with a weak driver laser pulse at a mid-infrared wavelength. The excited nitrogen molecules are generated using a circularly polarized intense femtosecond pulse which produces energetic electrons by photoionization to realize collisional excitation of nitrogen molecules. Furthermore, since the third harmonic is generated using a pump-probe scheme, it enables investigation of the excited-state dynamics of nitrogen molecules produced under different conditions. We also perform a comparative investigation in excited argon atoms, revealing different decay dynamics of the molecules and atoms from the excited states in femtosecond laser induced filaments.

  14. Estimation of ground and excited state dipole moments of Oil Red O by solvatochromic shift methods.

    PubMed

    Sıdır, İsa; Gülseven Sıdır, Yadigar

    2015-01-25

    Absorption and fluorescence spectra of Oil Red O (abbreviated as ORO) are recorded in various solvents with different polarity in the range of 250-900 nm, at room temperature. The solvatochromic shift methods have been used to determine the ground state (μg) and excited state (μe) dipole moments depending on dielectric constant and refractive index functions. It is observed that fluorescence spectra show positive solvatochromism whereas absorption spectra do not indicates sensitive behavior to solvent polarity. Excited state dipole moment is found as higher than those of ground state for all of the used methods and it is attributed to more polar excited state of ORO. Theoretical μg has been determined by quantum chemical calculations using DFT and semi empirical methods. HOMO, LUMO, molecular electrostatic potential (MEP) and solvent accessible surface of ORO are calculated by using DFT-B3LYP method.

  15. Unbound excited states of the N =16 closed shell nucleus 24O

    NASA Astrophysics Data System (ADS)

    Rogers, W. F.; Garrett, S.; Grovom, A.; Anthony, R. E.; Aulie, A.; Barker, A.; Baumann, T.; Brett, J. J.; Brown, J.; Christian, G.; DeYoung, P. A.; Finck, J. E.; Frank, N.; Hamann, A.; Haring-Kaye, R. A.; Hinnefeld, J.; Howe, A. R.; Islam, N. T.; Jones, M. D.; Kuchera, A. N.; Kwiatkowski, J.; Lunderberg, E. M.; Luther, B.; Meyer, D. A.; Mosby, S.; Palmisano, A.; Parkhurst, R.; Peters, A.; Smith, J.; Snyder, J.; Spyrou, A.; Stephenson, S. L.; Strongman, M.; Sutherland, B.; Taylor, N. E.; Thoennessen, M.

    2015-09-01

    Two low-lying neutron-unbound excited states of 24O, populated by proton-knockout reactions on 26F, have been measured using the MoNA and LISA arrays in combination with the Sweeper Magnet at the Coupled Cyclotron Facility at the NSCL using invariant mass spectroscopy. The current measurement confirms the separate identity of two states with decay energies 0.51(5) MeV and 1.20(7) MeV, and provides support for theoretical model calculations, which predict a 2+ first excited state and a 1+ higher-energy state. The measured excitation energies for these states, 4.70(15) MeV for the 2+ level and 5.39(16) MeV for the 1+ level, are consistent with previous lower-resolution measurements, and are compared with five recent model predictions.

  16. The excited spin-triplet state of a charged exciton in quantum dots.

    PubMed

    Molas, M R; Nicolet, A A L; Piętka, B; Babiński, A; Potemski, M

    2016-09-14

    We report on spectroscopic studies of resonances related to ladder of states of a charged exciton in single GaAlAs/AlAs quantum dot structures. Polarization-resolved photoluminescence, photoluminescence excitation and photon-correlation measurements were performed at low (T  =  4.2 K) temperature also in magnetic field applied in Faraday configuration. The investigated resonances are assigned to three different configurations of a positively charged exciton. Together with a singlet ground state and a conventional triplet state (involving an electron from the ground state electronic s-shell), an excited triplet state, which involved an electron from the excited electronic p-shell was identified in single dots. The appearance of an emission line related to the latter complex is due to a partially suppressed electron relaxation in the investigated dots. An analysis of this emission line allows us to scrupulously determine properties of the excited triplet state and compare them with those of the conventional triplet state. Both triplets exhibit similar patterns of anisotropic fine structure and Zeeman splitting, however their amplitudes significantly differ for those two states. Presented results emphasize the role of the symmetry of the electronic state on the properties of the triplet states of two holes  +  electron excitonic complex. PMID:27391126

  17. The excited spin-triplet state of a charged exciton in quantum dots

    NASA Astrophysics Data System (ADS)

    Molas, M. R.; Nicolet, A. A. L.; Piętka, B.; Babiński, A.; Potemski, M.

    2016-09-01

    We report on spectroscopic studies of resonances related to ladder of states of a charged exciton in single GaAlAs/AlAs quantum dot structures. Polarization-resolved photoluminescence, photoluminescence excitation and photon-correlation measurements were performed at low (T  =  4.2 K) temperature also in magnetic field applied in Faraday configuration. The investigated resonances are assigned to three different configurations of a positively charged exciton. Together with a singlet ground state and a conventional triplet state (involving an electron from the ground state electronic s-shell), an excited triplet state, which involved an electron from the excited electronic p-shell was identified in single dots. The appearance of an emission line related to the latter complex is due to a partially suppressed electron relaxation in the investigated dots. An analysis of this emission line allows us to scrupulously determine properties of the excited triplet state and compare them with those of the conventional triplet state. Both triplets exhibit similar patterns of anisotropic fine structure and Zeeman splitting, however their amplitudes significantly differ for those two states. Presented results emphasize the role of the symmetry of the electronic state on the properties of the triplet states of two holes  +  electron excitonic complex.

  18. Coherent Excited States in Superconductors due to a Microwave Field.

    PubMed

    Semenov, A V; Devyatov, I A; de Visser, P J; Klapwijk, T M

    2016-07-22

    We describe theoretically the depairing effect of a microwave field on diffusive s-wave superconductors. The ground state of the superconductor is altered qualitatively in analogy to the depairing due to a dc current. In contrast to dc depairing, the density of states acquires, for microwaves with frequency ω_{0}, steps at multiples of the photon energy Δ±nℏω_{0} and shows an exponential-like tail in the subgap regime. We show that this ac depairing explains the measured frequency shift of a superconducting resonator with microwave power at low temperatures. PMID:27494495

  19. Coherent Excited States in Superconductors due to a Microwave Field

    NASA Astrophysics Data System (ADS)

    Semenov, A. V.; Devyatov, I. A.; de Visser, P. J.; Klapwijk, T. M.

    2016-07-01

    We describe theoretically the depairing effect of a microwave field on diffusive s -wave superconductors. The ground state of the superconductor is altered qualitatively in analogy to the depairing due to a dc current. In contrast to dc depairing, the density of states acquires, for microwaves with frequency ω0, steps at multiples of the photon energy Δ ±n ℏω0 and shows an exponential-like tail in the subgap regime. We show that this ac depairing explains the measured frequency shift of a superconducting resonator with microwave power at low temperatures.

  20. Ionization potential for excited S states of the lithium atom

    SciTech Connect

    Puchalski, M.; KePdziera, D.; Pachucki, K.

    2010-12-15

    Nonrelativistic, relativistic, quantum electrodynamic, and finite nuclear mass corrections to the energy levels are obtained for the nS{sub 1/2},n=3,...,9 states of the lithium atom. Computational approach is based on the explicitly correlated Hylleraas functions with the analytic integration and recursion relations. Theoretical predictions for the ionization potential of nS{sub 1/2} states and transition energies nS{sub 1/2{yields}}2S{sub 1/2} are compared to known experimental values for {sup 6,7}Li isotopes.

  1. Coulomb Glass: a Mean Field Study

    NASA Astrophysics Data System (ADS)

    Mandra, Salvatore; Palassini, Matteo

    2012-02-01

    We study the Coulomb glass model of disordered localized electrons with long-range Coulomb interaction, which describes systems such as disordered insulators, granular metals, amorphous semiconductors, or doped crystalline semiconductors. Long ago Efros and Shklovskii showed that the long-range repulsion induces a soft Coulomb gap in the single particle density of states at low temperatures. Recent works suggested that this gap is associated to a transition to a glass phase, similar to the Almeida-Thouless transition in spin glasses. In this work, we use a mean field approach to characterize several physical properties of the Coulomb glass. In particular, following a seminal work of Bray and Moore, we show that the Edward-Anderson parameter qEA and the spin glass susceptibility χSG are directly related to spectrum distribution of the Hessian matrix around free energy minima. Using this result, we show that no glass transition is associated to the gap formation.

  2. Nonadiabatic Excited-State Molecular Dynamics Modeling of Photoinduced Dynamics in Conjugated Molecules

    SciTech Connect

    Nelson, Tammie; Fernandez-Alberti, Sebastian; Chernyak, Vladimir; Roitberg, Adrian E.; Tretiak, Sergei

    2011-01-10

    Nonadiabatic dynamics generally defines the entire evolution of electronic excitations in optically active molecular materials. It is commonly associated with a number of fundamental and complex processes such as intraband relaxation, energy transfer, and light harvesting influenced by the spatial evolution of excitations and transformation of photoexcitation energy into electrical energy via charge separation (e.g., charge injection at interfaces). To treat ultrafast excited-state dynamics and exciton/charge transport we have developed a nonadiabatic excited-state molecular dynamics (NA-ESMD) framework incorporating quantum transitions. Our calculations rely on the use of the Collective Electronic Oscillator (CEO) package accounting for many-body effects and actual potential energy surfaces of the excited states combined with Tully’s fewest switches algorithm for surface hopping for probing nonadiabatic processes. This method is applied to model the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene, PPV). Our analysis shows intricate details of photoinduced vibronic relaxation and identifies specific slow and fast nuclear motions that are strongly coupled to the electronic degrees of freedom, namely, torsion and bond length alternation, respectively. Nonadiabatic relaxation of the highly excited mA{sub g} state is predicted to occur on a femtosecond time scale at room temperature and on a picosecond time scale at low temperature.

  3. Nonadiabatic excited-state molecular dynamics modeling of photoinduced dynamics in conjugated molecules.

    PubMed

    Nelson, Tammie; Fernandez-Alberti, Sebastian; Chernyak, Vladimir; Roitberg, Adrian E; Tretiak, Sergei

    2011-05-12

    Nonadiabatic dynamics generally defines the entire evolution of electronic excitations in optically active molecular materials. It is commonly associated with a number of fundamental and complex processes such as intraband relaxation, energy transfer, and light harvesting influenced by the spatial evolution of excitations and transformation of photoexcitation energy into electrical energy via charge separation (e.g., charge injection at interfaces). To treat ultrafast excited-state dynamics and exciton/charge transport we have developed a nonadiabatic excited-state molecular dynamics (NA-ESMD) framework incorporating quantum transitions. Our calculations rely on the use of the Collective Electronic Oscillator (CEO) package accounting for many-body effects and actual potential energy surfaces of the excited states combined with Tully's fewest switches algorithm for surface hopping for probing nonadiabatic processes. This method is applied to model the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene, PPV). Our analysis shows intricate details of photoinduced vibronic relaxation and identifies specific slow and fast nuclear motions that are strongly coupled to the electronic degrees of freedom, namely, torsion and bond length alternation, respectively. Nonadiabatic relaxation of the highly excited mA(g) state is predicted to occur on a femtosecond time scale at room temperature and on a picosecond time scale at low temperature. PMID:21218841

  4. Double excitations and state-to-state transition dipoles in π-π∗ excited singlet states of linear polyenes: Time-dependent density-functional theory versus multiconfigurational methods

    NASA Astrophysics Data System (ADS)

    Mikhailov, Ivan A.; Tafur, Sergio; Masunov, Artëm E.

    2008-01-01

    The effect of static and dynamic electron correlation on the nature of excited states and state-to-state transition dipole moments is studied with a multideterminant wave function approach on the example of all-trans linear polyenes ( C4H6 , C6H8 , and C8H10 ). Symmetry-forbidden singlet nAg states were found to separate into three groups: purely single, mostly single, and mostly double excitations. The excited-state absorption spectrum is dominated by two bright transitions: 1Bu-2Ag and 1Bu-mAg , where mAg is the state, corresponding to two-electron excitation from the highest occupied to lowest unoccupied molecular orbital. The richness of the excited-state absorption spectra and strong mixing of the doubly excited determinants into lower- nAg states, reported previously at the complete active space self-consistent field level of theory, were found to be an artifact of the smaller active space, limited to π orbitals. When dynamic σ-π correlation is taken into account, single- and double-excited states become relatively well separated at least at the equilibrium geometry of the ground state. This electronic structure is closely reproduced within time-dependent density-functional theory (TD DFT), where double excitations appear in a second-order coupled electronic oscillator formalism and do not mix with the single excitations obtained within the linear response. An extension of TD DFT is proposed, where the Tamm-Dancoff approximation (TDA) is invoked after the linear response equations are solved (a posteriori TDA). The numerical performance of this extension is validated against multideterminant-wave-function and quadratic-response TD DFT results. It is recommended for use with a sum-over-states approach to predict the nonlinear optical properties of conjugated molecules.

  5. Excited State Trends in Bidirectionally Expanded Closed-Shell PAH and PANH Anions.

    PubMed

    Fortenberry, Ryan C; Moore, Megan M; Lee, Timothy J

    2016-09-22

    Some anions are known to exhibit excited states independent of external forces such as dipole moments and induced polarizabilities. Such states exist simply as a result of the stabilization of valence accepting orbitals whereby the binding energy of the extra electron is greater than the valence excitation energy. Closed-shell anions are interesting candidates for such transitions since their ground-state, spin-paired nature makes the anions more stable from the beginning. Consequently, this work shows the point beyond which deprotonated, closed-shell polycyclic aromatic hydrocarbons (PAHs) and those PAHs containing nitrogen heteroatoms (PANHs) will exhibit valence excited states. This behavior has already been demonstrated in some PANHs and for anistropically extended PAHs. This work establishes a general trend for PAHs/PANHs of arbitrary size and directional extension, whether in one dimension or two. Once seven six-membered rings make up a PAH/PANH, valence excited states are present. For most classes of PAHs/PANHs, this number is closer to four. Even though most of these excited states are weak absorbers, the sheer number of PAHs present in various astronomical environments should make them significant contributors to astronomical spectra. PMID:27585793

  6. Ultrafast excited-state charge-transfer dynamics in laccase type I copper site.

    PubMed

    Delfino, Ines; Viola, Daniele; Cerullo, Giulio; Lepore, Maria

    2015-01-01

    Femtosecond pump-probe spectroscopy was used to investigate the excited state dynamics of the T1 copper site of laccase from Pleurotus ostreatus, by exciting its 600 nm charge transfer band with a 15-fs pulse and probing over a broad range in the visible region. The decay of the pump-induced ground-state bleaching occurs in a single step and is modulated by clearly visible oscillations. Global analysis of the two-dimensional differential transmission map shows that the excited state exponentially decays with a time constant of 375 fs, thus featuring a decay rate slower than those occurring in quite all the investigated T1 copper site proteins. The ultrashort pump pulse induces a vibrational coherence in the protein, which is mainly assigned to ground state activity, as expected in a system with fast excited state decay. Vibrational features are discussed also in comparison with the traditional resonance Raman spectrum of the enzyme. The results indicate that both excited state dynamics and vibrational modes associated with the T1 Cu laccase charge transfer have main characteristics similar to those of all the T1 copper site-containing proteins. On the other hand, the differences observed for laccase from P. ostreatus further confirm the peculiar hypothesized trigonal T1 Cu site geometry. PMID:25819432

  7. How To Reach Intense Luminescence for Compounds Capable of Excited-State Intramolecular Proton Transfer?

    PubMed

    Skonieczny, Kamil; Yoo, Jaeduk; Larsen, Jillian M; Espinoza, Eli M; Barbasiewicz, Michał; Vullev, Valentine I; Lee, Chang-Hee; Gryko, Daniel T

    2016-05-23

    Photoinduced intramolecular direct arylation allows structurally unique compounds containing phenanthro[9',10':4,5]imidazo[1,2-f]phenanthridine and imidazo[1,2-f]phenanthridine skeletons, which mediate excited-state intramolecular proton transfer (ESIPT), to be efficiently synthesized. The developed polycyclic aromatics demonstrate that the combination of five-membered ring structures with a rigid arrangement between a proton donor and a proton acceptor provides a means for attaining large fluorescence quantum yields, exceeding 0.5, even in protic solvents. Steady-state and time-resolved UV/Vis spectroscopy reveals that, upon photoexcitation, the prepared protic heteroaromatics undergo ESIPT, converting them efficiently into their excited-state keto tautomers, which have lifetimes ranging from about 5 to 10 ns. The rigidity of their structures, which suppresses nonradiative decay pathways, is believed to be the underlying reason for the nanosecond lifetimes of these singlet excited states and the observed high fluorescence quantum yields. Hydrogen bonding with protic solvents does not interfere with the excited-state dynamics and, as a result, there is no difference between the occurrences of ESIPT processes in MeOH versus cyclohexane. Acidic media has a more dramatic effect on suppressing ESIPT by protonating the proton acceptor. As a result, in the presence of an acid, a larger proportion of the fluorescence of ESIPT-capable compounds originates from their enol excited states.

  8. Excited State Trends in Bidirectionally Expanded Closed-Shell PAH and PANH Anions.

    PubMed

    Fortenberry, Ryan C; Moore, Megan M; Lee, Timothy J

    2016-09-22

    Some anions are known to exhibit excited states independent of external forces such as dipole moments and induced polarizabilities. Such states exist simply as a result of the stabilization of valence accepting orbitals whereby the binding energy of the extra electron is greater than the valence excitation energy. Closed-shell anions are interesting candidates for such transitions since their ground-state, spin-paired nature makes the anions more stable from the beginning. Consequently, this work shows the point beyond which deprotonated, closed-shell polycyclic aromatic hydrocarbons (PAHs) and those PAHs containing nitrogen heteroatoms (PANHs) will exhibit valence excited states. This behavior has already been demonstrated in some PANHs and for anistropically extended PAHs. This work establishes a general trend for PAHs/PANHs of arbitrary size and directional extension, whether in one dimension or two. Once seven six-membered rings make up a PAH/PANH, valence excited states are present. For most classes of PAHs/PANHs, this number is closer to four. Even though most of these excited states are weak absorbers, the sheer number of PAHs present in various astronomical environments should make them significant contributors to astronomical spectra.

  9. Ultrafast excited-state charge-transfer dynamics in laccase type I copper site.

    PubMed

    Delfino, Ines; Viola, Daniele; Cerullo, Giulio; Lepore, Maria

    2015-01-01

    Femtosecond pump-probe spectroscopy was used to investigate the excited state dynamics of the T1 copper site of laccase from Pleurotus ostreatus, by exciting its 600 nm charge transfer band with a 15-fs pulse and probing over a broad range in the visible region. The decay of the pump-induced ground-state bleaching occurs in a single step and is modulated by clearly visible oscillations. Global analysis of the two-dimensional differential transmission map shows that the excited state exponentially decays with a time constant of 375 fs, thus featuring a decay rate slower than those occurring in quite all the investigated T1 copper site proteins. The ultrashort pump pulse induces a vibrational coherence in the protein, which is mainly assigned to ground state activity, as expected in a system with fast excited state decay. Vibrational features are discussed also in comparison with the traditional resonance Raman spectrum of the enzyme. The results indicate that both excited state dynamics and vibrational modes associated with the T1 Cu laccase charge transfer have main characteristics similar to those of all the T1 copper site-containing proteins. On the other hand, the differences observed for laccase from P. ostreatus further confirm the peculiar hypothesized trigonal T1 Cu site geometry.

  10. First-Principles Studies of the Excited States of Chromophore Monomers and Dimers

    NASA Astrophysics Data System (ADS)

    Hamed, Samia; Sharifzadeh, Sahar; Neaton, Jeffrey

    2015-03-01

    Elucidation of the energy transfer mechanism in natural photosynthetic systems remains an exciting challenge. Through the careful analysis of excited states on individual chromophores and dimers - and the predictive first-principles methods used to compute them - we are building towards an understanding of the nature of excitation transfer among arrays of chromophores embedded in protein environments. Excitation energies, transition dipoles, and natural transition orbitals for the important low-lying singlet and triplet states of experimentally-relevant chromophores are obtained from first-principles time-dependent density functional theory (TDDFT) and many body perturbation theory. The effect of the Tamm-Dancoff approximation and the performance of several exchange-correlation functionals, including an optimally-tuned range-separated hybrid, are evaluated with TDDFT, and compared to MBPT calculations and experiments. This work has been supported by the DOE; computational resources have been provided by NERSC.

  11. Excited doublet and quartet states of SiP: a high level theoretical investigation

    NASA Astrophysics Data System (ADS)

    dos Santos, Levi G.; Ornellas, Fernando R.

    2003-12-01

    Doublet and quartet states of the SiP molecule dissociating into the four lowest dissociation channels are characterized theoretically at a high-level of correlation treatment (multireference single and double excitation configuration interaction). Potential energy curves give a global view of the manifold of possible electronic states. For selected states, dipole and transition moment functions, and transition probabilities and radiative lifetimes are also reported as well as an extensive set of spectroscopic constants. A new 2Π state offers another likely route for exploring transitions to excited vibrational states of both X 2Π and A 2Σ+ states. A detailed set of data for the quartet states is expected to provide valuable information for the experimental identification of these states.

  12. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states.

    PubMed

    Bjorgaard, J A; Velizhanin, K A; Tretiak, S

    2016-04-21

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited statemolecular dynamics. In this work, we describe methods of simulating nonequilibrium solvent effects in excited statemolecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission. PMID:27389206

  13. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations

    SciTech Connect

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  14. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations.

    PubMed

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green's function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  15. Molecular Dynamics Simulations of Coulomb Explosion

    SciTech Connect

    Bringa, E M

    2002-05-17

    A swift ion creates a track of electronic excitations in the target material. A net repulsion inside the track can cause a ''Coulomb Explosion'', which can lead to damage and sputtering of the material. Here we report results from molecular-dynamics (MD) simulations of Coulomb explosion for a cylindrical track as a function of charge density and neutralization/quenching time, {tau}. Screening by the free electrons is accounted for using a screened Coulomb potential for the interaction among charges. The yield exhibits a prompt component from the track core and a component, which dominates at higher excitation density, from the heated region produced. For the cases studied, the number of atoms ejected per incident ion, i.e. the sputtering yield Y, is quadratic with charge density along the track as suggested by simple models. Y({tau} = 0.2 Debye periods) is nearly 20% of the yield when there is no neutralization ({tau} {yields} {infinity}). The connections between ''Coulomb explosions'', thermal spikes and measurements of electronic sputtering are discussed.

  16. Total electron scattering and electronic state excitations cross sections for O2, CO, and CH4

    NASA Technical Reports Server (NTRS)

    Kanik, I.; Trajmar, S.; Nickel, J. C.

    1993-01-01

    Available electron collision cross section data concerning total and elastic scattering, vibrational excitation, and ionization for O2, CO, and CH4 have been critically reviewed, and a set of cross sections for modeling of planetary atmospheric behavior is recommended. Utilizing these recommended cross sections, we derived total electronic state excitation cross sections and upper limits for dissociation cross sections, which in the case of CH4 should very closely equal the actual dissociation cross section.

  17. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative

    SciTech Connect

    Obaid, Rana; Kinzel, Daniel; Oppel, Markus González, Leticia

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  18. Excitation energies of particle-hole states in {sup 208}Pb and the surface delta interaction

    SciTech Connect

    Heusler, A.; Jolos, R. V.; Brentano, P. von

    2013-07-15

    The schematic shell model without residual interaction (SSM) assumes the same excitation energy for all spins in each particle-hole configuration multiplet. In {sup 208}Pb, more than forty states are known to contain almost the full strength of a single particle-hole configuration. The experimental excitation energy for a state with a certain spin differs from the energy predicted by the SSM by -0.2 to +0.6 MeV. The multiplet splitting is calculated with the surface delta interaction; it corresponds to the diagonal matrix element of the residual interaction in the SSM. For states containing more than 90% strength of a certain configuration and for the centroid of several completely observed configurations, the calculated multiplet splitting often approximates the experimental excitation energy within 30 keV. The strong mixing within some pairs of states containing the full strengths of two configurations is explained.

  19. Vibronic resonances facilitate excited-state coherence in light-harvesting proteins at room temperature.

    PubMed

    Novelli, Fabio; Nazir, Ahsan; Richards, Gethin H; Roozbeh, Ashkan; Wilk, Krystyna E; Curmi, Paul M G; Davis, Jeffrey A

    2015-11-19

    Until recently it was believed that photosynthesis, a fundamental process for life on earth, could be fully understood with semiclassical models. However, puzzling quantum phenomena have been observed in several photosynthetic pigment-protein complexes, prompting questions regarding the nature and role of these effects. Recent attention has focused on discrete vibrational modes that are resonant or quasi-resonant with excitonic energy splittings and strongly coupled to these excitonic states. Here we unambiguously identify excited state coherent superpositions in photosynthetic light-harvesting complexes using a new experimental approach. Decoherence on the time scale of the excited state lifetime allows low energy (56 cm(-1)) oscillations on the signal intensity to be observed. In conjunction with an appropriate model, these oscillations provide clear and direct experimental evidence that the persistent coherences observed originate from quantum superpositions among vibronic excited states. PMID:26528956

  20. Electro-optical parameters in excited states of some spectrally active molecules

    NASA Astrophysics Data System (ADS)

    Benchea, Andreea Celia; Closca, Valentina; Rusu, Cristina Marcela; Morosanu, Cezarina; Dorohoi, Dana Ortansa

    2014-08-01

    The spectral shifts measured in different solvents are expressed as functions of the solvent macroscopic parameters. The value of the correlation coefficient multiplying the functions of electric permittivity was determined by statistical means. The correlation coefficient depends on the electric dipole moment of the spectrally active molecules. The electro-optical parameters in the ground state of the solute molecules can be approximated by molecular modeling. The excited state parameters are usually estimated using the results obtained both by HyperChem Programme and solvatochromic study. The importance of this approximate method is that it offers information about of the excited state of solute molecule for which our measuring possibilities are very restrictive. The information about the excited electronic state is affected by the limits in which the theories of liquid solutions are developed. Our results refer to two molecules of vitamins from B class, namely B3 and B6.

  1. Communication: Hartree-Fock description of excited states of H{sub 2}

    SciTech Connect

    Barca, Giuseppe M. J.; Gilbert, Andrew T. B.; Gill, Peter M. W.

    2014-09-21

    Hartree-Fock (HF) theory is most often applied to study the electronic ground states of molecular systems. However, with the advent of numerical techniques for locating higher solutions of the self-consistent field equations, it is now possible to examine the extent to which such mean-field solutions are useful approximations to electronic excited states. In this Communication, we use the maximum overlap method to locate 11 low-energy solutions of the HF equation for the H{sub 2} molecule and we find that, with only one exception, these yield surprisingly accurate models for the low-lying excited states of this molecule. This finding suggests that the HF solutions could be useful first-order approximations for correlated excited state wavefunctions.

  2. A comparison of excited state properties between two different N-heterocyclic platinum(II) complexes

    NASA Astrophysics Data System (ADS)

    Yang, Baozhu; Huang, Shuang; Zhong, Jing; Zhang, Hongxing

    2015-10-01

    A comparison of excited state and electroluminescent properties between Pt(C^N^N)Cl and Pt(N^C^N)Cl complexes has been done with Time-Dependent Density Functional Theory (TDDFT), [C^N^N = 6-phenyl-2,2-bipyridine, N^C^N = 1,3-di(2-pyridyl)benzene]. The substituent effect of fluorine ligands on eight tridentate cyclometalated Pt(C^N^N)Cl complexes has been investigated, which includes electronic density variation between ground states and excited states, absorption and emission spectra, quantum yields and radiative lifetime. In addition, one dimeric form of Pt(C^N^N)Cl complex has been investigated.

  3. Nucleon, Delta and Omega excited state spectra at three pion mass values

    SciTech Connect

    John Bulava, Robert G. Edwards, Balint Joo, David G. Richards, Eric Engelson, Huey-Wen Lin, Colin Morningstar, Stephen J. Wallace

    2010-06-01

    The energies of the excited states of the Nucleon, Delta and Omega are computed in lattice QCD, using two light quarks and one strange quark on anisotropic lattices. The calculations are performed at three values of the pion mass: 392(4), 438(3) and 521(3) MeV. We employ the variational method with a basis of about ten interpolating operators enabling six energies to be distinguished clearly in each irreducible representation of the octahedral group. We compare our calculations of nucleon excited states with the low-lying experimental spectrum. There is reasonable agreement for the pattern of states.

  4. Signature of triply excited Li-like V states in ion-solid collisions

    NASA Astrophysics Data System (ADS)

    Sharma, Gaurav; Haris, K.; Singh, G.; Kumar, B.; Karmakar, S.; Puri, N. K.; Mishra, Adya P.; Kumar, Pravin; Nandi, T.

    2016-10-01

    The transitions originating from triply excited, doubly autoionizing states of Li-like V formed in beam-foil experiments detected within a set of blended spectroscopic profiles have been assigned tentatively by the Hartree-Fock calculations including relativistic corrections and multi-configuration interactions as perturbations. The x-ray decay channels from the triply excited states such as 3p34S, 2p2 np4S (n ∼ 12) through radiative transitions to the ground state via two or more steps have been observed.

  5. Strong excited state absorption (ESA) in Yb-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Engholm, Magnus; Rydberg, Sara; Hammarling, Krister

    2013-03-01

    Excited state absorption (ESA) measurements performed on Yb-doped silica bers show the onset of a strong absorption band in the visible range. In this work, we perform experiments to investigate the possibility for ESA to be part of the induced optical losses (photodarkening) observed in Yb-doped ber lasers. Our results indicate that an ESA process, from the 2F5/2 excited state manifold in the Yb3+ ion to the charge-transfer state with absorption bands in the UV range, may constitute a transfer route for pump- and laser photons in the near-infrared range.

  6. Binding energy of the ground and first few excited states of hydrogenic donor impurity in a rectangular GaAs quantum dot in the presence of electric field

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Kang, Yun; Li, Xian-Li

    2014-12-01

    Within the quasi-one-dimensional effective potential model and effective mass approximation, we calculate the ground and the first 9 excited-state binding energies of a hydrogenic donor impurity in a rectangular quantum dot (RQD) in the presence of electric field. The analytical form of the quasi-one-dimensional effective potential replacing the three-dimensional Coulomb potential in our model is derived by Fourier transforms. We discuss detailedly dependence of the binding energies on the impurity positions and electric fields. For the ground-state binding energy, our results qualitatively agree with that of Mendoza et al. (2005) in which they only calculated the ground-state binding energies in cubic quantum dots by variational method. However, for first 9 excited-state binding energies, such dependence has complex manner since there are two or three peaks in the electronic probability density distribution curves. The strengths and positions of these peaks in RQD affect the interaction potential between electron and impurity, which appears to be the critical control on the binding energies of impurity. The applied electric field pushes the positions of these peaks downwards, and the strengths of peaks located at the upper half of RQD increase while the strengths of lower peaks firstly decrease, then increase with increasing electric field. The high peak strength can lead to increase of the binding energy while the large distance between the position of peak and impurity center results in reduce of the energy, which is an interesting competition. This competition is more obvious for excited-state binding energies of off-central impurity.

  7. Ratiometric fluorescent/colorimetric cyanide-selective sensor based on excited-state intramolecular charge transfer-excited-state intramolecular proton transfer switching.

    PubMed

    Lin, Wei-Chi; Fang, Sin-Kai; Hu, Jiun-Wei; Tsai, Hsing-Yang; Chen, Kew-Yu

    2014-05-20

    A novel salicylideneaniline-based fluorescent sensor, SB1, with a unique excited-state intramolecular charge transfer-excited-state intramolecular proton transfer (ESICT-ESIPT) coupled system was synthesized and demonstrated to fluorescently sense CN(-) with specific selectivity and high sensitivity in aqueous media based on ESICT-ESIPT switching. A large blue shift (96 nm) was also observed in the absorption spectra in response to CN(-). The bleaching of the color could be clearly observed by the naked eye. Moreover, SB1-based test strips were easily fabricated and low-cost, and could be used in practical and efficient CN(-) test kits. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations further support the cyanide-induced ESICT-ESIPT switching mechanism. The results provide the proof of concept that the colorimetric and ratiometric fluorescent cyanide-selective chemodosimeter can be created based on an ESICT-ESIPT coupled system. PMID:24809868

  8. Excited state structural dynamics in higher lying electronic states: S2 state of malachite green

    NASA Astrophysics Data System (ADS)

    Laptenok, Sergey P.; Addison, Kiri; Heisler, Ismael A.; Meech, Stephen R.

    2014-06-01

    The S2 fluorescence of malachite green is measured with sub 100 fs time resolution. Ultrafast spectral dynamics in the S2 state preceding S2 decay are resolved. Measurements in different solvents show that these sub 100 fs dynamics are insensitive to medium polarity and viscosity. They are thus assigned to ultrafast structural evolution between the S2 Franck-Condon and equilibrium configurations.

  9. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S{sub 1}(π,π{sup *}) electronic state

    SciTech Connect

    Shin, Hee Won; Ocola, Esther J.; Laane, Jaan; Kim, Sunghwan

    2014-01-21

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S{sub 1}(π,π{sup *}) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S{sub 0} and S{sub 1}(π,π{sup *}) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S{sub 0} and S{sub 1}(π,π{sup *}) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S{sub 1}(π,π{sup *}) excited state.

  10. Determination of state-to-state electron-impact rate coefficients between Ar excited states: a review of combined diagnostic experiments in afterglow plasmas

    NASA Astrophysics Data System (ADS)

    Zhu, Xi-Ming; Cheng, Zhi-Wen; Carbone, Emile; Pu, Yi-Kang; Czarnetzki, Uwe

    2016-08-01

    Electron-impact excitation processes play an important role in low-temperature plasma physics. Cross section and rate coefficient data for electron-impact processes from the ground state to excited states or between two excited states are required for both diagnostics and modeling works. However, the collisional processes between excited states are much less investigated than the ones involving the ground state due to various experimental challenges. Recently, a method for determining electron excitation rate coefficients between Ar excited states in afterglow plasmas was successfully implemented and further developed to obtain large sets of collisional data. This method combines diagnostics for electron temperature, electron density, and excited species densities and kinetic modeling of excited species, from which the electron excitation rate coefficients from one of the 1s states to the other 1s states or to one of 2p or 3p states are determined (states are in Paschen’s notation). This paper reviews the above method—namely the combined diagnostics and modeling in afterglow plasmas. The results from other important approaches, including electron-beam measurement of cross sections, laser pump-probe technique for measuring rate coefficients, and theoretical calculations by R-matrix and distorted-wave models are also discussed. From a comparative study of these results, a fitted mathematical expression of excitation rate coefficients is obtained for the electron temperature range of 1-5 eV, which can be used for the collisional-radiative modeling of low-temperature Ar plasmas. At last, we report the limitations in the present dataset and give some suggestions for future work in this area.

  11. Determination of state-to-state electron-impact rate coefficients between Ar excited states: a review of combined diagnostic experiments in afterglow plasmas

    NASA Astrophysics Data System (ADS)

    Zhu, Xi-Ming; Cheng, Zhi-Wen; Carbone, Emile; Pu, Yi-Kang; Czarnetzki, Uwe

    2016-08-01

    Electron-impact excitation processes play an important role in low-temperature plasma physics. Cross section and rate coefficient data for electron-impact processes from the ground state to excited states or between two excited states are required for both diagnostics and modeling works. However, the collisional processes between excited states are much less investigated than the ones involving the ground state due to various experimental challenges. Recently, a method for determining electron excitation rate coefficients between Ar excited states in afterglow plasmas was successfully implemented and further developed to obtain large sets of collisional data. This method combines diagnostics for electron temperature, electron density, and excited species densities and kinetic modeling of excited species, from which the electron excitation rate coefficients from one of the 1s states to the other 1s states or to one of 2p or 3p states are determined (states are in Paschen’s notation). This paper reviews the above method—namely the combined diagnostics and modeling in afterglow plasmas. The results from other important approaches, including electron-beam measurement of cross sections, laser pump-probe technique for measuring rate coefficients, and theoretical calculations by R-matrix and distorted-wave models are also discussed. From a comparative study of these results, a fitted mathematical expression of excitation rate coefficients is obtained for the electron temperature range of 1–5 eV, which can be used for the collisional-radiative modeling of low-temperature Ar plasmas. At last, we report the limitations in the present dataset and give some suggestions for future work in this area.

  12. A theoretical analysis of the lowest excited states in HNO/NOH and HPO/POH

    NASA Astrophysics Data System (ADS)

    Luna, Alberto; Merchán, Manuela; Ross, Björn O.

    1995-07-01

    A theoretical study has been performed on the ground and two lowest excited states of the HNO/NOH and HPO/POH systems. Full geometry optimization was made for all states using the CASSCF method with dynamic correlation effects accounted for by second order perturbation theory (CASPT2). The computed vertical and adiabatic transition energies are in agreement with available experimental data.

  13. Slow relaxation of excited states in strain-induced quantum dots

    SciTech Connect

    Gfroerer, T.H.; Sturge, M.D.; Kash, K.; Yater, J.A.; Plaut, A.S.; Lin, P.S.; Florez, L.T.; Harbison, J.P.; Das, S.R.; Lebrun, L.

    1996-06-01

    We have studied photoluminescence from GaAs/Al{sub {ital x}}Ga{sub 1{minus}{ital x}}As strain-induced quantum dots in a magnetic field. These dots have high radiative efficiency and long ({approximately}ns) luminescent decay times. At low excitation intensities, corresponding to average carrier densities of less than one electron-hole pair per dot, excited-state ({open_quote}{open_quote}hot{close_quote}{close_quote}) luminescence due to slow interstate relaxation is observed. At intermediate intensities, where there are several electron-hole pairs per dot, the hot luminescence disappears, showing that the relaxation rate has increased. However, the excited-state emission reemerges at high excitation when the ground state is saturated. The interstate relaxation rate in the quantum dots under low excitation is at least two orders smaller than that of the host quantum well. The reduced rate is attributed to the discrete density of states in a quantum dot, which inhibits single-phonon emission because the excitons are spatially too large to couple to phonons with the required energy. When there are several electron-hole pairs per dot, carrier-carrier interaction accelerates relaxation. The magnetic field is used to separate the quantum dot states and allows us to probe how their relaxation depends on energy. We find that there is a strong increase in the relaxation rate when the sublevel energy exceeds about 20 meV. {copyright} {ital 1996 The American Physical Society.}

  14. Determination of differential cross sections for electron-impact excitation of electronic states of molecular oxygen

    SciTech Connect

    Campbell, L.; Green, M. A.; Brunger, M. J.; Teubner, P. J. O.; Cartwright, D. C.

    2000-02-01

    The development and initial results of a method for the determination of differential cross sections for electron scattering by molecular oxygen are described. The method has been incorporated into an existing package of computer programs which, given spectroscopic factors, dissociation energies and an energy-loss spectrum for electron-impact excitation, determine the differential cross sections for each electronic state relative to that of the elastic peak. Enhancements of the original code were made to deal with particular aspects of electron scattering from O{sub 2}, such as the overlap of vibrational levels of the ground state with transitions to excited states, and transitions to levels close to and above the dissocation energy in the Herzberg and Schumann-Runge continua. The utility of the code is specifically demonstrated for the ''6-eV states'' of O{sub 2}, where we report absolute differential cross sections for their excitation by 15-eV electrons. In addition an integral cross section, derived from the differential cross section measurements, is also reported for this excitation process and compared against available theoretical results. The present differential and integral cross sections for excitation of the ''6-eV states'' of O{sub 2} are the first to be reported in the literature for electron-impact energies below 20 eV. (c) 2000 The American Physical Society.

  15. Energy Dispersive XAFS: Characterization of Electronically Excited States of Copper(I) Complexes

    PubMed Central

    2013-01-01

    Energy dispersive X-ray absorption spectroscopy (ED-XAS), in which the whole XAS spectrum is acquired simultaneously, has been applied to reduce the real-time for acquisition of spectra of photoinduced excited states by using a germanium microstrip detector gated around one X-ray bunch of the ESRF (100 ps). Cu K-edge XAS was used to investigate the MLCT states of [Cu(dmp)2]+ (dmp =2,9-dimethyl-1,10-phenanthroline) and [Cu(dbtmp)2]+ (dbtmp =2,9-di-n-butyl-3,4,7,8-tetramethyl-1,10-phenanthroline) with the excited states created by excitation at 450 nm (10 Hz). The decay of the longer lived complex with bulky ligands, was monitored for up to 100 ns. DFT calculations of the longer lived MLCT excited state of [Cu(dbp)2]+ (dbp =2,9-di-n-butyl-1,10-phenanthroline) with the bulkier diimine ligands, indicated that the excited state behaves as a Jahn–Teller distorted Cu(II) site, with the interligand dihedral angle changing from 83 to 60° as the tetrahedral coordination geometry flattens and a reduction in the Cu–N distance of 0.03 Å. PMID:23718738

  16. Ultrafast Dynamics of 1,3-Cyclohexadiene in Highly Excited States

    DOE PAGES

    Bühler, Christine C.; Minitti, Michael P.; Deb, Sanghamitra; Bao, Jie; Weber, Peter M.

    2011-01-01

    The ultrafast dynamics of 1,3-cyclohexadiene has been investigated via structurally sensitive Rydberg electron binding energies and shown to differ upon excitation to the 1B state and the 3p Rydberg state. Excitation of the molecule with 4.63 eV photons into the ultrashort-lived 1B state yields the well-known ring opening to 1,3,5-hexatriene, while a 5.99 eV photon lifts the molecule directly into the 3p-Rydberg state. Excitation to 3p does not induce ring opening. In both experiments, time-dependent shifts of the Rydberg electron binding energy reflect the structural dynamics of the molecular core. Structural distortions associated with 3p-excitation cause a dynamical shift in the -more » and -binding energies by 10 and 26 meV/ps, respectively, whereas after excitation into 1B, more severe structural transformations along the ring-opening coordinate produce shifts at a rate of 40 to 60 meV/ps. The experiment validates photoionization-photoelectron spectroscopy via Rydberg states as a powerful technique to observe structural dynamics of polyatomic molecules.« less

  17. Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy

    PubMed Central

    Knoll, Jessica D.; Turro, Claudia

    2015-01-01

    The use of visible light to produce highly selective and potent drugs through photodynamic therapy (PDT) holds much potential in the treatment of cancer. PDT agents can be designed to follow an O2-dependent mechanism by producing highly reactive species such as 1O2 and/or an O2 independent mechanism through processes such as excited state electron transfer, covalent binding to DNA or photoinduced drug delivery. Ru(II)-polypyridyl and Rh2(II,II) complexes represent an important class of compounds that can be tailored to exhibit desired photophysical properties and photochemical reactivity by judicious selection of the ligand set. Complexes with relatively long-lived excited states and planar, intercalating ligands localize on the DNA strand and photocleave DNA through 1O2 production or guanine oxidation by the excited state of the chromophore. Photoinduced ligand substitution occurs through the population of triplet metal centered (3MC) excited states and facilitates covalent binding of the metal complex to DNA in a mode similar to cisplatin. Ligand photodissociation also provides a route to selective drug delivery. The ability to construct metal complexes with desired light absorbing and excited state properties by ligand variation enables the design of PDT agents that can potentially provide combination therapy from a single metal complex. PMID:25729089

  18. Excited-State Proton Transfer in Resveratrol and Proposed Mechanism for Plant Resistance to Fungal Infection.

    PubMed

    Simkovitch, Ron; Huppert, Dan

    2015-09-01

    Steady-state and time-resolved fluorescence techniques were employed to study the photophysics and photochemistry of trans-resveratrol. trans-Resveratrol is found in large quantities in fungi-infected grapevine-leaf tissue and plays a direct role in the resistance to plant disease. We found that trans-resveratrol in liquid solution undergoes a trans-cis isomerization process in the excited state at a rate that depends partially on the solvent viscosity, as was found in previous studies on trans-stilbene. The hydroxyl groups of the phenol moieties in resveratrol are weak photoacids. In water and methanol solutions containing weak bases such as acetate, a proton is transferred to the base within the lifetime of the excited state. When resveratrol is adsorbed on cellulose (also a component of the plant's cell wall), the cis-trans process is slow and the lifetime of the excited state increases from several tens of picoseconds in ethanol to about 1.5 ns. Excited-state proton transfer occurs when resveratrol is adsorbed on cellulose and acetate ions are in close proximity to the phenol moieties. We propose that proton transfer from excited resveratrol to the fungus acid-sensing chemoreceptor is one of the plant's resistance mechanisms to fungal infection.

  19. Electronically Excited States of Anisotropically Extended Singly-Deprotonated PAH Anions.

    PubMed

    Theis, Mallory L; Candian, Alessandra; Tielens, Alexander G G M; Lee, Timothy J; Fortenberry, Ryan C

    2015-12-31

    Polycyclic aromatic hydrocarbons (PAHs) play a significant role in the chemistry of the interstellar medium (ISM) as well as in hydrocarbon combustion. These molecules can have high levels of diversity with the inclusion of heteroatoms and the addition or removal of hydrogens to form charged or radical species. There is an abundance of data on the cationic forms of these molecules, but there have been many fewer studies on the anionic species. The present study focuses on the anionic forms of deprotonated PAHs. It has been shown in previous work that PAHs containing nitrogen heteroatoms (PANHs) have the ability to form valence excited states giving anions electronic absorption features. This work analyzes how the isoelectronic pure PAHs behave under similar structural constructions. Singly deprotonated forms of benzene, naphthalene, anthracene, and tetracene classes are examined. None of the neutral-radicals possess dipole moments large enough to support dipole-bound excited states in their corresponding closed-shell anions. Even though the PANH anion derivatives support valence excited states for three-ringed structures, it is not until four-ringed structures of the pure PAH anion derivatives that valence excited states are exhibited. However, anisotropically extended PAHs larger than tetracene will likely exhibit valence excited states. The relative energies for the anion isomers are very small for all of the systems in this study.

  20. Dynamic polarizability and electric multipolar transitions in two electron atoms under exponential cosine screened coulomb potential

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Supriya K.; Modesto-Costa, Lucas; Mukherjee, Prasanta K.

    2016-05-01

    Detailed investigations on the frequency dependent polarizabilities, transition energies, oscillator strengths, and transition probabilities of two electron systems He, B e2 +, C4 + , and O6 + under electric dipolar (E1) and quadrupolar (E2) excitations have been performed using exponential cosine screened coulomb potential with a view to understand the structural behaviour of such systems due to external confinement produced by plasma environment. Time dependent coupled Hartree-Fock theory within a variational framework has been adopted for studying the first three low lying excited states 1 s2:1Se→1 s n p :1Po (n = 2, 3, 4) and 1 s n d :1De (n = 3, 4, 5) under such excitations. Quantitatively, the effect of confinement produced by the external plasma has been taken care of by considering the change in atomic potential through plasma screening, directly related to the coupling strength of the plasma with the atomic charge cloud. With increased plasma screening, a gradual destabilisation of the energy levels with subsequent reduction of the ionization potential and number of excited states has been observed. Behavioral pattern of the frequency dependent polarizabilities, excitation energies, oscillator strengths, and transition probabilities under systematic increase of the screening has been investigated. Results have been compared thoroughly with those available for free systems and under confinement by exponential cosine screened and screened Coulomb potential.

  1. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    ERIC Educational Resources Information Center

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  2. Subpicosecond Excited-State Proton Transfer Preceding Isomerization During the Photorecovery of Photoactive Yellow Protein

    PubMed Central

    Carroll, Elizabeth C.; Song, Sang-Hun; Kumauchi, Masato; van Stokkum, Ivo H. M.; Jailaubekov, Askat; Hoff, Wouter D.; Larsen, Delmar S.

    2010-01-01

    The ultrafast excited-state dynamics underlying the receptor state photorecovery is resolved in the M100A mutant of the photoactive yellow protein (PYP) from Halorhodospira halophila. The M100A PYP mutant, with its distinctly slower photocycle than wt PYP, allows isolation of the pB signaling state for study of the photodynamics of the protonated chromophore cis-p-coumaric acid. Transient absorption signals indicate a subpicosecond excited-state proton-transfer reaction in the pB state that results in chromophore deprotonation prior to the cis–trans isomerization required in the photorecovery dynamics of the pG state. Two terminal photoproducts are observed, a blue-absorbing species presumed to be deprotonated trans-p-coumaric acid and an ultraviolet-absorbing protonated photoproduct. These two photoproducts are hypothesized to originate from an equilibrium of open and closed folded forms of the signaling state, I2 and I2’. PMID:20953237

  3. Investigations into photo-excited state dynamics in colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Singh, Gaurav

    Colloidal Quantum dots (QDs) have garnered considerable scientific and technological interest as a promising material for next generation solar cells, photo-detectors, lasers, bright light-emitting diodes (LEDs), and reliable biomarkers. However, for practical realization of these applications, it is crucial to understand the complex photo-physics of QDs that are very sensitive to surface chemistry and chemical surroundings. Depending on the excitation density, QDs can support single or multiple excitations. The first part of this talk addresses evolution of QD excited state dynamics in the regime of low excitation intensity. We use temperature-resolved time-resolved fluorescence spectroscopy to study exciton dynamics from picoseconds to microseconds and use kinetic modeling based on classical electron transfer to show the effect of surface trap states on dynamics of ground-state exciton manifold in core-shell CdSe/CdS QDs. We show that the thickness of CdS shell plays an important role in interaction of CdSe core exciton states with nanocrystal environment, and find that a thicker shell can minimize the mixing of QD exciton states with surface trap states. I will then present an investigation into the dynamics of multiply-excited states in QDs. One of the key challenges in QD spectroscopy is to reliably distinguish multi- from single-excited states that have similar lifetime components and spectroscopic signatures. I will describe the development of a novel multi-pulse fluorescence technique to selectively probe multi-excited states in ensemble QD samples and determine the nature of the multi-excited state contributing to the total fluorescence even in the limit of low fluorescent yields. We find that in our sample of CdSe/CdS core/shell QDs the multi-excited emission is dominated by emissive trion states rather than biexcitons. Next, I will discuss the application of this technique to probe exciton-plasmon coupling in layered hybrid films of QD/gold nanoparticles

  4. Multiple-photon excitation imaging with an all-solid-state laser

    NASA Astrophysics Data System (ADS)

    Wokosin, David L.; Centonze, Victoria F.; White, John G.; Hird, Steven N.; Sepsenwol, S.; Malcolm, Graeme P. A.; Maker, Gareth T.; Ferguson, Allister I.

    1996-05-01

    Two-photon excitation imaging is a recently described optical sectioning technique where fluorophore excitation is confined to--and therefore defines--the optical section being observed. This characteristic offers a significant advantage over laser-scanning confocal microscopy; the volume of fluorophore excited in the minimum necessary for imaging, thereby minimizing the destructive effects of fluorophore excitation in living tissues. In addition, a confocal pinhole is not required for optical scattering--thus further reducing the excitation needed for efficient photon collection. We have set up a two-photon excitation imaging system which uses an all-solid-state, short-pulse, long-wavelength laser as an excitation source. The source is a diode-pumped, mode-locked Nd:YLF laser operating in the infrared (1047 nm). This laser is small, has modest power requirements, and has proven reliable and stable in operation. The short laser pulses from the laser are affected by the system optical path; this has been investigated with second harmonic generation derived from a nonlinear crystal. The system has been specifically designed for the study of live biological specimens. Two cell types especially sensitive to high-energy illumination, the developing Caenorhabditis elegans embryo and the crawling sperm of the nematode, Ascaris, were used to demonstrate the dramatic increase in viability when fluorescence is generated by two-photon excitation. The system has the capability of switching between two-photon and confocal imaging modes to facilitate direct comparison of theory of these two optical sectioning techniques on the same specimen. A heavily stained zebra fish embryo was used to demonstrate the increase in sectioning depth when fluorescence is generated by infrared two- photon excitation. Two-photon excitation with the 1047 nm laser produces bright images with a variety of red emitting fluorophores, and some green emitting fluorophores, commonly used in biological

  5. Nonadiabatic excited-state molecular dynamics: treatment of electronic decoherence.

    PubMed

    Nelson, Tammie; Fernandez-Alberti, Sebastian; Roitberg, Adrian E; Tretiak, Sergei

    2013-06-14

    Within the fewest switches surface hopping (FSSH) formulation, a swarm of independent trajectories is propagated and the equations of motion for the quantum coefficients are evolved coherently along each independent nuclear trajectory. That is, the phase factors, or quantum amplitudes, are retained. At a region of strong coupling, a trajectory can branch into multiple wavepackets. Directly following a hop, the two wavepackets remain in a region of nonadiabatic coupling and continue exchanging population. After these wavepackets have sufficiently separated in phase space, they should begin to evolve independently from one another, the process known as decoherence. Decoherence is not accounted for in the standard surface hopping algorithm and leads to internal inconsistency. FSSH is designed to ensure that at any time, the fraction of classical trajectories evolving on each quantum state is equal to the average quantum probability for that state. However, in many systems this internal consistency requirement is violated. Treating decoherence is an inherent problem that can be addressed by implementing some form of decoherence correction to the standard FSSH algorithm. In this study, we have implemented two forms of the instantaneous decoherence procedure where coefficients are reinitialized following hops. We also test the energy-based decoherence correction (EDC) scheme proposed by Granucci et al. and a related version where the form of the decoherence time is taken from Truhlar's Coherent Switching with Decay of Mixing method. The sensitivity of the EDC results to changes in parameters is also evaluated. The application of these computationally inexpensive ad hoc methods is demonstrated in the simulation of nonradiative relaxation in two conjugated oligomer systems, specifically poly-phenylene vinylene and poly-phenylene ethynylene. We find that methods that have been used successfully for treating small systems do not necessarily translate to large polyatomic

  6. Search for intrinsic collective excitations in {sup 152}Sm

    SciTech Connect

    Kulp, W. D.; Wood, J. L.; Allmond, J. M.; Garrett, P. E.; Wu, C. Y.; Cline, D.; Hayes, A. B.; Hua, H.; Teng, R.; Bandyopadhyay, D.; Choudry, S. N.; McEllistrem, M. T.; McKay, C. J.; Orce, J. N.; Dashdorj, D.; Mynk, M. G.; Yates, S. W.

    2008-06-15

    The 685 keV excitation energy of the first excited 0{sup +} state in {sup 152}Sm makes it an attractive candidate to explore expected two-phonon excitations at low energy. Multiple-step Coulomb excitation and inelastic neutron scattering studies of {sup 152}Sm are used to probe the E2 collectivity of excited 0{sup +} states in this 'soft' nucleus and the results are compared with model predictions. No candidates for two-phonon K{sup {pi}}=0{sup +}quadrupole vibrational states are found. A 2{sup +},K=2 state with strong E2 decay to the first excited K{sup {pi}}=0{sup +} band and a probable 3{sup +} band member are established.

  7. Excited states from quantum Monte Carlo in the basis of Slater determinants

    SciTech Connect

    Humeniuk, Alexander; Mitrić, Roland

    2014-11-21

    Building on the full configuration interaction quantum Monte Carlo (FCIQMC) algorithm introduced recently by Booth et al. [J. Chem. Phys. 131, 054106 (2009)] to compute the ground state of correlated many-electron systems, an extension to the computation of excited states (exFCIQMC) is presented. The Hilbert space is divided into a large part consisting of pure Slater determinants and a much smaller orthogonal part (the size of which is controlled by a cut-off threshold), from which the lowest eigenstates can be removed efficiently. In this way, the quantum Monte Carlo algorithm is restricted to the orthogonal complement of the lower excited states and projects out the next highest excited state. Starting from the ground state, higher excited states can be found one after the other. The Schrödinger equation in imaginary time is solved by the same population dynamics as in the ground state algorithm with modified probabilities and matrix elements, for which working formulae are provided. As a proof of principle, the method is applied to lithium hydride in the 3-21G basis set and to the helium dimer in the aug-cc-pVDZ basis set. It is shown to give the correct electronic structure for all bond lengths. Much more testing will be required before the applicability of this method to electron correlation problems of interesting size can be assessed.

  8. Ultrafast excited state deactivation of doped porous anodic alumina membranes.

    PubMed

    Makhal, Abhinandan; Sarkar, Soumik; Pal, Samir Kumar; Yan, Hongdan; Wulferding, Dirk; Cetin, Fatih; Lemmens, Peter

    2012-08-01

    Free-standing, bi-directionally permeable and ultra-thin anodic aluminum oxide (AAO) membranes establish attractive templates (host) for the synthesis of nano-dots and rods of various materials (guest). This is due to their chemical and structural integrity and high periodicity on length scales of 5-150 nm which are often used to host photoactive nano-materials for various device applications including dye-sensitized solar cells. In the present study, AAO membranes are synthesized by using electrochemical methods and a detailed structural characterization using FEG-SEM, XRD and TGA confirms the porosity and purity of the material. Defect-mediated photoluminescence quenching of the porous AAO membrane in the presence of an electron accepting guest organic molecule (benzoquinone) is studied by means of steady-state and picosecond/femtosecond-resolved luminescence measurements. Using time-resolved luminescence transients, we have also revealed light harvesting of complexes of porous alumina impregnated with inorganic quantum dots (Maple Red) or gold nanowires. Both the Förster resonance energy transfer and the nano-surface energy transfer techniques are employed to examine the observed quenching behavior as a function of the characteristic donor-acceptor distances. The experimental results will find their relevance in light harvesting devices based on AAOs combined with other materials involving a decisive energy/charge transfer dynamics.

  9. Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.

    PubMed

    Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M

    2016-09-27

    Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue. PMID:27603228

  10. Mechanism for the Enhanced Excited-State Lewis Acidity of Methyl Viologen.

    PubMed

    Hohenstein, Edward G

    2016-02-17

    Aqueous solutions of methyl viologen (MV(2+)) exhibit anomalous fluorescence behavior. Although it has long fluorescence lifetimes in polar solvents such as acetonitrile, MV(2+) has a short fluorescence lifetime in water. Recent experiments by Kohler and co-workers (Henrich et al. J. Phys. Chem. B 2015, 119, 2737-2748) have implicated an excited-state acid/base reaction as the source of the nonradiative decay pathway. While many chemical species exhibit enhanced Brønsted acidity in their excited state, MV(2+) is the first example of a species with enhanced Lewis acidity. Using a complete active space configuration interaction (CASCI) approach, excited-state molecular dynamics simulations of aqueous MV(2+) are performed in order to test the hypothesis that MV(2+) acts as a Lewis photoacid and to elucidate a mechanism for this behavior. These simulations show that the Lewis acidity of MV(2+) is indeed enhanced by photoexcitation. On its S1 excited state, MV(2+) reacts with water to generate a hydronium ion approximately 1.5 ps after excitation. After the hydronium ion is produced, the corresponding hydroxide ion adds to MV(2+) to form a covalently bound photoproduct and, subsequently, evolves toward a conical intersection.

  11. Application of state-multipole Heisenberg equations to Raman excitation dynamics

    SciTech Connect

    Shore, B.W.; Sacks, R.; Dixit, S.N.

    1987-09-10

    Description of detailed temporal excitation dyanmics for coherent excitation, such as is produced by idealized laser radiation, contrasts with evaluation of rate coefficients by means of generalized Golden Rule procedures; it requires an appropriate time-dependent Schroedinger equation. When the atom undergoing excitation is also affected by incoherent processes, such as collisions, this equation no longer suffices. The Heisenberg equations, or equivalent density-matrix equations, permit treatment in which coherence and incoherence play comparable roles in the excitation dynamics. Unlike rate equations, such equations must incorporate complexities that originate in the orientation degeneracy expressed by magnetic quantum numbers. In simple cases of coherent excitation, both for single-photon and multiphoton excitation, the sublevels merely require an average of 2J+1 independent Schroedinger equations. Relaxation couples the independent equations. It has been known for some time that appropriate state-multipole operators can simplify the description of many phenomena connected with optical pumping. This memo discusses application of these multipole operators to the description of Raman (or more general multiphoton) coherent excitation. In some simple limiting cases the equations simplify, but in general one has a hierarchy of coupled multipole polarizations and coherences in place of the populations and coherences that occur as variables in nondegenerate systems. 28 refs., 4 figs.

  12. Precision Excited State Lifetime Measurements for Atomic Parity Violation and Atomic Clocks

    NASA Astrophysics Data System (ADS)

    Sell, Jerry; Patterson, Brian; Gearba, Alina; Snell, Jeremy; Knize, Randy

    2016-05-01

    Measurements of excited state atomic lifetimes provide a valuable test of atomic theory, allowing comparisons between experimental and theoretical transition dipole matrix elements. Such tests are important in Rb and Cs, where atomic parity violating experiments have been performed or proposed, and where atomic structure calculations are required to properly interpret the parity violating effect. In optical lattice clocks, precision lifetime measurements can aid in reducing the uncertainty of frequency shifts due to the surrounding blackbody radiation field. We will present our technique for precisely measuring excited state lifetimes which employs mode-locked ultrafast lasers interacting with two counter-propagating atomic beams. This method allows the timing in the experiment to be based on the inherent timing stability of mode-locked lasers, while counter-propagating atomic beams provides cancellation of systematic errors due to atomic motion to first order. Our current progress measuring Rb excited state lifetimes will be presented along with future planned measurements in Yb.

  13. Di-lepton yield from the decay of excited 28Si states

    NASA Astrophysics Data System (ADS)

    Bacelar, J. C.; Buda, A.; Bałanda, A.; Krasznahorkay, A.; van der Ploeg, H.; Sujkowski, Z.; van der Woude, A.

    1994-03-01

    The first dilepton yield measurements from excited nuclear states obtained with a new Positron-Electron Pair Spectroscopic Instrument (PEPSI) are reported. Nuclear states in 28Si, with an initial excitation energy E∗ = 50 MeV, were populated via the isospin T = 0 reaction 4He + 24Mg and the mixed-isospin 3He + 25Mg reaction. In both reactions the dilepton (e +e -) and photon decay yields were measured concurrently. An excess of counts in the e +e - spectrum, over the converted photon yield, is observed in the energy region above 15 MeV. An analyses is discussed whereby the observed excess counts are assumed to represent the isoscalar E0 strength in excited nuclear states.

  14. Organic nanophotonic materials: the relationship between excited-state processes and photonic performances.

    PubMed

    Zhang, Wei; Zhao, Yong Sheng

    2016-07-12

    Nanophotonics have recently captured broad attention because of their great potential in information processing and communication, which may allow rates and bandwidth beyond what is feasible in the realm of electronics. Organic materials could be well suitable for such applications due to their ability to generate, transmit, modulate and detect light in their lightweight and flexible nanoarchitectures. Their distinct nanophotonic properties strongly depend on their extrinsic morphologies and intrinsic molecular excited-state processes. In this feature article, we mainly focus on a comprehensive understanding of the relationship between molecular excited-state processes and the advanced photonic functionalities of organic micro/nano-crystals in recent organic nanophotonic research, and then expect to provide enlightenment for the design and development of tiny photonic devices with broadband tunable properties by tailoring the excited-state processes of organic microcrystals.

  15. Organic nanophotonic materials: the relationship between excited-state processes and photonic performances.

    PubMed

    Zhang, Wei; Zhao, Yong Sheng

    2016-07-12

    Nanophotonics have recently captured broad attention because of their great potential in information processing and communication, which may allow rates and bandwidth beyond what is feasible in the realm of electronics. Organic materials could be well suitable for such applications due to their ability to generate, transmit, modulate and detect light in their lightweight and flexible nanoarchitectures. Their distinct nanophotonic properties strongly depend on their extrinsic morphologies and intrinsic molecular excited-state processes. In this feature article, we mainly focus on a comprehensive understanding of the relationship between molecular excited-state processes and the advanced photonic functionalities of organic micro/nano-crystals in recent organic nanophotonic research, and then expect to provide enlightenment for the design and development of tiny photonic devices with broadband tunable properties by tailoring the excited-state processes of organic microcrystals. PMID:26883812

  16. Electron energy-loss spectroscopy of excited states of the pyridine molecules

    NASA Astrophysics Data System (ADS)

    Linert, Ireneusz; Zubek, Mariusz

    2016-04-01

    Electron energy-loss spectra of the pyridine, C5H5N, molecules in the gas phase have been measured to investigate electronic excitation in the energy range 3.5-10 eV. The applied wide range of residual electron energy and the scattering angle range from 10° to 180° enabled to differentiate between optically-allowed and -forbidden transitions. These measurements have allowed vertical excitation energies of the triplet excited states of pyridine to be determined and tentative assignments of these states to be proposed. Some of these states have not been identified in the previous works. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  17. Electron-impact ionization cross sections out of the ground and excited states of cesium

    SciTech Connect

    Lukomski, M.; Sutton, S.; Kedzierski, W.; Reddish, T. J.; Bartschat, K.; Bartlett, P. L.; Bray, I.; Stelbovics, A. T.; McConkey, J. W.

    2006-09-15

    An atom trapping technique for determining absolute, total ionization cross sections (TICS) out of an excited atom is presented. The unique feature of our method is in utilizing Doppler cooling of neutral atoms to determine ionization cross sections. This fluorescence-monitoring experiment, which is a variant of the 'trap loss' technique, has enabled us to obtain the experimental electron impact ionization cross sections out of the Cs state between 7 eV and 400 eV. CCC, RMPS, and Born theoretical results are also presented for both the ground and excited states of cesium and rubidium. In the low energy region (<11 eV) where best agreement between these excited state measurements and theory might be expected, a discrepancy of approximately a factor of five is observed. Above this energy there are significant contributions to the TICS from both autoionization and multiple ionization.

  18. Laurdan solvatochromism: solvent dielectric relaxation and intramolecular excited-state reaction.

    PubMed Central

    Viard, M; Gallay, J; Vincent, M; Meyer, O; Robert, B; Paternostre, M

    1997-01-01

    Absorption, steady-state, and time-resolved fluorescence measurements have been performed on laurdan dissolved either in white viscous apolar solvents or in ethanol as a function of temperature. The heterogeneity of the absorption spectra in white oils or in ethanol is consistent with semiempirical calculations performed previously on Prodan. From steady-state and time-resolved fluorescence measurements in apolar media, an excited state reaction is evidenced. The bimodal lifetime distribution determined from the maximum entropy method (MEM) analysis is attributed to the radiative deexcitation of a "locally excited" (LE) state and of a "charge transfer" (CT) state, whereas a very short component (20 ps), the sign and the amplitude of which depend on the emission wavelength, is attributed to the kinetics of the interconvertion reaction. The observation of an isoemissive point in the temperature range from -50 degrees C to -110 degrees C in ethanol suggests an interconvertion between two average excited-state populations: unrelaxed and solvent-relaxed CT states. A further decrease in temperature (-190 degrees C), leading to frozen ethanol, induces an additional and important blue shift. This low temperature spectrum is partly attributed to the radiative deexcitation of the LE state. Time-resolved emission spectra (TRES) measurements at -80 degrees C in the ethanol liquid phase show a large spectral shift of approximately 2500 cm(-1) (stabilization energy of the excited state: 7.1 kcal x M(-1)). The time-dependent fluorescence shift (TDFS) is described for its major part by a nanosecond time constant. The initial part of the spectral shift reveals, however, a subnanosecond process that can be due to fast internal solvent reorientation and/or to intramolecular excited-state reactions. These two relaxation times are also detected in the analysis of the fluorescence decays in the middle range of emission energy. The activation energy of the longest process is

  19. Comment on "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit"

    NASA Astrophysics Data System (ADS)

    Carrillo-Bernal, M. A.; Núñez-Yépez, H. N.; Salas-Brito, A. L.; Solis, Didier A.

    2015-02-01

    In the referred paper, the authors use a numerical method for solving ordinary differential equations and a softened Coulomb potential -1 /√{x2+β2 } to study the one-dimensional Coulomb problem by approaching the parameter β to zero. We note that even though their numerical findings in the soft potential scenario are correct, their conclusions do not extend to the one-dimensional Coulomb problem (β =0 ). Their claims regarding the possible existence of an even ground state with energy -∞ with a Dirac-δ eigenfunction and of well-defined parity eigenfunctions in the one-dimensional hydrogen atom are questioned.

  20. Vibrational modes in excited Rydberg states of acetone: A computational study

    NASA Astrophysics Data System (ADS)

    Shastri, Aparna; Singh, Param Jeet

    2016-04-01

    Computational studies of electronically excited states of the acetone molecule [(CH3)2CO] and its fully deuterated isotopologue [(CD3)2CO] are performed using the time dependent density functional (TDDFT) methodology. In addition to vertical excitation energies for singlet and triplet states, equilibrium geometries and vibrational frequencies of the n=3 Rydberg states (3s, 3p and 3d) are obtained. This is the first report of geometry optimization and frequency calculations for the 3px, 3pz, 3dyz, 3dxy, 3dxz, 3dx2-y2 and 3dz2 Rydberg states. Results of the geometry optimization indicate that the molecule retains approximate C2V geometry in most of these excited Rydberg states, with the most significant structural change seen in the CCO bond angle which is found to be reduced from the ground state value. Detailed comparison of the computationally predicted vibrational wavenumbers with experimental studies helps to confirm several of the earlier vibronic assignments while leading to revised/new assignments for some of the bands. The important role of hot bands in analysis of the room temperature photoabsorption spectra of acetone is corroborated by this study. While the vibrational frequencies in excited Rydberg states are overall found to be close to those of the ionic ground state, geometry optimization and vibrational frequency computation for each excited state proves to be very useful to arrive at a consistent set of vibronic assignments. Isotopic substitution helps in consolidating and confirming assignments. An offshoot of this study is the interpretation of the band at ~8.47 eV as the π-3s Rydberg transition converging to the second ionization potential.