Science.gov

Sample records for states coulomb excitations

  1. Coulomb excitation of states in 232Th

    NASA Astrophysics Data System (ADS)

    McGowan, F. K.; Milner, W. T.

    1993-09-01

    Twenty-five states in 232Th have been observed with 18 MeV 4He ions on a thick target. Eleven 2 + states between 774 and 1554 keV and three 3 - states are populated by direct E2 and E3, respectively. The remaining states are either weakly excited by multiple Coulomb excitation and/or populated by the decay of the directly excited states. Spin assignments are based on γ-ray angular distributions. Reduced transition probabilities have been deduced from the γ-ray yields. The B(E2) values for excitation of the 2 + states range from 0.024 to 3.5 W.u. (222 W.u. for the first 2 + state). For the 3 - states, the B(E3,0 → 3 -) values are 1.7, 11, and 24 W.u. A possible two-phonon state at 1554 keV, which is nearly harmonic, decays to four members of the one-phonon states, to the ground-state band, and to the K = 0 - octupole band. The B(E2) value for excitation of this state is 0.66 ± 0.05 W.u. and the B(E1) values for decay of this state are (2 and 6)×10 -4 W.u. The B(E2) values between two- and one-phonon vibrational states range between 16 and 53 W.u. which are an order of magnitude larger than the B(E2) values between the one- and zero-phonon states. This disagrees with our present understanding of collectivity in nuclei if this 2 + state is considered to be a collective two-phonon excitation. The 2 + states at 1477 and 1387 keV, which are also nearly harmonic, are possible candidates with two-phonon structure. The agreement between the experimental results and the microscopic calculations by Neergård and Vogel of the B(E3,0 → 3) for the 3 - members of the one-phonon octupole quadruplet is satisfactory when the Coriolis coupling between the states with K and K ± 1 is included. The B(E1) branching ratios for transitions from the 3 - and 1 - states to the ground-state band have large deviations from the Alaga-rule predictions. These deviations can be understood by the strong Coriolis coupling between the states of the octupole quadruplet in deformed nuclei.

  2. Coulomb excitation of states in 238U

    NASA Astrophysics Data System (ADS)

    McGowan, F. K.; Milner, W. T.

    1994-05-01

    Twenty-two states in 238U have been observed with 18 MeV 4He ions on a thick target. Eight 2 + states between 966 and 1782 keV and three 3 - states are populated by direct E2 and E3, respectively. The remaining states are either weakly excited by multiple Coulomb excitation and /or populated by the γ-ray decay of the directly excited states. Spin assignments are based on γ-ray angular distributions. Reduced transition probabilities have been deduced from the γ-ray yields. The B(E2) values for excitation of the 2 + states range from 0.10 to 3.0 W.u. (281 W.u. for the first 2 + state). For the 3 states, the B(E3, 0 → 3 -) values are 7.1, 7.8, and 24.2 W.u. Several of the 2 + states have decay branches to the one-phonon states with B(E2) values between 27 and 56 W.u. which are an order of magnitude larger than the B(E2) values between the one- and zero-phonon states. This disagrees with our present understanding of collectivity in nuclei if these 2 + states are considered to be collective two-phonon excitations. However, the excitation energies of these 2 + states with respect to the one-phonon states are only 1.3 to 1.6. The B(E1) values for 17 transitions between the positive- and negative-parity states range between 10 -3 and 10 -7 W.u. The B(E1) branching ratios for many of these transitions have large deviations from the Alaga-rule predictions. These deviations can be understood by the strong Coriolis coupling between the states of the one-phonon octupole quadruplet in deformed nuclei. The general features of the experimental results for the B(E3) values are reproduced by the microscopic calculations of Neergård and Vogel when the Coriolis coupling between the states of the octupole quadruplet is included.

  3. Triaxiality near the 110Ru ground state from Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Doherty, D. T.; Allmond, J. M.; Janssens, R. V. F.; Korten, W.; Zhu, S.; Zielińska, M.; Radford, D. C.; Ayangeakaa, A. D.; Bucher, B.; Batchelder, J. C.; Beausang, C. W.; Campbell, C.; Carpenter, M. P.; Cline, D.; Crawford, H. L.; David, H. M.; Delaroche, J. P.; Dickerson, C.; Fallon, P.; Galindo-Uribarri, A.; Kondev, F. G.; Harker, J. L.; Hayes, A. B.; Hendricks, M.; Humby, P.; Girod, M.; Gross, C. J.; Klintefjord, M.; Kolos, K.; Lane, G. J.; Lauritsen, T.; Libert, J.; Macchiavelli, A. O.; Napiorkowski, P. J.; Padilla-Rodal, E.; Pardo, R. C.; Reviol, W.; Sarantites, D. G.; Savard, G.; Seweryniak, D.; Srebrny, J.; Varner, R.; Vondrasek, R.; Wiens, A.; Wilson, E.; Wood, J. L.; Wu, C. Y.

    2017-03-01

    A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2 = 12 s) isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  4. Coulomb excitation of ground band rotational states in /sup 249/Bk

    SciTech Connect

    Bemis, C.E. Jr.; McGowan, F.K.; Ford, J.L.C. Jr.; Milner, W.T.; Robinson, R.L.; Stelson, P.H.

    1982-03-01

    Coulomb-excitation probabilities for the first few members of the 7/2/sup +/(633up-arrow) ground-state rotational band in /sup 249/Bk have been determined with 17.06-MeV /sup 4/He ions. These previously know excited states include the 9/2/sup +/ (41.8-keV), 11/2/sup +/ (93.7-keV), and 13/2/sup +/ (155.8-keV) members of the 7/2/sup +/(633up-arrow) band. Within experimental uncertainties, the Coulomb-excitation probabilities for these rotational states are reproduced by calculated values when only E2 excitations are considered with an intrinsic quadrupole moment, Q/sub 20/, of 12.70 +- 0.24 eb in the rigid rotor limit. The deduced ground-state spectroscopic quadrupole moment is 5.93 +- 0.11 eb. Intraband M1 transition rates have been deduced by combining the Q/sub 20/ result with other experimental data. Within the rotational model, a ground-state magnetic moment of +3.45 +- 0.10 ..mu../sub N/ is indicated.

  5. Magnetic moment and lifetime measurements of Coulomb-excited states in Cd106

    DOE PAGES

    Benczer-Koller, N.; Kumbartzki, G. J.; Speidel, K. -H.; ...

    2016-09-06

    The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in 106Cd. Methods: In an inverse kinematics reaction, a 106Cd beam impinging on a 12C target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for 106Cd. As a result, the g factorsmore » of the 2+1 and 4+1 states in 106Cd were measured to be g(2+1) = +0.398(22) and g(4+1) = +0.23(5). A lineshape analysis yielded lifetimes in disagreement with published values. The new results are τ(106Cd; 2+1) = 7.0(3) ps and τ(106Cd; 4+1) = 2.5(2) ps. The mean life τ(106Cd; 2+2) = 0.28(2) ps was determined from the fully-Doppler-shifted γ line. Mean lives of τ(106Cd; 4+3) = 1.1(1) ps and τ(106Cd; 3–1) = 0.16(1) ps were determined for the first time. In conclusion, the newly measured g(4+1) of 106Cd is found to be only 59% of the g(2+1). This difference cannot be explained by either shell-model or collective-model calculations.« less

  6. Magnetic moment and lifetime measurements of Coulomb-excited states in 106Cd

    NASA Astrophysics Data System (ADS)

    Benczer-Koller, N.; Kumbartzki, G. J.; Speidel, K.-H.; Torres, D. A.; Robinson, S. J. Q.; Sharon, Y. Y.; Allmond, J. M.; Fallon, P.; Abramovic, I.; Bernstein, L. A.; Bevins, J. E.; Crawford, H. L.; Guevara, Z. E.; Hurst, A. M.; Kirsch, L.; Laplace, T. A.; Lo, A.; Matthews, E. F.; Mayers, I.; Phair, L. W.; Ramirez, F.; Wiens, A.

    2016-09-01

    Background: The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Purpose: Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in 106Cd. Methods: In an inverse kinematics reaction, a 106Cd beam impinging on a 12C target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for 106Cd. Results: The g factors of the 21+ and 41+ states in 106Cd were measured to be g (21+)=+0.398 (22 ) and g (41+)=+0.23 (5 ) . A lineshape analysis yielded lifetimes in disagreement with published values. The new results are τ (106Cd;21+)=7.0 (3 )ps and τ (106Cd;41+)=2.5 (2 )ps . The mean life τ (106Cd;22+)=0.28 (2 )ps was determined from the fully-Doppler-shifted γ line. Mean lives of τ (106Cd;43+)=1.1 (1 )ps and τ (106Cd;31-)=0.16 (1 )ps were determined for the first time. Conclusions: The newly measured g (41+) of 106Cd is found to be only 59% of the g (21+) . This difference cannot be explained by either shell-model or collective-model calculations.

  7. Coulomb excitation of radioactive {sup 79}Pb

    SciTech Connect

    Lister, C.J.; Blumenthal, D.; Davids, C.N.

    1995-08-01

    The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.

  8. Lifetimes of states in the opposite-parity bands of 153Eu: Recoil-distance measurements following Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Smith, J. F.; Simon, M. W.; Ibbotson, R. W.; Butler, P. A.; Aprahamian, A.; Bruce, A. M.; Cline, D.; Devlin, M.; Jones, G. D.; Jones, P. M.; Wu, C. Y.

    1998-12-01

    The lifetimes of 12 states in the opposite-parity bands of 153Eu have been measured using a recoil-distance technique following Coulomb excitation with a 220-MeV 58Ni beam. Electric-quadrupole (Q0) and -dipole (D0) moments, and intrinsic g factors (gK) have been extracted from the lifetimes. The Q0 and D0 values show very little dependence on spin and parity, and have the values of approximately 6.6 e b and 0.077 e fm, respectively. The gK values are found to differ for the positive- and negative-parity states. Although the large D0 values suggest a reflection-asymmetric octupole-deformed nuclear shape, the different gK values contradict this interpretation. A discussion of the nuclear structure of 153Eu in terms of potential parity-doublet bands and octupole deformation is given.

  9. Coulomb excitation of radioactive nuclear beams in inverse kinematics

    SciTech Connect

    Zamfir, N.V. |||; Barton, C.J.; Brenner, D.S.; Casten, R.F. |; Gill, R.L.; Zilges, A. |

    1996-12-31

    Techniques for the measurement of B (E2:0{sub 1}{sup +} {r_arrow} 2{sub 1}{sup +}) values by Coulomb excitation of Radioactive Nuclear Beams in inverse kinematics are described. Using a thin, low Z target, the Coulomb excited beam nuclei will decay in flight downstream of the target. For long lifetimes (nanosecond range) these nuclei decay centimeters downstream of the target and for shorter lifetimes (picoseconds or less) they decay near the target. Corresponding to these two lifetime regimes two methods have been developed to measure {gamma} rays from the Coulomb excited nuclei: the lifetime method in which the lifetime of the excited state is deduced from the decay curve and the integral method in which the B(E2) value is extracted from the measured total Coulomb excitation cross section.

  10. Relativistic Coulomb excitation of 88Kr

    NASA Astrophysics Data System (ADS)

    Moschner, K.; Blazhev, A.; Jolie, J.; Warr, N.; Boutachkov, P.; Bednarczyk, P.; Sieja, K.; Algora, A.; Ameil, F.; Bentley, M. A.; Brambilla, S.; Braun, N.; Camera, F.; Cederkäll, J.; Corsi, A.; Danchev, M.; DiJulio, D.; Fahlander, C.; Gerl, J.; Giaz, A.; Golubev, P.; Górska, M.; Grebosz, J.; Habermann, T.; Hackstein, M.; Hoischen, R.; Kojouharov, I.; Kurz, N.; Mǎrginean, N.; Merchán, E.; Möller, T.; Naqvi, F.; Nara Singh, B. S.; Nociforo, C.; Pietralla, N.; Pietri, S.; Podolyák, Zs.; Prochazka, A.; Reese, M.; Reiter, P.; Rudigier, M.; Rudolph, D.; Sava, T.; Schaffner, H.; Scruton, L.; Taprogge, J.; Thomas, T.; Weick, H.; Wendt, A.; Wieland, O.; Wollersheim, H.-J.

    2016-11-01

    To investigate the systematics of mixed-symmetry states in N =52 isotones, a relativistic Coulomb excitation experiment was performed during the PreSPEC campaign at the GSI Helmholtzzentrum für Schwerionenforschung to determine E 2 transition strengths to 2+ states of the radioactive nucleus 88Kr. Absolute transition rates could be measured towards the first and third 2+ states. For the latter a mixed-symmetry character is suggested on the basis of the indication for a strong M 1 transition to the fully symmetric 21+ state, extending the knowledge of the N =52 isotones below Z =40 . A comparison with the proton-neutron interacting boson model and shell-model predictions is made and supports the assignment.

  11. Coulomb Excitation of Neutron-Rich Zn Isotopes: First Observation of the 21+ State in Zn80

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2007-10-01

    Neutron-rich, radioactive Zn isotopes were investigated at the Radioactive Ion Beam facility REX-ISOLDE (CERN) using low-energy Coulomb excitation. The energy of the 21+ state in Zn78 could be firmly established and for the first time the 2+→01+ transition in Zn80 was observed at 1492(1) keV. B(E2,21+→01+) values were extracted for Zn74,76,78,80 and compared to large scale shell model calculations. With only two protons outside the Z=28 proton core, Zn80 is the lightest N=50 isotone for which spectroscopic information has been obtained to date. Two sets of advanced shell model calculations reproduce the observed B(E2) systematics. The results for N=50 isotones indicate a good N=50 shell closure and a strong Z=28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus Ni78.

  12. Coulomb excitations of monolayer germanene

    NASA Astrophysics Data System (ADS)

    Shih, Po-Hsin; Chiu, Yu-Huang; Wu, Jhao-Ying; Shyu, Feng-Lin; Lin, Ming-Fa

    2017-01-01

    The feature-rich electronic excitations of monolayer germanene lie in the significant spin-orbit coupling and the buckled structure. The collective and single-particle excitations are diversified by the magnitude and direction of transferred momentum, the Fermi energy and the gate voltage. There are four kinds of plasmon modes, according to the unique frequency- and momentum-dependent phase diagrams. They behave as two-dimensional acoustic modes at long wavelength. However, for the larger momenta, they might change into another kind of undamped plasmons, become the seriously suppressed modes in the heavy intraband e–h excitations, keep the same undamped plasmons, or decline and then vanish in the strong interband e–h excitations. Germanene, silicene and graphene are quite different from one another in the main features of the diverse plasmon modes.

  13. Coulomb excitations of monolayer germanene

    PubMed Central

    Shih, Po-Hsin; Chiu, Yu-Huang; Wu, Jhao-Ying; Shyu, Feng-Lin; Lin, Ming-Fa

    2017-01-01

    The feature-rich electronic excitations of monolayer germanene lie in the significant spin-orbit coupling and the buckled structure. The collective and single-particle excitations are diversified by the magnitude and direction of transferred momentum, the Fermi energy and the gate voltage. There are four kinds of plasmon modes, according to the unique frequency- and momentum-dependent phase diagrams. They behave as two-dimensional acoustic modes at long wavelength. However, for the larger momenta, they might change into another kind of undamped plasmons, become the seriously suppressed modes in the heavy intraband e–h excitations, keep the same undamped plasmons, or decline and then vanish in the strong interband e–h excitations. Germanene, silicene and graphene are quite different from one another in the main features of the diverse plasmon modes. PMID:28091555

  14. Precise Coulomb excitation B(E2) measurements for first 2+states of projectile nuclei near the doubly magic nuclei 78Ni and 132Sn

    NASA Astrophysics Data System (ADS)

    Galindo-Uribarri, A.

    2012-09-01

    Coulomb excitation is a very precise tool to measure excitation probabilities and provide insight on the collectivity of nuclear excitations and in particular on nuclear shapes. In the last few years radioactive ion beam facilities such as HRIBF opened unique opportunities to explore the structure of nuclei in the regions near the doubly magic nuclei 78Ni (Z=28 and N=50) and 132Sn (Z=50 and N=82). For this purpose we have developed specialized methods and instrumentation to measure various observables. There is also the opportunity to perform precision experiments with stable beams using exactly the same state-of-the-art instrumentation and techniques as with their radioactive ion beam counterpart. I describe some of the recent efforts at HRIBF to do more precise measurements using particle-gamma techniques.

  15. Slow Interatomic Coulombic Decay of Multiply Excited Neon Clusters

    NASA Astrophysics Data System (ADS)

    Iablonskyi, D.; Nagaya, K.; Fukuzawa, H.; Motomura, K.; Kumagai, Y.; Mondal, S.; Tachibana, T.; Takanashi, T.; Nishiyama, T.; Matsunami, K.; Johnsson, P.; Piseri, P.; Sansone, G.; Dubrouil, A.; Reduzzi, M.; Carpeggiani, P.; Vozzi, C.; Devetta, M.; Negro, M.; Calegari, F.; Trabattoni, A.; Castrovilli, M. C.; Faccialà, D.; Ovcharenko, Y.; Möller, T.; Mudrich, M.; Stienkemeier, F.; Coreno, M.; Alagia, M.; Schütte, B.; Berrah, N.; Kuleff, A. I.; Jabbari, G.; Callegari, C.; Plekan, O.; Finetti, P.; Spezzani, C.; Ferrari, E.; Allaria, E.; Penco, G.; Serpico, C.; De Ninno, G.; Nikolov, I.; Diviacco, B.; Di Mitri, S.; Giannessi, L.; Prince, K. C.; Ueda, K.

    2016-12-01

    Ne clusters (˜5000 atoms ) were resonantly excited (2 p →3 s ) by intense free electron laser (FEL) radiation at FERMI. Such multiply excited clusters can decay nonradiatively via energy exchange between at least two neighboring excited atoms. Benefiting from the precise tunability and narrow bandwidth of seeded FEL radiation, specific sites of the Ne clusters were probed. We found that the relaxation of cluster surface atoms proceeds via a sequence of interatomic or intermolecular Coulombic decay (ICD) processes while ICD of bulk atoms is additionally affected by the surrounding excited medium via inelastic electron scattering. For both cases, cluster excitations relax to atomic states prior to ICD, showing that this kind of ICD is rather slow (picosecond range). Controlling the average number of excitations per cluster via the FEL intensity allows a coarse tuning of the ICD rate.

  16. Low-energy Coulomb excitation of Sr,9896 beams

    NASA Astrophysics Data System (ADS)

    Clément, E.; Zielińska, M.; Péru, S.; Goutte, H.; Hilaire, S.; Görgen, A.; Korten, W.; Doherty, D. T.; Bastin, B.; Bauer, C.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Butterworth, J.; Cederkäll, J.; Delahaye, P.; Dijon, A.; Ekström, A.; Fitzpatrick, C.; Fransen, C.; Georgiev, G.; Gernhäuser, R.; Hess, H.; Iwanicki, J.; Jenkins, D. G.; Larsen, A. C.; Ljungvall, J.; Lutter, R.; Marley, P.; Moschner, K.; Napiorkowski, P. J.; Pakarinen, J.; Petts, A.; Reiter, P.; Renstrøm, T.; Seidlitz, M.; Siebeck, B.; Siem, S.; Sotty, C.; Srebrny, J.; Stefanescu, I.; Tveten, G. M.; Van de Walle, J.; Vermeulen, M.; Voulot, D.; Warr, N.; Wenander, F.; Wiens, A.; De Witte, H.; Wrzosek-Lipska, K.

    2016-11-01

    The structure of neutron-rich Sr,9896 nuclei was investigated by low-energy safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN, with the MINIBALL spectrometer. A rich set of transitional and diagonal E 2 matrix elements, including those for non-yrast structures, has been extracted from the differential Coulomb-excitation cross sections. The results support the scenario of a shape transition at N =60 , giving rise to the coexistence of a highly deformed prolate and a spherical configuration in 98Sr, and are compared to predictions from several theoretical calculations. The experimental data suggest a significant contribution of the triaxal degree of freedom in the ground state of both isotopes. In addition, experimental information on low-lying states in 98Rb has been obtained.

  17. Interatomic Coulombic decay cascades in multiply excited neon clusters

    PubMed Central

    Nagaya, K.; Iablonskyi, D.; Golubev, N. V.; Matsunami, K.; Fukuzawa, H.; Motomura, K.; Nishiyama, T.; Sakai, T.; Tachibana, T.; Mondal, S.; Wada, S.; Prince, K. C.; Callegari, C.; Miron, C.; Saito, N.; Yabashi, M.; Demekhin, Ph. V.; Cederbaum, L. S.; Kuleff, A. I.; Yao, M.; Ueda, K.

    2016-01-01

    In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation. PMID:27917867

  18. Interatomic Coulombic decay cascades in multiply excited neon clusters

    NASA Astrophysics Data System (ADS)

    Nagaya, K.; Iablonskyi, D.; Golubev, N. V.; Matsunami, K.; Fukuzawa, H.; Motomura, K.; Nishiyama, T.; Sakai, T.; Tachibana, T.; Mondal, S.; Wada, S.; Prince, K. C.; Callegari, C.; Miron, C.; Saito, N.; Yabashi, M.; Demekhin, Ph. V.; Cederbaum, L. S.; Kuleff, A. I.; Yao, M.; Ueda, K.

    2016-12-01

    In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation.

  19. Coulomb excitation of levels in 143Nd and 145Nd

    NASA Astrophysics Data System (ADS)

    Drǎgulescu, E.; Ivaşcu, M.; Mihu, R.; Popescu, D.; Semenescu, G.; Paar, V.; Vretenar, D.

    1984-04-01

    The low-lying states of 143Nd and 154Nd have been studied by means of Coulomb excitation with 16O and α-particles. Angular distribution measurements were carried out for some transitions in 145Nd with 11.2 MeV α-particles. Level energy decay schemes and B(E2)↑ values were measured for two states in 143Nd and for six states in 145Nd. Some spin assignments have been established for the 145Nd nucleus. 143Nd and 145Nd have been theoretically described by coupling one and three particles, respectively, to quadrupole vibrations, and rather good agreement with experiment was achieved.

  20. Coulomb Excitation of the N = 50 nucleus 80Zn

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2008-05-01

    Neutron rich Zinc isotopes, including the N = 50 nucleus 80Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2+ states. For the first time, an excited state in 80Zn was observed and the 21+ state in 78Zn was established. The measured B(E2,21+-->01+) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni.

  1. Coulomb-nuclear interference with {alpha} particles in the excitation of the 2{sup +}{sub 1} states in {sup 100,102,104}Ru

    SciTech Connect

    Gomes, L.C.; Horodynski-Matsushigue, L.B.; Borello-Lewin, T.; Duarte, J.L.; Hirata, J.H.; Salem-Vasconcelos, S.; Dietzsch, O.

    1996-11-01

    Coulomb-nuclear interference data for incident energies between 9 and 17 MeV were obtained in the form of elastic and inelastic (to the 2{sup +}{sub 1} states) excitation functions of backscattered ({theta}{approx_equal}172.8{degree}) alpha particles on {sup 100,102,104}Ru. The analysis was done in a distorted-wave Born approximation within a deformed optical model approach. {ital B}({ital E}2) values, obtained from the charge deformation lengths {delta}{sup {ital C}} extracted from the low energy data, are compatible for the three isotopes within {approximately} 2{sigma} with published values. The nuclear quadrupolar deformation lengths {delta}{sup {ital N}}, obtained from the analysis of the interference region of the excitation functions, and also of one angular distribution at 22 MeV measured for {sup 100}Ru are generally lower than the corresponding charge deformation lengths, the difference increasing with increasing {ital A} of the isotope, {delta}{sup {ital N}} being 18{percent} lower than {delta}{sup {ital C}} for {sup 104}Ru (2{sup +}{sub 1}). Nuclear deformation lengths associated with the 3{sub 1}{sup {minus}} states of {sup 100,102,104}Ru and with the 4{sup +}{sub 2} state of {sup 100}Ru at 2.367 MeV were also obtained as a by-product of the present work. {copyright} {ital 1996 The American Physical Society.}

  2. Magnetic moment and lifetime measurements of Coulomb-excited states in Cd106

    SciTech Connect

    Benczer-Koller, N.; Kumbartzki, G. J.; Speidel, K. -H.; Torres, D. A.; Robinson, S. J. Q.; Sharon, Y. Y.; Allmond, J. M.; Fallon, P.; Abramovic, I.; Bernstein, L. A.; Bevins, J. E.; Crawford, H. L.; Guevara, Z. E.; Hurst, A. M.; Kirsch, L.; Laplace, T. A.; Lo, A.; Matthews, E. F.; Mayers, I.; Phair, L. W.; Ramirez, F.; Wiens, A.

    2016-09-06

    The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in 106Cd. Methods: In an inverse kinematics reaction, a 106Cd beam impinging on a 12C target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for 106Cd. As a result, the g factors of the 2+1 and 4+1 states in 106Cd were measured to be g(2+1) = +0.398(22) and g(4+1) = +0.23(5). A lineshape analysis yielded lifetimes in disagreement with published values. The new results are τ(106Cd; 2+1) = 7.0(3) ps and τ(106Cd; 4+1) = 2.5(2) ps. The mean life τ(106Cd; 2+2) = 0.28(2) ps was determined from the fully-Doppler-shifted γ line. Mean lives of τ(106Cd; 4+3) = 1.1(1) ps and τ(106Cd; 31) = 0.16(1) ps were determined for the first time. In conclusion, the newly measured g(4+1) of 106Cd is found to be only 59% of the g(2+1). This difference cannot be explained by either shell-model or collective-model calculations.

  3. Generalized oscillator strength and Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Chidichimo, Marita C.; Thorsley, Michael D.

    2003-02-01

    Coulomb interaction is characterized by two nondimensional fundamental quantities: the Sommerfeld parameter η and the adiabaticity parameter ξ=ηf-ηi. In this different approach, we choose these variables to describe the behavior of the generalized oscillator strength (GOS). The expression we obtain is valid for scattering of electrons, positrons, and nuclei by arbitrary targets. We present asymptotic expansions, in the quantal and semiclassical approximation, of the electric dipole GOS.

  4. Cold chemistry with electronically excited Ca{sup +} Coulomb crystals

    SciTech Connect

    Gingell, Alexander D.; Bell, Martin T.; Oldham, James M.; Softley, Timothy P.; Harvey, Jeremy N.

    2010-11-21

    Rate constants for chemical reactions of laser-cooled Ca{sup +} ions and neutral polar molecules (CH{sub 3}F, CH{sub 2}F{sub 2}, or CH{sub 3}Cl) have been measured at low collision energies (/k{sub B}=5-243 K). Low kinetic energy ensembles of {sup 40}Ca{sup +} ions are prepared through Doppler laser cooling to form ''Coulomb crystals'' in which the ions form a latticelike arrangement in the trapping potential. The trapped ions react with translationally cold beams of polar molecules produced by a quadrupole guide velocity selector or with room-temperature gas admitted into the vacuum chamber. Imaging of the Ca{sup +} ion fluorescence allows the progress of the reaction to be monitored. Product ions are sympathetically cooled into the crystal structure and are unambiguously identified through resonance-excitation mass spectrometry using just two trapped ions. Variations of the laser-cooling parameters are shown to result in different steady-state populations of the electronic states of {sup 40}Ca{sup +} involved in the laser-cooling cycle, and these are modeled by solving the optical Bloch equations for the eight-level system. Systematic variation of the steady-state populations over a series of reaction experiments allows the extraction of bimolecular rate constants for reactions of the ground state ({sup 2}S{sub 1/2}) and the combined excited states ({sup 2}D{sub 3/2} and {sup 2}P{sub 1/2}) of {sup 40}Ca{sup +}. These results are analyzed in the context of capture theories and ab initio electronic structure calculations of the reaction profiles. In each case, suppression of the ground state rate constant is explained by the presence of a submerged or real barrier on the ground state potential surface. Rate constants for the excited states are generally found to be in line with capture theories.

  5. Coulomb Excitation of 78,80Se and the radioactive 84Se (N = 50) isotopes

    NASA Astrophysics Data System (ADS)

    Galindo-Uribarri, A.; Padilla-Rodal, E.; Garcia-Ruiz, R. F.; Allmond, J. M.; Batchelder, J. C.; Beene, J. R.; Lagergren, K. B.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego-Blanco, J. P.; Varner, R. L.; Yu, C.-H.

    2011-10-01

    Coulomb excitation is a purely electromagnetic excitation process of nuclear states due to the Coulomb field of two colliding nuclei. It is a very precise tool to measure excitation probabilities and provide insight on the collectivity of nuclear excitations and in particular on nuclear shapes. We have measured the B(E2) value of various nuclei in the mass A ~ 80 region using particle-gamma coincidences with the HyBall and Clarion arrays at HRIBF. The Coulomb excitation of various projectile-target combinations (ASe on 12C, 24Mg, 27Al and 50Ti) allow the use of consistency cross checks and the systematic study of isotopic and isotonic chains using both stable and radioactive nuclei under almost identical experimental conditions.We present new results for 78Se, 80Se and the radioactive nucleus 84Se (N = 50). Research sponsored by the Office of Nuclear Physics, U.S. Department of Energy and CONACyT Grant 103366.

  6. Coulomb excitation of C{sub 60} molecules

    SciTech Connect

    Esbensen, H.; Berry, H.G.; Cheng, S.

    1995-08-01

    The ionization and dissociation of C{sub 60} molecules in the Coulomb field from fast, highly-charged xenon ions was measured recently at ATLAS. The Coulomb excitation was modeled as a coherent excitation of the giant plasmon resonance. Guided by photo-absorption measurements, single-plasmon excitations were identified with the production of single-charged C{sub 60}{sup +} molecular ions. The calculated cross sections do indeed reproduce the beam energy-dependence of the measured C{sub 60}{sup +} yield. The calculations show that single-plasmon excitations are responsible for about half of the total reaction cross section. The other half, i.e., multiplasmon excitations, leads to multiple ionization and dissociation of the molecule.

  7. Coulomb Excitation of Radioactive Mo-Ru Isotopes

    NASA Astrophysics Data System (ADS)

    Allmond, J. M.; Gretina-Chico2 Collaboration

    2016-09-01

    The study of shapes in atomic nuclei has been a major focus of nuclear structure ever since the observation of large electric quadrupole moments in the first half of the 20th century. A leading challenge has been to experimentally establish regions of oblate deformation, which are very limited, and triaxial deformation. The neutron-rich Mo-Ru region is expected to exhibit triaxial deformation in the low-lying states, mediated by a relatively rare instance of prolate-to-oblate shape evolution. A survey of equipment, techniques, and preliminary results from recent Coulomb-excitation and beta-decay experiments in the neutron-rich Mo-Ru region will be presented. These experiments were conducted at the CARIBU-ANL facility using GRETINA-CHICO2. An emphasis will be placed on unique opportunities with 3-MeV/u beams. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics.

  8. Coulomb excitations for a short linear chain of metallic shells

    SciTech Connect

    Zhemchuzhna, Liubov; Gumbs, Godfrey; Iurov, Andrii; Huang, Danhong; Gao, Bo

    2015-03-15

    A self-consistent-field theory is given for the electronic collective modes of a chain containing a finite number, N, of Coulomb-coupled spherical two-dimensional electron gases arranged with their centers along a straight line, for simulating electromagnetic response of a narrow-ribbon of metallic shells. The separation between nearest-neighbor shells is arbitrary and because of the quantization of the electron energy levels due to their confinement to the spherical surface, all angular momenta L of the Coulomb excitations, as well as their projections M on the quantization axis, are coupled. However, for incoming light with a given polarization, only one angular momentum quantum number is usually required. Therefore, the electromagnetic response of the narrow-ribbon of metallic shells is expected to be controlled externally by selecting different polarizations for incident light. We show that, when N = 3, the next-nearest-neighbor Coulomb coupling is larger than its value if they are located at opposite ends of a right-angle triangle forming the triad. Additionally, the frequencies of the plasma excitations are found to depend on the orientation of the line joining them with respect to the axis of quantization since the magnetic field generated from the induced oscillating electric dipole moment on one sphere can couple to the induced magnetic dipole moment on another. Although the transverse inter-shell electromagnetic coupling can be modeled by an effective dynamic medium, the longitudinal inter-shell Coulomb coupling, on the other hand, can still significantly modify the electromagnetic property of this effective medium between shells.

  9. Coulomb Bound States of Strongly Interacting Photons

    NASA Astrophysics Data System (ADS)

    Maghrebi, M. F.; Gullans, M. J.; Bienias, P.; Choi, S.; Martin, I.; Firstenberg, O.; Lukin, M. D.; Büchler, H. P.; Gorshkov, A. V.

    2015-09-01

    We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasibound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wave function resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms.

  10. Interatomic Coulombic Decay of HeNe dimers after ionization and excitation of He and Ne

    NASA Astrophysics Data System (ADS)

    Sann, H.; Havermeier, T.; Kim, H.-K.; Sturm, F.; Trinter, F.; Waitz, M.; Zeller, S.; Ulrich, B.; Meckel, M.; Voss, S.; Bauer, T.; Schneider, D.; Schmidt-Böcking, H.; Wallauer, R.; Schöffler, M.; Williams, J. B.; Dörner, R.; Jahnke, T.

    2017-01-01

    We study the decay of a helium/neon dimer after ionization and simultaneous excitation of either the neon or the helium atom using Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS). We find that, depending on the decaying state, either direct Interatomic Coulombic Decay (ICD) (i.e. mediated by a virtual photon exchange), exchange ICD (mediated by electron exchange) or radiative charge transfer occurs. The corresponding channels are identified.

  11. Do nuclei go pear-shaped? Coulomb excitation of 220Rn and 224Ra at REX-ISOLDE (CERN)

    NASA Astrophysics Data System (ADS)

    Scheck, M.; Gaffney, L. P.; Butler, P. A.; Hayes, A. B.; Wenander, F.; Albers, M.; Bastin, B.; Bauer, C.; Blazhev, A.; Boenig, S.; Bree, N.; Cederkall, J.; Chupp, T.; Cline, D.; Cocolios, T. E.; Davinson, T.; De Witte, H.; Diriken, J.; Grahn, T.; Herzan, A.; Huyse, M.; Jenkins, D. G.; Joss, D. T.; Kesteloot, N.; Konki, J.; Kowalczyk, M.; Kroell, Th.; Kwan, E.; Lutter, R.; Moschner, K.; Napiorkowski, P.; Pakarinen, J.; Pfeiffer, M.; Radeck, D.; Reiter, P.; Reynders, K.; Rigby, S. V.; Robledo, L. M.; Rudigier, M.; Sambi, S.; Seidlitz, M.; Siebeck, B.; Stora, T.; Thoele, P.; Van Duppen, P.; Vermeulen, M. J.; von Schmid, M.; Voulot, D.; Warr, N.; Wimmer, K.; Wrzosek-Lipska, K.; Wu, C. Y.; Zielinska, M.

    2015-05-01

    The IS475 collaboration conducted Coulomb-excitation experiments with post-accelerated radioactive 220Rn and 224Ra beams at the REX-ISOLDE facility. The beam particles (Ebeam: 2.83 MeV/u) were Coulomb excited using 60Ni, 114Cd, and 120Sn scattering targets. De-excitation γ-rays were detected employing the Miniball array and scattered particles were detected in a silicon detector. Exploiting the Coulomb-excitation code GOSIA for each nucleus several matrix elements could be obtained from the measured γ-ray yields. The extracted ‹3-||E3||0+› matrix element allows for the conclusion that, while 220Rn represents an octupole vibrational system, 224Ra has already substantial octupole correlations in its ground state. This finding has implications for the search of CP-violating Schiff moments in the atomic systems of the adjacent odd-mass nuclei.

  12. Effects of Coulomb quadrupole excitation in heavy-ion reactions

    NASA Astrophysics Data System (ADS)

    Cheoun, Myung-Ki; Choi, K. S.; Kim, K. S.; Kim, T. H.; So, W. Y.

    2016-09-01

    For 12C + 184W, 18O + 184W, and 20Ne + 208Pb systems, we investigate the suppression of the ratios P E = σ el/ σ RU by using the Coulomb quadrupole excitation (CQE) potentials. In order to explain the effect of the CQE potentials, we first use a well-known Love's CQE potential, and reproduce the experimental P E data well by using this potential. We also introduce a simple CQE potential written as W CQE( r) = - W P / r n , which is much simpler than the conventional Love's potential, to investigate the suppression of the P E ratios. Using this potential, we perform a χ2 analysis to find the adjustable parameter n, then, we find that the best fit parameters n ≈ 5 is close to the lowest order term, 1/ r 5. Consequently, we find that using the simple CQE potential explains the experimental P E data and that the ratio P E depends on the n values sensitively.

  13. B(E1) Strengths from Coulomb excitation of 11Be

    SciTech Connect

    Summers, N C; Pain, S D; Orr, N A; Catford, W N; Angelique, J C; Ashwood, N I; Bouchat, V; Clarke, N M; Curtis, N; Freer, M; Fulton, B R; Hanappe, F; Labiche, M; Loucey, J L; Lemmon, R C; Mahboub, D; Ninane, A; Normand, G; Nunes, F M; Soic, N; Stuttge, L; Timis, C N; Thompson, I; Winfield, J S; Ziman, V

    2007-03-06

    The B(E1;1/2{sup +}{yields} 1/2{sup -}) strength for {sup 11}Be has been extracted from intermediate energy Coulomb excitation measurements, over a range of beam energies using a new reaction model, the extended continuum discretized coupled channels (XCDCC) method. In addition, a measurement of the excitation cross section for {sup 11}Be+{sup 208}Pb at 38.6 MeV/nucleon is reported. The B(E1) strength of 0.105(12) e{sup 2}fm{sup 2} derived from this measurement is consistent with those made previously at 60 and 64 MeV/nucleon, in contrast to an anomalously low result obtained at 43 MeV/nucleon. By coupling a multi-configuration description of the projectile structure with realistic reaction theory, the XCDCC model provides for the first time a fully quantum mechanical description of Coulomb excitation. The XCDCC calculations reveal that the excitation process involves significant contributions from nuclear, continuum, and higher-order effects. An analysis of the present and two earlier intermediate energy measurements yields a combined B(E1) strength of 0.105(7) e{sup 2}fm{sup 2}. This value is in good agreement with the value deduced independently from the lifetime of the 1/2{sup -} state in {sup 11}Be, and has a comparable precision.

  14. Analytical expressions for partial wave two-body Coulomb transition matrices at ground-state energy

    NASA Astrophysics Data System (ADS)

    Kharchenko, V. F.

    2016-11-01

    Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states.

  15. Low-energy Coulomb excitation of neutron-rich zinc isotopes

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Pantea, M.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; Duppen, P. Van; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2009-01-01

    At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,21+→01+) values in Zn74-80, B(E2,41+→21+) values in Zn74,76 and the determination of the energy of the first excited 21+ states in Zn78,80. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of U238, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, including a recent empirical residual interaction constructed to describe the present experimental data up to 2004 in this region of the nuclear chart.

  16. Quadrupole collectivity beyond N = 28: intermediate-energy Coulomb excitation of (47,48)Ar.

    PubMed

    Winkler, R; Gade, A; Baugher, T; Bazin, D; Brown, B A; Glasmacher, T; Grinyer, G F; Meharchand, R; McDaniel, S; Ratkiewicz, A; Weisshaar, D

    2012-05-04

    We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei (47,48)Ar using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly magic Ca to collective S and Si isotopes, a critical region of shell evolution and structural change. The deduced B(E2) transition strengths are confronted with large-scale shell-model calculations in the sdpf shell using the state-of-the-art SDPF-Uand EPQQM effective interactions. The comparison between experiment and theory indicates that a shell-model description of Ar isotopes around N=28 remains a challenge.

  17. Quadrupole Collectivity beyond N=28: Intermediate-Energy Coulomb Excitation of Ar47,48

    NASA Astrophysics Data System (ADS)

    Winkler, R.; Gade, A.; Baugher, T.; Bazin, D.; Brown, B. A.; Glasmacher, T.; Grinyer, G. F.; Meharchand, R.; McDaniel, S.; Ratkiewicz, A.; Weisshaar, D.

    2012-05-01

    We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei Ar47,48 using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly magic Ca to collective S and Si isotopes, a critical region of shell evolution and structural change. The deduced B(E2) transition strengths are confronted with large-scale shell-model calculations in the sdpf shell using the state-of-the-art SDPF-Uand EPQQM effective interactions. The comparison between experiment and theory indicates that a shell-model description of Ar isotopes around N=28 remains a challenge.

  18. Investigating shape evolution and the emergence of collectivity through the synergy of Coulomb excitation and beta decay

    SciTech Connect

    Allmond, James M

    2016-01-01

    The synthesis of Coulomb excitation and decay offers very practical advantages in the study of nuclear shapes and collectivity. For instance, Coulomb excitation is unique in its ability to measure the electric quadrupole moments, i.e., I2 ||M(E2)||I1 matrix elements, of excited, non-isomeric states in atomic nuclei, providing information on the intrinsic shape. However, the Coulomb excitation analysis and structural inter- pretation can be strongly dependent upon weak transitions or decay branches, which are often obscured by the Compton background. Transitions of particular interest are those low in energy and weak in intensity due to the E 5 attenuation factor. These weak decay branches can often be determined with high precision from -decay studies. Recently, 106Mo and 110Cd were studied by both Coulomb excitation and decay. Preliminary results of new weak decay branches following decay of 110mAg to 110Cd are presented; these results will challenge competing interpretations based on vibrations and configuration mixing.

  19. Investigating shape evolution and the emergence of collectivity through the synergy of Coulomb excitation and β decay

    NASA Astrophysics Data System (ADS)

    Allmond, J. M.

    2016-09-01

    The synthesis of Coulomb excitation and β decay offers very practical advantages in the study of nuclear shapes and collectivity. For instance, Coulomb excitation is unique in its ability to measure the electric quadrupole moments, i.e., < I_2^π allel M(E2)allel I_1^π > matrix elements, of excited, non-isomeric states in atomic nuclei, providing information on the intrinsic shape. However, the Coulomb excitation analysis and structural interpretation can be strongly dependent upon weak transitions or decay branches, which are often obscured by the Compton background. Transitions of particular interest are those low in energy and weak in intensity due to the Eγ5 attenuation factor. These weak decay branches can often be determined with high precision from β-decay studies. Recently, 106Mo and 110Cd were studied by both Coulomb excitation and β decay. Preliminary results of new weak decay branches following β decay of 110mAg to 110Cd are presented; these results will challenge competing interpretations based on vibrations and configuration mixing.

  20. Development of a new Recoil Distance Technique using Coulomb Excitation in Inverse Kinematics

    SciTech Connect

    Rother, Wolfram; Dewald, Alfred; Ilie, Gabriela; Pissulla, Thomas; Melon, Barbara; Jolie, Jan; Pascovici, Gheorghe; Iwasaki, Hironori; Hackstein, Matthias; Zell, Karl-Oskar; Julin, Rauno; Jones, Peter; Greenlees, Paul; Rahkila, Panu; Uusitalo, Juha; Scholey, Cath; Harissopulos, Sotirios; Lagoyannis, Anastasios; Konstantinopoulos, Theodore; Grahn, Tuomas

    2009-01-28

    We report on an experiment using Coulomb excitation in inverse kinematics in combination with the plunger technique for measuring lifetimes of excited states of the projectiles. Aside from the investigation of E(5) features in {sup 128}Xe, the aim was to explore the special features of such experiments which are also suited to be used with radioactive beams. The measurement was performed at the JYFL with the Koeln coincidence plunger device and the JUROGAM spectrometer using a {sup 128}Xe beam impinging on a {sup nat}Fe target at a beam energy of 525 MeV. Recoils were detected by means of 32 solar cells placed at extreme forward angles. Particle-gated {gamma}-singles and {gamma}{gamma}-coincidences were measured at different target-degrader distances. Details of the experiment and first results are presented.

  1. Analysis methods of safe Coulomb-excitation experiments with radioactive ion beams using the GOSIA code

    NASA Astrophysics Data System (ADS)

    Zielińska, M.; Gaffney, L. P.; Wrzosek-Lipska, K.; Clément, E.; Grahn, T.; Kesteloot, N.; Napiorkowski, P.; Pakarinen, J.; Van Duppen, P.; Warr, N.

    2016-04-01

    With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies becomes an important experimental tool in nuclear-structure physics. The usefulness of the technique to extract key information on the electromagnetic properties of nuclei has been demonstrated since the 1960s with stable beam and target combinations. New challenges present themselves when studying exotic nuclei with this technique, including dealing with low statistics or number of data points, absolute and relative normalisation of the measured cross-sections and a lack of complementary experimental data, such as excited-state lifetimes and branching ratios. This paper addresses some of these common issues and presents analysis techniques to extract transition strengths and quadrupole moments utilising the least-squares fit code, GOSIA.

  2. Coulomb excitation of radioactive Na21 and its stable mirror Ne21

    NASA Astrophysics Data System (ADS)

    Schumaker, M. A.; Cline, D.; Hackman, G.; Morton, A. C.; Pearson, C. J.; Svensson, C. E.; Wu, C. Y.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Moisan, F.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.

    2008-10-01

    The low-energy structures of the mirror nuclei Ne21 and radioactive Na21 have been examined by using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. Beams of ~5×106 ions/s were accelerated to 1.7 MeV/A and Coulomb excited in a 0.5 mg/cm2 natTi target. Scattered beam and target particles were detected by the segmented Si detector BAMBINO, while γ rays were observed by using two TIGRESS HPGe clover detectors perpendicular to the beam axis. For each isobar, Coulomb excitation from the (3)/(2)+ ground state to the first excited (5)/(2)+ state was observed and B(E2) values were determined by using the 2+→0+ de-excitation in Ti48 as a reference. The ϕ segmentation of BAMBINO was used to deduce tentative assignments for the signs of the mixing ratios between the E2 and M1 components of the transitions. The resulting B(E2)↑ values are 131±9e2 fm4 (25.4±1.7 W.u.) for Ne21 and 205±14e2 fm4 (39.7±2.7 W.u.) for Na21. The fit to the present data and the known lifetimes determined E2/M1 mixing ratios and B(M1)↓ values of δ=(-)0.0767±0.0027 and 0.1274±0.0025μN2 and δ=(+)0.0832±0.0028 and 0.1513±0.0017μN2 for Ne21 and Na21, respectively (with Krane and Steffen sign convention). By using the effective charges ep=1.5e and en=0.5e, the B(E2) values produced by the p-sd shell model are 30.7 and 36.4 W.u. for Ne21 and Na21, respectively. This analysis resolves a significant discrepancy between a previous experimental result for Na21 and shell-model calculations.

  3. Time-Resolved Measurement of Interatomic Coulombic Decay Induced by Two-Photon Double Excitation of Ne2

    NASA Astrophysics Data System (ADS)

    Takanashi, T.; Golubev, N. V.; Callegari, C.; Fukuzawa, H.; Motomura, K.; Iablonskyi, D.; Kumagai, Y.; Mondal, S.; Tachibana, T.; Nagaya, K.; Nishiyama, T.; Matsunami, K.; Johnsson, P.; Piseri, P.; Sansone, G.; Dubrouil, A.; Reduzzi, M.; Carpeggiani, P.; Vozzi, C.; Devetta, M.; Negro, M.; Faccialà, D.; Calegari, F.; Trabattoni, A.; Castrovilli, M. C.; Ovcharenko, Y.; Mudrich, M.; Stienkemeier, F.; Coreno, M.; Alagia, M.; Schütte, B.; Berrah, N.; Plekan, O.; Finetti, P.; Spezzani, C.; Ferrari, E.; Allaria, E.; Penco, G.; Serpico, C.; De Ninno, G.; Diviacco, B.; Di Mitri, S.; Giannessi, L.; Jabbari, G.; Prince, K. C.; Cederbaum, L. S.; Demekhin, Ph. V.; Kuleff, A. I.; Ueda, K.

    2017-01-01

    The hitherto unexplored two-photon doubly excited states [Ne*(2 p-13 s )]2 were experimentally identified using the seeded, fully coherent, intense extreme ultraviolet free-electron laser FERMI. These states undergo ultrafast interatomic Coulombic decay (ICD), which predominantly produces singly ionized dimers. In order to obtain the rate of ICD, the resulting yield of Ne2+ ions was recorded as a function of delay between the extreme ultraviolet pump and UV probe laser pulses. The extracted lifetimes of the long-lived doubly excited states, 390 (-130 /+450 ) fs , and of the short-lived ones, less than 150 fs, are in good agreement with ab initio quantum mechanical calculations.

  4. Three-body Coulomb bound states

    NASA Astrophysics Data System (ADS)

    Bhatia, A. K.; Drachman, Richard J.

    1987-05-01

    The binding energies of three-particle systems containing two electrons and one positive particle of mass M are reexamined in an attempt to understand the approximate proportionality of the 1Se ground-state binding energies of the reduced masses, as pointed out by Botero and Green (1986). The contribution to the energy of the mass-polarization term is evaluated. No fundamental principle is involved, since the mass polarization merely decreases somewhat as the mass of the positive particle is reduced below the proton mass. In the case of the excited 3Pe state, this reduction is not sufficient to allow binding when M approaches the electron mass. Some properties of the recently observed negative muonium ion (e/-/ mu/+/ e/-/) are also computed.

  5. Three-body Coulomb bound states

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Drachman, Richard J.

    1987-01-01

    The binding energies of three-particle systems containing two electrons and one positive particle of mass M are reexamined in an attempt to understand the approximate proportionality of the 1Se ground-state binding energies of the reduced masses, as pointed out by Botero and Green (1986). The contribution to the energy of the mass-polarization term is evaluated. No fundamental principle is involved, since the mass polarization merely decreases somewhat as the mass of the positive particle is reduced below the proton mass. In the case of the excited 3Pe state, this reduction is not sufficient to allow binding when M approaches the electron mass. Some properties of the recently observed negative muonium ion (e/-/ mu/+/ e/-/) are also computed.

  6. Coulomb excitation of a Am242 isomeric target: E2 and E3 strengths, rotational alignment, and collective enhancement

    NASA Astrophysics Data System (ADS)

    Hayes, A. B.; Cline, D.; Moody, K. J.; Ragnarsson, I.; Wu, C. Y.; Becker, J. A.; Carpenter, M. P.; Carroll, J. J.; Gohlke, D.; Greene, J. P.; Hecht, A. A.; Janssens, R. V. F.; Karamian, S. A.; Lauritsen, T.; Lister, C. J.; Macri, R. A.; Propri, R.; Seweryniak, D.; Wang, X.; Wheeler, R.; Zhu, S.

    2010-10-01

    A 98% pure 242mAm (K=5-, t1/2=141 years) isomeric target was Coulomb excited with a 170.5-MeV Ar40 beam. The selectivity of Coulomb excitation, coupled with the sensitivity of Gammasphere plus CHICO, was sufficient to identify 46 new states up to spin 18ℏ in at least four rotational bands; 11 of these new states lie in the isomer band, 13 in a previously unknown yrast Kπ=6- rotational band, and 13 in a band tentatively identified as the predicted yrast Kπ=5+ band. The rotational bands based on the Kπ=5- isomer and the 6- bandhead were populated by Coulomb excitation with unexpectedly equal cross sections. The γ-ray yields are reproduced by Coulomb excitation calculations using a two-particle plus rotor model (PRM), implying nearly complete ΔK=1 mixing of the two almost-degenerate rotational bands, but recovering the Alaga rule for the unperturbed states. The degeneracy of the 5- and 6- bands allows for precise determination of the mixing interaction strength V, which approaches the strong-mixing limit; this agrees with the 50% attenuation of the Coriolis matrix element assumed in the model calculations. The fractional admixture of the IKπ=66- state in the nominal 65- isomer band state is measured within the PRM as 45.6-1.1+0.3%. The E2 and M1 strengths coupling the 5- and 6- bands are enhanced significantly by the mixing, while E1 and E2 couplings to other low-K bands are not measurably enhanced. The yields of the 5+ band are reproduced by an E3 strength of ≈15 W.u., competitive with the interband E2 strength. Alignments of the identified two-particle Nilsson states in Am242 are compared with the single-particle alignments in Am241.

  7. Optimum forward scattering zone for intermediate-energy Coulomb excitation experiments

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Singh, Pardeep; Kharab, Rajesh

    2015-08-01

    Here we present a comparative study of various schemes commonly used for the determination of the safe minimum value of the impact parameter, which decides the maximum value of forward laboratory scattering angle, in intermediate-energy Coulomb excitation experiments. We have found that these are special cases of the recently proposed parameterization scheme in Kumar Rajiv et al., Phys. Rev. C, 81 (2010) 037602. The scheme may be used to demarcate the absorption-free as well as no-flux loss zone for intermediate-energy Coulomb excitation experiments.

  8. Crossover of Feshbach Resonances to Shape-Type Resonances in Electron-Hydrogen Atom Excitation with a Screened Coulomb Interaction

    SciTech Connect

    Zhang Songbin; Wang Jianguo; Janev, R. K.

    2010-01-15

    The effects of Coulomb interaction screening on electron-hydrogen atom excitation in the n=2 threshold region are investigated by using the R-matrix method with pseudostates. The interaction screening lifts the l degeneracy of n=2 Coulomb energy level, producing two distinct thresholds for 2s and 2p states. The phenomenon of transformation of {sup 1,3}P and {sup 1}D Feshbach resonances into shape-type resonances is observed when they pass across the 2s and 2p threshold, respectively, as the interaction screening increases. It is shown that this resonance transformation leads to dramatic effects in the 1s->2s and 1s->2p excitation collision strengths in the n=2 threshold collision energy region.

  9. On rate-state and Coulomb failure models

    USGS Publications Warehouse

    Gomberg, J.; Beeler, N.; Blanpied, M.

    2000-01-01

    We examine the predictions of Coulomb failure stress and rate-state frictional models. We study the change in failure time (clock advance) Δt due to stress step perturbations (i.e., coseismic static stress increases) added to "background" stressing at a constant rate (i.e., tectonic loading) at time t0. The predictability of Δt implies a predictable change in seismicity rate r(t)/r0, testable using earthquake catalogs, where r0 is the constant rate resulting from tectonic stressing. Models of r(t)/r0, consistent with general properties of aftershock sequences, must predict an Omori law seismicity decay rate, a sequence duration that is less than a few percent of the mainshock cycle time and a return directly to the background rate. A Coulomb model requires that a fault remains locked during loading, that failure occur instantaneously, and that Δt is independent of t0. These characteristics imply an instantaneous infinite seismicity rate increase of zero duration. Numerical calculations of r(t)/r0 for different state evolution laws show that aftershocks occur on faults extremely close to failure at the mainshock origin time, that these faults must be "Coulomb-like," and that the slip evolution law can be precluded. Real aftershock population characteristics also may constrain rate-state constitutive parameters; a may be lower than laboratory values, the stiffness may be high, and/or normal stress may be lower than lithostatic. We also compare Coulomb and rate-state models theoretically. Rate-state model fault behavior becomes more Coulomb-like as constitutive parameter a decreases relative to parameter b. This is because the slip initially decelerates, representing an initial healing of fault contacts. The deceleration is more pronounced for smaller a, more closely simulating a locked fault. Even when the rate-state Δt has Coulomb characteristics, its magnitude may differ by some constant dependent on b. In this case, a rate-state model behaves like a modified

  10. Is the ground state of Yang-Mills theory Coulombic?

    SciTech Connect

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; McMullan, D.; Lutz, W.

    2008-08-01

    We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.

  11. Coulomb Excitation and One-Neutron Transfer Studies of Stable and Radioactive Nuclei at HRIBF-ORNL

    SciTech Connect

    Allmond, James M

    2015-01-01

    Several stable and radioactive nuclei ranging from $A=58$ to 208 were recently studied in inverse kinematics by Coulomb excitation and heavy-ion induced one-neutron transfer at the Holifield Radioactive Ion Beam Facility of Oak Ridge National Laboratory. These studies used a CsI-HPGe detector array to detect scattered charged particles and emitted $\\gamma$ rays from the in-beam reactions. A Bragg-curve detector was used to measure the energy loss of the various beams through the targets and to measure the radioactive beam compositions. Stable nickel, strontium, zirconium, molybdenum, tin, tellurium, and lead isotopes and neutron-rich radioactive tin and tellurium isotopes were among the nuclei recently studied. Coulomb excitation was used to measure the electromagnetic moments of the first excited states and heavy-ion induced one-neutron transfer was used to measure the absolute cross sections and lifetimes of the excited single-particle states. A sample of these results are presented here with an emphasis on the tin isotopes. In particular, a survey of the Bragg-curve measurements, Doppler corrections, and inconclusive $i_{13/2}$ candidate in $^{133}$\\textrm{Sn} are presented.

  12. Shape coexistence in the neutron-deficient even-even (182-188)Hg isotopes studied via coulomb excitation.

    PubMed

    Bree, N; Wrzosek-Lipska, K; Petts, A; Andreyev, A; Bastin, B; Bender, M; Blazhev, A; Bruyneel, B; Butler, P A; Butterworth, J; Carpenter, M P; Cederkäll, J; Clément, E; Cocolios, T E; Deacon, A; Diriken, J; Ekström, A; Fitzpatrick, C; Fraile, L M; Fransen, Ch; Freeman, S J; Gaffney, L P; García-Ramos, J E; Geibel, K; Gernhäuser, R; Grahn, T; Guttormsen, M; Hadinia, B; Hadyńska-Kle K, K; Hass, M; Heenen, P-H; Herzberg, R-D; Hess, H; Heyde, K; Huyse, M; Ivanov, O; Jenkins, D G; Julin, R; Kesteloot, N; Kröll, Th; Krücken, R; Larsen, A C; Lutter, R; Marley, P; Napiorkowski, P J; Orlandi, R; Page, R D; Pakarinen, J; Patronis, N; Peura, P J; Piselli, E; Rahkila, P; Rapisarda, E; Reiter, P; Robinson, A P; Scheck, M; Siem, S; Singh Chakkal, K; Smith, J F; Srebrny, J; Stefanescu, I; Tveten, G M; Van Duppen, P; Van de Walle, J; Voulot, D; Warr, N; Wenander, F; Wiens, A; Wood, J L; Zielińska, M

    2014-04-25

    Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85  MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0+ states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0+ state was noted in Hg182,184. The results are compared to beyond mean field and interacting-boson based models and interpreted within a two-state mixing model. Partial agreement with the model calculations was obtained. The presence of two different structures in the light even-mass mercury isotopes that coexist at low excitation energy is firmly established.

  13. Coulomb Excitation of n-rich nuclei along the N = 50 shell closure

    NASA Astrophysics Data System (ADS)

    Padilla-Rodal, E.; Galindo-Uribarri, A.; Batchelder, J. C.; Beene, J. R.; Bingham, C.; Brown, B. A.; Lagergren, K. B.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego-Blanco, J. P.; Varner, R. L.; Yu, C.-H.

    2008-04-01

    Recently, we have been investigating characteristics of nuclear states around the neutron-rich mass A=80 region [1]. Using the Radioactive Ion Beams (RIBs) produced at HRIBF, we have successfully measured the B(E2) values for ^78,80,82Ge , using Coulomb excitation in inverse kinematics. For the germanium isotopes, these data allow a study of the systematic trend between the subshell N= 40 and the N=50 shell. Using the same technique, we have measured the B(E2) value of various nuclei along the N=50 shell including the radioactive nucleus ^84Se. This value together with our previously measured ^82Ge, and the recent result on ^80Zn from ISOLDE [2] are providing basic experimental information needed for a better understanding of the neutron-rich nuclei around A˜80. We report the new results and compare with shell model calculations. [1] E. Padilla-Rodal et al., Phys. Rev. Lett. 94 (2005) 122501. [2] J. Van de Walle et al., Phys. Rev. Lett. 99 (2007) 142501.

  14. Excited State Mass Spectra of Ω0 c Baryon

    NASA Astrophysics Data System (ADS)

    Shah, Z.; Thakkar, K.; Rai, A. K.; Vinodkumar, P. C.

    2016-10-01

    We have calculated the radial and orbital excited states of singly charmed baryon Oc using the Hypercentral Constituent Quark Model (hCQM). The confinement potential is assumed as coulomb plus power potential (CPP V ). The ground state and excited state masses are determined with and with out first order correction to the potential. Furthermore, we plot graph between Mass(M) → Potential Index(v). Our calculated results are in good agreement with experimental and other theoretical predictions.

  15. Optimal load resistance of a randomly excited nonlinear electromagnetic energy harvester with Coulomb friction

    NASA Astrophysics Data System (ADS)

    Tian, Y. P.; Wang, Y.; Jin, X. L.; Huang, Z. L.

    2014-09-01

    A nonlinear electromagnetic energy harvester directly powering a load resistance is considered in this manuscript. The nonlinearity includes the cubic stiffness and the unavoidable Coulomb friction, and the base excitation is confined to Gaussian white noise. Directly starting from the coupled equations, a novel procedure to evaluate the random responses and the mean output power is developed through the generalized harmonic transformation and the equivalent non-linearization technique. The dependence of the optimal ratio of the load resistance to the internal resistance and the associated optimal mean output power on the internal resistance of the coil is established. The principle of impedance matching is correct only when the internal resistance is infinity, and the optimal mean output power approaches an upper limit as the internal resistance is close to zero. The influence of the Coulomb friction on the optimal resistance ratio and the optimal mean output power is also investigated. It is proved that the Coulomb friction almost does not change the optimal resistance ratio although it prominently reduces the optimal mean output power.

  16. Relativistic Coulomb excitation within the time dependent superfluid local density approximation

    SciTech Connect

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.

    2015-01-06

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.

  17. Electron-hydrogen-atom elastic and inelastic scattering with screened Coulomb interaction around the n=2 excitation threshold

    SciTech Connect

    Zhang Songbin; Wang Jianguo; Janev, R. K.

    2010-03-15

    The effects of Coulomb interaction screening on electron-hydrogen-atom elastic and excitation scattering around the n=2 threshold have been investigated by using the R-matrix method with pseudostates. The elastic and excitation collision strengths show dramatic changes when the interaction screening length D varies from {infinity} to 3.8 a.u., as a result of the convergence of {sup 1,3}S Feshbach resonances to the varying 2s threshold and of the transformation of {sup 1,3}P and {sup 1}D Feshbach resonances into shape-type resonances when they pass across the 2s and 2p threshold at certain critical value of D, respectively [S. B. Zhang et al., Phys. Rev. Lett. 104, 023203 (2010)]. The resonance parameters for a large number of D in the range D={infinity}-3.8 a.u. are presented. It is observed that the {sup 1,3}P and {sup 1}D resonance contributions to the elastic and excitation collision strengths decrease rapidly with decreasing D after the resonance passes the critical D value. The contribution of a {sup 1}S{sup e} Feshbach resonance to the elastic or excitation collision strength changes into a cusp after the resonance merges into its parent 2s state and immerses into the background with the further decrease of D.

  18. Z=50 Shell Gap near Sn100 from Intermediate-Energy Coulomb Excitations in Even-Mass Sn106-112 Isotopes

    NASA Astrophysics Data System (ADS)

    Vaman, C.; Andreoiu, C.; Bazin, D.; Becerril, A.; Brown, B. A.; Campbell, C. M.; Chester, A.; Cook, J. M.; Dinca, D. C.; Gade, A.; Galaviz, D.; Glasmacher, T.; Hjorth-Jensen, M.; Horoi, M.; Miller, D.; Moeller, V.; Mueller, W. F.; Schiller, A.; Starosta, K.; Stolz, A.; Terry, J. R.; Volya, A.; Zelevinsky, V.; Zwahlen, H.

    2007-10-01

    Rare isotope beams of neutron-deficient Sn106,108,110 from the fragmentation of Xe124 were employed in an intermediate-energy Coulomb excitation experiment. The measured B(E2,01+→21+) values for Sn108 and Sn110 and the results obtained for the Sn106 show that the transition strengths for these nuclei are larger than predicted by current state-of-the-art shell-model calculations. This discrepancy might be explained by contributions of the protons from within the Z=50 shell to the structure of low-energy excited states in this region.

  19. Ground state and resonant states of helium in exponential cosine screened Coulomb potential

    NASA Astrophysics Data System (ADS)

    Ghoshal, Arijit; Ho, Y. K.

    2009-05-01

    We have investigated the ground state and a resonance state of normal helium atom in exponential cosine screened Coulomb potential (ECSCP) with screening parameterλ: V(r),,,1r,^-λr(λr) (in a.u.), where r denotes the inter-particle distance. Within the framework of Ritz's variational principle and making use of a highly correlated wave function, we have determined the ground state energies and wave functions of the helium atom for different values of the screening parameterλ. Furthermore, we have shown that the ground state energy of helium for a particular value of λ does converge with increasing number of terms in the wave function. In addition, using the stabilization method, we have investigated the doubly excited 2s^2 ^1S^e resonance state in helium with ECSCP. Resonance energy and width for various λ values are calculated. Our present work will play a useful role in the investigations of atomic structures in quantum plasmas [1]. [1]. P.K. Shukla and B. Eliasson, Phys. Lett. A 372, 2899 (2008).

  20. Coulomb Enhancement of Superfluorescence Bursts from the Fermi Edge in Highly-Excited Quantum Wells

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Hee; Noe, Tim; McGill, Stephen A.; Wang, Yongrui; Wójcik, Aleksander K.; Belyanin, Alexey A.; Kono, Junichiro

    2013-03-01

    Superfluorescence (SF) is a many-body process in which an ensemble of excited dipoles spontaneously develops macroscopic coherence and abruptly decays by producing a burst of coherent radiation. We have recently reported the first observation of SF from semiconductor quantum wells in the presence of a strong perpendicular magnetic field. Here, we report on results of our systematic magnetic field dependent studies of light emission from high-density electron-hole systems with gain. We observed SF pulses even at 0 Tesla when the excitation power is high and the temperature is low. The SF radiation at 0 Tesla shows a continuous band of emission in time-resolved photoluminescence images, i.e., the photon energy of the emitted light changes continuously with time. We interpret this phenomenon in terms of Coulomb enhancement of gain near the Fermi energy in a high-density electron-hole system. In addition, we demonstrate that the delay between the pump pulse and the SF pulses is tunable through the magnetic field and excitation pump power. Finally, the delay is longer for a lower-energy Landau level at a given magnetic field, i.e., the SF bursts proceed in a sequential manner from higher to lower Landau levels.

  1. Optically excited states in positronium

    NASA Technical Reports Server (NTRS)

    Howell, R. H.; Ziock, Klaus P.; Magnotta, F.; Dermer, Charles D.; Failor, R. A.; Jones, K. M.

    1990-01-01

    Optical excitation are reported of the 1 3S-2 3P transition in positronium, and a second excitation from n=2 to higher n states. The experiment used light from two pulsed dye lasers. Changes in the positronium annihilation rate during and after the laser pulse were used to deduce the excited state populations. The n=2 level was found to be saturable and excitable to a substantial fraction of n=2 positronium to higher levels. Preliminary spectroscopic measurements were performed on n=14 and n=15 positronium.

  2. Nonlinear SU(2,1) Model of Multiple Giant Dipole Resonance Coulomb Excitation

    NASA Astrophysics Data System (ADS)

    Hussein, Mahir; de Toledo Piza, Antonio; Vorov, Oleg

    2000-10-01

    We construct a three-dimensional analytically soluble model of the nonlinear effects in Coulomb excitation of multiphonon Giant Dipole Resonances (GDR) based on the SU(2,1) algebra^1. Analytical expressions for the multi-phonon transition probabilities are derived. For reasonably small magnitude of nonlinearity x~= 0.15-0.3, the enhancement factor for the Double Giant Resonance excitation probabilities and the cross sections reaches values 1.3-2 compatible^1,2 with experimental data from relativistic ion collision experiments^3. The full 3-dimensional model predicts enhancement of the multiple GDR cross sections at low and high bombarding energies (with the minimum at ~= 1.3 GeV for the Pb+Pb colliding system). Enhancement factors for Double GDR measured in thirteen different processes with various projectiles and targets at different bombarding energies are well reproduced with the same value of the nonlinearity parameter with the exception of the anomalous case of ^136Xe which requires a larger value. The work has been supported by the FAPESP and by the CNPq. References ^1 M. S. Hussein, A. F. R. de Toledo Piza and O. K.Vorov, Ann. Phys. (N.Y.), 2000, to appear. ^2 M. S. Hussein, A. F. R. de Toledo Piza and O. K.Vorov, Phys. Rev. C59,R1242 (1999). ^3 T. Aumann, P.F. Bortignon, and H. Emling, Annu. Rev. Nucl. Part. Sci. 48, 351 (1998).

  3. Relativistic Coulomb excitation within the time dependent superfluid local density approximation

    DOE PAGES

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; ...

    2015-01-06

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, themore » dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.« less

  4. Preparation of actinide targets by molecular plating for Coulomb excitation studies at ATLAS.

    SciTech Connect

    Greene, J. P.

    1998-11-18

    Molecular plating is now routinely used to prepare sources and targets of actinide elements. Although the technique is simple and fairly reproducible, because of the radioactive nature of the target it is very useful to record various parameters in the preparation of such targets. At Argonne, {approximately}200 {micro}g/cm{sup 2} thick targets of Pu and Cm were required for Coulomb Excitation (COULEX) Studies with the Argonne-Notre Dame BGO gamma ray facility and later with the GAMMASPHERE. These targets were plated on 50 mg/cm{sup 2} Au backing and were covered with 150 {micro}g/cm{sup 2} Au foil. Targets of {sup 239}Pu, {sup 240}Pu, {sup 242}Pu, {sup 244}Pu and {sup 248}Cm were prepared by dissolving the material in isopropyl alcohol and electroplating the actinide ions by applying 600 volts. The amount of these materials on the target was determined by alpha particle counting and gamma ray counting. Details of the molecular plating and counting will be discussed.

  5. Three-body Coulomb systems using generalized angular-momentum S states

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Sims, J. S.

    1974-01-01

    An expansion of the three-body Coulomb potential in generalized angular-momentum eigenfunctions developed earlier by one of the authors is used to compute energy eigenvalues and eigenfunctions of bound S states of three-body Coulomb systems. The results for He, H(-), e(-)e(+)e(-), and pmu(-)p are compared with the results of other computational approaches.

  6. Level lifetimes and quadrupole moments from Coulomb excitation in the Ba chain and the N = 80 isotones

    NASA Astrophysics Data System (ADS)

    Bauer, C.; Guastalla, G.; Leske, J.; Möller, O.; Möller, T.; Pakarinen, J.; Pietralla, N.; Rainovski, G.; Rapisarda, E.; Seweryniak, D.; Stahl, C.; Stegmann, R.; Wiederhold, J.; Zhu, S.

    2012-12-01

    The chain of Barium isotopes enables us to study experimentally the evolution of nuclear quadrupole collectivity from the shell closure at N = 82 towards neutron-deficient or neutron-rich deformed nuclei. The TU Darmstadt group has investigated several nuclei from stable 130,132Ba up to radioactive 140,142Ba with the projectile-Coulomb excitation technique including the use of the Doppler-shift attenuation method (DSAM). Lifetimes of quadrupole-collective states of 132Ba and 140Ba were obtained for the first time as well as the static electric quadrupole moments Q(21+) for 130,132Ba and 140,142Ba. The results are compared to Monte Carlo shell model and Beyond-Mean-Field calculations. The phenomenon of shell stabilization in the N = 80 isotones is further investigated by measurements of the B(E2;21+ → 01+) values of 140Nd and 142Sm and comparison to the quasi-particle phonon model and shell-model calculations.

  7. X-ray production with heavy post-accelerated radioactive-ion beams in the lead region of interest for Coulomb-excitation measurements

    NASA Astrophysics Data System (ADS)

    Bree, N.; Wrzosek-Lipska, K.; Butler, P. A.; Gaffney, L. P.; Grahn, T.; Huyse, M.; Kesteloot, N.; Pakarinen, J.; Petts, A.; Van Duppen, P.; Warr, N.

    2015-10-01

    Characteristic K X-rays have been observed in Coulomb-excitation experiments with heavy radioactive-ion beams in the lead region (Z = 82), produced at the REX-ISOLDE facility, and were used to identify the decay of strongly converted transitions as well as monopole 02+ → 01+ transitions. Different targets were used, and the X-rays were detected by the Miniball γ-ray spectrometer surrounding the target position. A stable mercury isotope, as well as neutron-deficient mercury, lead, polonium, and radon isotopes were studied, and a detailed description of the analysis using the radioactive 182,184,186,188Hg isotopes is presented. Apart from strongly converted transitions originating from the decay of excited states, the heavy-ion induced K-vacancy creation process has been identified as an extra source for K X-ray production. Isolating the atomic component of the observed K X-rays is essential for a correct analysis of the Coulomb-excitation experiment. Cross sections for the atomic reaction have been estimated and are compared to a theoretical approach.

  8. Excited states in 129I

    NASA Astrophysics Data System (ADS)

    Deleanu, D.; Balabanski, D. L.; Venkova, Ts.; Bucurescu, D.; Mărginean, N.; Ganioǧlu, E.; Căta-Danil, Gh.; Atanasova, L.; Căta-Danil, I.; Detistov, P.; Filipescu, D.; Ghiţă, D.; Glodariu, T.; Ivaşcu, M.; Mărginean, R.; Mihai, C.; Negret, A.; Pascu, S.; Sava, T.; Stroe, L.; Suliman, G.; Zamfir, N. V.

    2013-01-01

    Excited states in 129I were populated with the 124Sn(7Li,2n) reaction at 23 MeV. In-beam measurements of γ-ray coincidences were performed with an array of eight HPGe detectors and five LaBr3(Ce) scintillation detectors. Based on the γγ coincidence data, a positive parity band structure built on the 7/2+ ground state was established and the πg7/2 configuration at oblate deformation was assigned to it. The results are compared to interacting Boson-Fermion model (IBFM) and total Routhian surface (TRS) calculations.

  9. Coulomb interaction effects on the Majorana states in quantum wires.

    PubMed

    Manolescu, A; Marinescu, D C; Stanescu, T D

    2014-04-30

    The stability of the Majorana modes in the presence of a repulsive interaction is studied in the standard semiconductor wire-metallic superconductor configuration. The effects of short-range Coulomb interaction, which is incorporated using a purely repulsive δ-function to model the strong screening effect due to the presence of the superconductor, are determined within a Hartree-Fock approximation of the effective Bogoliubov-De Gennes Hamiltonian that describes the low-energy physics of the wire. Through a numerical diagonalization procedure we obtain interaction corrections to the single particle eigenstates and calculate the extended topological phase diagram in terms of the chemical potential and the Zeeman energy. We find that, for a fixed Zeeman energy, the interaction shifts the phase boundaries to a higher chemical potential, whereas for a fixed chemical potential this shift can occur either at lower or higher Zeeman energies. These effects can be interpreted as a renormalization of the g-factor due to the interaction. The minimum Zeeman energy needed to realize Majorana fermions decreases with the increasing strength of the Coulomb repulsion. Furthermore, we find that in wires with multi-band occupancy this effect can be enhanced by increasing the chemical potential, i.e. by occupying higher energy bands.

  10. Solution of two-body relativistic bound state equations with confining plus Coulomb interactions

    NASA Technical Reports Server (NTRS)

    Maung, Khin Maung; Kahana, David E.; Norbury, John W.

    1992-01-01

    Studies of meson spectroscopy have often employed a nonrelativistic Coulomb plus Linear Confining potential in position space. However, because the quarks in mesons move at an appreciable fraction of the speed of light, it is necessary to use a relativistic treatment of the bound state problem. Such a treatment is most easily carried out in momentum space. However, the position space Linear and Coulomb potentials lead to singular kernels in momentum space. Using a subtraction procedure we show how to remove these singularities exactly and thereby solve the Schroedinger equation in momentum space for all partial waves. Furthermore, we generalize the Linear and Coulomb potentials to relativistic kernels in four dimensional momentum space. Again we use a subtraction procedure to remove the relativistic singularities exactly for all partial waves. This enables us to solve three dimensional reductions of the Bethe-Salpeter equation. We solve six such equations for Coulomb plus Confining interactions for all partial waves.

  11. Excited State Properties of Hybrid Perovskites.

    PubMed

    Saba, Michele; Quochi, Francesco; Mura, Andrea; Bongiovanni, Giovanni

    2016-01-19

    Metal halide perovskites have come to the attention of the scientific community for the progress achieved in solar light conversion. Energy sustainability is one of the priorities of our society, and materials advancements resulting in low-cost but efficient solar cells and large-area lighting devices represent a major goal for applied research. From a basic point of view, perovskites are an exotic class of hybrid materials combining some merits of organic and inorganic semiconductors: large optical absorption, large mobilities, and tunable band gap together with the possibility to be processed in solution. When a novel class of promising semiconductors comes into the limelight, lively discussions ensue on the photophysics of band-edge excitations, because just the states close to the band edge are entailed in energy/charge transport and light emission. This was the case several decades ago for III-V semiconductors, it has been up to 10 years ago for organics, and it is currently the case for perovskites. Our aim in this Account is to rationalize the body of experimental evidence on perovskite photophysics in a coherent theoretical framework, borrowing from the knowledge acquired over the years in materials optoelectronics. A crucial question is whether photon absorption leads to a population of unbound, conductive free charges or instead excitons, neutral and insulating bound states created by Coulomb interaction just below the energy of the band gap. We first focus on the experimental estimates of the exciton binding energy (Eb): at room temperature, Eb is comparable to the thermal energy kBT in MAPbI3 and increases up to values 2-3kBT in wide band gap MAPbBr3 and MAPbCl3. Statistical considerations predict that these values, even though comparable to or larger than thermal energy, let free carriers prevail over bound excitons for all levels of excitation densities relevant for devices. The analysis of photophysics evidence confirms that all hybrid halide

  12. SCREENED COULOMB FORMULATION OF THE IONIZATION EQUILIBRIUM EQUATION OF STATE,

    DTIC Science & Technology

    The ionization equilibrium equation of state (IEEOS) is formulated relative to the numerical solutions of the Schrodinger equation with the complete...for hydrogen and iron, where pressures at high densities and temperature are compared with pressures from the equation of state based upon the Thomas...IEEOS represents a significant improvement over the TFD equation of state . (Author)

  13. Direct Lifetime Measurements of the Excited States in 72Ni

    NASA Astrophysics Data System (ADS)

    Kolos, K.; Miller, D.; Grzywacz, R.; Iwasaki, H.; Al-Shudifat, M.; Bazin, D.; Bingham, C. R.; Braunroth, T.; Cerizza, G.; Gade, A.; Lemasson, A.; Liddick, S. N.; Madurga, M.; Morse, C.; Portillo, M.; Rajabali, M. M.; Recchia, F.; Riedinger, L. L.; Voss, P.; Walters, W. B.; Weisshaar, D.; Whitmore, K.; Wimmer, K.; Tostevin, J. A.

    2016-03-01

    The lifetimes of the first excited 2+ and 4+ states in 72>Ni were measured at the National Superconducting Cyclotron Laboratory with the recoil-distance Doppler-shift method, a model-independent probe to obtain the reduced transition probability. Excited states in 72Ni were populated by the one-proton knockout reaction of an intermediate energy 73Cu beam. γ -ray-recoil coincidences were detected with the γ -ray tracking array GRETINA and the S800 spectrograph. Our results provide evidence of enhanced transition probability B (E 2 ;2+→0+) as compared to 68Ni, but do not confirm the trend of large B (E 2 ) values reported in the neighboring isotope 70Ni obtained from Coulomb excitation measurement. The results are compared to shell model calculations. The lifetime obtained for the excited 41+ state is consistent with models showing decay of a seniority ν =4 , 4+ state, which is consistent with the disappearance of the 8+ isomer in 72Ni.

  14. Multimode optical fibers: steady state mode exciter.

    PubMed

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  15. Excited state mass spectra of doubly heavy Ξ baryons

    NASA Astrophysics Data System (ADS)

    Shah, Zalak; Rai, Ajay Kumar

    2017-02-01

    In this paper, the mass spectra are obtained for doubly heavy Ξ baryons, namely, Ξ _{cc}+, Ξ _{cc}^{++}, Ξ _{bb}-, Ξ _{bb}0, Ξ _{bc}0 and Ξ _{bc}+. These baryons consist of two heavy quarks ( cc, bb, and bc) with a light ( d or u) quark. The ground, radial, and orbital states are calculated in the framework of the hypercentral constituent quark model with Coulomb plus linear potential. Our results are also compared with other predictions, thus, the average possible range of excited states masses of these Ξ baryons can be determined. The study of the Regge trajectories is performed in ( n, M2) and ( J, M2) planes and their slopes and intercepts are also determined. Lastly, the ground state magnetic moments of these doubly heavy baryons are also calculated.

  16. Quantal density-functional theory of excited states: The state arbitrariness of the model noninteracting system

    SciTech Connect

    Slamet, Marlina; Singh, Ranbir; Sahni, Viraht; Massa, Lou

    2003-10-01

    The quantal density-functional theory (Q-DFT) of nondegenerate excited-states maps the pure state of the Schroedinger equation to one of noninteracting fermions such that the equivalent excited state density, energy, and ionization potential are obtained. The state of the model S system is arbitrary in that it may be in a ground or excited state. The potential energy of the model fermions differs as a function of this state. The contribution of correlations due to the Pauli exclusion principle and Coulomb repulsion to the potential and total energy of these fermions is independent of the state of the S system. The differences are solely a consequence of correlation-kinetic effects. Irrespective of the state of the S system, the highest occupied eigenvalue of the model fermions is the negative of the ionization potential. In this paper we demonstrate the state arbitrariness of the model system by application of Q-DFT to the first excited singlet state of the exactly solvable Hookean atom. We construct two model S systems: one in a singlet ground state (1s{sup 2}), and the other in a singlet first excited state (1s2s). In each case, the density and energy determined are equivalent to those of the excited state of the atom, with the highest occupied eigenvalues being the negative of the ionization potential. From these results we determine the corresponding Kohn-Sham density-functional theory (KS-DFT) 'exchange-correlation' potential energy for the two S systems. Further, based on the results of the model calculations, suggestions for the KS-DFT of excited states are made.

  17. Direct lifetime measurements of the excited states in Ni72

    DOE PAGES

    Kolos, K.; Miller, D.; Grzywacz, R.; ...

    2016-03-22

    The lifetimes of the first excited 2+ and 4+ states in 72Ni were measured at the National Superconducting Cyclotron Laboratory with the recoil-distance Doppler-shift method, a model-independent probe to obtain the reduced transition probability. Excited states in 72Ni were populated by the one-proton knockout reaction of an intermediate energy 73Cu beam. γ-ray-recoil coincidences were detected with the γ-ray tracking array GRETINA and the S800 spectrograph. Our results provide evidence of enhanced transition probability B(E2;2+ → 0+) as compared to 68Ni, but do not confirm the trend of large B(E2) values reported in the neighboring isotope 70Ni obtained from Coulomb excitationmore » measurement. The results are compared to shell model calculations. Here, the lifetime obtained for the excited 4+1 state is consistent with models showing decay of a seniority ν = 4, 4+ state, which is consistent with the disappearance of the 8+ isomer in 72Ni.« less

  18. Excited-to-excited-state scattering using weak measurements

    NASA Astrophysics Data System (ADS)

    U, Satya Sainadh; Narayanan, Andal

    2015-11-01

    Weak measurements are a subset of measurement processes in quantum mechanics wherein the system, which is being measured, interacts very weakly with the measuring apparatus. Measurement values of observables undergoing a weak interaction and their amplification are concepts that have sharpened our understanding of interaction processes in quantum mechanics. Recent experiments show that naturally occurring processes such as resonance fluorescence from excited states of an atom can exhibit weak value amplification effect. In this paper we theoretically analyze the process of elastic resonance fluorescence from a V -type three-level atomic system, using the well-known Weiskopff-Wigner (WW) theory of spontaneous emission. Within this theory we show that a weak interaction regime can be identified and for suitable choices of initial and final excited states the mean scattering time between these states show an amplification effect during interaction with the vacuum bath modes of the electromagnetic field. We thus show that a system-bath interaction can show weak value amplification. Using our theory we reproduce the published experimental results carried out in such a system. More importantly, our theory can calculate scattering time scales in elastic resonance scattering between multiple excited states of a single atom or between common excited state configurations of interacting multiatom systems.

  19. Excited States of Non-Isolated Chromophores

    NASA Astrophysics Data System (ADS)

    Matsika, S.; Kozak, C.; Kistler, K.

    2009-06-01

    The photophysical and photochemical behavior of nucleobases is very important because of their biological role as the building blocks in DNA and RNA. Great progress has been made in understanding the excited-state properties of single bases. In order to understand the photophysical properties of nucleobases in complex environments we have investigated their excited states (a) in aqueous solutions and (b) as π-stacked dimers in DNA. The solvatochromic shifts of the excited states of pyrimidine nucleobases in aqueous solution have been investigated using a combined QM/MM procedure where the quantum mechanical solute is described using high level multireference configuration interaction methods while molecular dynamics simulations are used to obtain the structure of the solvent around the solute in an average way. The excited states of π-stacked nucleobases have also been investigated using various ab initio methods. The effect of the environment on the excited states and conical intersections is investigated.

  20. Local pair natural orbitals for excited states.

    PubMed

    Helmich, Benjamin; Hättig, Christof

    2011-12-07

    We explore how in response calculations for excitation energies with wavefunction based (e.g., coupled cluster) methods the number of double excitation amplitudes can be reduced by means of truncated pair natural orbital (PNO) expansions and localized occupied orbitals. Using the CIS(D) approximation as a test model, we find that the number of double excitation amplitudes can be reduced dramatically with minor impact on the accuracy if the excited state wavefunction is expanded in state-specific PNOs generated from an approximate first-order guess wavefunction. As for ground states, the PNO truncation error can also for excitation energies be controlled by a single threshold related to generalized natural occupation numbers. The best performance is found with occupied orbitals which are localized by the Pipek-Mezey localization. For a large test set of excited states we find with this localization that already a PNO threshold of 10(-8)-10(-7), corresponding to an average of only 40-80 PNOs per pair, is sufficient to keep the PNO truncation error for vertical excitation energies below 0.01 eV. This is a significantly more rapid convergence with the number doubles amplitudes than in domain-based local response approaches. We demonstrate that the number of significant excited state PNOs scales asymptotically linearly with the system size in the worst case of completely delocalized excitations and sub-linearly whenever the chromophore does not increase with the system size. Moreover, we observe that the flexibility of state-specific PNOs to adapt to the character of an excitation allows for an almost unbiased treatment of local, delocalized and charge transfer excited states.

  1. Local pair natural orbitals for excited states

    NASA Astrophysics Data System (ADS)

    Helmich, Benjamin; Hättig, Christof

    2011-12-01

    We explore how in response calculations for excitation energies with wavefunction based (e.g., coupled cluster) methods the number of double excitation amplitudes can be reduced by means of truncated pair natural orbital (PNO) expansions and localized occupied orbitals. Using the CIS(D) approximation as a test model, we find that the number of double excitation amplitudes can be reduced dramatically with minor impact on the accuracy if the excited state wavefunction is expanded in state-specific PNOs generated from an approximate first-order guess wavefunction. As for ground states, the PNO truncation error can also for excitation energies be controlled by a single threshold related to generalized natural occupation numbers. The best performance is found with occupied orbitals which are localized by the Pipek-Mezey localization. For a large test set of excited states we find with this localization that already a PNO threshold of 10-8-10-7, corresponding to an average of only 40-80 PNOs per pair, is sufficient to keep the PNO truncation error for vertical excitation energies below 0.01 eV. This is a significantly more rapid convergence with the number doubles amplitudes than in domain-based local response approaches. We demonstrate that the number of significant excited state PNOs scales asymptotically linearly with the system size in the worst case of completely delocalized excitations and sub-linearly whenever the chromophore does not increase with the system size. Moreover, we observe that the flexibility of state-specific PNOs to adapt to the character of an excitation allows for an almost unbiased treatment of local, delocalized and charge transfer excited states.

  2. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    DOE PAGES

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; ...

    2015-01-16

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Ourmore » findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.« less

  3. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    NASA Astrophysics Data System (ADS)

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-01

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Our findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.

  4. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    SciTech Connect

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-16

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Our findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.

  5. Two-electron bound states near a Coulomb impurity in gapped graphene

    NASA Astrophysics Data System (ADS)

    De Martino, Alessandro; Egger, Reinhold

    2017-02-01

    We formulate and solve the perhaps simplest two-body bound-state problem for interacting Dirac fermions in two spatial dimensions. A two-body bound state is predicted for gapped graphene monolayers in the presence of weakly repulsive electron-electron interactions and a Coulomb impurity with charge Z e >0 , where the most interesting case corresponds to Z =1 . We introduce a variational Chandrasekhar-Dirac spinor wave function and show the existence of at least one bound state. This state leaves clear signatures accessible by scanning tunneling microscopy. One may thereby obtain direct information about the strength of electron-electron interactions in graphene.

  6. Scalar vertex operator for bound-state QED in the Coulomb gauge

    SciTech Connect

    Holmberg, Johan

    2011-12-15

    Adkins's result [Phys. Rev. D 34, 2489 (1986)] for the time component of the renormalized vertex operator in Coulomb-gauge QED is separated according to its tensor structure and some of the Feynman parameter integrals are carried out analytically, yielding a form suited for numerical bound-state QED calculations. This modified form is applied to the evaluation of the self-energy shift to the binding energy in hydrogenic ions of high nuclear charge.

  7. Hydrogen Bonds in Excited State Proton Transfer

    NASA Astrophysics Data System (ADS)

    Horke, D. A.; Watts, H. M.; Smith, A. D.; Jager, E.; Springate, E.; Alexander, O.; Cacho, C.; Chapman, R. T.; Minns, R. S.

    2016-10-01

    Hydrogen bonding interactions between biological chromophores and their surrounding protein and solvent environment significantly affect the photochemical pathways of the chromophore and its biological function. A common first step in the dynamics of these systems is excited state proton transfer between the noncovalently bound molecules, which stabilizes the system against dissociation and principally alters relaxation pathways. Despite such fundamental importance, studying excited state proton transfer across a hydrogen bond has proven difficult, leaving uncertainties about the mechanism. Through time-resolved photoelectron imaging measurements, we demonstrate how the addition of a single hydrogen bond and the opening of an excited state proton transfer channel dramatically changes the outcome of a photochemical reaction, from rapid dissociation in the isolated chromophore to efficient stabilization and ground state recovery in the hydrogen bonded case, and uncover the mechanism of excited state proton transfer at a hydrogen bond, which follows sequential hydrogen and charge transfer processes.

  8. Coulomb-nuclear interference with {sup 6}Li: Isospin character of the 2{sub 1}{sup +} excitation in {sup 70,72,74}Ge

    SciTech Connect

    Barbosa, M.D.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Rodrigues, M.R.D.; Ukita, G.M.

    2005-02-01

    Ratios of B(E2) to B(IS2), that is, of the reduced quadrupole transition probabilities related, respectively, to charge and mass were extracted through Coulomb-nuclear interference (CNI) for the excitation of the 2{sub 1}{sup +} states in {sup 70,72,74}Ge, with a relative accuracy of less than 4%. For this purpose, the CNI angular distributions associated with the inelastic scattering of 28-MeV incident {sup 6}Li ions accelerated by the Sao Paulo Pelletron, and momentum analyzed by the Enge magnetic spectrograph were interpreted within the DWBA-DOMP approach (distorted wave approximation for the scattering process and deformed optical model for the structure representation) with global {sup 6}Li optical parameters. The present CNI results demonstrate an abrupt change in the B(E2)/B(IS2) ratio for {sup 74}Ge: although for {sup 70,72}Ge, values of the order of 1.0 or slightly higher were obtained, this ratio is 0.66 (7) for {sup 74}Ge. The heavier Ge isotope is thus one of the few nuclei that, so far, have been shown to present clear mixed symmetry components in their ground-state band.

  9. Targeting individual excited states in DMRG.

    NASA Astrophysics Data System (ADS)

    Dorando, Jonathan; Hachmann, Johannes; Kin-Lic Chan, Garnet

    2007-03-01

    The low-lying excited states of π-conjugated molecules are important for the development of novel devices such as lasers, light-emitting diodes, photovoltaic cells, and field-effect transistors [1,2]. The ab-intio Density Matrix Renormalization Group (DMRG) provides a powerful way to explore the electronic structure of quasi-one-dimensional systems such as conjugated organic oligomers. However, DMRG is limited to targeting only low-lying excited states through state-averaged DMRG (SDMRG). There are several drawbacks; state-averaging degrades the accuracy of the excited states and is limited to at most a few of the low-lying states [3]. In this study, we present a new method for targeting higher individual excited states. Due to progress in the field of numerical analysis presented by Van Der Horst and others [4], we are able to target individual excited states of the Hamiltonian. This is accomplished by modifying the Jacobi-Davidson algorithm via a ``Harmonic Ritz'' procedure. We will present studies of oligoacenes and polyenes that compare the accuracy of SDMRG and Harmonic Davidson DMRG. [1] Burroughes, et al. , Nature 347, 539 (1990). [2] Shirota, J. Mater. Chem. 10, 1, (2000). [3] Ramasesha, Pati, Krishnamurthy, Shuai, Bredas, Phys. Rev. B. 54, 7598, (1997). [4] Bai, Demmel, Dongarra, Ruhe, Van Der Horst, Templates for the Solution of Algebraic Eigenvalue Problems, SIAM, 2000.

  10. Charmonium excited state spectrum in lattice QCD

    SciTech Connect

    Jozef Dudek; Robert Edwards; Nilmani Mathur; David Richards

    2008-02-01

    Working with a large basis of covariant derivative-based meson interpolating fields we demonstrate the feasibility of reliably extracting multiple excited states using a variational method. The study is performed on quenched anisotropic lattices with clover quarks at the charm mass. We demonstrate how a knowledge of the continuum limit of a lattice interpolating field can give additional spin-assignment information, even at a single lattice spacing, via the overlap factors of interpolating field and state. Excited state masses are systematically high with respect to quark potential model predictions and, where they exist, experimental states. We conclude that this is most likely a result of the quenched approximation.

  11. Excited-state imaging of cold atoms

    NASA Astrophysics Data System (ADS)

    Sheludko, David V.; Bell, Simon C.; Vredenbregt, Edgar J. D.; Scholten, Robert E.

    2007-09-01

    We have investigated state-selective diffraction contrast imaging (DCI) of cold 85Rb atoms in the first excited (52P3/2) state. Excited-state DCI requires knowledge of the complex refractive index of the atom cloud, which was calculated numerically using a semi-classical model. The Autler-Townes splitting predicted by the model was verified experimentally, showing excellent agreement. 780 nm lasers were used to cool and excite atoms within a magneto-optical trap, and the atoms were then illuminated by a 776 nm imaging laser. Several excited-state imaging techniques, including blue cascade fluorescence, on-resonance absorption, and DCI have been demonstrated. Initial results show that improved signal-to-noise ratio (SNR) will be required to accurately determine the excited state fraction. We have demonstrated magnetic field gradient compression of the cold atom cloud, and expect that further progress on compression and additional cooling will achieve sufficient diffraction contrast for quantitative state-selective imaging.

  12. Electron excitation from ground state to first excited state: Bohmian mechanics method

    NASA Astrophysics Data System (ADS)

    Yang, Song; Shuang, Zhao; Fu-Ming, Guo; Yu-Jun, Yang; Su-Yu, Li

    2016-03-01

    The excitation process of electrons from the ground state to the first excited state via the resonant laser pulse is investigated by the Bohmian mechanics method. It is found that the Bohmian particles far away from the nucleus are easier to be excited and are excited firstly, while the Bohmian particles in the ground state is subject to a strong quantum force at a certain moment, being excited to the first excited state instantaneously. A detailed analysis for one of the trajectories is made, and finally we present the space and energy distribution of 2000 Bohmian particles at several typical instants and analyze their dynamical process at these moments. Project supported by the Doctoral Research Start-up Funding of Northeast Dianli University, China (Grant No. BSJXM-201332), the National Natural Science Foundation of China (Grant Nos. 11547114, 11534004, 11474129, 11274141, 11447192, and 11304116), and the Graduate Innovation Fund of Jilin University, China (Grant No. 2015091).

  13. Breakdown of antiferromagnetism and the Coulomb phase for RVB states on anisotropic three-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Beach, K. S. D.

    2015-03-01

    Nearest-neighbor (NN) resonating-valence-bond (RVB) wave functions often serve as prototype ground states for various frustrated models in two dimensions because of their lack of long-range magnetic correlations. In three dimensions, these states are generally not featureless, and their tendency is toward antiferromagnetic order. On the cubic and diamond lattices, for example, the NN RVB state exhibits both antiferromagnetism and power law dimer correlations characteristic of the ``Coulomb phase'' (in analogy with classical hardcore dimer models). The introduction of strong spatial anisotropy, however, leads to the destruction of these long-range and algebraic correlations, leaving behind an apparent short-range spin liquid state. We characterize the critical exponents at the phase boundaries for wave functions built from products of SU(2) singlets as well as their SU(N) generalizations and discuss attempts to construct a field theory that describes the transitions.

  14. Characterizing the Locality of Diabatic States for Electronic Excitation Transfer by Decomposing the Diabatic Coupling

    SciTech Connect

    Vura-Weis, Josh; Newton, M. D.; Wasielewski, Michael R; Subotnik, J.E.

    2010-12-09

    A common strategy to calculate electronic coupling matrix elements for charge or energy transfer is to take the adiabatic states generated by electronic structure computations and rotate them to form localized diabatic states. In this paper, we show that, for intermolecular transfer of singlet electronic excitation, usually we cannot fully localize the electronic excitations in this way. Instead, we calculate putative initial and final states with small excitation tails caused by weak interactions with high energy excited states in the electronic manifold. These tails do not lead to substantial changes in the total diabatic coupling between states, but they do lead to a different partitioning of the total coupling between Coulomb (Förster), exchange (Dexter), and one-electron components. The tails may be reduced by using a multistate diabatic model or eliminated entirely by truncation (denoted as “chopping”). Without more information, we are unable to conclude with certainty whether the observed diabatic tails are a physical reality or a computational artifact. This research suggests that decomposition of the diabatic coupling between chromophores into Coulomb, exchange, and one-electron components may depend strongly on the number of states considered, and such results should be treated with caution.

  15. Computing correct truncated excited state wavefunctions

    NASA Astrophysics Data System (ADS)

    Bacalis, N. C.; Xiong, Z.; Zang, J.; Karaoulanis, D.

    2016-12-01

    We demonstrate that, if a wave function's truncated expansion is small, then the standard excited states computational method, of optimizing one "root" of a secular equation, may lead to an incorrect wave function - despite the correct energy according to the theorem of Hylleraas, Undheim and McDonald - whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)] (independent of orthogonality to lower lying approximants) leads to correct reliable small truncated wave functions. The demonstration is done in He excited states, using truncated series expansions in Hylleraas coordinates, as well as standard configuration-interaction truncated expansions.

  16. Ab initio study on electronically excited states of lithium isocyanide, LiNC

    NASA Astrophysics Data System (ADS)

    Yasumatsu, Hisato; Jeung, Gwang-Hi

    2014-01-01

    The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ∼10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.

  17. An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy

    NASA Astrophysics Data System (ADS)

    Kilcrease, D. P.; Colgan, J.; Hakel, P.; Fontes, C. J.; Sherrill, M. E.

    2015-09-01

    We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using the method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. The corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.

  18. An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy

    DOE PAGES

    Kilcrease, D. P.; Colgan, J.; Hakel, P.; ...

    2015-06-20

    We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using themore » method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. Lastly, the corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.« less

  19. An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy

    SciTech Connect

    Kilcrease, D. P.; Colgan, J.; Hakel, P.; Fontes, C. J.; Sherrill, M. E.

    2015-06-20

    We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using the method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. Lastly, the corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.

  20. Paramagnetic excited vortex states in superconductors

    NASA Astrophysics Data System (ADS)

    Gomes, Rodolpho Ribeiro; Doria, Mauro M.; Romaguera, Antonio R. de C.

    2016-06-01

    We consider excited vortex states, which are vortex states left inside a superconductor once the external applied magnetic field is switched off and whose energy is lower than of the normal state. We show that this state is paramagnetic and develop here a general method to obtain its Gibbs free energy through conformal mapping. The solution for any number of vortices in any cross-section geometry can be read off from the Schwarz-Christoffel mapping. The method is based on the first-order equations used by Abrikosov to discover vortices.

  1. On the Electronically Excited States of Uracil

    SciTech Connect

    Epifanovsky, Evgeny; Kowalski, Karol; Fan, Peng-Dong; Valiev, Marat; Matsika, Spiridoula; Krylov, Anna

    2008-10-09

    Vertical excitation energies in uracil in the gas phase and in water solution are investigated by the equation-of-motion coupled-cluster and multi-reference configuration interaction methods. Basis set effects are found to be important for converged results. The analysis of electronic wave functions reveals that the lowest singlet states are predominantly of a singly excited character and are therefore well described by single-reference equation-of-motion methods augmented by a perturbative triples correction to account for dynamical correlation. Our best estimates for the vertical excitation energies for the lowest singlet n and are 5.0±0.1 eV and 5.3±0.1 eV, respectively. The solvent effects for these states are estimated to be +0.5 eV and ±0.1 eV, respectively. We attribute the difference between the computed vertical excitations and the maximum of the experimental absorption to strong vibronic interaction between the lowest A00 and A0 states leading to intensity borrowing by the forbidden transition.

  2. STIRAP on helium: Excitation to Rydberg states

    NASA Astrophysics Data System (ADS)

    Yuan, Deqian

    Research in optically induced transitions between dierent atomic levels has a long history. For transitions between states driven by a coherent optical eld, the theoretical eciency could be ideally high as 100% but there could be many factors preventing this. In the three state helium atom excitation process, i.e. 23S→33P→nL , the stimulated emission from intermediate state makes it hard to achieve ecient population transfer to the nal state through an intuitive excitation order. One technique to achieve a higher eciency is Stimulated Raman Adiabatic Passage (STIRAP) which is being studied and under research in our lab. Unlike traditional three level excitation processes, STIRAP actually uses a counter intuitive pulsed laser beams timing arrangement. The excitation objects are metastable helium atoms traveling in a vacuum system with a longitudinal velocity of ~ 1070 m/s. We are using a 389 nm UV laser to connect the 23S and the 33P state and a frequency tunable ~790 nm IR laser to connect the 33P state and the dierent Rydberg states. A third 1083 nm wavelength laser beam drives the 23S → 23P transition to transversely separate the residual metastable atoms and the Rydberg atoms for eciency measurements. The data is taken by a stainless steel detector in the vacuum system. As the Rydberg atoms will get ionized by blackbody radiation under room temperature, we can utilize this for their detection. An ion detector sitting on the eld plate is capable to collect the ion signals of the Rydberg atoms for detection. So far the whole system has not been ready for data collection and measurement, so here we are using data and results from previous theses for discussions. The highest transition frequency that has ever been achieved in our lab is around 70% after corrections.

  3. Accelerating slow excited state proton transfer

    PubMed Central

    Stewart, David J.; Concepcion, Javier J.; Brennaman, M. Kyle; Binstead, Robert A.; Meyer, Thomas J.

    2013-01-01

    Visible light excitation of the ligand-bridged assembly [(bpy)2RuaII(L)RubII(bpy)(OH2)4+] (bpy is 2,2′-bipyridine; L is the bridging ligand, 4-phen-tpy) results in emission from the lowest energy, bridge-based metal-to-ligand charge transfer excited state (L−•)RubIII-OH2 with an excited-state lifetime of 13 ± 1 ns. Near–diffusion-controlled quenching of the emission occurs with added HPO42− and partial quenching by added acetate anion (OAc−) in buffered solutions with pH control. A Stern–Volmer analysis of quenching by OAc− gave a quenching rate constant of kq = 4.1 × 108 M−1⋅s−1 and an estimated pKa* value of ∼5 ± 1 for the [(bpy)2RuaII(L•−)RubIII(bpy)(OH2)4+]* excited state. Following proton loss and rapid excited-state decay to give [(bpy)2RuaII(L)RubII(bpy)(OH)3+] in a H2PO4−/HPO42− buffer, back proton transfer occurs from H2PO4− to give [(bpy)2RuaII(L)Rub(bpy)(OH2)4+] with kPT,2 = 4.4 × 108 M−1⋅s−1. From the intercept of a plot of kobs vs. [H2PO4−], k = 2.1 × 106 s−1 for reprotonation by water providing a dramatic illustration of kinetically limiting, slow proton transfer for acids and bases with pKa values intermediate between pKa(H3O+) = −1.74 and pKa(H2O) = 15.7. PMID:23277551

  4. Photoionization of aligned molecular excited states

    NASA Astrophysics Data System (ADS)

    Appling, J. R.; White, M. G.; Kessler, W. J.; Fernandez, R.; Poliakoff, E. D.

    1988-02-01

    Photoelectron angular distributions of several excited states of NO have been measured in an effort to better elucidate the role of alignment in resonant multiphoton excitation processes of molecules. In contrast to previous molecular REMPI measurements on NO, (2+1) angular distributions taken for low rotational levels of the E 2Σ+ (4sσ) Rydberg state of NO exhibit complex angular behavior which is characteristic of strong spatial alignment of the optically prepared levels. Photoelectron angular distributions were also found to be strongly branch and J dependent with the lowest rotational levels of the R21+S11 branch exhibiting the full anisotropy expected for an overall three-photon process. Fluorescence anisotropies extracted from complementary two-photon fluorescence angular distribution measurements reveal small, but nonzero alignment in all rotational levels with J>1/2, in contrast to the photoelectron results. Additional photoelectron angular distributions taken for (1+1) REMPI via the A 2Σ+ (3sσ), v=0 state exhibit near ``cos2θ'' distributions characteristic of photoionization of unaligned target states. The observed photoelectron data are qualitatively interpreted on the basis of the angular momentum constraints of the excitation-induced alignment and photoionization dynamics which determine the observable moments in the angular distribution.

  5. Stretched-State Excitations with the

    NASA Astrophysics Data System (ADS)

    Garcia, Luis Alberto Casimiro

    Neutron time-of-fight spectra were obtained for the ^{14}C(p,n) ^{14}N, ^{18 }O(p,n)^{18}F, and ^{30}Si(p,n) ^{30}P reactions at 135 MeV with the beam-swinger system at the Indiana University Cyclotron Facility. Excitation-energy spectra and the differential cross sections for the observed excitations in these reactions were extracted over the momentum transfer range from 0 to 2.7 fm^{-1}. The primary goal of this work was to obtain the strengths and distributions for the "stretched" states. The identification of these states was based on comparisons of the theoretical differential cross sections, performed in a DWIA formalism, with the experimental cross sections. Isospin assignments were based primarily on comparisons of the measured (p,n) and (e,e^') spectroscopic strengths. Candidate (pid_ {5/2},nu{rm p}_sp {3/2}{-1}), J^ pi = 4 ^- T = 0, 1 and 2, 1 hbaromega states, were identified at E_{x} = 8.5, 13.8, 19.5, and 26.7 MeV in the ^{14}C(p,n) ^{14}N reaction, and the corresponding isovector strengths were extracted. The observed 4^--state excitation energies and the strengths are in good agreement with the analog T = 1 and 2, 4^--states observed in the (e,e^') reaction. Large -basis shell-model calculations were found to predict reasonably well the excitation energies; however, these calculations overpredict the strength by a factor of 2, for the T = 1 and 2 components. In the ^{18}O(p,n) ^{18}F reaction at 135 MeV, (pi d_{5/2},nu {rm d}_sp{5/2}{-1 }) 5^+ T = 0 0hbaromega strength was observed, concentrated in a single state, at E_{x} = 1.1 MeV, with 75% of the extreme-single-particle-model (ESPM) strength, in good agreement with a shell-model calculation. No 6^- 1hbaromega strength was observed in this reaction. Candidate (pi {rm d}_{5/2},nu p _sp{3/2}{-1}) J ^pi = 4^- T = 0, 1 and 2, 1hbaromega states, were identified at E_{x} = 3.9, 9.4, 10.2, 11.4, 12.0, 14.4, 15.3, 17.3, 18.0, 19.7, 21.4, and 23.4 MeV. The observed 4^- T = 2 state excitation energies and

  6. Excited state baryon spectroscopy from lattice QCD

    DOE PAGES

    Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; ...

    2011-10-31

    Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting ofmore » levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.« less

  7. Excited state baryon spectroscopy from lattice QCD

    SciTech Connect

    Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; Wallace, Stephen J.

    2011-10-31

    Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting of levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.

  8. Dilute Excited States in Light Nuclei

    NASA Astrophysics Data System (ADS)

    Demyanova, A. S.; Ogloblin, A. A.; Danilov, A. N.; Goncharov, S. A.; Belyaeva, T. L.; Trzaska, W. H.

    2015-11-01

    A review of measurements of the radii of 11B, 12C and 13C nuclei in some excited states, whose structure recently attracted a lot of attention, is presented. The differential cross-sections of the inelastic α-scattering were measured. The radii values were extracted from the date using the Modified Diffraction Model (MDM). The evidence that the famous Hoyle state (0+, 7.65 MeV) in 12C has the enhanced dimensions and is the head of a new rotational band (besides the known band based on the 12C ground state) was obtained. The radius of the second 2+ member state (E* = 9.8 or 9.6 MeV) was seen to be similar to that of the Hoyle state (~3.0 fm). A 4+ state was identified at E* = 13.75 MeV. The radii of the 8.86 MeV, 1/2- state in 13C and 8.56 MeV, 3/2- state in 11B are found to be close to that of the Hoyle state and these states can be considered as analogues of the latter. Comparison of the data with the predictions of some theoretical models, e.g., alpha condensation, has been made. The obtained results show that one may speak only about rudimentary manifestation of the condensate effects.

  9. Excited States of {sup 11}Be

    SciTech Connect

    Cappuzzello, F.; Cunsolo, A.; Fortier, S.; Foti, A.; Laurent, H.; Lenske, H.; Maison, J.M.; Melita, A.L.; Nociforo, C.; Rosier, L.; Stephan, C.; Tassan-Got, L.; Winfield, J.S.; Wolter, H.H.

    2000-12-31

    The {sup 11}B({sup 7}Li,{sup 7}Be){sup 11}Be reaction at 57 MeV incident energy was used to explore the {sup 11}Be excitation energy spectrum at forward angles. Angular distributions were extracted for the transitions to the ground and to the states of {sup 11}Be at excitation energies of E*=0.32, 1.78, 2.69, 3.41, 3.89, 3.96, 6.05 MeV combined with the ground and the first excited state of {sup 7}Be. Also the SDR [1][2] oscillation mode was observed at E*=9.5 MeV and FWHM{approx}9 MeV and a new peak at E*=6.05 MeV and FWHM{approx}0.3 MeV was observed. QRPA calculations in the G-matrix representation are in progress in order to describe the continuum structure of {sup 11}Be. DWBA calculations have been started to evaluate transferred angular momenta both in the one step and in the two steps dynamical framework.

  10. Excited-state spectroscopy on an individual quantum dot using atomic force microscopy.

    PubMed

    Cockins, Lynda; Miyahara, Yoichi; Bennett, Steven D; Clerk, Aashish A; Grutter, Peter

    2012-02-08

    We present a new charge sensing technique for the excited-state spectroscopy of individual quantum dots, which requires no patterned electrodes. An oscillating atomic force microscope cantilever is used as a movable charge sensor as well as gate to measure the single-electron tunneling between an individual self-assembled InAs quantum dot and back electrode. A set of cantilever dissipation versus bias voltage curves measured at different cantilever oscillation amplitudes forms a diagram analogous to the Coulomb diamond usually measured with transport measurements. The excited-state levels as well as the electron addition spectrum can be obtained from the diagram. In addition, a signature which can result from inelastic tunneling by phonon emission or a peak in the density of states of the electrode is also observed, which demonstrates the versatility of the technique.

  11. On the intermolecular Coulombic decay of singly and doubly ionized states of water dimer.

    PubMed

    Stoychev, Spas D; Kuleff, Alexander I; Cederbaum, Lorenz S

    2010-10-21

    A semiquantitative study of the intermolecular Coulombic decay (ICD) of singly and doubly ionized water dimer has been carried out with the help of ab initio computed ionization spectra and potential energy curves (PECs). These PECs are particular cuts through the (H(2)O)(2), (H(2)O)(2) (+), and (H(2)O)(2) (++) hypersurfaces along the distance between the two oxygen atoms. A comparison with the recently published experimental data for the ICD in singly ionized water dimers [T. Jahnke, H. Sann, T. Havermeier et al., Nat. Phys. 6, 139 (2010)] and in large water clusters [M. Mucke, M. Braune, S. Barth et al., Nat. Phys. 6, 143 (2010)] shows that such a simplified description in which the internal degrees of freedom of the water molecules are frozen gives surprisingly useful results. Other possible decay channels of the singly ionized water dimer are also investigated and the influence of the H-atom participating in the hydrogen bond on the spectra of the proton-donor and proton-acceptor molecules in the dimer is discussed. Importantly, the decay processes of one-site dicationic states of water dimer are discussed and an estimate of the ICD-electron spectra is made. More than 33% of the dications produced by Auger decay are found to undergo ICD. The qualitative results show that the ICD following Auger decay in water is also expected to be an additional source of low-energy electrons proven to be extremely important for causing damages to living tissues.

  12. Observation of two-α emission from high-lying excited states of Ne18 by complete-kinematics measurements

    NASA Astrophysics Data System (ADS)

    Xu, X. X.; Lin, C. J.; Jia, H. M.; Yang, F.; Jia, F.; Wu, Z. D.; Zhang, S. T.; Liu, Z. H.; Zhang, H. Q.; Xu, H. S.; Sun, Z. Y.; Wang, J. S.; Hu, Z. G.; Wang, M.; Chen, R. F.; Zhang, X. Y.; Li, C.; Lei, X. G.; Xu, Z. G.; Xiao, G. Q.; Zhan, W. L.

    2010-12-01

    Two-α emission from high-lying excited states of Ne18 was studied by complete-kinematics measurements. The Ne18 beam at the energy of 51.8 MeV/u was bombarding a Au197 target to populate the excited states via Coulomb excitation. Products of two-α emission, C10-α-α, were measured by an array of silicon strip detectors and a CsI + PIN telescope. With the help of Monte Carlo simulations, the experimental results show the characteristics of sequential two-α emission via O14 excited states. Sequential two-α and two-proton emissions from Ne18 via one-particle daughter states are compared and the distinction of the opening angles of these two modes originates from the difference of the mass ratio of emitted particles to daughter nuclei.

  13. High-precision B(E2) measurements of semi-magic 58,60,62,64Ni by Coulomb excitation

    SciTech Connect

    Allmond, James M; Brown, Alex; Stuchbery, Andrew E; Galindo-Uribarri, Alfredo {nmn}; Padilla-Rodal, Elizabeth; Radford, David C; Batchelder, J. C.; Howard, Meredith E; Liang, J Felix; Manning, Brett M; Varner Jr, Robert L; Yu, Chang-Hong

    2014-01-01

    High-precision reduced electric-quadrupole transition probabilities B(E2) have been measured from single-step Coulomb excitation of semi-magic 58,60,62,64 Ni (Z = 28) beams at 1.8 MeV per nucleon on a natural carbon target. The energy loss of the nickel beams through the carbon target were directly measured with a zero-degree Bragg detector and the absolute B(E2) values were normalized by Rutherford scattering. The B(E2) values disagree with recent lifetime studies that employed the Doppler-shift attenuation method. The present high-precision B(E2) values reveal an asymmetry about 62 Ni, midshell between N = 28 and 40, with larger values towards 56 Ni (Z = N = 28). The experimental B(E2) values are compared with shell-model calculations in the full pf model space and the results indicate a soft 56 Ni core.

  14. A relativistic time-dependent density functional study of the excited states of the mercury dimer

    SciTech Connect

    Kullie, Ossama E-mail: ossama.kullie@unistra.fr

    2014-01-14

    In previous works on Zn{sub 2} and Cd{sub 2} dimers we found that the long-range corrected CAMB3LYP gives better results than other density functional approximations for the excited states, especially in the asymptotic region. In this paper, we use it to present a time-dependent density functional (TDDFT) study for the ground-state as well as the excited states corresponding to the (6s{sup 2} + 6s6p), (6s{sup 2} + 6s7s), and (6s{sup 2} + 6s7p) atomic asymptotes for the mercury dimer Hg{sub 2}. We analyze its spectrum obtained from all-electron calculations performed with the relativistic Dirac-Coulomb and relativistic spinfree Hamiltonian as implemented in DIRAC-PACKAGE. A comparison with the literature is given as far as available. Our result is excellent for the most of the lower excited states and very encouraging for the higher excited states, it shows generally good agreements with experimental results and outperforms other theoretical results. This enables us to give a detailed analysis of the spectrum of the Hg{sub 2} including a comparative analysis with the lighter dimers of the group 12, Cd{sub 2}, and Zn{sub 2}, especially for the relativistic effects, the spin-orbit interaction, and the performance of CAMB3LYP and is enlightened for similar systems. The result shows, as expected, that spinfree Hamiltonian is less efficient than Dirac-Coulomb Hamiltonian for systems containing heavy elements such as Hg{sub 2}.

  15. How much double excitation character do the lowest excited states of linear polyenes have?

    NASA Astrophysics Data System (ADS)

    Starcke, Jan Hendrik; Wormit, Michael; Schirmer, Jochen; Dreuw, Andreas

    2006-10-01

    Doubly excited states play important roles in the low-energy region of the optical spectra of polyenes and their investigation has been subject of theoretical and experimental studies for more than 30 years now and still is in the focus of ongoing research. In this work, we address the question why doubly excited states play a role in the low-energy region of the optical spectrum of molecular systems at all, since from a naive point of view one would expect their excitation energy approximately twice as large as the one of the corresponding single excitation. Furthermore, we show that extended-ADC(2) is well suited for the balanced calculation of the low-lying excited 21Ag-, 11Bu- and 11Bu+ states of long all- trans polyenes, which are known to possess substantial double excitation character. A careful re-investigation of the performance of TDDFT calculations for these states reveals that the previously reported good performance for the 21Ag- state relies heavily on fortuitous cancellation of errors. Finally, the title question is answered such that for short polyenes the lowest excited 21Ag- and 11Bu- states can clearly be classified as doubly excited, whereas the 11Ag- ground state is essentially represented by the (ground-state) HF determinant. For longer polyenes, in addition to increasing double excitation contributions in the 21Ag- and 11Bu- states, the ground state itself aquires substantial double excitation character (45% in C 22H 24), so that the transition from the ground state to these excited states should not be addressed as the excitation of two electrons relative to the 11Ag- ground state.

  16. Excited State Quantum-Classical Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag

    2005-05-01

    The development of a new theoretical, algorithmic, and computational framework is reported describing the corresponding excited state many-body dynamics by applying multiphysics described by classical equations of motion for nuclei and Hartree-Fock/Multi-Configuration Hartree-Fock and multiresolution techniques for solving the quantum part of the problem (i.e. the motion of the electrons). We primarily have in mind reactive and electron-transition dynamics which involves molecular clusters, containing hundreds of atoms, perturbed by a slow ionic/atomic/molecular projectile, with possible applications in plasma-surface interactions, cluster physics, chemistry and biotechnology. The validation of the developed technique is performed at three-body systems. Application to the transition dynamics in small carbon clusters and hydrocarbons perturbed by slow carbon ions resolves some long-standing issues in the ion-surface interactions in fusion tokamaks.

  17. The relationship between afterslip and aftershocks: a study based on Coulomb-Rate-and-State models

    NASA Astrophysics Data System (ADS)

    Cattania, Camilla; Hainzl, Sebastian; Roth, Frank; Wang, Lifeng

    2014-05-01

    The original Coulomb stress hypothesis, as well as most physics based models of aftershock sequences, assume that aftershocks are triggered by the instantaneous coseismic stress: in other words, the stress field is treated as stationary following the mainshock. However, several lines of evidence indicate that postseismic processes may affect aftershock triggering. The cumulative seismic moment of afterslip can be a significant fraction of the coseismic moment, generating comparable stress changes; moreover, afterslip has a similar time dependence as aftershocks, suggesting that the two processes may be linked. Aftershocks themselves contribute to the redistribution of stresses, and they can trigger their own aftershocks: spatial clustering, and the success of statistical models which include secondary triggering (ETAS) suggest that, even though aftershocks typically generate stresses orders of magnitude smaller than the mainshock, they are significant on a local scale. Our goal is to study the effect of postseismically induced stresses in the spatial and temporal distribution of aftershocks. We focus on the two processes described above (afterslip and secondary triggering), and do not consider other phenomena such as poroelastic response and viscoelastic relaxation. We study a period of 250 days following the mainshock, for two case studies: the Parkfield, Mw=6.0 and the Tohoku, Mw=9.0 earthquakes. We model the seismic response to stress changes using the Dieterich constitutive law, derived from a population of faults governed by Rate-and-State dependent friction; we also consider uncertainties in the input stress field using a Monte Carlo technique. We find that modeling secondary triggering systematically improves model performance; afterslip has a less significant overall impact on the model, but in both cases studies we observe clusters of seismicity which, due to their location relative to the coseismic and postseismic slip, are better explained when afterslip

  18. Excited-State Proton Transfer in Indigo.

    PubMed

    Pina, J; Sarmento, Daniela; Accoto, Marco; Gentili, Pier Luigi; Vaccaro, Luigi; Galvão, Adelino; Seixas de Melo, J Sérgio

    2017-03-16

    Excited-state proton transfer (ESPT) in Indigo and its monohexyl-substituted derivative (Ind and NHxInd, respectively) in solution was investigated experimentally as a function of solvent viscosity, polarity, and temperature, and theoretically by time-dependent density functional theory (TDDFT) calculations. Although a single emission band is observed, the fluorescence decays (collected at different wavelengths along the emission band using time-correlated single photon counting (TCSPC)) are biexponential, with two identical decay times but different pre-exponential factors, which is consistent with the existence of excited-state keto and enol species. The femtosecond (fs)-transient absorption data show that two similar decay components are present, in addition to a shorter (<3 ps) component associated with vibrational relaxation. From TDDFT calculations it was shown that with both Ind and NHxInd, the reaction proceeds through a single ESPT mechanism driven by an Arrhenius-type activation through a saddle point, which is enhanced by tunneling through the barrier. From the temperature dependence of the steady-state and time-resolved fluorescence data, the activation energy for the process was found to be ∼11 kJ mol(-1) for Ind and ∼5 kJ mol(-1) for NHxInd, in close agreement with the values calculated by TDDFT: 12.3 kJ mol(-1) (Ind) and 3.1 kJ mol(-1) (NHxInd). From time-resolved data, the rate constants for the ESPT process in dimethyl sulfoxide were found to be 9.24 × 10(10) s(-1) (Ind) and 7.12 × 10(10) s(-1) (NHxInd). The proximity between the two values suggests that the proton transfer mechanism in indigo is very similar to that found in NHxInd, where a single proton is involved. In addition, with NHxInd, the TDDFT calculations, together with the viscosity dependence of the fast component, and differences in the activation energy values between the steady-state and time-resolved data indicate that an additional nonradiative process is involved, which

  19. Characterizing the Locality of Diabatic States forElectronic Excitation Transfer By Decomposing theDiabatic Coupling

    SciTech Connect

    Newton, M.D.; Vura-Weis, J.; Wasielewski, M.R.; Subotnik, J.E.

    2010-10-19

    A common strategy to calculate electronic coupling matrix elements for charge or energy transfer is to take the adiabatic states generated by electronic structure computations and rotate them to form localized diabatic states. In this paper, we show that, for intermolecular transfer of singlet electronic excitation, usually we cannot fully localize the electronic excitations in this way. Instead, we calculate putative initial and final states with small excitation tails caused by weak interactions with high energy excited states in the electronic manifold. These tails do not lead to substantial changes in the total diabatic coupling between states, but they do lead to a different partitioning of the total coupling between Coulomb (Forster), exchange (Dexter), and one-electron components. The tails may be reduced by using a multistate diabatic model or eliminated entirely by truncation (denoted as 'chopping'). Without more information, we are unable to conclude with certainty whether the observed diabatic tails are a physical reality or a computational artifact. This research suggests that decomposition of the diabatic coupling between chromophores into Coulomb, exchange, and one-electron components may depend strongly on the number of states considered, and such results should be treated with caution.

  20. Excited State Dynamics in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshiyuki

    2004-03-01

    Carbon nanotube, one of the most promising materials for nano-technology, still suffers from its imperfection in crystalline structure that will make performance of nanotube behind theoretical limit. From the first-principles simulations, I propose efficient methods to overcome the imperfection. I show that photo-induced ion dynamics can (1) identify defects in nanotubes, (2) stabilize defected nanotubes, and (3) purify contaminated nanotubes. All of these methods can be alternative to conventional heat treatments and will be important techniques for realizing nanotube-devices. Ion dynamics under electronic excitation has been simulated with use of the computer code FPSEID (First-Principles Simulation tool for Electron Ion Dynamics) [1], which combines the time-dependent density functional method [2] to classical molecular dynamics. This very challenging approach is time-consuming but can automatically treat the level alternation of differently occupied states, and can observe initiation of non-adiabatic decay of excitation. The time-dependent Kohn-Sham equation has been solved by using the Suzuki-Trotter split operator method [3], which is a numerically stable method being suitable for plane wave basis, non-local pseudopotentials, and parallel computing. This work has been done in collaboration with Prof. Angel Rubio, Prof. David Tomanek, Dr. Savas Berber and Mina Yoon. Most of present calculations have been done by using the SX5 Vector-Parallel system in the NEC Fuchu-plant, and the Earth Simulator in Yokohama Japan. [1] O. Sugino and Y. Miyamoto, Phys. Rev. B59, 2579 (1999); ibid, B66 089901(E) (2001) [2] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984). [3] M. Suzuki, J. Phys. Soc. Jpn. 61, L3015 (1992).

  1. Computing electronic structures: A new multiconfiguration approach for excited states

    NASA Astrophysics Data System (ADS)

    Cancès, Éric; Galicher, Hervé; Lewin, Mathieu

    2006-02-01

    We present a new method for the computation of electronic excited states of molecular systems. This method is based upon a recent theoretical definition of multiconfiguration excited states [due to one of us, see M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Rat. Mech. Anal. 171 (2004) 83-114]. Our algorithm, dedicated to the computation of the first excited state, always converges to a stationary state of the multiconfiguration model, which can be interpreted as an approximate excited state of the molecule. The definition of this approximate excited state is variational. An interesting feature is that it satisfies a non-linear Hylleraas-Undheim-MacDonald type principle: the energy of the approximate excited state is an upper bound to the true excited state energy of the N-body Hamiltonian. To compute the first excited state, one has to deform paths on a manifold, like this is usually done in the search for transition states between reactants and products on potential energy surfaces. We propose here a general method for the deformation of paths which could also be useful in other settings. We also compare our method to other approaches used in Quantum Chemistry and give some explanation of the unsatisfactory behaviours which are sometimes observed when using the latters. Numerical results for the special case of two-electron systems are provided: we compute the first singlet excited state potential energy surface of the H2 molecule.

  2. Computing electronic structures: A new multiconfiguration approach for excited states

    SciTech Connect

    Cances, Eric . E-mail: cances@cermics.enpc.fr; Galicher, Herve . E-mail: galicher@cermics.enpc.fr; Lewin, Mathieu . E-mail: lewin@cermic.enpc.fr

    2006-02-10

    We present a new method for the computation of electronic excited states of molecular systems. This method is based upon a recent theoretical definition of multiconfiguration excited states [due to one of us, see M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Rat. Mech. Anal. 171 (2004) 83-114]. Our algorithm, dedicated to the computation of the first excited state, always converges to a stationary state of the multiconfiguration model, which can be interpreted as an approximate excited state of the molecule. The definition of this approximate excited state is variational. An interesting feature is that it satisfies a non-linear Hylleraas-Undheim-MacDonald type principle: the energy of the approximate excited state is an upper bound to the true excited state energy of the N-body Hamiltonian. To compute the first excited state, one has to deform paths on a manifold, like this is usually done in the search for transition states between reactants and products on potential energy surfaces. We propose here a general method for the deformation of paths which could also be useful in other settings. We also compare our method to other approaches used in Quantum Chemistry and give some explanation of the unsatisfactory behaviours which are sometimes observed when using the latter. Numerical results for the special case of two-electron systems are provided: we compute the first singlet excited state potential energy surface of the H {sub 2} molecule.

  3. Electron-hydrogen atom-impact 1s{yields}2s and 1s{yields}2p excitation with screened Coulomb interaction between the n=2 and n=3 excitation thresholds

    SciTech Connect

    Zhang Songbin; Chen Xiangjun; Wang Jianguo; Janev, R. K.

    2011-03-15

    The effects of Coulomb interaction screening on electron-hydrogen atom 1S {yields} 2S and 1S {yields} 2p excitation scattering between the n = 2 and n = 3 excitation thresholds have been investigated by using the R-matrix method with pseudostates. The excitation collision strengths show dramatic changes when the interaction screening length D varies from {infinity} to 9 a.u., as a result of the convergence of S-type and some p- and D-type Feshbach resonances to the varying 3S or 3p thresholds, and due to the crossover of some other p-, D- and all F-type Feshbach resonances into shape-type resonances when they pass across the 3S or 3p threshold at certain critical values of D. The noncrossover of some p- and D-type Feshbach resonances into shape-type resonances at the 3S (or 3p for those of D-type) threshold is at variance with the behavior of these types of resonances at the 2S (2p for those of D-type) threshold, which results from the threefold splitting of the n = 3 hydrogenic level and, consequently, the more complex nature of the configuration mixing in the n = 3 threshold region. The evolution of the total 1S {yields} 2S, 1S {yields} 2p, and 2S {yields} 2p excitation collision strengths, when the screening strength varies, is presented and discussed.

  4. Proton release from Stentor photoreceptors in the excited states.

    PubMed

    Song, P S; Walker, E B; Auerbach, R A; Robinson, G W

    1981-08-01

    Steady-state and picosecond pulse excitations of the photophobic-phototactic receptors isolated from Stentor coeruleus produced anionic species predominantly in the excited singlet state, although neutral photoreceptors in the ground state were exclusively excited. The same photoreceptor in vivo also emits fluorescence from the excited state of its anionic species, with an excitation spectrum identical to the absorption spectrum of the neutral species in the ground state. The excited state dissociation of protons from the photoreceptor chromophore (stentorin; hypericin covalently linked to protein) efficiently occurs in less than 10 ps. A possible role of the transient-proton release from the photoreceptor, in the signal transduction photoresponse of Stentor, is briefly discussed.

  5. Structure of excited states and properties of organic dyes

    NASA Astrophysics Data System (ADS)

    Klessinger, M.

    1992-03-01

    Optimized geometries and charge distributions for the ground state and the first allowed π,π* excited singlet state are reported for some polyenes, polyene aldehydes, merocyanines and cyanines, which may be considered as representatives of conjugated chain chromophores of organic dyes. The dependence of excited state properties on molecular structure is discussed in relation to spectroscopic properties of these systems.

  6. Excited-State Effective Masses in Lattice QCD

    SciTech Connect

    George Fleming, Saul Cohen, Huey-Wen Lin

    2009-10-01

    We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.

  7. Excited-State Effective Masses in Lattice QCD

    SciTech Connect

    Fleming, George; Cohen, Saul; Lin, Huey-Wen

    2009-01-01

    We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.

  8. Excited-state charging energies in quantum dots investigated by terahertz photocurrent spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Shibata, K.; Nagai, N.; Ndebeka-Bandou, C.; Bastard, G.; Hirakawa, K.

    2016-06-01

    We have investigated the excited-state (ES) charging energies in quantum dots (QDs) by measuring a terahertz (THz)-induced photocurrent in a single-electron transistor (SET) geometry that contains a single InAs QD between metal nanogap electrodes. A photocurrent is produced in the QD SETs through THz intersublevel transitions and the subsequent resonant tunneling. We have found that the photocurrent exhibits stepwise change even within one Coulomb blockaded region as the electrochemical potential in the QD is swept by the gate voltage. From the threshold for the photocurrent generation, we have determined the charging energies for adding an electron in the photoexcited state in the QD. Furthermore, the charging energies for the ESs with different electron configurations are clearly resolved. The present THz photocurrent measurements are essentially dynamical experiments and allow us to analyze electronic properties in off-equilibrium states in the QD.

  9. Excited electronic states and spectroscopy of unsymmetrically substituted polyenes

    NASA Astrophysics Data System (ADS)

    Itoh, Takao

    2013-09-01

    α-Methyl-ω-phenylpolyenes, Me-(CH=CH)N-Ph, (MPPNs) with N = 2, 3, and 4 were synthesized. Fluorescence, absorption, and excitation spectra of MPPNs have been measured under different conditions along with those of β-methylstyrene. It is shown that there is a forbidden singlet (π, π*) excited state located at energies below the absorbing state for MPPNs with N = 3 and 4. Excitation energies of these polyenes are determined as a function of N. Quantitative analysis of the temperature dependence of the relative intensity of the fluorescence spectrum and its solvent shift behavior extract estimates of the various physical parameters that characterize excitation energies and excited-state dynamical behavior of MPPN with N = 3. The singlet excited states of the MPPNs were compared with those of the α,ω-diphenylpolyenes and α,ω-dimethylpolyenes.

  10. Excited electronic states and spectroscopy of unsymmetrically substituted polyenes.

    PubMed

    Itoh, Takao

    2013-09-07

    α-Methyl-ω-phenylpolyenes, Me-(CH=CH)N-Ph, (MPPNs) with N = 2, 3, and 4 were synthesized. Fluorescence, absorption, and excitation spectra of MPPNs have been measured under different conditions along with those of β-methylstyrene. It is shown that there is a forbidden singlet (π, π∗) excited state located at energies below the absorbing state for MPPNs with N = 3 and 4. Excitation energies of these polyenes are determined as a function of N. Quantitative analysis of the temperature dependence of the relative intensity of the fluorescence spectrum and its solvent shift behavior extract estimates of the various physical parameters that characterize excitation energies and excited-state dynamical behavior of MPPN with N = 3. The singlet excited states of the MPPNs were compared with those of the α,ω-diphenylpolyenes and α,ω-dimethylpolyenes.

  11. Experimental Investigation of Excited-State Lifetimes in Atomic Ytterbium

    SciTech Connect

    Bowers, C.J.; Budker, D.; Commins, E.D.; DeMille, D.; Freedman, S.J.; Nguyen, A.-T.; Shang, S.-Q.; Zolotorev, M.; /SLAC

    2011-11-15

    Lifetimes of 21 excited states in atomic Yb were measured using time-resolved fluorescence detection following pulsed laser excitation. The lifetime of the 4f{sup 14}5d6s {sup 3}D{sub 1} state, which is of particular importance for a proposed study of parity nonconservation in atoms, was measured to be 380(30) ns.

  12. Role of Excited States In High-order Harmonic Generation.

    PubMed

    Beaulieu, S; Camp, S; Descamps, D; Comby, A; Wanie, V; Petit, S; Légaré, F; Schafer, K J; Gaarde, M B; Catoire, F; Mairesse, Y

    2016-11-11

    We investigate the role of excited states in high-order harmonic generation by studying the spectral, spatial, and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the population of excited states can lead either to direct extreme ultraviolet emission through free induction decay or to the generation of high-order harmonics through ionization from these states and recombination to the ground state. By using the attosecond lighthouse technique, we demonstrate that the high-harmonic emission from excited states is temporally delayed by a few femtoseconds compared to the usual harmonics, leading to a strong nonadiabatic spectral redshift.

  13. Role of Excited States In High-order Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Beaulieu, S.; Camp, S.; Descamps, D.; Comby, A.; Wanie, V.; Petit, S.; Légaré, F.; Schafer, K. J.; Gaarde, M. B.; Catoire, F.; Mairesse, Y.

    2016-11-01

    We investigate the role of excited states in high-order harmonic generation by studying the spectral, spatial, and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the population of excited states can lead either to direct extreme ultraviolet emission through free induction decay or to the generation of high-order harmonics through ionization from these states and recombination to the ground state. By using the attosecond lighthouse technique, we demonstrate that the high-harmonic emission from excited states is temporally delayed by a few femtoseconds compared to the usual harmonics, leading to a strong nonadiabatic spectral redshift.

  14. Direct excitation of microwave-spin dressed states using a laser-excited resonance Raman interaction

    NASA Astrophysics Data System (ADS)

    Shahriar, M. S.; Hemmer, P. R.

    1990-10-01

    We have used a laser-induced resonance Raman transition between the ground-state hyperfine sublevels in a sodium atomic beam to excite individual dressed states of the microwave-spin hyperfine transition. In addition, we have used the microwave interaction to excite the Raman trapped state. Extension of this technique to mm waves or to the far infrared may lead to applications such as mm-wave-beam steering and holographic image conversion.

  15. Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states

    NASA Astrophysics Data System (ADS)

    Nelson, Tammie; Naumov, Artem; Fernandez-Alberti, Sebastian; Tretiak, Sergei

    2016-12-01

    The simulation of nonadiabatic dynamics in extended molecular systems involving hundreds of atoms and large densities of states is particularly challenging. Nonadiabatic coupling terms (NACTs) represent a significant numerical bottleneck in surface hopping approaches. Rather than using unreliable NACT cutting schemes, here we develop "on-the-fly" state limiting methods to eliminate states that are no longer essential for the non-radiative relaxation dynamics as a trajectory proceeds. We propose a state number criteria and an energy-based state limit. The latter is more physically relevant by requiring a user-imposed energy threshold. For this purpose, we introduce a local kinetic energy gauge by summing contributions from atoms within the spatial localization of the electronic wavefunction to define the energy available for upward hops. The proposed state limiting schemes are implemented within the nonadiabatic excited-state molecular dynamics framework to simulate photoinduced relaxation in poly-phenylene vinylene (PPV) and branched poly-phenylene ethynylene (PPE) oligomers for benchmark evaluation.

  16. Charge-displacement analysis for excited states

    SciTech Connect

    Ronca, Enrico Tarantelli, Francesco; Pastore, Mariachiara Belpassi, Leonardo; De Angelis, Filippo; Angeli, Celestino; Cimiraglia, Renzo

    2014-02-07

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.

  17. Excited-State Deactivation of Branched Phthalocyanine Compounds.

    PubMed

    Zhu, Huaning; Li, Yang; Chen, Jun; Zhou, Meng; Niu, Yingli; Zhang, Xinxing; Guo, Qianjin; Wang, Shuangqing; Yang, Guoqiang; Xia, Andong

    2015-12-21

    The excited-state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis- and trisphthalocyanines) are studied by using steady-state and femtosecond transient absorption spectral measurements, where the excited-state energy-transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis-Pc). In trisphthalocyanine (tris-Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre-associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady-state spectra also show a face-to-face conformation in bis-Pc, whereas in tris-Pc, two of the three phthalocyanine branches form a pre-associated face-to-face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure-property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems.

  18. Excitations and Fractionation Following Atomic Coulomb Capture and Nuclear Absorption of Antiprotons in SAMARIUM-150, SAMARIUM-152 and LEAD-208

    NASA Astrophysics Data System (ADS)

    Nicholas, Michael

    The E2 Nuclear Resonance Effect was studied using ^{150}Sm and ^{152}Sm, the former being a resonant isotope and the latter being non-resonant. By measuring the attenuation of x-ray intensity in the resonant isotope compared to the non-resonant isotope, a measure of the induced width in the upper admixed level due to antiproton absorption from the lower admixed level was found. The results obtained showed that the level widths measured experimentally were, for the upper level, broader than one would expect from theoretical calculations, indicating that the strong interaction is greater than one might expect for this antiproton-nucleus system. However, direct measurements of the width of a transition between low lying states (i.e. those of low principle quantum number, n) indicate that the reverse is true for these states. Here the measured width was rather less than theoretical predictions, indicating less strong interaction effects for such states that probe further into the nucleus. By measuring x-rays and gamma-rays emitted from a lead target after antiproton irradiation over a period of time the species created by antiproton absorption were identified and their abundances were calculated. The distribution of residual nuclei had the same general shape as that obtained from theoretical calculations using an intra-nuclear cascade approach followed by an evaporation process. The maximum of the experimental curve was at a higher atomic mass than the theoretical curve, indicating the possibility that too great an energy transfer between the system of pions created in the annihilation process and the nucleons in the lead nucleus is used in the theoretical calculations. Much care was spent in looking for fission following the deposition of some 2 GeV in the lead nucleus from the annihilation process, but no evidence could be seen.

  19. Electronic transport through a Majorana bound state coupled to a T-shaped quantum-dot system with Coulomb interaction

    NASA Astrophysics Data System (ADS)

    Huo, Dong-Ming

    2016-07-01

    Using the Green's function technique, we respectively investigate the electron transport properties of two spin components through the system of a T-shaped double quantum dot structure coupled to a Majorana bound state, in which only one quantum dot is connected with two metallic leads. We explore the interplay between the Fano effect and the MBSs for different dot-MBS coupling strength λ, dot-dot coupling strength t, and MBS-MBS coupling strength ɛM in the noninteracting case. Then the Coulomb interaction and magnetic field effect on the conductance spectra are investigated. Our results indicate that G↓(ω) is not affected by the Majorana bound states, but a "0.5" conductance signature occurs in the vicinities of Fermi level of G↑(ω). This robust property persists for a wide range of dot-dot coupling strength and dot-MBS coupling strength, but it can be destroyed by Coulomb interaction in quantum dots. By adjusting the size and direction of magnetic field around the quantum dots, the "0.5" conductance signature damaged by U can be restored. At last, the spin magnetic moments of two dots by applying external magnetic field are also predicted.

  20. Coulomb Damping

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  1. Superposition of Fragment Excitations for Excited States of Large Clusters with Application to Helium Clusters.

    PubMed

    Closser, Kristina D; Ge, Qinghui; Mao, Yuezhi; Shao, Yihan; Head-Gordon, Martin

    2015-12-08

    We develop a local excited-state method, based on the configuration interaction singles (CIS) wave function, for large atomic and molecular clusters. This method exploits the properties of absolutely localized molecular orbitals (ALMOs), which strictly limits the total number of excitations, and results in formal scaling with the third power of the system size for computing the full spectrum of ALMO-CIS excited states. The derivation of the equations and design of the algorithm are discussed in detail, with particular emphasis on the computational scaling. Clusters containing ∼500 atoms were used in evaluating the scaling, which agrees with the theoretical predictions, and the accuracy of the method is evaluated with respect to standard CIS. A pioneering application to the size dependence of the helium cluster spectrum is also presented for clusters of 25-231 atoms, the largest of which results in the computation of 2310 excited states per sampled cluster geometry.

  2. Excited-State Dynamics in Folic Acid and 6-CARBOXYPTERIN upon Uva Excitation

    NASA Astrophysics Data System (ADS)

    Huang, Huijuan; Vogt, R. Aaron; Crespo-Hernandez, Carlos E.

    2013-06-01

    The excited-state dynamics of folic acid (FA) and 6-carboxypterin (6CP) are poorly understood and work is needed to uncover the relaxation pathways that ultimately lead to their oxidative damage of DNA. In our approach, broad-band transient absorption spectroscopy was used to monitor the evolution of the excited states in FA and 6CP in basic aqueous solution upon excitation at 350 nm. In addition, quantum-chemical calculations were performed to assist in the interpretation of the experimental results and in the postulation of kinetic mechanisms. The combined experimental and computational results support a kinetic model where excitation of FA results in ultrafast charge separation (τ = 0.6 ps), which decays back to the ground state primarily by charge recombination with a lifetime of 2.2 ps. A small fraction of the charge transfer state undergoes intersystem crossing to populate the lowest-energy triplet state with a lifetime of 200 ps. On the other hand, a large fraction of the initially excited singlet state in 6CP decays by fluorescence emission with a lifetime of 100 ps, while intersystem crossing to the triplet state occurs with a lifetime of 4.4 ns. The potential implications of these results to the oxidative damage of DNA by FA and 6CP will be discussed. Funding from the National Science Foundation is gratefully acknowledged (CHE-1255084).

  3. Ultrafast excited state relaxation in long-chain polyenes

    NASA Astrophysics Data System (ADS)

    Antognazza, Maria Rosa; Lüer, Larry; Polli, Dario; Christensen, Ronald L.; Schrock, Richard R.; Lanzani, Guglielmo; Cerullo, Giulio

    2010-07-01

    We present a comprehensive study, by femtosecond pump-probe spectroscopy, of excited state dynamics in a polyene that approaches the infinite chain limit. By excitation with sub-10-fs pulses resonant with the 0-0 S 0 → S 2 transition, we observe rapid loss of stimulated emission from the bright excited state S 2, followed by population of the hot S 1 state within 150 fs. Vibrational cooling of S 1 takes place within 500 fs and is followed by decay back to S 0 with 1 ps time constant. By excitation with excess vibrational energy we also observe the ultrafast formation of a long-living absorption, that is assigned to the triplet state generated by singlet fission.

  4. The examination of berberine excited state by laser flash photolysis

    NASA Astrophysics Data System (ADS)

    Cheng, Lingli; Wang, Mei; Zhao, Ping; Zhu, Hui; Zhu, Rongrong; Sun, Xiaoyu; Yao, Side; Wang, Shilong

    2009-07-01

    The property of the excited triplet state of berberine (BBR) was investigated by using time-resolved laser flash photolysis of 355 nm in acetonitrile. The transient absorption spectra of the excited triplet BBR were obtained in acetonitrile, which have an absorption maximum at 420 nm. And the ratio of excitation to ionization of BBR in acetonitrile solvent was calculated. The self-decay and self-quenching rate constants, and the absorption coefficient of 3BBR* were investigated and the excited state quantum yield was determined. Furthermore utilizing the benzophenone (BEN) as a triplet sensitizer, and the β-carotene (Car) as an excited energy transfer acceptor, the assignment of 3BBR* was further confirmed and the related energy transfer rate constants were also determined.

  5. Large-scale correlated study of excited state absorptions in naphthalene and anthracene.

    PubMed

    Sony, Priya; Shukla, Alok

    2009-07-07

    In this paper, we report theoretical calculations of the photoinduced absorption (PA) spectrum of naphthalene and anthracene, with the aim of understanding those excited states, which are invisible in the linear optical absorption. The excited state absorption spectra are computed from the 1B(2u)(+) and the 1B(3u)(+) states and a detailed analysis of the many-body character of the states contributing to various peaks in the spectra is presented. The calculations are performed using the Pariser-Parr-Pople (PPP) Hamiltonian, along with the full configuration interaction technique. The role of Coulomb parameters used in the PPP Hamiltonian is examined by considering standard Ohno parameters, as well as a screened set of parameters. The results of our calculations are extensively compared with the experimental data where available and very good agreement has been obtained. Moreover, our calculations predict the presence of high intensity features which, to the best of our knowledge, have not been explored earlier. We also present concrete predictions on the polarization properties of the PA spectrum, which can be verified in experiments performed on oriented samples.

  6. Peroxyacetyl radical: Electronic excitation energies, fundamental vibrational frequencies, and symmetry breaking in the first excited state

    SciTech Connect

    Copan, Andreas V.; Wiens, Avery E.; Nowara, Ewa M.; Schaefer, Henry F.; Agarwal, Jay

    2015-02-07

    Peroxyacetyl radical [CH{sub 3}C(O)O{sub 2}] is among the most abundant peroxy radicals in the atmosphere and is involved in OH-radical recycling along with peroxyacetyl nitrate formation. Herein, the ground (X{sup ~}) and first (A{sup ~}) excited state surfaces of cis and trans peroxyacetyl radical are characterized using high-level ab initio methods. Geometries, anharmonic vibrational frequencies, and adiabatic excitation energies extrapolated to the complete basis-set limit are reported from computations with coupled-cluster theory. Excitation of the trans conformer is found to induce a symmetry-breaking conformational change due to second-order Jahn-Teller interactions with higher-lying excited states. Additional benchmark computations are provided to aid future theoretical work on peroxy radicals.

  7. Investigation into chromophore excited-state coupling in allophycocyanin

    NASA Astrophysics Data System (ADS)

    Zheng, Xiguang; Zhao, Fuli; Wang, He Z.; Gao, Zhaolan; Yu, Zhenxin; Zhu, Jinchang; Xia, Andong; Jiang, Lijin

    1994-08-01

    Both theoretical and experimental studies are presented on chromophore excited-state coupling in linker-free allophycocyanin (APC), one of the antenna phycobiliproteins in algal photosynthesis. A three-site-coupling model has been introduced to describe the exciton interaction mechanism amoung the excited (beta) chromophore in APC, and the exciton energy splitting is estimated. Picosecond polarized fluorescence experiments both on monomeric and trimeric APC isolated from alga Spirulina platensis have been performed. The experimental results show that APC monomer and trimer exhibit remarkedly different spectropic characteristics, and satisfy the suggestion of strong excited- state coupling among chromophores in APC.

  8. Photoacoustic imaging of the excited state lifetime of fluorophores

    NASA Astrophysics Data System (ADS)

    Märk, Julia; Schmitt, Franz-Josef; Laufer, Jan

    2016-05-01

    Photoacoustic (PA) imaging using pump-probe excitation has been shown to allow the detection and visualization of fluorescent contrast agents. The technique relies upon inducing stimulated emission using pump and probe pulses at excitation wavelengths that correspond to the absorption and fluorescence spectra. By changing the time delay between the pulses, the excited state lifetime of the fluorophore is modulated to vary the amount of thermalized energy, and hence PA signal amplitude, to provide fluorophore-specific PA contrast. In this study, this approach was extended to the detection of differences in the excited state lifetime of fluorophores. PA waveforms were measured in solutions of a near-infrared fluorophore using simultaneous and time-delayed pump-probe excitation. The lifetime of the fluorophore solutions was varied by using different solvents and quencher concentrations. By calculating difference signals and by plotting their amplitude as a function of pump-probe time delay, a correlation with the excited state lifetime of the fluorophore was observed. The results agreed with the output of a forward model of the PA signal generation in fluorophores. The application of this method to tomographic PA imaging of differences in the excited state lifetime was demonstrated in tissue phantom experiments.

  9. Electron-impact excitation and ionization cross sections for ground state and excited helium atoms

    SciTech Connect

    Ralchenko, Yu. Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de

    2008-07-15

    Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n{<=}4 are treated individually, while the states with n{>=}5 are considered degenerate. For the processes involving transitions to and from n{>=}5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form.

  10. Characterizing RNA Excited States using NMR Relaxation Dispersion

    PubMed Central

    Xue, Yi; Kellogg, Dawn; Kimsey, Isaac J; Sathyamoorthy, Bharathwaj; Stein, Zachary W; McBrairty, Mitchell; Al-Hashimi, Hashim M.

    2016-01-01

    Changes in RNA secondary structure play fundamental roles in the cellular functions of a growing number of non-coding RNAs. This chapter describes NMR-based approaches for characterizing microsecond-to-millisecond changes in RNA secondary structure that are directed toward short-lived and low-populated species often referred to as “excited states”. Compared to larger-scale changes in RNA secondary structure, transitions towards excited states do not require assistance from chaperones, are often orders of magnitude faster, and are localized to a small number of nearby base pairs in and around non-canonical motifs. Here we describe a procedure for characterizing RNA excited states using off-resonance R1ρ NMR relaxation dispersion utilizing low-to-high spin-lock fields (25–3000 Hz). R1ρ NMR relaxation dispersion experiments are used to measure carbon and nitrogen chemical shifts in base and sugar moieties of the excited state. The chemical shift data is then interpreted with the aid of secondary structure prediction to infer potential excited states that feature alternative secondary structures. Candidate structures are then tested by using mutations, single-atom substitutions, or by changing physiochemical conditions, such as pH and temperature, to either stabilize or destabilize the candidate excited state. The resulting chemical shifts of the mutants or under different physiochemical conditions are then compared to those of the ground and excited state. Application is illustrated with a focus on the transactivation response element (TAR) from the human immune deficiency virus type 1 (HIV-1), which exists in dynamic equilibrium with at least two distinct excited states. PMID:26068737

  11. Targeting excited states in all-trans polyenes with electron-pair states

    NASA Astrophysics Data System (ADS)

    Boguslawski, Katharina

    2016-12-01

    Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.

  12. Targeting excited states in all-trans polyenes with electron-pair states.

    PubMed

    Boguslawski, Katharina

    2016-12-21

    Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.

  13. Sensitivity study of forecasted aftershock seismicity based on Coulomb stress calculation and rate- and state-dependent frictional response (Invited)

    NASA Astrophysics Data System (ADS)

    Cocco, M.; Hainzl, S.; Woessner, J.; Enescu, B.; Catalli, F.; Lombardi, A.

    2009-12-01

    It is nowadays well established that both Coulomb stress perturbations and the rate- and state-dependent frictional response of fault populations are needed to model the spatial and temporal evolution of seismicity. This represents the most popular physics-based approach to forecast the rate of earthquake production and its performances have to be verified with respect to alternative statistical methods. Despite the numerous applications of Coulomb stress interactions, a rigorous validation of the forecasting capabilities is still missing. In this work, we use the Dieterich (1994) physics-based approach to simulate the spatio-temporal evolution of seismicity caused by stress changes applied to an infinite population of nucleating patches modelled through a rate- and state-dependent friction law. According to this model, seismicity rate changes depend on the amplitude of stress perturbation, the physical constitutive properties of faults (represented by the parameter Aσ), the stressing rate and the background seismicity rate of the study area. In order to apply this model in a predictive manner, we need to understand the variability of input physical model parameters and their correlations. We first discuss the impact of uncertainties in model parameters and, in particular, in computed coseismic stress perturbations on the seismicity rate changes forecasted through the frictional model. We aim to understand how the variability of Coulomb stress changes affects the correlation between predicted and observed changes in the rate of earthquake production. We use the aftershock activity following the 1992 M 7.3 Landers (California) earthquake as one of our case studies. We analyze the variability of stress changes resulting from the use of different published slip distributions. We find that the standard deviation of the uncertainty is of the same size as the absolute stress change and that their ratio, the coefficient of variation (CV), is approximately constant in

  14. Energy and momentum preserving Coulomb collision model for kinetic Monte Carlo simulations of plasma steady states in toroidal fusion devices

    SciTech Connect

    Runov, A.M.; Kasilov, S.V.; Helander, P.

    2015-11-01

    A kinetic Monte Carlo model suited for self-consistent transport studies is proposed and tested. The Monte Carlo collision operator is based on a widely used model of Coulomb scattering by a drifting Maxwellian and a new algorithm enforcing the momentum and energy conservation laws. The difference to other approaches consists in a specific procedure of calculating the background Maxwellian parameters, which does not require ensemble averaging and, therefore, allows for the use of single-particle algorithms. This possibility is useful in transport balance (steady state) problems with a phenomenological diffusive ansatz for the turbulent transport, because it allows a direct use of variance reduction methods well suited for single particle algorithms. In addition, a method for the self-consistent calculation of the electric field is discussed. Results of testing of the new collision operator using a set of 1D examples, and preliminary results of 2D modelling in realistic tokamak geometry, are presented.

  15. Equation of state calculations for two-dimensional dust coulomb crystal at near zero temperature by molecular dynamics simulations

    SciTech Connect

    Djouder, M. Kermoun, F.; Mitiche, M. D.; Lamrous, O.

    2016-01-15

    Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere.

  16. Coulomb blockade and Coulomb staircase behavior observed at room temperature

    NASA Astrophysics Data System (ADS)

    Uky Vivitasari, Pipit; Azuma, Yasuo; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka

    2017-02-01

    A single-electron transistor (SET) consists of source, drain, Coulomb island, and gate to modulate the number of electrons and control the current. For practical applications, it is important to operate a SET at room temperature. One proposal towards the ability to operate at room temperature is to decrease Coulomb island size down to a few nanometres. We investigate a SET using Sn-porphyrin (Sn-por) protected gold nanoparticles (AuNPs) with 1.4 nm in core diameter as a Coulomb island. The fabrication method of nanogap electrodes uses the combination of a top-down technique by electron beam lithography (EBL) and a bottom-up process through electroless gold plating (ELGP) as our group have described before. The electrical measurement was conducted at room temperature (300 K). From current–voltage (I d–V d) characteristics, we obtained clear Coulomb blockade phenomena together with a Coulomb staircase due to a Sn-por protected gold NP as a Coulomb island. Experimental results of I d–V d characteristics agree with a theoretical curve based on using the orthodox model. Clear dI d/dV d peaks are observed in the Coulomb staircase at 9 K which suggest the electron transports through excited energy levels of Au NPs. These results are a big step for obtaining SETs that can operate at room temperature.

  17. Direct observation of photoinduced bent nitrosyl excited-state complexes

    SciTech Connect

    Sawyer, Karma R.; Steele, Ryan P.; Glascoe, Elizabeth A.; Cahoon, James F.; Schlegel, Jacob P.; Head-Gordon, Martin; Harris, Charles B.

    2008-06-28

    Ground state structures with side-on nitrosyl ({eta}{sup 2}-NO) and isonitrosyl (ON) ligands have been observed in a variety of transition-metal complexes. In contrast, excited state structures with bent-NO ligands have been proposed for years but never directly observed. Here we use picosecond time-resolved infrared spectroscopy and density functional theory (DFT) modeling to study the photochemistry of Co(CO){sub 3}(NO), a model transition-metal-NO compound. Surprisingly, we have observed no evidence for ON and {eta}{sup 2}-NO structural isomers, but have observed two bent-NO complexes. DFT modeling of the ground and excited state potentials indicates that the bent-NO complexes correspond to triplet excited states. Photolysis of Co(CO){sub 3}(NO) with a 400-nm pump pulse leads to population of a manifold of excited states which decay to form an excited state triplet bent-NO complex within 1 ps. This structure relaxes to the ground triplet state in ca. 350 ps to form a second bent-NO structure.

  18. The excited state antiaromatic benzene ring: a molecular Mr Hyde?

    PubMed

    Papadakis, Raffaello; Ottosson, Henrik

    2015-09-21

    The antiaromatic character of benzene in its first ππ* excited triplet state (T1) was deduced more than four decades ago by Baird using perturbation molecular orbital (PMO) theory [J. Am. Chem. Soc. 1972, 94, 4941], and since then it has been confirmed through a range of high-level quantum chemical calculations. With focus on benzene we now first review theoretical and computational studies that examine and confirm Baird's rule on reversal in the electron count for aromaticity and antiaromaticity of annulenes in their lowest triplet states as compared to Hückel's rule for the ground state (S0). We also note that the rule according to quantum chemical calculations can be extended to the lowest singlet excited state (S1) of benzene. Importantly, Baird, as well as Aihara [Bull. Chem. Soc. Jpn. 1978, 51, 1788], early put forth that the destabilization and excited state antiaromaticity of the benzene ring should be reflected in its photochemical reactivity, yet, today these conclusions are often overlooked. Thus, in the second part of the article we review photochemical reactions of a series of benzene derivatives that to various extents should stem from the excited state antiaromatic character of the benzene ring. We argue that benzene can be viewed as a molecular "Dr Jekyll and Mr Hyde" with its largely unknown excited state antiaromaticity representing its "Mr Hyde" character. The recognition of the "Jekyll and Hyde" split personality feature of the benzene ring can likely be useful in a range of different areas.

  19. Controlling chimera states: The influence of excitable units

    NASA Astrophysics Data System (ADS)

    Isele, Thomas; Hizanidis, Johanne; Provata, Astero; Hövel, Philipp

    2016-02-01

    We explore the influence of a block of excitable units on the existence and behavior of chimera states in a nonlocally coupled ring-network of FitzHugh-Nagumo elements. The FitzHugh-Nagumo system, a paradigmatic model in many fields from neuroscience to chemical pattern formation and nonlinear electronics, exhibits oscillatory or excitable behavior depending on the values of its parameters. Until now, chimera states have been studied in networks of coupled oscillatory FitzHugh-Nagumo elements. In the present work, we find that introducing a block of excitable units into the network may lead to several interesting effects. It allows for controlling the position of a chimera state as well as for generating a chimera state directly from the synchronous state.

  20. Excited state correlations of the finite Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Pozsgay, Balázs

    2017-02-01

    We consider short range correlations in excited states of the finite XXZ and XXX Heisenberg spin chains. We conjecture that the known results for the factorized ground state correlations can be applied to the excited states too, if the so-called physical part of the construction is changed appropriately. For the ground state we derive simple algebraic expressions for the physical part; the formulas only use the ground state Bethe roots as an input. We conjecture that the same formulas can be applied to the excited states as well, if the exact Bethe roots of the excited states are used instead. In the XXZ chain the results are expected to be valid for all states (except certain singular cases where regularization is needed), whereas in the XXX case they only apply to singlet states or group invariant operators. Our conjectures are tested against numerical data from exact diagonalization and coordinate Bethe Ansatz calculations, and perfect agreement is found in all cases. In the XXX case we also derive a new result for the nearest-neighbour correlator < σ 1zσ 2z> , which is valid for non-singlet states as well. Our results build a bridge between the known theory of factorized correlations, and the recently conjectured TBA-like description for the building blocks of the construction.

  1. Excited-State OH Masers and Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Pihlström, Ylva M.; Fish, Vincent L.; Sjouwerman, Loránt O.; Zschaechner, Laura K.; Lockett, Philip B.; Elitzur, Moshe

    2008-03-01

    The collisionally pumped, ground-state 1720 MHz maser line of OH is widely recognized as a tracer for shocked regions and observed in star-forming regions and supernova remnants. Whereas some lines of excited states of OH have been detected and studied in star-forming regions, the subject of excited-state OH in supernova remnants—where high collision rates are to be expected—is only recently being addressed. Modeling of collisional excitation of OH demonstrates that 1720, 4765, and 6049 MHz masers can occur under similar conditions in regions of shocked gas. In particular, the 6049 and 4765 MHz masers become more significant at increased OH column densities where the 1720 MHz masers begin to be quenched. In supernova remnants, the detection of excited-state OH line maser emission could therefore serve as a probe of regions of higher column densities. Using the Very Large Array, we searched for excited-state OH in the 4.7, 7.8, 8.2, and 23.8 GHz lines in four well-studied supernova remnants with strong 1720 MHz maser emission (Sgr A East, W28, W44 and IC 443). No detections were made, at typical detection limits of around 10 mJy beam-1. The search for the 6 GHz lines were done using Effelsberg since the VLA receivers did not cover those frequencies, and are reported on in an accompanying letter (Fish and coworkers). We also cross-correlated the positions of known supernova remnants with the positions of 1612 MHz maser emission obtained from blind surveys. No probable associations were found, perhaps except in the Sgr A East region. The lack of detections of excited-state OH indicates that the OH column densities suffice for 1720 MHz inversion but not for inversion of excited-state transitions, consistent with the expected results for C-type shocks.

  2. Nature of ground and electronic excited states of higher acenes

    PubMed Central

    Yang, Yang; Yang, Weitao

    2016-01-01

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle–particle random-phase approximation calculation. The 1Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state 3B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state 1B2u is a zwitterionic state to the short axis. The excited 1Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the 1B2u and excited 1Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved. PMID:27528690

  3. Dynamics and spectroscopy of CH₂OO excited electronic states.

    PubMed

    Kalinowski, Jaroslaw; Foreman, Elizabeth S; Kapnas, Kara M; Murray, Craig; Räsänen, Markku; Gerber, R Benny

    2016-04-28

    The excited states of the Criegee intermediate CH2OO are studied in molecular dynamics simulations using directly potentials from multi-reference perturbation theory (MR-PT2). The photoexcitation of the species is simulated, and trajectories are propagated in time on the excited state. Some of the photoexcitation events lead to direct fragmentation of the molecule, but other trajectories describe at least several vibrations in the excited state, that may terminate by relaxation to the ground electronic state. Limits on the role of non-adiabatic contributions to the process are estimated by two different simulations, one that forces surface-hopping at potential crossings, and another that ignores surface hopping altogether. The effect of non-adiabatic transitions is found to be small. Spectroscopic implications and consequences for the interpretation of experimental results are discussed.

  4. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    SciTech Connect

    Theophilou, Iris; Tassi, M.; Thanos, S.

    2014-04-28

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations.

  5. Lifetimes and Structure of Excited States of 73AS

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Căta-Danil, I.; Ivaşcu, M.; Mărginean, N.; Stroe, L.; Ur, C. A.; Dinu, N.

    The lifetimes of twelve low spin excited states in 73As, below 2 MeV excitation, have been measured with the DSA method in the 73Ge(p,nγ) reaction. The existing data (energy levels, electromagnetic moments, transition probabilities and branching ratios, one-nucleon transfer spectroscopic factors) are discussed in the frame of multi-shell interacting boson-fermion model calculations. A good agreement is obtained for a large number of levels.

  6. Ultrafast excited-state intramolecular proton transfer of aloesaponarin I.

    PubMed

    Nagaoka, Shin-ichi; Uno, Hidemitsu; Huppert, Dan

    2013-04-25

    Time-resolved emission of aloesaponarin I was studied with the fluorescence up-conversion and time-correlated single-photon-counting techniques. The rates of the excited-state intramolecular proton transfer, of the solvent and molecular rearrangements, and of the decay from the excited proton-transferred species were determined and interpreted in the light of time-dependent density functional calculations. These results were discussed in conjunction with UV protection and singlet-oxygen quenching activity of aloe.

  7. Excited states of Ne isoelectronic ions: SAC-CI study

    NASA Astrophysics Data System (ADS)

    Das, A. K.; Ehara, M.; Nakatsuji, H.

    2001-01-01

    Excited states of the s, p, and d symmetries up to principal quantum number n = 4 are studied for the first eight members of Ne isoelectronic sequence (Ne to Cl7+) by the SAC-CI (symmetry-adapted-cluster configuration-interaction) method. The valence STO basis sets of Clementi et al. and the optimized excited STO are used by the STO-6G expansion method. The calculated transition energies agree well with the experimental values wherever available.

  8. Excitation energies of superdeformed states in the Pb isotopes

    SciTech Connect

    Wilson, A. N.; Byrne, A. P.; Dracoulis, G. D.; Davidson, P. M.; Lane, G. J.; Huebel, H.; Rossbach, D.; Schonwasser, G.; Korichi, A.; Hannachi, F.; Lopez-Martens, A.; Clark, R. M.; Fallon, P.; Macchiavelli, A. O.; Ward, D.

    2006-04-26

    Measurements of the excitation energies of superdeformed states via the observation of single-step linking transitions have now been made in three even-A Pb nuclei, with a quasicontinuum analysis providing a limit in a fourth, odd-A case. These results allow us to take the first steps towards establishing systematic trends in excitation energies and binding energies in the second minimum in Pb isotopes.

  9. Why LiFePO4 is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation.

    PubMed

    Liu, Xiaosong; Wang, Yung Jui; Barbiellini, Bernardo; Hafiz, Hasnain; Basak, Susmita; Liu, Jun; Richardson, Thomas; Shu, Guojiun; Chou, Fangcheng; Weng, Tsu-Chien; Nordlund, Dennis; Sokaras, Dimosthenis; Moritz, Brian; Devereaux, Thomas P; Qiao, Ruimin; Chuang, Yi-De; Bansil, Arun; Hussain, Zahid; Yang, Wanli

    2015-10-21

    LiFePO4 is a battery cathode material with high safety standards due to its unique electronic structure. We performed systematic experimental and theoretical studies based on soft X-ray emission, absorption, and hard X-ray Raman spectroscopy of LixFePO4 nanoparticles and single crystals. The results clearly show a non-rigid electron-state reconfiguration of both the occupied and unoccupied Fe-3d and O-2p states during the (de)lithiation process. We focus on the energy configurations of the occupied states of LiFePO4 and the unoccupied states of FePO4, which are the critical states where electrons are removed and injected during the charge and discharge process, respectively. In LiFePO4, the soft X-ray emission spectroscopy shows that, due to the Coulomb repulsion effect, the occupied Fe-3d states with the minority spin sit close to the Fermi level. In FePO4, the soft X-ray absorption and hard X-ray Raman spectroscopy show that the unoccupied Fe-3d states again sit close to the Fermi level. These critical 3d electron state configurations are consistent with the calculations based on modified Becke and Johnson potentials GGA+U (MBJGGA+U) framework, which improves the overall lineshape prediction compared with the conventionally used GGA+U method. The combined experimental and theoretical studies show that the non-rigid electron state reshuffling guarantees the stability of oxygen during the redox reaction throughout the charge and discharge process of LiFePO4 electrodes, leading to the intrinsic safe performance of the electrodes.

  10. Electromagnetic properties of the 2+ state in 134Te: Influence of core excitation on single-particle orbits beyond 132Sn

    SciTech Connect

    Stuchbery, Andrew E; Allmond, James M; Galindo-Uribarri, Alfredo {nmn}; Padilla-Rodal, Elizabeth; Radford, David C; Stone, N. J.; Batchelder, J. C.; Beene, James R; Benczer-Koller, N.; Bingham, C. R.; Howard, Meredith E; Kumbartzki, G.; Liang, J Felix; Manning, Brett M; Stracener, Daniel W; Yu, Chang-Hong

    2013-01-01

    The g factor and B (E2) of the first excited 2+ state have been measured following Coulomb excitation ofthe neutron-rich semimagic nuclide 134Te (two protons outside 132Sn) produced as a radioactive beam. The precision achieved matches related g-factor measurements on stable beams and distinguishes between alternative models. The B(E2) measurement exposes quadrupole strength in the 2+ state beyond that predicted by current large-basis shell-model calculations. This additional quadrupole strength can be attributed to coupling between the two valence protons and excitations of the 132Sn core. However, the wave functions of the low-excitation positive-parity states in 134Te up to 6+ remain dominated by the (g7/2)2 configuration.

  11. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    NASA Astrophysics Data System (ADS)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally

  12. Effect of nuclear-reaction mechanisms on the population of excited nuclear states and isomeric ratios

    NASA Astrophysics Data System (ADS)

    Skobelev, N. K.

    2016-07-01

    Experimental data on the cross sections for channels of fusion and transfer reactions induced by beams of radioactive halo nuclei and clustered and stable loosely bound nuclei were analyzed, and the results of this analysis were summarized. The interplay of the excitation of single-particle states in reaction-product nuclei and direct reaction channels was established for transfer reactions. Respective experiments were performed in stable (6Li) and radioactive (6He) beams of the DRIBs accelerator complex at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, and in deuteron and 3He beams of the U-120M cyclotron at the Nuclear Physics Institute, Academy Sciences of Czech Republic (Řež and Prague, Czech Republic). Data on subbarrier and near-barrier fusion reactions involving clustered and loosely bound light nuclei (6Li and 3He) can be described quite reliably within simple evaporation models with allowance for different reaction Q-values and couple channels. In reactions involving halo nuclei, their structure manifests itself most strongly in the region of energies below the Coulomb barrier. Neutron transfer occurs with a high probability in the interactions of all loosely bound nuclei with light and heavy stable nuclei at positive Q-values. The cross sections for such reactions and the respective isomeric ratios differ drastically for nucleon stripping and nucleon pickup mechanisms. This is due to the difference in the population probabilities for excited single-particle states.

  13. Excited state conformational dynamics in carotenoids: dark intermediates and excitation energy transfer.

    PubMed

    Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A

    2015-04-15

    A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors.

  14. SW Sextantis in an excited, low state

    NASA Astrophysics Data System (ADS)

    Groot, P. J.; Rutten, R. G. M.; van Paradijs, J.

    2001-03-01

    We present low-resolution spectrophotometric optical observations of the eclipsing nova-like cataclysmic variable SW Sex, the prototype of the SW Sex stars. We observed the system when it was in an unusual low state. The spectrum is characterized by the presence of strong Heii and Civ emission lines as well as the normal single peaked Balmer emission lines. The radial temperature profile of the disk follows the expected T~ R-3/4 only in the outer parts and flattens off inside 0.5 times the white dwarf Roche lobe radius. The single peaked emission lines originate in a region above the plane of the disk, at the position of the hot spot.

  15. Exploration of Excited State Deactivation Pathways of Adenine Monohydrates.

    PubMed

    Chaiwongwattana, Sermsiri; Sapunar, Marin; Ponzi, Aurora; Decleva, Piero; Došlić, Nađa

    2015-10-29

    Binding of a single water molecule has a dramatic effect on the excited state lifetime of adenine. Here we report a joint nonadiabatic dynamics and reaction paths study aimed at understanding the sub-100 fs lifetime of adenine in the monohydrates. Our nonadiabatic dynamics simulations, performed using the ADC(2) electronic structure method, show a shortening of the excited state lifetime in the monohydrates with respect to bare adenine. However, the computed lifetimes were found to be significantly longer that the observed one. By comparing the reaction pathways of several excited state deactivation processes in adenine and adenine monohydrates, we show that electron-driven proton transfer from water to nitrogen atom N3 of the adenine ring may be the process responsible for the observed ultrafast decay. The inaccessibility of the electron-driven proton transfer pathway to trajectory-based nonadiabatic dynamics simulation is discussed.

  16. Correlated wave functions for three-particle systems with Coulomb interaction - The muonic helium atom

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.

    1977-01-01

    A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.

  17. State-Selective Excitation of Quantum Systems via Geometrical Optimization.

    PubMed

    Chang, Bo Y; Shin, Seokmin; Sola, Ignacio R

    2015-09-08

    We lay out the foundations of a general method of quantum control via geometrical optimization. We apply the method to state-selective population transfer using ultrashort transform-limited pulses between manifolds of levels that may represent, e.g., state-selective transitions in molecules. Assuming that certain states can be prepared, we develop three implementations: (i) preoptimization, which implies engineering the initial state within the ground manifold or electronic state before the pulse is applied; (ii) postoptimization, which implies engineering the final state within the excited manifold or target electronic state, after the pulse; and (iii) double-time optimization, which uses both types of time-ordered manipulations. We apply the schemes to two important dynamical problems: To prepare arbitrary vibrational superposition states on the target electronic state and to select weakly coupled vibrational states. Whereas full population inversion between the electronic states only requires control at initial time in all of the ground vibrational levels, only very specific superposition states can be prepared with high fidelity by either pre- or postoptimization mechanisms. Full state-selective population inversion requires manipulating the vibrational coherences in the ground electronic state before the optical pulse is applied and in the excited electronic state afterward, but not during all times.

  18. Two-Mode Excited Entangled Coherent State: Nonclassicality and Entanglement

    NASA Astrophysics Data System (ADS)

    Zhang, Hao-Liang; Wu, Jia-Ni; Liu, Cun-Jin; Hu, Yin-Quan; Hu, Li-Yun

    2017-03-01

    Two-mode excited entangled coherent states (TME-ECSs) are introduced by operating repeatedly the photon-excited operator on the ECSs. It is shown that the normalization constant is related to the product of two Laguerre polynomials. The influence of the operation on nonclassical behaviour of the ECSs is investigated in terms of cross-correlation function, anti-bunching effect and the negativity of Wigner function, which show that nonclassical properties can be enhanced. In addition, inseparability properties of the TME-ECSs are discussed by using Bell inequality and concurrence. It is found that the degree of quantum entanglement of even ECSs increases with the increase of the total excited photon number, and the violation of Bell inequality can be present for both even and odd case only when the total excited photon numbers are even and odd, respectively.

  19. First-principles Calculation of Excited State Spectra in QCD

    SciTech Connect

    Jozef Dudek,Robert Edwards,Michael Peardon,David Richards,Christopher Thomas

    2011-05-01

    Recent progress at understanding the excited state spectra of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum of QCD, and then present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I emphasise the need to extend the calculation to encompass multi-hadron contributions, and describe a recent calculation of the I=2 pion-pion energy-dependent phase shifts as a precursor to the study of channels with resonant behavior. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.

  20. Accurate Excited State Geometries within Reduced Subspace TDDFT/TDA.

    PubMed

    Robinson, David

    2014-12-09

    A method for the calculation of TDDFT/TDA excited state geometries within a reduced subspace of Kohn-Sham orbitals has been implemented and tested. Accurate geometries are found for all of the fluorophore-like molecules tested, with at most all valence occupied orbitals and half of the virtual orbitals included but for some molecules even fewer orbitals. Efficiency gains of between 15 and 30% are found for essentially the same level of accuracy as a standard TDDFT/TDA excited state geometry optimization calculation.

  1. 2{sup +} excitation of the {sup 12}C Hoyle state

    SciTech Connect

    Freer, M.; Fujita, H.; Carter, J.; Usman, I.; Buthelezi, Z.; Foertsch, S. V.; Neveling, R.; Perez, S. M.; Smit, F. D.; Fearick, R. W.; Papka, P.; Swartz, J. A.

    2009-10-15

    A high-energy-resolution magnetic spectrometer has been used to measure the {sup 12}C excitation energy spectrum to search for the 2{sup +} excitation of the 7.65 MeV, 0{sup +} Hoyle state. By measuring in the diffractive minimum of the angular distribution for the broad 0{sup +} background, evidence is found for a possible 2{sup +} state at 9.6(1) MeV with a width of 600(100) keV. The implications for the {sup 8}Be+{sup 4}He reaction rate in stellar environments are discussed.

  2. Formation of metastable excited states during sputtering of transition metals

    SciTech Connect

    Wucher, A.; Sroubek, Z.

    1997-01-01

    We propose a simple model which treats the formation of metastable excited neutral atoms during sputtering of a transition metal as a two step process. First, the energy deposited into the electronic system of the solid by electronic energy losses of all moving particles in the collision cascade is considered to lead to a locally altered equilibrium electronic state of the solid. It is found that this step is dominated by collective interaction with the conduction band electrons rather than by electron promotion in binary atom-atom collisions. Second, sputtered excited atoms are assumed to be formed by resonant neutralization of excited ions (reflecting the altered equilibrium state) while crossing the surface. It is shown that this model explains the total as well as the velocity dependent excitation probability observed in recent experiments on sputtered neutral silver atoms, which cannot be understood in terms of existing theories describing the formation of excited states in sputtering. {copyright} {ital 1996} {ital The American Physical Society}

  3. Photoelectron Spectroscopy of Hexachloroplatinate-Nucleobase Complexes: Nucleobase Excited State Decay Observed via Delayed Electron Emission

    SciTech Connect

    Sen, Ananya; Matthews, Edward M.; Hou, Gao-Lei; Wang, Xue B.; Dessent, Caroline

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ~1.7 eV, values that are lower than the RCB of the uncomplexed PtCl6 2- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl6 2-∙thymine and PtCl6 2-∙adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)4 2-∙nucleobase complexes [Sen et al, J. Phys. Chem. B, 119, 11626, 2015]. The observation of delayed electron emission bands in the PtCl6 2-∙nucleobase spectra obtained in this work, as for the previously studied Pt(CN)4 2-∙nucleobase complexes, is attributed to onephoton excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a timescale long enough to allow autodetachment.

  4. Potential energy surfaces in atomic structure: The role of Coulomb correlation in the ground state of helium

    NASA Astrophysics Data System (ADS)

    Salas, L. D.; Arce, J. C.

    2017-02-01

    For the S states of two-electron atoms, we introduce an exact and unique factorization of the internal eigenfunction in terms of a marginal amplitude, which depends functionally on the electron-nucleus distances r1 and r2, and a conditional amplitude, which depends functionally on the interelectronic distance r12 and parametrically on r1 and r2. Applying the variational principle, we derive pseudoeigenvalue equations for these two amplitudes, which cast the internal Schrödinger equation in a form akin to the Born-Oppenheimer separation of nuclear and electronic degrees of freedom in molecules. The marginal equation involves an effective radial Hamiltonian, which contains a nonadiabatic potential energy surface that takes into account all interparticle correlations in an averaged way, and whose unique eigenvalue is the internal energy. At each point (r1,r2) , such surface is, in turn, the unique eigenvalue in the conditional equation. Employing the ground state of He as prototype, we show that the nonadiabatic potential energy surface affords a molecularlike interpretation of the structure of the atom, and aids in the analysis of energetic and spatial aspects of the Coulomb correlation, in particular correlation-induced symmetry breaking and quantum phase transition.

  5. Two-color excited-state absorption imaging of melanins

    NASA Astrophysics Data System (ADS)

    Fu, Dan; Ye, Tong; Matthews, Thomas E.; Yurtsever, Gunay; Hong, Lian; Simon, John D.; Warren, Warren S.

    2007-02-01

    We have demonstrated a new method for imaging melanin with two-color excited state absorption microscopy. If one of two synchronized mode-locked pulse trains at different colors is intensity modulated, the modulation transfers to the other pulse train when nonlinear absorption takes place in the medium. We can easily measure 10 -6 absorption changes caused by either instantaneous two-photon absorption or relatively long lived excited state absorption with a RF lock-in amplifier. Eumelanin and pheomelanin exhibit similar excited state dynamics. However, their difference in excited state absorption and ground state absorption leads to change in the phase of the transient absorption signal. Scanning microscopic imaging is performed with B16 cells, melanoma tissue to demonstrate the 3D high resolution imaging capability. Different melanosome samples are also imaged to illustrate the differences between eumelanin and pheomelanin signals. These differences could enable us to image their respective distribution in tissue samples and provide us with valuable information in diagnosing malignant transformation of melanocytes.

  6. Suppression of large earthquakes by stress shadows: A comparison of Coulomb and rate-and-state failure

    NASA Astrophysics Data System (ADS)

    Harris, Ruth A.; Simpson, Robert W.

    1998-10-01

    Stress shadows generated by California's two most recent great earthquakes (1857 Fort Tejon and 1906 San Francisco) substantially modified 19th and 20th century earthquake history in the Los Angeles basin and in the San Francisco Bay area. Simple Coulomb failure calculations, which assume that earthquakes can be modeled as static dislocations in an elastic half-space, have done quite well at approximating how long the stress shadows, or relaxing effects, should last and at predicting where subsequent large earthquakes will not occur. There has, however, been at least one apparent exception to the predictions of such simple models. The 1911 M>6.0 earthquake near Morgan Hill, California, occurred at a relaxed site on the Calaveras fault. We examine how the more complex rate-and-state friction formalism based on laboratory experiments might have allowed the 1911 earthquake. Rate-and-state time-to-failure calculations are consistent with the occurrence of the 1911 event just 5 years after 1906 if the Calaveras fault was already close to failure before the effects of 1906. We also examine the likelihood that the entire 78 years of relative quiet (only four M≥6 earthquakes) in the bay area after 1906 is consistent with rate-and-state assumptions, given that the previous 7 decades produced 18 M≥6 earthquakes. Combinations of rate-and-state variables can be found that are consistent with this pattern of large bay area earthquakes, assuming that the rate of earthquakes in the 7 decades before 1906 would have continued had 1906 not occurred. These results demonstrate that rate-and-state offers a consistent explanation for the 78-year quiescence and the 1911 anomaly, although they do not rule out several alternate explanations.

  7. Internal conversion from excited electronic states of 229Th ions

    NASA Astrophysics Data System (ADS)

    Bilous, Pavlo V.; Kazakov, Georgy A.; Moore, Iain D.; Schumm, Thorsten; Pálffy, Adriana

    2017-03-01

    The process of internal conversion from excited electronic states is investigated theoretically for the case of the vacuum-ultraviolet nuclear transition of 229Th. Due to the very low transition energy, the 229Th nucleus offers the unique possibility to open the otherwise forbidden internal conversion nuclear decay channel for thorium ions via optical laser excitation of the electronic shell. We show that this feature can be exploited to investigate the isomeric state properties via observation of internal conversion from excited electronic configurations of +Th and Th+2 ions. A possible experimental realization of the proposed scenario at the nuclear laser spectroscopy facility IGISOL in Jyväskylä, Finland, is discussed.

  8. Excited state tautomerization of 7-azaindole catalyzed by pyrazole

    NASA Astrophysics Data System (ADS)

    Karmakar, Shreetama; Mukherjee, Moitrayee; Chakraborty, Tapas

    2013-03-01

    Pyrazole, a five member cyclic azole, is reported here as an efficient catalyst for excited state tautomeric conversion of 7-azaindole. In hydrocarbon solution the two compounds efficiently form a doubly hydrogen-bonded 1:1 cyclic complex whose association constant value is found comparable with 7-azaindole dimerization constant, and according to B3LYP/6-311G++∗∗ calculation the binding energies of the complex and dimer are nearly same. In the excited state (S1), the TDDFT calculation predicts tautomer of the complex to be 13.4 kcal/mol more stable than normal form. Fluorescence spectra reveal that upon UV excitation the complex emits exclusively from the tautomeric form.

  9. Excitation energies of double isobar-analog states in heavy nuclei

    SciTech Connect

    Poplavskii, I. V.

    1988-12-01

    Several new relationships are established for isomultiplets on the basis of a theory in which the Coulomb coupling constant (CCC) is allowed to be complex. In particular, the following rule is formulated: the energies for fission or decay of members of an isomultiplet into a charged cluster and members of the corresponding daughter isomultiplet are equidistant. This relationship is well satisfied for isomultiplets with /ital A/less than or equal to60. By extrapolating the rule for fission and decay energies to the region of heavy nuclei, the excitation energies /ital E//sub /ital x// of double isobar-analog states (DIASs) are found for the nuclei /sup 197,199/Hg, /sup 205/Pb, /sup 205 - -209/Po, /sup 209/At, and /sup 238/Pu. A comparison of the computed energies /ital E//sub /ital x// with the experimentally measured values for /sup 208/Po attest to the reliability and good accuracy of the method proposed here when used to determine the excitation energies of DIASs in heavy nuclei.

  10. Tuning ground states and excitations in complex electronic materials

    SciTech Connect

    Bishop, A.R.

    1996-09-01

    Modern electronic materials are characterized by a great variety of broken-symmetry ground states and excitations. Their control requires understanding and tuning underlying driving forces of spin-charge-lattice coupling, critical to macroscopic properties and applications. We report representative model calculations which demonstrate some of the richness of the phenomena and the challenges for successful microscopic modeling.

  11. Role of the Permanent Dipole Moment in Coulomb Explosion

    NASA Astrophysics Data System (ADS)

    Zhang, Cai-Ping; Miao, Xiang-Yang

    2013-10-01

    By numerically solving the non-Born—Oppenheimer time-dependent Schrödinger equation in a few-cycle chirped laser field (5-fs, 800-nm), the effect of the permanent dipole moment on the Coulomb explosion is studied by the kinetic-energy-release spectra with the “virtual detector" method. The results indicate that with the effect of the permanent dipole moment, different multiphoton processes for heteronuclear and homonuclear diatomic molecular ions may take place when the wave packets transit from the ground state (1sσg) to the first excited state (2pσu), and then move along the excited potential curve, and finally charge-resonant enhanced ionization occurs at critical internuclear distance. As a result, despite the similar ionization probabilities for these two systems at higher vibrational level with larger chirp parameter β, the structure of the Coulomb explosion spectrum for the former is prominently different from that for the latter.

  12. Multiparticle configurations of excited states in 155Lu

    NASA Astrophysics Data System (ADS)

    Carroll, R. J.; Hadinia, B.; Qi, C.; Joss, D. T.; Page, R. D.; Uusitalo, J.; Andgren, K.; Cederwall, B.; Darby, I. G.; Eeckhaudt, S.; Grahn, T.; Gray-Jones, C.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppänen, A.-P.; Nyman, M.; Pakarinen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Seweryniak, D.; Simpson, J.

    2016-12-01

    Excited states in the neutron-deficient N =84 nuclide 155Lu have been populated by using the 102Pd(58Ni,α p ) reaction. The 155Lu nuclei were separated by using the gas-filled recoil ion transport unit (RITU) separator and implanted into the Si detectors of the gamma recoil electron alpha tagging (GREAT) spectrometer. Prompt γ -ray emissions measured at the target position using the JUROGAM Ge detector array were assigned to 155Lu through correlations with α decays measured in GREAT. Structures feeding the (11 /2-) and (25 /2-)α -decaying states have been revised and extended. Shell-model calculations have been performed and are found to reproduce the excitation energies of several of the low-lying states observed to within an average of 71 keV. In particular, the seniority inversion of the 25 /2- and 27 /2- states is reproduced.

  13. Excited-state quantum phase transition in the Rabi model

    NASA Astrophysics Data System (ADS)

    Puebla, Ricardo; Hwang, Myung-Joong; Plenio, Martin B.

    2016-08-01

    The Rabi model, a two-level atom coupled to a harmonic oscillator, can undergo a second-order quantum phase transition (QPT) [M.-J. Hwang et al., Phys. Rev. Lett. 115, 180404 (2015), 10.1103/PhysRevLett.115.180404]. Here we show that the Rabi QPT accompanies critical behavior in the higher-energy excited states, i.e., the excited-state QPT (ESQPT). We derive analytic expressions for the semiclassical density of states, which show a logarithmic divergence at a critical energy eigenvalue in the broken symmetry (superradiant) phase. Moreover, we find that the logarithmic singularities in the density of states lead to singularities in the relevant observables in the system such as photon number and atomic polarization. We corroborate our analytical semiclassical prediction of the ESQPT in the Rabi model with its numerically exact quantum mechanical solution.

  14. Direct excitation of butterfly states in Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Lippe, Carsten; Niederpruem, Thomas; Thomas, Oliver; Eichert, Tanita; Ott, Herwig

    2016-05-01

    Since their first theoretical prediction Rydberg molecules have become an increasing field of research. These exotic states originate from the binding of a ground state atom in the electronic wave function of a highly-excited Rydberg atom mediated by a Fermi contact type interaction. A special class of long-range molecular states, the butterfly states, were first proposed by Greene et al.. These states arise from a shape resonance in the p-wave scattering channel of a ground state atom and a Rydberg electron and are characterized by an electron wavefunction whose density distribution resembles the shape of a butterfly. We report on the direct observation of deeply bound butterfly states of Rydberg molecules of 87 Rb. The butterfly states are studied by high resolution spectroscopy of UV-excited Rydberg molecules. We find states bound up to - 50 GHz from the 25 P1/2 , F = 1 state, corresponding to binding lengths of 50a0 to 500a0 and with permanent electric dipole moments of up to 500 Debye. This distinguishes the observed butterfly states from the previously observed long range Rydberg molecules in rubidium.

  15. Excited States of the Diatomic Molecule CrHe

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Ratschek, Martin; Hauser, Andreas W.; Ernst, Wolfgang E.

    2013-06-01

    Chromium (Cr) atoms embedded in superfluid helium nanodroplets (He_N) have been investigated by laser induced fluorescence, beam depletion and resonant two-photon ionization spectroscopy in current experiments at our institute. Cr is found to reside inside the He_N in the a^7S ground state. Two electronically excited states, z^7P and y^7P, are involved in a photoinduced ejection process which allowed us to study Fano resonances in the photoionisation spectra The need for a better understanding of the experimental observations triggered a theoretical approach towards the computation of electronically excited states via high-level methods of computational chemistry. Two well-established, wave function-based methods, CASSCF and MRCI, are combined to calculate the potential energy curves for the three states involved. The character of the two excited states z^7P and y^7P turns out to be significantly different. Theory predicts the ejection of the Cr atom in the case of an y^7P excitation as was observed experimentally. The quasi-inert helium environment is expected to weaken spin selection rules, allowing a coupling between different spin states especially during the ejection process. We therefore extend our theoretical analysis to the lowest state in the triplet- and quintet- manifold. Most of these alternative states show very weak bonding of only a few wn. A. Kautsch, M. Hasewend, M. Koch and W. E. Ernst, Phys. Rev. A 86, 033428 (2012). A. Kautsch, M. Koch and W. E. Ernst, J. Phys. Chem. A, accepted, doi:10.1021/jp312336m}.

  16. Doubly Excited Resonance States of Helium Atom: Complex Entropies

    NASA Astrophysics Data System (ADS)

    Kuroś, Arkadiusz; Kościk, Przemysław; Saha, Jayanta K.

    2016-12-01

    We provide a diagonal form of a reduced density matrix of S-symmetry resonance states of two electron systems determined under the framework of the complex scaling method. We have employed the variational Hylleraas type wavefunction to estimate the complex entropies in doubly excited resonance states of helium atom. Our results are in good agreement with the corresponding ones determined under the framework of the stabilization method (Lin and Ho in Few-Body Syst 56:157, 2015).

  17. A parallel code to calculate rate-state seismicity evolution induced by time dependent, heterogeneous Coulomb stress changes

    NASA Astrophysics Data System (ADS)

    Cattania, C.; Khalid, F.

    2016-09-01

    The estimation of space and time-dependent earthquake probabilities, including aftershock sequences, has received increased attention in recent years, and Operational Earthquake Forecasting systems are currently being implemented in various countries. Physics based earthquake forecasting models compute time dependent earthquake rates based on Coulomb stress changes, coupled with seismicity evolution laws derived from rate-state friction. While early implementations of such models typically performed poorly compared to statistical models, recent studies indicate that significant performance improvements can be achieved by considering the spatial heterogeneity of the stress field and secondary sources of stress. However, the major drawback of these methods is a rapid increase in computational costs. Here we present a code to calculate seismicity induced by time dependent stress changes. An important feature of the code is the possibility to include aleatoric uncertainties due to the existence of multiple receiver faults and to the finite grid size, as well as epistemic uncertainties due to the choice of input slip model. To compensate for the growth in computational requirements, we have parallelized the code for shared memory systems (using OpenMP) and distributed memory systems (using MPI). Performance tests indicate that these parallelization strategies lead to a significant speedup for problems with different degrees of complexity, ranging from those which can be solved on standard multicore desktop computers, to those requiring a small cluster, to a large simulation that can be run using up to 1500 cores.

  18. Ground and Excited State Spectra of a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Stewart, D. R.; Sprinzak, D.; Patel, S. R.; Marcus, C. M.; Duruoz, C. I.; Harris, J. S.

    1998-03-01

    We present linear and nonlinear magnetoconductance measurements of the ground and excited state spectra for successive electron occupancy in a gate defined lateral quantum dot. Previous measurementsfootnote D.R. Stewart, D. Sprinzak, C.M. Marcus, C.I. Duruoz and J.S. Harris Jr., Science 278, (1997). showed a direct correlation between the mth excited state of the N-electron system and the ground state of the (N+m)-electron system for m up to 4, consistent to a large degree with a single-particle picture. Here we report quantitative deviations of the excited state spectra from the spectrum of ground state magnetoconductances, attributed to many-body interactions in the finite system of N ~200 electrons. We also describe the behaviour of anticrossings in the ground state magnetoconductances. We acknowledge the support of JSEP (DAAH04-94-G-0058), ARO (DAAH04-95-1-0331), ONR-YIP (N00014-94-1-0622) and the NSF-PECASE program. D.S. acknowledges the support of MINERVA grant.

  19. On the excited-state multi-dimensionality in cyanines

    NASA Astrophysics Data System (ADS)

    Dietzek, Benjamin; Brüggemann, Ben; Persson, Petter; Yartsev, Arkady

    2008-03-01

    Vibrational coherences in a photoexcited cyanine dye are preserved for the time-scale of diffusive torsional motion to the bottom of the excited-state potential. The coherently excited modes are virtually unaffected by solvent friction and thus distinct from the bond-twisting motion, which is strongly coupled to the surrounding solvent. We correlate the modes apparent in the resonance Raman and the four-wave mixing signal of 1,1'-diethyl-2,2'-cyanine with the understanding of optimal control of isomerization. In turn, the experimental results illustrate that optimal control might be used to obtain vibrational information complementary to conventional spectroscopic data.

  20. Highly Excited States of cs Atoms on Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Lackner, F.; Theisen, M.; Koch, M.; Ernst, W. E.

    2011-06-01

    Cs atoms on the surface of helium nanodroplets have been excited to high lying nS (n = 8-11), nP (n = 8-11), and nD (n = 6-10) levels. A two-step excitation scheme via the 62P1/2(2Π1/2) state using two cw lasers was applied. This intermediate state has the advantage that a large fraction of the excited Cs atoms does not desorb from the helium nanodroplets. An absorption spectrum was recorded by detecting laser induced fluorescence light from the 62P3/2→62S1/2 transition. The pseudo-diatomic model for helium nanodroplets doped with single alkali-metal atoms holds for the observed spectrum. An investigation of spectral trends shows that the n'2P(Π)←62P1/2(2Π1/2) and n'2D(Δ)←62P1/2(2Π1/2) (n' > 9) transitions are lower in energy than the corresponding free-atom transitions. This indicates that the Cs*--HeN potential becomes attractive for these highly excited states. Our results suggest a possibility of generating an artificial super-atom with a positive ion core inside a helium nanodroplet and the electron outside, which will be subject to future experiments. M. Theisen, F. Lackner, F. Ancilotto, C. Callegari, and W.E. Ernst, Eur. Phys. J. D 61, 403-408 (2011)

  1. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.

    PubMed

    Mondal, Sayan; Puranik, Mrinalini

    2016-05-18

    The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first

  2. Photodissociation of FONO: an excited state nonadiabatic dynamics study.

    PubMed

    Hilal, Allaa R; Hilal, Rifaat

    2017-03-01

    The photo dissociation of nitrosyl fluorite, FONO, a potential source of atmospheric fluorine, underlies its active role in ozone depletion and other activities in the troposphere. In the present work, the electronic structure of FONO is revisited at high level of ab initio and density functional theory (DFT) theoretical levels. Several different post SCF methods were used to compute excited states, vertical excitation energies and intensities, namely configuration interaction with single excitations (CIS), equation of motion coupled cluster with single and double excitations (EOM-CCSD), and symmetry adopted cluster configuration interaction (SAC-CI) methods. The potential energy functions along two internal coordinates, namely the F-ONO bond and the FONO dihedral angle, have been computed on the ground state relaxed potential energy surface (PES) for the ground, 5A' and 5A″ excited states using the EOM-CCSD method. In the gas phase, the decay of the excited states of FONO was examined closely by calculating the UV photoabsorption cross-section spectrum and by nonadiabatic dynamics simulations. Nonadiabatic dynamics were simulated by sampling 300 trajectories in two spectral windows at 3.0 ± 0.25 and 4.5 ± 0.25 eV using the surface hopping method. Two different photodissociation reaction pathways with two main products, including multifragmentation (FO+NO) and atomic elimination (F) mechanisms were identified. For the cis-isomer, the main photochemical channel is F+NO2, representing 67% of all processes. For the trans-isomer, however, the main dissociation pathway is (FO+NO). Graphical Abstract Photodisscociation of nitrosyl fluorite (FONO) seems to underlie its active role in ozone depletion and other activities in the troposphere. The present research revisits the electronic structure of FONO at high level of ab initio and DFT theoretical levels. Cis-trans isomerization and dissociation in the ground and low lying excited states were examined

  3. Controlling the dissociation dynamics of acetophenone radical cation through excitation of ground and excited state wavepackets

    NASA Astrophysics Data System (ADS)

    Moore Tibbetts, Katharine; Tarazkar, Maryam; Bohinski, Timothy; Romanov, Dmitri A.; Matsika, Spiridoula; Levis, Robert J.

    2015-08-01

    Time-resolved measurements of the acetophenone radical cation prepared via adiabatic ionization with strong field 1270 nm excitation reveal coupled wavepacket dynamics that depend on the intensity of the 790 nm probe pulse. At probe intensities below 7× {10}11 W cm-2, out of phase oscillations between the parent molecular ion and the benzoyl fragment ion are shown to arise from a one-photon excitation from the ground D0 ionic surface to the D1 and/or D2 excited surfaces by the probe pulse. At higher probe intensities, a second set of wavepacket dynamics are observed that couple the benzoyl ion to the phenyl, butadienyl, and acylium fragment ions. Equation of motion coupled cluster calculations of the ten lowest lying ionic surfaces and the dipole couplings between the ground ionic surface D0 and the nine excited states enable elucidation of the dissociation pathways and deduction of potential dissociation mechanisms. The results can lead to improved control schemes for selective dissociation of the acetophenone radical cation.

  4. Basicity of coumarin derivatives in the ground and excited states

    SciTech Connect

    Ponomarev, O.A.; Mitina, V.G.; Vasina, E.R.; Yarmolenko, S.N.

    1985-07-01

    The acid-base properties of coumarin luminophores are widely used for widening the optical spectrum generated by lasers. The aim of this work was a quantitative study of the proton-acceptor capacity of a series of substituted coumarins at the H-complex formation stage and during protonation, and also to evaluate the basicity of these compounds in the first excited singlet state. The compounds chosen were the 4- and 7-substituted coumarins, most widely used in laser technology. In the ground state the sensitivity of the carbonyl group to the effect of a substituent was twice as great in position 4 as in position 7; for the excited state the effect was reversed.

  5. Excited state dipole moments of 4-(dimethylamino)benzaldehyde

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Kukliński, B.; Bojarski, P.

    2007-11-01

    The effect of various polar solvents on the location of absorption and dual fluorescence (short wavelength emission, SE, and long wavelength emission, LE) of 4-(dimethylamino)benzaldehyde (DMABA) at room temperature was investigated. It was found that the fluorescence intensities ratio LE/SE is constant for concentrations ranging from 10 -5 M to 10 -1 M, which evidences that the LE-band is not of excimer origin. Based on the batochromic shift of electronic spectra of DMABA and Bilot-Kawski theory the values of excited state dipole moments in SE: μeSE=7.6D and the Onsager radius a = 4.3 Å were found using the known from literature value of ground state dipole moment μg = 5.6 D. For the emitting twisted intramolecular charge transfer (TICT) excited state the value of μeLE=12D was found.

  6. Optical nanoscopy with excited state saturation at liquid helium temperatures

    NASA Astrophysics Data System (ADS)

    Yang, B.; Trebbia, J.-B.; Baby, R.; Tamarat, Ph.; Lounis, B.

    2015-10-01

    Optical resolution of solid-state single quantum emitters at the nanometre scale is a challenging step towards the control of delocalized states formed by strongly and coherently interacting emitters. We have developed a simple super-resolution optical microscopy method operating at cryogenic temperatures, which is based on optical saturation of the excited state of single fluorescent molecules with a doughnut-shaped beam. Sub-10 nm resolution is achieved with extremely low excitation intensities, a million times lower than those used in room-temperature stimulated emission depletion microscopy. Compared with super-localization approaches, our technique offers a unique opportunity to super-resolve single molecules with overlapping optical resonance frequencies and paves the way to the study of coherent interactions between single emitters and to the manipulation of their degree of entanglement.

  7. Embedding potentials for excited states of embedded species

    SciTech Connect

    Wesolowski, Tomasz A.

    2014-05-14

    Frozen-Density-Embedding Theory (FDET) is a formalism to obtain the upper bound of the ground-state energy of the total system and the corresponding embedded wavefunction by means of Euler-Lagrange equations [T. A. Wesolowski, Phys. Rev. A 77(1), 012504 (2008)]. FDET provides the expression for the embedding potential as a functional of the electron density of the embedded species, electron density of the environment, and the field generated by other charges in the environment. Under certain conditions, FDET leads to the exact ground-state energy and density of the whole system. Following Perdew-Levy theorem on stationary states of the ground-state energy functional, the other-than-ground-state stationary states of the FDET energy functional correspond to excited states. In the present work, we analyze such use of other-than-ground-state embedded wavefunctions obtained in practical calculations, i.e., when the FDET embedding potential is approximated. Three computational approaches based on FDET, that assure self-consistent excitation energy and embedded wavefunction dealing with the issue of orthogonality of embedded wavefunctions for different states in a different manner, are proposed and discussed.

  8. Embedding potentials for excited states of embedded species.

    PubMed

    Wesolowski, Tomasz A

    2014-05-14

    Frozen-Density-Embedding Theory (FDET) is a formalism to obtain the upper bound of the ground-state energy of the total system and the corresponding embedded wavefunction by means of Euler-Lagrange equations [T. A. Wesolowski, Phys. Rev. A 77(1), 012504 (2008)]. FDET provides the expression for the embedding potential as a functional of the electron density of the embedded species, electron density of the environment, and the field generated by other charges in the environment. Under certain conditions, FDET leads to the exact ground-state energy and density of the whole system. Following Perdew-Levy theorem on stationary states of the ground-state energy functional, the other-than-ground-state stationary states of the FDET energy functional correspond to excited states. In the present work, we analyze such use of other-than-ground-state embedded wavefunctions obtained in practical calculations, i.e., when the FDET embedding potential is approximated. Three computational approaches based on FDET, that assure self-consistent excitation energy and embedded wavefunction dealing with the issue of orthogonality of embedded wavefunctions for different states in a different manner, are proposed and discussed.

  9. Controlling excited-state contamination in nucleon matrix elements

    SciTech Connect

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joo, Balint; Lin, Huey -Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-08

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1-flavor ensemble with lattices of size 323 × 64 generated using the rational hybrid Monte Carlo algorithm at a = 0.081 fm and with Mπ = 312 MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separation tsep. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. As a result, a detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of tsep needed to demonstrate convergence of the isovector charges of the nucleon to the tsep → ∞ estimates is presented.

  10. Controlling excited-state contamination in nucleon matrix elements

    DOE PAGES

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; ...

    2016-06-08

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1-flavor ensemble with lattices of size 323 × 64 generated using the rational hybrid Monte Carlo algorithm at a = 0.081 fm and with Mπ = 312 MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separation tsep. Wemore » show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. As a result, a detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of tsep needed to demonstrate convergence of the isovector charges of the nucleon to the tsep → ∞ estimates is presented.« less

  11. Controlling excited-state contamination in nucleon matrix elements

    SciTech Connect

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-01

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_{\\rm sep} \\to \\infty $ estimates is presented.

  12. Computational Analysis of Intermolecular Coulombic Decay Effects in DNA nucleotide Photoionization

    NASA Astrophysics Data System (ADS)

    Vargas, E. L.; Robertson, J.; Andrianarijaona, V. M.

    2016-03-01

    Intermolecular Coulombic Decay (ICD) is the process of how electrons return to their original state after excitation and how this affects their immediate environment. In a previous research presentationwe had considered the hypothetical applications of Intermolecular Coulombic Decay on the adhesiveness of coding proteins within DNA molecules. This presentation is a continuation of the previous in that the results of our DFT-based computational calculations of the ionization potentials of nucleotides and their excitation energies will be presented, as well as how they influence their surroundings. Author would like to acknowledge the PUC Student Senate for financial assistance.

  13. Excitation and suppression of chimera states by multiplexing.

    PubMed

    Maksimenko, Vladimir A; Makarov, Vladimir V; Bera, Bidesh K; Ghosh, Dibakar; Dana, Syamal Kumar; Goremyko, Mikhail V; Frolov, Nikita S; Koronovskii, Alexey A; Hramov, Alexander E

    2016-11-01

    We study excitation and suppression of chimera states in an ensemble of nonlocally coupled oscillators arranged in a framework of multiplex network. We consider the homogeneous network (all identical oscillators) with different parametric cases and interlayer heterogeneity by introducing parameter mismatch between the layers. We show the feasibility to suppress chimera states in the multiplex network via moderate interlayer interaction between a layer exhibiting chimera state and other layers which are in a coherent or incoherent state. On the contrary, for larger interlayer coupling, we observe the emergence of identical chimera states in both layers which we call an interlayer chimera state. We map the spatiotemporal behavior in a wide range of parameters, varying interlayer coupling strength and phase lag in two and three multiplexing layers. We also prove the emergence of interlayer chimera states in a multiplex network via evaluation of a continuous model. Furthermore, we consider the two-layered network of Hindmarsh-Rose neurons and reveal that in such a system multiplex interaction between layers is capable of exciting not only the synchronous interlayer chimera state but also nonidentical chimera patterns.

  14. Excitation on the Coherent States of Pseudoharmonic Oscillator

    NASA Astrophysics Data System (ADS)

    Popov, Dusan; Pop, Nicolina; Sajfert, Vjekoslav

    2009-05-01

    In the last decades, much attention has been paid to the excitation on coherent states, especially for coherent states of the harmonic oscillator ([1] and references therein). But an interesting anharmonic oscillator with many potential applications is also the pseudoharmonic oscillator (PHO). So, in the present paper we have defined the excitation on the Klauder-Perelomov coherent states (E-KP-CSs) for the PHO. These states are obtained by repeatedly operating the raising operator K+ on a usual Klauder-Perelomov coherent state (KP-CS) of the PHO [2]. We have verified that really, the E-KP-CSs fulfill all the properties of the coherent states, as stated by Klauder [3]. We have examined the nonclassical properties of the E-KP-CSs, by using the density matrix formalism and examining the dependence of the Mandel parameter Qz,k;m(|z|2) on the |z|2 and on the m. It seems that these states can be used in optical communication field and in the physics of quantum information, as signal beams, due to the fact that in these fields the nonclassicality plays an important role.

  15. Excitation and suppression of chimera states by multiplexing

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir A.; Makarov, Vladimir V.; Bera, Bidesh K.; Ghosh, Dibakar; Dana, Syamal Kumar; Goremyko, Mikhail V.; Frolov, Nikita S.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2016-11-01

    We study excitation and suppression of chimera states in an ensemble of nonlocally coupled oscillators arranged in a framework of multiplex network. We consider the homogeneous network (all identical oscillators) with different parametric cases and interlayer heterogeneity by introducing parameter mismatch between the layers. We show the feasibility to suppress chimera states in the multiplex network via moderate interlayer interaction between a layer exhibiting chimera state and other layers which are in a coherent or incoherent state. On the contrary, for larger interlayer coupling, we observe the emergence of identical chimera states in both layers which we call an interlayer chimera state. We map the spatiotemporal behavior in a wide range of parameters, varying interlayer coupling strength and phase lag in two and three multiplexing layers. We also prove the emergence of interlayer chimera states in a multiplex network via evaluation of a continuous model. Furthermore, we consider the two-layered network of Hindmarsh-Rose neurons and reveal that in such a system multiplex interaction between layers is capable of exciting not only the synchronous interlayer chimera state but also nonidentical chimera patterns.

  16. Lifetimes and structure of excited states of 115Sb

    NASA Astrophysics Data System (ADS)

    Lobach, Yu. N.; Bucurescu, D.

    1998-06-01

    Lifetimes of excited states of 115Sb were measured by the Doppler shift attenuation method in the (α,2nγ) reaction at Eα = 27.2 MeV. The experimental level scheme and the electromagnetic transition probabilities have been interpreted in terms of the interacting boson-fermion model. A reasonable agreement with the experiment was obtained for the positive-parity states. The experimental data also show the applicability of the cluster-vibrational model for the mixing of two 9/2+ states having different intrinsic configurations.

  17. Analytic model for low energy excitation states and phase transitions in spin-ice systems

    NASA Astrophysics Data System (ADS)

    López-Bara, F. I.; López-Aguilar, F.

    2017-04-01

    Low energy excitation states in magnetic structures of the so-called spin-ices are produced via spin flips among contiguous tetrahedra of their crystal structure. These spin flips generate entities which mimic magnetic dipoles in every two tetrahedra according to the dumbbell model. When the temperature increases, the spin-flip processes are transmitted in the lattice, generating so-called Dirac strings, which constitute structural entities that can present mimetic behavior similar to that of magnetic monopoles. In recent studies of both specific heat and ac magnetic susceptibility, two (even possibly three) phases have been shown to vary the temperature. The first of these phases presents a sharp peak in the specific heat and another phase transition occurs for increasing temperature whose peak is broader than that of the former phase. The sharp peak occurs when there are no free individual magnetic charges and temperature of the second phase transition coincides with the maximum proliferation of free deconfined magnetic charges. In the present paper, we propose a model for analyzing the low energy excitation many-body states of these spin-ice systems. We give analytical formulas for the internal energy, specific heat, entropy and their temperature evolution. We study the description of the possible global states via the nature and structure of their one-body components by means of the thermodynamic functions. Below 0.37 K, the Coulomb-like magnetic charge interaction can generate a phase transition to a condensation of pole–antipole pairs, possibly having Bose–Einstein structure which is responsible for the sharp peak of the first phase transition. When there are sufficient free positive and negative charges, the system tends to behave as a magnetic plasma, which implies the broader peak in the specific heat appearing at higher temperature than the sharper experimental peak.

  18. Electronically excited rubidium atom in helium clusters and films. II. Second excited state and absorption spectrum.

    PubMed

    Leino, Markku; Viel, Alexandra; Zillich, Robert E

    2011-01-14

    Following our work on the study of helium droplets and film doped with one electronically excited rubidium atom Rb(∗) ((2)P) [M. Leino, A. Viel, and R. E. Zillich, J. Chem. Phys. 129, 184308 (2008)], we focus in this paper on the second excited state. We present theoretical studies of such droplets and films using quantum Monte Carlo approaches. Diffusion and path integral Monte Carlo algorithms combined with a diatomics-in-molecule scheme to model the nonpair additive potential energy surface are used to investigate the energetics and the structure of Rb(∗)He(n) clusters. Helium films as a model for the limit of large clusters are also considered. As in our work on the first electronic excited state, our present calculations find stable Rb(∗)He(n) clusters. The structures obtained are however different with a He-Rb(∗)-He exciplex core to which more helium atoms are weakly attached, preferentially on one end of the core exciplex. The electronic absorption spectrum is also presented for increasing cluster sizes as well as for the film.

  19. Controlling autoionization in strontium two-electron-excited states

    NASA Astrophysics Data System (ADS)

    Fields, Robert; Zhang, Xinyue; Dunning, F. Barry; Yoshida, Shuhei; Burgdörfer, Joachim

    2016-05-01

    One challenge in engineering long-lived two-electron-excited states, i.e., so-called planetary atoms, is autoionization. Autoionization, however, can be suppressed if the outermost electron is placed in a high- n, n ~ 300 - 600 , high- L state because such states have only a very small overlap with the inner electron, even when this is also excited to a state of relatively high n and hence of relatively long lifetime. Here the L-dependence of the autoionization rate for high- n strontium Rydberg atoms is examined during excitation of the core ion 5 s 2S1 / 2 - 5 p 2P3 / 2 transition. Measurements in which the angular momentum of the Rydberg electron is controlled using a pulsed electric field show that the autoionization rate decreases rapidly with increasing L and becomes very small for values larger than ~ 20 . The data are analyzed with the aid of calculations undertaken using complex scaling. Research supported by the NSF and Robert A. Welch Foundation.

  20. Signature of nonadiabatic coupling in excited-state vibrational modes.

    PubMed

    Soler, Miguel A; Nelson, Tammie; Roitberg, Adrian E; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2014-11-13

    Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes.

  1. Lifetimes of the 7D excited states of francium

    NASA Astrophysics Data System (ADS)

    Grossman, J. S.; Fliller, R. P., III; Orozco, L. A.; Pearson, M. R.; Sprouse, G. D.

    2000-06-01

    We report our measurement of the lifetimes of the 7D_3/2 and 7D_5/2 levels of francium, using time-correlated single-photon counting techniques. We collect francium atoms in a magneto-optical trap (MOT) in the target room of the superconducting LINAC at Stony Brook. We use two-photon resonant excitation to reach either of the 7D levels. The trapping Ti:Sapph laser operating at 718 nm on the D2 line provides the first photon of the excitation. A second Ti:Sapph probe laser at 969 nm or 961 nm excites the second step to the 7D_3/2 or 7D_5/2 level, respectively. We chop the probe laser and monitor the fluorescent decay to the ground state via the 7P levels using a photomultiplier tube (PMT). The PMT photon-detection pulses are sent to a time to amplitude converter (TAC), and a histogram of the data gives the exponential decay of the fluorescence. Measurements of state lifetimes provide an important check of ab initio calculations of the structure of this simple, heavy atom. In this regard, the d states provide a stringent test that goes beyond the well understood s and p states. Work supported by the NSF.

  2. The electronic excited states of green fluorescent protein chromophore models

    NASA Astrophysics Data System (ADS)

    Olsen, Seth Carlton

    We explore the properties of quantum chemical approximations to the excited states of model chromophores of the green fluorescent protein of A. victoria. We calculate several low-lying states by several methods of quantum chemical calculation, including state-averaged complete active space SCF (CASSCF) methods, time dependent density functional theory (TDDFT), equation-of motion coupled cluster (EOM-CCSD) and multireference perturbation theory (MRPT). Amongst the low-lying states we identify the optically bright pipi* state of the molecules and examine its properties. We demonstrate that the state is dominated by a single configuration function. We calculate zero-time approximations to the resonance Raman spectrum of GFP chromophore models, and assign published spectra based upon these.

  3. Theoretical Studies of Excited State Dynamics in Semiconductor Materials

    NASA Astrophysics Data System (ADS)

    Liu, Jin

    The motivation of this research work is to investigate excited state dynamics of semiconductor systems using quantum computational techniques. The detailed ultrafast photoinduced processes, such as charge recombination, charge relaxation, energy/charge transfer, etc., sometimes cannot be fully addressed by spectroscopy experiments. The nonadiabatic molecular dynamics (NAMD), on the other hand, provides critical insights into the complex processes. In this thesis, we apply the NAMD simulation method to various semiconductor systems, ranging from bulk crystals, nanoparticles to clusters, to study the electronic and optical properties of semiconductors. The first chapter outlines important concepts in excited states dynamics and semiconductor disciplinary. The second chapter explains the theoretical methodology related to the research work, including approximations, computational methods and simulation details, etc. Starting from chapter three to chapter six, we present a comprehensive study focusing on silicon clusters, cadmium selenide quantum dots, cycloparaphenylenes and perovskites. Potential applications include solar harvesting, photoluminescence, energy transfer, etc.

  4. Excited states of the 150Pm odd-odd nucleus

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Drăgulescu, E.; Pascu, S.; Wirth, H.-F.; Filipescu, D.; Căta-Danil, G.; Căta-Danil, I.; Deleanu, D.; Eppinger, K.; Faestermann, T.; Ghiţă, D. G.; Glodariu, T.; Hertenberger, R.; Ivaşcu, M.; Krücken, R.; Mărginean, N.; Mărginean, R.; Mihai, C.; Negret, A.; Sava, T.; Stroe, L.; Wimmer, K.; Zamfir, N. V.

    2012-01-01

    The knowledge of excited states in the odd-odd 150Pm, completely unknown until recently, is important both for understanding double β decay of 150Nd and for nuclear structure studies in mass regions with a quantum phase transition. A large number of excited states have been determined for the first time in this nucleus by measuring spectra of the 152Sm(d,α) direct reaction at 25 MeV with the Munich Q3D spectrograph and by γ-ray spectroscopy with the (p,nγ) reaction at 7.1 MeV at the Bucharest tandem accelerator. Some of these levels correspond to peaks recently observed with the (3He,t) reaction at 140 MeV/u.

  5. Excited-state absorption measurements of Tm3+-doped crystals

    NASA Astrophysics Data System (ADS)

    Szela, J. W.; Mackenzie, J. I.

    2012-06-01

    High resolution, absolute excited-state absorption (ESA) spectra, at room temperature, from the long-lived 3F4 energy level of several crystals doped with trivalent thulium (Tm3+) ions have been measured employing high-brightness narrowband (FWHM <30 nm) light emitting diodes (LEDs) as a probe wavelength. The aim of this investigation was to determine the strength of ESA channels at wavelengths addressable by commercially available semiconductor laser diodes operating around 630-680 nm. The favourable lifetime of the 3F4 manifold and negligible ground-state absorption (GSA) for the red-wavelength second-step excitation, ensures a direct and efficient route for a dual-wavelength pumping scheme of the thulium ion, which will enable blue-green laser emission from its 1G4 upper-laser level.

  6. Temperature dependence of the excited state absorption of alexandrite

    SciTech Connect

    Shand, M.L.; Jenssen, H.P.

    1983-03-01

    The temperature dependence from 28 to 290/sup 0/C of the excited-state absorption cross section sigma /SUB 2a/ (E) in the gain wavelength region of alexandrite has been determined from the temperature dependence of the single pass gain (SPG) and of the fluorescence. sigma /SUB 2a/ (E) and the emission cross section increase with temperature at approximately the same rate.

  7. Optical Pulse Interactions in Nonlinear Excited State Materials

    DTIC Science & Technology

    2008-07-14

    for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources...Paperwork Reduction Project (0704-0188) Washington, DC 20503. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) 14...Excited State Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-04- 1 -0219 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Potasek

  8. Excited State Absorption Measurements In Some Scintillator Dye Solutions

    NASA Astrophysics Data System (ADS)

    Dharamsi, A., N.; Jong, Shawpin; Hassam, A. B.

    1986-11-01

    Time-resolved excited state triplet-triplet absorption spectra were measured for solutions of 2,5 diphenyloxazole (PPO) and 2,1 napthyl, 5 phenyloxazole (aNPO) in several solvents. Concentration quenching effects due to excimer formation in nonaromatic solvents were observed. A numerical analysis of the experimental results yielded the rate constants for intersystem crossing, triplet quenching by 02, triplet self quenching and the formation of excimers.

  9. Isolating excited states of the nucleon in lattice QCD

    SciTech Connect

    Mahbub, M. S.; Cais, Alan O.; Kamleh, Waseem; Lasscock, B. G.; Leinweber, Derek B.; Williams, Anthony G.

    2009-09-01

    We discuss a robust projection method for the extraction of excited-state masses of the nucleon from a matrix of correlation functions. To illustrate the algorithm in practice, we present results for the positive parity excited states of the nucleon in quenched QCD. Using eigenvectors obtained via the variational method, we construct an eigenstate-projected correlation function amenable to standard analysis techniques. The method displays its utility when comparing results from the fit of the projected correlation function with those obtained from the eigenvalues of the variational method. Standard nucleon interpolators are considered, with 2x2 and 3x3 correlation matrix analyses presented using various combinations of source-smeared, sink-smeared, and smeared-smeared correlation functions. Using these new robust methods, we observe a systematic dependency of the extracted nucleon excited-state masses on source- and sink-smearing levels. To the best of our knowledge, this is the first clear indication that a correlation matrix of standard nucleon interpolators is insufficient to isolate the eigenstates of QCD.

  10. Note: Excited State Studies of Ozone using State-Specific Multireference Coupled Cluster Methods

    SciTech Connect

    Bhaskaran-Nair, Kiran; Kowalski, Karol

    2012-12-07

    Vertical excitation energies obtained with state-specific multi-reference coupled cluster (MRCC) methods are reported for the ozone molecule. Using state-specific MRCC non-iterative methods with singles, doubles, and non-iterative triples (MRCCSD(T)) we obtain 4.40 eV for the challenging doubly excited 21A1 state when using a reliable model space. This estimate is in good agreement with experiment (4.5 eV). We also compare our MRCC results with the excitation energies obtained with high-order equation-of-motion coupled cluster methods

  11. Low-Lying ππ* States of Heteroaromatic Molecules: A Challenge for Excited State Methods.

    PubMed

    Prlj, Antonio; Sandoval-Salinas, María Eugenia; Casanova, David; Jacquemin, Denis; Corminboeuf, Clémence

    2016-06-14

    The description of low-lying ππ* states of linear acenes by standard electronic structure methods is known to be challenging. Here, we broaden the framework of this problem by considering a set of fused heteroaromatic rings and demonstrate that standard electronic structure methods do not provide a balanced description of the two (typically) lowest singlet state (La and Lb) excitations. While the Lb state is highly sensitive to correlation effects, La suffers from the same drawbacks as charge transfer excitations. We show that the comparison between CIS/CIS(D) can serve as a diagnostic for detecting the two problematic excited states. Standard TD-DFT and even its spin-flip variant lead to inaccurate excitation energies and interstate gaps, with only a double hybrid functional performing somewhat better. The complication inherent to a balanced description of these states is so important that even CC2 and ADC(2) do not necessarily match the ADC(3) reference.

  12. Lattice QCD sprectrum of excited states of the nucleon

    NASA Astrophysics Data System (ADS)

    Wallace, Stephen

    2012-03-01

    Lattice QCD results are presented for the spectrum of excited states of the nucleon. Matrices of correlation functions are calculated using lattice operators that incorporate up to two covariant derivatives in combinations that transform according to SU(2) symmetry restricted to the lattice. Although the lattice has cubic symmetry, identification of continuum SU(2) spins is straightforward using such operators. Overlaps of the operators with the lattice QCD states obtained by diagonalizing matrices of correlation functions provide the link of continuum spins to lattice states. Spins up to 7/2 are identified clearly. Evidence for an approximate realization of rotational symmetry in the spectrum is presented, which helps to explain why the continuum spins can be identified. In lattice simulations with pion mass equal to 392 MeV, the low-lying excited states of lattice QCD are found to have the same spin quantum numbers as the states of SU(6)xO(3) symmetry. The lattice QCD spectra are inconsistent with either a quark-diquark model or parity doubling of states. They suggest that the Roper resonance may have a complex structure consisting of contributions from L=0, 1 and 2.

  13. An incompressible state of a photo-excited electron gas

    PubMed Central

    Chepelianskii, Alexei D.; Watanabe, Masamitsu; Nasyedkin, Kostyantyn; Kono, Kimitoshi; Konstantinov, Denis

    2015-01-01

    Two-dimensional electrons in a magnetic field can form new states of matter characterized by topological properties and strong electronic correlations as displayed in the integer and fractional quantum Hall states. In these states, the electron liquid displays several spectacular characteristics, which manifest themselves in transport experiments with the quantization of the Hall resistance and a vanishing longitudinal conductivity or in thermodynamic equilibrium when the electron fluid becomes incompressible. Several experiments have reported that dissipationless transport can be achieved even at weak, non-quantizing magnetic fields when the electrons absorb photons at specific energies related to their cyclotron frequency. Here we perform compressibility measurements on electrons on liquid helium demonstrating the formation of an incompressible electronic state under these resonant excitation conditions. This new state provides a striking example of irradiation-induced self-organization in a quantum system. PMID:26007282

  14. Coulomb Energy Differences in T = 1 Mirror Rotational Bands in 50Fe and 50Cr

    NASA Astrophysics Data System (ADS)

    Lenzi, S. M.; Mărginean, N.; Napoli, D. R.; Ur, C. A.; Zuker, A. P.; de Angelis, G.; Algora, A.; Axiotis, M.; Bazzacco, D.; Belcari, N.; Bentley, M. A.; Bizzeti, P. G.; Bizzeti-Sona, A.; Brandolini, F.; von Brentano, P.; Bucurescu, D.; Cameron, J. A.; Chandler, C.; de Poli, M.; Dewald, A.; Eberth, H.; Farnea, E.; Gadea, A.; Garces-Narro, J.; Gelletly, W.; Grawe, H.; Isocrate, R.; Joss, D. T.; Kalfas, C. A.; Klug, T.; Lampman, T.; Lunardi, S.; Martínez, T.; Martínez-Pinedo, G.; Menegazzo, R.; Nyberg, J.; Podolyak, Zs.; Poves, A.; Ribas, R. V.; Rossi Alvarez, C.; Rubio, B.; Sánchez-Solano, J.; Spolaore, P.; Steinhardt, T.; Thelen, O.; Tonev, D.; Vitturi, A.; von Oertzen, W.; Weiszflog, M.

    2001-09-01

    Gamma rays from the N = Z-2 nucleus 50Fe have been observed, establishing the rotational ground state band up to the state Jπ = 11+ at 6.994 MeV excitation energy. The experimental Coulomb energy differences, obtained by comparison with the isobaric analog states in its mirror 50Cr, confirm the qualitative interpretation of the backbending patterns in terms of successive alignments of proton and neutron pairs. A quantitative agreement with experiment has been achieved by exact shell model calculations, incorporating the differences in radii along the yrast bands, and properly renormalizing the Coulomb matrix elements in the pf model space.

  15. Leptonic partial widths of the excited {psi} states

    SciTech Connect

    Mo, X. H.; Yuan, C. Z.; Wang, P.

    2010-10-01

    The resonance parameters of the excited {psi}-family resonances, namely, the {psi}(4040), {psi}(4160), and {psi}(4415), were determined by fitting the R values measured by experiments. It is found that the previously reported leptonic partial widths of these states were merely one possible solution among a four-fold ambiguity. By fitting the most precise experimental data on the R values measured by the BES collaboration, this work presents all four sets of solutions. These results may affect the interpretation of the charmonium and charmonium-like states above 4 GeV/c{sup 2}.

  16. Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile

    NASA Astrophysics Data System (ADS)

    Kolesniková, L.; Alonso, E. R.; Mata, S.; Alonso, J. L.

    2017-04-01

    We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm‑1. We also observed the 13C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.

  17. Coulomb-Rate-and-State models with time dependent stresses: the role of afterslip and secondary triggering

    NASA Astrophysics Data System (ADS)

    Cattania, C.; Hainzl, S.; Roth, F.; Wang, L.

    2013-12-01

    Large earthquakes are known to trigger aftershocks by redistributing stresses in the crust, and a correlation between the location of aftershocks and positive Coulomb stress changes has been repeatedly observed. Mainshocks also trigger aseismic phenomena which can in turn modify the stress field, such as afterslip, viscoelastic and poroelastic response of the crust; moreover, aftershocks themselves contribute to the a relocalization of stresses. These processes have the potential to trigger seismicity; and while most physics based forecasting models neglect postseismic stresses, several lines of evidence suggest that both processes play a role in triggering earthquakes. The cumulative moment of afterslip can be a significant fraction of the mainshock moment, producing comparable stress changes; and while stress changes induced by individual aftershocks are orders of magnitude smaller than those due to the mainshocks, they can still be large in the near field, and the cumulative contribution of small events can be significant. The clustering of aftershocks, and the success of statistical models with cascade triggering (such as ETAS) suggest that secondary triggering may be an important aspect to model. Our goal is to study the impact of afterslip and secondary triggering in models based on Coulomb stresses. We model the seismic response to stress changes following the Dieterich constitutive law, derived from Rate and State frictional behavior on an infinite population of faults. We focus on the first 250 days from the mainshock, for two case studies: the Parkfield, Mw=6.0 and the Tohoku, Mw=9.0 earthquakes. For each case, we consider a starting model with only coseismic stresses; a model with afterslip; a model with secondary triggering; and a model with both processes. Model parameters (ta and Aσ) are inverted separately for each model. We find that in both cases, the treating aftershocks as stress sources leads to a significant improvement in model performance

  18. Search for intrinsic collective excitations in Sm152

    NASA Astrophysics Data System (ADS)

    Kulp, W. D.; Wood, J. L.; Garrett, P. E.; Wu, C. Y.; Cline, D.; Allmond, J. M.; Bandyopadhyay, D.; Dashdorj, D.; Choudry, S. N.; Hayes, A. B.; Hua, H.; Mynk, M. G.; McEllistrem, M. T.; McKay, C. J.; Orce, J. N.; Teng, R.; Yates, S. W.

    2008-06-01

    The 685 keV excitation energy of the first excited 0+ state in Sm152 makes it an attractive candidate to explore expected two-phonon excitations at low energy. Multiple-step Coulomb excitation and inelastic neutron scattering studies of Sm152 are used to probe the E2 collectivity of excited 0+ states in this “soft” nucleus and the results are compared with model predictions. No candidates for two-phonon Kπ=0+quadrupole vibrational states are found. A 2+,K=2 state with strong E2 decay to the first excited Kπ=0+ band and a probable 3+ band member are established.

  19. SU(1,1) coherent states for Dirac-Kepler-Coulomb problem in D+1 dimensions with scalar and vector potentials

    NASA Astrophysics Data System (ADS)

    Ojeda-Guillén, D.; Mota, R. D.; Granados, V. D.

    2014-08-01

    We decouple the Dirac's radial equations in D+1 dimensions with Coulomb-type scalar and vector potentials through appropriate transformations. We study each of these uncoupled second-order equations in an algebraic way by using an su(1,1) algebra realization. Based on the theory of irreducible representations, we find the energy spectrum and the radial eigenfunctions. We construct the Perelomov coherent states for the Sturmian basis, which is the basis for the unitary irreducible representation of the su(1,1) Lie algebra. The physical radial coherent states for our problem are obtained by applying the inverse original transformations to the Sturmian coherent states.

  20. Quantum entanglement of locally excited states in Maxwell theory

    NASA Astrophysics Data System (ADS)

    Nozaki, Masahiro; Watamura, Naoki

    2016-12-01

    In 4 dimensional Maxwell gauge theory, we study the changes of (Rényi) entanglement entropy which are defined by subtracting the entropy for the ground state from the one for the locally excited states, generated by acting with gauge invariant local operators on the state. The changes for the operators which we consider in this paper reflect the electric-magnetic duality. The late-time value of changes can be interpreted in terms of electromagnetic quasi-particles. When the operator constructed of both electric and magnetic fields acts on the ground state, it shows that the operator acts on the late-time structure of quantum entanglement differently from free scalar fields.

  1. Output power of a quantum dot laser: Effects of excited states

    SciTech Connect

    Wu, Yuchang; Jiang, Li Asryan, Levon V.

    2015-11-14

    A theory of operating characteristics of quantum dot (QD) lasers is discussed in the presence of excited states in QDs. We consider three possible situations for lasing: (i) ground-state lasing only; (ii) ground-state lasing at first and then the onset of also excited-state lasing with increasing injection current; (iii) excited-state lasing only. The following characteristics are studied: occupancies of the ground-state and excited-state in QDs, free carrier density in the optical confinement layer, threshold currents for ground- and excited-state lasing, densities of photons emitted via ground- and excited-state stimulated transitions, output power, internal and external differential quantum efficiencies. Under the conditions of ground-state lasing only, the output power saturates with injection current. Under the conditions of both ground- and excited-state lasing, the output power of ground-state lasing remains pinned above the excited-state lasing threshold while the power of excited-state lasing increases. There is a kink in the light-current curve at the excited-state lasing threshold. The case of excited-state lasing only is qualitatively similar to that for single-state QDs—the role of ground-state transitions is simply reduced to increasing the threshold current.

  2. Self-scattering for Dark Matter with an excited state

    SciTech Connect

    Schutz, Katelin; Slatyer, Tracy R. E-mail: tslatyer@mit.edu

    2015-01-01

    Self-interacting dark matter scenarios have recently attracted much attention, as a possible means to alleviate the tension between N-body simulations and observations of the dark matter distribution on galactic and sub-galactic scales. The presence of internal structure for the dark matter—for example, a nearly-degenerate state in the spectrum that could decay, or be collisionally excited or de-excited—has also been proposed as a possible means to address these discrepancies. Such internal structure can be a source of interesting signatures in direct and indirect dark matter searches, for example providing a novel explanation for the 3.5 keV line recently observed in galaxies and galaxy clusters. We analyze a simple model of dark matter self-scattering including a nearly-degenerate excited state, and develop an accurate analytic approximation for the elastic and inelastic s-wave cross sections, which is valid outside the perturbative regime provided the particle velocity is sufficiently low (this condition is also required for the s-wave to dominate over higher partial waves). We anticipate our results will be useful in incorporating inelastic self-scattering into N-body simulations, in order to study the quantitative impact of nearly-degenerate states in the dark matter spectrum on galactic structure and dynamics, and in computing the indirect signatures of multi-state dark matter.

  3. Application of spectroscopy and super-resolution microscopy: Excited state

    SciTech Connect

    Bhattacharjee, Ujjal

    2016-02-19

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10-9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.

  4. Ultra-Fast Excited State Dynamics in Green Fluorescent Protein: Multiple States and Proton Transfer

    NASA Astrophysics Data System (ADS)

    Chattoraj, Mita; King, Brett A.; Bublitz, Gerold U.; Boxer, Steven G.

    1996-08-01

    The green fluorescent protein (GFP) of the jellyfish Aequorea Victoria has attracted widespread interest since the discovery that its chromophore is generated by the autocatalytic, posttranslational cyclization and oxidation of a hexapeptide unit. This permits fusion of the DNA sequence of GFP with that of any protein whose expression or transport can then be readily monitored by sensitive fluorescence methods without the need to add exogenous fluorescent dyes. The excited state dynamics of GFP were studied following photo-excitation of each of its two strong absorption bands in the visible using fluorescence upconversion spectroscopy (about 100 fs time resolution). It is shown that excitation of the higher energy feature leads very rapidly to a form of the lower energy species, and that the excited state interconversion rate can be markedly slowed by replacing exchangeable protons with deuterons. This observation and others lead to a model in which the two visible absorption bands correspond to GFP in two ground-state conformations. These conformations can be slowly interconverted in the ground state, but the process is much faster in the excited state. The observed isotope effect suggests that the initial excited state process involves a proton transfer reaction that is followed by additional structural changes. These observations may help to rationalize and motivate mutations that alter the absorption properties and improve the photo stability of GFP.

  5. Excitation of Helium to Rydberg States Using STIRAP

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoxu

    2011-12-01

    Driving atoms from an initial to a final state of the same parity via an intermediate state of opposite parity is most efficiently done using STIRAP, because it does not populate the intermediate state. For optical transitions this requires appropriate pulses of light in the counter-intuitive order - first coupling the intermediate and final states. We populate Rydberg states of helium (n = 12 ˜ 30) in a beam of average velocity 1070 m/s by having the atoms cross two laser beams in a tunable dc electric field. The "red" light near lambda = 790 ~ 830 nm connects the 33P states to the Rydberg states and the "blue" beam of lambda = 389 nm connects the metastable 2 3S state atoms emitted by our source to the 33 P states. By varying the relative position of these beams we can vary both the order and the overlap encountered by the atoms. We vary either the dc electric field and fix the " red " laser frequency or vary the "red" laser frequency and fix the dc electric field to sweep across Stark states of the Rydberg manifolds. Several mm downstream of the interaction region we apply the very strong bichromatic force on the 23S → 2 3P transition at lambda = 1083 nm. It deflects the remaining 23S atoms out of the beam and the ratio of this signal measured with STIRAP beam on and off provides an absolute measure of the fraction of the atoms remaining in the 23 S state. Simple three-level models of STIRAP all predict 100% excitation probability, but our raw measurements are typically around half of this, and vary with both n and l of the Rydberg states selected for excitation by the laser frequency and electric field tuning on our Stark maps. For states with high enough Rabi frequency, after correction for the decay back to the metastable state before the deflection, the highest efficiencies are around 70%. An ion detector readily detects the presence of Rydberg atoms. We believe that the observed signals are produced by black-body ionization at a very low rate, but

  6. Semiclassical Coulomb field

    SciTech Connect

    Polonyi, J.

    2008-06-15

    The contribution of different modes of the Coulomb field to decoherence and to the dynamical breakdown of the time reversal invariance is calculated in the one-loop approximation for nonrelativistic electron gas. The dominant contribution was found to come from the usual collective modes in the plasma, namely, the zero-sound and the plasmon oscillations. The length scale of the quantum-classical transition is found to be close to the Thomas-Fermi screening length. It is argued that the extension of these modes to the whole Fock space yields optimal pointer states.

  7. Excited-state proton transfer of firefly dehydroluciferin.

    PubMed

    Presiado, Itay; Erez, Yuval; Simkovitch, Ron; Shomer, Shay; Gepshtein, Rinat; Pinto da Silva, Luís; Esteves da Silva, Joaquim C G; Huppert, Dan

    2012-11-08

    Steady-state and time-resolved emission techniques were used to study the protolytic processes in the excited state of dehydroluciferin, a nonbioluminescent product of the firefly enzyme luciferase. We found that the ESPT rate coefficient is only 1.1 × 10(10) s(-1), whereas those of d-luciferin and oxyluciferin are 3.7 × 10(10) and 2.1 × 10(10) s(-1), respectively. We measured the ESPT rate in water-methanol mixtures, and we found that the rate decreases nonlinearly as the methanol content in the mixture increases. The deprotonated form of dehydroluciferin has a bimodal decay with short- and long-time decay components, as was previously found for both D-luciferin and oxyluciferin. In weakly acidic aqueous solutions, the deprotonated form's emission is efficiently quenched. We attribute this observation to the ground-state protonation of the thiazole nitrogen, whose pK(a) value is ~3.

  8. New results on the excited states in ^32Mg

    NASA Astrophysics Data System (ADS)

    McGauley, A. J.; Mach, H.; Fraile, L. M.; Tengblad, O.; Boutami, R.; Jouliet, C.; Plociennik, W.; Yordanov, D. Z.; Stanoiu, M.

    2008-10-01

    ^32Mg is located at the center of a region known as the ``island of inversion,'' a region in which the classic picture of stable shell structure was shattered when the energy of the 2^+ state in ^32Mg was found to be only 885 keV, much lower than expected for a nucleus with a closed neutron shell. The collapse of the N=20 shell closure has been extensively studied, yet very little information exists on the excited states in ^32Mg, which is the critical nucleus. We have studied the levels in ^32Mg populated from the beta-decay of ^32Na at the ISOLDE facility at CERN. We have established a new level scheme which includes 9 excited states and 18 transitions based on the gamma-gamma coincidences. The statistics exceeded by about 2 orders of magnitude statistics collected in previous measurements of ^32Mg [1]. We do not confirm two levels previously proposed, while two new levels and five new transitions are included in the level scheme. [1] G. Klotz et al., Phys. Rev. C47, 2502 (1993), C.M. Mattoon et al., Phys. Rev. C75, 017302 (2007), and V. Tripathi et al., Phys. Rev C77, 034310 (2008).

  9. Radiative Decays of Low-Lying Excited-State Hyperons

    SciTech Connect

    Taylor, Simon

    2000-05-01

    The quark wave-functions of the lower-lying excited-state hyperons Lambda(1405), Sigma(1385), and Lambda(1520) are not well understood. For example, the Lambda(1405) may not be a regular three-quark state but a $\\bar{K}$N molecule. Several competing models have been proposed, but none have been convincingly eliminated. Measuring radiative decays provides a means of discriminating between the models. The radiative branching of ratios are predicted to be small (~1%), but the radiative widths vary by factors of 2-10 from model to model. The existing experimental data is sparse and inconsistent; moreover, the radiative decay of the Sigma(1385) has never been observed before (except for one event). These lower-lying excited state hypersons were produced in a tagged photon-beam experiment in the CLAS detector at TJNAF in the reaction gamma p → K+ Y* for photon energies from threshold to 2.4 GeV. The radiative branching ration for the Sigma0(1385) relative to the Sigma0(1385) → Lambda pi0 channel was measured to be 0.021 ± 0.008$+0.004\\atop{-0.007}$, corresponding to a partial width of 640 ± 270$+130\\atop{-220}$ keV.

  10. Nonlinear absorption properties and excited state dynamics of ferrocene.

    PubMed

    Scuppa, Stefano; Orian, Laura; Dini, Danilo; Santi, Saverio; Meneghetti, Moreno

    2009-08-20

    We report on the first observation of reverse saturable absorption by ferrocene (Fc) in toluene using nanosecond pulses at 532 nm. Pump and probe experiments in the visible spectral region show the existence of an excited triplet state with an intersystem crossing quantum yield S1 --> T1 of 0.085 and a molar extinction coefficient epsilon(Fc)(T) of 5650 L mol(-1) cm(-1) at 700 nm. The full understanding of the nonlinear optical behavior of Fc cannot be obtained, however, with a model that includes only the one-photon absorption from T1, but it is mandatory to consider also a simultaneous two-photon absorption from an excited singlet state of Fc (two-photon absorption cross section: 2.4 x 10(-41) cm4 s ph(-1) mol(-1)). The optical spectrum of the ground and triplet state of Fc are calculated within a TD-DFT approach considering several functionals (PBE, BLYP, LDA, OPBE) for the optimization of molecular geometry.

  11. Population shuffling between ground and high energy excited states

    PubMed Central

    Sabo, T Michael; Trent, John O; Lee, Donghan

    2015-01-01

    Stochastic processes powered by thermal energy lead to protein motions traversing time-scales from picoseconds to seconds. Fundamental to protein functionality is the utilization of these dynamics for tasks such as catalysis, folding, and allostery. A hierarchy of motion is hypothesized to connect and synergize fast and slow dynamics toward performing these essential activities. Population shuffling predicts a “top-down” temporal hierarchy, where slow time-scale conformational interconversion leads to a shuffling of the free energy landscape for fast time-scale events. Until now, population shuffling was only applied to interconverting ground states. Here, we extend the framework of population shuffling to be applicable for a system interconverting between low energy ground and high energy excited states, such as the SH3 domain mutants G48M and A39V/N53P/V55L from the Fyn tyrosine kinase, providing another tool for accessing the structural dynamics of high energy excited states. Our results indicate that the higher energy gauche− rotameric state for the leucine χ2 dihedral angle contributes significantly to the distribution of rotameric states in both the major and minor forms of the SH3 domain. These findings are corroborated with unrestrained molecular dynamics (MD) simulations on both the major and minor states of the SH3 domain demonstrating high correlations between experimental and back-calculated leucine χ2 rotameric populations. Taken together, we demonstrate how fast time-scale rotameric side-chain population distributions can be extracted from slow time-scale conformational exchange data further extending the scope and the applicability of the population shuffling model. PMID:26316263

  12. Population shuffling between ground and high energy excited states.

    PubMed

    Sabo, T Michael; Trent, John O; Lee, Donghan

    2015-11-01

    Stochastic processes powered by thermal energy lead to protein motions traversing time-scales from picoseconds to seconds. Fundamental to protein functionality is the utilization of these dynamics for tasks such as catalysis, folding, and allostery. A hierarchy of motion is hypothesized to connect and synergize fast and slow dynamics toward performing these essential activities. Population shuffling predicts a "top-down" temporal hierarchy, where slow time-scale conformational interconversion leads to a shuffling of the free energy landscape for fast time-scale events. Until now, population shuffling was only applied to interconverting ground states. Here, we extend the framework of population shuffling to be applicable for a system interconverting between low energy ground and high energy excited states, such as the SH3 domain mutants G48M and A39V/N53P/V55L from the Fyn tyrosine kinase, providing another tool for accessing the structural dynamics of high energy excited states. Our results indicate that the higher energy gauche - rotameric state for the leucine χ2 dihedral angle contributes significantly to the distribution of rotameric states in both the major and minor forms of the SH3 domain. These findings are corroborated with unrestrained molecular dynamics (MD) simulations on both the major and minor states of the SH3 domain demonstrating high correlations between experimental and back-calculated leucine χ2 rotameric populations. Taken together, we demonstrate how fast time-scale rotameric side-chain population distributions can be extracted from slow time-scale conformational exchange data further extending the scope and the applicability of the population shuffling model.

  13. Population of isomeric states in fusion and transfer reactions in beams of loosely bound nuclei near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Skobelev, N. K.

    2015-07-01

    The influence of the mechanisms of nuclear reactions on the population of 195 m Hg and 197 m Hg(7/2-), 198 m Tl and 196 m Tl(7+), and 196 m Au and 198 m Au(12-) isomeric nuclear states obtained in reactions induced by beams of 3He, 6Li, and 6He weakly bound nuclei is studied. The behavior of excitation functions and high values of isomeric ratios ( δ m/ δ g) for products of nuclear reactions proceeding through a compound nucleus and involving neutron evaporation are explained within statistical models. Reactions in which the emission of charged particles occurs have various isomeric ratios depending on the reaction type. The isomeric ratio is lower in direct transfer reactions involving charged-particle emission than in reactions where the evaporation of charged particles occurs. Reactions accompanied by neutron transfer usually have a lower isomeric ratio, which behaves differently for different direct-reaction types (stripping versus pickup reactions).

  14. Excited State Effects in Nucleon Matrix Element Calculations

    SciTech Connect

    Constantia Alexandrou, Martha Constantinou, Simon Dinter, Vincent Drach, Karl Jansen, Theodoros Leontiou, Dru B Renner

    2011-12-01

    We perform a high-statistics precision calculation of nucleon matrix elements using an open sink method allowing us to explore a wide range of sink-source time separations. In this way the influence of excited states of nucleon matrix elements can be studied. As particular examples we present results for the nucleon axial charge g{sub A} and for the first moment of the isovector unpolarized parton distribution x{sub u-d}. In addition, we report on preliminary results using the generalized eigenvalue method for nucleon matrix elements. All calculations are performed using N{sub f} = 2+1+1 maximally twisted mass Wilson fermions.

  15. Theoretical study on the excited states of HCN

    NASA Astrophysics Data System (ADS)

    Nayak, Malaya K.; Chaudhuri, Rajat K.; Krishnamachari, S. N. L. G.

    2005-05-01

    In the flash-photolysis of oxazole, iso-oxazole, and thiozole a transient band system was observed in the region 2500-3050 Å. This band system was attributed to a meta-stable form of HCN, i.e., either HNC or triplet HCN. Theoretical investigations have been carried out on the ground and excited states of HCN to characterize this and other experimentally observed transitions. The predicted geometries are compared with the experiment and earlier theoretical calculations. The present calculations show that the band system in the region 2500-3050 Å corresponds to the transition 43-A'←13-A' of HCN.

  16. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission

    SciTech Connect

    Sen, Ananya; Matthews, Edward M.; Dessent, Caroline E. H. E-mail: xuebin.wang@pnnl.gov; Hou, Gao-Lei; Wang, Xue-Bin E-mail: xuebin.wang@pnnl.gov

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ∼1.7 eV, values that are lower than the RCB of the uncomplexed PtCl{sub 6}{sup 2−} dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl{sub 6}{sup 2−} ⋅ thymine and PtCl{sub 6}{sup 2−} ⋅ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN){sub 4}{sup 2−} ⋅ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl{sub 6}{sup 2−} ⋅ nucleobase spectra obtained in this work, as for the previously studied Pt(CN){sub 4}{sup 2−} ⋅ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to

  17. State-to-state kinetics and transport properties of electronically excited N and O atoms

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2016-11-01

    A theoretical model of transport properties in electronically excited atomic gases in the state-to-state approach is developed. Different models for the collision diameters of atoms in excited states are discussed, and it is shown that the Slater-like models can be applied for the state-resolved transport coefficient calculations. The influence of collision diameters of N and O atoms with electronic degrees of freedom on the transport properties is evaluated. Different distributions on the electronic energy are considered for the calculation of transport coefficients. For the Boltzmann-like distributions at temperatures greater than 15000 K, an important effect of electronic excitation on the thermal conductivity and viscosity coefficients is found; the coefficients decrease significantly when many electronic states are taken into account. It is shown that under hypersonic reentry conditions the impact of collision diameters on the transport properties is not really important since the populations of high levels behind the shock waves are low.

  18. Excitation Energy Transfer Dynamics and Excited-State Structure in Chlorosomes of Chlorobium phaeobacteroides

    PubMed Central

    Pšenčík, Jakub; Ma, Ying-Zhong; Arellano, Juan B.; Hála, Jan; Gillbro, Tomas

    2003-01-01

    The excited-state relaxation within bacteriochlorophyll (BChl) e and a in chlorosomes of Chlorobium phaeobacteroides has been studied by femtosecond transient absorption spectroscopy at room temperature. Singlet-singlet annihilation was observed to strongly influence both the isotropic and anisotropic decays. Pump intensities in the order of 1011 photons × pulse−1 × cm−2 were required to obtain annihilation-free conditions. The most important consequence of applied very low excitation doses is an observation of a subpicosecond process within the BChl e manifold (∼200–500 fs), manifesting itself as a rise in the red part of the Qy absorption band of the BChl e aggregates. The subsequent decay of the kinetics measured in the BChl e region and the corresponding rise in the baseplate BChl a is not single-exponential, and at least two components are necessary to fit the data, corresponding to several BChl e→BChl a transfer steps. Under annihilation-free conditions, the anisotropic kinetics show a generally slow decay within the BChl e band (10–20 ps) whereas it decays more rapidly in the BChl a region (∼1 ps). Analysis of the experimental data gives a detailed picture of the overall time evolution of the energy relaxation and energy transfer processes within the chlorosome. The results are interpreted within an exciton model based on the proposed structure. PMID:12547796

  19. The excited spin state of Comet 2P/Encke

    NASA Astrophysics Data System (ADS)

    Belton, Michael J. S.; Samarasinha, Nalin H.; Fernández, Yan R.; Meech, Karen J.

    2005-05-01

    Ways to rationalize the different periods (e.g., 15.08 h, Luu and Jewitt, 1990, Icarus 86, 69-81; 11.01 h, Fernández et al., 2004, Icarus, in this issue; Lowry et al., 2003, Lunar Planet. Sci. XXXIV, Abstract 2056) seen in near aphelion R-band light curves of Comet 2P/Encke are explored. We show that the comet is usually active at aphelion and it's observed light curves contain signal from both the nucleus and an unresolved coma. The coma contribution to the observed brightness is generally found to dominate with the nucleus providing from 28 to 87% of the total brightness. The amplitude of the observed variations cannot be explained by the nucleus alone and are due to coma activity. We show that some seven periodicities exist in the observed light curves at various times and that this is likely the result of an active nucleus spinning in an excited spin state. The changing periodicities are probably due to changes in the relative strengths of the active areas. We work out possible excited states based on experience with model light curves and by using an analogy to light curve observations of Comet 1P/Halley for which the spin state has been separately determined from spacecraft observations. There is a possibility of a fully relaxed principal axis spin state (0.538 d -1; P=44.6 h) but, because it provides a poorer fit to the observed periodicities than the best fit excited state together with the absence of a peak near 1.08 d -1 ( 2f) in the frequency spectrum of the Fernández et al. (2000, Icarus 147, 145-160) thermal IR lightcurve, we consider it unlikely. Both SAM and LAM excited states are allowed by the underlying periodicities and additional information is needed to choose between these. Our choice of a low excitation SAM state, i.e., one in which the instantaneous spin axis nutates around the total angular momentum vector in a motion that is characterized by limited angular oscillations around the long axis, is based on Sekanina's (1988, Astron J. 95

  20. Excited-State Decay Paths in Tetraphenylethene Derivatives.

    PubMed

    Gao, Yuan-Jun; Chang, Xue-Ping; Liu, Xiang-Yang; Li, Quan-Song; Cui, Ganglong; Thiel, Walter

    2017-04-06

    The photophysical properties of tetraphenylethene (TPE) compounds may differ widely depending on the substitution pattern, for example, with regard to the fluorescence quantum yield ϕf and the propensity to exhibit aggregation-induced emission (AIE). We report combined electronic structure calculations and nonadiabatic dynamics simulations to study the excited-state decay mechanisms of two TPE derivatives with four methyl substituents, either in the meta position (TPE-4mM, ϕf = 0.1%) or in the ortho position (TPE-4oM, ϕf = 64.3%). In both cases, two excited-state decay pathways may be relevant, namely, photoisomerization around the central ethylenic double bond and photocyclization involving two adjacent phenyl rings. In TPE-4mM, the barrierless S1 cyclization is favored; it is responsible for the ultralow fluorescence quantum yield observed experimentally. In TPE-4oM, both the S1 photocyclization and photoisomerization paths are blocked by non-negligible barriers, and fluorescence is thus feasible. Nonadiabatic dynamics simulations with more than 1000 surface hopping trajectories show ultrafast cyclization upon photoexcitation of TPE-4mM, whereas TPE-4oM remains unreactive during the 1 ps simulations. We discuss the chances for spectroscopic detection of the postulated cyclic photoproduct of TPE-4mM and the relevance of our findings for the AIE process.

  1. Excited-State Decay Paths in Tetraphenylethene Derivatives

    PubMed Central

    2017-01-01

    The photophysical properties of tetraphenylethene (TPE) compounds may differ widely depending on the substitution pattern, for example, with regard to the fluorescence quantum yield ϕf and the propensity to exhibit aggregation-induced emission (AIE). We report combined electronic structure calculations and nonadiabatic dynamics simulations to study the excited-state decay mechanisms of two TPE derivatives with four methyl substituents, either in the meta position (TPE-4mM, ϕf = 0.1%) or in the ortho position (TPE-4oM, ϕf = 64.3%). In both cases, two excited-state decay pathways may be relevant, namely, photoisomerization around the central ethylenic double bond and photocyclization involving two adjacent phenyl rings. In TPE-4mM, the barrierless S1 cyclization is favored; it is responsible for the ultralow fluorescence quantum yield observed experimentally. In TPE-4oM, both the S1 photocyclization and photoisomerization paths are blocked by non-negligible barriers, and fluorescence is thus feasible. Nonadiabatic dynamics simulations with more than 1000 surface hopping trajectories show ultrafast cyclization upon photoexcitation of TPE-4mM, whereas TPE-4oM remains unreactive during the 1 ps simulations. We discuss the chances for spectroscopic detection of the postulated cyclic photoproduct of TPE-4mM and the relevance of our findings for the AIE process. PMID:28318255

  2. Probing the Locality of Excited States with Linear Algebra.

    PubMed

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.

  3. Excited state absorption spectra and intersystem crossing kinetics in diazanaphthalenes

    NASA Astrophysics Data System (ADS)

    Scott, Gary W.; Talley, Larry D.; Anderson, Robert W.

    1980-05-01

    Picosecond time-resolved, excited state absorption spectra in the visible following excitation at 355 nm are discussed for room temperature solutions of four diazanaphthalenes (DN)—quinoxaline (1,4-DN), quinazoline (1,3-DN), cinnoline (1,2-DN), and phthalazine (2,3-DN). Kinetics of singlet state decay are obtained by monitoring the decay of Sn←S1 bands. The intersystem crossing rate constant (kisc) is found to vary as kisc(1,4-DN)≳kisc(1,3-DN)≳kisc(1,2-DN). The kisc in phthalazine could not be determined from the weak, visible Sn←S1 absorption. Assuming rapid singlet vibrational relaxation and only minor effects due to energy gap variations, these experimental results agree with statistical limit predictions for the relative nonradiative rate. Calculations of the spin-orbit coupling matrix element βel= , using INDO wave functions, give the ordering βel(1,4-DN)≳βel(2,3-DN)≳βel(1,3-DN) ≳βel(1,2-DN).

  4. Excited state dynamics of thulium ions in yttrium aluminum garnets

    NASA Technical Reports Server (NTRS)

    Armagan, G.; Buoncristiani, A. M.; Dibartolo, B.

    1991-01-01

    The processes that take place in the excited states of a trivalent Thulium (Tm) ion in an Yttrium Aluminum Garnet (YAG) crystal, being relevant to the use of this system for laser applications, have been the object of several studies. We have reexamined this system focusing our attention on the dynamics of Tm following its excitation in the H-3(sub 4) level. Under these conditions the system relaxes through a cross-relaxation process. H-3(sub 4) yields F-3(sub 4), H-3(sub 6) yields F-3(sub 4), whose rate depends upon both the concentration of the Tm ion and the temperature of the crystal. The excitation spectrum obtained by monitoring the 1.8 micron emission of Tm (due to the F-3(sub 4) yields H-3(sub 6) transition) indicates an increase in the contribution to this emission from the H-3(sub 4) level relative to the H-3(sub 5) level as the Tm concentration increases; this shows the increased role played by the H-3(sub 4) level in pumping the infrared emission. Correspondingly, the duration of the luminescence originating in the H-3(sub 4) level is shortened as the concentration of Tm increases. The concentration quenching of this lifetime can be fit to a model which assumes that the cross-relaxation is due to a dipole-dipole interaction; from this fit, the intrinsic Tm lifetime in the absence of cross relaxation can be derived. We have used this lifetime to calculate the rate of the cross-relaxation process. We have evaluated this rate as a function of the temperature and found it to be fastest at 77 K. We have also calculated the microscopic interaction parameters for the cross-relaxation process by using two independent experimental features: (1) the time evolution of the emission from the H-3(sub 4) level; and (2) the spectral overlap between the H-3(sub 4) yields F-3(sub 4) emission and the H-3(sub 6) yields F-3(sub 4) absorption. We have also considered the migration of excitation among the Tm ions in the F-3(sub 4) level and calculated the relevant

  5. Universal crossover from ground-state to excited-state quantum criticality

    NASA Astrophysics Data System (ADS)

    Kang, Byungmin; Potter, Andrew C.; Vasseur, Romain

    2017-01-01

    We study the nonequilibrium properties of a nonergodic random quantum chain in which highly excited eigenstates exhibit critical properties usually associated with quantum critical ground states. The ground state and excited states of this system belong to different universality classes, characterized by infinite-randomness quantum critical behavior. Using strong-disorder renormalization group techniques, we show that the crossover between the zero and finite energy density regimes is universal. We analytically derive a flow equation describing the unitary dynamics of this isolated system at finite energy density from which we obtain universal scaling functions along the crossover.

  6. Widespread seismicity excitation throughout central Japan following the 2011 M=9.0 Tohoku earthquake and its interpretation by Coulomb stress transfer

    NASA Astrophysics Data System (ADS)

    Toda, Shinji; Stein, Ross S.; Lin, Jian

    2011-08-01

    We report on a broad and unprecedented increase in seismicity rate following the M=9.0 Tohoku mainshock for M ≥ 2 earthquakes over inland Japan, parts of the Japan Sea and Izu islands, at distances of up to 425 km from the locus of high (≥15 m) seismic slip on the megathrust. Such an increase was not seen for the 2004 M=9.1 Sumatra or 2010 M=8.8 Chile earthquakes, but they lacked the seismic networks necessary to detect such small events. Here we explore the possibility that the rate changes are the product of static Coulomb stress transfer to small faults. We use the nodal planes of M ≥ 3.5 earthquakes as proxies for such small active faults, and find that of fifteen regions averaging ˜80 by 80 km in size, 11 show a positive association between calculated stress changes and the observed seismicity rate change, 3 show a negative correlation, and for one the changes are too small to assess. This work demonstrates that seismicity can turn on in the nominal stress shadow of a mainshock as long as small geometrically diverse active faults exist there, which is likely quite common.

  7. Widespread seismicity excitation throughout central Japan following the 2011 M=9.0 Tohoku earthquake and its interpretation by Coulomb stress transfer

    USGS Publications Warehouse

    Toda, S.; Stein, R.S.; Lin, J.

    2011-01-01

    We report on a broad and unprecedented increase in seismicity rate following the M=9.0 Tohoku mainshock for M ≥ 2 earthquakes over inland Japan, parts of the Japan Sea and Izu islands, at distances of up to 425 km from the locus of high (≥15 m) seismic slip on the megathrust. Such an increase was not seen for the 2004 M=9.1 Sumatra or 2010 M=8.8 Chile earthquakes, but they lacked the seismic networks necessary to detect such small events. Here we explore the possibility that the rate changes are the product of static Coulomb stress transfer to small faults. We use the nodal planes of M ≥ 3.5 earthquakes as proxies for such small active faults, and find that of fifteen regions averaging ~80 by 80 km in size, 11 show a positive association between calculated stress changes and the observed seismicity rate change, 3 show a negative correlation, and for one the changes are too small to assess. This work demonstrates that seismicity can turn on in the nominal stress shadow of a mainshock as long as small geometrically diverse active faults exist there, which is likely quite common.

  8. Kinetics of excited states and radicals in a nanosecond pulse discharge and afterglow in nitrogen and air

    NASA Astrophysics Data System (ADS)

    Shkurenkov, Ivan; Burnette, David; Lempert, Walter R.; Adamovich, Igor V.

    2014-12-01

    The present kinetic modelling calculation results provide key new insights into the kinetics of vibrational excitation of nitrogen and plasma chemical reactions in nanosecond pulse, ‘diffuse filament’ discharges in nitrogen and dry air at a moderate energy loading per molecule, ˜0.1 eV per molecule. It is shown that it is very important to take into account Coulomb collisions between electrons because they change the electron energy distribution function and, as a result, strongly affect populations of excited states and radical concentrations in the discharge. The results demonstrate that the apparent transient rise of N2 ‘first level’ vibrational temperature after the discharge pulse, as detected in the experiments, is due to the net downward V-V energy transfer in N2-N2 collisions, which increases the N2(X 1Σ, v = 1) population. Finally, a comparison of the model's predictions with the experimental data shows that NO formation in the afterglow occurs via reactive quenching of multiple excited electronic levels of nitrogen molecule, N2\\ast , by O atoms. ) published in this volume, which focuses on the kinetic modelling of the experiments. This paper presents the results of the experiments.

  9. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    SciTech Connect

    Egidi, Franco Segado, Mireia; Barone, Vincenzo; Koch, Henrik; Cappelli, Chiara

    2014-12-14

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  10. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    NASA Astrophysics Data System (ADS)

    Egidi, Franco; Segado, Mireia; Koch, Henrik; Cappelli, Chiara; Barone, Vincenzo

    2014-12-01

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π*, π-π*, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  11. Neutron decay widths of excited states of {sup 11}Be

    SciTech Connect

    Haigh, P. J.; Freer, M.; Ashwood, N. I.; Bloxham, T.; Curtis, N.; McEwan, P.; Bohlen, H. G.; Dorsch, T.; Kokalova, Tz.; Schulz, Ch.; Wheldon, C.

    2009-01-15

    The two-neutron transfer reaction {sup 9}Be({sup 16}O, {sup 14}O){sup 11}Be[{sup 10}Be +n] has been used to measure the branching ratios for the neutron decay of excited states of {sup 11}Be. The {sup 14}O ejectile was detected by a Q3D spectrometer at forward angles. The energies and angles of the {sup 10}Be fragments of the decaying {sup 11}Be* recoil were measured in coincidence with the {sup 14}O ejectile using a double-sided silicon strip detector array at backward angles. This enabled a kinematic reconstruction of the reaction to be performed. Theoretical decay branch ratios were calculated using barrier penetrability factors and were compared to the measured ratios to provide information on the relative reduced widths of the states. The decay widths have been used to link states in {sup 11}Be with a common structure and structurally to states in the daughter nucleus {sup 10}Be. The 3/2{sup -} 8.82-MeV state was identified as a candidate for a molecular band head.

  12. Excited state lifetime measurements of ytterbium in indium phosphide

    NASA Astrophysics Data System (ADS)

    Desrocher, David

    1989-12-01

    The AFIT Time Resolved Photoluminescence (TRPL) lab was disassembled, relocated and rebuilt with improvements to layout and performance. Excited state lifetime measurements of ytterbium implanted in indium phosphide were conducted using the new lab. Effects of sample temperature, rapid thermal annealing (RTA) time and RTA temperature on the lifetimes of the 1.002 microns Yb3+ line were examined. Lifetime measurements of Er, Pr and Tm in GaAs were also attempted. Ytterbium concentrations were 3 x 10(exp 13) ions/sq cm, implanted at an ion energy of 1 MeV in semi-insulating InP substrate. Sample temperatures ranged from 4.2 to 90K. Annealing times ranged from 1 to 25 seconds on samples annealed at 850 C. Annealing temperatures ranged from 400 to 850 C, with RTA times of 15 seconds. The excitation source was a nitrogen-pumped dye laser with primary wavelength at 580 nm. A germanium photodiode detector was selected to eliminate the long time constant associated with available S1 power supplies and to enable detection at the near infrared wavelengths of the other rare earths. Data acquisition was accomplished with a boxcar averager and a microcomputer equipped with acquisition hardware and software. Thermal quenching was clearly observed in lifetimes at increasing sample temperatures, most dramatically at above 50 C. The results would be very helpful in device fabrication/operation considerations, and some of the sample preparation parameters may be equally applicable for other RE doped III-V semiconductors.

  13. Population of isomeric states in fusion and transfer reactions in beams of loosely bound nuclei near the Coulomb barrier

    SciTech Connect

    Skobelev, N. K.

    2015-07-15

    The influence of the mechanisms of nuclear reactions on the population of {sup 195m}Hg and {sup 197m}Hg(7/2{sup −}), {sup 198m}Tl and {sup 196m}Tl(7{sup +}), and {sup 196m}Au and {sub 198m}Au(12{sup −}) isomeric nuclear states obtained in reactions induced by beams of {sup 3}He, {sup 6}Li, and {sup 6}He weakly bound nuclei is studied. The behavior of excitation functions and high values of isomeric ratios (δ{sub m}/δ{sub g}) for products of nuclear reactions proceeding through a compound nucleus and involving neutron evaporation are explained within statistical models. Reactions in which the emission of charged particles occurs have various isomeric ratios depending on the reaction type. The isomeric ratio is lower in direct transfer reactions involving charged-particle emission than in reactions where the evaporation of charged particles occurs. Reactions accompanied by neutron transfer usually have a lower isomeric ratio, which behaves differently for different direct-reaction types (stripping versus pickup reactions)

  14. Excited states and reduced transition probabilities in 168Os

    NASA Astrophysics Data System (ADS)

    Grahn, T.; Stolze, S.; Joss, D. T.; Page, R. D.; Sayǧı, B.; O'Donnell, D.; Akmali, M.; Andgren, K.; Bianco, L.; Cullen, D. M.; Dewald, A.; Greenlees, P. T.; Heyde, K.; Iwasaki, H.; Jakobsson, U.; Jones, P.; Judson, D. S.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Lumley, N.; Mason, P. J. R.; Möller, O.; Nomura, K.; Nyman, M.; Petts, A.; Peura, P.; Pietralla, N.; Pissulla, Th.; Rahkila, P.; Sapple, P. J.; Sarén, J.; Scholey, C.; Simpson, J.; Sorri, J.; Stevenson, P. D.; Uusitalo, J.; Watkins, H. V.; Wood, J. L.

    2016-10-01

    The level scheme of the neutron-deficient nuclide 168Os has been extended and mean lifetimes of excited states have been measured by the recoil distance Doppler-shift method using the JUROGAM γ -ray spectrometer in conjunction with the IKP Köln plunger device. The 168Osγ rays were measured in delayed coincidence with recoiling fusion-evaporation residues detected at the focal plane of the RITU gas-filled separator. The ratio of reduced transition probabilities B (E 2 ;41+→21+) /B (E 2 ;21+→01+) is measured to be 0.34(18), which is very unusual for collective band structures and cannot be reproduced by interacting boson model (IBM-2) calculations based on the SkM* energy-density functional.

  15. Measurement of Atomic Oscillator Strength Distribution from the Excited States

    SciTech Connect

    Hussain, Shahid; Saleem, M.; Baig, M. A.

    2008-10-22

    Saturation technique has been employed to measure the oscillator strength distribution in spectra of helium lithium using an electrical discharge cell a thermionic diode ion detector respectively. The photoabsorption cross sections in the discrete or bound region (commonly known as f-values) have been determined form the Rydberg series accessed from a particular excited state calibrating it with the absolute value of the photoionization cross section measured at the ionization threshold. The extracted discrete f-values merge into the oscillator strength densities, estimated from the measured photoionization cross sections at different photon energies above the first ionization threshold. The experimental data on helium and lithium show continuity between the discrete and the continuous oscillator strengths across the ionization threshold.

  16. Theoretical description of excited state dynamics in nanostructures

    NASA Astrophysics Data System (ADS)

    Rubio, Angel

    2009-03-01

    There has been much progress in the synthesis and characterization of nanostructures however, there remain immense challenges in understanding their properties and interactions with external probes in order to realize their tremendous potential for applications (molecular electronics, nanoscale opto-electronic devices, light harvesting and emitting nanostructures). We will review the recent implementations of TDDFT to study the optical absorption of biological chromophores, one-dimensional polymers and layered materials. In particular we will show the effect of electron-hole attraction in those systems. Applications to the optical properties of solvated nanostructures as well as excited state dynamics in some organic molecules will be used as text cases to illustrate the performance of the approach. Work done in collaboration with A. Castro, M. Marques, X. Andrade, J.L Alonso, Pablo Echenique, L. Wirtz, A. Marini, M. Gruning, C. Rozzi, D. Varsano and E.K.U. Gross.

  17. Theoretical study on the excited states of HCN

    SciTech Connect

    Nayak, Malaya K.; Chaudhuri, Rajat K.; Krishnamachari, S.N.L.G.

    2005-05-08

    In the flash-photolysis of oxazole, iso-oxazole, and thiozole a transient band system was observed in the region 2500-3050 A. This band system was attributed to a meta-stable form of HCN, i.e., either HNC or triplet HCN. Theoretical investigations have been carried out on the ground and excited states of HCN to characterize this and other experimentally observed transitions. The predicted geometries are compared with the experiment and earlier theoretical calculations. The present calculations show that the band system in the region 2500-3050 A corresponds to the transition 4 {sup 3}-A{sup '}<{sup -}1 {sup 3}-A{sup '} of HCN.

  18. Chimera states and excitation waves in networks with complex topologies

    NASA Astrophysics Data System (ADS)

    Schöll, Eckehard

    2016-06-01

    Chimera patterns, which consist of coexisting spatial domains of coherent (synchronized) and incoherent (desyn- chronized) dynamics are studied in networks of FitzHugh-Nagumo systems with complex topologies. To test the robustness of chimera patterns with respect to changes in the structure of the network, we study the following network topologies: Regular ring topology with R nearest neigbors coupled to each side, small-world topology with additional long-range random links, and a hierarchical geometry in the connectivity matrix. We find that chimera states are generally robust with respect to these perturbations, but qualitative changes of the chimera patterns in form of nested coherent and incoherent regions can be induced by a hierarchical topology. The suppression of propagating excitation waves by a small-world topology is also reviewed.

  19. The Ground and First Excited Torsional States of Acetic Acid.

    PubMed

    Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.; Podnos, S. V.; Kleiner, I.; Margulès, L.; Wlodarczak, G.; Demaison, J.; Cosléou, J.; Maté, B.; Karyakin, E. N.; Golubiatnikov, G. Yu.; Fraser, G. T.; Suenram, R. D.; Hougen, J. T.

    2001-02-01

    A global fit of microwave and millimeter-wave rotational transitions in the ground and first excited torsional states (v(t) = 0 and 1) of acetic acid (CH(3)COOH) is reported, which combines older measurements from the literature with new measurements from Kharkov, Lille, and NIST. The fit uses a model developed initially for acetaldehyde and methanol-type internal rotor molecules. It requires 34 parameters to achieve a unitless weighted standard deviation of 0.84 for a total of 2518 data and includes A- and E-species transitions with J

  20. Ultrafast Spectroscopy of Delocalized Excited States of the Hydrated Electron

    SciTech Connect

    Paul F. Barbara

    2005-09-28

    Research under support of this grant has been focused on the understanding of highly delocalized ''conduction-band-like'' excited states of solvated electrons in bulk water, in water trapped in the core of reverse micelles, and in alkane solvents. We have strived in this work to probe conduction-band-like states by a variety of ultrafast spectroscopy techniques. (Most of which were developed under DOE support in a previous funding cycle.) We have recorded the optical spectrum of the hydrated electron for the first time. This was accomplished by applying a photo-detrapping technique that we had developed in a previous funding cycle, but had not yet been applied to characterize the actual spectrum. In the cases of reverse micelles, we have been investigating the potential role of conduction bands in the electron attachment process and the photoinduced detrapping, and have published two papers on this topic. Finally, we have been exploring solvated electrons in isooctane from various perspectives. All of these results strongly support the conclusion that optically accessible, highly delocalized electronic states exist in these various media.

  1. Coulomb chronometry to probe the decay mechanism of hot nuclei

    NASA Astrophysics Data System (ADS)

    Gruyer, D.; Frankland, J. D.; Bonnet, E.; Chbihi, A.; Ademard, G.; Boisjoli, M.; Borderie, B.; Bougault, R.; Galichet, E.; Gauthier, J.; Guinet, D.; Lautesse, P.; Le Neindre, N.; Legouée, E.; Lombardo, I.; Lopez, O.; Manduci, L.; Marini, P.; Mazurek, K.; Nadtochy, P. N.; Pârlog, M.; Rivet, M. F.; Roy, R.; Rosato, E.; Spadaccini, G.; Verde, G.; Vient, E.; Vigilante, M.; Wieleczko, J. P.; Indra Collaboration

    2015-12-01

    In 129Xe+natSn central collisions from 8 to 25 MeV/nucleon, the three-fragment exit channel occurs with a significant cross section. We show that these fragments arise from two successive binary splittings of a heavy composite system. The sequence of fragment production is determined. Strong Coulomb proximity effects are observed in the three-fragment final state. A comparison with Coulomb trajectory calculations shows that the time scale between the consecutive breakups decreases with increasing bombarding energy, becoming quasisimultaneous above excitation energy E*=4.0 ±0.5 MeV /nucleon . This transition from sequential to simultaneous breakup was interpreted as the signature of the onset of multifragmentation for the three-fragment exit channel in this system.

  2. Coulomb impurities in two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Zhu, Jia-Lin; Li, Guo; Yang, Ning

    2017-03-01

    Introducing a powerful method, we obtain the exact solutions for a Coulomb impurity in two-dimensional infinite and finite topological insulators. The level order and zero-energy degeneracy of the spectra are found to be quite different between topological trivial and nontrivial phases. For quantum dots of topological insulator, the variation of the edge and Coulomb states with dot size, Coulomb potential, and magnetic field are clearly shown. It is found that for small dots the edge states can be strongly coupled with the Coulomb states and for large dots the edge states are insensitive to the Coulomb fields but sensitive to the magnetic fields.

  3. RVB states in doped band insulators from Coulomb forces: theory and a case study of superconductivity in BiS2 layers

    NASA Astrophysics Data System (ADS)

    Baskaran, G.

    2016-12-01

    Doped band insulators, HfNCl, WO3, diamond, Bi2Se3, BiS2 families, STO/LAO interface, gate doped SrTiO3, MoS2 and so on are unusual superconductors. With an aim to build a general theory for superconductivity in doped band insulators, we focus on the BiS2 family which was discovered by Mizuguchi et al in 2012. While maximum Tc is only ˜11 K in {{LaO}}1-{{x}}{{{F}}}{{x}}{{BiS}}2, a number of experimental results are puzzling and anomalous in the sense that they resemble high T c and unconventional superconductors. Using a two orbital model of Usui, Suzuki and Kuroki, we show that the uniform low density free Fermi sea in {{LaO}}{0,5}{{{F}}}0.5{{BiS}}2 is unstable towards formation of the next nearest neighbor Bi-S-Bi diagonal valence bond (charged -2e Cooper pair) and their Wigner crystallization. Instability to this novel state of matter is caused by unscreened nearest neighbor coulomb repulsions (V ˜ 1 eV) and a hopping pattern with sulfur mediated diagonal next nearest neighbor Bi-S-Bi hopping t’ ˜ 0.88 eV, as well as larger than nearest neighbor Bi-Bi hopping, t ˜ 0.16 eV. Wigner crystals of Cooper pairs quantum melt for doping around x = 0.5 and stabilize certain resonating valence bond states and superconductivity. We study a few variational RVB states and suggest that BiS2 family members are latent high Tc superconductors, but challenged by competing orders and the fragile nature of many body states sustained by unscreened Coulomb forces. One of our superconducting states has d XY symmetry and a gap. We also predict a 2d Bose metal or vortex liquid normal state, as charged -2e valence bonds survive in the normal state.

  4. Watching ultrafast barrierless excited-state isomerization of pseudocyanine in real time.

    PubMed

    Dietzek, Benjamin; Yartsev, Arkady; Tarnovsky, Alexander N

    2007-05-03

    The photoinduced excited-state processes in 1,1'-diethyl-2,2'-cyanine iodine are investigated using femtosecond time-resolved pump-probe spectroscopy. Using a broad range of probe wavelengths, the relaxation of the initially prepared excited-state wavepacket can be followed down to the sink region. The data directly visualize the directed downhill motion along the torsional reaction coordinate and suggest a barrierless excited-state isomerization in the short chain cyanine dye. Additionally, ultrafast ground-state hole and excited-state hole replica broadening is observed. While the narrow excited-state wavepacket broadens during pump-probe overlap, the ground-state hole burning dynamics takes place on a significantly longer time-scale. The experiment reported can be considered as a direct monitoring of the shape and the position of the photoprepared wavepacket on the excited-state potential energy surface.

  5. Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation

    SciTech Connect

    Kaptan, Y. Herzog, B.; Schöps, O.; Kolarczik, M.; Woggon, U.; Owschimikow, N.; Röhm, A.; Lingnau, B.; Lüdge, K.; Schmeckebier, H.; Arsenijević, D.; Bimberg, D.; Mikhelashvili, V.; Eisenstein, G.

    2014-11-10

    The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observed response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.

  6. Enhanced negative ion formation via electron attachment to electronically-excited states

    SciTech Connect

    Pinnaduwage, L.A. |

    1995-12-31

    Recent basic studies on electron attachment to laser-excited molecules show that electron attachment to electronically-excited states can have orders of magnitude larger cross sections compared to the respective ground electronic states. Even though systematic studies have not been conducted, there are indications that electronically-excited states may play a significant role in negative ion formation in gas discharges. The high-lying Rydberg states could be of particular significance since, (i) their production efficiencies are high, and (ii) they have comparatively long lifetimes. Such states could be populated in discharge sources via direct electron impact or via excitation transfer from metastable states of inert gases.

  7. Ground-state and excited-state structures of tungsten-benzylidyne complexes.

    PubMed

    Lovaasen, Benjamin M; Lockard, Jenny V; Cohen, Brian W; Yang, Shujiang; Zhang, Xiaoyi; Simpson, Cheslan K; Chen, Lin X; Hopkins, Michael D

    2012-05-21

    The molecular structure of the tungsten-benzylidyne complex trans-W(≡CPh)(dppe)(2)Cl (1; dppe = 1,2-bis(diphenylphosphino)ethane) in the singlet (d(xy))(2) ground state and luminescent triplet (d(xy))(1)(π*(WCPh))(1) excited state (1*) has been studied using X-ray transient absorption spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations. Molecular-orbital considerations suggest that the W-C and W-P bond lengths should increase in the excited state because of the reduction of the formal W-C bond order and decrease in W→P π-backbonding, respectively, between 1 and 1*. This latter conclusion is supported by comparisons among the W-P bond lengths obtained from the X-ray crystal structures of 1, (d(xy))(1)-configured 1(+), and (d(xy))(2) [W(CPh)(dppe)(2)(NCMe)](+) (2(+)). X-ray transient absorption spectroscopic measurements of the excited-state structure of 1* reveal that the W-C bond length is the same (within experimental error) as that determined by X-ray crystallography for the ground state 1, while the average W-P/W-Cl distance increases by 0.04 Å in the excited state. The small excited-state elongation of the W-C bond relative to the M-E distortions found for M(≡E)L(n) (E = O, N) compounds with analogous (d(xy))(1)(π*(ME))(1) excited states is due to the π conjugation within the WCPh unit, which lessens the local W-C π-antibonding character of the π*(WCPh) lowest unoccupied molecular orbital (LUMO). These conclusions are supported by DFT calculations on 1 and 1*. The similar core bond distances of 1, 1(+), and 1* indicates that the inner-sphere reorganization energy associated with ground- and excited-state electron-transfer reactions is small.

  8. Ground-state and excited-state structures of tungsten-benzylidyne complexes

    SciTech Connect

    Lovaasen, B. M.; Lockard, J. V.; Cohen, B. W.; Yang, S.; Zhang, X.; Simpson, C. K.; Chen, L. X.; Hopkins, M. D.

    2012-01-01

    The molecular structure of the tungsten-benzylidyne complex trans-W({triple_bond}CPh)(dppe){sub 2}Cl (1; dppe = 1,2-bis(diphenylphosphino)ethane) in the singlet (d{sub xy}){sup 2} ground state and luminescent triplet (d{sub xy}){sup 1}({pi}*(WCPh)){sup 1} excited state (1*) has been studied using X-ray transient absorption spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations. Molecular-orbital considerations suggest that the W-C and W-P bond lengths should increase in the excited state because of the reduction of the formal W-C bond order and decrease in W {yields} P {pi}-backbonding, respectively, between 1 and 1*. This latter conclusion is supported by comparisons among the W-P bond lengths obtained from the X-ray crystal structures of 1, (d{sub xy}){sup 1}-configured 1{sup +}, and (d{sub xy}){sup 2} [W(CPh)(dppe){sub 2}(NCMe)]{sup +} (2{sup +}). X-ray transient absorption spectroscopic measurements of the excited-state structure of 1* reveal that the W-C bond length is the same (within experimental error) as that determined by X-ray crystallography for the ground state 1, while the average W-P/W-Cl distance increases by 0.04 {angstrom} in the excited state. The small excited-state elongation of the W-C bond relative to the M-E distortions found for M({triple_bond}E)L{sub n} (E = O, N) compounds with analogous (d{sub xy}){sup 1}({pi}*(ME)){sup 1} excited states is due to the {pi} conjugation within the WCPh unit, which lessens the local W-C {pi}-antibonding character of the {pi}*(WCPh) lowest unoccupied molecular orbital (LUMO). These conclusions are supported by DFT calculations on 1 and 1*. The similar core bond distances of 1, 1{sup +}, and 1* indicates that the inner-sphere reorganization energy associated with ground- and excited-state electron-transfer reactions is small.

  9. Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: theory, implementation, and examples.

    PubMed

    Oana, C Melania; Krylov, Anna I

    2007-12-21

    Implementation of Dyson orbitals for coupled-cluster and equation-of-motion coupled-cluster wave functions with single and double substitutions is described and demonstrated by examples. Both ionizations from the ground and electronically excited states are considered. Dyson orbitals are necessary for calculating electronic factors of angular distributions of photoelectrons, Compton profiles, electron momentum spectra, etc, and can be interpreted as states of the leaving electron. Formally, Dyson orbitals represent the overlap between an initial N-electron wave function and the N-1 electron wave function of the corresponding ionized system. For the ground state ionization, Dyson orbitals are often similar to the corresponding Hartree-Fock molecular orbitals (MOs); however, for ionization from electronically excited states Dyson orbitals include contributions from several MOs and their shapes are more complex. The theory is applied to calculating the Dyson orbitals for ionization of formaldehyde from the ground and electronically excited states. Partial-wave analysis is employed to compute the probabilities to find the ejected electron in different angular momentum states using the freestanding and Coulomb wave representations of the ionized electron. Rydberg states are shown to yield higher angular momentum electrons, as compared to valence states of the same symmetry. Likewise, faster photoelectrons are most likely to have higher angular momentum.

  10. Microwave Spectroscopy of the Excited Vibrational States of Methanol

    NASA Astrophysics Data System (ADS)

    Pearson, John; Daly, Adam M.; Bermúdez, Celina

    2015-06-01

    Methanol is the simplest molecule with a three-fold internal rotation and the observation of its νb{8} band served the primary catalyst for the development of internal rotation theory(a,b). The 75 subsequent years of investigation into the νb{8} band region have yielded a large number assignments, numerous high precision energy levels and a great deal of insight into the coupling of νb{t}=3 & 4 with νb{8}, νb{7}, νb{11} and other nearby states(c). In spite of this progress numerous assignment mysteries persist, the origin of almost half the far infrared laser lines remain unknown and all attempts to model the region quantum mechanically have had very limited success. The C3V internal rotation Hamiltonian has successfully modeled the νb{t}=0,1 & 2 states of methanol and other internal rotors(d). However, successful modeling of the coupling between torsional bath states and excited small amplitude motion remains problematic and coupling of multiple interacting excited small amplitude vibrations featuring large amplitude motions remains almost completely unexplored. Before such modeling can be attempted, identifying the remaining low lying levels of νb{7} and νb{11} is necessary. We present an investigation into the microwave spectrum of νb{7}, νb{8} and νb{11} along with the underlying torsional bath states in νb{t}=3 and νb{t}= 4. (a) A. Borden, E.F. Barker J. Chem. Phys., 6, 553 (1938). (b) J. S. Koehler and D. M. Dennison, Phys. Rev. 57, 1006 (1940). (c) R. M. Lees, Li-Hong Xu, J. W. C. Johns, B. P. Winnewisser, and M. Lock, J. Mol. Spectrosc. 243, 168 (2007). (d) L.-H. Xu, J. Fisher, R.M. Lees, H.Y. Shi, J.T. Hougen, J.C. Pearson, B.J. Drouin, G.A. Blake, R. Braakman J. Mol. Spectrosc., 251, 305 (2008).

  11. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    SciTech Connect

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  12. Excitation energy dependence of excited states dynamics in all- trans-carotenes determined by femtosecond absorption and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kosumi, Daisuke; Yanagi, Kazuhiro; Nishio, Tomohiro; Hashimoto, Hideki; Yoshizawa, Masayuki

    2005-06-01

    Ultrafast relaxation kinetics in β-carotene and lycopene has been investigated by femtosecond absorption and fluorescence spectroscopies using tunable excitation pulses. The transient signals induced by the photoexcitation with larger excess energy have broader bands and longer lifetimes both in the 11Bu+and21Ag- excited states. The excess vibrational energy remains longer than several picoseconds and slows the relaxation kinetics in carotenoids.

  13. Coherence, Energy and Charge Transfers in De-Excitation Pathways of Electronic Excited State of Biomolecules in Photosynthesis

    NASA Astrophysics Data System (ADS)

    Bohr, Henrik G.; Malik, F. Bary

    2013-11-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin-chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used Förster-Dexter theory, which does not allow for charge transfer, is a special case of B-A theory. The latter could, under appropriate circumstances, lead to excimers.

  14. In-gap corner states in core-shell polygonal quantum rings

    PubMed Central

    Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2017-01-01

    We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states. PMID:28071750

  15. Simple approach for the bound-state energy spectrum of the generalized exponential-cosine Coulomb potential.

    PubMed

    Moulay, M; Mansouri, A; Houamer, S

    2003-01-01

    Based on the series expansion formalism, a relatively simple approach is proposed to solve the eigenvalues problems with partially screened and screened exponential-cosine Coulomb potentials. This approach is used to derive solutions to the Schrödinger equation with the two forms of potentials. The eigenenergies are explicitly deduced from solving the obtained corresponding polynomial equations. For illustration, high accuracy results have been obtained in the entire range of parameter values of these potential forms, with no constraints or adjustable constants. The present approach compares well, with existing methods, the results of which are precisely recovered as particular cases and does allow solutions to eigenvalues problems with any combination of potential parameters.

  16. Excited state electron transfer after visible light absorption by the Co(I) state of vitamin B12.

    PubMed

    Achey, Darren; Brigham, Erinn C; DiMarco, Brian N; Meyer, Gerald J

    2014-11-11

    The first example of excited state electron transfer from cob(I)alamin is reported herein. Vitamin B12 was anchored to a mesoporous TiO2 thin film and electrochemically reduced to the cob(I)alamin form. Pulsed laser excitation resulted in rapid excited state electron transfer, ket > 10(8) s(-1), followed by microsecond interfacial charge recombination to re-form cob(I)alamin. The supernucleophilic cob(I)alamin was found to be a potent photoreductant. The yield of excited state electron transfer was found to be excitation wavelength dependent. The implications of this dependence are discussed.

  17. Ultrafast branching in the excited state of coumarin and umbelliferone.

    PubMed

    Krauter, Caroline M; Möhring, Jens; Buckup, Tiago; Pernpointner, Markus; Motzkus, Marcus

    2013-11-07

    In the present work we have explored the ultrafast relaxation network of coumarin and umbelliferone (7-hydroxy-coumarin) using time-resolved femtosecond spectroscopy and quantum chemical calculations. Despite the importance of the photophysical properties of coumarin derivatives for applications in biomedicine, the low fluorescence quantum yield of coumarin itself has not been fully understood so far. On the basis of our combined experimental and theoretical results we suggest a model for the ultrafast decay after photoexcitation incorporating two parallel radiationless relaxation pathways: one within the initially excited state via ring opening and the other one by transition into a dark state along the carbonyl stretching mode. The fluorescence quantum yield is determined by the position of the branching point relative to the Franck-Condon region which is strongly influenced by interactions with the environment and the substitution pattern. This model is finally capable of giving a comprehensive account of the striking differences observed in the photophysical behavior of coumarin as opposed to umbelliferone.

  18. Excited-state symmetry breaking of linear quadrupolar chromophores: A transient absorption study

    NASA Astrophysics Data System (ADS)

    Dozova, Nadia; Ventelon, Lionel; Clermont, Guillaume; Blanchard-Desce, Mireille; Plaza, Pascal

    2016-11-01

    The photophysical properties of two highly symmetrical quadrupolar chromophores were studied by both steady-state and transient absorption spectroscopy. Their excited-state behavior is dominated by the solvent-induced Stokes shift of the stimulated-emission band. The origin of this shift is attributed to symmetry breaking that confers a non-vanishing dipole moment to the excited state of both compounds. This dipole moment is large and constant in DMSO, whereas symmetry breaking appears significantly slower and leading to smaller excited-state dipole in toluene. Time-dependant increase of the excited-state dipole moment induced by weak solvation is proposed to explain the results in toluene.

  19. Exploring ground states and excited states of spin-1 Bose-Einstein condensates by continuation methods

    SciTech Connect

    Chen, Jen-Hao; Chern, I-Liang; Wang Weichung

    2011-03-20

    A pseudo-arclength continuation method (PACM) is employed to compute the ground state and excited state solutions of spin-1 Bose-Einstein condensates (BEC). The BEC is governed by the time-independent coupled Gross-Pitaevskii equations (GPE) under the conservations of the mass and magnetization. The coupling constants that characterize the spin-independent and spin-exchange interactions are chosen as the continuation parameters. The continuation curve starts from a ground state or an excited state with very small coupling parameters. The proposed numerical schemes allow us to investigate the effect of the coupling constants and study the bifurcation diagrams of the time-independent coupled GPE. Numerical results on the wave functions and their corresponding energies of spin-1 BEC with repulsive/attractive and ferromagnetic/antiferromagnetic interactions are presented. Furthermore, we reveal that the component separation and population transfer between the different hyperfine states can only occur in excited states due to the spin-exchange interactions.

  20. Nature of the lowest excited states of neutral polyenyl radicals and polyene radical cations

    NASA Astrophysics Data System (ADS)

    Starcke, Jan Hendrik; Wormit, Michael; Dreuw, Andreas

    2009-10-01

    Due to the close relation of the polyenyl radicals C2n+1H2n+3• and polyene radical cations C2nH2n+2•+ to the neutral linear polyenes, one may suspect their excited states to possess substantial double excitation character, similar to the famous S1 state of neutral polyenes and thus to be equally problematic for simple excited state theories. Using the recently developed unrestricted algebraic-diagrammatic construction scheme of second order perturbation theory and the equation-of-motion coupled-cluster method, the vertical excitation energies, their corresponding oscillator strengths, and the nature of the wave functions of the lowest excited electronic states of the radicals are calculated and analyzed in detail. For the polyenyl radicals two one-photon allowed states are found as D1 and D4 states, with two symmetry-forbidden D2 and D3 states in between, while in the polyene radical cations D1 and D2 are allowed and D3 is forbidden. The order of the states is conserved with increasing chain length. It is found that all low-lying excited states exhibit a significant but similar amount of doubly excited configuration in their wave functions of 15%-20%. Using extrapolation, predictions for the excitation energies of the five lowest excited states of the polyene radical cations are made for longer chain lengths.

  1. TDDFT study on the excited-state proton transfer of 8-hydroxyquinoline: key role of the excited-state hydrogen-bond strengthening.

    PubMed

    Lan, Sheng-Cheng; Liu, Yu-Hui

    2015-03-15

    Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations have been employed to study the excited-state intramolecular proton transfer (ESIPT) reaction of 8-hydroxyquinoline (8HQ). Infrared spectra of 8HQ in both the ground and the lowest singlet excited states have been calculated, revealing a red-shift of the hydroxyl group (-OH) stretching band in the excited state. Hence, the intramolecular hydrogen bond (O-H···N) in 8HQ would be significantly strengthened upon photo-excitation to the S1 state. As the intramolecular proton-transfer reaction occurs through hydrogen bonding, the ESIPT reaction of 8HQ is effectively facilitated by strengthening of the electronic excited-state hydrogen bond (O-H···N). As a result, the intramolecular proton-transfer reaction would occur on an ultrafast timescale with a negligible barrier in the calculated potential energy curve for the ESIPT reaction. Therefore, although the intramolecular proton-transfer reaction is not favorable in the ground state, the ESIPT process is feasible in the excited state. Finally, we have identified that radiationless deactivation via internal conversion (IC) becomes the main dissipative channel for 8HQ by analyzing the energy gaps between the S1 and S0 states for the enol and keto forms.

  2. Two-photon excitation into low-energy singlet states of anthracene in mixed crystals

    NASA Astrophysics Data System (ADS)

    Bree, A.; Leyderman, A.; Taliani, C.

    1985-08-01

    The two-photon excitation spectrum of the first excited state of anthracene in fluorene and biphenyl at 4.2 K has been measured. Intensity is induced into the origin by the static dipole moment of fluorene, and into b 1u vibrons through coupling to an A g state near 29400 cm -1; the nature of this A g state is discussed.

  3. Electron delocalization and aromaticity in low-lying excited states of archetypal organic compounds.

    PubMed

    Feixas, Ferran; Vandenbussche, Jelle; Bultinck, Patrick; Matito, Eduard; Solà, Miquel

    2011-12-14

    Aromaticity is a property usually linked to the ground state of stable molecules. Although it is well-known that certain excited states are unquestionably aromatic, the aromaticity of excited states remains rather unexplored. To move one step forward in the comprehension of aromaticity in excited states, in this work we analyze the electron delocalization and aromaticity of a series of low-lying excited states of cyclobutadiene, benzene, and cyclooctatetraene with different multiplicities at the CASSCF level by means of electron delocalization measures. While our results are in agreement with Baird's rule for the aromaticity of the lowest-lying triplet excited state in annulenes having 4nπ-electrons, they do not support Soncini and Fowler's generalization of Baird's rule pointing out that the lowest-lying quintet state of benzene and septet state of cyclooctatetraene are not aromatic.

  4. Lifetimes and branching ratios of excited anion states

    NASA Astrophysics Data System (ADS)

    O'Malley, Steven M.; Beck, Donald R.

    2010-03-01

    Relativistic configuration-interaction transition probability calculations have been performed for several anion cases of our recent lanthanideootnotetextS. M. O'Malley and D. R. Beck, Phys. Rev. A 79, 012511 (2009). and actinideootnotetextS. M. O'Malley and D. R. Beck, Phys. Rev. A 80, 032514 (2009). studies. In particular, we identified an E1 transition (˜3680 nm) in La^- that may prove more useful in laser-cooling applications than the previously proposed Os^- candidateootnotetextA. Kellerbauer and J. Walz, New J. Phys. 8, 45 (2006).. We also explored long-lived states in Lu^- and Lr^- which are restricted to M2 decay by selection rules. Finally, we found sufficient mixing between a weakly-bound alternate-configuration Pr^- level and a nearby resonance to result in a lifetime (M1/E2) similar to other excited levels despite a two-electron difference between the dominant configurations. The details of the Pr^- calculations serve as further confirmation of the utility of our universal jls restrictions on 4f^n and 5f^n portions of lanthanide and actinide wave functions, but we find that a similar application to d^k electron subgroups in transition metals (Os^-) has a much smaller impact on the complexity of our calculations.

  5. The Structure of the Nucleon and it's Excited States

    SciTech Connect

    1995-02-20

    The past year has been an exciting and productive one for particle physics research at Abilene Christian University. The thrust of our experimental investigations is the study of the nucleon and its excited states. Laboratories where these investigations are presently being conducted are the AGS at Brookhaven, Fermilab and LAMPF. Some analysis of the data for experiments at the Petersburg Nuclear Physics Institute (Gatchina, Russia) is still in progress. Scheduling of activities at different laboratories inevitably leads to occasional conflicts. This likelihood is increased by the present budget uncertainties at the laboratories that make long-term scheduling difficult. For the most part, the investigators have been able to avoid such conflicts. Only one experiment received beam time in 1994 (E890 at the AGS). The situation for 1995-1996 also appears manageable at this point. E890 and another AGS experiment (E909) will run through May, 1995. El 178 at LAMPF is presently scheduled for August/September 1995. E866 at Fermilab is scheduled to start in Spring/Summer 1996. Undergraduate student involvement has been a key element in this research contract since its inception. Summer students participated at all of the above laboratories in 1994 and the same is planned in 1995. A transition to greater involvement by graduate students will provide cohesiveness to ACU involvement at a given laboratory and full-time on-site involvement in the longer running experiments at FNAL and BNL. Funds to support a full-time graduate student are requested this year. Finally, collaboration by Russian, Croatian and Bosnian scientists has proven to be mutually beneficial to these experimental programs and to the overall programs at the institutions involved. Past support has been augmented by other grants from government agencies and from the Research Council at Abilene Christian University. Additional funds are requested in this renewal to enable more programmatic support for these

  6. Electric-hexadecapole (24-pole) Coulomb integrals

    NASA Astrophysics Data System (ADS)

    Chidichimo, Marita C.; Stastna, Marek

    1996-03-01

    We obtain the quantal zero-energy-loss limit of the radial integrals arising in the nonrelativistic atomic excitation of electric-hexadecapole transitions. We compare these results to the classical limit and the WKB approximation. We show the different behavior of the Coulomb integrals in the WKB approximation in the cases of repulsive and attractive potentials as functions of the Sommerfeld number η.

  7. Excited state absorption spectrum of chlorophyll a obtained with white-light continuum.

    PubMed

    De Boni, L; Correa, D S; Pavinatto, F J; dos Santos, D S; Mendonça, C R

    2007-04-28

    The study of excited state properties of chlorophyll a is a subject of foremost interest, given that it plays important roles in biological process and has also been proposed for applications in photonics. This work reports on the excited state absorption spectrum of chlorophyll a solution from 460 to 700 nm, obtained through the white-light continuum Z-scan technique. Saturation of absorption was observed due to the ground state depletion, induced by the white-light continuum region that is resonant with the Q band of chlorophyll a. The authors also observed reverse saturation of absorption related to the excitation from the first excited state to a higher energy level for wavelengths below 640 nm. An energy-level diagram, based on the electronic states of chlorophyll a, was employed to interpret their results, revealing that more states than the ones related to the Q and B bands participate in the excited state absorption of this molecule.

  8. Implosive Interatomic Coulombic decay in the simplest molecular anion

    NASA Astrophysics Data System (ADS)

    Greene, Chris H.; Perez-Rios, Jesus; Slipchenko, Lyudmila

    2016-05-01

    Interatomic Coulombic decay (ICD) has been extensively studied in different systems: from diatomic systems such as He2 up to more complex chemical systems with interest in biochemistry. Independently of the size and complexity of the system, the ICD process proposed involves the emission of an electron through exchange of a virtual photon. The present theoretical study investigates the ICD process in the helium hydride anion, which involves two final product states that can be produced through a Coulomb implosion following high energy ejection of a He 1s electron accompanied by excitation to He+(n = 2) . One of the subsequent decay channels is associated with the usual emission of a single electron, to produce a stable molecule: HeH+, which can compete with the usual dissociated final state of the system. The second channel involves the emission of two electrons, leading to the usual Coulomb explosion of the final product ions He+(1 s) + H + . In addition, the process of formation of the helium hydride anion is analyzed in terms of the existing technology of ionic molecular beams and buffer gas cooling techniques. This work is supported by the National Science Foundation under Grant PHY-1306905.

  9. Diffusion in Coulomb crystals

    SciTech Connect

    Hughto, J.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.

    2011-07-15

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions ''hop'' in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter {Gamma}=175 to Coulomb parameters up to {Gamma}=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  10. Diffusion in Coulomb crystals.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  11. Activity of upper electron-excited states in bioluminescence of coelenterates

    NASA Astrophysics Data System (ADS)

    Belogurova, N. V.; Alieva, R. R.; Kudryasheva, N. S.

    2009-04-01

    The involvement of upper electron-excited states as the primary excited states into bioluminescence of coelenterates was experimentally verified. A series of fluorescent molecules was used as foreign energy acceptors in this bioluminescent reaction. The fluorescent aromatic compounds - pyrene, 2-methoxy-naphtalene, naphthalene, and 1,4-diphenylbutadiene - were selected, with fluorescent state energies ranging from 26,700 to 32,500 cm -1. Excitation of these molecules by Forster singlet-singlet energy transfer from S of bioluminescence emitter and by light absorption were excluded. The weak sensitized fluorescence of three compounds was found in the course of bioluminescent reaction. Energy of the upper electron-excited states of the bioluminescent emitter was located around 31,000 cm -1. Localization of the primary excitation on a carbonyl group of coelenteramide molecule is discussed. Comparison of the primary excitation in bioluminescent processes of coelenterates and bacteria is provided.

  12. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DOE PAGES

    Zhang, Wenkai; Kjaer, Kasper S.; Alonso-Mori, Roberto; ...

    2016-08-25

    Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover – the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN–) ligands and one 2,2'-bipyridine (bpy) ligand. This enables MLCTmore » excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2–. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. Here, we conclude that the MLCT excited state of [Fe(CN)4(bpy)]2– decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine)3]2+ by more than two orders of magnitude.« less

  13. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    SciTech Connect

    Zhang, Wenkai; Kjaer, Kasper S.; Alonso-Mori, Roberto; Bergmann, Uwe; Chollet, Matthieu; Fredin, Lisa A.; Hadt, Ryan G.; Hartsock, Robert W.; Harlang, Tobias; Kroll, Thomas; Kubicek, Katharina; Lemke, Henrik T.; Liang, Huiyang W.; Liu, Yizhu; Nielsen, Martin M.; Persson, Petter; Robinson, Joseph S.; Solomon, Edward I.; Sun, Zheng; Sokaras, Dimosthenis; van Driel, Tim B.; Weng, Tsu -Chien; Zhu, Diling; Warnmark, Kenneth; Sundstrom, Villy; Gaffney, Kelly J.

    2016-08-25

    Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover – the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN) ligands and one 2,2'-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2–. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. Here, we conclude that the MLCT excited state of [Fe(CN)4(bpy)]2– decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine)3]2+ by more than two orders of magnitude.

  14. Nontrivial excited-state coherence due to two uncorrelated partially coherent fields

    NASA Astrophysics Data System (ADS)

    Sadeq, Z. S.

    2015-04-01

    We analyze a model where a closed V system is excited by two uncorrelated partially coherent fields. We use a collisionally broadened cw laser, which is a good model for an experimentally realizable partially coherent field, and show that it is possible to generate excited-state coherences even if the two fields are uncorrelated. This transient coherence can be increased if splitting between the excited states is reduced relative to the radiation coherence time τd. For small excited-state splitting, one can use this scheme to generate a long-lived coherent response in the system.

  15. Ab Initio Calculations of Singlet and Triplet Excited States of Chlorine Nitrate and Nitric Acid

    NASA Technical Reports Server (NTRS)

    Grana, Ana M.; Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    Ab initio calculations of vertical excitations to singlet and triplet excited states of chlorine nitrate and nitric acid are reported. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low-lying singlet states of chlorine nitrate appear to be directly dissociative in the ClO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied.

  16. Excited-state lifetime of adenine near the first electronic band origin

    NASA Astrophysics Data System (ADS)

    Kang, Hyuk; Chang, Jinyoung; Lee, Sang Hak; Ahn, Tae Kyu; Kim, Nam Joon; Kim, Seong Keun

    2010-10-01

    The excited-state lifetime of supersonically cooled adenine was measured in the gas phase by femtosecond pump-probe transient ionization as a function of excitation energy between 36 100 and 37 500 cm-1. The excited-state lifetime of adenine is ˜2 ps around the 0-0 band of the L1b ππ ∗ state (36 105 cm-1). The lifetime drops to ˜1 ps when adenine is excited to the L1a ππ ∗ state with the pump energy at 36 800 cm-1 and above. The excited-state lifetimes of L1a and L1b ππ∗ states are differentiated in accordance with previous frequency-resolved and computational studies.

  17. Excited-state annihilation process involving a cyclometalated platinum(II) complex

    SciTech Connect

    Maestri, M.; Sandrini, D. ); von Zelewsky, A.; Deuschel-Cornioley, C. )

    1991-05-29

    The Pt(tpy)(ppz) complex exhibits strong luminescence with a relatively long excited-state lifetime (15.3 {mu}s) in deaerated acetonitrile solution, at room temperature and at low excitation intensity, and can be easily involved in excited-state quenching processes. The {sub 3}CT excited state is, in fact, quenched (1) by oxygen (k{sub q} {congruent} 10{sup 9} M{sup {minus}1} s{sup {minus}1}), (2) by the ground-state complex (k{sub q} = 5.7 {times} 10{sup 7} M{sup {minus}1} s{sup {minus}1}), and (3) by another {sup 3}CT excited state in an annihilation process, which is practically diffusion controlled (k{sub 3} > 6 {times} 10{sup 9} M{sup {minus}1} s{sup {minus}1}). The ground-state quenching and the annihilation process most probably occur via an excimer formation mechanism. 46 refs., 3 figs.

  18. Intramolecular excited-state proton-transfer studies on flavones in different environments

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Jain, Sapan K.; Sharma, Neera; Rastogi, Ramesh C.

    2001-02-01

    The absorption and fluorescence spectra of some biologically active flavones have been studied as a function of the acidity (pH/H 0) of the solution. Dissociation constants have been determined for the ground and first excited singlet states. The results are compared with those obtained from Forster-Weller calculations. The acidity constants obtained by fluorimetric titration method are in complete agreement (in most of the systems) with ground state data indicating a excited state deactivation prior to prototropic equilibration. Compared to umbelliferones, flavones are only weakly fluorescent in alkaline solution. This behaviour is explained by the small energy difference between the singlet excited state and triplet excited state giving rise to more efficient intersystem crossing. Most of the flavones studied here undergo adiabatic photodissociation in the singlet excited state indicating the formation of an exciplex or a phototautomer.

  19. Analysis of the excited-state absorption spectral bandshape of oligofluorenes

    NASA Astrophysics Data System (ADS)

    Hayes, Sophia C.; Silva, Carlos

    2010-06-01

    We present ultrafast transient absorption spectra of two oligofluorene derivatives in dilute solution. These spectra display a photoinduced absorption band with clear vibronic structure, which we analyze rigorously using a time-dependent formalism of absorption to extract the principal excited-state vibrational normal-mode frequencies that couple to the electronic transition, the configurational displacement of the higher-lying excited state, and the reorganization energies. We can model the excited-state absorption spectrum using two totally symmetric vibrational modes with frequencies 450 (dimer) or 400 cm-1 (trimer), and 1666 cm-1. The reorganization energy of the ground-state absorption is rather insensitive to the oligomer length at 230 meV. However, that of the excited-state absorption evolves from 58 to 166 meV between the oligofluorene dimer and trimer. Based on previous theoretical work [A. Shukla et al., Phys. Rev. B 67, 245203 (2003)], we assign the absorption spectra to a transition from the 1Bu excited state to a higher-lying mAg state, and find that the energy of the excited-state transition with respect to the ground-state transition energy is in excellent agreement with the theoretical predictions for both oligomers studied here. These results and analysis permit profound understanding of the nature of excited-state absorption in π-conjugated polymers, which are the subject of general interest as organic semiconductors in the solid state.

  20. THE PHOTOTOXOICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: A THEORETICAL STUDY OF EXCITED STATES AND CORRELATION TO EXPERIMENT

    EPA Science Inventory



    Investigators using models to determine the phototoxic effects of sunlight on polycyclic aromatic hydrocarbons (PAHS) have invoked the excited states of the molecule as important in elucidating the mechanism of these reactions. Energies of actual excited states were calcu...

  1. Excited singlet-state absorption in laser dyes at the XeCl wavelength

    NASA Astrophysics Data System (ADS)

    Taylor, R. S.; Mihailov, S.

    1985-10-01

    The transmission properties of the laser dyes BBQ, PBD, BPBD, α-NPO, p-Quarterphenyl and PPO have been measured using a XeCl (308 nm) excimer laser. A model for the dye saturation which incorporates excited-state absorption was used to estimate the lifetime and the absorption cross section of the first excited singlet-state for each dye.

  2. E2 transitions between excited single-phonon states: Role of ground-state correlations

    NASA Astrophysics Data System (ADS)

    Kamerdzhiev, S. P.; Voitenkov, D. A.

    2016-11-01

    The probabilities for E2 transitions between low-lying excited 3- and 5- single-phonon states in the 208Pb and 132Sn magic nuclei are estimated on the basis of the theory of finite Fermi systems. The approach used involves a new type of ground-state correlations, that which originates from integration of three (rather than two, as in the random-phase approximation) single-particle Green's functions. These correlations are shown to make a significant contribution to the probabilities for the aforementioned transitions.

  3. Evaluating Electronic Couplings for Excited State Charge Transfer Based on Maximum Occupation Method ΔSCF Quasi-Adiabatic States.

    PubMed

    Liu, Junzi; Zhang, Yong; Bao, Peng; Yi, Yuanping

    2017-02-14

    Electronic couplings of charge-transfer states with the ground state and localized excited states at the donor/acceptor interface are crucial parameters for controlling the dynamics of exciton dissociation and charge recombination processes in organic solar cells. Here we propose a quasi-adiabatic state approach to evaluate electronic couplings through combining maximum occupation method (mom)-ΔSCF and state diabatization schemes. Compared with time-dependent density functional theory (TDDFT) using global hybrid functional, mom-ΔSCF is superior to estimate the excitation energies of charge-transfer states; moreover it can also provide good excited electronic state for property calculation. Our approach is hence reliable to evaluate electronic couplings for excited state electron transfer processes, which is demonstrated by calculations on a typical organic photovoltaic system, oligothiophene/perylenediimide complex.

  4. A Doubles Correction to Electronic Excited States from Configuration Interaction in the Space of Single Substitutions

    NASA Technical Reports Server (NTRS)

    Head-Gordon, Martin; Rico, Rudolph J.; Lee, Timothy J.; Oumi, Manabu

    1994-01-01

    A perturbative correction to the method of configuration interaction with single substitutions (CIS) is presented. This CIS(D) correction approximately introduces the effect of double substitutions which are absent in CIS excited states. CIS(D) is a second-order perturbation expansion of the coupled-cluster excited state method, restricted to single and double substitutions, in a series in which CIS is zeroth order, and the first-order correction vanishes. CIS (D) excitation energies are size consistent and the calculational complexity scales with the fifth power of molecular size, akin to second-order Moller-Plesset theory for the ground state. Calculations on singlet excited states of ethylene, formaldehyde, acetaldehyde, butadiene and benzene show that CIS (D) is a uniform improvement over CIS. CIS(D) appears to be a promising method for examining excited states of large molecules, where more accurate methods are not feasible.

  5. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  6. Static Coulomb stress load on a three-dimensional rate-and-state fault: Possible explanation of the anomalous delay of the 2004 Parkfield earthquake

    NASA Astrophysics Data System (ADS)

    Kostka, Filip; Gallovič, František

    2016-05-01

    We perform quasi-dynamic modeling of earthquake cycle using laboratory derived rate-and-state laws of friction on a homogeneous three-dimensional fault model. We study effects of the static Coulomb stress loading on clock advance and clock delay of the subsequent event. We carefully investigate dependences of the clock advance on the onset time of the stress load, its amplitude, areal extent, and place of application of the load. We find that these dependences are complex, being controlled by the actual ongoing slip velocity on the fault, especially at the domain of the stress load. In particular, the stress (un)load can initiate the occurrence of quasiperiodic creep-like episodes, which could be associated with episodic increases of microseismicity on real faults, such as observed on the locked Parkfield segment of the San Andreas Fault. Depending on the load parameters including its timing within the earthquake cycle, one of such creep-like events may trigger the next (clock advanced) system-size earthquake. In some cases, the nucleation of the main shock can fail, and the fault experiences one or several seismic events of smaller magnitudes instead. In such a case the next main shock becomes significantly delayed. We speculate that such mechanism could have contributed to the extreme delay of the M6 2004 Parkfield earthquake. Indeed, the Parkfield segment was subject to Coulomb stress unload due to the 1983 Coalinga-Nuñez earthquakes and then experienced M4.9 events in 1993-1994, when the system-size event was expected. Instead, these failed main shock nucleations delayed the Parkfield earthquake by another ~10 years.

  7. Dynamics of Excited States for Fluorescent Emitters with Hybridized Local and Charge-Transfer Excited State in Solid Phase: A QM/MM Study.

    PubMed

    Fan, Jianzhong; Cai, Lei; Lin, Lili; Wang, Chuan-Kui

    2016-12-01

    The highly efficient organic light-emitting diodes (OLEDS) based on fluorescent emitters with hybridized local and charge-transfer (HLCT) excited state have attracted great attention recently. The excited-state dynamics of the fluorescent molecule with consideration of molecular interaction are studied using the hybrid quantum mechanics/molecular mechanics method. The results show that, in solid state, the internal conversion rate (KIC) between the first singlet excited state (S1) and the ground state (S0) is smaller than the fluorescent rate (Kr), while in gas phase KIC is much larger than Kr. By analyzing the Huang-Rhys (HR) factor and reorganization energy (λ), we find that these two parameters in solid state are much smaller than those in gas phase due to the suppression of the vibration modes in low-frequency regions (<200 cm(-1)) related with dihedral angles between donor and acceptor groups. This is further demonstrated by the geometrical analysis that variation of the dihedral angle between geometries of S1 and S0 is smaller in solid state than that in gas phase. Moreover, combining the dynamics of the excited states and the adiabatic energy structures calculated in solid state, we illustrate the suggested "hot-exciton" mechanism of the HLCT emitters in OLEDs. Our work presents a rational explanation for the experimental results and demonstrates the importance of molecular interaction for theoretical simulation of the working principle of OLEDs.

  8. Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite

    PubMed Central

    Watanabe, Daiki; Sugii, Kaori; Shimozawa, Masaaki; Suzuki, Yoshitaka; Yajima, Takeshi; Ishikawa, Hajime; Hiroi, Zenji; Shibauchi, Takasada; Matsuda, Yuji; Yamashita, Minoru

    2016-01-01

    When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity κxy which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2⋅2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that κxy is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that κxy is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons. PMID:27439874

  9. Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite.

    PubMed

    Watanabe, Daiki; Sugii, Kaori; Shimozawa, Masaaki; Suzuki, Yoshitaka; Yajima, Takeshi; Ishikawa, Hajime; Hiroi, Zenji; Shibauchi, Takasada; Matsuda, Yuji; Yamashita, Minoru

    2016-08-02

    When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity [Formula: see text] which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2[Formula: see text]2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that [Formula: see text] is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that [Formula: see text] is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons.

  10. Vibrations of acrylonitrile in N 1s excited states

    NASA Astrophysics Data System (ADS)

    Ilakovac, V.; Carniato, S.; Gallet, J.-J.; Kukk, E.; Horvatić, D.; Ilakovac, A.

    2008-01-01

    The N 1s near edge x-ray absorption fine structure spectra of acrylonitrile gas are accurately reproduced by a complete ab initio multidimensional vibrational analysis. The role of π∗ -orbital localization and hybridization on vibrations accompanying core excitation is discussed. Transition to the π⊥∗(C=C-C≡N) delocalized orbital excites mostly stretching vibrations of the whole spinal column of the molecule. Promoting a core electron to the localized π∥∗(C≡N) produces C≡N stretching vibration combined with two strong bending modes of the C-C≡N end of the molecule, related to the change of carbon hybridization.

  11. The phototoxicity of polycyclic aromatic hydrocarbons: a theoretical study of excited states and correlation to experiment.

    PubMed

    Betowski, Leon D; Enlow, Mark; Riddick, Lee

    2002-06-01

    Investigators using models to determine the phototoxic effects of sunlight on polycyclic aromatic hydrocarbons (PAHs) have invoked the excited states of the molecule as important in elucidating the mechanism of these reactions. Energies of actual excited states were calculated for ten PAHs by several ab initio methods. The main method used for these calculations was the Configuration Interaction approach, modeling excited states as combinations of single substitutions out of the Hartree-Fock ground state. These calculations correlate well with both experimentally measured singlet and triplet state energies and also previous HOMO-LUMO gap energies that approximate the singlet state energies. The excited state calculations then correlate well with general models of photo-induced toxicity based for the PAHs.

  12. Exotic and excited-state meson spectroscopy and radiative transitions from lattice QCD

    SciTech Connect

    Christopher Thomas

    2010-09-01

    We discuss recent progress in extracting the excited meson spectrum and radiative transition form factors using lattice QCD. We mention results in the charmonium sector, including the first lattice QCD calculation of radiative transition rates involving excited charmonium states, highlighting results for high spin and exotic states. We present recent results on a highly excited isovector meson spectrum from dynamical anisotropic lattices. Using carefully constructed operators we show how the continuum spin of extracted states can be reliably identified and confidently extract excited states, states with exotic quantum numbers and states of high spin. This spectrum includes the first spin-four state extracted from lattice QCD. We conclude with some comments on future prospects.

  13. Methodological CASPT2 study of the valence excited states of an iron-porphyrin complex.

    PubMed

    Ben Amor, Nadia; Soupart, Adrien; Heitz, Marie-Catherine

    2017-02-01

    The singlet valence excited states of an iron-porphyrin-pyrazine-carbonyl complex are investigated up to the Soret band (about 3 eV) using multi-state complete active space with perturbation at the second order (MS-CASPT2). This complex is a model for the active site of carboxy-hemoglobin/myoglobin. The spectrum of the excited states is rather dense, comprising states of different nature: d→π* transitions, d→d states, π→π* excitations of the porphyrin, and doubly excited states involving simultaneous intra-porphyrin π→π* and d→d transitions. Specific features of the MS-CASPT2 method are investigated. The effect of varying the number of roots in the state average calculation is quantified as well as the consequence of targeted modifications of the active space. The effect of inclusion of standard ionization potential-electron affinity (IPEA) shift in the perturbation treatment is also investigated.

  14. Ground and excited state dipole moments of coumarin 337 laser dye

    NASA Astrophysics Data System (ADS)

    Raikar, U. S.; Tangod, V. B.; Mannopantar, S. R.; Mastiholi, B. M.

    2010-11-01

    This paper reports that the effects of spectral properties of coumarin 337 laser dye have been investigated in different solvents considering solvent parameters like dielectric constant ( є) and refractive index ( n) of different solvent polarities. The ground state ( μg) and excited state ( μe) dipole moments are calculated using Lippert's, Bakhshiev's, and Kawski-Chamma-Viallet's equations. In all these three equations the variation of Stokes shift was used to calculate the excited state ( μe) dipole moment. It is observed that the Bakhshiev method is comparatively better than the other two methods for ground state and excited state dipole moment calculations. The angle between the excited state and ground state dipole moments is also calculated.

  15. Electronically Excited States in Poly(p-phenylenevinylene): Vertical Excitations and Torsional Potentials from High-Level Ab Initio Calculations

    PubMed Central

    2013-01-01

    Ab initio second-order algebraic diagrammatic construction (ADC(2)) calculations using the resolution of the identity (RI) method have been performed on poly-(p-phenylenevinylene) (PPV) oligomers with chain lengths up to eight phenyl rings. Vertical excitation energies for the four lowest π–π* excitations and geometry relaxation effects for the lowest excited state (S1) are reported. Extrapolation to infinite chain length shows good agreement with analogous data derived from experiment. Analysis of the bond length alternation (BLA) based on the optimized S1 geometry provides conclusive evidence for the localization of the defect in the center of the oligomer chain. Torsional potentials have been computed for the four excited states investigated and the transition densities divided into fragment contributions have been used to identify excitonic interactions. The present investigation provides benchmark results, which can be used (i) as reference for lower level methods and (ii) give the possibility to parametrize an effective Frenkel exciton Hamiltonian for quantum dynamical simulations of ultrafast exciton transfer dynamics in PPV type systems. PMID:23427902

  16. A TDDFT study on the excited-state intramolecular proton transfer (ESIPT): excited-state equilibrium induced by electron density swing.

    PubMed

    Zhang, Mingzhen; Yang, Dapeng; Ren, Baiping; Wang, Dandan

    2013-07-01

    One important issue of current interest is the excited-state equilibrium for some ESITP dyes. However, so far, the information about the driving forces for excited-state equilibrium is very limited. In this work, the time-dependent density functional theory (TDDFT) method was employed to investigate the nature of the excited-state intramolecular proton transfer (ESIPT). The geometric structures, vibrational frequencies, frontier molecular orbitals (MOs) and the potential-energy curves for 1-hydroxy-11H-benzo[b]fluoren-11-one (HHBF) in the ground and the first singlet excited state were calculated. Analysis of the results shows that the intramolecular hydrogen bond of HHBF is strengthened from E to E*. Moreover, it is found that electron density swing between the proton acceptor and donor provides the driving forces for the forward and backward ESIPT, enabling the excited-state equilibrium to be established. Furthermore, we proposed that the photoexcitation and the interchange of position for electron-donating and electron-withdrawing groups are the main reasons for the electron density swing. The potential-energy curves suggest that the forward ESIPT and backward ESIPT may happen on the similar timescale, which is faster than the fluorescence decay of both E* and K* forms.

  17. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion

    SciTech Connect

    Winghart, Marc-Oliver Unterreiner, Andreas-Neil; Yang, Ji-Ping; Vonderach, Matthias; Huang, Dao-Ling; Wang, Lai-Sheng; Kruppa, Sebastian; Riehn, Christoph; Kappes, Manfred M.

    2016-02-07

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet {sup 1}A{sub 2u} state and concomitant rise in population of the triplet {sup 3}A{sub 2u} state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet {sup 1}A{sub 2u} state takes only a few picoseconds, ESETD from the triplet {sup 3}A{sub 2u} state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} is the first example of a photoexcited multianion for which ESETD has been observed following ISC.

  18. Ultrafast internal conversion of excited cytosine via the lowest pipi electronic singlet state.

    PubMed

    Merchán, Manuela; Serrano-Andrés, Luis

    2003-07-09

    Computational evidence at the CASPT2 level supports that the lowest excited state pipi* contributes to the S1/S0 crossing responsible for the ultrafast decay of singlet excited cytosine. The computed radiative lifetime, 33 ns, is consistent with the experimentally derived value, 40 ns. The nOpi* state does not play a direct role in the rapid repopulation of the ground state; it is involved in a S2/S1 crossing. Alternative mechanisms through excited states pisigma* or nNpi* are not competitive in cytosine.

  19. Excited-state wavepacket and potential reconstruction by coherent anti-Stokes Raman scattering.

    PubMed

    Avisar, David; Tannor, David J

    2015-01-28

    Among the major challenges in the chemical sciences is controlling chemical reactions and deciphering their mechanisms. Since much of chemistry occurs in excited electronic states, in the last three decades scientists have employed a wide variety of experimental techniques and theoretical methods to recover excited-state potential energy surfaces and the wavepackets that evolve on them. These methods have been partially successful but generally do not provide a complete reconstruction of either the excited state wavepacket or potential. We have recently proposed a methodology for reconstructing excited-state molecular wavepackets and the corresponding potential energy surface [Avisar and Tannor, Phys. Rev. Lett., 2011, 106, 170405]. In our approach, the wavepacket is represented as a superposition of the set of vibrational eigenfunctions of the molecular ground-state Hamiltonian. We assume that the multidimensional ground-state potential surface is known, and therefore these vibrational eigenfunctions are known as well. The time-dependent coefficients of the basis functions are obtained by experimental measurement of the resonant coherent anti-Stokes Raman scattering (CARS) signal. Our reconstruction strategy has several significant advantages: (1) the methodology requires no a priori knowledge of any excited-state potential. (2) It applies to dissociative as well as to bound excited-state potentials. (3) It is general for polyatomics. (4) The excited-state potential surface is reconstructed simultaneously with the wavepacket. Apart from making a general contribution to the field of excited-state spectroscopy, our method provides the information on the excited-state wavepacket and potential necessary to design laser pulse sequences to control photochemical reactions.

  20. Excitation of single proton states in ( p, α) reactions

    NASA Astrophysics Data System (ADS)

    Gadioli, E.; Erba, E. Gadioli; Guazzoni, P.; Luinetti, M.; Zetta, L.; Berg, G. P. A.; Meissburger, J.; von Rossen, P.; Römer, J. G. M.; Prasuhn, D.; Paul, D.

    1986-06-01

    A high resolution experiment, using the BIG KARL spectrometer has been made to identify the levels of 141 Pr excited in the 144 Nd(p,α) reaction at 25 MeV. It has been found that only levels with a dominant single proton component are populated with appreciable intensity.

  1. Lifetime measurement of excited states in /sup 105/Ag

    SciTech Connect

    Mittal, V.K.; Govil, I.M.

    1986-11-01

    The levels up to about 2.1 MeV in /sup 105/Ag were excited via /sup 105/Pd(p,n..gamma..) reaction. For the first time, lifetimes of energy levels at 1023, 1042, 1097, 1166, 1243, 1295, 1328, 1386, 1442, 1543, 1558, 1587, 1719, 1923, and 2081 keV have been measured using the Doppler shift attenuation technique.

  2. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2016-10-01

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  3. Protolytic dissociation of cyano derivatives of naphthol, biphenyl and phenol in the excited state: A review

    NASA Astrophysics Data System (ADS)

    Szczepanik, Beata

    2015-11-01

    The excited state proton transfer (ESPT) has been extensively studied for hydroxyarenes, phenols, naphthols, hydroxystilbenes, etc., which undergo large enhancement of acidity upon electronic excitation, thus classified as photoacids. The changes of acidic character in the excited state of cyano-substituted derivatives of phenol, hydroxybiphenyl and naphthol are reviewed in this paper. The acidity constants pKa in the ground state (S0), pKa∗ in the first singlet excited state (S1) and the change of the acidity constant in the excited state ΔpKa for the discussed compounds are summarized and compared. The results of the acidity studies show, that the "electro-withdrawing" CN group in the molecules of naphthol, hydroxybiphenyl and phenol causes dramatic increase of their acidity in the excited state in comparison to the ground state. This effect is greatest for the cyanonaphthols (the doubly substituted CN derivatives are almost as strong as a mineral acid in the excited state), comparable for cyanobiphenyls, and smaller for phenol derivatives. The increase of acidity enables proton transfer to various organic solvents, and the investigation of ESPT can be extended to a variety of solvents besides water. The results of theoretical investigations were also presented and used for understanding the protolytic equilibria of cyano derivatives of naphthol, hydroxybiphenyl and phenol.

  4. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics.

    PubMed

    Neville, Simon P; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S

    2016-10-14

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L(2) method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  5. Electron-impact excitation of the low-lying electronic states of formaldehyde

    NASA Technical Reports Server (NTRS)

    Chutjian, A.

    1974-01-01

    Electron-impact excitation has been observed at incident electron energies of 10.1 and 20.1 eV to the first five excited electronic states of formaldehyde lying at and below the 1B2 state at 7.10 eV. These excitations include two new transitions in the energy-loss range 5.6-6.2 eV and 6.7-7.0 eV which have been detected for the first time, either through electron-impact excitation or photon absorption. The differential cross sections of these new excitations are given at scattering angles between 15 and 135 deg. These cross-section ratios peak at large scattering angles - a characteristic of triplet - singlet excitations. The design and performance of the electron-impact spectrometer used in the above observations is outlined and discussed.

  6. Excited state properties of peridinin: Observation of a solvent dependence of the lowest excited singlet state lifetime and spectral behavior unique among carotenoids

    SciTech Connect

    Bautista, J.A.; Connors, R.E.; Raju, B.B.; Hiller, R.G.; Sharples, F.P.; Gosztola, D.; Wasielewski, M.R.; Frank, H.A.

    1999-10-14

    The spectroscopic properties and dynamic behavior of peridinin in several different solvents were studied by steady-state absorption, fluorescence, and transient optical spectroscopy. The lifetime of the lowest excited singlet state of peridinin is found to be strongly dependent on solvent polarity and ranges from 7 ps in the strongly polar solvent trifluoroethanol to 172 ps in the nonpolar solvents cyclohexane and benzene. The lifetimes show no obvious correlation with solvent polarizability, and hydrogen bonding of the solvent molecules to peridinin is not an important factor in determining the dynamic behavior of the lowest excited singlet state. The wavelengths of emission maxima, the quantum yields of fluorescence, and the transient absorption spectra are also affected by the solvent environment. A model consistent with the data and supported by preliminary semiempirical calculations invokes the presence of a charge transfer state in the excited state manifold of peridinin to account for the observations. The charge transfer state most probably results from the presence of the lactone ring in the {pi}-electron conjugation of peridinin analogous to previous findings on aminocoumarins and related compounds. The behavior of peridinin reported here is highly unusual for carotenoids, which generally show little dependence of the spectral properties and lifetimes of the lowest excited singlet state on the solvent environment.

  7. Modeling the doubly excited state with time-dependent Hartree-Fock and density functional theories

    NASA Astrophysics Data System (ADS)

    Isborn, Christine M.; Li, Xiaosong

    2008-11-01

    Multielectron excited states have become a hot topic in many cutting-edge research fields, such as the photophysics of polyenes and in the possibility of multiexciton generation in quantum dots for the purpose of increasing solar cell efficiency. However, obtaining multielectron excited states has been a major obstacle as it is often done with multiconfigurational methods, which involve formidable computational cost for large systems. Although they are computationally much cheaper than multiconfigurational wave function based methods, linear response adiabatic time-dependent Hartree-Fock (TDHF) and density functional theory (TDDFT) are generally considered incapable of obtaining multielectron excited states. We have developed a real-time TDHF and adiabatic TDDFT approach that is beyond the perturbative regime. We show that TDHF/TDDFT is able to simultaneously excite two electrons from the ground state to the doubly excited state and that the real-time TDHF/TDDFT implicitly includes double excitation within a superposition state. We also present a multireference linear response theory to show that the real-time electron density response corresponds to a superposition of perturbative linear responses of the S0 and S2 states. As a result, the energy of the two-electron doubly excited state can be obtained with several different approaches. This is done within the adiabatic approximation of TDDFT, a realm in which the doubly excited state has been deemed missing. We report results on simple two-electron systems, including the energies and dipole moments for the two-electron excited states of H2 and HeH+. These results are compared to those obtained with the full configuration interaction method.

  8. Estimation of first excited singlet-state dipole moments of aminoanthraquinones by solvatochromic method.

    PubMed

    Siddlingeshwar, B; Hanagodimath, S M

    2009-04-01

    The ground state (micro(g)) and the excited state (micro(e)) dipole moments of three substituted anthraquinones, namely 1-aminoanthracene-9,10-dione (AAQ), 1-(methylamino)anthracence-9,10-dione (MAQ) and 1,5-diaminoanthracene-9,10-dione (DAQ) were estimated in various solvents. The dipole moments (micro(g) and micro(e)) were estimated from Lippert, Bakhshiev, Kawski-Chamma-Viallet, McRae and Suppan equations by using the variation of Stokes shift with the solvent dielectric constant and refractive index. The excited state dipole moments were also calculated by using the variation of Stokes shift with microscopic solvent polarity parameter (Epsilon(T)(N)). It was observed that dipole moment values of excited states (micro(e)) were higher than corresponding ground state values (micro(g)), indicating a substantial redistribution of the pi-electron densities in a more polar excited state for all the molecules investigated.

  9. Estimation of first excited singlet-state dipole moments of aminoanthraquinones by solvatochromic method

    NASA Astrophysics Data System (ADS)

    Siddlingeshwar, B.; Hanagodimath, S. M.

    2009-04-01

    The ground state ( μg) and the excited state ( μe) dipole moments of three substituted anthraquinones, namely 1-aminoanthracene-9,10-dione (AAQ), 1-(methylamino)anthracence-9,10-dione (MAQ) and 1,5-diaminoanthracene-9,10-dione (DAQ) were estimated in various solvents. The dipole moments ( μg and μe) were estimated from Lippert, Bakhshiev, Kawski-Chamma-Viallet, McRae and Suppan equations by using the variation of Stokes shift with the solvent dielectric constant and refractive index. The excited state dipole moments were also calculated by using the variation of Stokes shift with microscopic solvent polarity parameter ( ETN). It was observed that dipole moment values of excited states ( μe) were higher than corresponding ground state values ( μg), indicating a substantial redistribution of the π-electron densities in a more polar excited state for all the molecules investigated.

  10. Efficient Deactivation of a Model Base Pair via Excited-State Hydrogen Transfer

    NASA Astrophysics Data System (ADS)

    Schultz, Thomas; Samoylova, Elena; Radloff, Wolfgang; Hertel, Ingolf V.; Sobolewski, Andrzej L.; Domcke, Wolfgang

    2004-12-01

    We present experimental and theoretical evidence for an excited-state deactivation mechanism specific to hydrogen-bonded aromatic dimers, which may account, in part, for the photostability of the Watson-Crick base pairs in DNA. Femtosecond time-resolved mass spectroscopy of 2-aminopyridine clusters reveals an excited-state lifetime of 65 +/- 10 picoseconds for the near-planar hydrogen-bonded dimer, which is significantly shorter than the lifetime of either the monomer or the 3- and 4-membered nonplanar clusters. Ab initio calculations of reaction pathways and potential-energy profiles identify the mechanism of the enhanced excited-state decay of the dimer: Conical intersections connect the locally excited 1ππ* state and the electronic ground state with a 1ππ* charge-transfer state that is strongly stabilized by the transfer of a proton.

  11. Excited-state lifetime of propadienylidene, l-C3H2.

    PubMed

    Noller, Bastian; Margraf, Markus; Schröter, Christian; Schultz, Thomas; Fischer, Ingo

    2009-07-14

    The excited-state dynamics of the singlet carbene propadienylidene, l-C(3)H(2), were investigated by femtosecond time-resolved photoionisation. The carbene was excited into the C (1)A(1) state with 250 nm pulses and the subsequent excited state dynamics were probed by multiphoton ionization with 800 nm pulses. The lifetime of the C (1)A(1) state was determined to be 70 fs. In agreement with recent nanosecond experiments, we assume that the carbene deactivates to the electronic ground state where it subsequently dissociates. Since propadienylidene was generated from 3-bromo-1-iodopropyne, two further radical intermediates were studied, IC(3)H(2) and C(3)H(2)Br. For both species, an ultrafast excited state decay was observed with an upper limit of 40 fs for the respective lifetimes.

  12. Estimation of ground and excited state dipole moments of some laser dyes

    NASA Astrophysics Data System (ADS)

    Biradar, D. S.; Siddlingeshwar, B.; Hanagodimath, S. M.

    2008-03-01

    The ground state ( μg) and the excited state ( μe) dipole moments of three laser dyes namely 2, 5-diphenyl-1, 3, 4- oxadiazole (PPD), 2, 2″-dimethyl-p-terphenyl (DMT) and 1, 3-diphenyl benzene (MT) were studied at room temperature in various solvents. The ground state dipole moments ( μg) of all the three laser dyes were determined experimentally by Guggenheim method. The excited state dipole moments ( μe) were estimated from Lippert's, Bakshiev's and Chamma Viallet's equations by using the variation of the Stokes shift with the solvent dielectric constant and refractive index. Ground and excited state dipole moments were evaluated by means of solvatochromic shift method and also the excited state dipole moments are determined in combination with ground state dipole moments. It was observed that dipole moment values of excited states ( μe) were higher than corresponding ground state values ( μg), indicating a substantial redistribution of the π-electron densities in a more polar excited state for all the dyes investigated.

  13. Pulsed CO2 laser pumped by an all solid-state magnetic exciter

    NASA Astrophysics Data System (ADS)

    Shimada, T.; Noda, K.; Obara, M.; Midorikawa, K.

    1985-11-01

    An all solid-state exciter, which consists of a Silicon Controlled Rectifier (SCR) switched pulse transformer and a three stage magnetic pulse compressor, has been successfully used for pulsed CO2 laser excitation. Using the exciter, output laser energy of 240 mJ has been obtained at 1 pps under sealed-off conditions. Since this laser has no discharge switch, long lifetime operation with high repetition rate (HRR) is anticipated.

  14. Excited state absorption of pump radiation as a loss mechanism in solid-state lasers

    SciTech Connect

    Kliewer, M.L.; Powell, R.C.

    1989-08-01

    The characteristics of optical pumping dynamics occurring in laser-pumped rare earth-doped, solid-state laser materials were investigated by using a tunable alexandrite laser to pump Y/sub 3/Al/sub 5/O/sub 12/:Nd/sup 3+/ in an optical cavity. It was found that the slope efficiency of the Nd laser operation depends strongly on the wavelength of the pump laser. For pump wavelengths resulting in low slope efficiencies, intense fluorescence emission is observed from the sample in the blue-green spectral region. This is attributed to the excited state absorption of pump photons which occurs during radiationless relaxation from the pump band to the metastable state. This type of process will be an important loss mechanism for monochromatic pumping of laser systems at specific pump wavelengths.

  15. Excited-state absorption of pump radiation as a loss mechanism in solid-state lasers

    SciTech Connect

    Kliewer, M.L.; Powell, R.C.

    1989-08-01

    The characteristics of optical pumping dynamics occuring in laser-pumped rare earth-doped, solid-state laser materials were investigated by using a tunable alexandrite laser to pump Y3Al5O12:Nd(3+) in an optical cavity. It was found that the slope efficiency of the Nd laser operation depends strongly on the wavelength of the pump laser. For pump wavelength resulting in low slope efficiencies, intense fluorescence emission is observed form the sample in the blue-green spectral region. This is attributed to the excited state absorption of pump photons which occurs during radiationless relaxation from the pump band to the metastable state. This type of process will be an important loss mechanism for monochromatic pumping of laser systems at specific pump wavelengths.

  16. Excited state absorption of pump radiation as a loss mechanism in solid-state lasers

    NASA Technical Reports Server (NTRS)

    Kliewer, Michael L.; Powell, Richard C.

    1989-01-01

    The characteristics of optical pumping dynamics in laser-pumped, rare-earth-doped, solid-state laser materials are investigated by using a tunable alexandrite laser to pump Y3Al5O12:Nd(3+) in an optical cavity. It is found that the slope efficiency of the Nd laser operation depends strongly on the wavelength of the pump laser. For pump wavelengths resulting in low slope efficiencies, intense fluorescence emission is observed from the sample in the blue-green spectral region. This is attributed to the excited-state absorption of pump photons which occurs during radiationless relaxation from the pump band to the metastable state. This type of process is an important loss mechanism for monochromatic pumping of laser systems at specific pump wavelengths.

  17. Detection of the torsionally excited state of methanol in Orion A

    NASA Technical Reports Server (NTRS)

    Lovas, F. J.; Suenram, R. D.; Snyder, L. E.; Hollis, J. M.; Lees, R. M.

    1982-01-01

    Torsionally excited methanol has been detected in Orion A, where three emission lines observed in the region of 93-100 GHz coincide with laboratory measurements of three methanol transitions. Torsionally excited methanol may therefore be used as a novel temperature probe, since this state lies near 200 per cm above the ground state, or about 290 K. No emission was detected from the transition arising from levels near 300 per cm, or approximately 430 K above the ground state.

  18. Bound state - excitation in ion-ion collisions related to X-ray lasers modelling

    SciTech Connect

    Stancalie, V.; Sureau, A.; Klisnick, A.

    1995-12-31

    As in the earlier work of Walling and Weisheit we used the Seaton`s semi-classical, impact parameter formulation of Coulomb excitation for a variety of inelastic ion-ion collisions, involved in laser-produced soft X-ray lasers with Li-like aluminum ions, 1s{sup 2} nl configuration. Energy levels has been calculated by direct SCF method including the spin-orbit interaction. Our definition of the electric 2{sup {lambda}} - pole line strength, S{sup {lambda}}, is consistent with that of Sobelman. The ion-ion collision processes have been considered for a wide range of temperature between 500 eV to 30 eV, with a particular interest in the last part of plasma evolution time, when complications such as non-Maxwellian particle distributions, radiation fields and transient plasma conditions can be neglected, and when the plasma electrons and ions have comparable temperatures.

  19. Excited state dynamics in photosynthetic reaction center and light harvesting complex 1

    NASA Astrophysics Data System (ADS)

    Strümpfer, Johan; Schulten, Klaus

    2012-08-01

    Key to efficient harvesting of sunlight in photosynthesis is the first energy conversion process in which electronic excitation establishes a trans-membrane charge gradient. This conversion is accomplished by the photosynthetic reaction center (RC) that is, in case of the purple photosynthetic bacterium Rhodobacter sphaeroides studied here, surrounded by light harvesting complex 1 (LH1). The RC employs six pigment molecules to initiate the conversion: four bacteriochlorophylls and two bacteriopheophytins. The excited states of these pigments interact very strongly and are simultaneously influenced by the surrounding thermal protein environment. Likewise, LH1 employs 32 bacteriochlorophylls influenced in their excited state dynamics by strong interaction between the pigments and by interaction with the protein environment. Modeling the excited state dynamics in the RC as well as in LH1 requires theoretical methods, which account for both pigment-pigment interaction and pigment-environment interaction. In the present study we describe the excitation dynamics within a RC and excitation transfer between light harvesting complex 1 (LH1) and RC, employing the hierarchical equation of motion method. For this purpose a set of model parameters that reproduce RC as well as LH1 spectra and observed oscillatory excitation dynamics in the RC is suggested. We find that the environment has a significant effect on LH1-RC excitation transfer and that excitation transfers incoherently between LH1 and RC.

  20. Dark excited States of carotenoid regulated by bacteriochlorophyll in photosynthetic light harvesting.

    PubMed

    Nakamura, Ryosuke; Nakagawa, Katsunori; Nango, Mamoru; Hashimoto, Hideki; Yoshizawa, Masayuki

    2011-03-31

    In photosynthesis, carotenoids play important roles in light harvesting (LH) and photoprotective functions, which have been described mainly in terms of two singlet excited states of carotenoids: S(1) and S(2). In addition to the "dark" S(1) state, another dark state, S*, was recently identified and its involvement in photosynthetic functions was determined. However, there is no consistent picture concerning its nature or the mechanism of its formation. One particularly anomalous behavior obtained from femtosecond transient absorption (TA) spectroscopy is that the S*/S(1) population ratio depends on the excitation intensity. Here, we focus on the effect of nearby bacteriochlorophyll (BChl) on the relaxation dynamics of carotenoid in the LH complex. We performed femtosecond TA spectroscopy combined with pre-excitation of BChl in the reconstituted LH1 complex from Rhodospirillum rubrum S1. We observed that the energy flow from S(1), including its vibrationally excited hot states, to S* occurs only when nearby BChl is excited into Q(y), resulting in an increase in S*/S(1). We also examined the excitation-intensity dependence of S*/S(1) by conventional TA spectroscopy. A comparison between the pre-excitation effect and excitation-intensity dependence shows a strong correlation of S*/S(1) with the number of BChls excited into Q(y). In addition, we observed an increase in triplet formation as the S* population increased, indicating that S* is an electronic excited state that is the precursor to triplet formation. Our findings provide an explanation for observed spectroscopic features, including the excitation-intensity dependences debated so far, and offer new insights into energy deactivation mechanisms inherent in the LH antenna.

  1. Excited triplet states as photooxidants in surface waters

    NASA Astrophysics Data System (ADS)

    Canonica, S.

    2012-12-01

    The chromophoric components of dissolved organic matter (DOM) are generally the main absorbers of sunlight in surface waters and therefore a source of transient reactants under irradiation. Such short-lived species can be relevant for the fate of various classes of chemical contaminants in the aquatic environment. The present contribution focuses on the role of excited triplet states of chromophoric DOM, 3CDOM*, as transient photooxidants initiating the transformation and degradation of organic chemical contaminants. An early study [1] indicated that 3CDOM* may play a dominant role in the photo-induced transformation of electron-rich phenols, a conclusion which was later fortified by the results of transient absorption investigations using aromatic ketones as model photosensitizers [2] and by a recent careful analysis of the effect of oxygen concentration on transformation rates [3]. The variety of aquatic contaminants shown to be affected by triplet-induced oxidation has kept increasing, phenylurea herbicides [4], sulfonamide antibiotics [5] and some phytoestrogens [6] being prominent examples. Recent research has shown that the triplet-induced transformation of specific contaminants, especially aromatic nitrogen compounds, could be inhibited by the presence of DOM, very probably due to its antioxidant moieties [7]. While such moieties are not relevant for the quenching of 3CDOM*, they are expected to react with it in a similar way as the studied contaminants. Analogous reactions can be postulated to occur in liquid or solid phases of the atmospheric environment, as demonstrated in the case of HONO formation [8]. References 1. Canonica, S.; Jans, U.; Stemmler, K.; Hoigné, J. Transformation kinetics of phenols in water: Photosensitization by dissolved natural organic material and aromatic ketones. Environ. Sci. Technol. 1995, 29 (7), 1822-1831. 2. Canonica, S.; Hellrung, B.; Wirz, J. Oxidation of phenols by triplet aromatic ketones in aqueous solution. J. Phys

  2. Optically Excited Entangled States in Organic Molecules Illuminate the Dark.

    PubMed

    Upton, L; Harpham, M; Suzer, O; Richter, M; Mukamel, S; Goodson, T

    2013-06-20

    We utilize quantum entangled photons to carry out nonlinear optical spectroscopy in organic molecules with an extremely small number of photons. For the first time, fluorescence is reported as a result of entangled photon absorption in organic nonlinear optical molecules. Selectivity of the entangled photon absorption process is also observed and a theoretical model of this process is provided. Through these experiments and theoretical modeling it is found that while some molecules may not have strong classical nonlinear optical properties due to their excitation pathways; these same excitation pathways may enhance the entangled photon processes. It is found that the opposite is also true. Some materials with weak classical nonlinear optical effects may exhibit strong non-classical nonlinear optical effects. Our entangled photon fluorescence results provide the first steps in realizing and demonstrating the viability of entangled two-photon microscopy, remote sensing, and optical communications.

  3. Ultrafast excited-state proton transfer from dicyano-naphthol

    NASA Astrophysics Data System (ADS)

    Carmeli, I.; Huppert, D.; Tolbert, L. M.; Haubrich, J. E.

    1996-09-01

    The rate of proton transfer from electronically excited 5,8-dicyano-2-naphthol (DCN2) to the solvent is studied by time-resolved fluorescence. Unlike most naphthol derivatives, excited DCN2 is a strong acid ( pK ∗ 2≈ -4.5 ) and therefore is capable of transferring protons to alcohols and other moderate proton acceptor solvents. The rate constant of proton transfer, κd, at low temperatures (< 250 K) is slightly larger than the inverse dielectric relaxation time, 1/τ D and has the same activation energy of the dielectric relaxation. On the other hand, at temperatures above 250 K the temperature dependence of the proton transfer rate decreases monotonically with increasing temperature, while the dielectric relaxation activation energy maintains the low temperature value.

  4. Excited states in the active media of oxygen - iodine lasers

    SciTech Connect

    Azyazov, V N

    2009-11-30

    A review of investigations of kinetic processes in active media oxygen - iodine lasers (OILs) performed in the last decade is presented. The mechanisms of pumping and quenching of electronically and vibrationally excited O{sub 2} and I{sub 2} molecules are considered, and dissociation mechanisms of I{sub 2} in the active medium of the OIL are analysed. The values of kinetic constants of processes proceeding in the active media of OILs are recommended. (review)

  5. Excited State Electronic Properties of Sodium Iodide and Cesium Iodide

    SciTech Connect

    Campbell, Luke W.; Gao, Fei

    2013-05-01

    We compute from first principles the dielectric function, loss function, lifetime and scattering rate of quasiparticles due to electronic losses, and secondary particle spectrum due to plasmon decay in two scintillating alkali halides, sodium iodide and cesium iodide. Particular emphasis is placed on quasiparticles within several multiples of the band gap from the band edges. A theory for the decay spectra of plasmons and other electronic excitations in crystals is presented. Applications to Monte Carlo radiation transport codes are discussed.

  6. Protolytic dissociation of cyanophenols in ground and excited states in alcohol and water solutions

    NASA Astrophysics Data System (ADS)

    Szczepanik, Beata; Styrcz, Stanisław

    2011-08-01

    The effect of cyano substituents on acidity in ground and excited states of mono- and dicyanophenols was investigated. The equilibrium dissociation constants of 3,4-dicyanophenol in ground and lowest excited states in water solution and the change of these constants in the excited state during the transfer to the ground state for o-, m-, p-cyanophenol and 3,4-dicyanophenol in alcohol and water solutions were determined. It was shown that the cyano substitution increases the acidity of ortho-, meta- and dicyano-derivative in ground state in comparison to the phenol, which makes the anions of these derivatives appear in solutions from methanol to 1-butanol. In the excited state the acidity of investigated compounds changes significantly in comparison to the ground state. 3,4-Dicyanophenol is the strongest acid in the lowest excited singlet state, while p-cyanophenol is the weakest one in both alcohol and water solutions. The distribution of the electronic charge and dipole moments of all investigated cyanophenols in ground and excited states were determined on the basis of ab initio calculations using the GAMESS program.

  7. Reconstruction of an excited-state molecular wave packet with attosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Chini, Michael; Wang, Xiaowei; González-Castrillo, Alberto; Palacios, Alicia; Argenti, Luca; Martín, Fernando; Chang, Zenghu

    2016-08-01

    Attosecond science promises to allow new forms of quantum control in which a broadband isolated attosecond pulse excites a molecular wave packet consisting of a coherent superposition of multiple excited electronic states. This electronic excitation triggers nuclear motion on the molecular manifold of potential energy surfaces and can result in permanent rearrangement of the constituent atoms. Here, we demonstrate attosecond transient absorption spectroscopy (ATAS) as a viable probe of the electronic and nuclear dynamics initiated in excited states of a neutral molecule by a broadband vacuum ultraviolet pulse. Owing to the high spectral and temporal resolution of ATAS, we are able to reconstruct the time evolution of a vibrational wave packet within the excited B'Σ1u+ electronic state of H2 via the laser-perturbed transient absorption spectrum.

  8. Precise control of state-selective excitation in stimulated Raman scattering

    SciTech Connect

    Zhang Shian; Zhang Hui; Jia Tianqing; Wang Zugeng; Sun Zhenrong; Shi Junhui

    2010-10-15

    Multiphoton transitions can be manipulated by tailoring the ultrashort laser pulse. In this paper, we propose two schemes for achieving precise control of the selective excitation between two excited states in stimulated Raman-scattering process. We theoretically demonstrate that by properly designing the spectral phase distribution, the stimulated Raman transition probability for one excited state is kept at zero or a maximal value, while that for the other excited state can be continuously tuned over a wide range. Furthermore, the influence of the spectral bandwidth on the tunable range by the two schemes is discussed. We conclude that these schemes have significant application to the selective excitation of femtosecond coherent anti-Stokes Raman scattering.

  9. Interpretation of unusual absorption bandwidths and resonance Raman intensities in excited state mixed valence.

    PubMed

    Lockard, Jenny V; Valverde, Guadalupe; Neuhauser, Daniel; Zink, Jeffrey I; Luo, Yun; Weaver, Michael N; Nelsen, Stephen F

    2006-01-12

    Excited state mixed valence (ESMV) occurs in molecules in which the ground state has a symmetrical charge distribution but the excited state possesses two or more interchangeably equivalent sites that have different formal oxidation states. Although mixed valence excited states are relatively common in both organic and inorganic molecules, their properties have only recently been explored, primarily because their spectroscopic features are usually overlapped or obscured by other transitions in the molecule. The mixed valence excited state absorption bands of 2,3-di-p-anisyl-2,3-diazabicyclo[2.2.2]octane radical cation are well-separated from others in the absorption spectrum and are particularly well-suited for detailed analysis using the ESMV model. Excited state coupling splits the absorption band into two components. The lower energy component is broader and more intense than the higher energy component. The absorption bandwidths are caused by progressions in totally symmetric modes, and the difference in bandwidths is caused by the coordinate dependence of the excited state coupling. The Raman intensities obtained in resonance with the high and low energy components differ significantly from those expected based on the oscillator strengths of the bands. This unexpected observation is a result of the excited state coupling and is explained by both the averaging of the transition dipole moment orientation over all angles for the two types of spectroscopies and the coordinate-dependent coupling. The absorption spectrum is fit using a coupled two-state model in which both symmetric and asymmetric coordinates are included. The physical meaning of the observed resonance Raman intensity trends is discussed along with the origin of the coordinate-dependent coupling. The well-separated mixed valence excited state spectroscopic components enable detailed electronic and resonance Raman data to be obtained from which the model can be more fully developed and tested.

  10. Ultrafast excited state hydrogen atom transfer in salicylideneaniline driven by changes in aromaticity.

    PubMed

    Gutiérrez-Arzaluz, Luis; Cortés-Guzmán, Fernando; Rocha-Rinza, Tomás; Peón, Jorge

    2015-12-21

    We investigated two important unresolved issues on excited state intramolecular proton transfer (ESIPT) reactions, i.e., their driving force and the charge state of the transferred species by means of quantum chemical topology. We related changes in the aromaticity of a molecule after electron excitation to reaction dynamics in an excited state. Additionally, we found that the conveyed particle has a charge intermediate between that of a bare proton and a neutral hydrogen atom. We anticipate that the analysis presented in this communication will yield valuable insights into ESIPT and other similar photochemical reactions.

  11. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2016-04-01

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this work, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  12. Defect States in Copper Indium Gallium Selenide Solar Cells from Two-Wavelength Excitation Photoluminescence Spectroscopy

    SciTech Connect

    Jensen, Soren A.; Dippo, Patricia; Mansfield, Lorelle M.; Glynn, Stephen; Kuciauskas, Darius

    2016-11-21

    We use two-wavelength excitation photoluminescence spectroscopy to probe defect states in CIGS thin films. Above-Eg excitation is combined with a tunable IR bias light that modulates the population of the defect states. We find that IR illumination in the range of 1400-2000 nm (0.62-0.89 eV) causes a reduction of the PL intensity, the magnitude of which scales linearly with IR power. Further, KF post deposition treatment has only a modest influence on the effect of the IR excitation. Initial data suggest that we have developed an optical characterization tool for band-gap defect states.

  13. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    SciTech Connect

    Bjorgaard, Josiah August; Velizhanin, Kirill A.; Tretiak, Sergei

    2016-04-15

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this paper, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Finally, molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  14. Excited-state polarizabilities of solvated molecules using cubic response theory and the polarizable continuum model

    NASA Astrophysics Data System (ADS)

    Ferrighi, Lara; Frediani, Luca; Ruud, Kenneth

    2010-01-01

    The theory and an implementation of the solvent contribution to the cubic response function for the polarizable continuum model for multiconfigurational self-consistent field wave functions is presented. The excited-state polarizability of benzene, para-nitroaniline, and nitrobenzene has been obtained from the double residue of the cubic response function calculated in the presence of an acetonitrile and dioxane solvent. The calculated excited-state polarizabilities are compared to results obtained from the linear response function of the explicitly optimized excited states.

  15. Entropy, chaos, and excited-state quantum phase transitions in the Dicke model.

    PubMed

    Lóbez, C M; Relaño, A

    2016-07-01

    We study nonequilibrium processes in an isolated quantum system-the Dicke model-focusing on the role played by the transition from integrability to chaos and the presence of excited-state quantum phase transitions. We show that both diagonal and entanglement entropies are abruptly increased by the onset of chaos. Also, this increase ends in both cases just after the system crosses the critical energy of the excited-state quantum phase transition. The link between entropy production, the development of chaos, and the excited-state quantum phase transition is more clear for the entanglement entropy.

  16. Double excitations in finite systems.

    PubMed

    Romaniello, P; Sangalli, D; Berger, J A; Sottile, F; Molinari, L G; Reining, L; Onida, G

    2009-01-28

    Time-dependent density-functional theory (TDDFT) is widely used in the study of linear response properties of finite systems. However, there are difficulties in properly describing excited states, which have double- and higher-excitation characters, which are particularly important in molecules with an open-shell ground state. These states would be described if the exact TDDFT kernel were used; however, within the adiabatic approximation to the exchange-correlation (xc) kernel, the calculated excitation energies have a strict single-excitation character and are fewer than the real ones. A frequency-dependent xc kernel could create extra poles in the response function, which would describe states with a multiple-excitation character. We introduce a frequency-dependent xc kernel, which can reproduce, within TDDFT, double excitations in finite systems. In order to achieve this, we use the Bethe-Salpeter equation with a dynamically screened Coulomb interaction W(omega), which can describe these excitations, and from this we obtain the xc kernel. Using a two-electron model system, we show that the frequency dependence of W does indeed introduce the double excitations that are instead absent in any static approximation of the electron-hole screening.

  17. Electronic excited states of CO/sub 2/: An electron impact investigation

    SciTech Connect

    McDiarmid, R.; Doering, J.P.

    1984-01-15

    The electronic excited states of CO/sub 2/ were restudied by variable incident energy, variable angle electron impact spectroscopy. In this study, valence states of mixed configurations were distinguished from pure Rydberg states. Our results are incompatible with the theoretical description of CO/sub 2/, in which only two valence singlet states are located.

  18. On the nature of excited electronic states in cyanine dyes: implications for visual pigment spectra

    NASA Astrophysics Data System (ADS)

    Dinur, Uri; Honig, Barry; Schulten, Klaus

    1980-06-01

    CNDO/S CI calculations are carried out on polyenes and on cyanine dyes. In contrast to polyenes, doubly excited configurations have a strong effect on the first optically allowed excited state in cyanines. Protonated Schiff bases of retinal are closely related to cyanine dyes, with important consequences for models of visual pigment spectra and photochemistry.

  19. Dynamics of the Chemistry of Electronically Excited Atoms in Defined Quantum States.

    DTIC Science & Technology

    1980-08-15

    excited atom concentration by atomic absorption spectroscopy in the vacuum ultraviolet (6). Relatively efficient electronic to vibrational energy transfer...by the use of atomic absorption spectroscopy , permitted observation of both ground and electronically excited state bromine atoms. The deactivation of

  20. Mode specific excited state dynamics study of bis(phenylethynyl)benzene from ultrafast Raman loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Roy, Khokan; Kayal, Surajit; Ariese, Freek; Beeby, Andrew; Umapathy, Siva

    2017-02-01

    Femtosecond transient absorption (fs-TA) and Ultrafast Raman Loss Spectroscopy (URLS) have been applied to reveal the excited state dynamics of bis(phenylethynyl)benzene (BPEB), a model system for one-dimensional molecular wires that have numerous applications in opto-electronics. It is known from the literature that in the ground state BPEB has a low torsional barrier, resulting in a mixed population of rotamers in solution at room temperature. For the excited state this torsional barrier had been calculated to be much higher. Our femtosecond TA measurements show a multi-exponential behaviour, related to the complex structural dynamics in the excited electronic state. Time-resolved, excited state URLS studies in different solvents reveal mode-dependent kinetics and picosecond vibrational relaxation dynamics of high frequency vibrations. After excitation, a gradual increase in intensity is observed for all Raman bands, which reflects the structural reorganization of Franck-Condon excited, non-planar rotamers to a planar conformation. It is argued that this excited state planarization is also responsible for its high fluorescence quantum yield. The time dependent peak positions of high frequency vibrations provide additional information: a rapid, sub-picosecond decrease in peak frequency, followed by a slower increase, indicates the extent of conjugation during different phases of excited state relaxation. The CC triple (-C≡C-) bond responds somewhat faster to structural reorganization than the CC double (>C=C<) bonds. This study deepens our understanding of the excited state of BPEB and analogous linear pi-conjugated systems and may thus contribute to the advancement of polymeric "molecular wires."

  1. Mode specific excited state dynamics study of bis(phenylethynyl)benzene from ultrafast Raman loss spectroscopy.

    PubMed

    Roy, Khokan; Kayal, Surajit; Ariese, Freek; Beeby, Andrew; Umapathy, Siva

    2017-02-14

    Femtosecond transient absorption (fs-TA) and Ultrafast Raman Loss Spectroscopy (URLS) have been applied to reveal the excited state dynamics of bis(phenylethynyl)benzene (BPEB), a model system for one-dimensional molecular wires that have numerous applications in opto-electronics. It is known from the literature that in the ground state BPEB has a low torsional barrier, resulting in a mixed population of rotamers in solution at room temperature. For the excited state this torsional barrier had been calculated to be much higher. Our femtosecond TA measurements show a multi-exponential behaviour, related to the complex structural dynamics in the excited electronic state. Time-resolved, excited state URLS studies in different solvents reveal mode-dependent kinetics and picosecond vibrational relaxation dynamics of high frequency vibrations. After excitation, a gradual increase in intensity is observed for all Raman bands, which reflects the structural reorganization of Franck-Condon excited, non-planar rotamers to a planar conformation. It is argued that this excited state planarization is also responsible for its high fluorescence quantum yield. The time dependent peak positions of high frequency vibrations provide additional information: a rapid, sub-picosecond decrease in peak frequency, followed by a slower increase, indicates the extent of conjugation during different phases of excited state relaxation. The CC triple (-C≡C-) bond responds somewhat faster to structural reorganization than the CC double (>C=C<) bonds. This study deepens our understanding of the excited state of BPEB and analogous linear pi-conjugated systems and may thus contribute to the advancement of polymeric "molecular wires."

  2. Fast and slow excited-state intramolecular proton transfer in 3-hydroxychromone: a two-state story?

    PubMed

    Perveaux, Aurelie; Lorphelin, Maxime; Lasorne, Benjamin; Lauvergnat, David

    2017-02-16

    The photodynamics of 3-hydroxychromone in its first-excited singlet electronic state (bright state of ππ* character) is investigated with special emphasis given to two types of reaction pathways: the excited-state intramolecular-proton-transfer coordinate and the hydrogen-torsion coordinate linking the excited cis and trans isomers. A newly-found conical intersection with the second-excited singlet electronic state (dark state of nπ* character) is suspected to be, to some extent, the reason for the slower rate constant. This hypothesis based on quantum-chemistry calculations is supported by quantum-dynamics simulations in full dimensionality. They show significant transfer of electronic population and provide consistently a vibronic interpretation for the forbidden band in the UV absorption spectrum.

  3. Effect of xanthophyll composition on the chlorophyll excited state lifetime in plant leaves and isolated LHCII

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew P.; Zia, Ahmad; Horton, Peter; Ruban, Alexander V.

    2010-07-01

    Xanthophyll excited states have been implicated by transient absorption and two-photon excitation studies in playing a key role in the regulation of photosynthetic light harvesting via photoprotective energy dissipation. For any proposed quenching mechanism to be effective it must reduce the chlorophyll excited state lifetime from 2 ns to ˜0.5-0.4 ns. In the presented study the effect of xanthophyll composition on the chlorophyll excited state lifetime in Arabidopsis leaves in the light harvesting ( F m) and photoprotective (NPQ) states was determined. The data was compared to the chlorophyll excited state lifetime of native isolated LHCII and CP26 in detergent micelles with varying xanthophyll composition. It was found that although the differences in xanthophyll composition between LHC complexes from various Arabidopsis mutants were sufficient to explain the varying F m lifetime (and varying PSII efficiency), they were not of a sufficient scale to fully explain the observed differences in the NPQ lifetimes. Only when the LHC complexes were exposed to a low detergent/low pH media, a condition known to mimic the conformational state of LHCII associated with NPQ in vivo, were variations in excited state lifetime large enough to explain the differences observed in leaves. Furthermore, the data reveal that the replacement of lutein by either zeaxanthin or violaxanthin in the internal xanthophyll binding sites of LHCII and CP26 reduces the efficiency of energy dissipation in the photoprotective state in leaves and isolated complexes.

  4. Towards experimental determination of conical intersection properties: a twin state based comparison with bound excited states.

    PubMed

    Zilberg, Shmuel; Haas, Yehuda

    2011-07-07

    The energy and approximate structure of certain S(0)/S(1) conical intersections (CI) are shown computationally to be deducible from those of two bound states: the first triplet (T(1)), which is iso-energetic with the CI, and the second excited singlet state (S(2)). This is demonstrated for acepentalene (I) and its perfluoro derivative (II) using the twin state concept for three states systems and based on the fact that the triplet T(1) is almost degenerate with the CI. The stable S(2) (C(3v) configuration) state exhibits unusual exaltation of Jahn-Teller active degenerate mode-ν(JT) = 2058 cm(-1) (∼500 cm(-1) higher than analogous e-mode of the symmetric (C(3v)) T(1) and the dianion I(-2) or any C-C vibration of the Jahn-Teller distorted (C(s)) ground state minimum). The acepentalene molecule, whose rigid structure and possibility to attain the relatively high symmetry C(3v) configuration, is a particularly suitable candidate for this purpose.

  5. CNO cycle: ”Soft E1” mode of the 17Ne excitation in the 17Ne+γ → 15O+2p reaction

    NASA Astrophysics Data System (ADS)

    Parfenova, Yu L.; Grigorenko, L. V.; Egorova, I. A.; Shulgina, N. B.; Zhukov, M. V.

    2016-01-01

    The 15O(2p, γ)17Ne reaction is studied using the time-reversed reaction of the17Ne E1 Coulomb dissociation on lead target in the context of nuclear astrophysics. Looking for the relation between the data on the Coulomb excitation and the astrophysical 2p-capture rate, one faces problem to extract the Coulomb E1 strength function from the measured Coulex cross section. We use a number of phenomenological approaches to estimate influence of such processes as Coulomb-nuclear interference, populations of states with different Jπ, etc. We calculate the 17Ne+2p astrophysical capture rate and compare the results with different calculations.

  6. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations

    SciTech Connect

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  7. The Millimeter-Wave Spectrum of Methacrolein. Torsion-Rotation Effects in the Excited States

    NASA Astrophysics Data System (ADS)

    Zakharenko, Olena; Motiyenko, R. A.; Aviles Moreno, Juan-Ramon; Huet, T. R.

    2015-06-01

    Last year we reported the analysis of the rotational spectrum of s-trans conformer of methacrolein CH2=C(CH3)CHO in the ground vibrational state. In this talk we report the study of its low lying excited vibrational states. The study is based on room-temperature absorption spectra of methacrolein recorded in the frequency range 150 - 465 GHz using the spectrometer in Lille. The new results include assignment of the first excited torsional state (131 cm-1), and the joint analysis of the vt = 0 and vt = 1 states, that allowed us to improve the model in the frame of Rho-Axis-Method (RAM) Hamiltonian and to remove some strong correlations between parameters. Also we assigned the first excited vibrational state of the skeletal torsion mode (170 cm-1). The inverse sequence of A and E tunneling substates as well as anomalous A-E splittings observed for the rotational lines of vsk = 1 state clearly indicate a coupling between methyl torsion and skeletal torsion. However we were able to fit within experimental accuracy the rotational lines of vsk = 1 state using the RAM Hamiltonian. Because of the inversion of the A and E tunneling substates the rotational lines of the vsk = 1 states were assumed to belong to a virtual first excited torsional state. Finally, we assigned several low-Ka rotational transitions of the excited vibrational states above 200 cm-1 but their analysis is complicated by different rotation-vibration interactions. In particular there is an evidence of the Fermi-type resonance between the second excited torsional state and the first excited state of the in-plane skeletal bending mode (265 cm-1). Support from the French Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-0005 of the Programme d'Investissements d'Avenir is acknowledged. Zakharenko O. et al., 69th ISMS, 2014, TI01

  8. Excited-state hadron masses from lattice QCD

    NASA Astrophysics Data System (ADS)

    Morningstar, C.; Bulava, J.; Foley, J.; Jhang, Y. C.; J, K. J.; Lenkner, D.; Wong, C. H.

    2012-09-01

    Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Large sets of spatially-extended hadron operators are used. The need for multi-hadron operators in addition to single-hadron operators is emphasized, necessitating the use of a new stochastic method of treating the low-lying modes of quark propagation which exploits Laplacian Heaviside quark-field smearing. A new glueball operator is tested and computing the mixing of this glueball operator with a quark-antiquark operator and multiple two-pion operators is shown to be feasible.

  9. Noncollisional excitation of low-lying states in gaseous nebulae

    NASA Technical Reports Server (NTRS)

    Rubin, Robert H.

    1986-01-01

    Consideration is given to the effects of processes other than electron collisional excitation on the energy level populations of species of C, N, and O. It is found that dielectronic as well as direct-radiative recombination may contribute significantly and in some cases be the major input to populating the low-lying metastable levels. It is concluded that the most pronounced changes occur when there is a large effective recombination coefficient to a level and when T(e) is low. The most dramatic change among the forbidden lines occurs for the O II forbidden lines.

  10. Populating excited states of incoherent atoms using coherent light.

    NASA Technical Reports Server (NTRS)

    Mcilrath, T. J.; Carlsten, J. L.

    1972-01-01

    Study of the influence of various experimental parameters on the interaction between a multimode high-intensity laser light and the absorbing atoms of an atomic gas. Using a simplified treatment of line broadening which does not include correlations between momentum-changing collisions and pressure-broadening collisions, expressions are obtained that show the effect of pressure, laser-pulse length, and intensity on the excitation. It is found that, as long as the dephasing time of the atomic system is sufficiently short, the interaction reduces to a two-body collision between the atoms and photons, where coherence effects do not occur.

  11. Collective magnetic excitations of C4-symmetric magnetic states in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Scherer, Daniel D.; Eremin, Ilya; Andersen, Brian M.

    2016-11-01

    We study the collective magnetic excitations of the recently discovered C4-symmetric spin-density-wave states of iron-based superconductors with particular emphasis on their orbital character based on an itinerant multiorbital approach. This is important since the C4-symmetric spin-density-wave states exist only at moderate interaction strengths where damping effects from a coupling to the continuum of particle-hole excitations strongly modify the shape of the excitation spectra compared to predictions based on a local moment picture. We uncover a distinct orbital polarization inherent to magnetic excitations in C4-symmetric states, which provide a route to identify the different commensurate magnetic states appearing in the continuously updated phase diagram of the iron-pnictide family.

  12. Inelastic WIMP-nucleus scattering to the first excited state in 125Te

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.; Avignone, F. T., III; Kortelainen, M.; Pirinen, P.; Srivastava, P. C.; Suhonen, J.; Thomas, A. W.

    2016-11-01

    The direct detection of dark matter constituents, in particular the weakly interacting massive particles (WIMPs), is considered central to particle physics and cosmology. In this paper we study transitions to the excited states, possible in nuclei which have sufficiently low-lying excited states. Examples considered previously were the first excited states of 127I, 129Xe and 83Kr. Here, we examine 125Te, which offers some advantages and is currently being considered as a target. In all these cases the extra signature of the gamma rays following the de-excitation of these states has definite advantages over the purely nuclear recoil and in principle such a signature can be exploited experimentally. A brief discussion of the experimental feasibility is given in the context of the CUORE experiment.

  13. Comments on the determination of excited state dipole moment of molecules using the method of solvatochromism.

    PubMed

    Kawski, A; Bojarski, P

    2011-11-01

    The present note comments on several publications which appeared in different journals containing many inaccurate statements and lacking honest citations of basic papers dealing with the application of solvatochromism to determine excited state dipole moments.

  14. Radical ions and excited states in radiolysis. Optically detected time resolved EPR

    SciTech Connect

    Trifunac, A.D.; Smith, J.P.

    1981-01-01

    Excited-state production and radical-ion recombination kinetics in pulse-irradiated solutions of aromatic solutes in cyclohexane are studied by a new method of optical detection of time-resolved electron paramagnetic resonance (EPR) spectra. 7 figures.

  15. Permanent Magnet Synchronous Condenser with Solid State Excitation

    SciTech Connect

    Hsu, Ping; Muljadi, Eduard; Wu, Ziping; Gao, Wenzhong

    2015-10-05

    A synchronous condenser consists of a free-spinning wound-field synchronous generator and a field excitation controller. In this paper, we propose a synchronous generator that employs a permanent magnet synchronous generator (PMSG) instead of a wound-field machine. PMSGs have the advantages of higher efficiency and reliability. In the proposed configuration, the reactive power control is achieved by a voltage source converter connected in series with the PMSG and the grid. The converter varies the phase voltage of the PMSG so as to create the same effect of over or under excitation in a wound-field machine. The converter output voltage level controls the amount and the direction of the produced reactive power and the voltage's phase is kept in-phase with the grid voltage except a slight phase can be introduced so that some power can be drawn from the grid for maintaining the DC bus voltage level of the converter. Since the output voltage of the converter is only a fraction of the line voltage, its VA rating is only a fraction of the rating of the PMSG. The proposed scheme is shown to be effective by computer simulation.

  16. Switching between ground and excited states by optical feedback in a quantum dot laser diode

    SciTech Connect

    Virte, Martin; Breuer, Stefan; Sciamanna, Marc; Panajotov, Krassimir

    2014-09-22

    We demonstrate switching between ground state and excited state emission in a quantum-dot laser subject to optical feedback. Even though the solitary laser emits only from the excited state, we can trigger the emission of the ground state by optical feedback. We observe recurrent but incomplete switching between the two emission states by variation of the external cavity length in the sub-micrometer scale. We obtain a good qualitative agreement of experimental results with simulation results obtained by a rate equation that accounts for the variations of the feedback phase.

  17. Geometric constraints in semiclassical initial value representation calculations in Cartesian coordinates: excited states.

    PubMed

    Issack, Bilkiss B; Roy, Pierre-Nicholas

    2007-01-14

    The authors show that a recently proposed approach [J. Chem. Phys. 123, 084103 (2005)] for the inclusion of geometric constraints in semiclassical initial value representation calculations can be used to obtain excited states of weakly bound complexes. Sample calculations are performed for free and constrained rare gas clusters. The results show that the proposed approach allows the evaluation of excited states with reasonable accuracy when compared to exact basis set calculations.

  18. Triplet excited states of cyclic disulfides and related compounds: electronic structures, geometries, energies, and decay.

    PubMed

    Ginagunta, Saroja; Bucher, Götz

    2011-02-03

    We have performed a computational study on the properties of a series of heterocycles bearing two adjacent heteroatoms, focusing on the structures and electronic properties of their first excited triplet states. If the heteroatoms are both heavy chalcogens (S, Se, or Te) or isoelectronic species, then the lowest excited triplet state usually has (π*, σ*) character. The triplet energies are fairly low (30-50 kcal mol(-1)). The (π*, σ*) triplet states are characterized by a significantly lengthened bond between the two heteroatoms. Thus, in 1,2-dithiolane (1b), the S-S bond length is calculated to be 2.088 Å in the singlet ground state and 2.568 Å in the first triplet excited state. The spin density is predicted to be localized almost exclusively on the sulfur atoms. Replacing one heavy chalcogen atom by an oxygen atom or an NR group results in a significant destabilization of the (π*, σ*) triplet excited state, which then no longer is lower in energy than an open-chain biradical. The size of the heterocyclic ring also contributes to the stability of the (π*, σ*) triplet state, with five-membered rings being more favorable than six-membered rings. Benzoannulation, finally, usually lowers the energy of the (π*, σ*) triplet excited states. If one of the heteroatoms is an oxygen or nitrogen atom, however, the corresponding lowest triplet states are better described as σ,π-biradicals.

  19. Non-orthogonal configuration interaction for the calculation of multielectron excited states

    NASA Astrophysics Data System (ADS)

    Sundstrom, Eric J.; Head-Gordon, Martin

    2014-03-01

    We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing ⟨S2⟩ for the ground and excited states.

  20. Non-orthogonal configuration interaction for the calculation of multielectron excited states

    SciTech Connect

    Sundstrom, Eric J. Head-Gordon, Martin

    2014-03-21

    We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing 〈S{sup 2}〉 for the ground and excited states.

  1. Size and shape dependent photoluminescence and excited state decay rates of diamondoids.

    PubMed

    Richter, Robert; Wolter, David; Zimmermann, Tobias; Landt, Lasse; Knecht, Andre; Heidrich, Christoph; Merli, Andrea; Dopfer, Otto; Reiss, Philipp; Ehresmann, Arno; Petersen, Jens; Dahl, Jeremy E; Carlson, Robert M K; Bostedt, Christoph; Möller, Thomas; Mitric, Roland; Rander, Torbjörn

    2014-02-21

    We present photoluminescence spectra and excited state decay rates of a series of diamondoids, which represent molecular structural analogues to hydrogen-passivated bulk diamond. Specific isomers of the five smallest diamondoids (adamantane-pentamantane) have been brought into the gas phase and irradiated with synchrotron radiation. All investigated compounds show intrinsic photoluminescence in the ultraviolet spectral region. The emission spectra exhibit pronounced vibrational fine structure which is analyzed using quantum chemical calculations. We show that the geometrical relaxation of the first excited state of adamantane, exhibiting Rydberg character, leads to the loss of Td symmetry. The luminescence of adamantane is attributed to a transition from the delocalized first excited state into different vibrational modes of the electronic ground state. Similar geometrical changes of the excited state structure have also been identified in the other investigated diamondoids. The excited state decay rates show a clear dependence on the size of the diamondoid, but are independent of the particle geometry, further indicating a loss of particle symmetry upon electronic excitation.

  2. Excited-State Energies and Electronic Couplings of DNA Base Dimers

    SciTech Connect

    Kozak, Christopher R.; Kistler, Kurt A.; Lu, Zhen; Matsika, Spiridoula

    2010-02-04

    The singlet excited electronic states of two π-stacked thymine molecules and their splittings due to electronic coupling have been investigated with a variety of computational methods. Focus has been given on the effect of intermolecular distance on these energies and couplings. Single-reference methods, CIS, CIS(2), EOMCCSD, TDDFT, and the multireference method CASSCF, have been used, and their performance has been compared. It is found that the excited-state energies are very sensitive to the applied method but the couplings are not as sensitive. Inclusion of diffuse functions in the basis set also affects the excitation energies significantly but not the couplings. TDDFT is inadequate in describing the states and their coupling, while CIS(2) gives results very similar to EOM-CCSD. Excited states of cytosine and adenine π-stacked dimers were also obtained and compared with those of thymine dimers to gain a more general picture of excited states in π-stacked DNA base dimers. The coupling is very sensitive to the relative position and orientation of the bases, indicating great variation in the degree of delocalization of the excited states between stacked bases in natural DNA as it fluctuates.

  3. A SPONTANEOUS STATE OF WEAKLY CORRELATED SYNAPTIC EXCITATION AND INHIBITION IN VISUAL CORTEX

    PubMed Central

    TAN, A. Y. Y.; ANDONI, S.; PRIEBE, N. J.

    2013-01-01

    Cortical spontaneous activity reflects an animal’s behavioral state and affects neural responses to sensory stimuli. The correlation between excitatory and inhibitory synaptic input to single neurons is a key parameter in models of cortical circuitry. Recent measurements demonstrated highly correlated synaptic excitation and inhibition during spontaneous “up-and-down” states, during which excitation accounted for approximately 80% of inhibitory variance (Shu et al., 2003; Haider et al., 2006). Here we report in vivo whole-cell estimates of the correlation between excitation and inhibition in the rat visual cortex under pentobarbital anesthesia, during which up-and-down states are absent. Excitation and inhibition are weakly correlated, relative to the up-and-down state: excitation accounts for less than 40% of inhibitory variance. Although these correlations are lower than when the circuit cycles between up-and-down states, both behaviors may arise from the same circuitry. Our observations provide evidence that different correlational patterns of excitation and inhibition underlie different cortical states. PMID:23727451

  4. Photochemistry of excited-state species in natural waters: a role for particulate organic matter.

    PubMed

    Cottrell, Barbara A; Timko, Stephen A; Devera, Lianne; Robinson, Alice K; Gonsior, Michael; Vizenor, Ashley E; Simpson, André J; Cooper, William J

    2013-09-15

    Laser flash photolysis (LFP) was used to characterize a triplet excited state species isolated from Black River and San Joaquin wetlands particulate organic matter (POM). The solubilized organic matter, isolated from POM by pH-independent diffusion in distilled water, was named PdOM. UV-visible absorption spectroscopy, excitation-emission matrix spectroscopy (EEMs), and (1)H NMR were used to characterize the PdOM. While LFP of dissolved organic matter (DOM) is known to generate the solvated electron, LFP of the PdOM transient in argon-, air-, and nitrous oxide-saturated solutions indicated that this was a triplet excited state species ((3)PdOM*). The lifetime and the reactivity of (3)PdOM* with sorbic acid, a triplet state quencher, were compared with that of the triplet excited state of benzophenone, a DOM proxy. A second excited state species (designated DOM*), with a longer lifetime, was reported in a number of previous studies but not characterized. The lifetime of DOM*, measured for seventeen organic matter isolates, lignin, tannic acid, and three wetlands plant extracts, was shown to differentiate allochthonous from autochthonous DOM. (3)POM* and DOM* were also observed in lake water and a constructed wetlands' water. Aqueous extracts of fresh and aged plant material from the same wetland were shown to be one source of these excited state species. This study provides evidence of a role for POM in the photochemistry of natural and constructed wetland waters.

  5. Laser pulse trains for controlling excited state dynamics of adenine in water.

    PubMed

    Petersen, Jens; Wohlgemuth, Matthias; Sellner, Bernhard; Bonačić-Koutecký, Vlasta; Lischka, Hans; Mitrić, Roland

    2012-04-14

    We investigate theoretically the control of the ultrafast excited state dynamics of adenine in water by laser pulse trains, with the aim to extend the excited state lifetime and to suppress nonradiative relaxation processes. For this purpose, we introduce the combination of our field-induced surface hopping method (FISH) with the quantum mechanical-molecular mechanical (QM/MM) technique for simulating the laser-driven dynamics in the condensed phase under explicit inclusion of the solvent environment. Moreover, we employ parametric pulse shaping in the frequency domain in order to design simplified laser pulse trains allowing to establish a direct link between the pulse parameters and the controlled dynamics. We construct pulse trains which achieve a high excitation efficiency and at the same time keep a high excited state population for a significantly extended time period compared to the uncontrolled dynamics. The control mechanism involves a sequential cycling of the population between the lowest and higher excited states, thereby utilizing the properties of the corresponding potential energy surfaces to avoid conical intersections and thus to suppress the nonradiative decay to the ground state. Our findings provide a means to increase the fluorescence yield of molecules with an intrinsically very short excited state lifetime, which can lead to novel applications of shaped laser fields in the context of biosensing.

  6. Theory of Highly Excited Molecular States : Some Recent Developments

    NASA Astrophysics Data System (ADS)

    Jungen, Christian

    2000-06-01

    Throughout his career Gerhard Herzberg had an interest in Rydberg states. This began with his observation of the Balmer series of hydrogen during his thesis work and led to the discovery of `Rydberg molecules' late in his career (i.e. molecules, such as H_3, which are unstable in their ground state but possess stable Rydberg states). While initially GH focussed mainly on the structural properties of Rydberg states, he later also studied their internal dynamics (uncoupling phenomena) and radiationless decay (preionization and predissociation). All of these phenomena play a crucial role in modern-day experiments where ultra-high spectral resolution resolves the hyperfine structure in high Rydberg states, while time-resolved experiments lead to the observation of Rydberg wave packets. Both these aspects, hyperfine effects and wavepacket motion in Rydberg states, will be discussed from a theoretical point of view.

  7. Highly excited {Sigma}{sup -} states of molecular hydrogen

    SciTech Connect

    Argoubi, F.; Bezzaouia, S.; Oueslati, H.; Telmini, M.; Jungen, Ch.

    2011-05-15

    We report calculations of H{sub 2} {Sigma}{sup -} states using a variational R-matrix approach combined with multichannel quantum defect theory. Several Rydberg series converging to the 2p{pi} state of the H{sub 2}{sup +} ion core are established and their mutual channel interactions characterized. The influence of the external electron on the chemical bond is found to be particularly strong in these electronically and chemically weakly bound states.

  8. Multiple hydrogen bonding in excited states of aminopyrazine in methanol solution: time-dependent density functional theory study.

    PubMed

    Chai, Shuo; Yu, Jie; Han, Yong-Chang; Cong, Shu-Lin

    2013-11-01

    Aminopyrazine (AP) and AP-methanol complexes have been theoretically studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The excited-state hydrogen bonds are discussed in detail. In the ground state the intermolecular multiple hydrogen bonds can be formed between AP molecule and protic solvents. The AP monomer and hydrogen-bonded complex of AP with one methanol are photoexcited initially to the S2 state, and then transferred to the S1 state via internal conversion. However the complex of AP with two methanol molecules is directly excited to the S1 state. From the calculated electronic excited energies and simulated absorption spectra, we find that the intermolecular hydrogen bonds are strengthened in the electronic excited states. The strengthening is confirmed by the optimized excited-state geometries. The photochemical processes in the electronic excited states are significantly influenced by the excited-state hydrogen bond strengthening.

  9. Steady-state photoluminescent excitation characterization of semiconductor carrier recombination

    SciTech Connect

    Bhosale, J. S.; Moore, J. E.; Wang, X.; Bermel, P.; Lundstrom, M. S.

    2016-01-15

    Photoluminescence excitation spectroscopy is a contactless characterization technique that can provide valuable information about the surface and bulk recombination parameters of a semiconductor device, distinct from other sorts of photoluminescent measurements. For this technique, a temperature-tuned light emitting diode (LED) has several advantages over other light sources. The large radiation density offered by LEDs from near-infrared to ultraviolet region at a low cost enables efficient and fast photoluminescence measurements. A simple and inexpensive LED-based setup facilitates measurement of surface recombination velocity and bulk Shockley-Read-Hall lifetime, which are key parameters to assess device performance. Under the right conditions, this technique can also provide a contactless way to measure the external quantum efficiency of a solar cell.

  10. Steady-state photoluminescent excitation characterization of semiconductor carrier recombination.

    PubMed

    Bhosale, J S; Moore, J E; Wang, X; Bermel, P; Lundstrom, M S

    2016-01-01

    Photoluminescence excitation spectroscopy is a contactless characterization technique that can provide valuable information about the surface and bulk recombination parameters of a semiconductor device, distinct from other sorts of photoluminescent measurements. For this technique, a temperature-tuned light emitting diode (LED) has several advantages over other light sources. The large radiation density offered by LEDs from near-infrared to ultraviolet region at a low cost enables efficient and fast photoluminescence measurements. A simple and inexpensive LED-based setup facilitates measurement of surface recombination velocity and bulk Shockley-Read-Hall lifetime, which are key parameters to assess device performance. Under the right conditions, this technique can also provide a contactless way to measure the external quantum efficiency of a solar cell.

  11. Level density parameters from excitation cross sections of isomeric states

    NASA Astrophysics Data System (ADS)

    Skakun, E. A.; Batij, V. G.

    1992-03-01

    Cross section ratios were measured for the production of the isomeric pairs99m,gRh,101m,gRh,102m,gRh,104m,gRh and108m,gIn in the (p,n)-reaction,107m,gIn and109m,gIn in the ( p, γ)-reaction over the energy range up to 9 MeV, and116m,gSb and118m,gSb in the (α, n)-reaction up to 24 MeV. The experimental results for these nuclei as well as for other isometric pairs excited in the ( p, n)-reaction were analysed in the frame of the statistical model for extracting the level density parameter values in the vicinity of closed nucleon shells. The level density parameter behaviour is discussed in the range of nuclear mass numbers under study.

  12. Excited-State Geometry Optimization with the Density Matrix Renormalization Group, as Applied to Polyenes.

    PubMed

    Hu, Weifeng; Chan, Garnet Kin-Lic

    2015-07-14

    We describe and extend the formalism of state-specific analytic density matrix renormalization group (DMRG) energy gradients, first used by Liu et al. [J. Chem. Theor. Comput. 2013, 9, 4462]. We introduce a DMRG wave function maximum overlap following technique to facilitate state-specific DMRG excited-state optimization. Using DMRG configuration interaction (DMRG-CI) gradients, we relax the low-lying singlet states of a series of trans-polyenes up to C20H22. Using the relaxed excited-state geometries, as well as correlation functions, we elucidate the exciton, soliton, and bimagnon ("single-fission") character of the excited states, and find evidence for a planar conical intersection.

  13. Excited-state spectroscopy for producing ultracold ground-state NaRb molecule

    NASA Astrophysics Data System (ADS)

    Wang, Dajun; Zhu, Bing; Guo, Mingyang; Li, Xiaoke; Lu, Bo; Wang, Fudong; Ye, Xin; Vexiau, Romain; Luc, Eliane; Bouloufa-Maafa, Nadia; Dulieu, Olivier

    2015-05-01

    We report a joint experimental and theoretical investigation on the excited states of NaRb molecule. In particular, we focus on the A1Σ+ /b3 Π admixture which is a promising intermediate state for transferring weakly-bound NaRb Feshbach molecules to the v = 0 level of the X1Σ+ state. Based on RKR potentials obtained from conventional molecular spectroscopy [1], we identified several levels which satisfy the requirements for efficient two-photon population transfer. Starting from a pure sample of NaRb Feshbach molecules, we have experimentally observed most of these levels. The detailed characterization of these levels, including their transition strengths and singlet/triplet mixing ratios, as well as searching of the v = 0 level of the X1Σ+ state with two-photon Autler-Townes spectroscopy, are well underway. This work is jointly supported by Agence Nationale de la Recherche (#ANR-13-IS04-0004-01) and Hong Kong Research Grant Council (#A-CUHK403/13) through the COPOMOL project.

  14. Excited state distribution of reflected hydrogen atoms at metal surfaces - Development of theoretical models

    NASA Astrophysics Data System (ADS)

    Kato, D.; Kenmotsu, T.; Ohya, K.; Tanabe, T.

    2009-06-01

    Numerical methods were developed to study single electron capture by translating hydrogen atoms above metal surfaces. The present method gives predictions for hitherto unknown population distribution of excited species in hydrogen atoms reflected at the metal surfaces. The excited state abundance was calculated for Mo surface. Kinetic energy distribution of the reflected atoms was taken into account with the aid of the Monte-Carlo simulation code (ACAT). Energy distribution associated with the 3d 2 excited state in reflected neutrals consistently explains peak energy variation with incident energies of Doppler-shifted D α lines measured by Tanabe et al. Occupation probability of the magnetic sub-levels is obtained to be highly polarized. It suggests strong anisotropy in angular distribution of photon emission from the excited states created via the surface electron capture.

  15. Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum

    SciTech Connect

    Niedzwiedzki, Dariusz; Kobayashi, Masayuki; Blankenship, R. E.

    2011-01-13

    Light-harvesting complex 2 from the anoxygenic phototrophic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption, fluorescence and flash photolysis spectroscopy. Steady-state absorption and fluorescence measurements show that carotenoids play a negligible role as supportive energy donors and transfer excitation to bacteriochlorophyll-a with low energy transfer efficiency of ~30%. HPLC analysis determined that the dominant carotenoids in the complex are rhodopin and spirilloxanthin. Carotenoid excited triplet state formation upon direct (carotenoid) or indirect (bacteriochlorophyll-a Q{sub x} band) excitation shows that carotenoid triplets are mostly localized on spirilloxanthin. In addition, no triplet excitation transfer between carotenoids was observed. Such specific carotenoid composition and spectroscopic results strongly suggest that this organism optimized carotenoid composition in the light-harvesting complex 2 in order to maximize photoprotective capabilities of carotenoids but subsequently drastically suppressed their supporting role in light-harvesting process.

  16. First-order derivative couplings between excited states from adiabatic TDDFT response theory

    SciTech Connect

    Ou, Qi; Subotnik, Joseph E.; Bellchambers, Gregory D.; Furche, Filipp

    2015-02-14

    We present a complete derivation of derivative couplings between excited states in the framework of adiabatic time-dependent density functional response theory. Explicit working equations are given and the resulting derivative couplings are compared with derivative couplings from a pseudo-wavefunction ansatz. For degenerate excited states, i.e., close to a conical intersection (CI), the two approaches are identical apart from an antisymmetric overlap term. However, if the difference between two excitation energies equals another excitation energy, the couplings from response theory exhibit an unphysical divergence. This spurious behavior is a result of the adiabatic or static kernel approximation of time-dependent density functional theory leading to an incorrect analytical structure of the quadratic response function. Numerical examples for couplings close to a CI and for well-separated electronic states are given.

  17. First-order derivative couplings between excited states from adiabatic TDDFT response theory.

    PubMed

    Ou, Qi; Bellchambers, Gregory D; Furche, Filipp; Subotnik, Joseph E

    2015-02-14

    We present a complete derivation of derivative couplings between excited states in the framework of adiabatic time-dependent density functional response theory. Explicit working equations are given and the resulting derivative couplings are compared with derivative couplings from a pseudo-wavefunction ansatz. For degenerate excited states, i.e., close to a conical intersection (CI), the two approaches are identical apart from an antisymmetric overlap term. However, if the difference between two excitation energies equals another excitation energy, the couplings from response theory exhibit an unphysical divergence. This spurious behavior is a result of the adiabatic or static kernel approximation of time-dependent density functional theory leading to an incorrect analytical structure of the quadratic response function. Numerical examples for couplings close to a CI and for well-separated electronic states are given.

  18. Sensitivity study of forecasted aftershock seismicity based on Coulomb stress calculation and rate- and state-dependent frictional response

    NASA Astrophysics Data System (ADS)

    Cocco, M.; Hainzl, S.; Catalli, F.; Enescu, B.; Lombardi, A. M.; Woessner, J.

    2010-05-01

    We use the Dieterich (1994) physics-based approach to simulate the spatiotemporal evolution of seismicity caused by stress changes applied to an infinite population of nucleating patches modeled through a rate- and state-dependent friction law. According to this model, seismicity rate changes depend on the amplitude of stress perturbation, the physical constitutive properties of faults (represented by the parameter Aσ), the stressing rate, and the background seismicity rate of the study area. In order to apply this model in a predictive manner, we need to understand the impact of physical model parameters and the correlations between them. First, we discuss different definitions of the reference seismicity rate and show their impact on the computed rate of earthquake production for the 1992 Landers earthquake sequence as a case study. Furthermore, we demonstrate that all model parameters are strongly correlated for physical and statistical reasons. We discuss this correlation, emphasizing that the estimations of the background seismicity rate, stressing rate, and Aσ are strongly correlated to reproduce the observed aftershock productivity. Our analytically derived relation demonstrates the impact of these model parameters on the Omori-like aftershock decay: the c value and the productivity of the Omori law, implying a p value smaller than or equal to 1. Finally, we discuss an optimal strategy to constrain model parameters for near-real-time forecasts.

  19. Communication: Momentum-resolved quantum interference in optically excited surface states.

    PubMed

    Chan, Wai-Lun; Tritsch, John; Dolocan, Andrei; Ligges, Manuel; Miaja-Avila, Luis; Zhu, X-Y

    2011-07-21

    Surface states play essential roles in condensed matter physics, e.g., as model two-dimensional (2D) electron gases and as the basis for topological insulators. Here, we demonstrate quantum interference in the optical excitation of 2D surface states using the model system of C(60)/Au(111). These surface states are transiently populated and probed in a femtosecond time- and angle-resolved two-photon photoemission experiment. We observe quantum interference within the excited populations of these surface states as a function of parallel momentum vector. Such quantum interference in momentum space may allow one to control 2D transport properties by optical fields.

  20. Control of multiple excited image states around segmented carbon nanotubes

    SciTech Connect

    Knörzer, J. Fey, C.; Sadeghpour, H. R.; Schmelcher, P.

    2015-11-28

    Electronic image states around segmented carbon nanotubes can be confined and shaped along the nanotube axis by engineering the image potential. We show how several such image states can be prepared simultaneously along the same nanotube. The inter-electronic distance can be controlled a priori by engineering tubes of specific geometries. High sensitivity to external electric and magnetic fields can be exploited to manipulate these states and their mutual long-range interactions. These building blocks provide access to a new kind of tailored interacting quantum systems.

  1. Electron Impact Excitation of Xenon from the Ground State and the Metastable State to the 5p57p Levels

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Dong, Chen-Zhong; Xie, Lu-You; Jiang, Jun

    2014-03-01

    Electron impact excitation cross sections from the ground state and the lowest metastable state 5p56s J = 2 to the excited states of the 5p57p configuration of xenon are calculated systematically using the fully relativistic distorted wave method. Special attention is paid to the configuration interaction effects in the wave-function expansion of target states. The results are in good agreement with the recent experimental data by Jung et al. [Phys. Rev. A 80 (2009) 062708] over the measured energy range. These accurate theoretical results can be used in the modeling and diagnosis of plasmas containing xenon.

  2. Multiphoton Rabi oscillations between highly excited Stark states of potassium

    SciTech Connect

    He Yonglin

    2011-11-15

    We have applied a nonperturbative resonant theory to study the Rabi frequency of microwave multiphoton transitions between two Rydberg states of potassium in a static electric field. The Stark electric dipole moments used to calculate the Rabi frequency are determined by the Stark states' wave functions, which are obtained by the diagonalization method. The frequencies of the Rabi oscillations are in good agreement with either experimental ones or ones calculated by the time-dependent close-coupling method and the Floquet theory. Furthermore, we are able to show that the size of avoided crossings between the (n+2)s and (n,3) states can be predicted from the Stark electric dipole moment and the difference of the two Stark states' energy at a given resonance.

  3. Mechanistic photodecarboxylation of pyruvic acid: Excited-state proton transfer and three-state intersection

    SciTech Connect

    Chang, Xue-Ping; Fang, Qiu Cui, Ganglong

    2014-10-21

    Photodissociation dynamics of pyruvic acid experimentally differs from that of commonly known ketones. We have employed the complete active space self-consistent field and its multi-state second-order perturbation methods to study its photodissociation mechanism in the S{sub 0}, T{sub 1}, and S{sub 1} states. We have uncovered four nonadiabatic photodecarboxylation paths. (i) The S{sub 1} system relaxes via an excited-state intramolecular proton transfer (ESIPT) to a hydrogen-transferred tautomer, near which an S{sub 1}/S{sub 0} conical intersection funnels the S{sub 1} to S{sub 0} state. Then, some trajectories continue completing the decarboxylation reaction in the S{sub 0} state; the remaining trajectories via a reverse hydrogen transfer return to the S{sub 0} minimum, from which a thermal decarboxylation reaction occurs. (ii) Due to a small S{sub 1} −T{sub 1} energy gap and a large S{sub 1}/T{sub 1} spin-orbit coupling, an efficient S{sub 1} → T{sub 1} intersystem crossing process happens again near this S{sub 1}/S{sub 0} conical intersection. When decaying to T{sub 1} state, a direct photodecarboxylation proceeds. (iii) Prior to ESIPT, the S{sub 1} system first decays to the T{sub 1} state via an S{sub 1} → T{sub 1} intersystem crossing; then, the T{sub 1} system evolves to a hydrogen-transferred tautomer. Therefrom, an adiabatic T{sub 1} decarboxylation takes place due to a small barrier of 7.7 kcal/mol. (iv) Besides the aforementioned T{sub 1} ESIPT process, there also exists a comparable Norrish type I reaction in the T{sub 1} state, which forms the ground-state products of CH{sub 3}CO and COOH. Finally, we have found that ESIPT plays an important role. It closes the S{sub 1}-T{sub 1} and S{sub 1}-S{sub 0} energy gaps, effecting an S{sub 1}/T{sub 1}/S{sub 0} three-state intersection region, and mediating nonadiabatic photodecarboxylation reactions of pyruvic acid.

  4. Influence of ligand substitution on excited state structural dynamics in Cu(I) bisphenanthroline complexes.

    PubMed

    Lockard, Jenny V; Kabehie, Sanaz; Zink, Jeffrey I; Smolentsev, Grigory; Soldatov, Alexander; Chen, Lin X

    2010-11-18

    This study explores the influences of steric hindrance and excited state solvent ligation on the excited state dynamics of Cu(I) diimine complexes. Ultrafast excited state dynamics of Cu(I)bis(3,8-di(ethynyltrityl)-1,10-phenanthroline) [Cu(I)(detp)(2)](+) are measured using femtosecond transient absorption spectroscopy. The steady state electronic absorption spectra and measured lifetimes are compared to those of Cu(I)bis(1,10-phenanthroline), [Cu(I)(phen)(2)](+), and Cu(I)bis(2-9-dimethyl-1,10-phenanthroline), [Cu(I)(dmp)(2)](+), model complexes to determine the influence of different substitution patterns of the phenanthroline ligand on the structural dynamics associated with the metal to ligand charge transfer excited states. Similarities between the [Cu(I)(detp)(2)](+) and [Cu(I)(phen)(2)](+) excited state lifetimes were observed in both coordinating and noncoordinating solvents and attributed to the lack of steric hindrance from substitution at the 2- and 9-positions. The solution-phase X-ray absorption spectra of [Cu(I)(detp)(2)](+), [Cu(I)(phen)(2)](+), and [Cu(I)(dmp)(2)](+) are reported along with finite difference method calculations that are used to determine the degree of ground state dihedral angle distortion in solution and to account for the pre-edge features observed in the XANES region.

  5. On the nature of excited states of photosynthetic reaction centers: An ultrafast infrared study

    SciTech Connect

    Haran, G.; Wynne, K.; Reid, G.D.

    1995-12-31

    Bacterial photosynthetic reaction centers (RC) contain eight chromophores forming a well-defined supramolecular structure within a protein framework. Theoretical studies suggest that the excited states of these chromophores are delocalized and contain important contributions from charge-transfer and resonance states. There is no clear-cut experimental evidence pertaining to the degree of localization of excited states. We have used ultrafast near and mid-infrared spectroscopic methods to investigate the character of some of the excited states. Exciting the 800 nm, absorption band, we followed the fate of the excitation energy using either the stimulated emission of the special pair at 920 nm or a transient absorption at 1.2 {mu}m. For a completely localized system, Forster theory-based calculations are expected to accurately predict the kinetics of energy transfer. It was found, however, that calculated rates arc much faster than measured rates. This corroborates a delocalized picture, with internal conversion rather than energy transfer between states. We have also measured the transient absorption spectrum of the RC in the infrared spectral region, detecting several new low-lying electronic states. Assignments for these states, and implications for the localization problem will be discussed.

  6. Excited-state mixed-valence distortions in a diisopropyl diphenyl hydrazine cation.

    PubMed

    Lockard, Jenny V; Zink, Jeffrey I; Luo, Yun; Weaver, Michael N; Konradsson, Asgeir E; Fowble, Joseph W; Nelsen, Stephen F

    2006-12-27

    Excited-state mixed valence (ESMV) occurs in the 1,2-diphenyl-1,2-diisopropyl hydrazine radical cation, a molecule in which the ground state has a symmetrical charge distribution localized primarily on the hydrazine, but the phenyl to hydrazine charge-transfer excited state has two interchangeably equivalent phenyl groups that have different formal oxidation states. Electronic absorption and resonance Raman spectra are presented. The neighboring orbital model is employed to interpret the absorption spectrum and coupling. Resonance Raman spectroscopy is used to determine the excited-state distortions. The frequencies of the enhanced modes from the resonance Raman spectra are used together with the time-dependent theory of spectroscopy to fit the two observed absorption bands that have resolved vibronic structure. The origins of the vibronic structure and relationships with the neighboring orbital model are discussed.

  7. Estimation of ground and excited state dipole moments of Oil Red O by solvatochromic shift methods

    NASA Astrophysics Data System (ADS)

    Sıdır, İsa; Gülseven Sıdır, Yadigar

    2015-01-01

    Absorption and fluorescence spectra of Oil Red O (abbreviated as ORO) are recorded in various solvents with different polarity in the range of 250-900 nm, at room temperature. The solvatochromic shift methods have been used to determine the ground state (μg) and excited state (μe) dipole moments depending on dielectric constant and refractive index functions. It is observed that fluorescence spectra show positive solvatochromism whereas absorption spectra do not indicates sensitive behavior to solvent polarity. Excited state dipole moment is found as higher than those of ground state for all of the used methods and it is attributed to more polar excited state of ORO. Theoretical μg has been determined by quantum chemical calculations using DFT and semi empirical methods. HOMO, LUMO, molecular electrostatic potential (MEP) and solvent accessible surface of ORO are calculated by using DFT-B3LYP method.

  8. 7/3 fractional quantum Hall effect: topology, trion excitations and edge states

    NASA Astrophysics Data System (ADS)

    Balram, Ajit C.; Wu, Ying-Hai; Sreejith, G. J.; Wójs, Arkadiusz; Jain, J. K.

    2013-03-01

    Exact diagonalization studies on finite systems show that the quasihole and quasiparticle excitations in the 7/3 fractional quantum Hall (FQH) state are qualitatively distinct from those of the 1/3 state, suggesting the possibility of different topological origins for the two states. We perform composite-fermion diagonalization on larger systems and also evaluate the entanglement spectrum, which shows that in spite of these strong finite size deviations, the 7/3 and 1/3 FQH states have the same topological structure in the thermodynamic limit. Nonetheless, there are substantial non-topological differences between the two, arising from the stronger residual interaction between composite fermions at 7/3. In particular, we show that the lowest energy charged excitations of the 7/3 state are complex trions of composite fermions, which have a much larger size than the charged excitations at 1/3. We discuss many observable consequences of our results.

  9. Estimation of ground and excited state dipole moments of Oil Red O by solvatochromic shift methods.

    PubMed

    Sıdır, İsa; Gülseven Sıdır, Yadigar

    2015-01-25

    Absorption and fluorescence spectra of Oil Red O (abbreviated as ORO) are recorded in various solvents with different polarity in the range of 250-900 nm, at room temperature. The solvatochromic shift methods have been used to determine the ground state (μg) and excited state (μe) dipole moments depending on dielectric constant and refractive index functions. It is observed that fluorescence spectra show positive solvatochromism whereas absorption spectra do not indicates sensitive behavior to solvent polarity. Excited state dipole moment is found as higher than those of ground state for all of the used methods and it is attributed to more polar excited state of ORO. Theoretical μg has been determined by quantum chemical calculations using DFT and semi empirical methods. HOMO, LUMO, molecular electrostatic potential (MEP) and solvent accessible surface of ORO are calculated by using DFT-B3LYP method.

  10. Vibrational spectroscopy of the electronically excited state. 4. Nanosecond and picosecond time-resolved resonance Raman spectroscopy of carotenoid excited states

    SciTech Connect

    Dallinger, R.F.; Farquharson, S.; Woodruff, W.H.; Rodgers, M.A.J.

    1981-12-16

    Resonance Raman and electronic absorption spectra are reported for the S/sub 0/ and T/sub 1/ states of the carotenoids ..beta..-carotene, zeaxanthin, echinenone, canthaxanthin, dihydroxylycopene, astaxanthin, decapreno(C/sub 50/)-..beta..-carotene, ..beta..-apo-8'-carotenal, and ethyl ..beta..-apo-8'-carotenoate. The results reveal qualitatively similar ground-state spectra and similar frequency shifts in all observed resonance Raman modes between S/sub 0/ and T/sub 1/, regardless of carotenoid structure. Examinations of the relationship of the putative C--C and C==C frequencies in S/sub 0/ and T/sub 1/ reveals anomalous shifts to lower frequency in the ''single-bond'' mode upon electronic excitation. These shifts may be due to molecular distortions in the excited state which force changes in molecular motions comprising the observed modes. However, another possibility requiring no distortion is that the interaction (off-diagonal) force constants connecting the C--C and C==C modes change sign upon electronic excitation. This latter phenomenon may provide a unitary explanation for the ''anomalous'' frequency shifts in the C--C and C==C modes, both in the T/sub 1/ states of carotenoids and in the S/sub 1/ states of simpler polyenes, without postulating large, unpredicted structural changes upon excitation or general errors in existing vibrational or theoretical analyses. Resonance Raman and absorbance studies with 35-ps time resolution suggest that S/sub 1/ lifetime (of the /sup 1/B/sub u/ and/or the /sup 1/A/sub g/* states) of ..beta..-carotene in benzene is less than 1 ps.

  11. Permanent Magnet Synchronous Condenser with Solid State Excitation: Preprint

    SciTech Connect

    Hsu, P.; Muljadi, E.; Wu, Z.; Gao, W.

    2015-04-07

    A typical synchronous condenser (SC) consists of a free-spinning, wound-field synchronous generator and a field excitation controller. In this paper, we propose an SC that employs a permanent magnet synchronous generator (PMSG) instead of a wound-field machine. PMSGs have the advantages of higher efficiency and reliability. In the proposed configuration, the reactive power control is achieved by a voltage converter controller connected in series to the PMSG. The controller varies the phase voltage of the PMSG and creates the same effect on the reactive power flow as that of an over- or underexcited wound-field machine. The controller’s output voltage magnitude controls the amount of the reactive power produced by the SC. The phase of the controller’s output is kept within a small variation from the grid voltage phase. This small phase variation is introduced so that a small amount of power can be drawn from the grid into the controller to maintain its DC bus voltage. Because the output voltage of the controller is only a fraction of the line voltage, its VA rating is only a fraction of the rating of the PMSG. The proposed scheme is shown to be effective by computer simulations.

  12. Ultrafast excited-state dynamics in vitamin B12 and related cob(III)alamins.

    PubMed

    Shiang, Joseph J; Cole, Allwyn G; Sension, Roseanne J; Hang, Kun; Weng, Yuxiang; Trommel, Jenna S; Marzilli, Luigi G; Lian, Tianquan

    2006-01-25

    Femtosecond transient IR and visible absorption spectroscopies have been employed to investigate the excited-state photophysics of vitamin B12 (cyanocobalamin, CNCbl) and the related cob(III)alamins, azidocobalamin (N3Cbl), and aquocobalamin (H2OCbl). Excitation of CNCbl, H2OCbl, or N3Cbl results in rapid formation of a short-lived excited state followed by ground-state recovery on time scales ranging from a few picoseconds to a few tens of picoseconds. The lifetime of the intermediate state is influenced by the sigma-donating ability of the axial ligand, decreasing in the order CNCbl > N3Cbl > H2OCbl, and by the polarity of the solvent, decreasing with increasing solvent polarity. The peak of the excited-state visible absorption spectrum is shifted to ca. 490 nm, and the shape of the spectrum is characteristic of weak axial ligands, similar to those observed for cob(II)alamin, base-off cobalamins, or cobinamides. Transient IR spectra of the upper CN and N3 ligands are red-shifted 20-30 cm(-1) from the ground-state frequencies, consistent with a weakened Co-upper ligand bond. These results suggest that the transient intermediate state can be attributed to a corrin ring pi to Co 3d(z2) ligand to metal charge transfer (LMCT) state. In this state bonds between the cobalt and the axial ligands are weakened and lengthened with respect to the corresponding ground states.

  13. The excited spin-triplet state of a charged exciton in quantum dots

    NASA Astrophysics Data System (ADS)

    Molas, M. R.; Nicolet, A. A. L.; Piętka, B.; Babiński, A.; Potemski, M.

    2016-09-01

    We report on spectroscopic studies of resonances related to ladder of states of a charged exciton in single GaAlAs/AlAs quantum dot structures. Polarization-resolved photoluminescence, photoluminescence excitation and photon-correlation measurements were performed at low (T  =  4.2 K) temperature also in magnetic field applied in Faraday configuration. The investigated resonances are assigned to three different configurations of a positively charged exciton. Together with a singlet ground state and a conventional triplet state (involving an electron from the ground state electronic s-shell), an excited triplet state, which involved an electron from the excited electronic p-shell was identified in single dots. The appearance of an emission line related to the latter complex is due to a partially suppressed electron relaxation in the investigated dots. An analysis of this emission line allows us to scrupulously determine properties of the excited triplet state and compare them with those of the conventional triplet state. Both triplets exhibit similar patterns of anisotropic fine structure and Zeeman splitting, however their amplitudes significantly differ for those two states. Presented results emphasize the role of the symmetry of the electronic state on the properties of the triplet states of two holes  +  electron excitonic complex.

  14. High power repetitive excimer lasers pumped by an all solid state magnetic exciter

    NASA Astrophysics Data System (ADS)

    Kobayashi, Osamu; Noda, Koji; Shimada, Tsutomu; Obara, Minoru

    1986-01-01

    In a high repetition rate excimer laser operation, the lifetime of the exciter is one of the most important problems. To attain a nearly endless lifetime of the excimer laser exciter, an all-solid-state exciter has been developed which consists of a high-voltage transformer switched by a silicon-controlled rectifier, producing a pulse whose energy and duration are 11.2 J and 8 microns, respectively, and a three-stage magnetic compressor. With a 1.4-ohm dummy load, output peak power, energy/pulse, and pulse duration were 100 MW, 5.2 J, and 100 ns, respectively. The electrical efficiency of the exciter was 47 percent. The energy loss of 6 J in the exciter was due both to the core loss and the transfer loss. It should be noted that the time jitter between the SCR gate input pulse and the output voltage pulse was less than 12 ns.

  15. Double excitations and state-to-state transition dipoles in π-π∗ excited singlet states of linear polyenes: Time-dependent density-functional theory versus multiconfigurational methods

    NASA Astrophysics Data System (ADS)

    Mikhailov, Ivan A.; Tafur, Sergio; Masunov, Artëm E.

    2008-01-01

    The effect of static and dynamic electron correlation on the nature of excited states and state-to-state transition dipole moments is studied with a multideterminant wave function approach on the example of all-trans linear polyenes ( C4H6 , C6H8 , and C8H10 ). Symmetry-forbidden singlet nAg states were found to separate into three groups: purely single, mostly single, and mostly double excitations. The excited-state absorption spectrum is dominated by two bright transitions: 1Bu-2Ag and 1Bu-mAg , where mAg is the state, corresponding to two-electron excitation from the highest occupied to lowest unoccupied molecular orbital. The richness of the excited-state absorption spectra and strong mixing of the doubly excited determinants into lower- nAg states, reported previously at the complete active space self-consistent field level of theory, were found to be an artifact of the smaller active space, limited to π orbitals. When dynamic σ-π correlation is taken into account, single- and double-excited states become relatively well separated at least at the equilibrium geometry of the ground state. This electronic structure is closely reproduced within time-dependent density-functional theory (TD DFT), where double excitations appear in a second-order coupled electronic oscillator formalism and do not mix with the single excitations obtained within the linear response. An extension of TD DFT is proposed, where the Tamm-Dancoff approximation (TDA) is invoked after the linear response equations are solved (a posteriori TDA). The numerical performance of this extension is validated against multideterminant-wave-function and quadratic-response TD DFT results. It is recommended for use with a sum-over-states approach to predict the nonlinear optical properties of conjugated molecules.

  16. Excited-state hydrogen atom transfer reaction in solvated 7-hydroxy-4-methylcoumarin.

    PubMed

    De Silva, Nuwan; Minezawa, Noriyuki; Gordon, Mark S

    2013-12-12

    Excited-state enol to keto tautomerization of 7-hydroxy-4-methylcoumarin (C456) with three water molecules (C456:3H2O), is theoretically investigated using time-dependent density functional theory (TDDFT) combined with the polarizable continuum model and 200 waters explicitly modeled with the effective fragment potential. The tautomerization of C456 in the presence of three water molecules is accompanied by an asynchronous quadruple hydrogen atom transfer reaction from the enol to the keto tautomer in the excited state. TDDFT with the PBE0 functional and the DH(d,p) basis set is used to calculate the excited-state reaction barrier height, absorption (excitation), and fluorescence (de-excitation) energies. These results are compared with the available experimental and theoretical data. In contrast to previous work, it is predicted here that the coumarin 456 system undergoes a hydrogen atom transfer, not a proton transfer. The calculated reaction barrier of the first excited state of C456:3H2O with 200 water molecules is found to be -0.23 kcal/mol without zero-point energy (-5.07 kcal/mol with zero point energy, i.e., the activation energy).

  17. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3

    NASA Astrophysics Data System (ADS)

    Schreiber, Marko; Silva-Junior, Mario R.; Sauer, Stephan P. A.; Thiel, Walter

    2008-04-01

    A benchmark set of 28 medium-sized organic molecules is assembled that covers the most important classes of chromophores including polyenes and other unsaturated aliphatic compounds, aromatic hydrocarbons, heterocycles, carbonyl compounds, and nucleobases. Vertical excitation energies and one-electron properties are computed for the valence excited states of these molecules using both multiconfigurational second-order perturbation theory, CASPT2, and a hierarchy of coupled cluster methods, CC2, CCSD, and CC3. The calculations are done at identical geometries (MP2/6-31G*) and with the same basis set (TZVP). In most cases, the CC3 results are very close to the CASPT2 results, whereas there are larger deviations with CC2 and CCSD, especially in singlet excited states that are not dominated by single excitations. Statistical evaluations of the calculated vertical excitation energies for 223 states are presented and discussed in order to assess the relative merits of the applied methods. CC2 reproduces the CC3 reference data for the singlets better than CCSD. On the basis of the current computational results and an extensive survey of the literature, we propose best estimates for the energies of 104 singlet and 63 triplet excited states.

  18. Ionization potential for excited S states of the lithium atom

    SciTech Connect

    Puchalski, M.; KePdziera, D.; Pachucki, K.

    2010-12-15

    Nonrelativistic, relativistic, quantum electrodynamic, and finite nuclear mass corrections to the energy levels are obtained for the nS{sub 1/2},n=3,...,9 states of the lithium atom. Computational approach is based on the explicitly correlated Hylleraas functions with the analytic integration and recursion relations. Theoretical predictions for the ionization potential of nS{sub 1/2} states and transition energies nS{sub 1/2{yields}}2S{sub 1/2} are compared to known experimental values for {sup 6,7}Li isotopes.

  19. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy.

    PubMed

    Zhang, Yuyuan; Beckstead, Ashley A; Hu, Yuesong; Piao, Xijun; Bong, Dennis; Kohler, Bern

    2016-11-30

    Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase) and its lysine derivative (a proto-nucleoside) using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps), but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.

  20. Excited State Trends in Bidirectionally Expanded Closed-Shell PAH and PANH Anions.

    PubMed

    Fortenberry, Ryan C; Moore, Megan M; Lee, Timothy J

    2016-09-22

    Some anions are known to exhibit excited states independent of external forces such as dipole moments and induced polarizabilities. Such states exist simply as a result of the stabilization of valence accepting orbitals whereby the binding energy of the extra electron is greater than the valence excitation energy. Closed-shell anions are interesting candidates for such transitions since their ground-state, spin-paired nature makes the anions more stable from the beginning. Consequently, this work shows the point beyond which deprotonated, closed-shell polycyclic aromatic hydrocarbons (PAHs) and those PAHs containing nitrogen heteroatoms (PANHs) will exhibit valence excited states. This behavior has already been demonstrated in some PANHs and for anistropically extended PAHs. This work establishes a general trend for PAHs/PANHs of arbitrary size and directional extension, whether in one dimension or two. Once seven six-membered rings make up a PAH/PANH, valence excited states are present. For most classes of PAHs/PANHs, this number is closer to four. Even though most of these excited states are weak absorbers, the sheer number of PAHs present in various astronomical environments should make them significant contributors to astronomical spectra.

  1. Lifetime measurement of excited low-spin states via the (p, p‧ γ) reaction

    NASA Astrophysics Data System (ADS)

    Hennig, A.; Derya, V.; Mineva, M. N.; Petkov, P.; Pickstone, S. G.; Spieker, M.; Zilges, A.

    2015-09-01

    In this paper a method for lifetime measurements in the sub-picosecond regime via the Doppler-shift attenuation method (DSAM) following the inelastic proton scattering reaction is presented. In a pioneering experiment we extracted the lifetimes of 30 excited low-spin states of 96Ru, taking advantage of the coincident detection of scattered protons and de-exciting γ-rays as well as the large number of particle and γ-ray detectors provided by the SONIC@HORUS setup at the University of Cologne. The large amount of new experimental data shows that this technique is suited for the measurement of lifetimes of excited low-spin states, especially for isotopes with a low isotopic abundance, where (n ,n‧ γ) or - in case of investigating dipole excitations - (γ ,γ‧) experiments are not feasible due to the lack of sufficient isotopically enriched target material.

  2. Half-life of the first excited state of {sup 201}Hg

    SciTech Connect

    Meot, V.; Morel, P.; Gosselin, G.

    2007-06-15

    The lifetime of the first excited state of {sup 201}Hg, populated by the {sup 201}Tl electron capture decay and subsequent {gamma}-ray transitions, has been measured for the first time. This measurement has been carried out using a coincidence between an internal conversion electron and a {gamma}-ray. The half-life of 81{+-}5 ns has been obtained and B(E2) and B(M1) values were deduced and compared to previous estimates. With these reduced matrix elements, the excitation rate of the first excited state of {sup 201}Hg in plasma have been calculated in the frame of a Nuclear excitation by electronic transition (NEET) process.

  3. Electron impact excitation and dissociation of N2 via the b 1Pi(u) state

    NASA Technical Reports Server (NTRS)

    Ratliff, J. M.; James, G. K.; Trajmar, S.; Ajello, J. M.; Shemansky, D. E.

    1991-01-01

    Electron impact excitation of the b 1Pi(u) state in N2 plays a prominent role in the dissociation of the molecule and thus in the production of atomic nitrogen in planetary atmospheres. Electron impact excitation cross sections combined with electron-impact-induced fluorescence measurements can yield the corresponding dissociation cross sections. Serious discrepancies exist among excitation cross sections reported in the literature. To clarify the situation, these cross sections were measured at two impact energies using electron energy loss spectroscopy. The new results are in agreement with recent values deduced from optical measurements and fall midway between previous results which are too high or low by factors of 2.

  4. Imaging Excited-State Dynamics of Doped He Nanodroplets in Real-Time.

    PubMed

    von Vangerow, Johannes; Coppens, François; Leal, Antonio; Pi, Martí; Barranco, Manuel; Halberstadt, Nadine; Stienkemeier, Frank; Mudrich, Marcel

    2017-01-05

    The real-time dynamics of excited alkali metal atoms (Rb) attached to quantum fluid He nanodroplets is investigated using femtosecond imaging spectroscopy and time-dependent density functional theory. We disentangle the competing dynamics of desorption of excited Rb atoms off the He droplet surface and solvation inside the droplet interior as the Rb atom is ionized. For Rb excited to the 5p and 6p states, desorption occurs on starkly differing time scales (∼100 versus ∼1 ps, respectively). The comparison between theory and experiment indicates that desorption proceeds either impulsively (6p) or in a transition regime between impulsive dissociation and complex desorption (5p).

  5. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states.

    PubMed

    Bjorgaard, J A; Velizhanin, K A; Tretiak, S

    2016-04-21

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited statemolecular dynamics. In this work, we describe methods of simulating nonequilibrium solvent effects in excited statemolecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  6. First-principles investigation of quantum transport through an endohedral N@C60 in the Coulomb blockade regime.

    PubMed

    Yu, Zhizhou; Chen, Jian; Zhang, Lei; Wang, Jian

    2013-12-11

    We report an investigation of Coulomb blockade transport through an endohedral N@C60 weakly coupled with aluminum leads, employing the first-principles method combined with the Keldysh non-equilibrium Green's function derived from the equation of motion beyond the Hartree-Fock approximation. The differential conductance characteristics of the molecular device are calculated within the Coulomb blockade regime, which shows the Coulomb diamond as observed experimentally. When the gate voltage is less than that of the degeneracy point, there are two peaks in the differential conductance with an excited state induced by the change of the exchange interaction between the spin of C60 and the encapsulated nitrogen atom due to the transition from N@C(1-)(60) to N@C(2-)(60), while for a gate voltage larger than that of the degeneracy point, no excited state is available due to the quenching of exchange energy. As a result, there is only one Coulomb blockade peak in the differential conductance from the electron tunneling through the highest energy level below the Fermi level. Our first-principles results are in good agreement with experimental data obtained by an endohedral N@C60 molecular device.

  7. Quantal Density Functional Theory(Q-DFT) of Degenerate Ground and Excited States

    NASA Astrophysics Data System (ADS)

    Sahni, Viraht; Pan, Xiaoyin

    2002-03-01

    We present here Q-DFT (V.Sahni et al, PRL 87), 113002 (2001), and references therein. of degenerate states with degeneracy g. We describe : (a) The transformation from a degenerate ground or excited pure state of the interacting system to an S (single Slater determinant) system of noninteracting Fermions with equivalent density, total energy, and ionization potential; (b) The construction of g S systems to reproduce a subspace ensemble density and energy. The density and energy are defined via the ensemble density matrix formed from the degenerate ground or excited pure states of the interacting system; (c) The construction of an S system with a g-fold degenerate highest occupied level, (which leads to g Slater determinants (C.A. Ullrich and W. Kohn, PRL 87), 093001(2001).), to reproduce the ground or excited state ensemble density and energy.

  8. Electro-optical parameters in excited states of some spectrally active molecules

    NASA Astrophysics Data System (ADS)

    Benchea, Andreea Celia; Closca, Valentina; Rusu, Cristina Marcela; Morosanu, Cezarina; Dorohoi, Dana Ortansa

    2014-08-01

    The spectral shifts measured in different solvents are expressed as functions of the solvent macroscopic parameters. The value of the correlation coefficient multiplying the functions of electric permittivity was determined by statistical means. The correlation coefficient depends on the electric dipole moment of the spectrally active molecules. The electro-optical parameters in the ground state of the solute molecules can be approximated by molecular modeling. The excited state parameters are usually estimated using the results obtained both by HyperChem Programme and solvatochromic study. The importance of this approximate method is that it offers information about of the excited state of solute molecule for which our measuring possibilities are very restrictive. The information about the excited electronic state is affected by the limits in which the theories of liquid solutions are developed. Our results refer to two molecules of vitamins from B class, namely B3 and B6.

  9. Watson-Crick base pairing controls excited-state decay in natural DNA.

    PubMed

    Bucher, Dominik B; Schlueter, Alexander; Carell, Thomas; Zinth, Wolfgang

    2014-10-13

    Excited-state dynamics are essential to understanding the formation of DNA lesions induced by UV light. By using femtosecond IR spectroscopy, it was possible to determine the lifetimes of the excited states of all four bases in the double-stranded environment of natural DNA. After UV excitation of the DNA duplex, we detected a concerted decay of base pairs connected by Watson-Crick hydrogen bonds. A comparison of single- and double-stranded DNA showed that the reactive charge-transfer states formed in the single strands are suppressed by base pairing in the duplex. The strong influence of the Watson-Crick hydrogen bonds indicates that proton transfer opens an efficient decay path in the duplex that prohibits the formation or reduces the lifetime of reactive charge-transfer states.

  10. Fluorescence following excited-state protonation of riboflavin at N(5).

    PubMed

    Quick, Martin; Weigel, Alexander; Ernsting, Nikolaus P

    2013-05-09

    Excited-state protonation of riboflavin in the oxidized form is studied in water. In the -1 < pH < 2 range, neutral and N(1)-protonated riboflavin coexist in the electronic ground state. Transient absorption shows that the protonated form converts to the ground state in <40 fs after optical excitation. Broadband fluorescence upconversion is therefore used to monitor solvation and protonation of the neutral species in the excited singlet state exclusively. A weak fluorescence band around 660 nm is assigned to the product of protonation at N(5). Its radiative rate and quantum yield relative to neutral riboflavin are estimated. Protonation rates agree with proton diffusion times for H(+) concentrations below 5 M but increase at higher acidities, where the average proton distance is below the diameter of the riboflavin molecule.

  11. Sideband excitation of trapped ions by rapid adiabatic passage for manipulation of motional states

    SciTech Connect

    Watanabe, T.; Nomura, S.; Toyoda, K.; Urabe, S.

    2011-09-15

    We describe an analysis and experimental results of the manipulation of motional states of a single trapped {sup 40}Ca{sup +} ion based on sideband excitation by rapid adiabatic passage. When the sideband transition is excited by rapid adiabatic passage, adiabaticity may be affected by ac Stark shifts. We investigate the influence of ac Stark shifts and compensate for these shifts with an additional laser field. This makes the population transfer by rapid adiabatic passage more robust with respect to experimental parameters. Finally, we manipulate the motional states and generate motional Fock states of a single {sup 40}Ca{sup +} ion by rapid adiabatic passage with ac Stark compensation.

  12. Coulomb gauge ghost propagator and the Coulomb form factor

    NASA Astrophysics Data System (ADS)

    Quandt, M.; Burgio, G.; Chimchinda, S.; Reinhardt, H.

    The ghost propagator and the Coulomb potential are evaluated in Coulomb gauge on the lattice, using an improved gauge fixing scheme which includes the residual symmetry. This setting has been shown to be essential in order to explain the scaling violations in the instantaneous gluon propagator. We find that both the ghost propagator and the Coulomb potential are insensitive to the Gribov problem or the details of the residual gauge fixing, even if the Coulomb potential is evaluated from the A0 -propagator instead of the Coulomb kernel. In particular, no signs of scaling violations could be found in either quantity, at least to well below the numerical accuracy where these violations were visible for the gluon propagator. The Coulomb potential from the A0 -propagator is shown to be in qualitative agreement with the (formally equivalent) expression evaluated from the Coulomb kernel.

  13. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative

    SciTech Connect

    Obaid, Rana; Kinzel, Daniel; Oppel, Markus González, Leticia

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  14. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative.

    PubMed

    Obaid, Rana; Kinzel, Daniel; Oppel, Markus; González, Leticia

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  15. Electronically Excited States and Their Role in Affecting Thermodynamic and Transport Properties of Thermal Plasmas

    DTIC Science & Technology

    2009-09-01

    existing collision integral database to excited species, i.e. oxygen and nitrogen atoms and ions . Reference it should be done to the pioneering work in...potentials for valence states. The inelastic contribution to odd-order collision integrals due to resonant charge-exchange processes in atom-parent- ion ...thermodynamic equilibrium, are derived, considering low-lying excited atoms (N  , O  ) and ions (N + , O + ) as independent chemical species

  16. Photoionization cross sections of the excited 3s3p 3Po state for atomic Mg

    NASA Astrophysics Data System (ADS)

    Wang, Guoli; Wan, Jianjie; Zhou, Xiaoxin

    2017-01-01

    The photoionization cross sections of the excited levels (3s3p 0,1,2,o 3P) of atomic Mg have been studied theoretically using both the nonrelativistic and fully relativistic R-matrix method. For the threshold cross sections, as previous nonrelativistic studies, present calculations show significant differences (a factor of 3) from former experimental values. Large discrepancies with experiment calls for additional measurements of the photoionization cross sections from the excited states of Mg.

  17. Time-resolved and steady-state fluorescence studies of excited-state proton-transfer reactions of proflavine

    NASA Astrophysics Data System (ADS)

    De Silvestri, S.; Laporta, P.

    1984-01-01

    Time-resolved and steady-state fluorescence studies of proflavine in aqueous solution are presented. The observation of a monoexponential fluorescence decay with a time constant decreasing with increasing pH and the presence of an anomalous red-shift in the fluorescence spectrum as a function of pH indicate the existence of a complex proton-transfer mechanism in the excited state. A reaction scheme is proposed and the corresponding proton-transfer rates are evaluated. An excited-state pK value of 12.85 is obtained for the equilibrium between the cationic form of proflavine and the same form dissociated at an amino group.

  18. Rotationally resolved IR-diode laser studies of ground-state CO2 excited by collisions with vibrationally excited pyridine.

    PubMed

    Johnson, Jeremy A; Kim, Kilyoung; Mayhew, Maurine; Mitchell, Deborah G; Sevy, Eric T

    2008-03-27

    Relaxation of highly vibrationally excited pyridine (C5NH5) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot pyridine (E' = 40,660 cm(-1)) was prepared by 248 nm excimer laser excitation followed by rapid radiationless relaxation to the ground electronic state. Pyridine then collides with CO2, populating the high rotational CO2 states with large amounts of translational energy. The CO2 nascent rotational population distribution of the high-J (J = 58-80) tail of the 00(0)0 state was probed at short times following the excimer laser pulse to measure rate constants and probabilities for collisions populating these CO2 rotational states. Doppler spectroscopy was used to measure the CO2 recoil velocity distribution for J = 58-80 of the 00(0)0 state. The energy-transfer distribution function, P(E,E'), from E' - E approximately 1300-7000 cm(-1) was obtained by re-sorting the state-indexed energy-transfer probabilities as a function of DeltaE. P(E,E') is fit to an exponential or biexponential function to determine the average energy transferred in a single collision between pyridine and CO2. Also obtained are fit parameters that can be compared to previously studied systems (pyrazine, C6F6, methylpyrazine, and pyrimidine/CO2). Although the rotational and translational temperatures that describe pyridine/CO2 energy transfer are similar to previous systems, the energy-transfer probabilities are much smaller. P(E,E') fit parameters for pyridine/CO2 and the four previously studied systems are compared to various donor molecular properties. Finally, P(E,E') is analyzed in the context of two models, one indicating that P(E,E') shape is primarily determined by the low-frequency out-of-plane donor vibrational modes, and the other that indicates that P(E,E') shape can be determined from how the donor molecule final density of states changes with DeltaE.

  19. Modeling the Excited States of Biological Chromophores within Many-Body Green's Function Theory.

    PubMed

    Ma, Yuchen; Rohlfing, Michael; Molteni, Carla

    2010-01-12

    First-principle many-body Green's function theory (MBGFT) has been successfully used to describe electronic excitations in many materials, from bulk crystals to nanoparticles. Here we assess its performance for the calculations of the excited states of biological chromophores. MBGFT is based on a set of Green's function equations, whose key ingredients are the electron's self-energy Σ, which is obtained by Hedin's GW approach, and the electron-hole interaction, which is described by the Bethe-Salpeter equation (BSE). The GW approach and the BSE predict orbital energies and excitation energies with high accuracy, respectively. We have calculated the low-lying excited states of a series of model biological chromophores, related to the photoactive yellow protein (PYP), rhodopsin, and the green fluorescent protein (GFP), obtaining a very good agreement with the available experimental and accurate theoretical data; the order of the excited states is also correctly predicted. MBGFT bridges the gap between time-dependent density functional theory and high-level quantum chemistry methods, combining the efficiency of the former with the accuracy of the latter: this makes MBGFT a promising method for studying excitations in complex biological systems.

  20. Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy

    PubMed Central

    Knoll, Jessica D.; Turro, Claudia

    2015-01-01

    The use of visible light to produce highly selective and potent drugs through photodynamic therapy (PDT) holds much potential in the treatment of cancer. PDT agents can be designed to follow an O2-dependent mechanism by producing highly reactive species such as 1O2 and/or an O2 independent mechanism through processes such as excited state electron transfer, covalent binding to DNA or photoinduced drug delivery. Ru(II)-polypyridyl and Rh2(II,II) complexes represent an important class of compounds that can be tailored to exhibit desired photophysical properties and photochemical reactivity by judicious selection of the ligand set. Complexes with relatively long-lived excited states and planar, intercalating ligands localize on the DNA strand and photocleave DNA through 1O2 production or guanine oxidation by the excited state of the chromophore. Photoinduced ligand substitution occurs through the population of triplet metal centered (3MC) excited states and facilitates covalent binding of the metal complex to DNA in a mode similar to cisplatin. Ligand photodissociation also provides a route to selective drug delivery. The ability to construct metal complexes with desired light absorbing and excited state properties by ligand variation enables the design of PDT agents that can potentially provide combination therapy from a single metal complex. PMID:25729089

  1. Control by decoherence: weak field control of an excited state objective

    SciTech Connect

    Katz, Gil; Ratner, Mark A.; Kosloff, Ronnie

    2010-01-01

    Coherent control employing a broadband excitation is applied to a branching reaction in the excited state. In a weak field for an isolated molecule, a control objective is only frequency dependent. This means that phase control of the pulse cannot improve the objective beyond the best frequency selection. Once the molecule is put into a dissipative environment a new timescale emerges. In this study, we demonstrate that the dissipation allows us to achieve coherent control of branching ratios in the excited state. The model studied contains a nuclear coordinate and three electronic states: the ground and two coupled diabatic excited states. The influence of the environment is modeled by the stochastic surrogate Hamiltonian. The excitation is generated by a Gaussian pulse where the phase control introduced a chirp to the pulse. For sufficient relaxation, we find significant control in the weak field depending on the chirp rate. The observed control is rationalized by a timing argument caused by a focused wavepacket. The initial non-adiabatic crossing is enhanced by the chirp. This is followed by energy relaxation which stabilizes the state by having an energy lower than the crossing point.

  2. Doubly excited states of molecular nitrogen by scattered electron-ion coincidence measurements

    NASA Astrophysics Data System (ADS)

    Takahashi, Karin; Hasegawa, Toru; Sakai, Yasuhiro

    2017-03-01

    Scattered electron-ion coincidence measurements were performed on molecular nitrogen (N2) to study the relaxation dynamics of doubly excited states. Doubly excited states are typically so unstable that they result in either auto-ionization or a neutral dissociation. In auto-ionization, ionization and dissociation typically occur. Using a mixed-gas method, we determined the absolute values of the generalized oscillator strength (GOS) distributions using an incident electron energy of 200 eV and a scattering angle of 6°. The GOS distributions of N2+ and N+ were determined by combining the coincidence ion signals, which revealed some doubly excited states of N2. Since electron impact experiments can provide information on optically forbidden transitions, the contribution of optically forbidden states appears in the GOS distributions of both N2+ and N+. We observed auto-ionization and dissociative auto-ionization induced by excitation to the optically forbidden doubly excited states in the range of 30-40 eV.

  3. The effect of dimerization on the excited state behavior of methylated xanthine derivatives: a computational study.

    PubMed

    Nachtigallová, Dana; Aquino, Adelia J A; Horn, Shawn; Lischka, Hans

    2013-08-01

    The behavior of monomers and dimers of methylated xanthine derivatives in their excited states is investigated by means of the ADC(2), CASSCF, and CASPT2 methods. The results of the calculations of stationary points in the ground and excited states, minima on the S0/S1 crossing seams and the relaxation pathways are used to provide the interpretation of experimental observations of the monomer xanthine derivatives. The effect of dimerization on the excited state properties is studied for various relative orientations of the monomers in the dimer complexes in comparison with the relevant monomer species. A significant stabilization in the excited state minima of dimers is observed. These can act as trapping sites. Various types of conical intersections, with both localized and delocalized characters of wavefunctions, have been found, mainly energetically above the lowest bright excited state in the FC region. In addition, structures with the bonds formed between the two monomers were also found on the crossing seams. The possibility of ultrafast relaxation via these conical intersections is discussed.

  4. Ultrafast Dynamics of 1,3-Cyclohexadiene in Highly Excited States

    DOE PAGES

    Bühler, Christine C.; Minitti, Michael P.; Deb, Sanghamitra; ...

    2011-01-01

    The ultrafast dynamics of 1,3-cyclohexadiene has been investigated via structurally sensitive Rydberg electron binding energies and shown to differ upon excitation to the 1B state and the 3p Rydberg state. Excitation of the molecule with 4.63 eV photons into the ultrashort-lived 1B state yields the well-known ring opening to 1,3,5-hexatriene, while a 5.99 eV photon lifts the molecule directly into the 3p-Rydberg state. Excitation to 3p does not induce ring opening. In both experiments, time-dependent shifts of the Rydberg electron binding energy reflect the structural dynamics of the molecular core. Structural distortions associated with 3p-excitation cause a dynamical shift in the -more » and -binding energies by 10 and 26 meV/ps, respectively, whereas after excitation into 1B, more severe structural transformations along the ring-opening coordinate produce shifts at a rate of 40 to 60 meV/ps. The experiment validates photoionization-photoelectron spectroscopy via Rydberg states as a powerful technique to observe structural dynamics of polyatomic molecules.« less

  5. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    ERIC Educational Resources Information Center

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  6. Investigations into photo-excited state dynamics in colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Singh, Gaurav

    Colloidal Quantum dots (QDs) have garnered considerable scientific and technological interest as a promising material for next generation solar cells, photo-detectors, lasers, bright light-emitting diodes (LEDs), and reliable biomarkers. However, for practical realization of these applications, it is crucial to understand the complex photo-physics of QDs that are very sensitive to surface chemistry and chemical surroundings. Depending on the excitation density, QDs can support single or multiple excitations. The first part of this talk addresses evolution of QD excited state dynamics in the regime of low excitation intensity. We use temperature-resolved time-resolved fluorescence spectroscopy to study exciton dynamics from picoseconds to microseconds and use kinetic modeling based on classical electron transfer to show the effect of surface trap states on dynamics of ground-state exciton manifold in core-shell CdSe/CdS QDs. We show that the thickness of CdS shell plays an important role in interaction of CdSe core exciton states with nanocrystal environment, and find that a thicker shell can minimize the mixing of QD exciton states with surface trap states. I will then present an investigation into the dynamics of multiply-excited states in QDs. One of the key challenges in QD spectroscopy is to reliably distinguish multi- from single-excited states that have similar lifetime components and spectroscopic signatures. I will describe the development of a novel multi-pulse fluorescence technique to selectively probe multi-excited states in ensemble QD samples and determine the nature of the multi-excited state contributing to the total fluorescence even in the limit of low fluorescent yields. We find that in our sample of CdSe/CdS core/shell QDs the multi-excited emission is dominated by emissive trion states rather than biexcitons. Next, I will discuss the application of this technique to probe exciton-plasmon coupling in layered hybrid films of QD/gold nanoparticles

  7. Electronic and structural properties of low-lying excited states of vitamin B12.

    PubMed

    Lodowski, Piotr; Jaworska, Maria; Kornobis, Karina; Andruniów, Tadeusz; Kozlowski, Pawel M

    2011-11-17

    Time-dependent density functional theory (TD-DFT) has been applied to explore electronically excited states of vitamin B(12) (cyanocobalamin or CNCbl). To explain why the Co-C bond in CNCbl does not undergo photodissociation under conditions of simple photon excitation, electronically excited states have been computed along the Co-C(CN) stretched coordinate. It was found that the repulsive (3)(σ(Co-C) → σ*(Co-C)) triplet state drops in energy as the Co-C(CN) bond lengthens, but it does not become dissociative. Low-lying excited states were also computed as function of two axial bond lengths. Two energy minima have been located on the S(1)/CNCbl, as well as T(1)/CNCbl, surfaces. The full geometry optimization was carried out for each minimum and electronic properties associated with each optimized structure were analyzed in details. One minimum was described as excitation having mixed ππ*/MLCT (metal-to-ligand charge transfer) character, while the second as ligand-to-metal charge transfer (LMCT) transition. Neither of them, however, can be viewed as pure MLCT or LMCT transitions since additional excitation to or from σ-bonds (SB) of N-Co-C unit have also noticeable contributions. Inclusion of solvent altered the character of one of the excitations from ππ*/MLCT/SBLCT to ππ*/LMCT/LSBCT-type, and therefore, both of them gained significant contribution from LMCT/LSBCT transition. Finally, the nature of S(1) electronic state has been comparatively analyzed in CNCbl and MeCbl cobalamins.

  8. Pathways for Excited State Nonradiative Decay of 5,6-Dihydroxyindole, a Building Block of Eumelanin.

    PubMed

    Datar, Avdhoot; Hazra, Anirban

    2017-03-17

    The photophysics of 5,6-dihydroxyindole (DHI) following excitation to its lowest two optically bright states has been investigated using the complete active space self consistent field method with second order perturbative energy corrections. There is a barrierless pathway for the molecule to relax from the second lowest bright state (2(1)ππ*) to the lowest bright state (1(1)ππ*). The 1(1)ππ* state has a conical intersection with the optically dark 1(1)πσ* state, which further intersects with the ground state along the NH and OH stretching coordinates. Moreover, the 1(1)ππ* has out-of-plane conical intersections with the ground state. For accessing the conical intersections with the ground state, there are energy barriers, which are higher than the available energy following vertical excitation to the lowest bright state. The nature of the calculated deactivation pathways helps interpret the experimentally estimated lifetimes of the lowest two bright states of DHI. The relatively long excited state lifetimes suggests that isolated DHI in monomeric form cannot rationalize the ultrafast deactivation property of eumelanin.

  9. Multiple-photon excitation imaging with an all-solid-state laser

    NASA Astrophysics Data System (ADS)

    Wokosin, David L.; Centonze, Victoria F.; White, John G.; Hird, Steven N.; Sepsenwol, S.; Malcolm, Graeme P. A.; Maker, Gareth T.; Ferguson, Allister I.

    1996-05-01

    Two-photon excitation imaging is a recently described optical sectioning technique where fluorophore excitation is confined to--and therefore defines--the optical section being observed. This characteristic offers a significant advantage over laser-scanning confocal microscopy; the volume of fluorophore excited in the minimum necessary for imaging, thereby minimizing the destructive effects of fluorophore excitation in living tissues. In addition, a confocal pinhole is not required for optical scattering--thus further reducing the excitation needed for efficient photon collection. We have set up a two-photon excitation imaging system which uses an all-solid-state, short-pulse, long-wavelength laser as an excitation source. The source is a diode-pumped, mode-locked Nd:YLF laser operating in the infrared (1047 nm). This laser is small, has modest power requirements, and has proven reliable and stable in operation. The short laser pulses from the laser are affected by the system optical path; this has been investigated with second harmonic generation derived from a nonlinear crystal. The system has been specifically designed for the study of live biological specimens. Two cell types especially sensitive to high-energy illumination, the developing Caenorhabditis elegans embryo and the crawling sperm of the nematode, Ascaris, were used to demonstrate the dramatic increase in viability when fluorescence is generated by two-photon excitation. The system has the capability of switching between two-photon and confocal imaging modes to facilitate direct comparison of theory of these two optical sectioning techniques on the same specimen. A heavily stained zebra fish embryo was used to demonstrate the increase in sectioning depth when fluorescence is generated by infrared two- photon excitation. Two-photon excitation with the 1047 nm laser produces bright images with a variety of red emitting fluorophores, and some green emitting fluorophores, commonly used in biological

  10. Nonlinear optical properties of tetrapyrazinoporphyrazinato indium chloride complexes due to excited-state absorption processes.

    PubMed

    Dini, Danilo; Hanack, Michael; Meneghetti, Moreno

    2005-07-07

    The multiphoton absorption properties of the axially substituted tetrapyrazinotetraazaporphyrinato complex Pyz(4)TAPInCl (1) are reported and interpreted. In particular, the nonlinear optical transmission of the complex and the excited states involved in the nonlinear absorption have been determined at the frequency of the second harmonic generation of a Nd:YAG laser in the nanosecond time regime. Pyz(4)TAPInCl has an excited-state absorption cross section larger than its ground state in the 460-540 nm spectral region, and it shows an optical limiting (OL) behavior at 532 nm, which derives from a sequential two-photon absorption with a larger absorption cross section of the excited triplet state with respect to the ground state. It results that the absorption cross section of 1 in the excited triplet state is 7.8 x 10(-18) cm(2) vs 0.9 x 10(-18) cm(2) of the ground state at the wavelength of OL analysis.

  11. Resonant coherent excitation of hydrogen-like ions planar channeled in a crystal; Transition into the first excited state

    NASA Astrophysics Data System (ADS)

    Babaev, A.; Pivovarov, Yu. L.

    2012-03-01

    The presented program is designed to simulate the characteristics of resonant coherent excitation of hydrogen-like ions planar-channeled in a crystal. The program realizes the numerical algorithm to solve the Schrödinger equation for the ion-bound electron at a special resonance excitation condition. The calculated wave function of the bound electron defines probabilities for the ion to be in the either ground or first excited state, or to be ionized. Finally, in the outgoing beam the fractions of ions in the ground state, in the first excited state, and ionized by collisions with target electrons, are defined. The program code is written on C++ and is designed for multiprocessing systems (clusters). The output data are presented in the table. Program summaryProgram title: RCE_H-like_1 Catalogue identifier: AEKX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2813 No. of bytes in distributed program, including test data, etc.: 34 667 Distribution format: tar.gz Programming language: C++ (g++, icc compilers) Computer: Multiprocessor systems (clusters) Operating system: Any OS based on LINUX; program was tested under Novell SLES 10 Has the code been vectorized or parallelized?: Yes. Contains MPI directives RAM: <1 MB per processor Classification: 2.1, 2.6, 7.10 External routines: MPI library for GNU C++, Intel C++ compilers Nature of problem: When relativistic hydrogen-like ion moves in the crystal in the planar channeling regime, in the ion rest frame the time-periodic electric field acts on the bound electron. If the frequency of this field matches the transition frequency between electronic energy levels, the resonant coherent excitation can take place. Therefore, ions in the different states may be

  12. Nonadiabatic excited-state molecular dynamics: Treatment of electronic decoherence

    NASA Astrophysics Data System (ADS)

    Nelson, Tammie; Fernandez-Alberti, Sebastian; Roitberg, Adrian E.; Tretiak, Sergei

    2013-06-01

    Within the fewest switches surface hopping (FSSH) formulation, a swarm of independent trajectories is propagated and the equations of motion for the quantum coefficients are evolved coherently along each independent nuclear trajectory. That is, the phase factors, or quantum amplitudes, are retained. At a region of strong coupling, a trajectory can branch into multiple wavepackets. Directly following a hop, the two wavepackets remain in a region of nonadiabatic coupling and continue exchanging population. After these wavepackets have sufficiently separated in phase space, they should begin to evolve independently from one another, the process known as decoherence. Decoherence is not accounted for in the standard surface hopping algorithm and leads to internal inconsistency. FSSH is designed to ensure that at any time, the fraction of classical trajectories evolving on each quantum state is equal to the average quantum probability for that state. However, in many systems this internal consistency requirement is violated. Treating decoherence is an inherent problem that can be addressed by implementing some form of decoherence correction to the standard FSSH algorithm. In this study, we have implemented two forms of the instantaneous decoherence procedure where coefficients are reinitialized following hops. We also test the energy-based decoherence correction (EDC) scheme proposed by Granucci et al. and a related version where the form of the decoherence time is taken from Truhlar's Coherent Switching with Decay of Mixing method. The sensitivity of the EDC results to changes in parameters is also evaluated. The application of these computationally inexpensive ad hoc methods is demonstrated in the simulation of nonradiative relaxation in two conjugated oligomer systems, specifically poly-phenylene vinylene and poly-phenylene ethynylene. We find that methods that have been used successfully for treating small systems do not necessarily translate to large polyatomic

  13. Ultrafast excited-state dynamics of tetraphenylethylene studied by semiclassical simulation

    SciTech Connect

    Zhao Guangjiu; Han Keli; Lei Yibo; Dou Yusheng

    2007-09-07

    Detailed simulation study is reported for the excited-state dynamics of photoisomerization of cis-tetraphenylethylene (TPE) following excitation by a femtosecond laser pulse. The technique for this investigation is semiclassical dynamics simulation, which is described briefly in the paper. Upon photoexcitation by a femtosecond laser pulse, the stretching motion of the ethylenic bond of TPE is initially excited, leading to a significant lengthening of ethylenic bond in 300 fs. Twisting motion about the ethylenic bond is activated by the energy released from the relaxation of the stretching mode. The 90 deg. twisting about the ethylenic bond from an approximately planar geometry to nearly a perpendicular conformation in the electronically excited state is completed in 600 fs. The torsional dynamics of phenyl rings which is temporally lagging behind occurs at about 5 ps. Finally, the twisted TPE reverts to the initial conformation along the twisting coordinate through nonadiabatic transitions. The simulation results provide a basis for understanding several spectroscopic observations at molecular levels, including ultrafast dynamic Stokes shift, multicomponent fluorescence, viscosity dependence of the fluorescence lifetime, and radiationless decay from electronically excited state to the ground state along the isomerization coordinate.

  14. Modulation of Rhythmic Activity in Mammalian Spinal Networks Is Dependent on Excitability State

    PubMed Central

    2017-01-01

    Neuromodulators play an important role in activating rhythmically active motor networks; however, what remains unclear are the network interactions whereby neuromodulators recruit spinal motor networks to produce rhythmic activity. Evidence from invertebrate systems has demonstrated that the effect of neuromodulators depends on the pre-existing state of the network. We explored how network excitation state affects the ability of dopamine to evoke rhythmic locomotor activity in the neonatal mouse isolated spinal cord. We found that dopamine can evoke unique patterns of motor activity that are dependent on the excitability state of motor networks. Different patterns of motor activity ranging from tonic, nonrhythmic activity to multirhythmic, nonlocomotor activity to locomotor activity were produced by altering global motor network excitability through manipulations of the extracellular potassium and bath NMDA concentration. A similar effect was observed when network excitation was manipulated during an unstable multirhythm evoked by a low concentration (15 µm) of 5-HT, suggesting that our results are not neuromodulator specific. Our data show in vertebrate systems that modulation is a two-way street and that modulatory actions are largely influenced by the network state. The level of network excitation can account for variability between preparations and is an additional factor to be considered when circuit elements are removed from the network. PMID:28144626

  15. Finding Matrix Product State Representations of Highly Excited Eigenstates of Many-Body Localized Hamiltonians

    NASA Astrophysics Data System (ADS)

    Yu, Xiongjie; Pekker, David; Clark, Bryan K.

    2017-01-01

    A key property of many-body localized Hamiltonians is the area law entanglement of even highly excited eigenstates. Matrix product states (MPS) can be used to efficiently represent low entanglement (area law) wave functions in one dimension. An important application of MPS is the widely used density matrix renormalization group (DMRG) algorithm for finding ground states of one-dimensional Hamiltonians. Here, we develop two algorithms, the shift-and-invert MPS (SIMPS) and excited state DMRG which find highly excited eigenstates of many-body localized Hamiltonians. Excited state DMRG uses a modified sweeping procedure to identify eigenstates, whereas SIMPS applies the inverse of the shifted Hamiltonian to a MPS multiple times to project out the targeted eigenstate. To demonstrate the power of these methods, we verify the breakdown of the eigenstate thermalization hypothesis in the many-body localized phase of the random field Heisenberg model, show the saturation of entanglement in the many-body localized phase, and generate local excitations.

  16. Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.

    PubMed

    Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M

    2016-09-27

    Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.

  17. Determination of ground and excited state dipole moments via electronic Stark spectroscopy: 5-methoxyindole.

    PubMed

    Wilke, Josefin; Wilke, Martin; Meerts, W Leo; Schmitt, Michael

    2016-01-28

    The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurations improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54(∘) showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.

  18. Electron-impact ionization cross sections out of the ground and excited states of cesium

    SciTech Connect

    Lukomski, M.; Sutton, S.; Kedzierski, W.; Reddish, T. J.; Bartschat, K.; Bartlett, P. L.; Bray, I.; Stelbovics, A. T.; McConkey, J. W.

    2006-09-15

    An atom trapping technique for determining absolute, total ionization cross sections (TICS) out of an excited atom is presented. The unique feature of our method is in utilizing Doppler cooling of neutral atoms to determine ionization cross sections. This fluorescence-monitoring experiment, which is a variant of the 'trap loss' technique, has enabled us to obtain the experimental electron impact ionization cross sections out of the Cs state between 7 eV and 400 eV. CCC, RMPS, and Born theoretical results are also presented for both the ground and excited states of cesium and rubidium. In the low energy region (<11 eV) where best agreement between these excited state measurements and theory might be expected, a discrepancy of approximately a factor of five is observed. Above this energy there are significant contributions to the TICS from both autoionization and multiple ionization.

  19. Di-lepton yield from the decay of excited 28Si states

    NASA Astrophysics Data System (ADS)

    Bacelar, J. C.; Buda, A.; Bałanda, A.; Krasznahorkay, A.; van der Ploeg, H.; Sujkowski, Z.; van der Woude, A.

    1994-03-01

    The first dilepton yield measurements from excited nuclear states obtained with a new Positron-Electron Pair Spectroscopic Instrument (PEPSI) are reported. Nuclear states in 28Si, with an initial excitation energy E∗ = 50 MeV, were populated via the isospin T = 0 reaction 4He + 24Mg and the mixed-isospin 3He + 25Mg reaction. In both reactions the dilepton (e +e -) and photon decay yields were measured concurrently. An excess of counts in the e +e - spectrum, over the converted photon yield, is observed in the energy region above 15 MeV. An analyses is discussed whereby the observed excess counts are assumed to represent the isoscalar E0 strength in excited nuclear states.

  20. Glycine in an electronically excited state: ab initio electronic structure and dynamical calculations.

    PubMed

    Muchová, Eva; Slavícek, Petr; Sobolewski, Andrzej L; Hobza, Pavel

    2007-06-21

    The goal of this study is to explore the photochemical processes following optical excitation of the glycine molecule into its two low-lying excited states. We employed electronic structure methods at various levels to map the PES of the ground state and the two low-lying excited states of glycine. It follows from our calculations that the photochemistry of glycine can be regarded as a combination of photochemical behavior of amines and carboxylic acid. The first channel (connected to the presence of amino group) results in ultrafast decay, while the channels characteristic for the carboxylic group occur on a longer time scale. Dynamical calculations provided the branching ratio for these channels. We also addressed the question whether conformationally dependent photochemistry can be observed for glycine. While electronic structure calculations favor this possibility, the ab initio multiple spawning (AIMS) calculations showed only minor relevance of the reaction path resulting in conformationally dependent dynamics.

  1. Exploring the Photophysical Properties of Molecular Systems Using Excited State Accelerated ab Initio Molecular Dynamics.

    PubMed

    Ortiz-Sánchez, Juan Manuel; Bucher, Denis; Pierce, Levi C T; Markwick, Phineus R L; McCammon, J Andrew

    2012-08-14

    In the present work, we employ excited state accelerated ab initio molecular dynamics (A-AIMD) to efficiently study the excited state energy landscape and photophysical topology of a variety of molecular systems. In particular, we focus on two important challenges for the modeling of excited electronic states: (i) the identification and characterization of conical intersections and crossing seams, in order to predict different and often competing radiationless decay mechanisms, and (ii) the description of the solvent effect on the absorption and emission spectra of chemical species in solution. In particular, using as examples the Schiff bases formaldimine and salicylidenaniline, we show that A-AIMD can be readily employed to explore the conformational space around crossing seams in molecular systems with very different photochemistry. Using acetone in water as an example, we demonstrate that the enhanced configurational space sampling may be used to accurately and efficiently describe both the prominent features and line-shapes of absorption and emission spectra.

  2. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    DOE PAGES

    Bjorgaard, Josiah August; Velizhanin, Kirill A.; Tretiak, Sergei

    2016-04-15

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this paper, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Finally, molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibriummore » due to photoexcitation and emission.« less

  3. Is dipole moment a valid descriptor of excited state's charge-transfer character?

    PubMed

    Petelenz, Piotr; Pac, Barbara

    2013-11-20

    In the ongoing discussion on excited states of the pentacene crystal, dipole moment values have been recently invoked to gauge the CT admixture to excited states of Frenkel parentage in a model cluster. In the present paper, a simple dimer model is used to show that, in general, the dipole moment is not a valid measure of the CT contribution. This finding eliminates some apparent disagreement between the computational results published by different research groups. The implications of our results and other related aspects of cluster-type quantum chemistry calculations are discussed in the context of the standing literature dispute concerning the mechanism of singlet fission in the pentacene crystal, notably the role of charge transfer contributions vs the involvement of an excimer-like doubly excited intermediate (D state).

  4. Equilibrium excited state and emission spectra of molecular aggregates from the hierarchical equations of motion approach.

    PubMed

    Jing, Yuanyuan; Chen, Liping; Bai, Shuming; Shi, Qiang

    2013-01-28

    The hierarchical equations of motion (HEOM) method was applied to calculate the emission spectra of molecular aggregates using the Frenkel exciton model. HEOM equations for the one-exciton excited state were first propagated until equilibration. The reduced density operator and auxiliary density operators (ADOs) were used to characterize the coupled system-bath equilibrium. The dipole-dipole correlation functions were then calculated to obtain the emission spectra of model dimers, and the B850 band of light-harvesting complex II (LH2) in purple bacteria. The effect of static disorder on equilibrium excited state and the emission spectra of LH2 was also explicitly considered. Several approximation schemes, including the high temperature approximation (HTA) of the HEOM, a modified version of the HTA, the stochastic Liouville equation approach, the perturbative time-local and time-nonlocal generalized quantum master equations, were assessed in the calculation of the equilibrium excited state and emission spectra.

  5. Electron energy-loss spectroscopy of excited states of the pyridine molecules

    NASA Astrophysics Data System (ADS)

    Linert, Ireneusz; Zubek, Mariusz

    2016-04-01

    Electron energy-loss spectra of the pyridine, C5H5N, molecules in the gas phase have been measured to investigate electronic excitation in the energy range 3.5-10 eV. The applied wide range of residual electron energy and the scattering angle range from 10° to 180° enabled to differentiate between optically-allowed and -forbidden transitions. These measurements have allowed vertical excitation energies of the triplet excited states of pyridine to be determined and tentative assignments of these states to be proposed. Some of these states have not been identified in the previous works. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  6. Excitation spectra of unconventional FQHE states in the SLL from Light Scattering Experiments

    NASA Astrophysics Data System (ADS)

    Wurstbauer, Ursula; Levy, Antonio; Pinczuk, Aron; Watson, John; Gardner, Geoff; Manfra, Michael; West, Ken; Pfeiffer, Loren

    The fascinating interaction physics in the second Landau level (SLL) supports the emergence of exotic quantum phases and unconventional possibly FQHE states such as e.g. at ν = 5/2 and 2 +1/3 and the weaker state at ν = 2 +3/8 and 2 +2/5. We observe clear signatures for gapped collective excitations in inelastic light scattering experiments just for these `magic' filling factors and only for low temperatures substantiating access to the physics of the incompressible quantum fluids. The lowest excitation feature in the spectrum at 2 +1/3 occurs at around 70 μeV. The analysis of spectral lineshapes suggests magnetoroton features that are characteristic of 2D neutral excitations in a perpendicular magnetic field. The striking polarization dependence observable in light scattering experiments in the SLL are consistent with nematic FQHE states. Supported by award NSF-DMR-1306976.

  7. Excited state coherent dynamics in light-harvesting complexes from photosynthetic marine algae

    NASA Astrophysics Data System (ADS)

    Richards, G. H.; Wilk, K. E.; Curmi, P. M. G.; Quiney, H. M.; Davis, J. A.

    2012-08-01

    We explore coherence dynamics in light-harvesting complexes and their interactions with other electronic states and vibrational modes. This is achieved by utilizing a two-colour four-wave mixing spectroscopy to excite and analyse a specific coherence pathway in the phycocyanin-645 (PC645) light-harvesting complex. We observe the dephasing rate increase as a function of temperature and oscillations in the signal intensity as a function of waiting time which reveals coherent excitation of pathways not directly resonant with the laser pulses. This coherent excitation of non-resonant electronic states implies strong coupling to phonon modes, which is necessary if coherent energy transfer between non-resonant states is to play any role in photosynthetic energy transfer.

  8. Excited state two photon absorption of a charge transfer radical dimer in the near infrared.

    PubMed

    Schiccheri, Nicola; Meneghetti, Moreno

    2005-06-02

    Nonlinear transmission measurements of a solution of radical dimers of tetramethyl-tetrathiafulvalene, (TMTTF+)2, recorded with 9 ns laser pulses at 1064 nm are reported and interpreted on the basis of a multiphoton absorption process. One finds that the process can be interpreted with a sequence of three photon absorption, the first being a one photon absorption related to the intermolecular charge transfer process characteristic of the dimers and the second a two photon absorption from the excited state created with the first process. A model calculation allows one to obtain the value of the two photon absorption cross section which is found to be several orders of magnitude larger than those usually found for two photon absorbing systems excited from the ground state. These results show the importance of an excited-state population for obtaining large nonlinear optical responses.

  9. Precision Excited State Lifetime Measurements for Atomic Parity Violation and Atomic Clocks

    NASA Astrophysics Data System (ADS)

    Sell, Jerry; Patterson, Brian; Gearba, Alina; Snell, Jeremy; Knize, Randy

    2016-05-01

    Measurements of excited state atomic lifetimes provide a valuable test of atomic theory, allowing comparisons between experimental and theoretical transition dipole matrix elements. Such tests are important in Rb and Cs, where atomic parity violating experiments have been performed or proposed, and where atomic structure calculations are required to properly interpret the parity violating effect. In optical lattice clocks, precision lifetime measurements can aid in reducing the uncertainty of frequency shifts due to the surrounding blackbody radiation field. We will present our technique for precisely measuring excited state lifetimes which employs mode-locked ultrafast lasers interacting with two counter-propagating atomic beams. This method allows the timing in the experiment to be based on the inherent timing stability of mode-locked lasers, while counter-propagating atomic beams provides cancellation of systematic errors due to atomic motion to first order. Our current progress measuring Rb excited state lifetimes will be presented along with future planned measurements in Yb.

  10. Quantum mechanical identification of quadrupolar plasmonic excited states in silver nanorods

    SciTech Connect

    Gieseking, Rebecca L.; Ratner, Mark A.; Schatz, George C.

    2016-10-27

    Quadrupolar plasmonic modes in noble metal nanoparticles have gained interest in recent years for various sensing applications. Although quantum mechanical studies have shown that dipolar plasmons can be modeled in terms of excited states where several to many excitations contribute coherently to the transition dipole moment, new approaches are needed to identify the quadrupolar plasmonic states. We show that quadrupolar states in Ag nanorods can be identified using the semiempirical INDO/SCI approach by examining the quadrupole moment of the transition density. The main longitudinal quadrupolar states occur at higher energies than the longitudinal dipolar states, in agreement with previous classical electrodynamics results, and have collective plasmonic character when the nanorods are sufficiently long. In conclusion, the ability to identify these states will make it possible to evaluate the differences between dipolar and quadrupolar plasmons that are relevant for sensing applications.

  11. Quantum mechanical identification of quadrupolar plasmonic excited states in silver nanorods

    DOE PAGES

    Gieseking, Rebecca L.; Ratner, Mark A.; Schatz, George C.

    2016-10-27

    Quadrupolar plasmonic modes in noble metal nanoparticles have gained interest in recent years for various sensing applications. Although quantum mechanical studies have shown that dipolar plasmons can be modeled in terms of excited states where several to many excitations contribute coherently to the transition dipole moment, new approaches are needed to identify the quadrupolar plasmonic states. We show that quadrupolar states in Ag nanorods can be identified using the semiempirical INDO/SCI approach by examining the quadrupole moment of the transition density. The main longitudinal quadrupolar states occur at higher energies than the longitudinal dipolar states, in agreement with previous classicalmore » electrodynamics results, and have collective plasmonic character when the nanorods are sufficiently long. In conclusion, the ability to identify these states will make it possible to evaluate the differences between dipolar and quadrupolar plasmons that are relevant for sensing applications.« less

  12. Energies of low-lying excited states of linear polyenes.

    PubMed

    Christensen, Ronald L; Galinato, Mary Grace I; Chu, Emily F; Howard, Jason N; Broene, Richard D; Frank, Harry A

    2008-12-11

    Room temperature absorption and emission spectra of the all-trans isomers of decatetraene, dodecapentaene, tetradecahexaene, and hexadecaheptaene have been obtained in a series of nonpolar solvents. The resolved vibronic features in the optical spectra of these model systems allow the accurate determination of S(0) (1(1)A(g)(-)) --> S(2) (1(1)B(u)(+)) and S(1) (2(1)A(g)(-)) --> S(0) (1(1)A(g)(-)) electronic origins as a function of solvent polarizability. These data can be extrapolated to predict the transition energies in the absence of solvent perturbations. The effects of the terminal methyl substituents on the transition energies also can be estimated. Franck-Condon maxima in the absorption and emission spectra were used to estimate differences between S(0) (1(1)A(g)(-)) --> S(1) (2(1)A(g)(-)) and S(0) (1(1)A(g)(-)) --> S(2) (1(1)B(u)(+)) electronic origins and "vertical" transition energies. Experimental estimates of the vertical transition energies of unsubstituted, all-trans polyenes in vacuum as a function of conjugation length are compared with long-standing multireference configuration interaction (MRCI) treatments and with more recent ab initio calculations of the energies of the 2(1)A(g)(-) (S(1)) and 1(1)B(u)(+) (S(2)) states.

  13. Describing excited state relaxation and localization in TiO2 nanoparticles using TD-DFT

    DOE PAGES

    Berardo, Enrico; Hu, Han -Shi; van Dam, Hubertus J. J.; ...

    2014-02-26

    We have investigated the description of excited state relaxation in naked and hydrated TiO2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to be themore » inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO2 nanoparticles is predicted to be associated with a large Stokes’ shift.« less

  14. New Theoretical Developments in Exploring Electronically Excited States: Including Localized Configuration Interaction Singles and Application to Large Helium Clusters

    NASA Astrophysics Data System (ADS)

    Closser, Kristina Danielle

    This thesis presents new developments in excited state electronic structure theory. Contrasted with the ground state, the electronically excited states of atoms and molecules often are unstable and have short lifetimes, exhibit a greater diversity of character and are generally less well understood. The very unusual excited states of helium clusters motivated much of this work. These clusters consist of large numbers of atoms (experimentally 103--109 atoms) and bands of nearly degenerate excited states. For an isolated atom the lowest energy excitation energies are from 1s → 2s and 1s → 2 p transitions, and in clusters describing the lowest energy band minimally requires four states per atom. In the ground state the clusters are weakly bound by van der Waals interactions, however in the excited state they can form well-defined covalent bonds. The computational cost of quantum chemical calculations rapidly becomes prohibitive as the size of the systems increase. Standard excited-state methods such as configuration interaction singles (CIS) and time-dependent density functional theory (TD-DFT) can be used with ≈100 atoms, and are optimized to treat only a few states. Thus, one of our primary aims is to develop a method which can treat these large systems with large numbers of nearly degenerate excited states. Additionally, excited states are generally formed far from their equilibrium structures. Vertical excitations from the ground state induce dynamics in the excited states. Thus, another focus of this work is to explore the results of these forces and the fate of the excited states. Very little was known about helium cluster excited states when this work began, thus we first investigated the excitations in small helium clusters consisting of 7 or 25 atoms using CIS. The character of these excited states was determined using attachment/detachment density analysis and we found that in the n = 2 manifold the excitations could generally be interpreted as

  15. Uncovering Highly-Excited State Mixing in Acetone Using Ultrafast VUV Pulses and Coincidence Imaging Techniques

    DOE PAGES

    Couch, David E.; Kapteyn, Henry C.; Murnane, Margaret M.; ...

    2017-03-17

    Here, understanding the ultrafast dynamics of highly-excited electronic states of small molecules is critical for a better understanding of atmospheric and astrophysical processes, as well as for designing coherent control strategies for manipulating chemical dynamics. In highly excited states, nonadiabatic coupling, electron-electron interactions, and the high density of states govern dynamics. However, these states are computationally and experimentally challenging to access. Fortunately, new sources of ultrafast vacuum ultraviolet pulses, in combination with electron-ion coincidence spectroscopies, provide new tools to unravel the complex electronic landscape. Here we report time-resolved photoelectron-photoion coincidence experiments using 8 eV pump photons to study the highlymore » excited states of acetone. We uncover for the first time direct evidence that the resulting excited state consists of a mixture of both ny → 3p and π → π* character, which decays with a time constant of 330 fs. In the future, this approach can inform models of VUV photochemistry and aid in designing coherent control strategies for manipulating chemical reactions.« less

  16. Femtosecond study on the isomerization dynamics of NK88. II. Excited-state dynamics

    NASA Astrophysics Data System (ADS)

    Vogt, Gerhard; Nuernberger, Patrick; Gerber, Gustav; Improta, Roberto; Santoro, Fabrizio

    2006-07-01

    The molecule 3,3'-diethyl-2,2'-thiacyanine isomerizes after irradiation with light of the proper wavelength. After excitation, it undergoes a transition, in which one or more conical intersections are involved, back to the ground state to form different product photoisomers. The dynamics before and directly after the transition back to the ground state is investigated by transient absorption spectroscopy in a wavelength region of 360-950nm, as well as by fluorescence upconversion. It is shown that the excited-state dynamics are governed by two time scales: a short one with a decay time of less than 2ps and a long one with about 9ps. A thorough comparison of the experimental results with those of configuration interaction singles and time-dependent density functional theory calculations suggests that these dynamics are related to two competing pathways differing in the molecular twisting on the excited surface after photoexcitation. From the experimental point of view this picture arises taking into account the time scales for ground-state bleach, excited-state absorption, stimulated emission, fluorescence, and assumed hot ground-state absorption both in the solvent methanol and ethylene glycol.

  17. Ultrafast excited-state dynamics of RNA and DNA C tracts

    PubMed Central

    Cohen, Boiko; Larson, Matthew H.; Kohler, Bern

    2008-01-01

    The excited-state dynamics of the RNA homopolymer of cytosine and of the 18-mer (dC)18 were studied by steady-state and time-resolved absorption and emission spectroscopy. At pH 6.8, excitation of poly(rC) by a femtosecond UV pump pulse produces excited states that decay up to one order of magnitude more slowly than the excited states formed in the mononucleotide cytidine 5’-monophosphate under the same conditions. Even slower relaxation is observed for the hemiprotonated, self-associated form of poly(rC), which is stable at acidic pH. Transient absorption and time-resolved fluorescence signals for (dC)18 at pH 6.8 are similar to ones observed for poly(rC) near pH 4, indicating that hemiprotonated structures are found in DNA C tracts at neutral pH. In both systems, there is evidence for two kinds of emitting states with lifetimes of ~100 ps and slightly more than 1 ns. The former states are responsible for the bulk of emission from the hemiprotonated structures. Evidence suggests that slow electronic relaxation in these self-complexes is the result of vertical base stacking. The similar signals from RNA and DNA C tracts suggest a common base-stacked structure, which may be identical with that of i-motif DNA. PMID:18574520

  18. Hedgehog Excitations and their Superconducting Cores in the Antiferromagnetic State of SO(5) Materials

    NASA Astrophysics Data System (ADS)

    Goldbart, Paul M.

    1998-03-01

    Zhang's SO(5) approach to the physics of high-temperature superconducting materials(S.-C. Zhang, Science 275), 1089 (1997). contains the possibility that the antiferromagnetic state should support novel excitations that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region(P. M. Goldbart, Antiferromagnetic hedgehogs with superconducting cores); cond- mat/9711088 (UIUC Preprint P-97-10-030-iii).. Neither singular nor topologically stable, in contrast with their hedgehog cousins in pure antiferromagnetism, these excitations are what hedgehogs become when antiferromagnetic order is permitted to `` escape'' toward superconductivity---a central element in Zhang's approach. We describe the structure of antiferromagnetic hedgehog excitations with superconducting cores within the context of Zhang's approach to high-temperature superconducting materials, and touch upon a number of the experimental implications that these excitations engender.

  19. Triplet-state energies and substituent effects of excited aroyl compounds in the gas phase.

    PubMed

    Lin, Z P; Aue, W A

    2000-01-01

    Triplet-state energy values obtained from the gas phase are still scarce. In this study, the triplet-state energies of 58 aroyl compounds, introduced as gas chromatographic peaks at atmospheric pressure and typically 473 K, have been determined from the 0-0 bands of their n --> pi* type phosphorescence spectra in excited nitrogen. Correlations of those gas-phase triplet-state energies with Hammett constants could be observed for substituted acetophenones, benzaldehydes and benzophenones.

  20. Excitation spectra and wave functions of quasiparticle bound states in bilayer Rashba superconductors

    NASA Astrophysics Data System (ADS)

    Higashi, Yoichi; Nagai, Yuki; Yoshida, Tomohiro; Kato, Masaru; Yanase, Youichi

    2015-11-01

    We study the excitation spectra and the wave functions of quasiparticle bound states at a vortex and an edge in bilayer Rashba superconductors under a magnetic field. In particular, we focus on the quasiparticle states at the zero energy in the pair-density wave state in a topologically non-trivial phase. We numerically demonstrate that the quasiparticle wave functions with zero energy are localized at both the edge and the vortex core if the magnetic field exceeds the critical value.