Sample records for states estimation based

  1. State estimation of stochastic non-linear hybrid dynamic system using an interacting multiple model algorithm.

    PubMed

    Elenchezhiyan, M; Prakash, J

    2015-09-01

    In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Distributed Damage Estimation for Prognostics based on Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil

    2011-01-01

    Model-based prognostics approaches capture system knowledge in the form of physics-based models of components, and how they fail. These methods consist of a damage estimation phase, in which the health state of a component is estimated, and a prediction phase, in which the health state is projected forward in time to determine end of life. However, the damage estimation problem is often multi-dimensional and computationally intensive. We propose a model decomposition approach adapted from the diagnosis community, called possible conflicts, in order to both improve the computational efficiency of damage estimation, and formulate a damage estimation approach that is inherently distributed. Local state estimates are combined into a global state estimate from which prediction is performed. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the approach.

  3. Estimating Power System Dynamic States Using Extended Kalman Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jaroslaw

    2014-10-31

    Abstract—The state estimation tools which are currently deployed in power system control rooms are based on a steady state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper investigates the application of Extended Kalman Filtering techniques for estimating dynamic states in the state estimation process. The new formulated “dynamic state estimation” includes true system dynamics reflected in differential equations, not like previously proposed “dynamic state estimation” which only considers the time-variant snapshots based on steady state modeling. This newmore » dynamic state estimation using Extended Kalman Filter has been successfully tested on a multi-machine system. Sensitivity studies with respect to noise levels, sampling rates, model errors, and parameter errors are presented as well to illustrate the robust performance of the developed dynamic state estimation process.« less

  4. Event-Based $H_\\infty $ State Estimation for Time-Varying Stochastic Dynamical Networks With State- and Disturbance-Dependent Noises.

    PubMed

    Sheng, Li; Wang, Zidong; Zou, Lei; Alsaadi, Fuad E

    2017-10-01

    In this paper, the event-based finite-horizon H ∞ state estimation problem is investigated for a class of discrete time-varying stochastic dynamical networks with state- and disturbance-dependent noises [also called (x,v) -dependent noises]. An event-triggered scheme is proposed to decrease the frequency of the data transmission between the sensors and the estimator, where the signal is transmitted only when certain conditions are satisfied. The purpose of the problem addressed is to design a time-varying state estimator in order to estimate the network states through available output measurements. By employing the completing-the-square technique and the stochastic analysis approach, sufficient conditions are established to ensure that the error dynamics of the state estimation satisfies a prescribed H ∞ performance constraint over a finite horizon. The desired estimator parameters can be designed via solving coupled backward recursive Riccati difference equations. Finally, a numerical example is exploited to demonstrate the effectiveness of the developed state estimation scheme.

  5. Multilevel model to estimate county-level untreated dental caries among US children aged 6-9years using the National Health and Nutrition Examination Survey.

    PubMed

    Lin, Mei; Zhang, Xingyou; Holt, James B; Robison, Valerie; Li, Chien-Hsun; Griffin, Susan O

    2018-06-01

    Because conducting population-based oral health screening is resource intensive, oral health data at small-area levels (e.g., county-level) are not commonly available. We applied the multilevel logistic regression and poststratification method to estimate county-level prevalence of untreated dental caries among children aged 6-9years in the United States using data from the National Health and Nutrition Examination Survey (NHANES) 2005-2010 linked with various area-level data at census tract, county and state levels. We validated model-based national estimates against direct estimates from NHANES. We also compared model-based estimates with direct estimates from select State Oral Health Surveys (SOHS) at state and county levels. The model with individual-level covariates only and the model with individual-, census tract- and county-level covariates explained 7.2% and 96.3% respectively of overall county-level variation in untreated caries. Model-based county-level prevalence estimates ranged from 4.9% to 65.2% with median of 22.1%. The model-based national estimate (19.9%) matched the NHANES direct estimate (19.8%). We found significantly positive correlations between model-based estimates for 8-year-olds and direct estimates from the third-grade State Oral Health Surveys (SOHS) at state level for 34 states (Pearson coefficient: 0.54, P=0.001) and SOHS estimates at county level for 53 New York counties (Pearson coefficient: 0.38, P=0.006). This methodology could be a useful tool to characterize county-level disparities in untreated dental caries among children aged 6-9years and complement oral health surveillance to inform public health programs especially when local-level data are not available although the lack of external validation due to data unavailability should be acknowledged. Published by Elsevier Inc.

  6. Real-time state estimation in a flight simulator using fNIRS.

    PubMed

    Gateau, Thibault; Durantin, Gautier; Lancelot, Francois; Scannella, Sebastien; Dehais, Frederic

    2015-01-01

    Working memory is a key executive function for flying an aircraft. This function is particularly critical when pilots have to recall series of air traffic control instructions. However, working memory limitations may jeopardize flight safety. Since the functional near-infrared spectroscopy (fNIRS) method seems promising for assessing working memory load, our objective is to implement an on-line fNIRS-based inference system that integrates two complementary estimators. The first estimator is a real-time state estimation MACD-based algorithm dedicated to identifying the pilot's instantaneous mental state (not-on-task vs. on-task). It does not require a calibration process to perform its estimation. The second estimator is an on-line SVM-based classifier that is able to discriminate task difficulty (low working memory load vs. high working memory load). These two estimators were tested with 19 pilots who were placed in a realistic flight simulator and were asked to recall air traffic control instructions. We found that the estimated pilot's mental state matched significantly better than chance with the pilot's real state (62% global accuracy, 58% specificity, and 72% sensitivity). The second estimator, dedicated to assessing single trial working memory loads, led to 80% classification accuracy, 72% specificity, and 89% sensitivity. These two estimators establish reusable blocks for further fNIRS-based passive brain computer interface development.

  7. Vehicle Lateral State Estimation Based on Measured Tyre Forces

    PubMed Central

    Tuononen, Ari J.

    2009-01-01

    Future active safety systems need more accurate information about the state of vehicles. This article proposes a method to evaluate the lateral state of a vehicle based on measured tyre forces. The tyre forces of two tyres are estimated from optically measured tyre carcass deflections and transmitted wirelessly to the vehicle body. The two remaining tyres are so-called virtual tyre sensors, the forces of which are calculated from the real tyre sensor estimates. The Kalman filter estimator for lateral vehicle state based on measured tyre forces is presented, together with a simple method to define adaptive measurement error covariance depending on the driving condition of the vehicle. The estimated yaw rate and lateral velocity are compared with the validation sensor measurements. PMID:22291535

  8. Real-Time State Estimation in a Flight Simulator Using fNIRS

    PubMed Central

    Gateau, Thibault; Durantin, Gautier; Lancelot, Francois; Scannella, Sebastien; Dehais, Frederic

    2015-01-01

    Working memory is a key executive function for flying an aircraft. This function is particularly critical when pilots have to recall series of air traffic control instructions. However, working memory limitations may jeopardize flight safety. Since the functional near-infrared spectroscopy (fNIRS) method seems promising for assessing working memory load, our objective is to implement an on-line fNIRS-based inference system that integrates two complementary estimators. The first estimator is a real-time state estimation MACD-based algorithm dedicated to identifying the pilot’s instantaneous mental state (not-on-task vs. on-task). It does not require a calibration process to perform its estimation. The second estimator is an on-line SVM-based classifier that is able to discriminate task difficulty (low working memory load vs. high working memory load). These two estimators were tested with 19 pilots who were placed in a realistic flight simulator and were asked to recall air traffic control instructions. We found that the estimated pilot’s mental state matched significantly better than chance with the pilot’s real state (62% global accuracy, 58% specificity, and 72% sensitivity). The second estimator, dedicated to assessing single trial working memory loads, led to 80% classification accuracy, 72% specificity, and 89% sensitivity. These two estimators establish reusable blocks for further fNIRS-based passive brain computer interface development. PMID:25816347

  9. H∞ state estimation of stochastic memristor-based neural networks with time-varying delays.

    PubMed

    Bao, Haibo; Cao, Jinde; Kurths, Jürgen; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    This paper addresses the problem of H ∞ state estimation for a class of stochastic memristor-based neural networks with time-varying delays. Under the framework of Filippov solution, the stochastic memristor-based neural networks are transformed into systems with interval parameters. The present paper is the first to investigate the H ∞ state estimation problem for continuous-time Itô-type stochastic memristor-based neural networks. By means of Lyapunov functionals and some stochastic technique, sufficient conditions are derived to ensure that the estimation error system is asymptotically stable in the mean square with a prescribed H ∞ performance. An explicit expression of the state estimator gain is given in terms of linear matrix inequalities (LMIs). Compared with other results, our results reduce control gain and control cost effectively. Finally, numerical simulations are provided to demonstrate the efficiency of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. A physics-based fractional order model and state of energy estimation for lithium ion batteries. Part II: Parameter identification and state of energy estimation for LiFePO4 battery

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Pan, Ke; Fan, Guodong; Lu, Rengui; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello

    2017-11-01

    State of energy (SOE) is an important index for the electrochemical energy storage system in electric vehicles. In this paper, a robust state of energy estimation method in combination with a physical model parameter identification method is proposed to achieve accurate battery state estimation at different operating conditions and different aging stages. A physics-based fractional order model with variable solid-state diffusivity (FOM-VSSD) is used to characterize the dynamic performance of a LiFePO4/graphite battery. In order to update the model parameter automatically at different aging stages, a multi-step model parameter identification method based on the lexicographic optimization is especially designed for the electric vehicle operating conditions. As the battery available energy changes with different applied load current profiles, the relationship between the remaining energy loss and the state of charge, the average current as well as the average squared current is modeled. The SOE with different operating conditions and different aging stages are estimated based on an adaptive fractional order extended Kalman filter (AFEKF). Validation results show that the overall SOE estimation error is within ±5%. The proposed method is suitable for the electric vehicle online applications.

  11. State Estimation for Tensegrity Robots

    NASA Technical Reports Server (NTRS)

    Caluwaerts, Ken; Bruce, Jonathan; Friesen, Jeffrey M.; Sunspiral, Vytas

    2016-01-01

    Tensegrity robots are a class of compliant robots that have many desirable traits when designing mass efficient systems that must interact with uncertain environments. Various promising control approaches have been proposed for tensegrity systems in simulation. Unfortunately, state estimation methods for tensegrity robots have not yet been thoroughly studied. In this paper, we present the design and evaluation of a state estimator for tensegrity robots. This state estimator will enable existing and future control algorithms to transfer from simulation to hardware. Our approach is based on the unscented Kalman filter (UKF) and combines inertial measurements, ultra wideband time-of-flight ranging measurements, and actuator state information. We evaluate the effectiveness of our method on the SUPERball, a tensegrity based planetary exploration robotic prototype. In particular, we conduct tests for evaluating both the robot's success in estimating global position in relation to fixed ranging base stations during rolling maneuvers as well as local behavior due to small-amplitude deformations induced by cable actuation.

  12. Relative-Error-Covariance Algorithms

    NASA Technical Reports Server (NTRS)

    Bierman, Gerald J.; Wolff, Peter J.

    1991-01-01

    Two algorithms compute error covariance of difference between optimal estimates, based on data acquired during overlapping or disjoint intervals, of state of discrete linear system. Provides quantitative measure of mutual consistency or inconsistency of estimates of states. Relative-error-covariance concept applied, to determine degree of correlation between trajectories calculated from two overlapping sets of measurements and construct real-time test of consistency of state estimates based upon recently acquired data.

  13. Real-time hydraulic interval state estimation for water transport networks: a case study

    NASA Astrophysics Data System (ADS)

    Vrachimis, Stelios G.; Eliades, Demetrios G.; Polycarpou, Marios M.

    2018-03-01

    Hydraulic state estimation in water distribution networks is the task of estimating water flows and pressures in the pipes and nodes of the network based on some sensor measurements. This requires a model of the network as well as knowledge of demand outflow and tank water levels. Due to modeling and measurement uncertainty, standard state estimation may result in inaccurate hydraulic estimates without any measure of the estimation error. This paper describes a methodology for generating hydraulic state bounding estimates based on interval bounds on the parametric and measurement uncertainties. The estimation error bounds provided by this method can be applied to determine the existence of unaccounted-for water in water distribution networks. As a case study, the method is applied to a modified transport network in Cyprus, using actual data in real time.

  14. An Optimization-Based State Estimatioin Framework for Large-Scale Natural Gas Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalving, Jordan; Zavala, Victor M.

    We propose an optimization-based state estimation framework to track internal spacetime flow and pressure profiles of natural gas networks during dynamic transients. We find that the estimation problem is ill-posed (because of the infinite-dimensional nature of the states) and that this leads to instability of the estimator when short estimation horizons are used. To circumvent this issue, we propose moving horizon strategies that incorporate prior information. In particular, we propose a strategy that initializes the prior using steady-state information and compare its performance against a strategy that does not initialize the prior. We find that both strategies are capable ofmore » tracking the state profiles but we also find that superior performance is obtained with steady-state prior initialization. We also find that, under the proposed framework, pressure sensor information at junctions is sufficient to track the state profiles. We also derive approximate transport models and show that some of these can be used to achieve significant computational speed-ups without sacrificing estimation performance. We show that the estimator can be easily implemented in the graph-based modeling framework Plasmo.jl and use a multipipeline network study to demonstrate the developments.« less

  15. Traffic safety facts 1996 : state alcohol estimates

    DOT National Transportation Integrated Search

    1998-01-01

    The following data provide estimates of alcohol involvement in fatal crashes for the United States and individually for the 50 state, the District of Columbia, and Puerto Rico (not included in the national totals). These estimates are based on data f...

  16. Soft sensor based composition estimation and controller design for an ideal reactive distillation column.

    PubMed

    Vijaya Raghavan, S R; Radhakrishnan, T K; Srinivasan, K

    2011-01-01

    In this research work, the authors have presented the design and implementation of a recurrent neural network (RNN) based inferential state estimation scheme for an ideal reactive distillation column. Decentralized PI controllers are designed and implemented. The reactive distillation process is controlled by controlling the composition which has been estimated from the available temperature measurements using a type of RNN called Time Delayed Neural Network (TDNN). The performance of the RNN based state estimation scheme under both open loop and closed loop have been compared with a standard Extended Kalman filter (EKF) and a Feed forward Neural Network (FNN). The online training/correction has been done for both RNN and FNN schemes for every ten minutes whenever new un-trained measurements are available from a conventional composition analyzer. The performance of RNN shows better state estimation capability as compared to other state estimation schemes in terms of qualitative and quantitative performance indices. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, J.

    Based on a compilation of three estimation approaches, the total nationwide population of wild pigs in the United States numbers approximately 6.3 million animals, with that total estimate ranging from 4.4 up to 11.3 million animals. The majority of these numbers (99 percent), which were encompassed by ten states (i.e., Alabama, Arkansas, California, Florida, Georgia, Louisiana, Mississippi, Oklahoma, South Carolina and Texas), were based on defined estimation methodologies (e.g., density estimates correlated to the total potential suitable wild pig habitat statewide, statewide harvest percentages, statewide agency surveys regarding wild pig distribution and numbers). In contrast to the pre-1990 estimates, nonemore » of these more recent efforts, collectively encompassing 99 percent of the total, were based solely on anecdotal information or speculation. To that end, one can defensibly state that the wild pigs found in the United States number in the millions of animals, with the nationwide population estimated to arguably vary from about four million up to about eleven million individuals.« less

  18. State of Charge estimation of lithium ion battery based on extended Kalman filtering algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Feng, Yiming; Pan, Binbiao; Wan, Renzhuo; Wang, Jun

    2017-08-01

    Accurate estimation of state-of-charge (SOC) for lithium ion battery is crucial for real-time diagnosis and prognosis in green energy vehicles. In this paper, a state space model of the battery based on Thevenin model is adopted. The strategy of estimating state of charge (SOC) based on extended Kalman fil-ter is presented, as well as to combine with ampere-hour counting (AH) and open circuit voltage (OCV) methods. The comparison between simulation and experiments indicates that the model’s performance matches well with that of lithium ion battery. The algorithm of extended Kalman filter keeps a good accura-cy precision and less dependent on its initial value in full range of SOC, which is proved to be suitable for online SOC estimation.

  19. Using satellite image-based maps and ground inventory data to estimate the area of the remaining Atlantic forest in the Brazilian state of Santa Catarina

    Treesearch

    Alexander C. Vibrans; Ronald E. McRoberts; Paolo Moser; Adilson L. Nicoletti

    2013-01-01

    Estimation of large area forest attributes, such as area of forest cover, from remote sensing-based maps is challenging because of image processing, logistical, and data acquisition constraints. In addition, techniques for estimating and compensating for misclassification and estimating uncertainty are often unfamiliar. Forest area for the state of Santa Catarina in...

  20. Application of wavelet-based multi-model Kalman filters to real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Chou, Chien-Ming; Wang, Ru-Yih

    2004-04-01

    This paper presents the application of a multimodel method using a wavelet-based Kalman filter (WKF) bank to simultaneously estimate decomposed state variables and unknown parameters for real-time flood forecasting. Applying the Haar wavelet transform alters the state vector and input vector of the state space. In this way, an overall detail plus approximation describes each new state vector and input vector, which allows the WKF to simultaneously estimate and decompose state variables. The wavelet-based multimodel Kalman filter (WMKF) is a multimodel Kalman filter (MKF), in which the Kalman filter has been substituted for a WKF. The WMKF then obtains M estimated state vectors. Next, the M state-estimates, each of which is weighted by its possibility that is also determined on-line, are combined to form an optimal estimate. Validations conducted for the Wu-Tu watershed, a small watershed in Taiwan, have demonstrated that the method is effective because of the decomposition of wavelet transform, the adaptation of the time-varying Kalman filter and the characteristics of the multimodel method. Validation results also reveal that the resulting method enhances the accuracy of the runoff prediction of the rainfall-runoff process in the Wu-Tu watershed.

  1. Extended active disturbance rejection controller

    NASA Technical Reports Server (NTRS)

    Tian, Gang (Inventor); Gao, Zhiqiang (Inventor)

    2012-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  2. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2016-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  3. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Tian, Gang (Inventor); Gao, Zhiqiang (Inventor)

    2014-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  4. Quantum State Tomography via Linear Regression Estimation

    PubMed Central

    Qi, Bo; Hou, Zhibo; Li, Li; Dong, Daoyi; Xiang, Guoyong; Guo, Guangcan

    2013-01-01

    A simple yet efficient state reconstruction algorithm of linear regression estimation (LRE) is presented for quantum state tomography. In this method, quantum state reconstruction is converted into a parameter estimation problem of a linear regression model and the least-squares method is employed to estimate the unknown parameters. An asymptotic mean squared error (MSE) upper bound for all possible states to be estimated is given analytically, which depends explicitly upon the involved measurement bases. This analytical MSE upper bound can guide one to choose optimal measurement sets. The computational complexity of LRE is O(d4) where d is the dimension of the quantum state. Numerical examples show that LRE is much faster than maximum-likelihood estimation for quantum state tomography. PMID:24336519

  5. A spline-based parameter and state estimation technique for static models of elastic surfaces

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Daniel, P. L.; Armstrong, E. S.

    1983-01-01

    Parameter and state estimation techniques for an elliptic system arising in a developmental model for the antenna surface in the Maypole Hoop/Column antenna are discussed. A computational algorithm based on spline approximations for the state and elastic parameters is given and numerical results obtained using this algorithm are summarized.

  6. Online Estimation of Model Parameters of Lithium-Ion Battery Using the Cubature Kalman Filter

    NASA Astrophysics Data System (ADS)

    Tian, Yong; Yan, Rusheng; Tian, Jindong; Zhou, Shijie; Hu, Chao

    2017-11-01

    Online estimation of state variables, including state-of-charge (SOC), state-of-energy (SOE) and state-of-health (SOH) is greatly crucial for the operation safety of lithium-ion battery. In order to improve estimation accuracy of these state variables, a precise battery model needs to be established. As the lithium-ion battery is a nonlinear time-varying system, the model parameters significantly vary with many factors, such as ambient temperature, discharge rate and depth of discharge, etc. This paper presents an online estimation method of model parameters for lithium-ion battery based on the cubature Kalman filter. The commonly used first-order resistor-capacitor equivalent circuit model is selected as the battery model, based on which the model parameters are estimated online. Experimental results show that the presented method can accurately track the parameters variation at different scenarios.

  7. Minimax estimation of qubit states with Bures risk

    NASA Astrophysics Data System (ADS)

    Acharya, Anirudh; Guţă, Mădălin

    2018-04-01

    The central problem of quantum statistics is to devise measurement schemes for the estimation of an unknown state, given an ensemble of n independent identically prepared systems. For locally quadratic loss functions, the risk of standard procedures has the usual scaling of 1/n. However, it has been noticed that for fidelity based metrics such as the Bures distance, the risk of conventional (non-adaptive) qubit tomography schemes scales as 1/\\sqrt{n} for states close to the boundary of the Bloch sphere. Several proposed estimators appear to improve this scaling, and our goal is to analyse the problem from the perspective of the maximum risk over all states. We propose qubit estimation strategies based on separate adaptive measurements, and collective measurements, that achieve 1/n scalings for the maximum Bures risk. The estimator involving local measurements uses a fixed fraction of the available resource n to estimate the Bloch vector direction; the length of the Bloch vector is then estimated from the remaining copies by measuring in the estimator eigenbasis. The estimator based on collective measurements uses local asymptotic normality techniques which allows us to derive upper and lower bounds to its maximum Bures risk. We also discuss how to construct a minimax optimal estimator in this setup. Finally, we consider quantum relative entropy and show that the risk of the estimator based on collective measurements achieves a rate O(n-1log n) under this loss function. Furthermore, we show that no estimator can achieve faster rates, in particular the ‘standard’ rate n ‑1.

  8. Sliding mode control based on Kalman filter dynamic estimation of battery SOC

    NASA Astrophysics Data System (ADS)

    He, Dongmeia; Hou, Enguang; Qiao, Xin; Liu, Guangmin

    2018-06-01

    Lithium-ion battery charge state of the accurate and rapid estimation of battery management system is the key technology. In this paper, an exponentially reaching law sliding-mode variable structure control algorithm based on Kalman filter is proposed to estimate the state of charge of Li-ion battery for the dynamic nonlinear system. The RC equivalent circuit model is established, and the model equation with specific structure is given. The proposed Kalman filter sliding mode structure is used to estimate the state of charge of the battery in the battery model, and the jitter effect can be avoided and the estimation performance can be improved. The simulation results show that the proposed Kalman filter sliding mode control has good accuracy in estimating the state of charge of the battery compared with the ordinary Kalman filter, and the error range is within 3%.

  9. Dominant root locus in state estimator design for material flow processes: A case study of hot strip rolling.

    PubMed

    Fišer, Jaromír; Zítek, Pavel; Skopec, Pavel; Knobloch, Jan; Vyhlídal, Tomáš

    2017-05-01

    The purpose of the paper is to achieve a constrained estimation of process state variables using the anisochronic state observer tuned by the dominant root locus technique. The anisochronic state observer is based on the state-space time delay model of the process. Moreover the process model is identified not only as delayed but also as non-linear. This model is developed to describe a material flow process. The root locus technique combined with the magnitude optimum method is utilized to investigate the estimation process. Resulting dominant roots location serves as a measure of estimation process performance. The higher the dominant (natural) frequency in the leftmost position of the complex plane the more enhanced performance with good robustness is achieved. Also the model based observer control methodology for material flow processes is provided by means of the separation principle. For demonstration purposes, the computer-based anisochronic state observer is applied to the strip temperatures estimation in the hot strip finishing mill composed of seven stands. This application was the original motivation to the presented research. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Anomaly Monitoring Method for Key Components of Satellite

    PubMed Central

    Fan, Linjun; Xiao, Weidong; Tang, Jun

    2014-01-01

    This paper presented a fault diagnosis method for key components of satellite, called Anomaly Monitoring Method (AMM), which is made up of state estimation based on Multivariate State Estimation Techniques (MSET) and anomaly detection based on Sequential Probability Ratio Test (SPRT). On the basis of analysis failure of lithium-ion batteries (LIBs), we divided the failure of LIBs into internal failure, external failure, and thermal runaway and selected electrolyte resistance (R e) and the charge transfer resistance (R ct) as the key parameters of state estimation. Then, through the actual in-orbit telemetry data of the key parameters of LIBs, we obtained the actual residual value (R X) and healthy residual value (R L) of LIBs based on the state estimation of MSET, and then, through the residual values (R X and R L) of LIBs, we detected the anomaly states based on the anomaly detection of SPRT. Lastly, we conducted an example of AMM for LIBs, and, according to the results of AMM, we validated the feasibility and effectiveness of AMM by comparing it with the results of threshold detective method (TDM). PMID:24587703

  11. A stochastic approach to online vehicle state and parameter estimation, with application to inertia estimation for rollover prevention and battery charge/health estimation.

    DOT National Transportation Integrated Search

    2013-08-01

    This report summarizes research conducted at Penn State, Virginia Tech, and West Virginia University on the development of algorithms based on the generalized polynomial chaos (gpc) expansion for the online estimation of automotive and transportation...

  12. A weight modification sequential method for VSC-MTDC power system state estimation

    NASA Astrophysics Data System (ADS)

    Yang, Xiaonan; Zhang, Hao; Li, Qiang; Guo, Ziming; Zhao, Kun; Li, Xinpeng; Han, Feng

    2017-06-01

    This paper presents an effective sequential approach based on weight modification for VSC-MTDC power system state estimation, called weight modification sequential method. The proposed approach simplifies the AC/DC system state estimation algorithm through modifying the weight of state quantity to keep the matrix dimension constant. The weight modification sequential method can also make the VSC-MTDC system state estimation calculation results more ccurate and increase the speed of calculation. The effectiveness of the proposed weight modification sequential method is demonstrated and validated in modified IEEE 14 bus system.

  13. Quantum state tomography and fidelity estimation via Phaselift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yiping; Liu, Huan; Zhao, Qing, E-mail: qzhaoyuping@bit.edu.cn

    Experiments of multi-photon entanglement have been performed by several groups. Obviously, an increase on the photon number for fidelity estimation and quantum state tomography causes a dramatic increase in the elements of the positive operator valued measures (POVMs), which results in a great consumption of time in measurements. In practice, we wish to obtain a good estimation of fidelity and quantum states through as few measurements as possible for multi-photon entanglement. Phaselift provides such a chance to estimate fidelity for entangling states based on less data. In this paper, we would like to show how the Phaselift works for sixmore » qubits in comparison to the data given by Pan’s group, i.e., we use a fraction of the data as input to estimate the rest of the data through the obtained density matrix, and thus goes beyond the simple fidelity analysis. The fidelity bound is also provided for general Schrödinger Cat state. Based on the fidelity bound, we propose an optimal measurement approach which could both reduce the copies and keep the fidelity bound gap small. The results demonstrate that the Phaselift can help decrease the measured elements of POVMs for six qubits. Our conclusion is based on the prior knowledge that a pure state is the target state prepared by experiments.« less

  14. Using State Estimation Residuals to Detect Abnormal SCADA Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jian; Chen, Yousu; Huang, Zhenyu

    2010-04-30

    Detection of abnormal supervisory control and data acquisition (SCADA) data is critically important for safe and secure operation of modern power systems. In this paper, a methodology of abnormal SCADA data detection based on state estimation residuals is presented. Preceded with a brief overview of outlier detection methods and bad SCADA data detection for state estimation, the framework of the proposed methodology is described. Instead of using original SCADA measurements as the bad data sources, the residuals calculated based on the results of the state estimator are used as the input for the outlier detection algorithm. The BACON algorithm ismore » applied to the outlier detection task. The IEEE 118-bus system is used as a test base to evaluate the effectiveness of the proposed methodology. The accuracy of the BACON method is compared with that of the 3-σ method for the simulated SCADA measurements and residuals.« less

  15. Study on the State of Health Detection of Li-ion Power Batteries Based on Adaptive Unscented Kalman Filters

    NASA Astrophysics Data System (ADS)

    Yan, Xiangwu; Deng, Haoran; Wang, Ling; Guo, Qi

    2017-12-01

    It is essential to estimate the state of charge (SOC) and state of health (SOH) of the monomer battery in the electric vehicle li-ion power battery accurately for extending the li-ion power battery life. Based on the battery Thevenin equivalent circuit model, the paper uses adaptive unscented Kalman filter (AUKF) to estimate the inner ohmic resistance and the state of charge in real time, according to the function between the inner ohmic resistance and the state of health, the state of health can be estimated in real time. The battery charged and discharged experiments were done under two different conditions to verify the feasibility and accuracy of this method.

  16. Agreement and repeatability of vascular reactivity estimates based on a breath-hold task and a resting state scan.

    PubMed

    Lipp, Ilona; Murphy, Kevin; Caseras, Xavier; Wise, Richard G

    2015-06-01

    FMRI BOLD responses to changes in neural activity are influenced by the reactivity of the vasculature. By complementing a task-related BOLD acquisition with a vascular reactivity measure obtained through breath-holding or hypercapnia, this unwanted variance can be statistically reduced in the BOLD responses of interest. Recently, it has been suggested that vascular reactivity can also be estimated using a resting state scan. This study aimed to compare three breath-hold based analysis approaches (block design, sine-cosine regressor and CO2 regressor) and a resting state approach (CO2 regressor) to measure vascular reactivity. We tested BOLD variance explained by the model and repeatability of the measures. Fifteen healthy participants underwent a breath-hold task and a resting state scan with end-tidal CO2 being recorded during both. Vascular reactivity was defined as CO2-related BOLD percent signal change/mmHg change in CO2. Maps and regional vascular reactivity estimates showed high repeatability when the breath-hold task was used. Repeatability and variance explained by the CO2 trace regressor were lower for the resting state data based approach, which resulted in highly variable measures of vascular reactivity. We conclude that breath-hold based vascular reactivity estimations are more repeatable than resting-based estimates, and that there are limitations with replacing breath-hold scans by resting state scans for vascular reactivity assessment. Copyright © 2015. Published by Elsevier Inc.

  17. Agreement and repeatability of vascular reactivity estimates based on a breath-hold task and a resting state scan

    PubMed Central

    Lipp, Ilona; Murphy, Kevin; Caseras, Xavier; Wise, Richard G.

    2015-01-01

    FMRI BOLD responses to changes in neural activity are influenced by the reactivity of the vasculature. By complementing a task-related BOLD acquisition with a vascular reactivity measure obtained through breath-holding or hypercapnia, this unwanted variance can be statistically reduced in the BOLD responses of interest. Recently, it has been suggested that vascular reactivity can also be estimated using a resting state scan. This study aimed to compare three breath-hold based analysis approaches (block design, sine–cosine regressor and CO2 regressor) and a resting state approach (CO2 regressor) to measure vascular reactivity. We tested BOLD variance explained by the model and repeatability of the measures. Fifteen healthy participants underwent a breath-hold task and a resting state scan with end-tidal CO2 being recorded during both. Vascular reactivity was defined as CO2-related BOLD percent signal change/mm Hg change in CO2. Maps and regional vascular reactivity estimates showed high repeatability when the breath-hold task was used. Repeatability and variance explained by the CO2 trace regressor were lower for the resting state data based approach, which resulted in highly variable measures of vascular reactivity. We conclude that breath-hold based vascular reactivity estimations are more repeatable than resting-based estimates, and that there are limitations with replacing breath-hold scans by resting state scans for vascular reactivity assessment. PMID:25795342

  18. Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Tseng, King Jet; Wai, Nyunt; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2016-11-01

    Reliable state estimate depends largely on an accurate battery model. However, the parameters of battery model are time varying with operating condition variation and battery aging. The existing co-estimation methods address the model uncertainty by integrating the online model identification with state estimate and have shown improved accuracy. However, the cross interference may arise from the integrated framework to compromise numerical stability and accuracy. Thus this paper proposes the decoupling of model identification and state estimate to eliminate the possibility of cross interference. The model parameters are online adapted with the recursive least squares (RLS) method, based on which a novel joint estimator based on extended Kalman Filter (EKF) is formulated to estimate the state of charge (SOC) and capacity concurrently. The proposed joint estimator effectively compresses the filter order which leads to substantial improvement in the computational efficiency and numerical stability. Lab scale experiment on vanadium redox flow battery shows that the proposed method is highly authentic with good robustness to varying operating conditions and battery aging. The proposed method is further compared with some existing methods and shown to be superior in terms of accuracy, convergence speed, and computational cost.

  19. An Empirical State Error Covariance Matrix for the Weighted Least Squares Estimation Method

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2011-01-01

    State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the un-certainty in the estimated states. By a reinterpretation of the equations involved in the weighted least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. This proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. Results based on the proposed technique will be presented for a simple, two observer, measurement error only problem.

  20. Dynamic state estimation assisted power system monitoring and protection

    NASA Astrophysics Data System (ADS)

    Cui, Yinan

    The advent of phasor measurement units (PMUs) has unlocked several novel methods to monitor, control, and protect bulk electric power systems. This thesis introduces the concept of "Dynamic State Estimation" (DSE), aided by PMUs, for wide-area monitoring and protection of power systems. Unlike traditional State Estimation where algebraic variables are estimated from system measurements, DSE refers to a process to estimate the dynamic states associated with synchronous generators. This thesis first establishes the viability of using particle filtering as a technique to perform DSE in power systems. The utility of DSE for protection and wide-area monitoring are then shown as potential novel applications. The work is presented as a collection of several journal and conference papers. In the first paper, we present a particle filtering approach to dynamically estimate the states of a synchronous generator in a multi-machine setting considering the excitation and prime mover control systems. The second paper proposes an improved out-of-step detection method for generators by means of angular difference. The generator's rotor angle is estimated with a particle filter-based dynamic state estimator and the angular separation is then calculated by combining the raw local phasor measurements with this estimate. The third paper introduces a particle filter-based dual estimation method for tracking the dynamic states of a synchronous generator. It considers the situation where the field voltage measurements are not readily available. The particle filter is modified to treat the field voltage as an unknown input which is sequentially estimated along with the other dynamic states. The fourth paper proposes a novel framework for event detection based on energy functions. The key idea is that any event in the system will leave a signature in WAMS data-sets. It is shown that signatures for four broad classes of disturbance events are buried in the components that constitute the energy function for the system. This establishes a direct correspondence (or mapping) between an event and certain component(s) of the energy function. The last paper considers the dynamic latency effect when the measurements and estimated dynamics are transmitted from remote ends to a centralized location through the networks.

  1. Pediatric Price Transparency: Still Opaque With Opportunities for Improvement.

    PubMed

    Faherty, Laura J; Wong, Charlene A; Feingold, Jordyn; Li, Joan; Town, Robert; Fieldston, Evan; Werner, Rachel M

    2017-10-01

    Price transparency is gaining importance as families' portion of health care costs rise. We describe (1) online price transparency data for pediatric care on children's hospital Web sites and state-based price transparency Web sites, and (2) the consumer experience of obtaining an out-of-pocket estimate from children's hospitals for a common procedure. From 2015 to 2016, we audited 45 children's hospital Web sites and 38 state-based price transparency Web sites, describing availability and characteristics of health care prices and personalized cost estimate tools. Using secret shopper methodology, we called children's hospitals and submitted online estimate requests posing as a self-paying family requesting an out-of-pocket estimate for a tonsillectomy-adenoidectomy. Eight children's hospital Web sites (18%) listed prices. Twelve (27%) provided personalized cost estimate tool (online form n = 5 and/or phone number n = 9). All 9 hospitals with a phone number for estimates provided the estimated patient liability for a tonsillectomy-adenoidectomy (mean $6008, range $2622-$9840). Of the remaining 36 hospitals without a dedicated price estimate phone number, 21 (58%) provided estimates (mean $7144, range $1200-$15 360). Two of 4 hospitals with online forms provided estimates. Fifteen (39%) state-based Web sites distinguished between prices for pediatric and adult care. One had a personalized cost estimate tool. Meaningful prices for pediatric care were not widely available online through children's hospital or state-based price transparency Web sites. A phone line or online form for price estimates were effective strategies for hospitals to provide out-of-pocket price information. Opportunities exist to improve pediatric price transparency. Copyright © 2017 by the American Academy of Pediatrics.

  2. Accurate Initial State Estimation in a Monocular Visual–Inertial SLAM System

    PubMed Central

    Chen, Jing; Zhou, Zixiang; Leng, Zhen; Fan, Lei

    2018-01-01

    The fusion of monocular visual and inertial cues has become popular in robotics, unmanned vehicles and augmented reality fields. Recent results have shown that optimization-based fusion strategies outperform filtering strategies. Robust state estimation is the core capability for optimization-based visual–inertial Simultaneous Localization and Mapping (SLAM) systems. As a result of the nonlinearity of visual–inertial systems, the performance heavily relies on the accuracy of initial values (visual scale, gravity, velocity and Inertial Measurement Unit (IMU) biases). Therefore, this paper aims to propose a more accurate initial state estimation method. On the basis of the known gravity magnitude, we propose an approach to refine the estimated gravity vector by optimizing the two-dimensional (2D) error state on its tangent space, then estimate the accelerometer bias separately, which is difficult to be distinguished under small rotation. Additionally, we propose an automatic termination criterion to determine when the initialization is successful. Once the initial state estimation converges, the initial estimated values are used to launch the nonlinear tightly coupled visual–inertial SLAM system. We have tested our approaches with the public EuRoC dataset. Experimental results show that the proposed methods can achieve good initial state estimation, the gravity refinement approach is able to efficiently speed up the convergence process of the estimated gravity vector, and the termination criterion performs well. PMID:29419751

  3. Modular neuron-based body estimation: maintaining consistency over different limbs, modalities, and frames of reference

    PubMed Central

    Ehrenfeld, Stephan; Herbort, Oliver; Butz, Martin V.

    2013-01-01

    This paper addresses the question of how the brain maintains a probabilistic body state estimate over time from a modeling perspective. The neural Modular Modality Frame (nMMF) model simulates such a body state estimation process by continuously integrating redundant, multimodal body state information sources. The body state estimate itself is distributed over separate, but bidirectionally interacting modules. nMMF compares the incoming sensory and present body state information across the interacting modules and fuses the information sources accordingly. At the same time, nMMF enforces body state estimation consistency across the modules. nMMF is able to detect conflicting sensory information and to consequently decrease the influence of implausible sensor sources on the fly. In contrast to the previously published Modular Modality Frame (MMF) model, nMMF offers a biologically plausible neural implementation based on distributed, probabilistic population codes. Besides its neural plausibility, the neural encoding has the advantage of enabling (a) additional probabilistic information flow across the separate body state estimation modules and (b) the representation of arbitrary probability distributions of a body state. The results show that the neural estimates can detect and decrease the impact of false sensory information, can propagate conflicting information across modules, and can improve overall estimation accuracy due to additional module interactions. Even bodily illusions, such as the rubber hand illusion, can be simulated with nMMF. We conclude with an outlook on the potential of modeling human data and of invoking goal-directed behavioral control. PMID:24191151

  4. Coherence in quantum estimation

    NASA Astrophysics Data System (ADS)

    Giorda, Paolo; Allegra, Michele

    2018-01-01

    The geometry of quantum states provides a unifying framework for estimation processes based on quantum probes, and it establishes the ultimate bounds of the achievable precision. We show a relation between the statistical distance between infinitesimally close quantum states and the second order variation of the coherence of the optimal measurement basis with respect to the state of the probe. In quantum phase estimation protocols, this leads to propose coherence as the relevant resource that one has to engineer and control to optimize the estimation precision. Furthermore, the main object of the theory i.e. the symmetric logarithmic derivative, in many cases allows one to identify a proper factorization of the whole Hilbert space in two subsystems. The factorization allows one to discuss the role of coherence versus correlations in estimation protocols; to show how certain estimation processes can be completely or effectively described within a single-qubit subsystem; and to derive lower bounds for the scaling of the estimation precision with the number of probes used. We illustrate how the framework works for both noiseless and noisy estimation procedures, in particular those based on multi-qubit GHZ-states. Finally we succinctly analyze estimation protocols based on zero-temperature critical behavior. We identify the coherence that is at the heart of their efficiency, and we show how it exhibits the non-analyticities and scaling behavior proper of a large class of quantum phase transitions.

  5. Distributed State Estimation Using a Modified Partitioned Moving Horizon Strategy for Power Systems.

    PubMed

    Chen, Tengpeng; Foo, Yi Shyh Eddy; Ling, K V; Chen, Xuebing

    2017-10-11

    In this paper, a distributed state estimation method based on moving horizon estimation (MHE) is proposed for the large-scale power system state estimation. The proposed method partitions the power systems into several local areas with non-overlapping states. Unlike the centralized approach where all measurements are sent to a processing center, the proposed method distributes the state estimation task to the local processing centers where local measurements are collected. Inspired by the partitioned moving horizon estimation (PMHE) algorithm, each local area solves a smaller optimization problem to estimate its own local states by using local measurements and estimated results from its neighboring areas. In contrast with PMHE, the error from the process model is ignored in our method. The proposed modified PMHE (mPMHE) approach can also take constraints on states into account during the optimization process such that the influence of the outliers can be further mitigated. Simulation results on the IEEE 14-bus and 118-bus systems verify that our method achieves comparable state estimation accuracy but with a significant reduction in the overall computation load.

  6. Hypersonic entry vehicle state estimation using nonlinearity-based adaptive cubature Kalman filters

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Xin, Ming

    2017-05-01

    Guidance, navigation, and control of a hypersonic vehicle landing on the Mars rely on precise state feedback information, which is obtained from state estimation. The high uncertainty and nonlinearity of the entry dynamics make the estimation a very challenging problem. In this paper, a new adaptive cubature Kalman filter is proposed for state trajectory estimation of a hypersonic entry vehicle. This new adaptive estimation strategy is based on the measure of nonlinearity of the stochastic system. According to the severity of nonlinearity along the trajectory, the high degree cubature rule or the conventional third degree cubature rule is adaptively used in the cubature Kalman filter. This strategy has the benefit of attaining higher estimation accuracy only when necessary without causing excessive computation load. The simulation results demonstrate that the proposed adaptive filter exhibits better performance than the conventional third-degree cubature Kalman filter while maintaining the same performance as the uniform high degree cubature Kalman filter but with lower computation complexity.

  7. Current Pressure Transducer Application of Model-based Prognostics Using Steady State Conditions

    NASA Technical Reports Server (NTRS)

    Teubert, Christopher; Daigle, Matthew J.

    2014-01-01

    Prognostics is the process of predicting a system's future states, health degradation/wear, and remaining useful life (RUL). This information plays an important role in preventing failure, reducing downtime, scheduling maintenance, and improving system utility. Prognostics relies heavily on wear estimation. In some components, the sensors used to estimate wear may not be fast enough to capture brief transient states that are indicative of wear. For this reason it is beneficial to be capable of detecting and estimating the extent of component wear using steady-state measurements. This paper details a method for estimating component wear using steady-state measurements, describes how this is used to predict future states, and presents a case study of a current/pressure (I/P) Transducer. I/P Transducer nominal and off-nominal behaviors are characterized using a physics-based model, and validated against expected and observed component behavior. This model is used to map observed steady-state responses to corresponding fault parameter values in the form of a lookup table. This method was chosen because of its fast, efficient nature, and its ability to be applied to both linear and non-linear systems. Using measurements of the steady state output, and the lookup table, wear is estimated. A regression is used to estimate the wear propagation parameter and characterize the damage progression function, which are used to predict future states and the remaining useful life of the system.

  8. Assessing Child Lead Poisoning Case Ascertainment in the US, 1999-2010.

    PubMed

    Roberts, Eric M; Madrigal, Daniel; Valle, Jhaqueline; King, Galatea; Kite, Linda

    2017-05-01

    To compare prevalence estimates for blood lead level ≥10.0 μg/dL (elevated blood lead level [EBLL]) with numbers reported to the Centers for Disease Control and Prevention (CDC) for children 12 months to 5 years of age from 1999 to 2010 on a state-by-state basis. State-specific prevalence estimates were generated based on the continuous NHANES according to newly available statistical protocols. Counts of case reports were based on the 39 states (including the District of Columbia) reporting to the CDC Childhood Lead Poisoning Prevention Program during the study period. Analyses were conducted both including and excluding states and years of nonreporting to the CDC. Approximately 1.2 million cases of EBLL are believed to have occurred in this period, but 607 000 (50%) were reported to the CDC. Including only states and years for which reporting was complete, the reporting rate was 64%. Pediatric care providers in 23 of 39 reporting states identified fewer than half of their children with EBLL. Although the greatest numbers of reported cases were from the Northeast and Midwest, the greatest numbers based on prevalence estimates occurred in the South. In southern and western states engaged in reporting, roughly 3 times as many children with EBLL were missed than were diagnosed. Based on the best available estimates, undertesting of blood lead levels by pediatric care providers appears to be endemic in many states. Copyright © 2017 by the American Academy of Pediatrics.

  9. County-level estimates of nitrogen and phosphorus from commercial fertilizer for the Conterminous United States, 1987–2006

    USGS Publications Warehouse

    Gronberg, Jo Ann M.; Spahr, Norman E.

    2012-01-01

    The U.S. Geological Survey’s National Water-Quality Assessment program requires nutrient input for analysis of the national and regional assessment of water quality. Detailed information on nutrient inputs to the environment are needed to understand and address the many serious problems that arise from excess nutrients in the streams and groundwater of the Nation. This report updates estimated county-level farm and nonfarm nitrogen and phosphorus input from commercial fertilizer sales for the conterminous United States for 1987 through 2006. Estimates were calculated from the Association of American Plant Food Control Officials fertilizer sales data, Census of Agriculture fertilizer expenditures, and U.S. Census Bureau county population. A previous national approach for deriving farm and nonfarm fertilizer nutrient estimates was evaluated, and a revised method for selecting representative states to calculate national farm and nonfarm proportions was developed. A national approach was used to estimate farm and nonfarm fertilizer inputs because not all states distinguish between farm and nonfarm use, and the quality of fertilizer reporting varies from year to year. For states that distinguish between farm and nonfarm use, the spatial distribution of the ratios of nonfarm-to-total fertilizer estimates for nitrogen and phosphorus calculated using the national-based farm and nonfarm proportions were similar to the spatial distribution of the ratios generated using state-based farm and nonfarm proportions. In addition, the relative highs and lows in the temporal distribution of farm and nonfarm nitrogen and phosphorus input at the state level were maintained—the periods of high and low usage coincide between national- and state-based values. With a few exceptions, nonfarm nitrogen estimates were found to be reasonable when compared to the amounts that would result if the lawn application rates recommended by state and university agricultural agencies were used. Also, states with higher nonfarm-to-total fertilizer ratios for nitrogen and phosphorus tended to have higher urban land-use percentages.

  10. An ecoregional approach to the economic valuation of land- and water-based recreation in the United States

    Treesearch

    Gajana Bhat; John Bergsrom; R. Jeff Teasley

    1998-01-01

    This paper describes a framework for estimating the economic value of outdoor recreation across different ecoregions. Ten ecoregions in the continental United States were defined based on similarly functioning ecosystem characters. The individual travel cost method was employed to estimate recreation demand functions for activities such...

  11. Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant

    DOEpatents

    Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

    2013-09-17

    System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

  12. Airborne data measurement system errors reduction through state estimation and control optimization

    NASA Astrophysics Data System (ADS)

    Sebryakov, G. G.; Muzhichek, S. M.; Pavlov, V. I.; Ermolin, O. V.; Skrinnikov, A. A.

    2018-02-01

    The paper discusses the problem of airborne data measurement system errors reduction through state estimation and control optimization. The approaches are proposed based on the methods of experiment design and the theory of systems with random abrupt structure variation. The paper considers various control criteria as applied to an aircraft data measurement system. The physics of criteria is explained, the mathematical description and the sequence of steps for each criterion application is shown. The formula is given for airborne data measurement system state vector posterior estimation based for systems with structure variations.

  13. A Unified Estimation Framework for State-Related Changes in Effective Brain Connectivity.

    PubMed

    Samdin, S Balqis; Ting, Chee-Ming; Ombao, Hernando; Salleh, Sh-Hussain

    2017-04-01

    This paper addresses the critical problem of estimating time-evolving effective brain connectivity. Current approaches based on sliding window analysis or time-varying coefficient models do not simultaneously capture both slow and abrupt changes in causal interactions between different brain regions. To overcome these limitations, we develop a unified framework based on a switching vector autoregressive (SVAR) model. Here, the dynamic connectivity regimes are uniquely characterized by distinct vector autoregressive (VAR) processes and allowed to switch between quasi-stationary brain states. The state evolution and the associated directed dependencies are defined by a Markov process and the SVAR parameters. We develop a three-stage estimation algorithm for the SVAR model: 1) feature extraction using time-varying VAR (TV-VAR) coefficients, 2) preliminary regime identification via clustering of the TV-VAR coefficients, 3) refined regime segmentation by Kalman smoothing and parameter estimation via expectation-maximization algorithm under a state-space formulation, using initial estimates from the previous two stages. The proposed framework is adaptive to state-related changes and gives reliable estimates of effective connectivity. Simulation results show that our method provides accurate regime change-point detection and connectivity estimates. In real applications to brain signals, the approach was able to capture directed connectivity state changes in functional magnetic resonance imaging data linked with changes in stimulus conditions, and in epileptic electroencephalograms, differentiating ictal from nonictal periods. The proposed framework accurately identifies state-dependent changes in brain network and provides estimates of connectivity strength and directionality. The proposed approach is useful in neuroscience studies that investigate the dynamics of underlying brain states.

  14. Monitoring of Batch Industrial Crystallization with Growth, Nucleation, and Agglomeration. Part 2: Structure Design for State Estimation with Secondary Measurements

    PubMed Central

    2017-01-01

    This work investigates the design of alternative monitoring tools based on state estimators for industrial crystallization systems with nucleation, growth, and agglomeration kinetics. The estimation problem is regarded as a structure design problem where the estimation model and the set of innovated states have to be chosen; the estimator is driven by the available measurements of secondary variables. On the basis of Robust Exponential estimability arguments, it is found that the concentration is distinguishable with temperature and solid fraction measurements while the crystal size distribution (CSD) is not. Accordingly, a state estimator structure is selected such that (i) the concentration (and other distinguishable states) are innovated by means of the secondary measurements processed with the geometric estimator (GE), and (ii) the CSD is estimated by means of a rigorous model in open loop mode. The proposed estimator has been tested through simulations showing good performance in the case of mismatch in the initial conditions, parametric plant-model mismatch, and noisy measurements. PMID:28890604

  15. Monitoring of Batch Industrial Crystallization with Growth, Nucleation, and Agglomeration. Part 2: Structure Design for State Estimation with Secondary Measurements.

    PubMed

    Porru, Marcella; Özkan, Leyla

    2017-08-30

    This work investigates the design of alternative monitoring tools based on state estimators for industrial crystallization systems with nucleation, growth, and agglomeration kinetics. The estimation problem is regarded as a structure design problem where the estimation model and the set of innovated states have to be chosen; the estimator is driven by the available measurements of secondary variables. On the basis of Robust Exponential estimability arguments, it is found that the concentration is distinguishable with temperature and solid fraction measurements while the crystal size distribution (CSD) is not. Accordingly, a state estimator structure is selected such that (i) the concentration (and other distinguishable states) are innovated by means of the secondary measurements processed with the geometric estimator (GE), and (ii) the CSD is estimated by means of a rigorous model in open loop mode. The proposed estimator has been tested through simulations showing good performance in the case of mismatch in the initial conditions, parametric plant-model mismatch, and noisy measurements.

  16. Using State Estimation Residuals to Detect Abnormal SCADA Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jian; Chen, Yousu; Huang, Zhenyu

    2010-06-14

    Detection of manipulated supervisory control and data acquisition (SCADA) data is critically important for the safe and secure operation of modern power systems. In this paper, a methodology of detecting manipulated SCADA data based on state estimation residuals is presented. A framework of the proposed methodology is described. Instead of using original SCADA measurements as the bad data sources, the residuals calculated based on the results of the state estimator are used as the input for the outlier detection process. The BACON algorithm is applied to detect outliers in the state estimation residuals. The IEEE 118-bus system is used asmore » a test case to evaluate the effectiveness of the proposed methodology. The accuracy of the BACON method is compared with that of the 3-σ method for the simulated SCADA measurements and residuals.« less

  17. National scale biomass estimators for United States tree species

    Treesearch

    Jennifer C. Jenkins; David C. Chojnacky; Linda S. Heath; Richard A. Birdsey

    2003-01-01

    Estimates of national-scale forest carbon (C) stocks and fluxes are typically based on allometric regression equations developed using dimensional analysis techniques. However, the literature is inconsistent and incomplete with respect to large-scale forest C estimation. We compiled all available diameter-based allometric regression equations for estimating total...

  18. Estimation of child vaccination coverage at state and national levels in India

    PubMed Central

    Gupta, Satish; Kumar, Rakesh; Haldar, Pradeep; Sethi, Raman; Bahl, Sunil

    2016-01-01

    Abstract Objective To review the data, for 1999–2013, on state-level child vaccination coverage in India and provide estimates of coverage at state and national levels. Methods We collated data from administrative reports, population-based surveys and other sources and used them to produce annual estimates of vaccination coverage. We investigated bacille Calmette–Guérin vaccine, the first and third doses of vaccine against diphtheria, tetanus and pertussis, the third dose of oral polio vaccine and the first dose of vaccine against measles. We obtained relevant data covering the period 1999–2013 for each of 16 states and territories and the period 2001–2013 for the state of Jharkhand – which was only created in 2000. We aggregated the resultant state-level estimates, using a population-weighted approach, to give national values. Findings For each of the vaccinations we investigated, about half of the 253 estimates of annual coverage at state level that we produced were based on survey results. The rest were based on interpolation between – or extrapolation from – so-called anchor points or, more rarely, on administrative data. Our national estimates indicated that, for each of the vaccines we investigated, coverage gradually increased between 1999 and 2010 but then levelled off. Conclusion The delivery of routine vaccination services to Indian children appears to have improved between 1999 and 2013. There remains considerable scope to improve the recording and reporting of childhood vaccination coverage in India and regular systematic reviews of the coverage data are recommended. PMID:27843162

  19. Comparison of examination-based and self-reported risk factors for cardiovascular disease, Washington State, 2006-2007.

    PubMed

    Van Eenwyk, Juliet; Bensley, Lillian; Ossiander, Eric M; Krueger, Karen

    2012-01-01

    Obesity, hypertension, and high cholesterol are risk factors for cardiovascular disease, which accounts for approximately 20% of deaths in Washington State. For most states, self-reports from the Behavioral Risk Factor Surveillance System (BRFSS) provide the primary source of information on these risk factors. The objective of this study was to compare prevalence estimates of self-reported obesity, hypertension, and high cholesterol with examination-based measures of obesity, hypertension, and high-risk lipid profiles. During 2006-2007, the Washington Adult Health Survey (WAHS) included self-reported and examination-based measures of a random sample of 672 Washington State residents aged 25 years or older. We compared WAHS examination-based measures with self-reported measures from WAHS and the 2007 Washington BRFSS (WA-BRFSS). The estimated prevalence of obesity from WA-BRFSS (27.1%; 95% confidence interval [CI], 26.3%-27.8%) was lower than estimates derived from WAHS physical measurements (39.2%; 95% CI, 33.6%-45.1%) (P < .001). Prevalence estimates of hypertension based on self-reports from WA-BRFSS (28.1%; 95% CI, 27.4%-28.8%) and WAHS (33.4%; 95% CI, 29.4%-37.7%) were similar to the examination-based estimate (29.4%; 95% CI, 25.8%-33.4%). Prevalence estimates of high cholesterol based on self-reports from WA-BRFSS (38.3%; 95% CI, 37.5%-39.2%) and WAHS (41.8%; 95% CI, 35.8%-48.1%) were similar; both were lower than the examination-based WAHS estimate of high-risk lipid profiles (59.2%; 95% CI, 54.2%-64.2%) (P < .001). Self-reported heights and weights underestimate the prevalence of obesity. The prevalence of self-reported high cholesterol is significantly lower than the prevalence of high-risk lipid profiles. Periodic examination-based measurement provides perspective on routinely collected self-reports.

  20. Nonlinear calibration for petroleum water content measurement using PSO

    NASA Astrophysics Data System (ADS)

    Li, Mingbao; Zhang, Jiawei

    2008-10-01

    A new algorithmic for strapdown inertial navigation system (SINS) state estimation based on neural networks is introduced. In training strategy, the error vector and its delay are introduced. This error vector is made of the position and velocity difference between the estimations of system and the outputs of GPS. After state prediction and state update, the states of the system are estimated. After off-line training, the network can approach the status switching of SINS and after on-line training, the state estimate precision can be improved further by reducing network output errors. Then the network convergence is discussed. In the end, several simulations with different noise are given. The results show that the neural network state estimator has lower noise sensitivity and better noise immunity than Kalman filter.

  1. An Evidence-Based Approach to Estimating the National and State Costs of PreK-3rd. FCD Policy Brief Advancing PK-3rd. No.10

    ERIC Educational Resources Information Center

    Picus, Lawrence O.; Odden, Allan; Goetz, Michael

    2009-01-01

    This study estimates the costs of providing a high-quality PreK-3rd education approach in all 50 states plus the District of Columbia. Relying on an Evidence-Based approach to school finance adequacy, it identifies the staffing resources needed to offer high-quality integrated PreK-3rd programs and then estimates the costs of those resources. By…

  2. Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark

    2016-01-01

    This paper describes an algorithm for atmospheric state estimation based on a coupling between inertial navigation and flush air data-sensing pressure measurements. The navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to estimate the atmosphere using a nonlinear weighted least-squares algorithm. The approach uses a high-fidelity model of atmosphere stored in table-lookup form, along with simplified models propagated along the trajectory within the algorithm to aid the solution. Thus, the method is a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content. The algorithm is applied to the design of the pressure measurement system for the Mars 2020 mission. A linear covariance analysis is performed to assess estimator performance. The results indicate that the new estimator produces more precise estimates of atmospheric states than existing algorithms.

  3. Graph theoretic framework based cooperative control and estimation of multiple UAVs for target tracking

    NASA Astrophysics Data System (ADS)

    Ahmed, Mousumi

    Designing the control technique for nonlinear dynamic systems is a significant challenge. Approaches to designing a nonlinear controller are studied and an extensive study on backstepping based technique is performed in this research with the purpose of tracking a moving target autonomously. Our main motivation is to explore the controller for cooperative and coordinating unmanned vehicles in a target tracking application. To start with, a general theoretical framework for target tracking is studied and a controller in three dimensional environment for a single UAV is designed. This research is primarily focused on finding a generalized method which can be applied to track almost any reference trajectory. The backstepping technique is employed to derive the controller for a simplified UAV kinematic model. This controller can compute three autopilot modes i.e. velocity, ground heading (or course angle), and flight path angle for tracking the unmanned vehicle. Numerical implementation is performed in MATLAB with the assumption of having perfect and full state information of the target to investigate the accuracy of the proposed controller. This controller is then frozen for the multi-vehicle problem. Distributed or decentralized cooperative control is discussed in the context of multi-agent systems. A consensus based cooperative control is studied; such consensus based control problem can be viewed from the algebraic graph theory concepts. The communication structure between the UAVs is represented by the dynamic graph where UAVs are represented by the nodes and the communication links are represented by the edges. The previously designed controller is augmented to account for the group to obtain consensus based on their communication. A theoretical development of the controller for the cooperative group of UAVs is presented and the simulation results for different communication topologies are shown. This research also investigates the cases where the communication topology switches to a different topology over particular time instants. Lyapunov analysis is performed to show stability in all cases. Another important aspect of this dissertation research is to implement the controller for the case, where perfect or full state information is not available. This necessitates the design of an estimator to estimate the system state. A nonlinear estimator, Extended Kalman Filter (EKF) is first developed for target tracking with a single UAV. The uncertainties involved with the measurement model and dynamics model are considered as zero mean Gaussian noises with some known covariances. The measurements of the full state of the target are not available and only the range, elevation, and azimuth angle are available from an onboard seeker sensor. A separate EKF is designed to estimate the UAV's own state where the state measurement is available through on-board sensors. The controller computes the three control commands based on the estimated states of target and its own states. Estimation based control laws is also implemented for colored noise measurement uncertainties, and the controller performance is shown with the simulation results. The estimation based control approach is then extended for the cooperative target tracking case. The target information is available to the network and a separate estimator is used to estimate target states. All of the UAVs in the network apply the same control law and the only difference is that each UAV updates the commands according to their connection. The simulation is performed for both cases of fixed and time varying communication topology. Monte Carlo simulation is also performed with different sample noises to investigate the performance of the estimator. The proposed technique is shown to be simple and robust to noisy environments.

  4. Empirical State Error Covariance Matrix for Batch Estimation

    NASA Technical Reports Server (NTRS)

    Frisbee, Joe

    2015-01-01

    State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the uncertainty in the estimated states. By a reinterpretation of the equations involved in the weighted batch least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. The proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. This empirical error covariance matrix may be calculated as a side computation for each unique batch solution. Results based on the proposed technique will be presented for a simple, two observer and measurement error only problem.

  5. Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark

    2015-01-01

    This paper describes an algorithm for atmospheric state estimation that is based on a coupling between inertial navigation and flush air data sensing pressure measurements. In this approach, the full navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to directly estimate atmospheric winds and density using a nonlinear weighted least-squares algorithm. The approach uses a high fidelity model of atmosphere stored in table-look-up form, along with simplified models of that are propagated along the trajectory within the algorithm to provide prior estimates and covariances to aid the air data state solution. Thus, the method is essentially a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere and winds are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the discrete-time observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content to the system. The algorithm is then applied to the design of the pressure measurement system for the Mars 2020 mission. The pressure port layout is optimized to maximize the observability of atmospheric states along the trajectory. Linear covariance analysis is performed to assess estimator performance for a given pressure measurement uncertainty. The results indicate that the new tightly-coupled estimator can produce enhanced estimates of atmospheric states when compared with existing algorithms.

  6. Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks.

    PubMed

    Carbonell, Felix; Bellec, Pierre; Shmuel, Amir

    2011-01-01

    The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)-based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations.

  7. Isonymy structure of four Venezuelan states.

    PubMed

    Rodríguez-Larralde, A; Barrai, I; Alfonzo, J C

    1993-01-01

    The isonymy structure of four Venezuelan States-Falcón, Mérida, Nueva Esparta and Yaracuy-was studied using the surnames of the Venezuelan register of electors updated in 1984. The surname distributions of 155 counties were obtained and, for each county, estimates of consanguinity due to random isonymy and Fisher's alpha were calculated. It was shown that for large sample sizes the inverse of Fisher's alpha is identical to the unbiased estimate of within-population random isonymy. A three-dimensional isometric surface plot was obtained for each State, based on the counties' random isonymy estimates. The highest estimates of random consanguinity were found in the States of Nueva Esparta and Mérida, while the lowest were found in Yaracuy. Other microdifferentiation indicators from the same data gave similar results, and an interpretation was attempted, based on the particular economic and geographic characteristics of each State. Four different genetic distances between all possible pairs of counties were calculated within States; geographic distance shows the highest correlations with random isonymy and Euclidean distance, with the exception of the State of Nueva Esparta, where there is no correlation between geographic distance and random isonymy. It was possible to group counties in clusters, from dendrograms based on Euclidean distance. Isonymy clustering was also consistent with socioeconomic and geographic characteristics of the counties.

  8. Planetary Probe Entry Atmosphere Estimation Using Synthetic Air Data System

    NASA Technical Reports Server (NTRS)

    Karlgaard, Chris; Schoenenberger, Mark

    2017-01-01

    This paper develops an atmospheric state estimator based on inertial acceleration and angular rate measurements combined with an assumed vehicle aerodynamic model. The approach utilizes the full navigation state of the vehicle (position, velocity, and attitude) to recast the vehicle aerodynamic model to be a function solely of the atmospheric state (density, pressure, and winds). Force and moment measurements are based on vehicle sensed accelerations and angular rates. These measurements are combined with an aerodynamic model and a Kalman-Schmidt filter to estimate the atmospheric conditions. The new method is applied to data from the Mars Science Laboratory mission, which landed the Curiosity rover on the surface of Mars in August 2012. The results of the new estimation algorithm are compared with results from a Flush Air Data Sensing algorithm based on onboard pressure measurements on the vehicle forebody. The comparison indicates that the new proposed estimation method provides estimates consistent with the air data measurements, without the use of pressure measurements. Implications for future missions such as the Mars 2020 entry capsule are described.

  9. A Value-Added Estimate of Higher Education Quality of US States

    ERIC Educational Resources Information Center

    Zhang, Lei

    2009-01-01

    States differ substantially in higher education policies. Little is known about the effects of state policies on the performance of public colleges and universities, largely because no clear measures of college quality exist. In this paper, I estimate the average quality of public colleges of US states based on the value-added to individuals'…

  10. Methods for estimating magnitude and frequency of floods in Montana based on data through 1983

    USGS Publications Warehouse

    Omang, R.J.; Parrett, Charles; Hull, J.A.

    1986-01-01

    Equations are presented for estimating flood magnitudes for ungaged sites in Montana based on data through 1983. The State was divided into eight regions based on hydrologic conditions, and separate multiple regression equations were developed for each region. These equations relate annual flood magnitudes and frequencies to basin characteristics and are applicable only to natural flow streams. In three of the regions, equations also were developed relating flood magnitudes and frequencies to basin characteristics and channel geometry measurements. The standard errors of estimate for an exceedance probability of 1% ranged from 39% to 87%. Techniques are described for estimating annual flood magnitude and flood frequency information at ungaged sites based on data from gaged sites on the same stream. Included are curves relating flood frequency information to drainage area for eight major streams in the State. Maximum known flood magnitudes in Montana are compared with estimated 1 %-chance flood magnitudes and with maximum known floods in the United States. Values of flood magnitudes for selected exceedance probabilities and values of significant basin characteristics and channel geometry measurements for all gaging stations used in the analysis are tabulated. Included are 375 stations in Montana and 28 nearby stations in Canada and adjoining States. (Author 's abstract)

  11. Predicting Periodontitis at State and Local Levels in the United States.

    PubMed

    Eke, P I; Zhang, X; Lu, H; Wei, L; Thornton-Evans, G; Greenlund, K J; Holt, J B; Croft, J B

    2016-05-01

    The objective of the study was to estimate the prevalence of periodontitis at state and local levels across the United States by using a novel, small area estimation (SAE) method. Extended multilevel regression and poststratification analyses were used to estimate the prevalence of periodontitis among adults aged 30 to 79 y at state, county, congressional district, and census tract levels by using periodontal data from the National Health and Nutrition Examination Survey (NHANES) 2009-2012, population counts from the 2010 US census, and smoking status estimates from the Behavioral Risk Factor Surveillance System in 2012. The SAE method used age, race, gender, smoking, and poverty variables to estimate the prevalence of periodontitis as defined by the Centers for Disease Control and Prevention/American Academy of Periodontology case definitions at the census block levels and aggregated to larger administrative and geographic areas of interest. Model-based SAEs were validated against national estimates directly from NHANES 2009-2012. Estimated prevalence of periodontitis ranged from 37.7% in Utah to 52.8% in New Mexico among the states (mean, 45.1%; median, 44.9%) and from 33.7% to 68% among counties (mean, 46.6%; median, 45.9%). Severe periodontitis ranged from 7.27% in New Hampshire to 10.26% in Louisiana among the states (mean, 8.9%; median, 8.8%) and from 5.2% to 17.9% among counties (mean, 9.2%; median, 8.8%). Overall, the predicted prevalence of periodontitis was highest for southeastern and southwestern states and for geographic areas in the Southeast along the Mississippi Delta, as well as along the US and Mexico border. Aggregated model-based SAEs were consistent with national prevalence estimates from NHANES 2009-2012. This study is the first-ever estimation of periodontitis prevalence at state and local levels in the United States, and this modeling approach complements public health surveillance efforts to identify areas with a high burden of periodontitis. © International & American Associations for Dental Research 2016.

  12. Classifying Different Emotional States by Means of EEG-Based Functional Connectivity Patterns

    PubMed Central

    Lee, You-Yun; Hsieh, Shulan

    2014-01-01

    This study aimed to classify different emotional states by means of EEG-based functional connectivity patterns. Forty young participants viewed film clips that evoked the following emotional states: neutral, positive, or negative. Three connectivity indices, including correlation, coherence, and phase synchronization, were used to estimate brain functional connectivity in EEG signals. Following each film clip, participants were asked to report on their subjective affect. The results indicated that the EEG-based functional connectivity change was significantly different among emotional states. Furthermore, the connectivity pattern was detected by pattern classification analysis using Quadratic Discriminant Analysis. The results indicated that the classification rate was better than chance. We conclude that estimating EEG-based functional connectivity provides a useful tool for studying the relationship between brain activity and emotional states. PMID:24743695

  13. Estimates of lifetime infertility from three states: the behavioral risk factor surveillance system.

    PubMed

    Crawford, Sara; Fussman, Chris; Bailey, Marie; Bernson, Dana; Jamieson, Denise J; Murray-Jordan, Melissa; Kissin, Dmitry M

    2015-07-01

    Knowledge of state-specific infertility is limited. The objectives of this study were to explore state-specific estimates of lifetime prevalence of having ever experienced infertility, sought treatment for infertility, types of treatments sought, and treatment outcomes. Male and female adult residents aged 18-50 years from three states involved in the States Monitoring Assisted Reproductive Technology Collaborative (Florida, Massachusetts, and Michigan) were asked state-added infertility questions as part of the 2012 Behavioral Risk Factor Surveillance System, a state-based, health-related telephone survey. Analysis involved estimation of lifetime prevalence of infertility. The estimated lifetime prevalence of infertility among 1,285 adults in Florida, 1,302 in Massachusetts, and 3,360 in Michigan was 9.7%, 6.0%, and 4.2%, respectively. Among 736 adults in Florida, 1,246 in Massachusetts, and 2,742 in Michigan that have ever tried to get pregnant, the lifetime infertility prevalence was 25.3% in Florida, 9.9% in Massachusetts, and 5.8% in Michigan. Among those with a history of infertility, over half sought treatment (60.7% in Florida, 70.6% in Massachusetts, and 51.6% in Michigan), the most common being non-assisted reproductive technology fertility treatments (61.3% in Florida, 66.0% in Massachusetts, and 75.9% in Michigan). State-specific estimates of lifetime infertility prevalence in Florida, Massachusetts, and Michigan varied. Variations across states are difficult to interpret, as they likely reflect both true differences in prevalence and differences in data collection questionnaires. State-specific estimates are needed for the prevention, detection, and management of infertility, but estimates should be based on a common set of questions appropriate for these goals.

  14. Estimates of Lifetime Infertility from Three States: The Behavioral Risk Factor Surveillance System

    PubMed Central

    Crawford, Sara; Fussman, Chris; Bailey, Marie; Bernson, Dana; Jamieson, Denise J.; Murray-Jordan, Melissa; Kissin, Dmitry M.

    2016-01-01

    Background Knowledge of state-specific infertility is limited. The objectives of this study were to explore state-specific estimates of lifetime prevalence of having ever experienced infertility, sought treatment for infertility, types of treatments sought, and treatment outcomes. Methods Male and female adult residents aged 18–50 years from three states involved in the States Monitoring Assisted Reproductive Technology Collaborative (Florida, Massachusetts, and Michigan) were asked state-added infertility questions as part of the 2012 Behavioral Risk Factor Surveillance System, a state-based, health-related telephone survey. Analysis involved estimation of lifetime prevalence of infertility. Results The estimated lifetime prevalence of infertility among 1,285 adults in Florida, 1,302 in Massachusetts, and 3,360 in Michigan was 9.7%, 6.0%, and 4.2%, respectively. Among 736 adults in Florida, 1,246 in Massachusetts, and 2,742 in Michigan that have ever tried to get pregnant, the lifetime infertility prevalence was 25.3% in Florida, 9.9% in Massachusetts, and 5.8% in Michigan. Among those with a history of infertility, over half sought treatment (60.7% in Florida, 70.6% in Massachusetts, and 51.6% in Michigan), the most common being non–assisted reproductive technology fertility treatments (61.3% in Florida, 66.0% in Massachusetts, and 75.9% in Michigan). Conclusion State-specific estimates of lifetime infertility prevalence in Florida, Massachusetts, and Michigan varied. Variations across states are difficult to interpret, as they likely reflect both true differences in prevalence and differences in data collection questionnaires. State-specific estimates are needed for the prevention, detection, and management of infertility, but estimates should be based on a common set of questions appropriate for these goals. PMID:26172998

  15. Estimating canopy bulk density and canopy base height for conifer stands in the interior Western United States using the Forest Vegetation Simulator Fire and Fuels Extension.

    Treesearch

    Seth Ex; Frederick Smith; Tara Keyser; Stephanie Rebain

    2017-01-01

    The Forest Vegetation Simulator Fire and Fuels Extension (FFE-FVS) is often used to estimate canopy bulk density (CBD) and canopy base height (CBH), which are key indicators of crown fire hazard for conifer stands in the Western United States. Estimated CBD from FFE-FVS is calculated as the maximum 4 m running mean bulk density of predefined 0.3 m thick canopy layers (...

  16. 45 CFR 284.11 - What definitions apply to this part?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... METHODOLOGY FOR DETERMINING WHETHER AN INCREASE IN A STATE OR TERRITORY'S CHILD POVERTY RATE IS THE RESULT OF... estimating the number and percentage of children in poverty in each State. These methods may include national estimates based on the Current Population Survey; the Small Area Income and Poverty Estimates; the annual...

  17. Adaptive estimation of nonlinear parameters of a nonholonomic spherical robot using a modified fuzzy-based speed gradient algorithm

    NASA Astrophysics Data System (ADS)

    Roozegar, Mehdi; Mahjoob, Mohammad J.; Ayati, Moosa

    2017-05-01

    This paper deals with adaptive estimation of the unknown parameters and states of a pendulum-driven spherical robot (PDSR), which is a nonlinear in parameters (NLP) chaotic system with parametric uncertainties. Firstly, the mathematical model of the robot is deduced by applying the Newton-Euler methodology for a system of rigid bodies. Then, based on the speed gradient (SG) algorithm, the states and unknown parameters of the robot are estimated online for different step length gains and initial conditions. The estimated parameters are updated adaptively according to the error between estimated and true state values. Since the errors of the estimated states and parameters as well as the convergence rates depend significantly on the value of step length gain, this gain should be chosen optimally. Hence, a heuristic fuzzy logic controller is employed to adjust the gain adaptively. Simulation results indicate that the proposed approach is highly encouraging for identification of this NLP chaotic system even if the initial conditions change and the uncertainties increase; therefore, it is reliable to be implemented on a real robot.

  18. Sequential Monte Carlo filter for state estimation of LiFePO4 batteries based on an online updated model

    NASA Astrophysics Data System (ADS)

    Li, Jiahao; Klee Barillas, Joaquin; Guenther, Clemens; Danzer, Michael A.

    2014-02-01

    Battery state monitoring is one of the key techniques in battery management systems e.g. in electric vehicles. An accurate estimation can help to improve the system performance and to prolong the battery remaining useful life. Main challenges for the state estimation for LiFePO4 batteries are the flat characteristic of open-circuit-voltage over battery state of charge (SOC) and the existence of hysteresis phenomena. Classical estimation approaches like Kalman filtering show limitations to handle nonlinear and non-Gaussian error distribution problems. In addition, uncertainties in the battery model parameters must be taken into account to describe the battery degradation. In this paper, a novel model-based method combining a Sequential Monte Carlo filter with adaptive control to determine the cell SOC and its electric impedance is presented. The applicability of this dual estimator is verified using measurement data acquired from a commercial LiFePO4 cell. Due to a better handling of the hysteresis problem, results show the benefits of the proposed method against the estimation with an Extended Kalman filter.

  19. Comparisons of Four Methods for Estimating a Dynamic Factor Model

    ERIC Educational Resources Information Center

    Zhang, Zhiyong; Hamaker, Ellen L.; Nesselroade, John R.

    2008-01-01

    Four methods for estimating a dynamic factor model, the direct autoregressive factor score (DAFS) model, are evaluated and compared. The first method estimates the DAFS model using a Kalman filter algorithm based on its state space model representation. The second one employs the maximum likelihood estimation method based on the construction of a…

  20. Lithium-ion battery state of function estimation based on fuzzy logic algorithm with associated variables

    NASA Astrophysics Data System (ADS)

    Gan, L.; Yang, F.; Shi, Y. F.; He, H. L.

    2017-11-01

    Many occasions related to batteries demand to know how much continuous and instantaneous power can batteries provide such as the rapidly developing electric vehicles. As the large-scale applications of lithium-ion batteries, lithium-ion batteries are used to be our research object. Many experiments are designed to get the lithium-ion battery parameters to ensure the relevance and reliability of the estimation. To evaluate the continuous and instantaneous load capability of a battery called state-of-function (SOF), this paper proposes a fuzzy logic algorithm based on battery state-of-charge(SOC), state-of-health(SOH) and C-rate parameters. Simulation and experimental results indicate that the proposed approach is suitable for battery SOF estimation.

  1. How EIA Estimates Natural Gas Production

    EIA Publications

    2004-01-01

    The Energy Information Administration (EIA) publishes estimates monthly and annually of the production of natural gas in the United States. The estimates are based on data EIA collects from gas producing states and data collected by the U. S. Minerals Management Service (MMS) in the Department of Interior. The states and MMS collect this information from producers of natural gas for various reasons, most often for revenue purposes. Because the information is not sufficiently complete or timely for inclusion in EIA's Natural Gas Monthly (NGM), EIA has developed estimation methodologies to generate monthly production estimates that are described in this document.

  2. Method of Enhancing On-Board State Estimation Using Communication Signals

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan J. (Inventor); Chuang, Jason C. H. (Inventor)

    2015-01-01

    A method of enhancing on-board state estimation for a spacecraft utilizes a network of assets to include planetary-based assets and space-based assets. Communication signals transmitted from each of the assets into space are defined by a common protocol. Data is embedded in each communication signal transmitted by the assets. The data includes a time-of-transmission for a corresponding one of the communication signals and a position of a corresponding one of the assets at the time-of-transmission. A spacecraft is equipped to receive the communication signals, has a clock synchronized to the space-wide time reference frame, and has a processor programmed to generate state estimates of the spacecraft. Using its processor, the spacecraft determines a one-dimensional range from itself to at least one of the assets and then updates its state estimates using each one-dimensional range.

  3. On-Board Real-Time State and Fault Identification for Rovers

    NASA Technical Reports Server (NTRS)

    Washington, Richard

    2000-01-01

    For extended autonomous operation, rovers must identify potential faults to determine whether its execution needs to be halted or not. At the same time, rovers present particular challenges for state estimation techniques: they are subject to environmental influences that affect senior readings during normal and anomalous operation, and the sensors fluctuate rapidly both because of noise and because of the dynamics of the rover's interaction with its environment. This paper presents MAKSI, an on-board method for state estimation and fault diagnosis that is particularly appropriate for rovers. The method is based on a combination of continuous state estimation, wing Kalman filters, and discrete state estimation, wing a Markov-model representation.

  4. Genital Chlamydia Prevalence in Europe and Non-European High Income Countries: Systematic Review and Meta-Analysis

    PubMed Central

    Redmond, Shelagh M.; Alexander-Kisslig, Karin; Woodhall, Sarah C.; van den Broek, Ingrid V. F.; van Bergen, Jan; Ward, Helen; Uusküla, Anneli; Herrmann, Björn; Andersen, Berit; Götz, Hannelore M.; Sfetcu, Otilia; Low, Nicola

    2015-01-01

    Background Accurate information about the prevalence of Chlamydia trachomatis is needed to assess national prevention and control measures. Methods We systematically reviewed population-based cross-sectional studies that estimated chlamydia prevalence in European Union/European Economic Area (EU/EEA) Member States and non-European high income countries from January 1990 to August 2012. We examined results in forest plots, explored heterogeneity using the I2 statistic, and conducted random effects meta-analysis if appropriate. Meta-regression was used to examine the relationship between study characteristics and chlamydia prevalence estimates. Results We included 25 population-based studies from 11 EU/EEA countries and 14 studies from five other high income countries. Four EU/EEA Member States reported on nationally representative surveys of sexually experienced adults aged 18–26 years (response rates 52–71%). In women, chlamydia point prevalence estimates ranged from 3.0–5.3%; the pooled average of these estimates was 3.6% (95% CI 2.4, 4.8, I2 0%). In men, estimates ranged from 2.4–7.3% (pooled average 3.5%; 95% CI 1.9, 5.2, I2 27%). Estimates in EU/EEA Member States were statistically consistent with those in other high income countries (I2 0% for women, 6% for men). There was statistical evidence of an association between survey response rate and estimated chlamydia prevalence; estimates were higher in surveys with lower response rates, (p = 0.003 in women, 0.018 in men). Conclusions Population-based surveys that estimate chlamydia prevalence are at risk of participation bias owing to low response rates. Estimates obtained in nationally representative samples of the general population of EU/EEA Member States are similar to estimates from other high income countries. PMID:25615574

  5. Comparison of geostatistical interpolation and remote sensing techniques for estimating long-term exposure to ambient PM2.5 concentrations across the continental United States.

    PubMed

    Lee, Seung-Jae; Serre, Marc L; van Donkelaar, Aaron; Martin, Randall V; Burnett, Richard T; Jerrett, Michael

    2012-12-01

    A better understanding of the adverse health effects of chronic exposure to fine particulate matter (PM2.5) requires accurate estimates of PM2.5 variation at fine spatial scales. Remote sensing has emerged as an important means of estimating PM2.5 exposures, but relatively few studies have compared remote-sensing estimates to those derived from monitor-based data. We evaluated and compared the predictive capabilities of remote sensing and geostatistical interpolation. We developed a space-time geostatistical kriging model to predict PM2.5 over the continental United States and compared resulting predictions to estimates derived from satellite retrievals. The kriging estimate was more accurate for locations that were about 100 km from a monitoring station, whereas the remote sensing estimate was more accurate for locations that were > 100 km from a monitoring station. Based on this finding, we developed a hybrid map that combines the kriging and satellite-based PM2.5 estimates. We found that for most of the populated areas of the continental United States, geostatistical interpolation produced more accurate estimates than remote sensing. The differences between the estimates resulting from the two methods, however, were relatively small. In areas with extensive monitoring networks, the interpolation may provide more accurate estimates, but in the many areas of the world without such monitoring, remote sensing can provide useful exposure estimates that perform nearly as well.

  6. Energy resources of the United States

    USGS Publications Warehouse

    Theobald, P.K.; Schweinfurth, Stanley P.; Duncan, Donald Cave

    1972-01-01

    Estimates are made of United States resources of coal, petroleum liquids, natural gas, uranium, geothermal energy, and oil from oil shale. The estimates, compiled by specialists of the U.S. Geological Survey, are generally made on geologic projections of favorable rocks and on anticipated frequency of the energy resource in the favorable rocks. Accuracy of the estimates probably ranges from 20 to 50 percent for identified-recoverable resources to about an order of magnitude for undiscovered-submarginal resources. The total coal resource base in the United States is estimated to be about 3,200 billion tons, of which 200-390 billion tons can be considered in the category identified and recoverable. More than 70 percent of current production comes from the Appalachian basin where the resource base, better known than for the United States as a whole, is about 330 billion tons, of which 22 billion tons is identified and recoverable. Coals containing less than 1 percent sulfur are the premium coals. These are abundant in the western coal fields, but in the Appalachian basin the resource base for low-sulfur coal is estimated to be only a little more than 100 billion tons, of which 12 billion tons is identified and recoverable. Of the many estimates of petroleum liquids and natural-gas resources, those of the U.S. Geological Survey are the largest because, in general, our estimates include the largest proportion of favorable ground for exploration. We estimate the total resource base for petroleum liquids to be about 2,900 billion barrels, of which 52 billion barrels is identified and recoverable. Of the total resource base, some 600 billion barrels is in Alaska or offshore from Alaska, 1,500 billion barrels is offshore from the United States, and 1,300 billion barrels is onshore in the conterminous United States. Identified-recoverable resources of petroleum liquids corresponding to these geographic units are 11, 6, and 36 billion barrels, respectively. The total natural-gas resource of the United States is estimated to be about 6,600 trillion cubic feet, of which 290 trillion cubic feet is identified and recoverable. In geographic units comparable to those for petroleum liquids, the resource bases are 1,400, 3,400, and 2,900 trillion cubic feet, and the identified-recoverable resources are 31, 40, and 220 trillion cubic feet, respectively. Uranium resources in conventional deposits, where uranium is the major product, are estimated at 1,600,000 tons of U3O8, of which 250,000 tons is identified and recoverable. A potential byproduct resource of more than 7 million tons of U3O8, is estimated for phosphate rock, but none of this resource is recoverable under present economic conditions. The resources of heat in potential geothermal energy sources are poorly known. The total resource base for the United States is certainly greater than 10 22 calories, of which only 2.5 ? 10 18 calories can be considered identified and recoverable at present. Oil shale is estimated to contain 26 trillion barrels of oil. None of this resource is economic at present, but if prices increase moderately, 160-600 billion barrels of this oil could be shifted into the identified-recoverable category.

  7. State Estimation Using Dependent Evidence Fusion: Application to Acoustic Resonance-Based Liquid Level Measurement.

    PubMed

    Xu, Xiaobin; Li, Zhenghui; Li, Guo; Zhou, Zhe

    2017-04-21

    Estimating the state of a dynamic system via noisy sensor measurement is a common problem in sensor methods and applications. Most state estimation methods assume that measurement noise and state perturbations can be modeled as random variables with known statistical properties. However in some practical applications, engineers can only get the range of noises, instead of the precise statistical distributions. Hence, in the framework of Dempster-Shafer (DS) evidence theory, a novel state estimatation method by fusing dependent evidence generated from state equation, observation equation and the actual observations of the system states considering bounded noises is presented. It can be iteratively implemented to provide state estimation values calculated from fusion results at every time step. Finally, the proposed method is applied to a low-frequency acoustic resonance level gauge to obtain high-accuracy measurement results.

  8. Kalman filter data assimilation: targeting observations and parameter estimation.

    PubMed

    Bellsky, Thomas; Kostelich, Eric J; Mahalov, Alex

    2014-06-01

    This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.

  9. Kalman filter data assimilation: Targeting observations and parameter estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellsky, Thomas, E-mail: bellskyt@asu.edu; Kostelich, Eric J.; Mahalov, Alex

    2014-06-15

    This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly locatedmore » observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.« less

  10. A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance.

    PubMed

    Zheng, Binqi; Fu, Pengcheng; Li, Baoqing; Yuan, Xiaobing

    2018-03-07

    The Unscented Kalman filter (UKF) may suffer from performance degradation and even divergence while mismatch between the noise distribution assumed as a priori by users and the actual ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF (RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance. More specifically, at each timestep, a standard UKF will be implemented first to obtain the state estimations using the new acquired measurement data. Then an online fault-detection mechanism is adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based method and residual-based method are used to calculate the estimations of current noise covariance of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the last noise covariance matrices with the estimations as the new noise covariance matrices. Finally, the state estimations will be corrected according to the new noise covariance matrices and previous state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF converges faster to the actual noise covariance and thus achieves a better performance in terms of robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance, which is demonstrated by the simulation results.

  11. A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance

    PubMed Central

    Zheng, Binqi; Yuan, Xiaobing

    2018-01-01

    The Unscented Kalman filter (UKF) may suffer from performance degradation and even divergence while mismatch between the noise distribution assumed as a priori by users and the actual ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF (RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance. More specifically, at each timestep, a standard UKF will be implemented first to obtain the state estimations using the new acquired measurement data. Then an online fault-detection mechanism is adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based method and residual-based method are used to calculate the estimations of current noise covariance of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the last noise covariance matrices with the estimations as the new noise covariance matrices. Finally, the state estimations will be corrected according to the new noise covariance matrices and previous state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF converges faster to the actual noise covariance and thus achieves a better performance in terms of robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance, which is demonstrated by the simulation results. PMID:29518960

  12. On-Orbit Multi-Field Wavefront Control with a Kalman Filter

    NASA Technical Reports Server (NTRS)

    Lou, John; Sigrist, Norbert; Basinger, Scott; Redding, David

    2008-01-01

    A document describes a multi-field wavefront control (WFC) procedure for the James Webb Space Telescope (JWST) on-orbit optical telescope element (OTE) fine-phasing using wavefront measurements at the NIRCam pupil. The control is applied to JWST primary mirror (PM) segments and secondary mirror (SM) simultaneously with a carefully selected ordering. Through computer simulations, the multi-field WFC procedure shows that it can reduce the initial system wavefront error (WFE), as caused by random initial system misalignments within the JWST fine-phasing error budget, from a few dozen micrometers to below 50 nm across the entire NIRCam Field of View, and the WFC procedure is also computationally stable as the Monte-Carlo simulations indicate. With the incorporation of a Kalman Filter (KF) as an optical state estimator into the WFC process, the robustness of the JWST OTE alignment process can be further improved. In the presence of some large optical misalignments, the Kalman state estimator can provide a reasonable estimate of the optical state, especially for those degrees of freedom that have a significant impact on the system WFE. The state estimate allows for a few corrections to the optical state to push the system towards its nominal state, and the result is that a large part of the WFE can be eliminated in this step. When the multi-field WFC procedure is applied after Kalman state estimate and correction, the stability of fine-phasing control is much more certain. Kalman Filter has been successfully applied to diverse applications as a robust and optimal state estimator. In the context of space-based optical system alignment based on wavefront measurements, a KF state estimator can combine all available wavefront measurements, past and present, as well as measurement and actuation error statistics to generate a Maximum-Likelihood optimal state estimator. The strength and flexibility of the KF algorithm make it attractive for use in real-time optical system alignment when WFC alone cannot effectively align the system.

  13. Effects of life-state on detectability in a demographic study of the terrestrial orchid Cleistes bifaria

    USGS Publications Warehouse

    Kery, M.; Gregg, K.B.

    2003-01-01

    1. Most plant demographic studies follow marked individuals in permanent plots. Plots tend to be small, so detectability is assumed to be one for every individual. However, detectability could be affected by factors such as plant traits, time, space, observer, previous detection, biotic interactions, and especially by life-state. 2. We used a double-observer survey and closed population capture-recapture modelling to estimate state-specific detectability of the orchid Cleistes bifaria in a long-term study plot of 41.2 m2. Based on AICc model selection, detectability was different for each life-state and for tagged vs. previously untagged plants. There were no differences in detectability between the two observers. 3. Detectability estimates (SE) for one-leaf vegetative, two-leaf vegetative, and flowering/fruiting states correlated with mean size of these states and were 0.76 (0.05), 0.92 (0.06), and 1 (0.00), respectively, for previously tagged plants, and 0.84 (0.08), 0.75 (0.22), and 0 (0.00), respectively, for previously untagged plants. (We had insufficient data to obtain a satisfactory estimate of previously untagged flowering plants). 4. Our estimates are for a medium-sized plant in a small and intensively surveyed plot. It is possible that detectability is even lower for larger plots and smaller plants or smaller life-states (e.g. seedlings) and that detectabilities < 1 are widespread in plant demographic studies. 5. State-dependent detectabilities are especially worrying since they will lead to a size- or state-biased sample from the study plot. Failure to incorporate detectability into demographic estimation methods introduces a bias into most estimates of population parameters such as fecundity, recruitment, mortality, and transition rates between life-states. We illustrate this by a simple example using a matrix model, where a hypothetical population was stable but, due to imperfect detection, wrongly projected to be declining at a rate of 8% per year. 6. Almost all plant demographic studies are based on models for discrete states. State and size are important predictors both for demographic rates and detectability. We suggest that even in studies based on small plots, state- or size-specific detectability should be estimated at least at some point to avoid biased inference about the dynamics of the population sampled.

  14. Vehicle States Observer Using Adaptive Tire-Road Friction Estimator

    NASA Astrophysics Data System (ADS)

    Kwak, Byunghak; Park, Youngjin

    Vehicle stability control system is a new idea which can enhance the vehicle stability and handling in the emergency situation. This system requires the information of the yaw rate, sideslip angle and road friction in order to control the traction and braking forces at the individual wheels. This paper proposes an observer for the vehicle stability control system. This observer consisted of the state observer for vehicle motion estimation and the road condition estimator for the identification of the coefficient of the road friction. The state observer uses 2 degrees-of-freedom bicycle model and estimates the system variables based on the Kalman filter. The road condition estimator uses the same vehicle model and identifies the coefficient of the tire-road friction based on the recursive least square method. Both estimators make use of each other information. We show the effectiveness and feasibility of the proposed scheme under various road conditions through computer simulations of a fifteen degree-of-freedom non-linear vehicle model.

  15. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: Base Flow Index

    EPA Pesticide Factsheets

    This dataset represents the base flow index values within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. (See Supplementary Info for Glossary of Terms) The base-flow index (BFI) grid for the conterminous United States was developed to estimate (1) BFI values for ungaged streams, and (2) ground-water recharge throughout the conterminous United States (see Source_Information). Estimates of BFI values at ungaged streams and BFI-based ground-water recharge estimates are useful for interpreting relations between land use and water quality in surface and ground water. The bfi (%) was summarized by local catchment and by watershed to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).

  16. Burden of Severe Pneumonia, Pneumococcal Pneumonia and Pneumonia Deaths in Indian States: Modelling Based Estimates

    PubMed Central

    Farooqui, Habib; Jit, Mark; Heymann, David L.; Zodpey, Sanjay

    2015-01-01

    The burden of severe pneumonia in terms of morbidity and mortality is unknown in India especially at sub-national level. In this context, we aimed to estimate the number of severe pneumonia episodes, pneumococcal pneumonia episodes and pneumonia deaths in children younger than 5 years in 2010. We adapted and parameterized a mathematical model based on the epidemiological concept of potential impact fraction developed CHERG for this analysis. The key parameters that determine the distribution of severe pneumonia episode across Indian states were state-specific under-5 population, state-specific prevalence of selected definite pneumonia risk factors and meta-estimates of relative risks for each of these risk factors. We applied the incidence estimates and attributable fraction of risk factors to population estimates for 2010 of each Indian state. We then estimated the number of pneumococcal pneumonia cases by applying the vaccine probe methodology to an existing trial. We estimated mortality due to severe pneumonia and pneumococcal pneumonia by combining incidence estimates with case fatality ratios from multi-centric hospital-based studies. Our results suggest that in 2010, 3.6 million (3.3–3.9 million) episodes of severe pneumonia and 0.35 million (0.31–0.40 million) all cause pneumonia deaths occurred in children younger than 5 years in India. The states that merit special mention include Uttar Pradesh where 18.1% children reside but contribute 24% of pneumonia cases and 26% pneumonia deaths, Bihar (11.3% children, 16% cases, 22% deaths) Madhya Pradesh (6.6% children, 9% cases, 12% deaths), and Rajasthan (6.6% children, 8% cases, 11% deaths). Further, we estimated that 0.56 million (0.49–0.64 million) severe episodes of pneumococcal pneumonia and 105 thousand (92–119 thousand) pneumococcal deaths occurred in India. The top contributors to India’s pneumococcal pneumonia burden were Uttar Pradesh, Bihar, Madhya Pradesh and Rajasthan in that order. Our results highlight the need to improve access to care and increase coverage and equity of pneumonia preventing vaccines in states with high pneumonia burden. PMID:26086700

  17. Accuracy of Noninvasive Estimation Techniques for the State of the Cochlear Amplifier

    NASA Astrophysics Data System (ADS)

    Dalhoff, Ernst; Gummer, Anthony W.

    2011-11-01

    Estimation of the function of the cochlea in human is possible only by deduction from indirect measurements, which may be subjective or objective. Therefore, for basic research as well as diagnostic purposes, it is important to develop methods to deduce and analyse error sources of cochlear-state estimation techniques. Here, we present a model of technical and physiologic error sources contributing to the estimation accuracy of hearing threshold and the state of the cochlear amplifier and deduce from measurements of human that the estimated standard deviation can be considerably below 6 dB. Experimental evidence is drawn from two partly independent objective estimation techniques for the auditory signal chain based on measurements of otoacoustic emissions.

  18. Statistically optimal analysis of state-discretized trajectory data from multiple thermodynamic states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hao; Mey, Antonia S. J. S.; Noé, Frank

    2014-12-07

    We propose a discrete transition-based reweighting analysis method (dTRAM) for analyzing configuration-space-discretized simulation trajectories produced at different thermodynamic states (temperatures, Hamiltonians, etc.) dTRAM provides maximum-likelihood estimates of stationary quantities (probabilities, free energies, expectation values) at any thermodynamic state. In contrast to the weighted histogram analysis method (WHAM), dTRAM does not require data to be sampled from global equilibrium, and can thus produce superior estimates for enhanced sampling data such as parallel/simulated tempering, replica exchange, umbrella sampling, or metadynamics. In addition, dTRAM provides optimal estimates of Markov state models (MSMs) from the discretized state-space trajectories at all thermodynamic states. Under suitablemore » conditions, these MSMs can be used to calculate kinetic quantities (e.g., rates, timescales). In the limit of a single thermodynamic state, dTRAM estimates a maximum likelihood reversible MSM, while in the limit of uncorrelated sampling data, dTRAM is identical to WHAM. dTRAM is thus a generalization to both estimators.« less

  19. A comparison of consumptive-use estimates derived from the simplified surface energy balance approach and indirect reporting methods

    USGS Publications Warehouse

    Maupin, Molly A.; Senay, Gabriel B.; Kenny, Joan F.; Savoca, Mark E.

    2012-01-01

    Recent advances in remote-sensing technology and Simplified Surface Energy Balance (SSEB) methods can provide accurate and repeatable estimates of evapotranspiration (ET) when used with satellite observations of irrigated lands. Estimates of ET are generally considered equivalent to consumptive use (CU) because they represent the part of applied irrigation water that is evaporated, transpired, or otherwise not available for immediate reuse. The U.S. Geological Survey compared ET estimates from SSEB methods to CU data collected for 1995 using indirect methods as part of the National Water Use Information Program (NWUIP). Ten-year (2000-2009) average ET estimates from SSEB methods were derived using Moderate Resolution Imaging Spectroradiometer (MODIS) 1-kilometer satellite land surface temperature and gridded weather datasets from the Global Data Assimilation System (GDAS). County-level CU estimates for 1995 were assembled and referenced to 1-kilometer grid cells to synchronize with the SSEB ET estimates. Both datasets were seasonally and spatially weighted to represent the irrigation season (June-September) and those lands that were identified in the county as irrigated. A strong relation (R2 greater than 0.7) was determined between NWUIP CU and SSEB ET data. Regionally, the relation is stronger in arid western states than in humid eastern states, and positive and negative biases are both present at state-level comparisons. SSEB ET estimates can play a major role in monitoring and updating county-based CU estimates by providing a quick and cost-effective method to detect major year-to-year changes at county levels, as well as providing a means to disaggregate county-based ET estimates to sub-county levels. More research is needed to identify the causes for differences in state-based relations.

  20. Least mean square fourth based microgrid state estimation algorithm using the internet of things technology.

    PubMed

    Rana, Md Masud

    2017-01-01

    This paper proposes an innovative internet of things (IoT) based communication framework for monitoring microgrid under the condition of packet dropouts in measurements. First of all, the microgrid incorporating the renewable distributed energy resources is represented by a state-space model. The IoT embedded wireless sensor network is adopted to sense the system states. Afterwards, the information is transmitted to the energy management system using the communication network. Finally, the least mean square fourth algorithm is explored for estimating the system states. The effectiveness of the developed approach is verified through numerical simulations.

  1. View Estimation Based on Value System

    NASA Astrophysics Data System (ADS)

    Takahashi, Yasutake; Shimada, Kouki; Asada, Minoru

    Estimation of a caregiver's view is one of the most important capabilities for a child to understand the behavior demonstrated by the caregiver, that is, to infer the intention of behavior and/or to learn the observed behavior efficiently. We hypothesize that the child develops this ability in the same way as behavior learning motivated by an intrinsic reward, that is, he/she updates the model of the estimated view of his/her own during the behavior imitated from the observation of the behavior demonstrated by the caregiver based on minimizing the estimation error of the reward during the behavior. From this view, this paper shows a method for acquiring such a capability based on a value system from which values can be obtained by reinforcement learning. The parameters of the view estimation are updated based on the temporal difference error (hereafter TD error: estimation error of the state value), analogous to the way such that the parameters of the state value of the behavior are updated based on the TD error. Experiments with simple humanoid robots show the validity of the method, and the developmental process parallel to young children's estimation of its own view during the imitation of the observed behavior of the caregiver is discussed.

  2. Position Estimation for Switched Reluctance Motor Based on the Single Threshold Angle

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Pang; Yu, Yue

    2017-05-01

    This paper presents a position estimate model of switched reluctance motor based on the single threshold angle. In view of the relationship of between the inductance and rotor position, the position is estimated by comparing the real-time dynamic flux linkage with the threshold angle position flux linkage (7.5° threshold angle, 12/8SRM). The sensorless model is built by Maltab/Simulink, the simulation are implemented under the steady state and transient state different condition, and verified its validity and feasibility of the method..

  3. Subregional Nowcasts of Seasonal Influenza Using Search Trends.

    PubMed

    Kandula, Sasikiran; Hsu, Daniel; Shaman, Jeffrey

    2017-11-06

    Limiting the adverse effects of seasonal influenza outbreaks at state or city level requires close monitoring of localized outbreaks and reliable forecasts of their progression. Whereas forecasting models for influenza or influenza-like illness (ILI) are becoming increasingly available, their applicability to localized outbreaks is limited by the nonavailability of real-time observations of the current outbreak state at local scales. Surveillance data collected by various health departments are widely accepted as the reference standard for estimating the state of outbreaks, and in the absence of surveillance data, nowcast proxies built using Web-based activities such as search engine queries, tweets, and access of health-related webpages can be useful. Nowcast estimates of state and municipal ILI were previously published by Google Flu Trends (GFT); however, validations of these estimates were seldom reported. The aim of this study was to develop and validate models to nowcast ILI at subregional geographic scales. We built nowcast models based on autoregressive (autoregressive integrated moving average; ARIMA) and supervised regression methods (Random forests) at the US state level using regional weighted ILI and Web-based search activity derived from Google's Extended Trends application programming interface. We validated the performance of these methods using actual surveillance data for the 50 states across six seasons. We also built state-level nowcast models using state-level estimates of ILI and compared the accuracy of these estimates with the estimates of the regional models extrapolated to the state level and with the nowcast estimates published by GFT. Models built using regional ILI extrapolated to state level had a median correlation of 0.84 (interquartile range: 0.74-0.91) and a median root mean square error (RMSE) of 1.01 (IQR: 0.74-1.50), with noticeable variability across seasons and by state population size. Model forms that hypothesize the availability of timely state-level surveillance data show significantly lower errors of 0.83 (0.55-0.23). Compared with GFT, the latter model forms have lower errors but also lower correlation. These results suggest that the proposed methods may be an alternative to the discontinued GFT and that further improvements in the quality of subregional nowcasts may require increased access to more finely resolved surveillance data. ©Sasikiran Kandula, Daniel Hsu, Jeffrey Shaman. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 06.11.2017.

  4. Global and System-Specific Resting-State fMRI Fluctuations Are Uncorrelated: Principal Component Analysis Reveals Anti-Correlated Networks

    PubMed Central

    Carbonell, Felix; Bellec, Pierre

    2011-01-01

    Abstract The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)–based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations. PMID:22444074

  5. Event-Based Sensing and Control for Remote Robot Guidance: An Experimental Case

    PubMed Central

    Santos, Carlos; Martínez-Rey, Miguel; Santiso, Enrique

    2017-01-01

    This paper describes the theoretical and practical foundations for remote control of a mobile robot for nonlinear trajectory tracking using an external localisation sensor. It constitutes a classical networked control system, whereby event-based techniques for both control and state estimation contribute to efficient use of communications and reduce sensor activity. Measurement requests are dictated by an event-based state estimator by setting an upper bound to the estimation error covariance matrix. The rest of the time, state prediction is carried out with the Unscented transformation. This prediction method makes it possible to select the appropriate instants at which to perform actuations on the robot so that guidance performance does not degrade below a certain threshold. Ultimately, we obtained a combined event-based control and estimation solution that drastically reduces communication accesses. The magnitude of this reduction is set according to the tracking error margin of a P3-DX robot following a nonlinear trajectory, remotely controlled with a mini PC and whose pose is detected by a camera sensor. PMID:28878144

  6. Estimation of Hidden State Variables of the Intracranial System Using Constrained Nonlinear Kalman Filters

    PubMed Central

    Nenov, Valeriy; Bergsneider, Marvin; Glenn, Thomas C.; Vespa, Paul; Martin, Neil

    2007-01-01

    Impeded by the rigid skull, assessment of physiological variables of the intracranial system is difficult. A hidden state estimation approach is used in the present work to facilitate the estimation of unobserved variables from available clinical measurements including intracranial pressure (ICP) and cerebral blood flow velocity (CBFV). The estimation algorithm is based on a modified nonlinear intracranial mathematical model, whose parameters are first identified in an offline stage using a nonlinear optimization paradigm. Following the offline stage, an online filtering process is performed using a nonlinear Kalman filter (KF)-like state estimator that is equipped with a new way of deriving the Kalman gain satisfying the physiological constraints on the state variables. The proposed method is then validated by comparing different state estimation methods and input/output (I/O) configurations using simulated data. It is also applied to a set of CBFV, ICP and arterial blood pressure (ABP) signal segments from brain injury patients. The results indicated that the proposed constrained nonlinear KF achieved the best performance among the evaluated state estimators and that the state estimator combined with the I/O configuration that has ICP as the measured output can potentially be used to estimate CBFV continuously. Finally, the state estimator combined with the I/O configuration that has both ICP and CBFV as outputs can potentially estimate the lumped cerebral arterial radii, which are not measurable in a typical clinical environment. PMID:17281533

  7. Robust Battery Fuel Gauge Algorithm Development, Part 3: State of Charge Tracking

    DTIC Science & Technology

    2014-10-19

    X. Zhang, F. Sun, and J. Fan, “State-of-charge estimation of the lithium - ion battery using an adaptive extended kalman filter based on an improved...framework with ex- tended kalman filter for lithium - ion battery soc and capacity estimation,” Applied Energy, vol. 92, pp. 694–704, 2012. [16] X. Hu, F...Sun, and Y. Zou, “Estimation of state of charge of a lithium - ion battery pack for electric vehicles using an adaptive luenberger observer,” Energies

  8. Practical state of health estimation of power batteries based on Delphi method and grey relational grade analysis

    NASA Astrophysics Data System (ADS)

    Sun, Bingxiang; Jiang, Jiuchun; Zheng, Fangdan; Zhao, Wei; Liaw, Bor Yann; Ruan, Haijun; Han, Zhiqiang; Zhang, Weige

    2015-05-01

    The state of health (SOH) estimation is very critical to battery management system to ensure the safety and reliability of EV battery operation. Here, we used a unique hybrid approach to enable complex SOH estimations. The approach hybridizes the Delphi method known for its simplicity and effectiveness in applying weighting factors for complicated decision-making and the grey relational grade analysis (GRGA) for multi-factor optimization. Six critical factors were used in the consideration for SOH estimation: peak power at 30% state-of-charge (SOC), capacity, the voltage drop at 30% SOC with a C/3 pulse, the temperature rises at the end of discharge and charge at 1C; respectively, and the open circuit voltage at the end of charge after 1-h rest. The weighting of these factors for SOH estimation was scored by the 'experts' in the Delphi method, indicating the influencing power of each factor on SOH. The parameters for these factors expressing the battery state variations are optimized by GRGA. Eight battery cells were used to illustrate the principle and methodology to estimate the SOH by this hybrid approach, and the results were compared with those based on capacity and power capability. The contrast among different SOH estimations is discussed.

  9. Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Dong, Guangzhong; Wei, Jingwen; Chen, Zonghai

    2016-10-01

    To evaluate the continuous and instantaneous load capability of a battery, this paper describes a joint estimator for state-of-charge (SOC) and state-of-function (SOF) of lithium-ion batteries (LIB) based on Kalman filter (KF). The SOC is a widely used index for remain useful capacity left in a battery. The SOF represents the peak power capability of the battery. It can be determined by real-time SOC estimation and terminal voltage prediction, which can be derived from impedance parameters. However, the open-circuit-voltage (OCV) of LiFePO4 is highly nonlinear with SOC, which leads to the difficulties in SOC estimation. To solve these problems, this paper proposed an onboard SOC estimation method. Firstly, a simplified linearized equivalent-circuit-model is developed to simulate the dynamic characteristics of a battery, where the OCV is regarded as a linearized function of SOC. Then, the system states are estimated based on the KF. Besides, the factors that influence peak power capability are analyzed according to statistical data. Finally, the performance of the proposed methodology is demonstrated by experiments conducted on a LiFePO4 LIBs under different operating currents and temperatures. Experimental results indicate that the proposed approach is suitable for battery onboard SOC and SOF estimation.

  10. Joint state and parameter estimation of the hemodynamic model by particle smoother expectation maximization method

    NASA Astrophysics Data System (ADS)

    Aslan, Serdar; Taylan Cemgil, Ali; Akın, Ata

    2016-08-01

    Objective. In this paper, we aimed for the robust estimation of the parameters and states of the hemodynamic model by using blood oxygen level dependent signal. Approach. In the fMRI literature, there are only a few successful methods that are able to make a joint estimation of the states and parameters of the hemodynamic model. In this paper, we implemented a maximum likelihood based method called the particle smoother expectation maximization (PSEM) algorithm for the joint state and parameter estimation. Main results. Former sequential Monte Carlo methods were only reliable in the hemodynamic state estimates. They were claimed to outperform the local linearization (LL) filter and the extended Kalman filter (EKF). The PSEM algorithm is compared with the most successful method called square-root cubature Kalman smoother (SCKS) for both state and parameter estimation. SCKS was found to be better than the dynamic expectation maximization (DEM) algorithm, which was shown to be a better estimator than EKF, LL and particle filters. Significance. PSEM was more accurate than SCKS for both the state and the parameter estimation. Hence, PSEM seems to be the most accurate method for the system identification and state estimation for the hemodynamic model inversion literature. This paper do not compare its results with Tikhonov-regularized Newton—CKF (TNF-CKF), a recent robust method which works in filtering sense.

  11. An adaptive state of charge estimation approach for lithium-ion series-connected battery system

    NASA Astrophysics Data System (ADS)

    Peng, Simin; Zhu, Xuelai; Xing, Yinjiao; Shi, Hongbing; Cai, Xu; Pecht, Michael

    2018-07-01

    Due to the incorrect or unknown noise statistics of a battery system and its cell-to-cell variations, state of charge (SOC) estimation of a lithium-ion series-connected battery system is usually inaccurate or even divergent using model-based methods, such as extended Kalman filter (EKF) and unscented Kalman filter (UKF). To resolve this problem, an adaptive unscented Kalman filter (AUKF) based on a noise statistics estimator and a model parameter regulator is developed to accurately estimate the SOC of a series-connected battery system. An equivalent circuit model is first built based on the model parameter regulator that illustrates the influence of cell-to-cell variation on the battery system. A noise statistics estimator is then used to attain adaptively the estimated noise statistics for the AUKF when its prior noise statistics are not accurate or exactly Gaussian. The accuracy and effectiveness of the SOC estimation method is validated by comparing the developed AUKF and UKF when model and measurement statistics noises are inaccurate, respectively. Compared with the UKF and EKF, the developed method shows the highest SOC estimation accuracy.

  12. Short-Term Distribution System State Forecast Based on Optimal Synchrophasor Sensor Placement and Extreme Learning Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Zhang, Yingchen

    This paper proposes an approach for distribution system state forecasting, which aims to provide an accurate and high speed state forecasting with an optimal synchrophasor sensor placement (OSSP) based state estimator and an extreme learning machine (ELM) based forecaster. Specifically, considering the sensor installation cost and measurement error, an OSSP algorithm is proposed to reduce the number of synchrophasor sensor and keep the whole distribution system numerically and topologically observable. Then, the weighted least square (WLS) based system state estimator is used to produce the training data for the proposed forecaster. Traditionally, the artificial neural network (ANN) and support vectormore » regression (SVR) are widely used in forecasting due to their nonlinear modeling capabilities. However, the ANN contains heavy computation load and the best parameters for SVR are difficult to obtain. In this paper, the ELM, which overcomes these drawbacks, is used to forecast the future system states with the historical system states. The proposed approach is effective and accurate based on the testing results.« less

  13. The recent prevalence of Osteoporosis and low bone mass in the United States based on bone mineral density at the Femoral Neck or Lumbar Spine

    USDA-ARS?s Scientific Manuscript database

    The goal of our study was to estimate the prevalence of osteoporosis and low bone mass based on bone mineral density (BMD) at the femoral neck and the lumbar spine in adults 50 years and older in the United States (US). We applied prevalence estimates of osteoporosis or low bone mass at the femoral ...

  14. Lidar-Based Estimates of Above-Ground Biomass in the Continental US and Mexico Using Ground, Airborne, and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Nelson, Ross; Margolis, Hank; Montesano, Paul; Sun, Guoqing; Cook, Bruce; Corp, Larry; Andersen, Hans-Erik; DeJong, Ben; Pellat, Fernando Paz; Fickel, Thaddeus; hide

    2016-01-01

    Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar measurements. Two sets of models are generated, the first relating ground estimates of AGB to airborne laser scanning (ALS) measurements and the second set relating ALS estimates of AGB (generated using the first model set) to GLAS measurements. GLAS then, is used as a sampling tool within a hybrid estimation framework to generate stratum-, state-, and national-level AGB estimates. A two-phase variance estimator is employed to quantify GLAS sampling variability and, additively, ALS-GLAS model variability in this current, three-phase (ground-ALS-space lidar) study. The model variance component characterizes the variability of the regression coefficients used to predict ALS-based estimates of biomass as a function of GLAS measurements. Three different types of predictive models are considered in CONUS to determine which produced biomass totals closest to ground-based national forest inventory estimates - (1) linear (LIN), (2) linear-no-intercept (LNI), and (3) log-linear. For CONUS at the national level, the GLAS LNI model estimate (23.95 +/- 0.45 Gt AGB), agreed most closely with the US national forest inventory ground estimate, 24.17 +/- 0.06 Gt, i.e., within 1%. The national biomass total based on linear ground-ALS and ALS-GLAS models (25.87 +/- 0.49 Gt) overestimated the national ground-based estimate by 7.5%. The comparable log-linear model result (63.29 +/-1.36 Gt) overestimated ground results by 261%. All three national biomass GLAS estimates, LIN, LNI, and log-linear, are based on 241,718 pulses collected on 230 orbits. The US national forest inventory (ground) estimates are based on 119,414 ground plots. At the US state level, the average absolute value of the deviation of LNI GLAS estimates from the comparable ground estimate of total biomass was 18.8% (range: Oregon,-40.8% to North Dakota, 128.6%). Log-linear models produced gross overestimates in the continental US, i.e., N2.6x, and the use of this model to predict regional biomass using GLAS data in temperate, western hemisphere forests is not appropriate. The best model form, LNI, is used to produce biomass estimates in Mexico. The average biomass density in Mexican forests is 53.10 +/- 0.88 t/ha, and the total biomass for the country, given a total forest area of 688,096 sq km, is 3.65 +/- 0.06 Gt. In Mexico, our GLAS biomass total underestimated a 2005 FAO estimate (4.152 Gt) by 12% and overestimated a 2007/8 radar study's figure (3.06 Gt) by 19%.

  15. Methodology for the Model-based Small Area Estimates of Cancer Risk Factors and Screening Behaviors - Small Area Estimates

    Cancer.gov

    This model-based approach uses data from both the Behavioral Risk Factor Surveillance System (BRFSS) and the National Health Interview Survey (NHIS) to produce estimates of the prevalence rates of cancer risk factors and screening behaviors at the state, health service area, and county levels.

  16. Strain measurement based battery testing

    DOEpatents

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  17. An Estimate of Avian Mortality at Communication Towers in the United States and Canada

    PubMed Central

    Longcore, Travis; Rich, Catherine; Mineau, Pierre; MacDonald, Beau; Bert, Daniel G.; Sullivan, Lauren M.; Mutrie, Erin; Gauthreaux, Sidney A.; Avery, Michael L.; Crawford, Robert L.; Manville, Albert M.; Travis, Emilie R.; Drake, David

    2012-01-01

    Avian mortality at communication towers in the continental United States and Canada is an issue of pressing conservation concern. Previous estimates of this mortality have been based on limited data and have not included Canada. We compiled a database of communication towers in the continental United States and Canada and estimated avian mortality by tower with a regression relating avian mortality to tower height. This equation was derived from 38 tower studies for which mortality data were available and corrected for sampling effort, search efficiency, and scavenging where appropriate. Although most studies document mortality at guyed towers with steady-burning lights, we accounted for lower mortality at towers without guy wires or steady-burning lights by adjusting estimates based on published studies. The resulting estimate of mortality at towers is 6.8 million birds per year in the United States and Canada. Bootstrapped subsampling indicated that the regression was robust to the choice of studies included and a comparison of multiple regression models showed that incorporating sampling, scavenging, and search efficiency adjustments improved model fit. Estimating total avian mortality is only a first step in developing an assessment of the biological significance of mortality at communication towers for individual species or groups of species. Nevertheless, our estimate can be used to evaluate this source of mortality, develop subsequent per-species mortality estimates, and motivate policy action. PMID:22558082

  18. An estimate of avian mortality at communication towers in the United States and Canada.

    PubMed

    Longcore, Travis; Rich, Catherine; Mineau, Pierre; MacDonald, Beau; Bert, Daniel G; Sullivan, Lauren M; Mutrie, Erin; Gauthreaux, Sidney A; Avery, Michael L; Crawford, Robert L; Manville, Albert M; Travis, Emilie R; Drake, David

    2012-01-01

    Avian mortality at communication towers in the continental United States and Canada is an issue of pressing conservation concern. Previous estimates of this mortality have been based on limited data and have not included Canada. We compiled a database of communication towers in the continental United States and Canada and estimated avian mortality by tower with a regression relating avian mortality to tower height. This equation was derived from 38 tower studies for which mortality data were available and corrected for sampling effort, search efficiency, and scavenging where appropriate. Although most studies document mortality at guyed towers with steady-burning lights, we accounted for lower mortality at towers without guy wires or steady-burning lights by adjusting estimates based on published studies. The resulting estimate of mortality at towers is 6.8 million birds per year in the United States and Canada. Bootstrapped subsampling indicated that the regression was robust to the choice of studies included and a comparison of multiple regression models showed that incorporating sampling, scavenging, and search efficiency adjustments improved model fit. Estimating total avian mortality is only a first step in developing an assessment of the biological significance of mortality at communication towers for individual species or groups of species. Nevertheless, our estimate can be used to evaluate this source of mortality, develop subsequent per-species mortality estimates, and motivate policy action.

  19. Quantifying confidence in density functional theory predictions of magnetic ground states

    NASA Astrophysics Data System (ADS)

    Houchins, Gregory; Viswanathan, Venkatasubramanian

    2017-10-01

    Density functional theory (DFT) simulations, at the generalized gradient approximation (GGA) level, are being routinely used for material discovery based on high-throughput descriptor-based searches. The success of descriptor-based material design relies on eliminating bad candidates and keeping good candidates for further investigation. While DFT has been widely successfully for the former, oftentimes good candidates are lost due to the uncertainty associated with the DFT-predicted material properties. Uncertainty associated with DFT predictions has gained prominence and has led to the development of exchange correlation functionals that have built-in error estimation capability. In this work, we demonstrate the use of built-in error estimation capabilities within the BEEF-vdW exchange correlation functional for quantifying the uncertainty associated with the magnetic ground state of solids. We demonstrate this approach by calculating the uncertainty estimate for the energy difference between the different magnetic states of solids and compare them against a range of GGA exchange correlation functionals as is done in many first-principles calculations of materials. We show that this estimate reasonably bounds the range of values obtained with the different GGA functionals. The estimate is determined as a postprocessing step and thus provides a computationally robust and systematic approach to estimating uncertainty associated with predictions of magnetic ground states. We define a confidence value (c-value) that incorporates all calculated magnetic states in order to quantify the concurrence of the prediction at the GGA level and argue that predictions of magnetic ground states from GGA level DFT is incomplete without an accompanying c-value. We demonstrate the utility of this method using a case study of Li-ion and Na-ion cathode materials and the c-value metric correctly identifies that GGA-level DFT will have low predictability for NaFePO4F . Further, there needs to be a systematic test of a collection of plausible magnetic states, especially in identifying antiferromagnetic (AFM) ground states. We believe that our approach of estimating uncertainty can be readily incorporated into all high-throughput computational material discovery efforts and this will lead to a dramatic increase in the likelihood of finding good candidate materials.

  20. An adaptive observer for on-line tool wear estimation in turning, Part I: Theory

    NASA Astrophysics Data System (ADS)

    Danai, Kourosh; Ulsoy, A. Galip

    1987-04-01

    On-line sensing of tool wear has been a long-standing goal of the manufacturing engineering community. In the absence of any reliable on-line tool wear sensors, a new model-based approach for tool wear estimation has been proposed. This approach is an adaptive observer, based on force measurement, which uses both parameter and state estimation techniques. The design of the adaptive observer is based upon a dynamic state model of tool wear in turning. This paper (Part I) presents the model, and explains its use as the basis for the adaptive observer design. This model uses flank wear and crater wear as state variables, feed as the input, and the cutting force as the output. The suitability of the model as the basis for adaptive observation is also verified. The implementation of the adaptive observer requires the design of a state observer and a parameter estimator. To obtain the model parameters for tuning the adaptive observer procedures for linearisation of the non-linear model are specified. The implementation of the adaptive observer in turning and experimental results are presented in a companion paper (Part II).

  1. A framework for estimating health state utility values within a discrete choice experiment: modeling risky choices.

    PubMed

    Robinson, Angela; Spencer, Anne; Moffatt, Peter

    2015-04-01

    There has been recent interest in using the discrete choice experiment (DCE) method to derive health state utilities for use in quality-adjusted life year (QALY) calculations, but challenges remain. We set out to develop a risk-based DCE approach to derive utility values for health states that allowed 1) utility values to be anchored directly to normal health and death and 2) worse than dead health states to be assessed in the same manner as better than dead states. Furthermore, we set out to estimate alternative models of risky choice within a DCE model. A survey was designed that incorporated a risk-based DCE and a "modified" standard gamble (SG). Health state utility values were elicited for 3 EQ-5D health states assuming "standard" expected utility (EU) preferences. The DCE model was then generalized to allow for rank-dependent expected utility (RDU) preferences, thereby allowing for probability weighting. A convenience sample of 60 students was recruited and data collected in small groups. Under the assumption of "standard" EU preferences, the utility values derived within the DCE corresponded fairly closely to the mean results from the modified SG. Under the assumption of RDU preferences, the utility values estimated are somewhat lower than under the assumption of standard EU, suggesting that the latter may be biased upward. Applying the correct model of risky choice is important whether a modified SG or a risk-based DCE is deployed. It is, however, possible to estimate a probability weighting function within a DCE and estimate "unbiased" utility values directly, which is not possible within a modified SG. We conclude by setting out the relative strengths and weaknesses of the 2 approaches in this context. © The Author(s) 2014.

  2. State-space model with deep learning for functional dynamics estimation in resting-state fMRI.

    PubMed

    Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang

    2016-04-01

    Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. State-space model with deep learning for functional dynamics estimation in resting-state fMRI

    PubMed Central

    Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang

    2017-01-01

    Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. PMID:26774612

  4. Least mean square fourth based microgrid state estimation algorithm using the internet of things technology

    PubMed Central

    2017-01-01

    This paper proposes an innovative internet of things (IoT) based communication framework for monitoring microgrid under the condition of packet dropouts in measurements. First of all, the microgrid incorporating the renewable distributed energy resources is represented by a state-space model. The IoT embedded wireless sensor network is adopted to sense the system states. Afterwards, the information is transmitted to the energy management system using the communication network. Finally, the least mean square fourth algorithm is explored for estimating the system states. The effectiveness of the developed approach is verified through numerical simulations. PMID:28459848

  5. Determining the rate of forest conversion in Mato Grosso, Brazil, using Landsat MSS and AVHRR data

    NASA Technical Reports Server (NTRS)

    Nelson, Ross; Horning, Ned; Stone, Thomas A.

    1987-01-01

    AVHRR-LAC thermal data and Landsat MSS and TM spectral data were used to estimate the rate of forest clearing in Mato Grosso, Brazil, between 1981 and 1984. The Brazilian state was stratified into forest and nonforest. A list sampling procedure was used in the forest stratum to select Landsat MSS scenes for processing based on estimates of fire activity in the scenes. Fire activity in 1984 was estimated using AVHRR-LAC thermal data. State-wide estimates of forest conversion indicate that between 1981 and 1984, 353,966 ha + or - 77,000 ha (0.4 percent of the state area) were converted per year. No evidence of reforestation was found in this digital sample. The relationship between forest clearing rate (based on MSS-TM analysis) and fire activity (estimated using AVHRR data) was noisy (R-squared = 0.41). The results suggest that AVHRR data may be put to better use as a stratification tool than as a subsidiary variable in list sampling.

  6. A dynamic programming approach to estimate the capacity value of energy storage

    DOE PAGES

    Sioshansi, Ramteen; Madaeni, Seyed Hossein; Denholm, Paul

    2013-09-17

    Here, we present a method to estimate the capacity value of storage. Our method uses a dynamic program to model the effect of power system outages on the operation and state of charge of storage in subsequent periods. We combine the optimized dispatch from the dynamic program with estimated system loss of load probabilities to compute a probability distribution for the state of charge of storage in each period. This probability distribution can be used as a forced outage rate for storage in standard reliability-based capacity value estimation methods. Our proposed method has the advantage over existing approximations that itmore » explicitly captures the effect of system shortage events on the state of charge of storage in subsequent periods. We also use a numerical case study, based on five utility systems in the U.S., to demonstrate our technique and compare it to existing approximation methods.« less

  7. Battery state-of-charge estimation using approximate least squares

    NASA Astrophysics Data System (ADS)

    Unterrieder, C.; Zhang, C.; Lunglmayr, M.; Priewasser, R.; Marsili, S.; Huemer, M.

    2015-03-01

    In recent years, much effort has been spent to extend the runtime of battery-powered electronic applications. In order to improve the utilization of the available cell capacity, high precision estimation approaches for battery-specific parameters are needed. In this work, an approximate least squares estimation scheme is proposed for the estimation of the battery state-of-charge (SoC). The SoC is determined based on the prediction of the battery's electromotive force. The proposed approach allows for an improved re-initialization of the Coulomb counting (CC) based SoC estimation method. Experimental results for an implementation of the estimation scheme on a fuel gauge system on chip are illustrated. Implementation details and design guidelines are presented. The performance of the presented concept is evaluated for realistic operating conditions (temperature effects, aging, standby current, etc.). For the considered test case of a GSM/UMTS load current pattern of a mobile phone, the proposed method is able to re-initialize the CC-method with a high accuracy, while state-of-the-art methods fail to perform a re-initialization.

  8. On-Board Event-Based State Estimation for Trajectory Approaching and Tracking of a Vehicle

    PubMed Central

    Martínez-Rey, Miguel; Espinosa, Felipe; Gardel, Alfredo; Santos, Carlos

    2015-01-01

    For the problem of pose estimation of an autonomous vehicle using networked external sensors, the processing capacity and battery consumption of these sensors, as well as the communication channel load should be optimized. Here, we report an event-based state estimator (EBSE) consisting of an unscented Kalman filter that uses a triggering mechanism based on the estimation error covariance matrix to request measurements from the external sensors. This EBSE generates the events of the estimator module on-board the vehicle and, thus, allows the sensors to remain in stand-by mode until an event is generated. The proposed algorithm requests a measurement every time the estimation distance root mean squared error (DRMS) value, obtained from the estimator's covariance matrix, exceeds a threshold value. This triggering threshold can be adapted to the vehicle's working conditions rendering the estimator even more efficient. An example of the use of the proposed EBSE is given, where the autonomous vehicle must approach and follow a reference trajectory. By making the threshold a function of the distance to the reference location, the estimator can halve the use of the sensors with a negligible deterioration in the performance of the approaching maneuver. PMID:26102489

  9. A practical method to detect the freezing/thawing onsets of seasonal frozen ground in Alaska

    NASA Astrophysics Data System (ADS)

    Chen, Xiyu; Liu, Lin

    2017-04-01

    Microwave remote sensing can provide useful information about freeze/thaw state of soil at the Earth surface. An edge detection method is applied in this study to estimate the onsets of soil freeze/thaw state transition using L band space-borne radiometer data. The Soil Moisture Active Passive (SMAP) mission has a L band radiometer and can provide daily brightness temperature (TB) with horizontal/vertical polarizations. We use the normalized polarization ratios (NPR) calculated based on the Level-1C TB product of SMAP (spatial resolution: 36 km) as the indicator for soil freeze/thaw state, to estimate the freezing and thawing onsets in Alaska in the year of 2015 and 2016. NPR is calculated based on the difference between TB at vertical and horizontal polarizations. Therefore, it is strongly sensitive to liquid water content change in the soil and independent with the soil temperature. Onset estimation is based on the detection of abrupt changes of NPR in transition seasons using edge detection method, and the validation is to compare estimated onsets with the onsets derived from in situ measurement. According to the comparison, the estimated onsets were generally 15 days earlier than the measured onsets in 2015. However, in 2016 there were 4 days in average for the estimation earlier than the measured, which may be due to the less snow cover. Moreover, we extended our estimation to the entire state of Alaska. The estimated freeze/thaw onsets showed a reasonable latitude-dependent distribution although there are still some outliers caused by the noisy variation of NPR. At last, we also try to remove these outliers and improve the performance of the method by smoothing the NPR time series.

  10. Efficient implementation of a real-time estimation system for thalamocortical hidden Parkinsonian properties

    NASA Astrophysics Data System (ADS)

    Yang, Shuangming; Deng, Bin; Wang, Jiang; Li, Huiyan; Liu, Chen; Fietkiewicz, Chris; Loparo, Kenneth A.

    2017-01-01

    Real-time estimation of dynamical characteristics of thalamocortical cells, such as dynamics of ion channels and membrane potentials, is useful and essential in the study of the thalamus in Parkinsonian state. However, measuring the dynamical properties of ion channels is extremely challenging experimentally and even impossible in clinical applications. This paper presents and evaluates a real-time estimation system for thalamocortical hidden properties. For the sake of efficiency, we use a field programmable gate array for strictly hardware-based computation and algorithm optimization. In the proposed system, the FPGA-based unscented Kalman filter is implemented into a conductance-based TC neuron model. Since the complexity of TC neuron model restrains its hardware implementation in parallel structure, a cost efficient model is proposed to reduce the resource cost while retaining the relevant ionic dynamics. Experimental results demonstrate the real-time capability to estimate thalamocortical hidden properties with high precision under both normal and Parkinsonian states. While it is applied to estimate the hidden properties of the thalamus and explore the mechanism of the Parkinsonian state, the proposed method can be useful in the dynamic clamp technique of the electrophysiological experiments, the neural control engineering and brain-machine interface studies.

  11. A terrain-based site characterization map of California with implications for the contiguous United States

    USGS Publications Warehouse

    Yong, Alan K.; Hough, Susan E.; Iwahashi, Junko; Braverman, Amy

    2012-01-01

    We present an approach based on geomorphometry to predict material properties and characterize site conditions using the VS30 parameter (time‐averaged shear‐wave velocity to a depth of 30 m). Our framework consists of an automated terrain classification scheme based on taxonomic criteria (slope gradient, local convexity, and surface texture) that systematically identifies 16 terrain types from 1‐km spatial resolution (30 arcsec) Shuttle Radar Topography Mission digital elevation models (SRTM DEMs). Using 853 VS30 values from California, we apply a simulation‐based statistical method to determine the mean VS30 for each terrain type in California. We then compare the VS30 values with models based on individual proxies, such as mapped surface geology and topographic slope, and show that our systematic terrain‐based approach consistently performs better than semiempirical estimates based on individual proxies. To further evaluate our model, we apply our California‐based estimates to terrains of the contiguous United States. Comparisons of our estimates with 325 VS30 measurements outside of California, as well as estimates based on the topographic slope model, indicate our method to be statistically robust and more accurate. Our approach thus provides an objective and robust method for extending estimates of VS30 for regions where in situ measurements are sparse or not readily available.

  12. Kalman Filter Constraint Tuning for Turbofan Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2005-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints are often neglected because they do not fit easily into the structure of the Kalman filter. Recently published work has shown a new method for incorporating state variable inequality constraints in the Kalman filter, which has been shown to generally improve the filter s estimation accuracy. However, the incorporation of inequality constraints poses some risk to the estimation accuracy as the Kalman filter is theoretically optimal. This paper proposes a way to tune the filter constraints so that the state estimates follow the unconstrained (theoretically optimal) filter when the confidence in the unconstrained filter is high. When confidence in the unconstrained filter is not so high, then we use our heuristic knowledge to constrain the state estimates. The confidence measure is based on the agreement of measurement residuals with their theoretical values. The algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate engine health.

  13. Sequential state estimation of nonlinear/non-Gaussian systems with stochastic input for turbine degradation estimation

    NASA Astrophysics Data System (ADS)

    Hanachi, Houman; Liu, Jie; Banerjee, Avisekh; Chen, Ying

    2016-05-01

    Health state estimation of inaccessible components in complex systems necessitates effective state estimation techniques using the observable variables of the system. The task becomes much complicated when the system is nonlinear/non-Gaussian and it receives stochastic input. In this work, a novel sequential state estimation framework is developed based on particle filtering (PF) scheme for state estimation of general class of nonlinear dynamical systems with stochastic input. Performance of the developed framework is then validated with simulation on a Bivariate Non-stationary Growth Model (BNGM) as a benchmark. In the next step, three-year operating data of an industrial gas turbine engine (GTE) are utilized to verify the effectiveness of the developed framework. A comprehensive thermodynamic model for the GTE is therefore developed to formulate the relation of the observable parameters and the dominant degradation symptoms of the turbine, namely, loss of isentropic efficiency and increase of the mass flow. The results confirm the effectiveness of the developed framework for simultaneous estimation of multiple degradation symptoms in complex systems with noisy measured inputs.

  14. Harmonizing estimates of forest land area from national-level forest inventory and satellite imagery

    Treesearch

    Bonnie Ruefenacht; Mark D. Nelson; Mark Finco

    2009-01-01

    Estimates of forest land area are derived both from national-level forest inventories and satellite image-based map products. These estimates can differ substantially within subregional extents (e.g., states or provinces) primarily due to differences in definitions of forest land between inventory- and image-based approaches. We present a geospatial modeling approach...

  15. H∞ state estimation for discrete-time memristive recurrent neural networks with stochastic time-delays

    NASA Astrophysics Data System (ADS)

    Liu, Hongjian; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.

    2016-07-01

    This paper deals with the robust H∞ state estimation problem for a class of memristive recurrent neural networks with stochastic time-delays. The stochastic time-delays under consideration are governed by a Bernoulli-distributed stochastic sequence. The purpose of the addressed problem is to design the robust state estimator such that the dynamics of the estimation error is exponentially stable in the mean square, and the prescribed ? performance constraint is met. By utilizing the difference inclusion theory and choosing a proper Lyapunov-Krasovskii functional, the existence condition of the desired estimator is derived. Based on it, the explicit expression of the estimator gain is given in terms of the solution to a linear matrix inequality. Finally, a numerical example is employed to demonstrate the effectiveness and applicability of the proposed estimation approach.

  16. Reconsidering the use of rankings in the valuation of health states: a model for estimating cardinal values from ordinal data

    PubMed Central

    Salomon, Joshua A

    2003-01-01

    Background In survey studies on health-state valuations, ordinal ranking exercises often are used as precursors to other elicitation methods such as the time trade-off (TTO) or standard gamble, but the ranking data have not been used in deriving cardinal valuations. This study reconsiders the role of ordinal ranks in valuing health and introduces a new approach to estimate interval-scaled valuations based on aggregate ranking data. Methods Analyses were undertaken on data from a previously published general population survey study in the United Kingdom that included rankings and TTO values for hypothetical states described using the EQ-5D classification system. The EQ-5D includes five domains (mobility, self-care, usual activities, pain/discomfort and anxiety/depression) with three possible levels on each. Rank data were analysed using a random utility model, operationalized through conditional logit regression. In the statistical model, probabilities of observed rankings were related to the latent utilities of different health states, modeled as a linear function of EQ-5D domain scores, as in previously reported EQ-5D valuation functions. Predicted valuations based on the conditional logit model were compared to observed TTO values for the 42 states in the study and to predictions based on a model estimated directly from the TTO values. Models were evaluated using the intraclass correlation coefficient (ICC) between predictions and mean observations, and the root mean squared error of predictions at the individual level. Results Agreement between predicted valuations from the rank model and observed TTO values was very high, with an ICC of 0.97, only marginally lower than for predictions based on the model estimated directly from TTO values (ICC = 0.99). Individual-level errors were also comparable in the two models, with root mean squared errors of 0.503 and 0.496 for the rank-based and TTO-based predictions, respectively. Conclusions Modeling health-state valuations based on ordinal ranks can provide results that are similar to those obtained from more widely analyzed valuation techniques such as the TTO. The information content in aggregate ranking data is not currently exploited to full advantage. The possibility of estimating cardinal valuations from ordinal ranks could also simplify future data collection dramatically and facilitate wider empirical study of health-state valuations in diverse settings and population groups. PMID:14687419

  17. Estimation of power lithium-ion battery SOC based on fuzzy optimal decision

    NASA Astrophysics Data System (ADS)

    He, Dongmei; Hou, Enguang; Qiao, Xin; Liu, Guangmin

    2018-06-01

    In order to improve vehicle performance and safety, need to accurately estimate the power lithium battery state of charge (SOC), analyzing the common SOC estimation methods, according to the characteristics open circuit voltage and Kalman filter algorithm, using T - S fuzzy model, established a lithium battery SOC estimation method based on the fuzzy optimal decision. Simulation results show that the battery model accuracy can be improved.

  18. Use of streamflow data to estimate base flowground-water recharge for Wisconsin

    USGS Publications Warehouse

    Gebert, W.A.; Radloff, M.J.; Considine, E.J.; Kennedy, J.L.

    2007-01-01

    The average annual base flow/recharge was determined for streamflow-gaging stations throughout Wisconsin by base-flow separation. A map of the State was prepared that shows the average annual base flow for the period 1970-99 for watersheds at 118 gaging stations. Trend analysis was performed on 22 of the 118 streamflow-gaging stations that had long-term records, unregulated flow, and provided aerial coverage of the State. The analysis found that a statistically significant increasing trend was occurring for watersheds where the primary land use was agriculture. Most gaging stations where the land cover was forest had no significant trend. A method to estimate the average annual base flow at ungaged sites was developed by multiple-regression analysis using basin characteristics. The equation with the lowest standard error of estimate, 9.5%, has drainage area, soil infiltration and base flow factor as independent variables. To determine the average annual base flow for smaller watersheds, estimates were made at low-flow partial-record stations in 3 of the 12 major river basins in Wisconsin. Regression equations were developed for each of the three major river basins using basin characteristics. Drainage area, soil infiltration, basin storage and base-flow factor were the independent variables in the regression equations with the lowest standard error of estimate. The standard error of estimate ranged from 17% to 52% for the three river basins. ?? 2007 American Water Resources Association.

  19. Relative risk for HIV in India - An estimate using conditional auto-regressive models with Bayesian approach.

    PubMed

    Kandhasamy, Chandrasekaran; Ghosh, Kaushik

    2017-02-01

    Indian states are currently classified into HIV-risk categories based on the observed prevalence counts, percentage of infected attendees in antenatal clinics, and percentage of infected high-risk individuals. This method, however, does not account for the spatial dependence among the states nor does it provide any measure of statistical uncertainty. We provide an alternative model-based approach to address these issues. Our method uses Poisson log-normal models having various conditional autoregressive structures with neighborhood-based and distance-based weight matrices and incorporates all available covariate information. We use R and WinBugs software to fit these models to the 2011 HIV data. Based on the Deviance Information Criterion, the convolution model using distance-based weight matrix and covariate information on female sex workers, literacy rate and intravenous drug users is found to have the best fit. The relative risk of HIV for the various states is estimated using the best model and the states are then classified into the risk categories based on these estimated values. An HIV risk map of India is constructed based on these results. The choice of the final model suggests that an HIV control strategy which focuses on the female sex workers, intravenous drug users and literacy rate would be most effective. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Implementation of Kalman filter algorithm on models reduced using singular pertubation approximation method and its application to measurement of water level

    NASA Astrophysics Data System (ADS)

    Rachmawati, Vimala; Khusnul Arif, Didik; Adzkiya, Dieky

    2018-03-01

    The systems contained in the universe often have a large order. Thus, the mathematical model has many state variables that affect the computation time. In addition, generally not all variables are known, so estimations are needed to measure the magnitude of the system that cannot be measured directly. In this paper, we discuss the model reduction and estimation of state variables in the river system to measure the water level. The model reduction of a system is an approximation method of a system with a lower order without significant errors but has a dynamic behaviour that is similar to the original system. The Singular Perturbation Approximation method is one of the model reduction methods where all state variables of the equilibrium system are partitioned into fast and slow modes. Then, The Kalman filter algorithm is used to estimate state variables of stochastic dynamic systems where estimations are computed by predicting state variables based on system dynamics and measurement data. Kalman filters are used to estimate state variables in the original system and reduced system. Then, we compare the estimation results of the state and computational time between the original and reduced system.

  1. Real-Time Radar-Based Tracking and State Estimation of Multiple Non-Conformant Aircraft

    NASA Technical Reports Server (NTRS)

    Cook, Brandon; Arnett, Timothy; Macmann, Owen; Kumar, Manish

    2017-01-01

    In this study, a novel solution for automated tracking of multiple unknown aircraft is proposed. Many current methods use transponders to self-report state information and augment track identification. While conformant aircraft typically report transponder information to alert surrounding aircraft of its state, vehicles may exist in the airspace that are non-compliant and need to be accurately tracked using alternative methods. In this study, a multi-agent tracking solution is presented that solely utilizes primary surveillance radar data to estimate aircraft state information. Main research challenges include state estimation, track management, data association, and establishing persistent track validity. In an effort to realize these challenges, techniques such as Maximum a Posteriori estimation, Kalman filtering, degree of membership data association, and Nearest Neighbor Spanning Tree clustering are implemented for this application.

  2. Comparing cropland net primary production estimates from inventory, a satellite-based model, and a process-based model in the Midwest of the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhengpeng; Liu, Shuguang; Tan, Zhengxi

    2014-04-01

    Accurately quantifying the spatial and temporal variability of net primary production (NPP) for croplands is essential to understand regional cropland carbon dynamics. We compared three NPP estimates for croplands in the Midwestern United States: inventory-based estimates using crop yield data from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS); estimates from the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) NPP product; and estimates from the General Ensemble biogeochemical Modeling System (GEMS) process-based model. The three methods estimated mean NPP in the range of 469–687 g C m -2 yr -1 and total NPP in the range of 318–490more » Tg C yr -1 for croplands in the Midwest in 2007 and 2008. The NPP estimates from crop yield data and the GEMS model showed the mean NPP for croplands was over 650 g C m -2 yr -1 while the MODIS NPP product estimated the mean NPP was less than 500 g C m -2 yr -1. MODIS NPP also showed very different spatial variability of the cropland NPP from the other two methods. We found these differences were mainly caused by the difference in the land cover data and the crop specific information used in the methods. Our study demonstrated that the detailed mapping of the temporal and spatial change of crop species is critical for estimating the spatial and temporal variability of cropland NPP. Finally, we suggest that high resolution land cover data with species–specific crop information should be used in satellite-based and process-based models to improve carbon estimates for croplands.« less

  3. Comparing cropland net primary production estimates from inventory, a satellite-based model, and a process-based model in the Midwest of the United States

    USGS Publications Warehouse

    Li, Zhengpeng; Liu, Shuguang; Tan, Zhengxi; Bliss, Norman B.; Young, Claudia J.; West, Tristram O.; Ogle, Stephen M.

    2014-01-01

    Accurately quantifying the spatial and temporal variability of net primary production (NPP) for croplands is essential to understand regional cropland carbon dynamics. We compared three NPP estimates for croplands in the Midwestern United States: inventory-based estimates using crop yield data from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS); estimates from the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) NPP product; and estimates from the General Ensemble biogeochemical Modeling System (GEMS) process-based model. The three methods estimated mean NPP in the range of 469–687 g C m−2 yr−1and total NPP in the range of 318–490 Tg C yr−1 for croplands in the Midwest in 2007 and 2008. The NPP estimates from crop yield data and the GEMS model showed the mean NPP for croplands was over 650 g C m−2 yr−1 while the MODIS NPP product estimated the mean NPP was less than 500 g C m−2 yr−1. MODIS NPP also showed very different spatial variability of the cropland NPP from the other two methods. We found these differences were mainly caused by the difference in the land cover data and the crop specific information used in the methods. Our study demonstrated that the detailed mapping of the temporal and spatial change of crop species is critical for estimating the spatial and temporal variability of cropland NPP. We suggest that high resolution land cover data with species–specific crop information should be used in satellite-based and process-based models to improve carbon estimates for croplands.

  4. Expanding Local Cancer Clinical Trial Options: Analysis of the Economic Impact of the Midwest Cancer Alliance in Kansas.

    PubMed

    Gafford, J Atlee; Gurley-Calvez, Tami; Krebill, Hope; Lai, Sue Min; Christiadi; Doolittle, Gary C

    2017-09-01

    Patients benefit from receiving cancer treatment closer to home when possible and at high-volume regional centers when specialized care is required. The purpose of this analysis was to estimate the economic impact of retaining more patients in-state for cancer clinical trials and care, which might offset some of the costs of establishing broader cancer trial and treatment networks. Kansas Cancer Registry data were used to estimate the number of patients retained in-state for cancer care following the expansion of local cancer clinical trial options through the Midwest Cancer Alliance based at the University of Kansas Medical Center. The 2014 economic impact of this enhanced local clinical trial network was estimated in four parts: Medical spending was estimated on the basis of National Cancer Institute cost-of-care estimates. Household travel cost savings were estimated as the difference between in-state and out-of-state travel costs. Trial-related grant income was calculated from administrative records. Indirect and induced economic benefits to the state were estimated using an economic impact model. The authors estimated that the enhanced local cancer clinical trial network resulted in approximately $6.9 million in additional economic activity in the state in 2014, or $362,000 per patient retained in-state. This estimate includes $3.6 million in direct spending and $3.3 million in indirect economic activity. The enhanced trial network also resulted in 45 additional jobs. Retaining patients in-state for cancer care and clinical trial participation allows patients to remain closer to home for care and enhances the state economy.

  5. An online outlier identification and removal scheme for improving fault detection performance.

    PubMed

    Ferdowsi, Hasan; Jagannathan, Sarangapani; Zawodniok, Maciej

    2014-05-01

    Measured data or states for a nonlinear dynamic system is usually contaminated by outliers. Identifying and removing outliers will make the data (or system states) more trustworthy and reliable since outliers in the measured data (or states) can cause missed or false alarms during fault diagnosis. In addition, faults can make the system states nonstationary needing a novel analytical model-based fault detection (FD) framework. In this paper, an online outlier identification and removal (OIR) scheme is proposed for a nonlinear dynamic system. Since the dynamics of the system can experience unknown changes due to faults, traditional observer-based techniques cannot be used to remove the outliers. The OIR scheme uses a neural network (NN) to estimate the actual system states from measured system states involving outliers. With this method, the outlier detection is performed online at each time instant by finding the difference between the estimated and the measured states and comparing its median with its standard deviation over a moving time window. The NN weight update law in OIR is designed such that the detected outliers will have no effect on the state estimation, which is subsequently used for model-based fault diagnosis. In addition, since the OIR estimator cannot distinguish between the faulty or healthy operating conditions, a separate model-based observer is designed for fault diagnosis, which uses the OIR scheme as a preprocessing unit to improve the FD performance. The stability analysis of both OIR and fault diagnosis schemes are introduced. Finally, a three-tank benchmarking system and a simple linear system are used to verify the proposed scheme in simulations, and then the scheme is applied on an axial piston pump testbed. The scheme can be applied to nonlinear systems whose dynamics and underlying distribution of states are subjected to change due to both unknown faults and operating conditions.

  6. Estimation of sum-to-one constrained parameters with non-Gaussian extensions of ensemble-based Kalman filters: application to a 1D ocean biogeochemical model

    NASA Astrophysics Data System (ADS)

    Simon, E.; Bertino, L.; Samuelsen, A.

    2011-12-01

    Combined state-parameter estimation in ocean biogeochemical models with ensemble-based Kalman filters is a challenging task due to the non-linearity of the models, the constraints of positiveness that apply to the variables and parameters, and the non-Gaussian distribution of the variables in which they result. Furthermore, these models are sensitive to numerous parameters that are poorly known. Previous works [1] demonstrated that the Gaussian anamorphosis extensions of ensemble-based Kalman filters were relevant tools to perform combined state-parameter estimation in such non-Gaussian framework. In this study, we focus on the estimation of the grazing preferences parameters of zooplankton species. These parameters are introduced to model the diet of zooplankton species among phytoplankton species and detritus. They are positive values and their sum is equal to one. Because the sum-to-one constraint cannot be handled by ensemble-based Kalman filters, a reformulation of the parameterization is proposed. We investigate two types of changes of variables for the estimation of sum-to-one constrained parameters. The first one is based on Gelman [2] and leads to the estimation of normal distributed parameters. The second one is based on the representation of the unit sphere in spherical coordinates and leads to the estimation of parameters with bounded distributions (triangular or uniform). These formulations are illustrated and discussed in the framework of twin experiments realized in the 1D coupled model GOTM-NORWECOM with Gaussian anamorphosis extensions of the deterministic ensemble Kalman filter (DEnKF). [1] Simon E., Bertino L. : Gaussian anamorphosis extension of the DEnKF for combined state and parameter estimation : application to a 1D ocean ecosystem model. Journal of Marine Systems, 2011. doi :10.1016/j.jmarsys.2011.07.007 [2] Gelman A. : Method of Moments Using Monte Carlo Simulation. Journal of Computational and Graphical Statistics, 4, 1, 36-54, 1995.

  7. Implementation of a Battery Health Monitor and Vertical Lift Aircraft Testbed for the Application of an Electrochemisty-Based State of Charge Estimator

    NASA Technical Reports Server (NTRS)

    Potteiger, Timothy R.; Eure, Kenneth W.; Levenstein, David

    2017-01-01

    Prediction methods concerning remaining charge in lithium-ion batteries that power unmanned aerial vehicles are of critical concern for the safe fulfillment of mission objectives. In recent years, lithium-ion batteries have been the power source for both fixed wing and vertical lift electric vehicles. The purpose of this document is to describe in detail the implementation of a battery health monitor for estimating the state of charge of a lithium-ion battery and a lithium-ion polymer battery that is used to power a vertical lift aircraft test-bed. It will be demonstrated that an electro-chemistry based state of charge estimator effectively tracks battery discharge characteristics and may be employed as a useful tool in monitoring battery health.

  8. Projection-based circular constrained state estimation and fusion over long-haul links

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qiang; Rao, Nageswara S.

    In this paper, we consider a scenario where sensors are deployed over a large geographical area for tracking a target with circular nonlinear constraints on its motion dynamics. The sensor state estimates are sent over long-haul networks to a remote fusion center for fusion. We are interested in different ways to incorporate the constraints into the estimation and fusion process in the presence of communication loss. In particular, we consider closed-form projection-based solutions, including rules for fusing the estimates and for incorporating the constraints, which jointly can guarantee timely fusion often required in realtime systems. We test the performance ofmore » these methods in the long-haul tracking environment using a simple example.« less

  9. Online Sensor Fault Detection Based on an Improved Strong Tracking Filter

    PubMed Central

    Wang, Lijuan; Wu, Lifeng; Guan, Yong; Wang, Guohui

    2015-01-01

    We propose a method for online sensor fault detection that is based on the evolving Strong Tracking Filter (STCKF). The cubature rule is used to estimate states to improve the accuracy of making estimates in a nonlinear case. A residual is the difference in value between an estimated value and the true value. A residual will be regarded as a signal that includes fault information. The threshold is set at a reasonable level, and will be compared with residuals to determine whether or not the sensor is faulty. The proposed method requires only a nominal plant model and uses STCKF to estimate the original state vector. The effectiveness of the algorithm is verified by simulation on a drum-boiler model. PMID:25690553

  10. Localised estimates and spatial mapping of poverty incidence in the state of Bihar in India—An application of small area estimation techniques

    PubMed Central

    Aditya, Kaustav; Sud, U. C.

    2018-01-01

    Poverty affects many people, but the ramifications and impacts affect all aspects of society. Information about the incidence of poverty is therefore an important parameter of the population for policy analysis and decision making. In order to provide specific, targeted solutions when addressing poverty disadvantage small area statistics are needed. Surveys are typically designed and planned to produce reliable estimates of population characteristics of interest mainly at higher geographic area such as national and state level. Sample sizes are usually not large enough to provide reliable estimates for disaggregated analysis. In many instances estimates are required for areas of the population for which the survey providing the data was unplanned. Then, for areas with small sample sizes, direct survey estimation of population characteristics based only on the data available from the particular area tends to be unreliable. This paper describes an application of small area estimation (SAE) approach to improve the precision of estimates of poverty incidence at district level in the State of Bihar in India by linking data from the Household Consumer Expenditure Survey 2011–12 of NSSO and the Population Census 2011. The results show that the district level estimates generated by SAE method are more precise and representative. In contrast, the direct survey estimates based on survey data alone are less stable. PMID:29879202

  11. Localised estimates and spatial mapping of poverty incidence in the state of Bihar in India-An application of small area estimation techniques.

    PubMed

    Chandra, Hukum; Aditya, Kaustav; Sud, U C

    2018-01-01

    Poverty affects many people, but the ramifications and impacts affect all aspects of society. Information about the incidence of poverty is therefore an important parameter of the population for policy analysis and decision making. In order to provide specific, targeted solutions when addressing poverty disadvantage small area statistics are needed. Surveys are typically designed and planned to produce reliable estimates of population characteristics of interest mainly at higher geographic area such as national and state level. Sample sizes are usually not large enough to provide reliable estimates for disaggregated analysis. In many instances estimates are required for areas of the population for which the survey providing the data was unplanned. Then, for areas with small sample sizes, direct survey estimation of population characteristics based only on the data available from the particular area tends to be unreliable. This paper describes an application of small area estimation (SAE) approach to improve the precision of estimates of poverty incidence at district level in the State of Bihar in India by linking data from the Household Consumer Expenditure Survey 2011-12 of NSSO and the Population Census 2011. The results show that the district level estimates generated by SAE method are more precise and representative. In contrast, the direct survey estimates based on survey data alone are less stable.

  12. On the sea-state bias of the Geosat altimeter

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Koblinsky, Chester J.

    1991-01-01

    The sea-state bias in a satellite altimeter's range measurement is caused by the influence of ocean waves on the radar return pulse; it results in an estimate of sea level that is too low according to some function of the wave height. This bias is here estimated for Geosat by correlating collinear differences of altimetric sea-surface heights with collinear differences of significant wave heights (H1/3). Corrections for satellite orbit error are estimated simultaneously with the sea-state bias. Based on twenty 17-day repeat cycles of the Geosat Exact Repeat Mission, the solution for the sea-state bias is 2.6 + or - 0.2 percent of H1/3. The least-squares residuals, however, show a correlation with wind speed U, so the traditional model of the bias has been supplemented with a second term: H1/3 + alpha-2H1/3U. This second term produces a small, but statistically significant, reduction in variance of the residuals. Both systematic and random errors in H1/3 and U tend to bias the estimates of alpha-1 and alpha-2, which complicates comparisons of the results with ground-based measurements of the sea-state bias.

  13. On the sea-state bias of the Geosat altimeter

    NASA Astrophysics Data System (ADS)

    Ray, Richard D.; Koblinsky, Chester J.

    1991-06-01

    The sea-state bias in a satellite altimeter's range measurement is caused by the influence of ocean waves on the radar return pulse; it results in an estimate of sea level that is too low according to some function of the wave height. This bias is here estimated for Geosat by correlating collinear differences of altimetric sea-surface heights with collinear differences of significant wave heights (H1/3). Corrections for satellite orbit error are estimated simultaneously with the sea-state bias. Based on twenty 17-day repeat cycles of the Geosat Exact Repeat Mission, the solution for the sea-state bias is 2.6 + or - 0.2 percent of H1/3. The least-squares residuals, however, show a correlation with wind speed U, so the traditional model of the bias has been supplemented with a second term: H1/3 + alpha-2H1/3U. This second term produces a small, but statistically significant, reduction in variance of the residuals. Both systematic and random errors in H1/3 and U tend to bias the estimates of alpha-1 and alpha-2, which complicates comparisons of the results with ground-based measurements of the sea-state bias.

  14. A Bayesian consistent dual ensemble Kalman filter for state-parameter estimation in subsurface hydrology

    NASA Astrophysics Data System (ADS)

    Ait-El-Fquih, Boujemaa; El Gharamti, Mohamad; Hoteit, Ibrahim

    2016-08-01

    Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface groundwater models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKFOSA. Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25 % more accurate state and parameter estimations than the joint and dual approaches.

  15. Human papillomavirus (HPV) vaccination coverage in young Australian women is higher than previously estimated: independent estimates from a nationally representative mobile phone survey.

    PubMed

    Brotherton, Julia M L; Liu, Bette; Donovan, Basil; Kaldor, John M; Saville, Marion

    2014-01-23

    Accurate estimates of coverage are essential for estimating the population effectiveness of human papillomavirus (HPV) vaccination. Australia has a purpose built National HPV Vaccination Program Register for monitoring coverage, however notification of doses administered to young women in the community during the national catch-up program (2007-2009) was not compulsory. In 2011, we undertook a population-based mobile phone survey of young women to independently estimate HPV vaccination coverage. Randomly generated mobile phone numbers were dialed to recruit women aged 22-30 (age eligible for HPV vaccination) to complete a computer assisted telephone interview. Consent was sought to validate self reported HPV vaccination status against the national register. Coverage rates were calculated based on self report and weighted to the age and state of residence structure of the Australian female population. These were compared with coverage estimates from the register using Australian Bureau of Statistics estimated resident populations as the denominator. Among the 1379 participants, the national estimate for self reported HPV vaccination coverage for doses 1/2/3, respectively, weighted for age and state of residence, was 64/59/53%. This compares with coverage of 55/45/32% and 49/40/28% based on register records, using 2007 and 2011 population data as the denominators respectively. Some significant differences in coverage between the states were identified. 20% (223) of women returned a consent form allowing validation of doses against the register and provider records: among these women 85.6% (538) of self reported doses were confirmed. We confirmed that coverage rates for young women vaccinated in the community (at age 18-26 years) are underestimated by the national register and that under-notification is greater for second and third doses. Using 2011 population estimates, rather than estimates contemporaneous with the program rollout, reduces register-based coverage estimates further because of large population increases due to immigration since the program. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Estimating Planetary Boundary Layer Heights from NOAA Profiler Network Wind Profiler Data

    NASA Technical Reports Server (NTRS)

    Molod, Andrea M.; Salmun, H.; Dempsey, M

    2015-01-01

    An algorithm was developed to estimate planetary boundary layer (PBL) heights from hourly archived wind profiler data from the NOAA Profiler Network (NPN) sites located throughout the central United States. Unlike previous studies, the present algorithm has been applied to a long record of publicly available wind profiler signal backscatter data. Under clear conditions, summertime averaged hourly time series of PBL heights compare well with Richardson-number based estimates at the few NPN stations with hourly temperature measurements. Comparisons with clear sky reanalysis based estimates show that the wind profiler PBL heights are lower by approximately 250-500 m. The geographical distribution of daily maximum PBL heights corresponds well with the expected distribution based on patterns of surface temperature and soil moisture. Wind profiler PBL heights were also estimated under mostly cloudy conditions, and are generally higher than both the Richardson number based and reanalysis PBL heights, resulting in a smaller clear-cloudy condition difference. The algorithm presented here was shown to provide a reliable summertime climatology of daytime hourly PBL heights throughout the central United States.

  17. Toward quantitative estimation of material properties with dynamic mode atomic force microscopy: a comparative study.

    PubMed

    Ghosal, Sayan; Gannepalli, Anil; Salapaka, Murti

    2017-08-11

    In this article, we explore methods that enable estimation of material properties with the dynamic mode atomic force microscopy suitable for soft matter investigation. The article presents the viewpoint of casting the system, comprising of a flexure probe interacting with the sample, as an equivalent cantilever system and compares a steady-state analysis based method with a recursive estimation technique for determining the parameters of the equivalent cantilever system in real time. The steady-state analysis of the equivalent cantilever model, which has been implicitly assumed in studies on material property determination, is validated analytically and experimentally. We show that the steady-state based technique yields results that quantitatively agree with the recursive method in the domain of its validity. The steady-state technique is considerably simpler to implement, however, slower compared to the recursive technique. The parameters of the equivalent system are utilized to interpret storage and dissipative properties of the sample. Finally, the article identifies key pitfalls that need to be avoided toward the quantitative estimation of material properties.

  18. Radiance Assimilation Shows Promise for Snowpack Characterization: A 1-D Case Study

    NASA Technical Reports Server (NTRS)

    Durand, Michael; Kim, Edward; Margulis, Steve

    2008-01-01

    We demonstrate an ensemble-based radiometric data assimilation (DA) methodology for estimating snow depth and snow grain size using ground-based passive microwave (PM) observations at 18.7 and 36.5 GHz collected during the NASA CLPX-1, March 2003, Colorado, USA. A land surface model was used to develop a prior estimate of the snowpack states, and a radiative transfer model was used to relate the modeled states to the observations. Snow depth bias was -53.3 cm prior to the assimilation, and -7.3 cm after the assimilation. Snow depth estimated by a non-DA-based retrieval algorithm using the same PM data had a bias of -18.3 cm. The sensitivity of the assimilation scheme to the grain size uncertainty was evaluated; over the range of grain size uncertainty tested, the posterior snow depth estimate bias ranges from -2.99 cm to -9.85 cm, which is uniformly better than both the prior and retrieval estimates. This study demonstrates the potential applicability of radiometric DA at larger scales.

  19. Heading Estimation for Pedestrian Dead Reckoning Based on Robust Adaptive Kalman Filtering.

    PubMed

    Wu, Dongjin; Xia, Linyuan; Geng, Jijun

    2018-06-19

    Pedestrian dead reckoning (PDR) using smart phone-embedded micro-electro-mechanical system (MEMS) sensors plays a key role in ubiquitous localization indoors and outdoors. However, as a relative localization method, it suffers from the problem of error accumulation which prevents it from long term independent running. Heading estimation error is one of the main location error sources, and therefore, in order to improve the location tracking performance of the PDR method in complex environments, an approach based on robust adaptive Kalman filtering (RAKF) for estimating accurate headings is proposed. In our approach, outputs from gyroscope, accelerometer, and magnetometer sensors are fused using the solution of Kalman filtering (KF) that the heading measurements derived from accelerations and magnetic field data are used to correct the states integrated from angular rates. In order to identify and control measurement outliers, a maximum likelihood-type estimator (M-estimator)-based model is used. Moreover, an adaptive factor is applied to resist the negative effects of state model disturbances. Extensive experiments under static and dynamic conditions were conducted in indoor environments. The experimental results demonstrate the proposed approach provides more accurate heading estimates and supports more robust and dynamic adaptive location tracking, compared with methods based on conventional KF.

  20. Combined state and parameter identification of nonlinear structural dynamical systems based on Rao-Blackwellization and Markov chain Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Abhinav, S.; Manohar, C. S.

    2018-03-01

    The problem of combined state and parameter estimation in nonlinear state space models, based on Bayesian filtering methods, is considered. A novel approach, which combines Rao-Blackwellized particle filters for state estimation with Markov chain Monte Carlo (MCMC) simulations for parameter identification, is proposed. In order to ensure successful performance of the MCMC samplers, in situations involving large amount of dynamic measurement data and (or) low measurement noise, the study employs a modified measurement model combined with an importance sampling based correction. The parameters of the process noise covariance matrix are also included as quantities to be identified. The study employs the Rao-Blackwellization step at two stages: one, associated with the state estimation problem in the particle filtering step, and, secondly, in the evaluation of the ratio of likelihoods in the MCMC run. The satisfactory performance of the proposed method is illustrated on three dynamical systems: (a) a computational model of a nonlinear beam-moving oscillator system, (b) a laboratory scale beam traversed by a loaded trolley, and (c) an earthquake shake table study on a bending-torsion coupled nonlinear frame subjected to uniaxial support motion.

  1. A Portuguese value set for the SF-6D.

    PubMed

    Ferreira, Lara N; Ferreira, Pedro L; Pereira, Luis N; Brazier, John; Rowen, Donna

    2010-08-01

    The SF-6D is a preference-based measure of health derived from the SF-36 that can be used for cost-effectiveness analysis using cost-per-quality adjusted life-year analysis. This study seeks to estimate a system weight for the SF-6D for Portugal and to compare the results with the UK system weights. A sample of 55 health states defined by the SF-6D has been valued by a representative random sample of the Portuguese population, stratified by sex and age (n = 140), using the Standard Gamble (SG). Several models are estimated at both the individual and aggregate levels for predicting health-state valuations. Models with main effects, with interaction effects and with the constant forced to unity are presented. Random effects (RE) models are estimated using generalized least squares (GLS) regressions. Generalized estimation equations (GEE) are used to estimate RE models with the constant forced to unity. Estimations at the individual level were performed using 630 health-state valuations. Alternative functional forms are considered to account for the skewed distribution of health-state valuations. The models are analyzed in terms of their coefficients, overall fit, and the ability for predicting the SG-values. The RE models estimated using GLS and through GEE produce significant coefficients, which are robust across model specification. However, there are concerns regarding some inconsistent estimates, and so parsimonious consistent models were estimated. There is evidence of under prediction in some states assigned to poor health. The results are consistent with the UK results. The models estimated provide preference-based quality of life weights for the Portuguese population when health status data have been collected using the SF-36. Although the sample was randomly drowned findings should be treated with caution, given the small sample size, even knowing that they have been estimated at the individual level.

  2. Utility Estimates of Disease-Specific Health States in Prostate Cancer from Three Different Perspectives.

    PubMed

    Gries, Katharine S; Regier, Dean A; Ramsey, Scott D; Patrick, Donald L

    2017-06-01

    To develop a statistical model generating utility estimates for prostate cancer specific health states, using preference weights derived from the perspectives of prostate cancer patients, men at risk for prostate cancer, and society. Utility estimate values were calculated using standard gamble (SG) methodology. Study participants valued 18 prostate-specific health states with the five attributes: sexual function, urinary function, bowel function, pain, and emotional well-being. Appropriateness of model (linear regression, mixed effects, or generalized estimating equation) to generate prostate cancer utility estimates was determined by paired t-tests to compare observed and predicted values. Mixed-corrected standard SG utility estimates to account for loss aversion were calculated based on prospect theory. 132 study participants assigned values to the health states (n = 40 men at risk for prostate cancer; n = 43 men with prostate cancer; n = 49 general population). In total, 792 valuations were elicited (six health states for each 132 participants). The most appropriate model for the classification system was a mixed effects model; correlations between the mean observed and predicted utility estimates were greater than 0.80 for each perspective. Developing a health-state classification system with preference weights for three different perspectives demonstrates the relative importance of main effects between populations. The predicted values for men with prostate cancer support the hypothesis that patients experiencing the disease state assign higher utility estimates to health states and there is a difference in valuations made by patients and the general population.

  3. Maximum profile likelihood estimation of differential equation parameters through model based smoothing state estimates.

    PubMed

    Campbell, D A; Chkrebtii, O

    2013-12-01

    Statistical inference for biochemical models often faces a variety of characteristic challenges. In this paper we examine state and parameter estimation for the JAK-STAT intracellular signalling mechanism, which exemplifies the implementation intricacies common in many biochemical inference problems. We introduce an extension to the Generalized Smoothing approach for estimating delay differential equation models, addressing selection of complexity parameters, choice of the basis system, and appropriate optimization strategies. Motivated by the JAK-STAT system, we further extend the generalized smoothing approach to consider a nonlinear observation process with additional unknown parameters, and highlight how the approach handles unobserved states and unevenly spaced observations. The methodology developed is generally applicable to problems of estimation for differential equation models with delays, unobserved states, nonlinear observation processes, and partially observed histories. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  4. A Particle Smoother with Sequential Importance Resampling for soil hydraulic parameter estimation: A lysimeter experiment

    NASA Astrophysics Data System (ADS)

    Montzka, Carsten; Hendricks Franssen, Harrie-Jan; Moradkhani, Hamid; Pütz, Thomas; Han, Xujun; Vereecken, Harry

    2013-04-01

    An adequate description of soil hydraulic properties is essential for a good performance of hydrological forecasts. So far, several studies showed that data assimilation could reduce the parameter uncertainty by considering soil moisture observations. However, these observations and also the model forcings were recorded with a specific measurement error. It seems a logical step to base state updating and parameter estimation on observations made at multiple time steps, in order to reduce the influence of outliers at single time steps given measurement errors and unknown model forcings. Such outliers could result in erroneous state estimation as well as inadequate parameters. This has been one of the reasons to use a smoothing technique as implemented for Bayesian data assimilation methods such as the Ensemble Kalman Filter (i.e. Ensemble Kalman Smoother). Recently, an ensemble-based smoother has been developed for state update with a SIR particle filter. However, this method has not been used for dual state-parameter estimation. In this contribution we present a Particle Smoother with sequentially smoothing of particle weights for state and parameter resampling within a time window as opposed to the single time step data assimilation used in filtering techniques. This can be seen as an intermediate variant between a parameter estimation technique using global optimization with estimation of single parameter sets valid for the whole period, and sequential Monte Carlo techniques with estimation of parameter sets evolving from one time step to another. The aims are i) to improve the forecast of evaporation and groundwater recharge by estimating hydraulic parameters, and ii) to reduce the impact of single erroneous model inputs/observations by a smoothing method. In order to validate the performance of the proposed method in a real world application, the experiment is conducted in a lysimeter environment.

  5. A modified NARMAX model-based self-tuner with fault tolerance for unknown nonlinear stochastic hybrid systems with an input-output direct feed-through term.

    PubMed

    Tsai, Jason S-H; Hsu, Wen-Teng; Lin, Long-Guei; Guo, Shu-Mei; Tann, Joseph W

    2014-01-01

    A modified nonlinear autoregressive moving average with exogenous inputs (NARMAX) model-based state-space self-tuner with fault tolerance is proposed in this paper for the unknown nonlinear stochastic hybrid system with a direct transmission matrix from input to output. Through the off-line observer/Kalman filter identification method, one has a good initial guess of modified NARMAX model to reduce the on-line system identification process time. Then, based on the modified NARMAX-based system identification, a corresponding adaptive digital control scheme is presented for the unknown continuous-time nonlinear system, with an input-output direct transmission term, which also has measurement and system noises and inaccessible system states. Besides, an effective state space self-turner with fault tolerance scheme is presented for the unknown multivariable stochastic system. A quantitative criterion is suggested by comparing the innovation process error estimated by the Kalman filter estimation algorithm, so that a weighting matrix resetting technique by adjusting and resetting the covariance matrices of parameter estimate obtained by the Kalman filter estimation algorithm is utilized to achieve the parameter estimation for faulty system recovery. Consequently, the proposed method can effectively cope with partially abrupt and/or gradual system faults and input failures by the fault detection. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Discrete Kalman filtering equations of second-order form for control-structure interaction simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alvin, K. F.; Belvin, W. Keith

    1991-01-01

    A second-order form of discrete Kalman filtering equations is proposed as a candidate state estimator for efficient simulations of control-structure interactions in coupled physical coordinate configurations as opposed to decoupled modal coordinates. The resulting matrix equation of the present state estimator consists of the same symmetric, sparse N x N coupled matrices of the governing structural dynamics equations as opposed to unsymmetric 2N x 2N state space-based estimators. Thus, in addition to substantial computational efficiency improvement, the present estimator can be applied to control-structure design optimization for which the physical coordinates associated with the mass, damping and stiffness matrices of the structure are needed instead of modal coordinates.

  7. Dynamic State Estimation and Parameter Calibration of DFIG based on Ensemble Kalman Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Rui; Huang, Zhenyu; Wang, Shaobu

    2015-07-30

    With the growing interest in the application of wind energy, doubly fed induction generator (DFIG) plays an essential role in the industry nowadays. To deal with the increasing stochastic variations introduced by intermittent wind resource and responsive loads, dynamic state estimation (DSE) are introduced in any power system associated with DFIGs. However, sometimes this dynamic analysis canould not work because the parameters of DFIGs are not accurate enough. To solve the problem, an ensemble Kalman filter (EnKF) method is proposed for the state estimation and parameter calibration tasks. In this paper, a DFIG is modeled and implemented with the EnKFmore » method. Sensitivity analysis is demonstrated regarding the measurement noise, initial state errors and parameter errors. The results indicate this EnKF method has a robust performance on the state estimation and parameter calibration of DFIGs.« less

  8. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    PubMed Central

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-01-01

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868

  9. Motion field estimation for a dynamic scene using a 3D LiDAR.

    PubMed

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-09-09

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  10. Distributed and decentralized state estimation in gas networks as distributed parameter systems.

    PubMed

    Ahmadian Behrooz, Hesam; Boozarjomehry, R Bozorgmehry

    2015-09-01

    In this paper, a framework for distributed and decentralized state estimation in high-pressure and long-distance gas transmission networks (GTNs) is proposed. The non-isothermal model of the plant including mass, momentum and energy balance equations are used to simulate the dynamic behavior. Due to several disadvantages of implementing a centralized Kalman filter for large-scale systems, the continuous/discrete form of extended Kalman filter for distributed and decentralized estimation (DDE) has been extended for these systems. Accordingly, the global model is decomposed into several subsystems, called local models. Some heuristic rules are suggested for system decomposition in gas pipeline networks. In the construction of local models, due to the existence of common states and interconnections among the subsystems, the assimilation and prediction steps of the Kalman filter are modified to take the overlapping and external states into account. However, dynamic Riccati equation for each subsystem is constructed based on the local model, which introduces a maximum error of 5% in the estimated standard deviation of the states in the benchmarks studied in this paper. The performance of the proposed methodology has been shown based on the comparison of its accuracy and computational demands against their counterparts in centralized Kalman filter for two viable benchmarks. In a real life network, it is shown that while the accuracy is not significantly decreased, the real-time factor of the state estimation is increased by a factor of 10. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Soybean Crop Area Estimation and Mapping in Mato Grosso State, Brazil

    NASA Astrophysics Data System (ADS)

    Gusso, A.; Ducati, J. R.

    2012-07-01

    Evaluation of the MODIS Crop Detection Algorithm (MCDA) procedure for estimating historical planted soybean crop areas was done on fields in Mato Grosso State, Brazil. MCDA is based on temporal profiles of EVI (Enhanced Vegetation Index) derived from satellite data of the MODIS (Moderate Resolution Imaging Spectroradiometer) imager, and was previously developed for soybean area estimation in Rio Grande do Sul State, Brazil. According to the MCDA approach, in Mato Grosso soybean area estimates can be provided in December (1st forecast), using images from the sowing period, and in February (2nd forecast), using images from sowing and maximum crop development period. The results obtained by the MCDA were compared with Brazilian Institute of Geography and Statistics (IBGE) official estimates of soybean area at municipal level. Coefficients of determination were between 0.93 and 0.98, indicating a good agreement, and also the suitability of MCDA to estimations performed in Mato Grosso State. On average, the MCDA results explained 96% of the variation of the data estimated by the IBGE. In this way, MCDA calibration was able to provide annual thematic soybean maps, forecasting the planted area in the State, with results which are comparable to the official agricultural statistics.

  12. Simultaneous Mean and Covariance Correction Filter for Orbit Estimation.

    PubMed

    Wang, Xiaoxu; Pan, Quan; Ding, Zhengtao; Ma, Zhengya

    2018-05-05

    This paper proposes a novel filtering design, from a viewpoint of identification instead of the conventional nonlinear estimation schemes (NESs), to improve the performance of orbit state estimation for a space target. First, a nonlinear perturbation is viewed or modeled as an unknown input (UI) coupled with the orbit state, to avoid the intractable nonlinear perturbation integral (INPI) required by NESs. Then, a simultaneous mean and covariance correction filter (SMCCF), based on a two-stage expectation maximization (EM) framework, is proposed to simply and analytically fit or identify the first two moments (FTM) of the perturbation (viewed as UI), instead of directly computing such the INPI in NESs. Orbit estimation performance is greatly improved by utilizing the fit UI-FTM to simultaneously correct the state estimation and its covariance. Third, depending on whether enough information is mined, SMCCF should outperform existing NESs or the standard identification algorithms (which view the UI as a constant independent of the state and only utilize the identified UI-mean to correct the state estimation, regardless of its covariance), since it further incorporates the useful covariance information in addition to the mean of the UI. Finally, our simulations demonstrate the superior performance of SMCCF via an orbit estimation example.

  13. Expanding Local Cancer Clinical Trial Options: Analysis of the Economic Impact of the Midwest Cancer Alliance in Kansas

    PubMed Central

    Gafford, J. Atlee; Krebill, Hope; Lai, Sue Min; Christiadi; Doolittle, Gary C.

    2017-01-01

    Purpose Patients benefit from receiving cancer treatment closer to home when possible and at high-volume regional centers when specialized care is required. The purpose of this analysis was to estimate the economic impact of retaining more patients in-state for cancer clinical trials and care, which might offset some of the costs of establishing broader cancer trial and treatment networks. Method Kansas Cancer Registry data were used to estimate the number of patients retained in-state for cancer care following the expansion of local cancer clinical trial options through the Midwest Cancer Alliance based at the University of Kansas Medical Center. The 2014 economic impact of this enhanced local clinical trial network was estimated in four parts: Medical spending was estimated on the basis of National Cancer Institute cost-of-care estimates. Household travel cost savings were estimated as the difference between in-state and out-of-state travel costs. Trial-related grant income was calculated from administrative records. Indirect and induced economic benefits to the state were estimated using an economic impact model. Results The authors estimated that the enhanced local cancer clinical trial network resulted in approximately $6.9 million in additional economic activity in the state in 2014, or $362,000 per patient retained in-state. This estimate includes $3.6 million in direct spending and $3.3 million in indirect economic activity. The enhanced trial network also resulted in 45 additional jobs. Conclusions Retaining patients in-state for cancer care and clinical trial participation allows patients to remain closer to home for care and enhances the state economy. PMID:28253204

  14. An algorithm to estimate PBL heights from wind profiler data

    NASA Astrophysics Data System (ADS)

    Molod, A.; Salmun, H.

    2016-12-01

    An algorithm was developed to estimate planetary boundary layer (PBL) heights from hourlyarchived wind profiler data from the NOAA Profiler Network (NPN) sites located throughoutthe central United States from the period 1992-2012. The long period of record allows ananalysis of climatological mean PBL heights as well as some estimates of year to yearvariability. Under clear conditions, summertime averaged hourly time series of PBL heightscompare well with Richardson-number based estimates at the few NPN stations with hourlytemperature measurements. Comparisons with clear sky MERRA estimates show that the windprofiler (WP) and the Richardson number based PBL heights are lower by approximately 250-500 m.The geographical distribution of daily maximum WP PBL heights corresponds well with theexpected distribution based on patterns of surface temperature and soil moisture. Windprofiler PBL heights were also estimated under mostly cloudy conditions, but the WP estimatesshow a smaller clear-cloudy condition difference than either of the other two PBL height estimates.The algorithm presented here is shown to provide a reliable summer, fall and springclimatology of daytime hourly PBL heights throughout the central United States. The reliabilityof the algorithm has prompted its use to obtain hourly PBL heights from other archived windprofiler data located throughout the world.

  15. Kalman-variant estimators for state of charge in lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Propp, Karsten; Auger, Daniel J.; Fotouhi, Abbas; Longo, Stefano; Knap, Vaclav

    2017-03-01

    Lithium-sulfur batteries are now commercially available, offering high specific energy density, low production costs and high safety. However, there is no commercially-available battery management system for them, and there are no published methods for determining state of charge in situ. This paper describes a study to address this gap. The properties and behaviours of lithium-sulfur are briefly introduced, and the applicability of 'standard' lithium-ion state-of-charge estimation methods is explored. Open-circuit voltage methods and 'Coulomb counting' are found to have a poor fit for lithium-sulfur, and model-based methods, particularly recursive Bayesian filters, are identified as showing strong promise. Three recursive Bayesian filters are implemented: an extended Kalman filter (EKF), an unscented Kalman filter (UKF) and a particle filter (PF). These estimators are tested through practical experimentation, considering both a pulse-discharge test and a test based on the New European Driving Cycle (NEDC). Experimentation is carried out at a constant temperature, mirroring the environment expected in the authors' target automotive application. It is shown that the estimators, which are based on a relatively simple equivalent-circuit-network model, can deliver useful results. If the three estimators implemented, the unscented Kalman filter gives the most robust and accurate performance, with an acceptable computational effort.

  16. A mathematical method for verifying the validity of measured information about the flows of energy resources based on the state estimation theory

    NASA Astrophysics Data System (ADS)

    Pazderin, A. V.; Sof'in, V. V.; Samoylenko, V. O.

    2015-11-01

    Efforts aimed at improving energy efficiency in all branches of the fuel and energy complex shall be commenced with setting up a high-tech automated system for monitoring and accounting energy resources. Malfunctions and failures in the measurement and information parts of this system may distort commercial measurements of energy resources and lead to financial risks for power supplying organizations. In addition, measurement errors may be connected with intentional distortion of measurements for reducing payment for using energy resources on the consumer's side, which leads to commercial loss of energy resource. The article presents a universal mathematical method for verifying the validity of measurement information in networks for transporting energy resources, such as electricity and heat, petroleum, gas, etc., based on the state estimation theory. The energy resource transportation network is represented by a graph the nodes of which correspond to producers and consumers, and its branches stand for transportation mains (power lines, pipelines, and heat network elements). The main idea of state estimation is connected with obtaining the calculated analogs of energy resources for all available measurements. Unlike "raw" measurements, which contain inaccuracies, the calculated flows of energy resources, called estimates, will fully satisfy the suitability condition for all state equations describing the energy resource transportation network. The state equations written in terms of calculated estimates will be already free from residuals. The difference between a measurement and its calculated analog (estimate) is called in the estimation theory an estimation remainder. The obtained large values of estimation remainders are an indicator of high errors of particular energy resource measurements. By using the presented method it is possible to improve the validity of energy resource measurements, to estimate the transportation network observability, to eliminate the energy resource flows measurement imbalances, and to filter invalid measurements at the data acquisition and processing stage in performing monitoring of an automated energy resource monitoring and accounting system.

  17. Sensitivity of landscape resistance estimates based on point selection functions to scale and behavioral state: Pumas as a case study

    Treesearch

    Katherine A. Zeller; Kevin McGarigal; Paul Beier; Samuel A. Cushman; T. Winston Vickers; Walter M. Boyce

    2014-01-01

    Estimating landscape resistance to animal movement is the foundation for connectivity modeling, and resource selection functions based on point data are commonly used to empirically estimate resistance. In this study, we used GPS data points acquired at 5-min intervals from radiocollared pumas in southern California to model context-dependent point selection...

  18. Battery Power Management in Heavy-duty HEVs based on the Estimated Critical Surface Charge

    DTIC Science & Technology

    2011-03-01

    health prospects without any penalty on fuel efficiency. Keywords: Lithium - ion battery ; power management; critical surface charge; Lithium-ion...fuel efficiency. 15. SUBJECT TERMS Lithium - ion battery ; power management; critical surface charge; Lithium-ion concentration; estimation; extended...Di Domenico, D., Fiengo, G., and Stefanopoulou, A. (2008) ’ Lithium - ion battery state of charge estimation with a kalman filter based on a

  19. On experimental damage localization by SP2E: Application of H∞ estimation and oblique projections

    NASA Astrophysics Data System (ADS)

    Lenzen, Armin; Vollmering, Max

    2018-05-01

    In this article experimental damage localization based on H∞ estimation and state projection estimation error (SP2E) is studied. Based on an introduced difference process, a state space representation is derived for advantageous numerical solvability. Because real structural excitations are presumed to be unknown, a general input is applied therein, which allows synchronization and normalization. Furthermore, state projections are introduced to enhance damage identification. While first experiments to verify method SP2E have already been conducted and published, further laboratory results are analyzed here. Therefore, SP2E is used to experimentally localize stiffness degradations and mass alterations. Furthermore, the influence of projection techniques is analyzed. In summary, method SP2E is able to localize structural alterations, which has been observed by results of laboratory experiments.

  20. A REVIEW OF HOUSEHOLD DRINKING WATER INTERVENTION TRIALS AND AN APPROACH TO THE ESTIMATION OF ENDEMIC WATERBORNE GASTROENTERITIS IN THE UNITED STATES

    EPA Science Inventory

    The incidence of acute gastrointestinal illness (AGI) attributable to public drinking water systems in the United States cannot be directly measured but must be estimated based on epidemiologic studies and other information. The randomized trial is one study design used to evalua...

  1. Estimating Returns to College Attainment: Comparing Survey and State Administrative Data Based Estimates. A CAPSEE Working Paper

    ERIC Educational Resources Information Center

    Scott-Clayton, Judith; Wen, Qiao

    2017-01-01

    The increasing availability of massive administrative datasets linking postsecondary enrollees with post-college earnings records has stimulated a wealth of new research on the returns to college, and has accelerated state and federal efforts to hold institutions accountable for students' labor market outcomes. Many of these new research and…

  2. Uncertainty and inference in the world of paleoecological data

    NASA Astrophysics Data System (ADS)

    McLachlan, J. S.; Dawson, A.; Dietze, M.; Finley, M.; Hooten, M.; Itter, M.; Jackson, S. T.; Marlon, J. R.; Raiho, A.; Tipton, J.; Williams, J.

    2017-12-01

    Proxy data in paleoecology and paleoclimatology share a common set of biases and uncertainties: spatiotemporal error associated with the taphonomic processes of deposition, preservation, and dating; calibration error between proxy data and the ecosystem states of interest; and error in the interpolation of calibrated estimates across space and time. Researchers often account for this daunting suite of challenges by applying qualitave expert judgment: inferring the past states of ecosystems and assessing the level of uncertainty in those states subjectively. The effectiveness of this approach can be seen by the extent to which future observations confirm previous assertions. Hierarchical Bayesian (HB) statistical approaches allow an alternative approach to accounting for multiple uncertainties in paleo data. HB estimates of ecosystem state formally account for each of the common uncertainties listed above. HB approaches can readily incorporate additional data, and data of different types into estimates of ecosystem state. And HB estimates of ecosystem state, with associated uncertainty, can be used to constrain forecasts of ecosystem dynamics based on mechanistic ecosystem models using data assimilation. Decisions about how to structure an HB model are also subjective, which creates a parallel framework for deciding how to interpret data from the deep past.Our group, the Paleoecological Observatory Network (PalEON), has applied hierarchical Bayesian statistics to formally account for uncertainties in proxy based estimates of past climate, fire, primary productivity, biomass, and vegetation composition. Our estimates often reveal new patterns of past ecosystem change, which is an unambiguously good thing, but we also often estimate a level of uncertainty that is uncomfortably high for many researchers. High levels of uncertainty are due to several features of the HB approach: spatiotemporal smoothing, the formal aggregation of multiple types of uncertainty, and a coarseness in statistical models of taphonomic process. Each of these features provides useful opportunities for statisticians and data-generating researchers to assess what we know about the signal and the noise in paleo data and to improve inference about past changes in ecosystem state.

  3. Health-related quality of life among adults 65 years and older in the United States, 2011-2012: a multilevel small area estimation approach.

    PubMed

    Lin, Yu-Hsiu; McLain, Alexander C; Probst, Janice C; Bennett, Kevin J; Qureshi, Zaina P; Eberth, Jan M

    2017-01-01

    The purpose of this study was to develop county-level estimates of poor health-related quality of life (HRQOL) among aged 65 years and older U.S. adults and to identify spatial clusters of poor HRQOL using a multilevel, poststratification approach. Multilevel, random-intercept models were fit to HRQOL data (two domains: physical health and mental health) from the 2011-2012 Behavioral Risk Factor Surveillance System. Using a poststratification, small area estimation approach, we generated county-level probabilities of having poor HRQOL for each domain in U.S. adults aged 65 and older, and validated our model-based estimates against state and county direct estimates. County-level estimates of poor HRQOL in the United States ranged from 18.07% to 44.81% for physical health and 14.77% to 37.86% for mental health. Correlations between model-based and direct estimates were higher for physical than mental HRQOL. Counties located in the Arkansas, Kentucky, and Mississippi exhibited the worst physical HRQOL scores, but this pattern did not hold for mental HRQOL, which had the highest probability of mentally unhealthy days in Illinois, Indiana, and Vermont. Substantial geographic variation in physical and mental HRQOL scores exists among older U.S. adults. State and local policy makers should consider these local conditions in targeting interventions and policies to counties with high levels of poor HRQOL scores. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Comparison of different estimation techniques for biomass concentration in large scale yeast fermentation.

    PubMed

    Hocalar, A; Türker, M; Karakuzu, C; Yüzgeç, U

    2011-04-01

    In this study, previously developed five different state estimation methods are examined and compared for estimation of biomass concentrations at a production scale fed-batch bioprocess. These methods are i. estimation based on kinetic model of overflow metabolism; ii. estimation based on metabolic black-box model; iii. estimation based on observer; iv. estimation based on artificial neural network; v. estimation based on differential evaluation. Biomass concentrations are estimated from available measurements and compared with experimental data obtained from large scale fermentations. The advantages and disadvantages of the presented techniques are discussed with regard to accuracy, reproducibility, number of primary measurements required and adaptation to different working conditions. Among the various techniques, the metabolic black-box method seems to have advantages although the number of measurements required is more than that for the other methods. However, the required extra measurements are based on commonly employed instruments in an industrial environment. This method is used for developing a model based control of fed-batch yeast fermentations. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Uncertainty quantification metrics for whole product life cycle cost estimates in aerospace innovation

    NASA Astrophysics Data System (ADS)

    Schwabe, O.; Shehab, E.; Erkoyuncu, J.

    2015-08-01

    The lack of defensible methods for quantifying cost estimate uncertainty over the whole product life cycle of aerospace innovations such as propulsion systems or airframes poses a significant challenge to the creation of accurate and defensible cost estimates. Based on the axiomatic definition of uncertainty as the actual prediction error of the cost estimate, this paper provides a comprehensive overview of metrics used for the uncertainty quantification of cost estimates based on a literature review, an evaluation of publicly funded projects such as part of the CORDIS or Horizon 2020 programs, and an analysis of established approaches used by organizations such NASA, the U.S. Department of Defence, the ESA, and various commercial companies. The metrics are categorized based on their foundational character (foundations), their use in practice (state-of-practice), their availability for practice (state-of-art) and those suggested for future exploration (state-of-future). Insights gained were that a variety of uncertainty quantification metrics exist whose suitability depends on the volatility of available relevant information, as defined by technical and cost readiness level, and the number of whole product life cycle phases the estimate is intended to be valid for. Information volatility and number of whole product life cycle phases can hereby be considered as defining multi-dimensional probability fields admitting various uncertainty quantification metric families with identifiable thresholds for transitioning between them. The key research gaps identified were the lacking guidance grounded in theory for the selection of uncertainty quantification metrics and lacking practical alternatives to metrics based on the Central Limit Theorem. An innovative uncertainty quantification framework consisting of; a set-theory based typology, a data library, a classification system, and a corresponding input-output model are put forward to address this research gap as the basis for future work in this field.

  6. SEASONAL NH 3 EMISSIONS FOR THE CONTINENTAL UNITED STATES: INVERSE MODEL ESTIMATION AND EVALUATION

    EPA Science Inventory

    An inverse modeling study has been conducted here to evaluate a prior estimate of seasonal ammonia (NH3) emissions. The prior estimates were based on a previous inverse modeling study and two other bottom-up inventory studies. The results suggest that the prior estim...

  7. Using a physiologically based pharmacokinetic model to link urinary biomarker concentrations to dietary exposure of perchlorate

    EPA Science Inventory

    Exposure to perchlorate is widespread in the United States and many studies have attempted to character the perchlorate exposure by estimating the average daily intakes of perchlorate. These approaches provided population-based estimates, but did not provide individual-level exp...

  8. A water balance based, spatiotemporal evaluation of terrestrial evapotranspiration products across the contiguous United States

    USDA-ARS?s Scientific Manuscript database

    Accurate gridded estimates of evapotranspiration (ET) are essential to the analysis of terrestrial water budgets. In this study, ET estimates from three gridded energy-balance based products (ETEB) with independent model formations and data forcings are evaluated for their ability to capture long te...

  9. Multi-objective optimization in quantum parameter estimation

    NASA Astrophysics Data System (ADS)

    Gong, BeiLi; Cui, Wei

    2018-04-01

    We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.

  10. The DEP-6D, a new preference-based measure to assess health states of dependency.

    PubMed

    Rodríguez-Míguez, E; Abellán-Perpiñán, J M; Alvarez, X C; González, X M; Sampayo, A R

    2016-03-01

    In medical literature there are numerous multidimensional scales to measure health states for dependence in activities of daily living. However, these scales are not preference-based and are not able to yield QALYs. On the contrary, the generic preference-based measures are not sensitive enough to measure changes in dependence states. The objective of this paper is to propose a new dependency health state classification system, called DEP-6D, and to estimate its value set in such a way that it can be used in QALY calculations. DEP-6D states are described as a combination of 6 attributes (eat, incontinence, personal care, mobility, housework and cognition problems), with 3-4 levels each. A sample of 312 Spanish citizens was surveyed in 2011 to estimate the DEP-6D preference-scoring algorithm. Each respondent valued six out of the 24 states using time trade-off questions. After excluding those respondents who made two or more inconsistencies (6% out of the sample), each state was valued between 66 and 77 times. The responses present a high internal and external consistency. A random effect model accounting for main effects was the preferred model to estimate the scoring algorithm. The DEP-6D describes, in general, more severe problems than those usually described by means of generic preference-based measures. The minimum score predicted by the DEP-6D algorithm is -0.84, which is considerably lower than the minimum value predicted by the EQ-5D and SF-6D algorithms. The DEP-6D value set is based on community preferences. Therefore it is consistent with the so-called 'societal perspective'. Moreover, DEP-6D preference weights can be used in QALY calculations and cost-utility analysis. Copyright © 2016. Published by Elsevier Ltd.

  11. Maximum likelihood-based analysis of single-molecule photon arrival trajectories

    NASA Astrophysics Data System (ADS)

    Hajdziona, Marta; Molski, Andrzej

    2011-02-01

    In this work we explore the statistical properties of the maximum likelihood-based analysis of one-color photon arrival trajectories. This approach does not involve binning and, therefore, all of the information contained in an observed photon strajectory is used. We study the accuracy and precision of parameter estimates and the efficiency of the Akaike information criterion and the Bayesian information criterion (BIC) in selecting the true kinetic model. We focus on the low excitation regime where photon trajectories can be modeled as realizations of Markov modulated Poisson processes. The number of observed photons is the key parameter in determining model selection and parameter estimation. For example, the BIC can select the true three-state model from competing two-, three-, and four-state kinetic models even for relatively short trajectories made up of 2 × 103 photons. When the intensity levels are well-separated and 104 photons are observed, the two-state model parameters can be estimated with about 10% precision and those for a three-state model with about 20% precision.

  12. Maps and grids of hydrogeologic information created from standardized water-well drillers’ records of the glaciated United States

    USGS Publications Warehouse

    Bayless, E. Randall; Arihood, Leslie D.; Reeves, Howard W.; Sperl, Benjamin J.S.; Qi, Sharon L.; Stipe, Valerie E.; Bunch, Aubrey R.

    2017-01-18

    As part of the National Water Availability and Use Program established by the U.S. Geological Survey (USGS) in 2005, this study took advantage of about 14 million records from State-managed collections of water-well drillers’ records and created a database of hydrogeologic properties for the glaciated United States. The water-well drillers’ records were standardized to be relatively complete and error-free and to provide consistent variables and naming conventions that span all State boundaries.Maps and geospatial grids were developed for (1) total thickness of glacial deposits, (2) total thickness of coarse-grained deposits, (3) specific-capacity based transmissivity and hydraulic conductivity, and (4) texture-based estimated equivalent horizontal and vertical hydraulic conductivity and transmissivity. The information included in these maps and grids is required for most assessments of groundwater availability, in addition to having applications to studies of groundwater flow and transport. The texture-based estimated equivalent horizontal and vertical hydraulic conductivity and transmissivity were based on an assumed range of hydraulic conductivity values for coarse- and fine-grained deposits and should only be used with complete awareness of the methods used to create them. However, the maps and grids of texture-based estimated equivalent hydraulic conductivity and transmissivity may be useful for application to areas where a range of measured values is available for re-scaling.Maps of hydrogeologic information for some States are presented as examples in this report but maps and grids for all States are available electronically at the project Web site (USGS Glacial Aquifer System Groundwater Availability Study, http://mi.water.usgs.gov/projects/WaterSmart/Map-SIR2015-5105.html) and the Science Base Web site, https://www.sciencebase.gov/catalog/item/58756c7ee4b0a829a3276352.

  13. Weighted Optimization-Based Distributed Kalman Filter for Nonlinear Target Tracking in Collaborative Sensor Networks.

    PubMed

    Chen, Jie; Li, Jiahong; Yang, Shuanghua; Deng, Fang

    2017-11-01

    The identification of the nonlinearity and coupling is crucial in nonlinear target tracking problem in collaborative sensor networks. According to the adaptive Kalman filtering (KF) method, the nonlinearity and coupling can be regarded as the model noise covariance, and estimated by minimizing the innovation or residual errors of the states. However, the method requires large time window of data to achieve reliable covariance measurement, making it impractical for nonlinear systems which are rapidly changing. To deal with the problem, a weighted optimization-based distributed KF algorithm (WODKF) is proposed in this paper. The algorithm enlarges the data size of each sensor by the received measurements and state estimates from its connected sensors instead of the time window. A new cost function is set as the weighted sum of the bias and oscillation of the state to estimate the "best" estimate of the model noise covariance. The bias and oscillation of the state of each sensor are estimated by polynomial fitting a time window of state estimates and measurements of the sensor and its neighbors weighted by the measurement noise covariance. The best estimate of the model noise covariance is computed by minimizing the weighted cost function using the exhaustive method. The sensor selection method is in addition to the algorithm to decrease the computation load of the filter and increase the scalability of the sensor network. The existence, suboptimality and stability analysis of the algorithm are given. The local probability data association method is used in the proposed algorithm for the multitarget tracking case. The algorithm is demonstrated in simulations on tracking examples for a random signal, one nonlinear target, and four nonlinear targets. Results show the feasibility and superiority of WODKF against other filtering algorithms for a large class of systems.

  14. An Information Retrieval Approach for Robust Prediction of Road Surface States.

    PubMed

    Park, Jae-Hyung; Kim, Kwanho

    2017-01-28

    Recently, due to the increasing importance of reducing severe vehicle accidents on roads (especially on highways), the automatic identification of road surface conditions, and the provisioning of such information to drivers in advance, have recently been gaining significant momentum as a proactive solution to decrease the number of vehicle accidents. In this paper, we firstly propose an information retrieval approach that aims to identify road surface states by combining conventional machine-learning techniques and moving average methods. Specifically, when signal information is received from a radar system, our approach attempts to estimate the current state of the road surface based on the similar instances observed previously based on utilizing a given similarity function. Next, the estimated state is then calibrated by using the recently estimated states to yield both effective and robust prediction results. To validate the performances of the proposed approach, we established a real-world experimental setting on a section of actual highway in South Korea and conducted a comparison with the conventional approaches in terms of accuracy. The experimental results show that the proposed approach successfully outperforms the previously developed methods.

  15. An Information Retrieval Approach for Robust Prediction of Road Surface States

    PubMed Central

    Park, Jae-Hyung; Kim, Kwanho

    2017-01-01

    Recently, due to the increasing importance of reducing severe vehicle accidents on roads (especially on highways), the automatic identification of road surface conditions, and the provisioning of such information to drivers in advance, have recently been gaining significant momentum as a proactive solution to decrease the number of vehicle accidents. In this paper, we firstly propose an information retrieval approach that aims to identify road surface states by combining conventional machine-learning techniques and moving average methods. Specifically, when signal information is received from a radar system, our approach attempts to estimate the current state of the road surface based on the similar instances observed previously based on utilizing a given similarity function. Next, the estimated state is then calibrated by using the recently estimated states to yield both effective and robust prediction results. To validate the performances of the proposed approach, we established a real-world experimental setting on a section of actual highway in South Korea and conducted a comparison with the conventional approaches in terms of accuracy. The experimental results show that the proposed approach successfully outperforms the previously developed methods. PMID:28134859

  16. Probability based remaining capacity estimation using data-driven and neural network model

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Yang, Duo; Zhang, Xu; Chen, Zonghai

    2016-05-01

    Since large numbers of lithium-ion batteries are composed in pack and the batteries are complex electrochemical devices, their monitoring and safety concerns are key issues for the applications of battery technology. An accurate estimation of battery remaining capacity is crucial for optimization of the vehicle control, preventing battery from over-charging and over-discharging and ensuring the safety during its service life. The remaining capacity estimation of a battery includes the estimation of state-of-charge (SOC) and state-of-energy (SOE). In this work, a probability based adaptive estimator is presented to obtain accurate and reliable estimation results for both SOC and SOE. For the SOC estimation, an n ordered RC equivalent circuit model is employed by combining an electrochemical model to obtain more accurate voltage prediction results. For the SOE estimation, a sliding window neural network model is proposed to investigate the relationship between the terminal voltage and the model inputs. To verify the accuracy and robustness of the proposed model and estimation algorithm, experiments under different dynamic operation current profiles are performed on the commercial 1665130-type lithium-ion batteries. The results illustrate that accurate and robust estimation can be obtained by the proposed method.

  17. Estimating rooftop solar technical potential across the US using a combination of GIS-based methods, lidar data, and statistical modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer

    We provide a detailed estimate of the technical potential of rooftop solar photovoltaic (PV) electricity generation throughout the contiguous United States. This national estimate is based on an analysis of select US cities that combines light detection and ranging (lidar) data with a validated analytical method for determining rooftop PV suitability employing geographic information systems. We use statistical models to extend this analysis to estimate the quantity and characteristics of roofs in areas not covered by lidar data. Finally, we model PV generation for all rooftops to yield technical potential estimates. At the national level, 8.13 billion m 2 ofmore » suitable roof area could host 1118 GW of PV capacity, generating 1432 TWh of electricity per year. This would equate to 38.6% of the electricity that was sold in the contiguous United States in 2013. This estimate is substantially higher than a previous estimate made by the National Renewable Energy Laboratory. The difference can be attributed to increases in PV module power density, improved estimation of building suitability, higher estimates of total number of buildings, and improvements in PV performance simulation tools that previously tended to underestimate productivity. Also notable, the nationwide percentage of buildings suitable for at least some PV deployment is high—82% for buildings smaller than 5000 ft 2 and over 99% for buildings larger than that. In most states, rooftop PV could enable small, mostly residential buildings to offset the majority of average household electricity consumption. Even in some states with a relatively poor solar resource, such as those in the Northeast, the residential sector has the potential to offset around 100% of its total electricity consumption with rooftop PV.« less

  18. Estimating rooftop solar technical potential across the US using a combination of GIS-based methods, lidar data, and statistical modeling

    DOE PAGES

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer; ...

    2018-01-05

    We provide a detailed estimate of the technical potential of rooftop solar photovoltaic (PV) electricity generation throughout the contiguous United States. This national estimate is based on an analysis of select US cities that combines light detection and ranging (lidar) data with a validated analytical method for determining rooftop PV suitability employing geographic information systems. We use statistical models to extend this analysis to estimate the quantity and characteristics of roofs in areas not covered by lidar data. Finally, we model PV generation for all rooftops to yield technical potential estimates. At the national level, 8.13 billion m 2 ofmore » suitable roof area could host 1118 GW of PV capacity, generating 1432 TWh of electricity per year. This would equate to 38.6% of the electricity that was sold in the contiguous United States in 2013. This estimate is substantially higher than a previous estimate made by the National Renewable Energy Laboratory. The difference can be attributed to increases in PV module power density, improved estimation of building suitability, higher estimates of total number of buildings, and improvements in PV performance simulation tools that previously tended to underestimate productivity. Also notable, the nationwide percentage of buildings suitable for at least some PV deployment is high—82% for buildings smaller than 5000 ft 2 and over 99% for buildings larger than that. In most states, rooftop PV could enable small, mostly residential buildings to offset the majority of average household electricity consumption. Even in some states with a relatively poor solar resource, such as those in the Northeast, the residential sector has the potential to offset around 100% of its total electricity consumption with rooftop PV.« less

  19. Estimating rooftop solar technical potential across the US using a combination of GIS-based methods, lidar data, and statistical modeling

    NASA Astrophysics Data System (ADS)

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer; Phillips, Caleb; Elmore, Ryan

    2018-02-01

    We provide a detailed estimate of the technical potential of rooftop solar photovoltaic (PV) electricity generation throughout the contiguous United States. This national estimate is based on an analysis of select US cities that combines light detection and ranging (lidar) data with a validated analytical method for determining rooftop PV suitability employing geographic information systems. We use statistical models to extend this analysis to estimate the quantity and characteristics of roofs in areas not covered by lidar data. Finally, we model PV generation for all rooftops to yield technical potential estimates. At the national level, 8.13 billion m2 of suitable roof area could host 1118 GW of PV capacity, generating 1432 TWh of electricity per year. This would equate to 38.6% of the electricity that was sold in the contiguous United States in 2013. This estimate is substantially higher than a previous estimate made by the National Renewable Energy Laboratory. The difference can be attributed to increases in PV module power density, improved estimation of building suitability, higher estimates of total number of buildings, and improvements in PV performance simulation tools that previously tended to underestimate productivity. Also notable, the nationwide percentage of buildings suitable for at least some PV deployment is high—82% for buildings smaller than 5000 ft2 and over 99% for buildings larger than that. In most states, rooftop PV could enable small, mostly residential buildings to offset the majority of average household electricity consumption. Even in some states with a relatively poor solar resource, such as those in the Northeast, the residential sector has the potential to offset around 100% of its total electricity consumption with rooftop PV.

  20. Estimating Risk from Ambient Concentrations of Acrolein across the United States

    PubMed Central

    Woodruff, Tracey J.; Wells, Ellen M.; Holt, Elizabeth W.; Burgin, Deborah E.; Axelrad, Daniel A.

    2007-01-01

    Background Estimated ambient concentrations of acrolein, a hazardous air pollutant, are greater than the U.S. Environmental Protection Agency (EPA) reference concentration throughout the United States, making it a concern for human health. However, there is no method for assessing the extent of risk under the U.S. EPA noncancer risk assessment framework. Objectives We estimated excess risks from ambient concentrations of acrolein based on dose–response modeling of a study in rats with a relationship between acrolein and residual volume/total lung capacity ratio (RV/TLC) and specific compliance (sCL), markers for altered lung function. Methods Based on existing literature, we defined values above the 90th percentile for controls as “adverse.” We estimated the increase over baseline response that would occur in the human population from estimated ambient concentrations of acrolein, taken from the U.S. EPA’s National-Scale Air Toxics Assessment for 1999, after standard animal-to-human conversions and extrapolating to doses below the experimental data. Results The estimated median additional number of adverse sCL outcomes across the United States was approximately 2.5 cases per 1,000 people. The estimated range of additional outcomes from the 5th to the 95th percentile of acrolein concentration levels across census tracts was 0.28–14 cases per 1,000. For RV/TLC, the median additional outcome was 0.002 per 1,000, and the additional outcome at the 95th percentile was 0.13 per 1,000. Conclusions Although there are uncertainties in estimating human risks from animal data, this analysis demonstrates a method for estimating health risks for noncancer effects and suggests that acrolein could be associated with decreased respiratory function in the United States. PMID:17431491

  1. Population-based cancer survival in the United States: Data, quality control, and statistical methods.

    PubMed

    Allemani, Claudia; Harewood, Rhea; Johnson, Christopher J; Carreira, Helena; Spika, Devon; Bonaventure, Audrey; Ward, Kevin; Weir, Hannah K; Coleman, Michel P

    2017-12-15

    Robust comparisons of population-based cancer survival estimates require tight adherence to the study protocol, standardized quality control, appropriate life tables of background mortality, and centralized analysis. The CONCORD program established worldwide surveillance of population-based cancer survival in 2015, analyzing individual data on 26 million patients (including 10 million US patients) diagnosed between 1995 and 2009 with 1 of 10 common malignancies. In this Cancer supplement, we analyzed data from 37 state cancer registries that participated in the second cycle of the CONCORD program (CONCORD-2), covering approximately 80% of the US population. Data quality checks were performed in 3 consecutive phases: protocol adherence, exclusions, and editorial checks. One-, 3-, and 5-year age-standardized net survival was estimated using the Pohar Perme estimator and state- and race-specific life tables of all-cause mortality for each year. The cohort approach was adopted for patients diagnosed between 2001 and 2003, and the complete approach for patients diagnosed between 2004 and 2009. Articles in this supplement report population coverage, data quality indicators, and age-standardized 5-year net survival by state, race, and stage at diagnosis. Examples of tables, bar charts, and funnel plots are provided in this article. Population-based cancer survival is a key measure of the overall effectiveness of services in providing equitable health care. The high quality of US cancer registry data, 80% population coverage, and use of an unbiased net survival estimator ensure that the survival trends reported in this supplement are robustly comparable by race and state. The results can be used by policymakers to identify and address inequities in cancer survival in each state and for the United States nationally. Cancer 2017;123:4982-93. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  2. Variational optical flow estimation based on stick tensor voting.

    PubMed

    Rashwan, Hatem A; Garcia, Miguel A; Puig, Domenec

    2013-07-01

    Variational optical flow techniques allow the estimation of flow fields from spatio-temporal derivatives. They are based on minimizing a functional that contains a data term and a regularization term. Recently, numerous approaches have been presented for improving the accuracy of the estimated flow fields. Among them, tensor voting has been shown to be particularly effective in the preservation of flow discontinuities. This paper presents an adaptation of the data term by using anisotropic stick tensor voting in order to gain robustness against noise and outliers with significantly lower computational cost than (full) tensor voting. In addition, an anisotropic complementary smoothness term depending on directional information estimated through stick tensor voting is utilized in order to preserve discontinuity capabilities of the estimated flow fields. Finally, a weighted non-local term that depends on both the estimated directional information and the occlusion state of pixels is integrated during the optimization process in order to denoise the final flow field. The proposed approach yields state-of-the-art results on the Middlebury benchmark.

  3. Development of advanced techniques for rotorcraft state estimation and parameter identification

    NASA Technical Reports Server (NTRS)

    Hall, W. E., Jr.; Bohn, J. G.; Vincent, J. H.

    1980-01-01

    An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases.

  4. Transfer Alignment Error Compensator Design Based on Robust State Estimation

    NASA Astrophysics Data System (ADS)

    Lyou, Joon; Lim, You-Chol

    This paper examines the transfer alignment problem of the StrapDown Inertial Navigation System (SDINS), which is subject to the ship’s roll and pitch. Major error sources for velocity and attitude matching are lever arm effect, measurement time delay and ship-body flexure. To reduce these alignment errors, an error compensation method based on state augmentation and robust state estimation is devised. A linearized error model for the velocity and attitude matching transfer alignment system is derived first by linearizing the nonlinear measurement equation with respect to its time delay and dominant Y-axis flexure, and by augmenting the delay state and flexure state into conventional linear state equations. Then an H∞ filter is introduced to account for modeling uncertainties of time delay and the ship-body flexure. The simulation results show that this method considerably decreases azimuth alignment errors considerably.

  5. Estimating the geographical distribution of the prevalence of the metabolic syndrome in young Mexicans.

    PubMed

    Murguía-Romero, Miguel; Jiménez-Flores, Rafael; Villalobos-Molina, Rafael; Méndez-Cruz, Adolfo René

    2012-09-01

    The geographical distribution of the metabolic syndrome (MetS) prevalence in young Mexicans (aged 17-24 years) was estimated stepwise starting from its prevalence based on the body mass index (BMI) in a study of 3,176 undergraduate students of this age group from Mexico City. To estimate the number of people with MetS by state, we multiplied its prevalence derived from the BMI range found in the Mexico City sample by the BMI proportions (range and state) obtained from the Mexico 2006 national survey on health and nutrition. Finally, to estimate the total number of young people with MetS in Mexico, its prevalence by state was multiplied by the share of young population in each state according to the National Population and Housing Census 2010. Based on these figures, we estimated the national prevalence of MetS at 15.8%, the average BMI at 24.1 (standard deviation = 4.2), and the prevalence of overweight people (BMI ≥25) of that age group at 39.0%. These results imply that 2,588,414 young Mexicans suffered from MetS in 2010. The Yucatan peninsula in the south and the Sonora state in the north showed the highest rates of MetS prevalence. The calculation of the MetS prevalence by BMI range in a sample of the population, and extrapolating it using the BMI proportions by range of the total population, was found to be a useful approach. We conclude that the BMI is a valuable public health tool to estimate MetS prevalence in the whole country, including its geographical distribution.

  6. Exponential Boundary Observers for Pressurized Water Pipe

    NASA Astrophysics Data System (ADS)

    Hermine Som, Idellette Judith; Cocquempot, Vincent; Aitouche, Abdel

    2015-11-01

    This paper deals with state estimation on a pressurized water pipe modeled by nonlinear coupled distributed hyperbolic equations for non-conservative laws with three known boundary measures. Our objective is to estimate the fourth boundary variable, which will be useful for leakage detection. Two approaches are studied. Firstly, the distributed hyperbolic equations are discretized through a finite-difference scheme. By using the Lipschitz property of the nonlinear term and a Lyapunov function, the exponential stability of the estimation error is proven by solving Linear Matrix Inequalities (LMIs). Secondly, the distributed hyperbolic system is preserved for state estimation. After state transformations, a Luenberger-like PDE boundary observer based on backstepping mathematical tools is proposed. An exponential Lyapunov function is used to prove the stability of the resulted estimation error. The performance of the two observers are shown on a water pipe prototype simulated example.

  7. Efficient data assimilation algorithm for bathymetry application

    NASA Astrophysics Data System (ADS)

    Ghorbanidehno, H.; Lee, J. H.; Farthing, M.; Hesser, T.; Kitanidis, P. K.; Darve, E. F.

    2017-12-01

    Information on the evolving state of the nearshore zone bathymetry is crucial to shoreline management, recreational safety, and naval operations. The high cost and complex logistics of using ship-based surveys for bathymetry estimation have encouraged the use of remote sensing techniques. Data assimilation methods combine the remote sensing data and nearshore hydrodynamic models to estimate the unknown bathymetry and the corresponding uncertainties. In particular, several recent efforts have combined Kalman Filter-based techniques such as ensembled-based Kalman filters with indirect video-based observations to address the bathymetry inversion problem. However, these methods often suffer from ensemble collapse and uncertainty underestimation. Here, the Compressed State Kalman Filter (CSKF) method is used to estimate the bathymetry based on observed wave celerity. In order to demonstrate the accuracy and robustness of the CSKF method, we consider twin tests with synthetic observations of wave celerity, while the bathymetry profiles are chosen based on surveys taken by the U.S. Army Corps of Engineer Field Research Facility (FRF) in Duck, NC. The first test case is a bathymetry estimation problem for a spatially smooth and temporally constant bathymetry profile. The second test case is a bathymetry estimation problem for a temporally evolving bathymetry from a smooth to a non-smooth profile. For both problems, we compare the results of CSKF with those obtained by the local ensemble transform Kalman filter (LETKF), which is a popular ensemble-based Kalman filter method.

  8. Estimation of truck volumes and flows

    DOT National Transportation Integrated Search

    2004-08-01

    This research presents a statistical approach for estimating truck volumes, based : primarily on classification counts and information on roadway functionality, employment, : sales volume and number of establishments within the state. Models have bee...

  9. Sampling-based real-time motion planning under state uncertainty for autonomous micro-aerial vehicles in GPS-denied environments.

    PubMed

    Li, Dachuan; Li, Qing; Cheng, Nong; Song, Jingyan

    2014-11-18

    This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered environments. To address the above motion planning problem, we propose an extension of the closed-loop rapid belief trees, the closed-loop random belief trees (CL-RBT), which incorporates predictions of the position estimation uncertainty, using a factored form of the covariance provided by the Kalman filter-based estimator. The proposed motion planner operates by incrementally constructing a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting candidate paths with low uncertainty using efficient covariance update and propagation. The algorithm can operate in real-time, continuously providing the controller with feasible paths for execution, enabling the vehicle to account for dynamic and uncertain environments. Simulation results demonstrate that the proposed approach can generate feasible trajectories that reduce the state estimation uncertainty, while handling complex vehicle dynamics and environment constraints.

  10. Sampling-Based Real-Time Motion Planning under State Uncertainty for Autonomous Micro-Aerial Vehicles in GPS-Denied Environments

    PubMed Central

    Li, Dachuan; Li, Qing; Cheng, Nong; Song, Jingyan

    2014-01-01

    This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered environments. To address the above motion planning problem, we propose an extension of the closed-loop rapid belief trees, the closed-loop random belief trees (CL-RBT), which incorporates predictions of the position estimation uncertainty, using a factored form of the covariance provided by the Kalman filter-based estimator. The proposed motion planner operates by incrementally constructing a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting candidate paths with low uncertainty using efficient covariance update and propagation. The algorithm can operate in real-time, continuously providing the controller with feasible paths for execution, enabling the vehicle to account for dynamic and uncertain environments. Simulation results demonstrate that the proposed approach can generate feasible trajectories that reduce the state estimation uncertainty, while handling complex vehicle dynamics and environment constraints. PMID:25412217

  11. Dynamic Stability Analysis of Linear Time-varying Systems via an Extended Modal Identification Approach

    NASA Astrophysics Data System (ADS)

    Ma, Zhisai; Liu, Li; Zhou, Sida; Naets, Frank; Heylen, Ward; Desmet, Wim

    2017-03-01

    The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stability-preserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam experimental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides a new way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.

  12. A measurement-based performability model for a multiprocessor system

    NASA Technical Reports Server (NTRS)

    Ilsueh, M. C.; Iyer, Ravi K.; Trivedi, K. S.

    1987-01-01

    A measurement-based performability model based on real error-data collected on a multiprocessor system is described. Model development from the raw errror-data to the estimation of cumulative reward is described. Both normal and failure behavior of the system are characterized. The measured data show that the holding times in key operational and failure states are not simple exponential and that semi-Markov process is necessary to model the system behavior. A reward function, based on the service rate and the error rate in each state, is then defined in order to estimate the performability of the system and to depict the cost of different failure types and recovery procedures.

  13. A stochastic hybrid systems based framework for modeling dependent failure processes

    PubMed Central

    Fan, Mengfei; Zeng, Zhiguo; Zio, Enrico; Kang, Rui; Chen, Ying

    2017-01-01

    In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods. PMID:28231313

  14. A stochastic hybrid systems based framework for modeling dependent failure processes.

    PubMed

    Fan, Mengfei; Zeng, Zhiguo; Zio, Enrico; Kang, Rui; Chen, Ying

    2017-01-01

    In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods.

  15. An Energy-Based Limit State Function for Estimation of Structural Reliability in Shock Environments

    DOE PAGES

    Guthrie, Michael A.

    2013-01-01

    limit state function is developed for the estimation of structural reliability in shock environments. This limit state function uses peak modal strain energies to characterize environmental severity and modal strain energies at failure to characterize the structural capacity. The Hasofer-Lind reliability index is briefly reviewed and its computation for the energy-based limit state function is discussed. Applications to two degree of freedom mass-spring systems and to a simple finite element model are considered. For these examples, computation of the reliability index requires little effort beyond a modal analysis, but still accounts for relevant uncertainties in both the structure and environment.more » For both examples, the reliability index is observed to agree well with the results of Monte Carlo analysis. In situations where fast, qualitative comparison of several candidate designs is required, the reliability index based on the proposed limit state function provides an attractive metric which can be used to compare and control reliability.« less

  16. The prediction of the residual life of electromechanical equipment based on the artificial neural network

    NASA Astrophysics Data System (ADS)

    Zhukovskiy, Yu L.; Korolev, N. A.; Babanova, I. S.; Boikov, A. V.

    2017-10-01

    This article is devoted to the prediction of the residual life based on an estimate of the technical state of the induction motor. The proposed system allows to increase the accuracy and completeness of diagnostics by using an artificial neural network (ANN), and also identify and predict faulty states of an electrical equipment in dynamics. The results of the proposed system for estimation the technical condition are probability technical state diagrams and a quantitative evaluation of the residual life, taking into account electrical, vibrational, indirect parameters and detected defects. Based on the evaluation of the technical condition and the prediction of the residual life, a decision is made to change the control of the operating and maintenance modes of the electric motors.

  17. Estimating 1970-99 average annual groundwater recharge in Wisconsin using streamflow data

    USGS Publications Warehouse

    Gebert, Warren A.; Walker, John F.; Kennedy, James L.

    2011-01-01

    Average annual recharge in Wisconsin for the period 1970-99 was estimated using streamflow data from U.S. Geological Survey continuous-record streamflow-gaging stations and partial-record sites. Partial-record sites have discharge measurements collected during low-flow conditions. The average annual base flow of a stream divided by the drainage area is a good approximation of the recharge rate; therefore, once average annual base flow is determined recharge can be calculated. Estimates of recharge for nearly 72 percent of the surface area of the State are provided. The results illustrate substantial spatial variability of recharge across the State, ranging from less than 1 inch to more than 12 inches per year. The average basin size for partial-record sites (50 square miles) was less than the average basin size for the gaging stations (305 square miles). Including results for smaller basins reveals a spatial variability that otherwise would be smoothed out using only estimates for larger basins. An error analysis indicates that the techniques used provide base flow estimates with standard errors ranging from 5.4 to 14 percent.

  18. Estimating Domestic Values for EQ-5D Health States Using Survey Data From External Sources.

    PubMed

    Chuang, Ling-Hsiang; Zarate, Victor; Kind, Paul

    2009-02-01

    Health status measures used to quantify outcomes for economic evaluation must be capable of representing health gain in a single index, usually calibrated in terms of the social preferences elicited from "the relevant population." The general problem faced in the majority of countries where social preferences are required for cost-effectiveness analysis is the absence of a value set based on domestic data sources. This article establishes a methodology for estimating domestic visual analog scale (VAS)-based values for EQ-5D health states by adjusting data sets from countries where valuation studies have been carried out. building upon the relationship between the values for respondents' real health states and hypothetical health states, 2 models are investigated. One assumes that the link between VAS scores for real and hypothetical health state is constant across 2 countries (R1), whereas the other adopts the assumption that the relationship of VAS scores for hypothetical heath states between 2 countries functionally corresponds to variation in scores for real health states (R2). Data from national UK and US population surveys were selected to test both methods. The R2 model performed better in generating estimated scores that were closer to observed values. The R2 model seems to offer a viable method for estimating domestic values of health. Such a method could help to bridge the gap between countries as well as region within a country.

  19. Hyper-X Post-Flight Trajectory Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Tartabini, Paul V.; Blanchard, RobertC.; Kirsch, Michael; Toniolo, Matthew D.

    2004-01-01

    This paper discusses the formulation and development of a trajectory reconstruction tool for the NASA X{43A/Hyper{X high speed research vehicle, and its implementation for the reconstruction and analysis of ight test data. Extended Kalman ltering techniques are employed to reconstruct the trajectory of the vehicle, based upon numerical integration of inertial measurement data along with redundant measurements of the vehicle state. The equations of motion are formulated in order to include the effects of several systematic error sources, whose values may also be estimated by the ltering routines. Additionally, smoothing algorithms have been implemented in which the nal value of the state (or an augmented state that includes other systematic error parameters to be estimated) and covariance are propagated back to the initial time to generate the best-estimated trajectory, based upon all available data. The methods are applied to the problem of reconstructing the trajectory of the Hyper-X vehicle from ight data.

  20. Constrained Kalman Filtering Via Density Function Truncation for Turbofan Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2006-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops an analytic method of incorporating state variable inequality constraints in the Kalman filter. The resultant filter truncates the PDF (probability density function) of the Kalman filter estimate at the known constraints and then computes the constrained filter estimate as the mean of the truncated PDF. The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is demonstrated via simulation results obtained from a turbofan engine model. The turbofan engine model contains 3 state variables, 11 measurements, and 10 component health parameters. It is also shown that the truncated Kalman filter may be a more accurate way of incorporating inequality constraints than other constrained filters (e.g., the projection approach to constrained filtering).

  1. General constraints on sampling wildlife on FIA plots

    USGS Publications Warehouse

    Bailey, L.L.; Sauer, J.R.; Nichols, J.D.; Geissler, P.H.; McRoberts, Ronald E.; Reams, Gregory A.; Van Deusen, Paul C.; McWilliams, William H.; Cieszewski, Chris J.

    2005-01-01

    This paper reviews the constraints to sampling wildlife populations at FIA points. Wildlife sampling programs must have well-defined goals and provide information adequate to meet those goals. Investigators should choose a State variable based on information needs and the spatial sampling scale. We discuss estimation-based methods for three State variables: species richness, abundance, and patch occupancy. All methods incorporate two essential sources of variation: detectability estimation and spatial variation. FIA sampling imposes specific space and time criteria that may need to be adjusted to meet local wildlife objectives.

  2. Vision-Based SLAM System for Unmanned Aerial Vehicles

    PubMed Central

    Munguía, Rodrigo; Urzua, Sarquis; Bolea, Yolanda; Grau, Antoni

    2016-01-01

    The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and (iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy. PMID:26999131

  3. A Steady-State Kalman Predictor-Based Filtering Strategy for Non-Overlapping Sub-Band Spectral Estimation

    PubMed Central

    Li, Zenghui; Xu, Bin; Yang, Jian; Song, Jianshe

    2015-01-01

    This paper focuses on suppressing spectral overlap for sub-band spectral estimation, with which we can greatly decrease the computational complexity of existing spectral estimation algorithms, such as nonlinear least squares spectral analysis and non-quadratic regularized sparse representation. Firstly, our study shows that the nominal ability of the high-order analysis filter to suppress spectral overlap is greatly weakened when filtering a finite-length sequence, because many meaningless zeros are used as samples in convolution operations. Next, an extrapolation-based filtering strategy is proposed to produce a series of estimates as the substitutions of the zeros and to recover the suppression ability. Meanwhile, a steady-state Kalman predictor is applied to perform a linearly-optimal extrapolation. Finally, several typical methods for spectral analysis are applied to demonstrate the effectiveness of the proposed strategy. PMID:25609038

  4. Optimal estimation of entanglement in optical qubit systems

    NASA Astrophysics Data System (ADS)

    Brida, Giorgio; Degiovanni, Ivo P.; Florio, Angela; Genovese, Marco; Giorda, Paolo; Meda, Alice; Paris, Matteo G. A.; Shurupov, Alexander P.

    2011-05-01

    We address the experimental determination of entanglement for systems made of a pair of polarization qubits. We exploit quantum estimation theory to derive optimal estimators, which are then implemented to achieve ultimate bound to precision. In particular, we present a set of experiments aimed at measuring the amount of entanglement for states belonging to different families of pure and mixed two-qubit two-photon states. Our scheme is based on visibility measurements of quantum correlations and achieves the ultimate precision allowed by quantum mechanics in the limit of Poissonian distribution of coincidence counts. Although optimal estimation of entanglement does not require the full tomography of the states we have also performed state reconstruction using two different sets of tomographic projectors and explicitly shown that they provide a less precise determination of entanglement. The use of optimal estimators also allows us to compare and statistically assess the different noise models used to describe decoherence effects occurring in the generation of entanglement.

  5. Robust Fault Detection for Aircraft Using Mixed Structured Singular Value Theory and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G.

    2000-01-01

    The purpose of fault detection is to identify when a fault or failure has occurred in a system such as an aircraft or expendable launch vehicle. The faults may occur in sensors, actuators, structural components, etc. One of the primary approaches to model-based fault detection relies on analytical redundancy. That is the output of a computer-based model (actually a state estimator) is compared with the sensor measurements of the actual system to determine when a fault has occurred. Unfortunately, the state estimator is based on an idealized mathematical description of the underlying plant that is never totally accurate. As a result of these modeling errors, false alarms can occur. This research uses mixed structured singular value theory, a relatively recent and powerful robustness analysis tool, to develop robust estimators and demonstrates the use of these estimators in fault detection. To allow qualitative human experience to be effectively incorporated into the detection process fuzzy logic is used to predict the seriousness of the fault that has occurred.

  6. The pack size effect: Influence on consumer perceptions of portion sizes.

    PubMed

    Hieke, Sophie; Palascha, Aikaterini; Jola, Corinne; Wills, Josephine; Raats, Monique M

    2016-01-01

    Larger portions as well as larger packs can lead to larger prospective consumption estimates, larger servings and increased consumption, described as 'portion-size effects' and 'pack size effects'. Although related, the effects of pack sizes on portion estimates have received less attention. While it is not possible to generalize consumer behaviour across cultures, external cues taken from pack size may affect us all. We thus examined whether pack sizes influence portion size estimates across cultures, leading to a general 'pack size effect'. We compared portion size estimates based on digital presentations of different product pack sizes of solid and liquid products. The study with 13,177 participants across six European countries consisted of three parts. Parts 1 and 2 asked participants to indicate the number of portions present in a combined photographic and text-based description of different pack sizes. The estimated portion size was calculated as the quotient of the content weight or volume of the food presented and the number of stated portions. In Part 3, participants stated the number of food items that make up a portion when presented with packs of food containing either a small or a large number of items. The estimated portion size was calculated as the item weight times the item number. For all three parts and across all countries, we found that participants' portion estimates were based on larger portions for larger packs compared to smaller packs (Part 1 and 2) as well as more items to make up a portion (Part 3); hence, portions were stated to be larger in all cases. Considering that the larger estimated portions are likely to be consumed, there are implications for energy intake and weight status. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Single-shot quantum state estimation via a continuous measurement in the strong backaction regime

    NASA Astrophysics Data System (ADS)

    Cook, Robert L.; Riofrío, Carlos A.; Deutsch, Ivan H.

    2014-09-01

    We study quantum tomography based on a stochastic continuous-time measurement record obtained from a probe field collectively interacting with an ensemble of identically prepared systems. In comparison to previous studies, we consider here the case in which the measurement-induced backaction has a non-negligible effect on the dynamical evolution of the ensemble. We formulate a maximum likelihood estimate for the initial quantum state given only a single instance of the continuous diffusive measurement record. We apply our estimator to the simplest problem: state tomography of a single pure qubit, which, during the course of the measurement, is also subjected to dynamical control. We identify a regime where the many-body system is well approximated at all times by a separable pure spin coherent state, whose Bloch vector undergoes a conditional stochastic evolution. We simulate the results of our estimator and show that we can achieve close to the upper bound of fidelity set by the optimal generalized measurement. This estimate is compared to, and significantly outperforms, an equivalent estimator that ignores measurement backaction.

  8. CLIMATIC DATA ON ESTIMATED EFFECTIVE CHIMNEY HEIGHTS IN THE UNITED STATES

    EPA Science Inventory

    Plume rise calculations are based on the equations of Briggs (1975) for use with variable vertical profiles of temperature and wind speed. Results are presented for small and large chimneys, based on five years of twice-daily rawinsondes throughout the contiguous United States. I...

  9. Highway traffic estimation of improved precision using the derivative-free nonlinear Kalman Filter

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Zervos, Nikolaos; Melkikh, Alexey

    2015-12-01

    The paper proves that the PDE dynamic model of the highway traffic is a differentially flat one and by applying spatial discretization its shows that the model's transformation into an equivalent linear canonical state-space form is possible. For the latter representation of the traffic's dynamics, state estimation is performed with the use of the Derivative-free nonlinear Kalman Filter. The proposed filter consists of the Kalman Filter recursion applied on the transformed state-space model of the highway traffic. Moreover, it makes use of an inverse transformation, based again on differential flatness theory which enables to obtain estimates of the state variables of the initial nonlinear PDE model. By avoiding approximate linearizations and the truncation of nonlinear terms from the PDE model of the traffic's dynamics the proposed filtering methods outperforms, in terms of accuracy, other nonlinear estimators such as the Extended Kalman Filter. The article's theoretical findings are confirmed through simulation experiments.

  10. Automatic Regionalization Algorithm for Distributed State Estimation in Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dexin; Yang, Liuqing; Florita, Anthony

    The deregulation of the power system and the incorporation of generation from renewable energy sources recessitates faster state estimation in the smart grid. Distributed state estimation (DSE) has become a promising and scalable solution to this urgent demand. In this paper, we investigate the regionalization algorithms for the power system, a necessary step before distributed state estimation can be performed. To the best of the authors' knowledge, this is the first investigation on automatic regionalization (AR). We propose three spectral clustering based AR algorithms. Simulations show that our proposed algorithms outperform the two investigated manual regionalization cases. With the helpmore » of AR algorithms, we also show how the number of regions impacts the accuracy and convergence speed of the DSE and conclude that the number of regions needs to be chosen carefully to improve the convergence speed of DSEs.« less

  11. Automatic Regionalization Algorithm for Distributed State Estimation in Power Systems: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dexin; Yang, Liuqing; Florita, Anthony

    The deregulation of the power system and the incorporation of generation from renewable energy sources recessitates faster state estimation in the smart grid. Distributed state estimation (DSE) has become a promising and scalable solution to this urgent demand. In this paper, we investigate the regionalization algorithms for the power system, a necessary step before distributed state estimation can be performed. To the best of the authors' knowledge, this is the first investigation on automatic regionalization (AR). We propose three spectral clustering based AR algorithms. Simulations show that our proposed algorithms outperform the two investigated manual regionalization cases. With the helpmore » of AR algorithms, we also show how the number of regions impacts the accuracy and convergence speed of the DSE and conclude that the number of regions needs to be chosen carefully to improve the convergence speed of DSEs.« less

  12. Model Based Optimal Control, Estimation, and Validation of Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Perez, Hector Eduardo

    This dissertation focuses on developing and experimentally validating model based control techniques to enhance the operation of lithium ion batteries, safely. An overview of the contributions to address the challenges that arise are provided below. Chapter 1: This chapter provides an introduction to battery fundamentals, models, and control and estimation techniques. Additionally, it provides motivation for the contributions of this dissertation. Chapter 2: This chapter examines reference governor (RG) methods for satisfying state constraints in Li-ion batteries. Mathematically, these constraints are formulated from a first principles electrochemical model. Consequently, the constraints explicitly model specific degradation mechanisms, such as lithium plating, lithium depletion, and overheating. This contrasts with the present paradigm of limiting measured voltage, current, and/or temperature. The critical challenges, however, are that (i) the electrochemical states evolve according to a system of nonlinear partial differential equations, and (ii) the states are not physically measurable. Assuming available state and parameter estimates, this chapter develops RGs for electrochemical battery models. The results demonstrate how electrochemical model state information can be utilized to ensure safe operation, while simultaneously enhancing energy capacity, power, and charge speeds in Li-ion batteries. Chapter 3: Complex multi-partial differential equation (PDE) electrochemical battery models are characterized by parameters that are often difficult to measure or identify. This parametric uncertainty influences the state estimates of electrochemical model-based observers for applications such as state-of-charge (SOC) estimation. This chapter develops two sensitivity-based interval observers that map bounded parameter uncertainty to state estimation intervals, within the context of electrochemical PDE models and SOC estimation. Theoretically, this chapter extends the notion of interval observers to PDE models using a sensitivity-based approach. Practically, this chapter quantifies the sensitivity of battery state estimates to parameter variations, enabling robust battery management schemes. The effectiveness of the proposed sensitivity-based interval observers is verified via a numerical study for the range of uncertain parameters. Chapter 4: This chapter seeks to derive insight on battery charging control using electrochemistry models. Directly using full order complex multi-partial differential equation (PDE) electrochemical battery models is difficult and sometimes impossible to implement. This chapter develops an approach for obtaining optimal charge control schemes, while ensuring safety through constraint satisfaction. An optimal charge control problem is mathematically formulated via a coupled reduced order electrochemical-thermal model which conserves key electrochemical and thermal state information. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting nonlinear multi-state optimal control problem. Minimum time charge protocols are analyzed in detail subject to solid and electrolyte phase concentration constraints, as well as temperature constraints. The optimization scheme is examined using different input current bounds, and an insight on battery design for fast charging is provided. Experimental results are provided to compare the tradeoffs between an electrochemical-thermal model based optimal charge protocol and a traditional charge protocol. Chapter 5: Fast and safe charging protocols are crucial for enhancing the practicality of batteries, especially for mobile applications such as smartphones and electric vehicles. This chapter proposes an innovative approach to devising optimally health-conscious fast-safe charge protocols. A multi-objective optimal control problem is mathematically formulated via a coupled electro-thermal-aging battery model, where electrical and aging sub-models depend upon the core temperature captured by a two-state thermal sub-model. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting highly nonlinear six-state optimal control problem. Charge time and health degradation are therefore optimally traded off, subject to both electrical and thermal constraints. Minimum-time, minimum-aging, and balanced charge scenarios are examined in detail. Sensitivities to the upper voltage bound, ambient temperature, and cooling convection resistance are investigated as well. Experimental results are provided to compare the tradeoffs between a balanced and traditional charge protocol. Chapter 6: This chapter provides concluding remarks on the findings of this dissertation and a discussion of future work.

  13. Probabilistic models in human sensorimotor control

    PubMed Central

    Wolpert, Daniel M.

    2009-01-01

    Sensory and motor uncertainty form a fundamental constraint on human sensorimotor control. Bayesian decision theory (BDT) has emerged as a unifying framework to understand how the central nervous system performs optimal estimation and control in the face of such uncertainty. BDT has two components: Bayesian statistics and decision theory. Here we review Bayesian statistics and show how it applies to estimating the state of the world and our own body. Recent results suggest that when learning novel tasks we are able to learn the statistical properties of both the world and our own sensory apparatus so as to perform estimation using Bayesian statistics. We review studies which suggest that humans can combine multiple sources of information to form maximum likelihood estimates, can incorporate prior beliefs about possible states of the world so as to generate maximum a posteriori estimates and can use Kalman filter-based processes to estimate time-varying states. Finally, we review Bayesian decision theory in motor control and how the central nervous system processes errors to determine loss functions and optimal actions. We review results that suggest we plan movements based on statistics of our actions that result from signal-dependent noise on our motor outputs. Taken together these studies provide a statistical framework for how the motor system performs in the presence of uncertainty. PMID:17628731

  14. Kalman Filtering with Inequality Constraints for Turbofan Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2003-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops two analytic methods of incorporating state variable inequality constraints in the Kalman filter. The first method is a general technique of using hard constraints to enforce inequalities on the state variable estimates. The resultant filter is a combination of a standard Kalman filter and a quadratic programming problem. The second method uses soft constraints to estimate state variables that are known to vary slowly with time. (Soft constraints are constraints that are required to be approximately satisfied rather than exactly satisfied.) The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is proven theoretically and shown via simulation results. The use of the algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate health parameters. The turbofan engine model contains 16 state variables, 12 measurements, and 8 component health parameters. It is shown that the new algorithms provide improved performance in this example over unconstrained Kalman filtering.

  15. Improving the clinical assessment of consciousness with advances in electrophysiological and neuroimaging techniques

    PubMed Central

    2010-01-01

    In clinical neurology, a comprehensive understanding of consciousness has been regarded as an abstract concept - best left to philosophers. However, times are changing and the need to clinically assess consciousness is increasingly becoming a real-world, practical challenge. Current methods for evaluating altered levels of consciousness are highly reliant on either behavioural measures or anatomical imaging. While these methods have some utility, estimates of misdiagnosis are worrisome (as high as 43%) - clearly this is a major clinical problem. The solution must involve objective, physiologically based measures that do not rely on behaviour. This paper reviews recent advances in physiologically based measures that enable better evaluation of consciousness states (coma, vegetative state, minimally conscious state, and locked in syndrome). Based on the evidence to-date, electroencephalographic and neuroimaging based assessments of consciousness provide valuable information for evaluation of residual function, formation of differential diagnoses, and estimation of prognosis. PMID:20113490

  16. Television food advertising and the prevalence of childhood overweight and obesity: a multicountry comparison.

    PubMed

    Goris, Janny M; Petersen, Solveig; Stamatakis, Emmanuel; Veerman, J Lennert

    2010-07-01

    To estimate the contribution of television (TV) food advertising to the prevalence of obesity among 6-11-year-old children in Australia, Great Britain (England and Scotland only), Italy, The Netherlands, Sweden and the United States. Data from contemporary representative studies on the prevalence of childhood obesity and on TV food advertising exposure in the above countries were entered into a mathematical simulation model. Two different effect estimators were used to calculate the reduction in prevalence of overweight and obesity in the absence of TV food advertising in each country; one based on literature and one based on experts' estimates. Six- to eleven-year-old children in six Western countries. Estimates of the average exposure of children to TV food advertising range from 1.8 min/d in The Netherlands to 11.5 min/d in the United States. Its contribution to the prevalence of childhood obesity is estimated at 16%-40% in the United States, 10%-28% in Australia and Italy and 4%-18% in Great Britain, Sweden and The Netherlands. The contribution of TV advertising of foods and drinks to the prevalence of childhood obesity differs distinctly by country and is likely to be significant in some countries.

  17. State-space modeling of population sizes and trends in Nihoa Finch and Millerbird

    USGS Publications Warehouse

    Gorresen, P. Marcos; Brinck, Kevin W.; Camp, Richard J.; Farmer, Chris; Plentovich, Sheldon M.; Banko, Paul C.

    2016-01-01

    Both of the 2 passerines endemic to Nihoa Island, Hawai‘i, USA—the Nihoa Millerbird (Acrocephalus familiaris kingi) and Nihoa Finch (Telespiza ultima)—are listed as endangered by federal and state agencies. Their abundances have been estimated by irregularly implemented fixed-width strip-transect sampling from 1967 to 2012, from which area-based extrapolation of the raw counts produced highly variable abundance estimates for both species. To evaluate an alternative survey method and improve abundance estimates, we conducted variable-distance point-transect sampling between 2010 and 2014. We compared our results to those obtained from strip-transect samples. In addition, we applied state-space models to derive improved estimates of population size and trends from the legacy time series of strip-transect counts. Both species were fairly evenly distributed across Nihoa and occurred in all or nearly all available habitat. Population trends for Nihoa Millerbird were inconclusive because of high within-year variance. Trends for Nihoa Finch were positive, particularly since the early 1990s. Distance-based analysis of point-transect counts produced mean estimates of abundance similar to those from strip-transects but was generally more precise. However, both survey methods produced biologically unrealistic variability between years. State-space modeling of the long-term time series of abundances obtained from strip-transect counts effectively reduced uncertainty in both within- and between-year estimates of population size, and allowed short-term changes in abundance trajectories to be smoothed into a long-term trend.

  18. Comparing estimates of genetic variance across different relationship models.

    PubMed

    Legarra, Andres

    2016-02-01

    Use of relationships between individuals to estimate genetic variances and heritabilities via mixed models is standard practice in human, plant and livestock genetics. Different models or information for relationships may give different estimates of genetic variances. However, comparing these estimates across different relationship models is not straightforward as the implied base populations differ between relationship models. In this work, I present a method to compare estimates of variance components across different relationship models. I suggest referring genetic variances obtained using different relationship models to the same reference population, usually a set of individuals in the population. Expected genetic variance of this population is the estimated variance component from the mixed model times a statistic, Dk, which is the average self-relationship minus the average (self- and across-) relationship. For most typical models of relationships, Dk is close to 1. However, this is not true for very deep pedigrees, for identity-by-state relationships, or for non-parametric kernels, which tend to overestimate the genetic variance and the heritability. Using mice data, I show that heritabilities from identity-by-state and kernel-based relationships are overestimated. Weighting these estimates by Dk scales them to a base comparable to genomic or pedigree relationships, avoiding wrong comparisons, for instance, "missing heritabilities". Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Female Genital Mutilation/Cutting in the United States: Updated Estimates of Women and Girls at Risk, 2012

    PubMed Central

    Stupp, Paul; Okoroh, Ekwutosi; Besera, Ghenet; Goodman, David; Danel, Isabella

    2016-01-01

    Objectives In 1996, the U.S. Congress passed legislation making female genital mutilation/cutting (FGM/C) illegal in the United States. CDC published the first estimates of the number of women and girls at risk for FGM/C in 1997. Since 2012, various constituencies have again raised concerns about the practice in the United States. We updated an earlier estimate of the number of women and girls in the United States who were at risk for FGM/C or its consequences. Methods We estimated the number of women and girls who were at risk for undergoing FGM/C or its consequences in 2012 by applying country-specific prevalence of FGM/C to the estimated number of women and girls living in the United States who were born in that country or who lived with a parent born in that country. Results Approximately 513,000 women and girls in the United States were at risk for FGM/C or its consequences in 2012, which was more than three times higher than the earlier estimate, based on 1990 data. The increase in the number of women and girls younger than 18 years of age at risk for FGM/C was more than four times that of previous estimates. Conclusion The estimated increase was wholly a result of rapid growth in the number of immigrants from FGM/C-practicing countries living in the United States and not from increases in FGM/C prevalence in those countries. Scientifically valid information regarding whether women or their daughters have actually undergone FGM/C and related information that can contribute to efforts to prevent the practice in the United States and provide needed health services to women who have undergone FGM/C are needed. PMID:26957669

  20. Female Genital Mutilation/Cutting in the United States: Updated Estimates of Women and Girls at Risk, 2012.

    PubMed

    Goldberg, Howard; Stupp, Paul; Okoroh, Ekwutosi; Besera, Ghenet; Goodman, David; Danel, Isabella

    2016-01-01

    In 1996, the U.S. Congress passed legislation making female genital mutilation/cutting (FGM/C) illegal in the United States. CDC published the first estimates of the number of women and girls at risk for FGM/C in 1997. Since 2012, various constituencies have again raised concerns about the practice in the United States. We updated an earlier estimate of the number of women and girls in the United States who were at risk for FGM/C or its consequences. We estimated the number of women and girls who were at risk for undergoing FGM/C or its consequences in 2012 by applying country-specific prevalence of FGM/C to the estimated number of women and girls living in the United States who were born in that country or who lived with a parent born in that country. Approximately 513,000 women and girls in the United States were at risk for FGM/C or its consequences in 2012, which was more than three times higher than the earlier estimate, based on 1990 data. The increase in the number of women and girls younger than 18 years of age at risk for FGM/C was more than four times that of previous estimates. The estimated increase was wholly a result of rapid growth in the number of immigrants from FGM/C-practicing countries living in the United States and not from increases in FGM/C prevalence in those countries. Scientifically valid information regarding whether women or their daughters have actually undergone FGM/C and related information that can contribute to efforts to prevent the practice in the United States and provide needed health services to women who have undergone FGM/C are needed.

  1. Estimating the Population Sizes of Men Who Have Sex With Men in US States and Counties Using Data From the American Community Survey

    PubMed Central

    Bernstein, Kyle T; Sullivan, Patrick S; Purcell, David W; Chesson, Harrell W; Gift, Thomas L; Rosenberg, Eli S

    2016-01-01

    Background In the United States, male-to-male sexual transmission accounts for the greatest number of new human immunodeficiency virus (HIV) diagnoses and a substantial number of sexually transmitted infections (STI) annually. However, the prevalence and annual incidence of HIV and other STIs among men who have sex with men (MSM) cannot be estimated in local contexts because demographic data on sexual behavior, particularly same-sex behavior, are not routinely collected by large-scale surveys that allow analysis at state, county, or finer levels, such as the US decennial census or the American Community Survey (ACS). Therefore, techniques for indirectly estimating population sizes of MSM are necessary to supply denominators for rates at various geographic levels. Objective Our objectives were to indirectly estimate MSM population sizes at the county level to incorporate recent data estimates and to aggregate county-level estimates to states and core-based statistical areas (CBSAs). Methods We used data from the ACS to calculate a weight for each county in the United States based on its relative proportion of households that were headed by a male who lived with a male partner, compared with the overall proportion among counties at the same level of urbanicity (ie, large central metropolitan county, large fringe metropolitan county, medium/small metropolitan county, or nonmetropolitan county). We then used this weight to adjust the urbanicity-stratified percentage of adult men who had sex with a man in the past year, according to estimates derived from the National Health and Nutrition Examination Survey (NHANES), for each county. We multiplied the weighted percentages by the number of adult men in each county to estimate its number of MSM, summing county-level estimates to create state- and CBSA-level estimates. Finally, we scaled our estimated MSM population sizes to a meta-analytic estimate of the percentage of US MSM in the past 5 years (3.9%). Results We found that the percentage of MSM among adult men ranged from 1.5% (Wyoming) to 6.0% (Rhode Island) among states. Over one-quarter of MSM in the United States resided in 1 of 13 counties. Among counties with over 300,000 residents, the five highest county-level percentages of MSM were San Francisco County, California at 18.5% (66,586/359,566); New York County, New York at 13.8% (87,556/635,847); Denver County, Colorado at 10.5% (25,465/243,002); Multnomah County, Oregon at 9.9% (28,949/292,450); and Suffolk County, Massachusetts at 9.1% (26,338/289,634). Although California (n=792,750) and Los Angeles County (n=251,521) had the largest MSM populations of states and counties, respectively, the New York City-Newark-Jersey City CBSA had the most MSM of all CBSAs (n=397,399). Conclusions We used a new method to generate small-area estimates of MSM populations, incorporating prior work, recent data, and urbanicity-specific parameters. We also used an imputation approach to estimate MSM in rural areas, where same-sex sexual behavior may be underreported. Our approach yielded estimates of MSM population sizes within states, counties, and metropolitan areas in the United States, which provide denominators for calculation of HIV and STI prevalence and incidence at those geographic levels. PMID:27227149

  2. Estimating the Population Sizes of Men Who Have Sex With Men in US States and Counties Using Data From the American Community Survey.

    PubMed

    Grey, Jeremy A; Bernstein, Kyle T; Sullivan, Patrick S; Purcell, David W; Chesson, Harrell W; Gift, Thomas L; Rosenberg, Eli S

    2016-01-01

    In the United States, male-to-male sexual transmission accounts for the greatest number of new human immunodeficiency virus (HIV) diagnoses and a substantial number of sexually transmitted infections (STI) annually. However, the prevalence and annual incidence of HIV and other STIs among men who have sex with men (MSM) cannot be estimated in local contexts because demographic data on sexual behavior, particularly same-sex behavior, are not routinely collected by large-scale surveys that allow analysis at state, county, or finer levels, such as the US decennial census or the American Community Survey (ACS). Therefore, techniques for indirectly estimating population sizes of MSM are necessary to supply denominators for rates at various geographic levels. Our objectives were to indirectly estimate MSM population sizes at the county level to incorporate recent data estimates and to aggregate county-level estimates to states and core-based statistical areas (CBSAs). We used data from the ACS to calculate a weight for each county in the United States based on its relative proportion of households that were headed by a male who lived with a male partner, compared with the overall proportion among counties at the same level of urbanicity (ie, large central metropolitan county, large fringe metropolitan county, medium/small metropolitan county, or nonmetropolitan county). We then used this weight to adjust the urbanicity-stratified percentage of adult men who had sex with a man in the past year, according to estimates derived from the National Health and Nutrition Examination Survey (NHANES), for each county. We multiplied the weighted percentages by the number of adult men in each county to estimate its number of MSM, summing county-level estimates to create state- and CBSA-level estimates. Finally, we scaled our estimated MSM population sizes to a meta-analytic estimate of the percentage of US MSM in the past 5 years (3.9%). We found that the percentage of MSM among adult men ranged from 1.5% (Wyoming) to 6.0% (Rhode Island) among states. Over one-quarter of MSM in the United States resided in 1 of 13 counties. Among counties with over 300,000 residents, the five highest county-level percentages of MSM were San Francisco County, California at 18.5% (66,586/359,566); New York County, New York at 13.8% (87,556/635,847); Denver County, Colorado at 10.5% (25,465/243,002); Multnomah County, Oregon at 9.9% (28,949/292,450); and Suffolk County, Massachusetts at 9.1% (26,338/289,634). Although California (n=792,750) and Los Angeles County (n=251,521) had the largest MSM populations of states and counties, respectively, the New York City-Newark-Jersey City CBSA had the most MSM of all CBSAs (n=397,399). We used a new method to generate small-area estimates of MSM populations, incorporating prior work, recent data, and urbanicity-specific parameters. We also used an imputation approach to estimate MSM in rural areas, where same-sex sexual behavior may be underreported. Our approach yielded estimates of MSM population sizes within states, counties, and metropolitan areas in the United States, which provide denominators for calculation of HIV and STI prevalence and incidence at those geographic levels.

  3. Estimating Returns to College Attainment: Comparing Survey and State Administrative Data Based Estimates. Appendices A, B, C, D, and E. A CAPSEE Working Paper

    ERIC Educational Resources Information Center

    Scott-Clayton, Judith; Wen, Qiao

    2017-01-01

    The increasing availability of massive administrative datasets linking postsecondary enrollees with post-college earnings records has stimulated a wealth of new research on the returns to college, and has accelerated state and federal efforts to hold institutions accountable for students' labor market outcomes. Many of these new research and…

  4. State-Dependent Pseudo-Linear Filter for Spacecraft Attitude and Rate Estimation

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    2001-01-01

    This paper presents the development and performance of a special algorithm for estimating the attitude and angular rate of a spacecraft. The algorithm is a pseudo-linear Kalman filter, which is an ordinary linear Kalman filter that operates on a linear model whose matrices are current state estimate dependent. The nonlinear rotational dynamics equation of the spacecraft is presented in the state space as a state-dependent linear system. Two types of measurements are considered. One type is a measurement of the quaternion of rotation, which is obtained from a newly introduced star tracker based apparatus. The other type of measurement is that of vectors, which permits the use of a variety of vector measuring sensors like sun sensors and magnetometers. While quaternion measurements are related linearly to the state vector, vector measurements constitute a nonlinear function of the state vector. Therefore, in this paper, a state-dependent linear measurement equation is developed for the vector measurement case. The state-dependent pseudo linear filter is applied to simulated spacecraft rotations and adequate estimates of the spacecraft attitude and rate are obtained for the case of quaternion measurements as well as of vector measurements.

  5. New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation

    NASA Astrophysics Data System (ADS)

    Vo, Thanh Tu; Chen, Xiaopeng; Shen, Weixiang; Kapoor, Ajay

    2015-01-01

    In this paper, a new charging strategy of lithium-polymer batteries (LiPBs) has been proposed based on the integration of Taguchi method (TM) and state of charge estimation. The TM is applied to search an optimal charging current pattern. An adaptive switching gain sliding mode observer (ASGSMO) is adopted to estimate the SOC which controls and terminates the charging process. The experimental results demonstrate that the proposed charging strategy can successfully charge the same types of LiPBs with different capacities and cycle life. The proposed charging strategy also provides much shorter charging time, narrower temperature variation and slightly higher energy efficiency than the equivalent constant current constant voltage charging method.

  6. Personalized State-space Modeling of Glucose Dynamics for Type 1 Diabetes Using Continuously Monitored Glucose, Insulin Dose, and Meal Intake: An Extended Kalman Filter Approach.

    PubMed

    Wang, Qian; Molenaar, Peter; Harsh, Saurabh; Freeman, Kenneth; Xie, Jinyu; Gold, Carol; Rovine, Mike; Ulbrecht, Jan

    2014-03-01

    An essential component of any artificial pancreas is on the prediction of blood glucose levels as a function of exogenous and endogenous perturbations such as insulin dose, meal intake, and physical activity and emotional tone under natural living conditions. In this article, we present a new data-driven state-space dynamic model with time-varying coefficients that are used to explicitly quantify the time-varying patient-specific effects of insulin dose and meal intake on blood glucose fluctuations. Using the 3-variate time series of glucose level, insulin dose, and meal intake of an individual type 1 diabetic subject, we apply an extended Kalman filter (EKF) to estimate time-varying coefficients of the patient-specific state-space model. We evaluate our empirical modeling using (1) the FDA-approved UVa/Padova simulator with 30 virtual patients and (2) clinical data of 5 type 1 diabetic patients under natural living conditions. Compared to a forgetting-factor-based recursive ARX model of the same order, the EKF model predictions have higher fit, and significantly better temporal gain and J index and thus are superior in early detection of upward and downward trends in glucose. The EKF based state-space model developed in this article is particularly suitable for model-based state-feedback control designs since the Kalman filter estimates the state variable of the glucose dynamics based on the measured glucose time series. In addition, since the model parameters are estimated in real time, this model is also suitable for adaptive control. © 2014 Diabetes Technology Society.

  7. Prediction of slope stability based on numerical modeling of stress–strain state of rocks

    NASA Astrophysics Data System (ADS)

    Kozhogulov Nifadyev, KCh, VI; Usmanov, SF

    2018-03-01

    The paper presents the developed technique for the estimation of rock mass stability based on the finite element modeling of stress–strain state of rocks. The modeling results on the pit wall landslide as a flow of particles along a sloped surface are described.

  8. User's guide: RPGrow$: a red pine growth and analysis spreadsheet for the Lake States.

    Treesearch

    Carol A. Hyldahl; Gerald H. Grossman

    1993-01-01

    Describes RPGrow$, a stand-level, interactive spreadsheet for projecting growth and yield and estimating financial returns of red pine plantations in the Lake States. This spreadsheet is based on published growth models for red pine. Financial analyses are based on discounted cash flow methods.

  9. Control of AUVs using differential flatness theory and the derivative-free nonlinear Kalman Filter

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Raffo, Guilerme

    2015-12-01

    The paper proposes nonlinear control and filtering for Autonomous Underwater Vessels (AUVs) based on differential flatness theory and on the use of the Derivative-free nonlinear Kalman Filter. First, it is shown that the 6-DOF dynamic model of the AUV is a differentially flat one. This enables its transformation into the linear canonical (Brunovsky) form and facilitates the design of a state feedback controller. A problem that has to be dealt with is the uncertainty about the parameters of the AUV's dynamic model, as well the external perturbations which affect its motion. To cope with this, it is proposed to use a disturbance observer which is based on the Derivative-free nonlinear Kalman Filter. The considered filtering method consists of the standard Kalman Filter recursion applied on the linearized model of the vessel and of an inverse transformation based on differential flatness theory, which enables to obtain estimates of the state variables of the initial nonlinear model of the vessel. The Kalman Filter-based disturbance observer performs simultaneous estimation of the non-measurable state variables of the AUV and of the perturbation terms that affect its dynamics. By estimating such disturbances, their compensation is also succeeded through suitable modification of the feedback control input. The efficiency of the proposed AUV control and estimation scheme is confirmed through simulation experiments.

  10. Association of cutaneous melanoma incidence with area-based socioeconomic indicators-United States, 2004-2006.

    PubMed

    Singh, Simple D; Ajani, Umed A; Johnson, Christopher J; Roland, Katherine B; Eide, Melody; Jemal, Ahmedin; Negoita, Serban; Bayakly, Rana A; Ekwueme, Donatus U

    2011-11-01

    Socioeconomic status (SES) has been associated with melanoma incidence and outcomes. Examination of the relationship between melanoma and SES at the national level in the United States is limited. Expanding knowledge of this association is needed to improve early detection and eliminate disparities. We sought to provide a detailed description of cutaneous melanoma incidence and stage of disease in relationship to area-based socioeconomic measures including poverty level, education, income, and unemployment in the United States. Invasive cutaneous melanoma data reported by 44 population-based central cancer registries for 2004 to 2006 were merged with county-level SES estimates from the US Census Bureau. Age-adjusted incidence rates were calculated by gender, race/ethnicity, poverty, education, income, unemployment, and metro/urban/rural status using software. Poisson multilevel mixed models were fitted, and incidence density ratios were calculated by stage for area-based SES measures, controlling for age, gender, and state random effects. Counties with lower poverty, higher education, higher income, and lower unemployment had higher age-adjusted melanoma incidence rates for both early and late stage. In multivariate models, SES effects persisted for early-stage but not late-stage melanoma incidence. Individual-level measures of SES were unavailable, and estimates were based on county-level SES measures. Our findings show that melanoma incidence in the United States is associated with aggregate county-level measures of high SES. Analyses using finer-level SES measures, such as individual or census tract level, are needed to provide more precise estimates of these associations. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  11. Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.

    PubMed

    Wu, Hulin; Xue, Hongqi; Kumar, Arun

    2012-06-01

    Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches. © 2012, The International Biometric Society.

  12. A state space based approach to localizing single molecules from multi-emitter images.

    PubMed

    Vahid, Milad R; Chao, Jerry; Ward, E Sally; Ober, Raimund J

    2017-01-28

    Single molecule super-resolution microscopy is a powerful tool that enables imaging at sub-diffraction-limit resolution. In this technique, subsets of stochastically photoactivated fluorophores are imaged over a sequence of frames and accurately localized, and the estimated locations are used to construct a high-resolution image of the cellular structures labeled by the fluorophores. Available localization methods typically first determine the regions of the image that contain emitting fluorophores through a process referred to as detection. Then, the locations of the fluorophores are estimated accurately in an estimation step. We propose a novel localization method which combines the detection and estimation steps. The method models the given image as the frequency response of a multi-order system obtained with a balanced state space realization algorithm based on the singular value decomposition of a Hankel matrix, and determines the locations of intensity peaks in the image as the pole locations of the resulting system. The locations of the most significant peaks correspond to the locations of single molecules in the original image. Although the accuracy of the location estimates is reasonably good, we demonstrate that, by using the estimates as the initial conditions for a maximum likelihood estimator, refined estimates can be obtained that have a standard deviation close to the Cramér-Rao lower bound-based limit of accuracy. We validate our method using both simulated and experimental multi-emitter images.

  13. Flexible resources for quantum metrology

    NASA Astrophysics Data System (ADS)

    Friis, Nicolai; Orsucci, Davide; Skotiniotis, Michalis; Sekatski, Pavel; Dunjko, Vedran; Briegel, Hans J.; Dür, Wolfgang

    2017-06-01

    Quantum metrology offers a quadratic advantage over classical approaches to parameter estimation problems by utilising entanglement and nonclassicality. However, the hurdle of actually implementing the necessary quantum probe states and measurements, which vary drastically for different metrological scenarios, is usually not taken into account. We show that for a wide range of tasks in metrology, 2D cluster states (a particular family of states useful for measurement-based quantum computation) can serve as flexible resources that allow one to efficiently prepare any required state for sensing, and perform appropriate (entangled) measurements using only single qubit operations. Crucially, the overhead in the number of qubits is less than quadratic, thus preserving the quantum scaling advantage. This is ensured by using a compression to a logarithmically sized space that contains all relevant information for sensing. We specifically demonstrate how our method can be used to obtain optimal scaling for phase and frequency estimation in local estimation problems, as well as for the Bayesian equivalents with Gaussian priors of varying widths. Furthermore, we show that in the paradigmatic case of local phase estimation 1D cluster states are sufficient for optimal state preparation and measurement.

  14. Sensor Data Fusion for Body State Estimation in a Bipedal Robot and Its Feedback Control Application for Stable Walking

    PubMed Central

    Chen, Ching-Pei; Chen, Jing-Yi; Huang, Chun-Kai; Lu, Jau-Ching; Lin, Pei-Chun

    2015-01-01

    We report on a sensor data fusion algorithm via an extended Kalman filter for estimating the spatial motion of a bipedal robot. Through fusing the sensory information from joint encoders, a 6-axis inertial measurement unit and a 2-axis inclinometer, the robot’s body state at a specific fixed position can be yielded. This position is also equal to the CoM when the robot is in the standing posture suggested by the detailed CAD model of the robot. In addition, this body state is further utilized to provide sensory information for feedback control on a bipedal robot with walking gait. The overall control strategy includes the proposed body state estimator as well as the damping controller, which regulates the body position state of the robot in real-time based on instant and historical position tracking errors. Moreover, a posture corrector for reducing unwanted torque during motion is addressed. The body state estimator and the feedback control structure are implemented in a child-size bipedal robot and the performance is experimentally evaluated. PMID:25734644

  15. Practical Application of Model-based Programming and State-based Architecture to Space Missions

    NASA Technical Reports Server (NTRS)

    Horvath, Gregory; Ingham, Michel; Chung, Seung; Martin, Oliver; Williams, Brian

    2006-01-01

    A viewgraph presentation to develop models from systems engineers that accomplish mission objectives and manage the health of the system is shown. The topics include: 1) Overview; 2) Motivation; 3) Objective/Vision; 4) Approach; 5) Background: The Mission Data System; 6) Background: State-based Control Architecture System; 7) Background: State Analysis; 8) Overview of State Analysis; 9) Background: MDS Software Frameworks; 10) Background: Model-based Programming; 10) Background: Titan Model-based Executive; 11) Model-based Execution Architecture; 12) Compatibility Analysis of MDS and Titan Architectures; 13) Integrating Model-based Programming and Execution into the Architecture; 14) State Analysis and Modeling; 15) IMU Subsystem State Effects Diagram; 16) Titan Subsystem Model: IMU Health; 17) Integrating Model-based Programming and Execution into the Software IMU; 18) Testing Program; 19) Computationally Tractable State Estimation & Fault Diagnosis; 20) Diagnostic Algorithm Performance; 21) Integration and Test Issues; 22) Demonstrated Benefits; and 23) Next Steps

  16. Economic evaluation in short bowel syndrome (SBS): an algorithm to estimate utility scores for a patient-reported SBS-specific quality of life scale (SBS-QoL™).

    PubMed

    Lloyd, Andrew; Kerr, Cicely; Breheny, Katie; Brazier, John; Ortiz, Aurora; Borg, Emma

    2014-03-01

    Condition-specific preference-based measures can offer utility data where they would not otherwise be available or where generic measures may lack sensitivity, although they lack comparability across conditions. This study aimed to develop an algorithm for estimating utilities from the short bowel syndrome health-related quality of life scale (SBS-QoL™). SBS-QoL™ items were selected based on factor and item performance analysis of a European SBS-QoL™ dataset and consultation with 3 SBS clinical experts. Six-dimension health states were developed using 8 SBS-QoL™ items (2 dimensions combined 2 SBS-QoL™ items). SBS health states were valued by a UK general population sample (N = 250) using the lead-time time trade-off method. Preference weights or 'utility decrements' for each severity level of each dimension were estimated by regression models and used to develop the scoring algorithm. Mean utilities for the SBS health states ranged from -0.46 (worst health state, very much affected on all dimensions) to 0.92 (best health state, not at all affected on all dimensions). The random effects model with maximum likelihood estimation regression had the best predictive ability and lowest root mean squared error and mean absolute error, and was used to develop the scoring algorithm. The preference-weighted scoring algorithm for the SBS-QoL™ developed is able to estimate a wide range of utility values from patient-level SBS-QoL™ data. This allows estimation of SBS HRQL impact for the purpose of economic evaluation of SBS treatment benefits.

  17. Dynamical noise filter and conditional entropy analysis in chaos synchronization.

    PubMed

    Wang, Jiao; Lai, C-H

    2006-06-01

    It is shown that, in a chaotic synchronization system whose driving signal is exposed to channel noise, the estimation of the drive system states can be greatly improved by applying the dynamical noise filtering to the response system states. If the noise is bounded in a certain range, the estimation errors, i.e., the difference between the filtered responding states and the driving states, can be made arbitrarily small. This property can be used in designing an alternative digital communication scheme. An analysis based on the conditional entropy justifies the application of dynamical noise filtering in generating quality synchronization.

  18. Annual Burden of Ocular Toxoplasmosis in the United States

    PubMed Central

    Jones, Jeffrey L.; Holland, Gary N.

    2010-01-01

    Toxoplasmosis is the most common retinal infection in the United States, and it can severely impact vision. We used data from population-based studies, outbreaks, and the U.S. census to estimate the burden of Toxoplasma gondii infection and ocular toxoplasmosis. We estimate that 1,075,242 persons are infected with T. gondii, 21,505 persons have ocular lesions (both asymptomatic and symptomatic), and 4,839 (range = 2,150–7,527) persons develop symptomatic ocular toxoplasmosis each year in the United States. Toxoplasmosis contributes a significant burden to eye disease in the United States. PMID:20207874

  19. Self-rated health: small area large area comparisons amongst older adults at the state, district and sub-district level in India.

    PubMed

    Hirve, Siddhivinayak; Vounatsou, Penelope; Juvekar, Sanjay; Blomstedt, Yulia; Wall, Stig; Chatterji, Somnath; Ng, Nawi

    2014-03-01

    We compared prevalence estimates of self-rated health (SRH) derived indirectly using four different small area estimation methods for the Vadu (small) area from the national Study on Global AGEing (SAGE) survey with estimates derived directly from the Vadu SAGE survey. The indirect synthetic estimate for Vadu was 24% whereas the model based estimates were 45.6% and 45.7% with smaller prediction errors and comparable to the direct survey estimate of 50%. The model based techniques were better suited to estimate the prevalence of SRH than the indirect synthetic method. We conclude that a simplified mixed effects regression model can produce valid small area estimates of SRH. © 2013 Published by Elsevier Ltd.

  20. Direct estimations of linear and nonlinear functionals of a quantum state.

    PubMed

    Ekert, Artur K; Alves, Carolina Moura; Oi, Daniel K L; Horodecki, Michał; Horodecki, Paweł; Kwek, L C

    2002-05-27

    We present a simple quantum network, based on the controlled-SWAP gate, that can extract certain properties of quantum states without recourse to quantum tomography. It can be used as a basic building block for direct quantum estimations of both linear and nonlinear functionals of any density operator. The network has many potential applications ranging from purity tests and eigenvalue estimations to direct characterization of some properties of quantum channels. Experimental realizations of the proposed network are within the reach of quantum technology that is currently being developed.

  1. Joint sparsity based heterogeneous data-level fusion for target detection and estimation

    NASA Astrophysics Data System (ADS)

    Niu, Ruixin; Zulch, Peter; Distasio, Marcello; Blasch, Erik; Shen, Dan; Chen, Genshe

    2017-05-01

    Typical surveillance systems employ decision- or feature-level fusion approaches to integrate heterogeneous sensor data, which are sub-optimal and incur information loss. In this paper, we investigate data-level heterogeneous sensor fusion. Since the sensors monitor the common targets of interest, whose states can be determined by only a few parameters, it is reasonable to assume that the measurement domain has a low intrinsic dimensionality. For heterogeneous sensor data, we develop a joint-sparse data-level fusion (JSDLF) approach based on the emerging joint sparse signal recovery techniques by discretizing the target state space. This approach is applied to fuse signals from multiple distributed radio frequency (RF) signal sensors and a video camera for joint target detection and state estimation. The JSDLF approach is data-driven and requires minimum prior information, since there is no need to know the time-varying RF signal amplitudes, or the image intensity of the targets. It can handle non-linearity in the sensor data due to state space discretization and the use of frequency/pixel selection matrices. Furthermore, for a multi-target case with J targets, the JSDLF approach only requires discretization in a single-target state space, instead of discretization in a J-target state space, as in the case of the generalized likelihood ratio test (GLRT) or the maximum likelihood estimator (MLE). Numerical examples are provided to demonstrate that the proposed JSDLF approach achieves excellent performance with near real-time accurate target position and velocity estimates.

  2. Forest-Based Biomass Supply Curves for the United States

    Treesearch

    Kenneth Skog; Jamie Barbour; Marilyn Buford; Dennis Drykstra; Patti Lebow; Pat Miles; Bob Perlack; Bryce Stokes

    2013-01-01

    Nationwide, county-level supply curves have been estimated for forest-based biomass to evaluate their potential contributions to producing biofuels. This study builds on the estimates of potential supply in the Billion Ton Supply study prepared by the U.S. Department of Agriculture and the U.S. Department of Energy. Forest biomass sources include logging...

  3. A Comparison of Two Above-Ground Biomass Estimation Techniques Integrating Satellite-Based Remotely Sensed Data and Ground Data for Tropical and Semiarid Forests in Puerto Rico

    EPA Science Inventory

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA)...

  4. Mean-square state and parameter estimation for stochastic linear systems with Gaussian and Poisson noises

    NASA Astrophysics Data System (ADS)

    Basin, M.; Maldonado, J. J.; Zendejo, O.

    2016-07-01

    This paper proposes new mean-square filter and parameter estimator design for linear stochastic systems with unknown parameters over linear observations, where unknown parameters are considered as combinations of Gaussian and Poisson white noises. The problem is treated by reducing the original problem to a filtering problem for an extended state vector that includes parameters as additional states, modelled as combinations of independent Gaussian and Poisson processes. The solution to this filtering problem is based on the mean-square filtering equations for incompletely polynomial states confused with Gaussian and Poisson noises over linear observations. The resulting mean-square filter serves as an identifier for the unknown parameters. Finally, a simulation example shows effectiveness of the proposed mean-square filter and parameter estimator.

  5. Tracking Architecture Based on Dual-Filter with State Feedback and Its Application in Ultra-Tight GPS/INS Integration

    PubMed Central

    Zhang, Xi; Miao, Lingjuan; Shao, Haijun

    2016-01-01

    If a Kalman Filter (KF) is applied to Global Positioning System (GPS) baseband signal preprocessing, the estimates of signal phase and frequency can have low variance, even in highly dynamic situations. This paper presents a novel preprocessing scheme based on a dual-filter structure. Compared with the traditional model utilizing a single KF, this structure avoids carrier tracking being subjected to code tracking errors. Meanwhile, as the loop filters are completely removed, state feedback values are adopted to generate local carrier and code. Although local carrier frequency has a wide fluctuation, the accuracy of Doppler shift estimation is improved. In the ultra-tight GPS/Inertial Navigation System (INS) integration, the carrier frequency derived from the external navigation information is not viewed as the local carrier frequency directly. That facilitates retaining the design principle of state feedback. However, under harsh conditions, the GPS outputs may still bear large errors which can destroy the estimation of INS errors. Thus, an innovative integrated navigation filter is constructed by modeling the non-negligible errors in the estimated Doppler shifts, to ensure INS is properly calibrated. Finally, field test and semi-physical simulation based on telemetered missile trajectory validate the effectiveness of methods proposed in this paper. PMID:27144570

  6. Tracking Architecture Based on Dual-Filter with State Feedback and Its Application in Ultra-Tight GPS/INS Integration.

    PubMed

    Zhang, Xi; Miao, Lingjuan; Shao, Haijun

    2016-05-02

    If a Kalman Filter (KF) is applied to Global Positioning System (GPS) baseband signal preprocessing, the estimates of signal phase and frequency can have low variance, even in highly dynamic situations. This paper presents a novel preprocessing scheme based on a dual-filter structure. Compared with the traditional model utilizing a single KF, this structure avoids carrier tracking being subjected to code tracking errors. Meanwhile, as the loop filters are completely removed, state feedback values are adopted to generate local carrier and code. Although local carrier frequency has a wide fluctuation, the accuracy of Doppler shift estimation is improved. In the ultra-tight GPS/Inertial Navigation System (INS) integration, the carrier frequency derived from the external navigation information is not viewed as the local carrier frequency directly. That facilitates retaining the design principle of state feedback. However, under harsh conditions, the GPS outputs may still bear large errors which can destroy the estimation of INS errors. Thus, an innovative integrated navigation filter is constructed by modeling the non-negligible errors in the estimated Doppler shifts, to ensure INS is properly calibrated. Finally, field test and semi-physical simulation based on telemetered missile trajectory validate the effectiveness of methods proposed in this paper.

  7. Estimating the extent of impervious surfaces and turf grass across large regions

    USGS Publications Warehouse

    Claggett, Peter; Irani, Frederick M.; Thompson, Renee L.

    2013-01-01

    The ability of researchers to accurately assess the extent of impervious and pervious developed surfaces, e.g., turf grass, using land-cover data derived from Landsat satellite imagery in the Chesapeake Bay watershed is limited due to the resolution of the data and systematic discrepancies between developed land-cover classes, surface mines, forests, and farmlands. Estimates of impervious surface and turf grass area in the Mid-Atlantic, United States that were based on 2006 Landsat-derived land-cover data were substantially lower than estimates based on more authoritative and independent sources. New estimates of impervious surfaces and turf grass area derived using land-cover data combined with ancillary information on roads, housing units, surface mines, and sampled estimates of road width and residential impervious area were up to 57 and 45% higher than estimates based strictly on land-cover data. These new estimates closely approximate estimates derived from authoritative and independent sources in developed counties.

  8. A stochastic global identification framework for aerospace structures operating under varying flight states

    NASA Astrophysics Data System (ADS)

    Kopsaftopoulos, Fotis; Nardari, Raphael; Li, Yu-Hung; Chang, Fu-Kuo

    2018-01-01

    In this work, a novel data-based stochastic "global" identification framework is introduced for aerospace structures operating under varying flight states and uncertainty. In this context, the term "global" refers to the identification of a model that is capable of representing the structure under any admissible flight state based on data recorded from a sample of these states. The proposed framework is based on stochastic time-series models for representing the structural dynamics and aeroelastic response under multiple flight states, with each state characterized by several variables, such as the airspeed, angle of attack, altitude and temperature, forming a flight state vector. The method's cornerstone lies in the new class of Vector-dependent Functionally Pooled (VFP) models which allow the explicit analytical inclusion of the flight state vector into the model parameters and, hence, system dynamics. This is achieved via the use of functional data pooling techniques for optimally treating - as a single entity - the data records corresponding to the various flight states. In this proof-of-concept study the flight state vector is defined by two variables, namely the airspeed and angle of attack of the vehicle. The experimental evaluation and assessment is based on a prototype bio-inspired self-sensing composite wing that is subjected to a series of wind tunnel experiments under multiple flight states. Distributed micro-sensors in the form of stretchable sensor networks are embedded in the composite layup of the wing in order to provide the sensing capabilities. Experimental data collected from piezoelectric sensors are employed for the identification of a stochastic global VFP model via appropriate parameter estimation and model structure selection methods. The estimated VFP model parameters constitute two-dimensional functions of the flight state vector defined by the airspeed and angle of attack. The identified model is able to successfully represent the wing's aeroelastic response under the admissible flight states via a minimum number of estimated parameters compared to standard identification approaches. The obtained results demonstrate the high accuracy and effectiveness of the proposed global identification framework, thus constituting a first step towards the next generation of "fly-by-feel" aerospace vehicles with state awareness capabilities.

  9. Estimating parameters of hidden Markov models based on marked individuals: use of robust design data

    USGS Publications Warehouse

    Kendall, William L.; White, Gary C.; Hines, James E.; Langtimm, Catherine A.; Yoshizaki, Jun

    2012-01-01

    Development and use of multistate mark-recapture models, which provide estimates of parameters of Markov processes in the face of imperfect detection, have become common over the last twenty years. Recently, estimating parameters of hidden Markov models, where the state of an individual can be uncertain even when it is detected, has received attention. Previous work has shown that ignoring state uncertainty biases estimates of survival and state transition probabilities, thereby reducing the power to detect effects. Efforts to adjust for state uncertainty have included special cases and a general framework for a single sample per period of interest. We provide a flexible framework for adjusting for state uncertainty in multistate models, while utilizing multiple sampling occasions per period of interest to increase precision and remove parameter redundancy. These models also produce direct estimates of state structure for each primary period, even for the case where there is just one sampling occasion. We apply our model to expected value data, and to data from a study of Florida manatees, to provide examples of the improvement in precision due to secondary capture occasions. We also provide user-friendly software to implement these models. This general framework could also be used by practitioners to consider constrained models of particular interest, or model the relationship between within-primary period parameters (e.g., state structure) and between-primary period parameters (e.g., state transition probabilities).

  10. A new adaptive estimation method of spacecraft thermal mathematical model with an ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Akita, T.; Takaki, R.; Shima, E.

    2012-04-01

    An adaptive estimation method of spacecraft thermal mathematical model is presented. The method is based on the ensemble Kalman filter, which can effectively handle the nonlinearities contained in the thermal model. The state space equations of the thermal mathematical model is derived, where both temperature and uncertain thermal characteristic parameters are considered as the state variables. In the method, the thermal characteristic parameters are automatically estimated as the outputs of the filtered state variables, whereas, in the usual thermal model correlation, they are manually identified by experienced engineers using trial-and-error approach. A numerical experiment of a simple small satellite is provided to verify the effectiveness of the presented method.

  11. A recursive solution for a fading memory filter derived from Kalman filter theory

    NASA Technical Reports Server (NTRS)

    Statman, J. I.

    1986-01-01

    A simple recursive solution for a class of fading memory tracking filters is presented. A fading memory filter provides estimates of filter states based on past measurements, similar to a traditional Kalman filter. Unlike a Kalman filter, an exponentially decaying weight is applied to older measurements, discounting their effect on present state estimates. It is shown that Kalman filters and fading memory filters are closely related solutions to a general least squares estimator problem. Closed form filter transfer functions are derived for a time invariant, steady state, fading memory filter. These can be applied in loop filter implementation of the Deep Space Network (DSN) Advanced Receiver carrier phase locked loop (PLL).

  12. Vision-based control for flight relative to dynamic environments

    NASA Astrophysics Data System (ADS)

    Causey, Ryan Scott

    The concept of autonomous systems has been considered an enabling technology for a diverse group of military and civilian applications. The current direction for autonomous systems is increased capabilities through more advanced systems that are useful for missions that require autonomous avoidance, navigation, tracking, and docking. To facilitate this level of mission capability, passive sensors, such as cameras, and complex software are added to the vehicle. By incorporating an on-board camera, visual information can be processed to interpret the surroundings. This information allows decision making with increased situational awareness without the cost of a sensor signature, which is critical in military applications. The concepts presented in this dissertation facilitate the issues inherent to vision-based state estimation of moving objects for a monocular camera configuration. The process consists of several stages involving image processing such as detection, estimation, and modeling. The detection algorithm segments the motion field through a least-squares approach and classifies motions not obeying the dominant trend as independently moving objects. An approach to state estimation of moving targets is derived using a homography approach. The algorithm requires knowledge of the camera motion, a reference motion, and additional feature point geometry for both the target and reference objects. The target state estimates are then observed over time to model the dynamics using a probabilistic technique. The effects of uncertainty on state estimation due to camera calibration are considered through a bounded deterministic approach. The system framework focuses on an aircraft platform of which the system dynamics are derived to relate vehicle states to image plane quantities. Control designs using standard guidance and navigation schemes are then applied to the tracking and homing problems using the derived state estimation. Four simulations are implemented in MATLAB that build on the image concepts present in this dissertation. The first two simulations deal with feature point computations and the effects of uncertainty. The third simulation demonstrates the open-loop estimation of a target ground vehicle in pursuit whereas the four implements a homing control design for the Autonomous Aerial Refueling (AAR) using target estimates as feedback.

  13. Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm

    PubMed Central

    Sun, Baoliang; Jiang, Chunlan; Li, Ming

    2016-01-01

    An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271

  14. Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique

    NASA Astrophysics Data System (ADS)

    Shrivastava, Akash; Mohanty, A. R.

    2018-03-01

    This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.

  15. Link-state-estimation-based transmission power control in wireless body area networks.

    PubMed

    Kim, Seungku; Eom, Doo-Seop

    2014-07-01

    This paper presents a novel transmission power control protocol to extend the lifetime of sensor nodes and to increase the link reliability in wireless body area networks (WBANs). We first experimentally investigate the properties of the link states using the received signal strength indicator (RSSI). We then propose a practical transmission power control protocol based on both short- and long-term link-state estimations. Both the short- and long-term link-state estimations enable the transceiver to adapt the transmission power level and target the RSSI threshold range, respectively, to simultaneously satisfy the requirements of energy efficiency and link reliability. Finally, the performance of the proposed protocol is experimentally evaluated in two experimental scenarios-body posture change and dynamic body motion-and compared with the typical WBAN transmission power control protocols, a real-time reactive scheme, and a dynamic postural position inference mechanism. From the experimental results, it is found that the proposed protocol increases the lifetime of the sensor nodes by a maximum of 9.86% and enhances the link reliability by reducing the packet loss by a maximum of 3.02%.

  16. Effects of Maternal Work Incentives on Teen Drug Arrests

    PubMed Central

    Corman, Hope; Dave, Dhaval; Kalil, Ariel; Reichman, Nancy E.

    2017-01-01

    Purpose This study exploits differences in the implementation of welfare reform across states and over time in the United States in the attempt to identify causal effects of welfare reform on youth arrests for drug-related crimes between 1990 and 2005, the period during which welfare reform unfolded. Methodology Using monthly arrest data from the U.S. Federal Bureau of Investigation's Uniform Crime Reports, we estimate the effects of welfare reform implementation on drug-related arrests among 15–17 year olds in the United States between 1990 and 2005. We use a difference-in-differences (DD) approach that exploits the implementation of welfare reform across states and over time to estimate effects for teens exposed to welfare reform. Findings The findings, based on numerous different model specifications, suggest that welfare reform had no statistically significant effect on teen drug arrests. Most estimates were positive and suggestive of a small (3%) increase in arrests. Originality/Value This study investigated the effects of a broad-based policy change that altered maternal employment, family income, and other family characteristics on youth drug arrests. PMID:28989228

  17. Maximum likelihood-based analysis of single-molecule photon arrival trajectories.

    PubMed

    Hajdziona, Marta; Molski, Andrzej

    2011-02-07

    In this work we explore the statistical properties of the maximum likelihood-based analysis of one-color photon arrival trajectories. This approach does not involve binning and, therefore, all of the information contained in an observed photon strajectory is used. We study the accuracy and precision of parameter estimates and the efficiency of the Akaike information criterion and the Bayesian information criterion (BIC) in selecting the true kinetic model. We focus on the low excitation regime where photon trajectories can be modeled as realizations of Markov modulated Poisson processes. The number of observed photons is the key parameter in determining model selection and parameter estimation. For example, the BIC can select the true three-state model from competing two-, three-, and four-state kinetic models even for relatively short trajectories made up of 2 × 10(3) photons. When the intensity levels are well-separated and 10(4) photons are observed, the two-state model parameters can be estimated with about 10% precision and those for a three-state model with about 20% precision.

  18. Evaluating abundance and trends in a Hawaiian avian community using state-space analysis

    USGS Publications Warehouse

    Camp, Richard J.; Brinck, Kevin W.; Gorresen, P.M.; Paxton, Eben H.

    2016-01-01

    Estimating population abundances and patterns of change over time are important in both ecology and conservation. Trend assessment typically entails fitting a regression to a time series of abundances to estimate population trajectory. However, changes in abundance estimates from year-to-year across time are due to both true variation in population size (process variation) and variation due to imperfect sampling and model fit. State-space models are a relatively new method that can be used to partition the error components and quantify trends based only on process variation. We compare a state-space modelling approach with a more traditional linear regression approach to assess trends in uncorrected raw counts and detection-corrected abundance estimates of forest birds at Hakalau Forest National Wildlife Refuge, Hawai‘i. Most species demonstrated similar trends using either method. In general, evidence for trends using state-space models was less strong than for linear regression, as measured by estimates of precision. However, while the state-space models may sacrifice precision, the expectation is that these estimates provide a better representation of the real world biological processes of interest because they are partitioning process variation (environmental and demographic variation) and observation variation (sampling and model variation). The state-space approach also provides annual estimates of abundance which can be used by managers to set conservation strategies, and can be linked to factors that vary by year, such as climate, to better understand processes that drive population trends.

  19. On-board adaptive model for state of charge estimation of lithium-ion batteries based on Kalman filter with proportional integral-based error adjustment

    NASA Astrophysics Data System (ADS)

    Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai

    2017-10-01

    With the rapid development of battery-powered electric vehicles, the lithium-ion battery plays a critical role in the reliability of vehicle system. In order to provide timely management and protection for battery systems, it is necessary to develop a reliable battery model and accurate battery parameters estimation to describe battery dynamic behaviors. Therefore, this paper focuses on an on-board adaptive model for state-of-charge (SOC) estimation of lithium-ion batteries. Firstly, a first-order equivalent circuit battery model is employed to describe battery dynamic characteristics. Then, the recursive least square algorithm and the off-line identification method are used to provide good initial values of model parameters to ensure filter stability and reduce the convergence time. Thirdly, an extended-Kalman-filter (EKF) is applied to on-line estimate battery SOC and model parameters. Considering that the EKF is essentially a first-order Taylor approximation of battery model, which contains inevitable model errors, thus, a proportional integral-based error adjustment technique is employed to improve the performance of EKF method and correct model parameters. Finally, the experimental results on lithium-ion batteries indicate that the proposed EKF with proportional integral-based error adjustment method can provide robust and accurate battery model and on-line parameter estimation.

  20. Monthly hydroclimatology of the continental United States

    NASA Astrophysics Data System (ADS)

    Petersen, Thomas; Devineni, Naresh; Sankarasubramanian, A.

    2018-04-01

    Physical/semi-empirical models that do not require any calibration are of paramount need for estimating hydrological fluxes for ungauged sites. We develop semi-empirical models for estimating the mean and variance of the monthly streamflow based on Taylor Series approximation of a lumped physically based water balance model. The proposed models require mean and variance of monthly precipitation and potential evapotranspiration, co-variability of precipitation and potential evapotranspiration and regionally calibrated catchment retention sensitivity, atmospheric moisture uptake sensitivity, groundwater-partitioning factor, and the maximum soil moisture holding capacity parameters. Estimates of mean and variance of monthly streamflow using the semi-empirical equations are compared with the observed estimates for 1373 catchments in the continental United States. Analyses show that the proposed models explain the spatial variability in monthly moments for basins in lower elevations. A regionalization of parameters for each water resources region show good agreement between observed moments and model estimated moments during January, February, March and April for mean and all months except May and June for variance. Thus, the proposed relationships could be employed for understanding and estimating the monthly hydroclimatology of ungauged basins using regional parameters.

  1. Lunar gravitational field estimation and the effects of mismodeling upon lunar satellite orbit prediction. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Davis, John H.

    1993-01-01

    Lunar spherical harmonic gravity coefficients are estimated from simulated observations of a near-circular low altitude polar orbiter disturbed by lunar mascons. Lunar gravity sensing missions using earth-based nearside observations with and without satellite-based far-side observations are simulated and least squares maximum likelihood estimates are developed for spherical harmonic expansion fit models. Simulations and parameter estimations are performed by a modified version of the Smithsonian Astrophysical Observatory's Planetary Ephemeris Program. Two different lunar spacecraft mission phases are simulated to evaluate the estimated fit models. Results for predicting state covariances one orbit ahead are presented along with the state errors resulting from the mismodeled gravity field. The position errors from planning a lunar landing maneuver with a mismodeled gravity field are also presented. These simulations clearly demonstrate the need to include observations of satellite motion over the far side in estimating the lunar gravity field. The simulations also illustrate that the eighth degree and order expansions used in the simulated fits were unable to adequately model lunar mascons.

  2. Population redistribution in Nigeria.

    PubMed

    Adebayo, A

    1984-07-01

    One of the major consequences of the reorganization of Nigeria from 4 states into 12 states in 1967 and then into 19 states in the late 1970s was the redistribution of the Nigerian population. Prior to 1967 Nigeria's rural population migrated primarily to the 4 state capitals of Kaduna, Ibadan, Enugu, Benin City and to the federal capital of Lagos. The creation of additional states, each with their own capital, provided new urban environments where migrants from rural areas were afforded opportunities for employment and social mobility. Between 1960-1980, World Bank estimates indicate that 1) population in Nigerian cityes of over 500,000 population increased from 22-57%; 2) the number of cities with a population of 500,000 or more increased from 2 to 9 and 3) the urban population increased from 13-20%. Given Nigeria's estimated population growth rate of 3.6%/year, it is imperative that the goverment continue its decentralization efforts. Tables show 1) population by region based on the 1963 census; 2) estimated population of the 19 state capitals for 1963 and 1975; and 3) estimated population of the areas included in each of the 19 states for 196o, 1977, 1979, and 19819

  3. Numerical estimation of the relative entropy of entanglement

    NASA Astrophysics Data System (ADS)

    Zinchenko, Yuriy; Friedland, Shmuel; Gour, Gilad

    2010-11-01

    We propose a practical algorithm for the calculation of the relative entropy of entanglement (REE), defined as the minimum relative entropy between a state and the set of states with positive partial transpose. Our algorithm is based on a practical semidefinite cutting plane approach. In low dimensions the implementation of the algorithm in matlab provides an estimation for the REE with an absolute error smaller than 10-3.

  4. A Reduced Dimension Static, Linearized Kalman Filter and Smoother

    NASA Technical Reports Server (NTRS)

    Fukumori, I.

    1995-01-01

    An approximate Kalman filter and smoother, based on approximations of the state estimation error covariance matrix, is described. Approximations include a reduction of the effective state dimension, use of a static asymptotic error limit, and a time-invariant linearization of the dynamic model for error integration. The approximations lead to dramatic computational savings in applying estimation theory to large complex systems. Examples of use come from TOPEX/POSEIDON.

  5. Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations

    Treesearch

    Ross Nelson; Hank Margolis; Paul Montesano; Guoqing Sun; Bruce Cook; Larry Corp; Hans-Erik Andersen; Ben deJong; Fernando Paz Pellat; Thaddeus Fickel; Jobriath Kauffman; Stephen Prisley

    2017-01-01

    Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar...

  6. Methods for Sexually Transmitted Disease Prevention Programs to Estimate the Health and Medical Cost Impact of Changes in Their Budget.

    PubMed

    Chesson, Harrell W; Ludovic, Jennifer A; Berruti, Andrés A; Gift, Thomas L

    2018-01-01

    The purpose of this article was to describe methods that sexually transmitted disease (STD) programs can use to estimate the potential effects of changes in their budgets in terms of disease burden and direct medical costs. We proposed 2 distinct approaches to estimate the potential effect of changes in funding on subsequent STD burden, one based on an analysis of state-level STD prevention funding and gonorrhea case rates and one based on analyses of the effect of Disease Intervention Specialist (DIS) activities on gonorrhea case rates. We also illustrated how programs can estimate the impact of budget changes on intermediate outcomes, such as partner services. Finally, we provided an example of the application of these methods for a hypothetical state STD prevention program. The methods we proposed can provide general approximations of how a change in STD prevention funding might affect the level of STD prevention services provided, STD incidence rates, and the direct medical cost burden of STDs. In applying these methods to a hypothetical state, a reduction in annual funding of US $200,000 was estimated to lead to subsequent increases in STDs of 1.6% to 3.6%. Over 10 years, the reduction in funding totaled US $2.0 million, whereas the cumulative, additional direct medical costs of the increase in STDs totaled US $3.7 to US $8.4 million. The methods we proposed, though subject to important limitations, can allow STD prevention personnel to calculate evidence-based estimates of the effects of changes in their budget.

  7. Cost calculator methods for estimating casework time in child welfare services: A promising approach for use in implementation of evidence-based practices and other service innovations.

    PubMed

    Holmes, Lisa; Landsverk, John; Ward, Harriet; Rolls-Reutz, Jennifer; Saldana, Lisa; Wulczyn, Fred; Chamberlain, Patricia

    2014-04-01

    Estimating costs in child welfare services is critical as new service models are incorporated into routine practice. This paper describes a unit costing estimation system developed in England (cost calculator) together with a pilot test of its utility in the United States where unit costs are routinely available for health services but not for child welfare services. The cost calculator approach uses a unified conceptual model that focuses on eight core child welfare processes. Comparison of these core processes in England and in four counties in the United States suggests that the underlying child welfare processes generated from England were perceived as very similar by child welfare staff in California county systems with some exceptions in the review and legal processes. Overall, the adaptation of the cost calculator for use in the United States child welfare systems appears promising. The paper also compares the cost calculator approach to the workload approach widely used in the United States and concludes that there are distinct differences between the two approaches with some possible advantages to the use of the cost calculator approach, especially in the use of this method for estimating child welfare costs in relation to the incorporation of evidence-based interventions into routine practice.

  8. Mean Recency Period for Estimation of HIV-1 Incidence with the BED-Capture EIA and Bio-Rad Avidity in Persons Diagnosed in the United States with Subtype B.

    PubMed

    Hanson, Debra L; Song, Ruiguang; Masciotra, Silvina; Hernandez, Angela; Dobbs, Trudy L; Parekh, Bharat S; Owen, S Michele; Green, Timothy A

    2016-01-01

    HIV incidence estimates are used to monitor HIV-1 infection in the United States. Use of laboratory biomarkers that distinguish recent from longstanding infection to quantify HIV incidence rely on having accurate knowledge of the average time that individuals spend in a transient state of recent infection between seroconversion and reaching a specified biomarker cutoff value. This paper describes five estimation procedures from two general statistical approaches, a survival time approach and an approach that fits binomial models of the probability of being classified as recently infected, as a function of time since seroconversion. We compare these procedures for estimating the mean duration of recent infection (MDRI) for two biomarkers used by the U.S. National HIV Surveillance System for determination of HIV incidence, the Aware BED EIA HIV-1 incidence test (BED) and the avidity-based, modified Bio-Rad HIV-1/HIV-2 plus O ELISA (BRAI) assay. Collectively, 953 specimens from 220 HIV-1 subtype B seroconverters, taken from 5 cohorts, were tested with a biomarker assay. Estimates of MDRI using the non-parametric survival approach were 198.4 days (SD 13.0) for BED and 239.6 days (SD 13.9) for BRAI using cutoff values of 0.8 normalized optical density and 30%, respectively. The probability of remaining in the recent state as a function of time since seroconversion, based upon this revised statistical approach, can be applied in the calculation of annual incidence in the United States.

  9. State Estimation for Landing Maneuver on High Performance Aircraft

    NASA Astrophysics Data System (ADS)

    Suresh, P. S.; Sura, Niranjan K.; Shankar, K.

    2018-01-01

    State estimation methods are popular means for validating aerodynamic database on aircraft flight maneuver performance characteristics. In this work, the state estimation method during landing maneuver is explored for the first of its kind, using upper diagonal adaptive extended Kalman filter (UD-AEKF) with fuzzy based adaptive tunning of process noise matrix. The mathematical model for symmetrical landing maneuver consists of non-linear flight mechanics equation representing Aircraft longitudinal dynamics. The UD-AEKF algorithm is implemented in MATLAB environment and the states with bias is considered to be the initial conditions just prior to the flare. The measurement data is obtained from a non-linear 6 DOF pilot in loop simulation using FORTRAN. These simulated measurement data is additively mixed with process and measurement noises, which are used as an input for UD-AEKF. Then, the governing states that dictate the landing loads at the instant of touch down are compared. The method is verified using flight data wherein, the vertical acceleration at the aircraft center of gravity (CG) is compared. Two possible outcome of purely relying on the aircraft measured data is highlighted. It is observed that, with the implementation of adaptive fuzzy logic based extended Kalman filter tuned to adapt for aircraft landing dynamics, the methodology improves the data quality of the states that are sourced from noisy measurements.

  10. Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter.

    PubMed

    Song, Xuegang; Zhang, Yuexin; Liang, Dakai

    2017-10-10

    This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF) was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.

  11. The Economic Burden of Vision Loss and Eye Disorders among the United States Population Younger than 40 Years

    PubMed Central

    Wittenborn, John S.; Zhang, Xinzhi; Feagan, Charles W.; Crouse, Wesley L.; Shrestha, Sundar; Kemper, Alex R.; Hoerger, Thomas J.; Saaddine, Jinan B.

    2017-01-01

    Objective To estimate the economic burden of vision loss and eye disorders in the United States population younger than 40 years in 2012. Design Econometric and statistical analysis of survey, commercial claims, and census data. Participants The United States population younger than 40 years in 2012. Methods We categorized costs based on consensus guidelines. We estimated medical costs attributable to diagnosed eye-related disorders, undiagnosed vision loss, and medical vision aids using Medical Expenditure Panel Survey and MarketScan data. The prevalence of vision impairment and blindness were estimated using National Health and Nutrition Examination Survey data. We estimated costs from lost productivity using Survey of Income and Program Participation. We estimated costs of informal care, low vision aids, special education, school screening, government spending, and transfer payments based on published estimates and federal budgets. We estimated quality-adjusted life years (QALYs) lost based on published utility values. Main Outcome Measures Costs and QALYs lost in 2012. Results The economic burden of vision loss and eye disorders among the United States population younger than 40 years was $27.5 billion in 2012 (95% confidence interval, $21.5–$37.2 billion), including $5.9 billion for children and $21.6 billion for adults 18 to 39 years of age. Direct costs were $14.5 billion, including $7.3 billion in medical costs for diagnosed disorders, $4.9 billion in refraction correction, $0.5 billion in medical costs for undiagnosed vision loss, and $1.8 billion in other direct costs. Indirect costs were $13 billion, primarily because of $12.2 billion in productivity losses. In addition, vision loss cost society 215 000 QALYs. Conclusions We found a substantial burden resulting from vision loss and eye disorders in the United States population younger than 40 years, a population excluded from previous studies. Monetizing quality-of-life losses at $50 000 per QALY would add $10.8 billion in additional costs, indicating a total economic burden of $38.2 billion. Relative to previously reported estimates for the population 40 years of age and older, more than one third of the total cost of vision loss and eye disorders may be incurred by persons younger than 40 years. PMID:23631946

  12. Development of a stand-scale forest biodiversity index based on the state forest inventory

    Treesearch

    Diego Van Den Meersschaut; Kris Vandekerkhove

    2000-01-01

    Ecological aspects are increasingly influencing silvicultural management. Estimating forest biodiversity has become one often major tools for evaluating management strategies. A stand-scale forest biodiversity index is developed, based on available data from the state forest inventory. The index combines aspects of forest structure, woody and herbal layer composition,...

  13. General Constraints on Sampling Wildlife on FIA Plots

    Treesearch

    Larissa L. Bailey; John R. Sauer; James D. Nichols; Paul H. Geissler

    2005-01-01

    This paper reviews the constraints to sampling wildlife populations at FIA points. Wildlife sampling programs must have well-defined goals and provide information adequate to meet those goals. Investigators should choose a State variable based on information needs and the spatial sampling scale. We discuss estimation-based methods for three State variables: species...

  14. Electrochemical state and internal variables estimation using a reduced-order physics-based model of a lithium-ion cell and an extended Kalman filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stetzel, KD; Aldrich, LL; Trimboli, MS

    2015-03-15

    This paper addresses the problem of estimating the present value of electrochemical internal variables in a lithium-ion cell in real time, using readily available measurements of cell voltage, current, and temperature. The variables that can be estimated include any desired set of reaction flux and solid and electrolyte potentials and concentrations at any set of one-dimensional spatial locations, in addition to more standard quantities such as state of charge. The method uses an extended Kalman filter along with a one-dimensional physics-based reduced-order model of cell dynamics. Simulations show excellent and robust predictions having dependable error bounds for most internal variables.more » (C) 2014 Elsevier B.V. All rights reserved.« less

  15. Using Appendicitis to Improve Estimates of Childhood Medicaid Participation Rates.

    PubMed

    Silber, Jeffrey H; Zeigler, Ashley E; Reiter, Joseph G; Hochman, Lauren L; Ludwig, Justin M; Wang, Wei; Calhoun, Shawna R; Pati, Susmita

    2018-03-23

    Administrative data are often used to estimate state Medicaid/Children's Health Insurance Program duration of enrollment and insurance continuity, but they are generally not used to estimate participation (the fraction of eligible children enrolled) because administrative data do not include reasons for disenrollment and cannot observe eligible never-enrolled children, causing estimates of eligible unenrolled to be inaccurate. Analysts are therefore forced to either utilize survey information that is not generally linkable to administrative claims or rely on duration and continuity measures derived from administrative data and forgo estimating claims-based participation. We introduce appendectomy-based participation (ABP) to estimate statewide participation rates using claims by taking advantage of a natural experiment around statewide appendicitis admissions to improve the accuracy of participation rate estimates. We used Medicaid Analytic eXtract (MAX) for 2008-2010; and the American Community Survey for 2008-2010 from 43 states to calculate ABP, continuity ratio, duration, and participation based on the American Community Survey (ACS). In the validation study, median participation rate using ABP was 86% versus 87% for ACS-based participation estimates using logical edits and 84% without logical edits. Correlations between ABP and ACS with or without logical edits was 0.86 (P < .0001). Using regression analysis, ABP alone was a significant predictor of ACS (P < .0001) with or without logical edits, and adding duration and/or the continuity ratio did not significantly improve the model. Using the ABP rate derived from administrative claims (MAX) is a valid method to estimate statewide public insurance participation rates in children. Copyright © 2018 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  16. Estimating the capacity value of concentrating solar power plants: A case study of the southwestern United States

    DOE PAGES

    Madaeni, Seyed Hossein; Sioshansi, Ramteen; Denholm, Paul

    2012-01-27

    Here, we estimate the capacity value of concentrating solar power (CSP) plants without thermal energy storage in the southwestern U.S. Our results show that CSP plants have capacity values that are between 45% and 95% of maximum capacity, depending on their location and configuration. We also examine the sensitivity of the capacity value of CSP to a number of factors and show that capacity factor-based methods can provide reasonable approximations of reliability-based estimates.

  17. A probabilistic-based approach to monitoring tool wear state and assessing its effect on workpiece quality in nickel-based alloys

    NASA Astrophysics Data System (ADS)

    Akhavan Niaki, Farbod

    The objective of this research is first to investigate the applicability and advantage of statistical state estimation methods for predicting tool wear in machining nickel-based superalloys over deterministic methods, and second to study the effects of cutting tool wear on the quality of the part. Nickel-based superalloys are among those classes of materials that are known as hard-to-machine alloys. These materials exhibit a unique combination of maintaining their strength at high temperature and have high resistance to corrosion and creep. These unique characteristics make them an ideal candidate for harsh environments like combustion chambers of gas turbines. However, the same characteristics that make nickel-based alloys suitable for aggressive conditions introduce difficulties when machining them. High strength and low thermal conductivity accelerate the cutting tool wear and increase the possibility of the in-process tool breakage. A blunt tool nominally deteriorates the surface integrity and damages quality of the machined part by inducing high tensile residual stresses, generating micro-cracks, altering the microstructure or leaving a poor roughness profile behind. As a consequence in this case, the expensive superalloy would have to be scrapped. The current dominant solution for industry is to sacrifice the productivity rate by replacing the tool in the early stages of its life or to choose conservative cutting conditions in order to lower the wear rate and preserve workpiece quality. Thus, monitoring the state of the cutting tool and estimating its effects on part quality is a critical task for increasing productivity and profitability in machining superalloys. This work aims to first introduce a probabilistic-based framework for estimating tool wear in milling and turning of superalloys and second to study the detrimental effects of functional state of the cutting tool in terms of wear and wear rate on part quality. In the milling operation, the mechanisms of tool failure were first identified and, based on the rapid catastrophic failure of the tool, a Bayesian inference method (i.e., Markov Chain Monte Carlo, MCMC) was used for parameter calibration of tool wear using a power mechanistic model. The calibrated model was then used in the state space probabilistic framework of a Kalman filter to estimate the tool flank wear. Furthermore, an on-machine laser measuring system was utilized and fused into the Kalman filter to improve the estimation accuracy. In the turning operation the behavior of progressive wear was investigated as well. Due to the nonlinear nature of wear in turning, an extended Kalman filter was designed for tracking progressive wear, and the results of the probabilistic-based method were compared with a deterministic technique, where significant improvement (more than 60% increase in estimation accuracy) was achieved. To fulfill the second objective of this research in understanding the underlying effects of wear on part quality in cutting nickel-based superalloys, a comprehensive study on surface roughness, dimensional integrity and residual stress was conducted. The estimated results derived from a probabilistic filter were used for finding the proper correlations between wear, surface roughness and dimensional integrity, along with a finite element simulation for predicting the residual stress profile for sharp and worn cutting tool conditions. The output of this research provides the essential information on condition monitoring of the tool and its effects on product quality. The low-cost Hall effect sensor used in this work to capture spindle power in the context of the stochastic filter can effectively estimate tool wear in both milling and turning operations, while the estimated wear can be used to generate knowledge of the state of workpiece surface integrity. Therefore the true functionality and efficiency of the tool in superalloy machining can be evaluated without additional high-cost sensing.

  18. 77 FR 73662 - Agency Information Collection Activities; Submission for Office of Management and Budget Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... received by the Agency under the Pre-IDE program over the past 10 years. Based on FDA's experience with the... rate and reach a steady state of approximately 2,544 submissions per year. FDA estimates from past... annual estimate of 2,544 submissions is based on experienced trends over the past several years. FDA's...

  19. A program to form a multidisciplinary data base and analysis for dynamic systems

    NASA Technical Reports Server (NTRS)

    Taylor, L. W.; Suit, W. T.; Mayo, M. H.

    1984-01-01

    Diverse sets of experimental data and analysis programs have been assembled for the purpose of facilitating research in systems identification, parameter estimation and state estimation techniques. The data base analysis programs are organized to make it easy to compare alternative approaches. Additional data and alternative forms of analysis will be included as they become available.

  20. Taper-based system for estimating stem volumes of upland oaks

    Treesearch

    Donald E. Hilt

    1980-01-01

    A taper-based system for estimating stem volumes is developed for Central States upland oaks. Inside bark diameters up the stem are predicted as a function of dbhib, total height, and powers and relative height. A Fortran IV computer program, OAKVOL, is used to predict cubic and board-foot volumes to any desired merchantable top dib. Volumes of...

  1. COLE: A Web-based Tool for Interfacing with Forest Inventory Data

    Treesearch

    Patrick Proctor; Linda S. Heath; Paul C. Van Deusen; Jeffery H. Gove; James E. Smith

    2005-01-01

    We are developing an online computer program to provide forest carbon related estimates for the conterminous United States (COLE). Version 1.0 of the program features carbon estimates based on data from the USDA Forest Service Eastwide Forest Inventory database. The program allows the user to designate an area of interest, and currently provides area, growing-stock...

  2. Need-Based Aid and College Persistence: The Effects of the Ohio College Opportunity Grant

    ERIC Educational Resources Information Center

    Bettinger, Eric

    2015-01-01

    This article exploits a natural experiment to estimate the effects of need-based aid policies on first-year college persistence rates. In fall 2006, Ohio abruptly adopted a new state financial aid policy that was significantly more generous than the previous plan. Using student-level data and very narrowly defined sets of students, I estimate a…

  3. Calibrating recruitment estimates for mourning doves from harvest age ratios

    USGS Publications Warehouse

    Miller, David A.; Otis, David L.

    2010-01-01

    We examined results from the first national-scale effort to estimate mourning dove (Zenaida macroura) age ratios and developed a simple, efficient, and generalizable methodology for calibrating estimates. Our method predicted age classes of unknown-age wings based on backward projection of molt distributions from fall harvest collections to preseason banding. We estimated 1) the proportion of late-molt individuals in each age class, and 2) the molt rates of juvenile and adult birds. Monte Carlo simulations demonstrated our estimator was minimally biased. We estimated model parameters using 96,811 wings collected from hunters and 42,189 birds banded during preseason from 68 collection blocks in 22 states during the 2005–2007 hunting seasons. We also used estimates to derive a correction factor, based on latitude and longitude of samples, which can be applied to future surveys. We estimated differential vulnerability of age classes to harvest using data from banded birds and applied that to harvest age ratios to estimate population age ratios. Average, uncorrected age ratio of known-age wings for states that allow hunting was 2.25 (SD 0.85) juveniles:adult, and average, corrected ratio was 1.91 (SD 0.68), as determined from harvest age ratios from an independent sample of 41,084 wings collected from random hunters in 2007 and 2008. We used an independent estimate of differential vulnerability to adjust corrected harvest age ratios and estimated the average population age ratio as 1.45 (SD 0.52), a direct measure of recruitment rates. Average annual recruitment rates were highest east of the Mississippi River and in the northwestern United States, with lower rates between. Our results demonstrate a robust methodology for calibrating recruitment estimates for mourning doves and represent the first large-scale estimates of recruitment for the species. Our methods can be used by managers to correct future harvest survey data to generate recruitment estimates for use in formulating harvest management strategies.

  4. On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models part 2. Parameter and state estimation

    NASA Astrophysics Data System (ADS)

    Fleischer, Christian; Waag, Wladislaw; Heyn, Hans-Martin; Sauer, Dirk Uwe

    2014-09-01

    Lithium-ion battery systems employed in high power demanding systems such as electric vehicles require a sophisticated monitoring system to ensure safe and reliable operation. Three major states of the battery are of special interest and need to be constantly monitored. These include: battery state of charge (SoC), battery state of health (capacity fade determination, SoH), and state of function (power fade determination, SoF). The second paper concludes the series by presenting a multi-stage online parameter identification technique based on a weighted recursive least quadratic squares parameter estimator to determine the parameters of the proposed battery model from the first paper during operation. A novel mutation based algorithm is developed to determine the nonlinear current dependency of the charge-transfer resistance. The influence of diffusion is determined by an on-line identification technique and verified on several batteries at different operation conditions. This method guarantees a short response time and, together with its fully recursive structure, assures a long-term stable monitoring of the battery parameters. The relative dynamic voltage prediction error of the algorithm is reduced to 2%. The changes of parameters are used to determine the states of the battery. The algorithm is real-time capable and can be implemented on embedded systems.

  5. Using ZIP Code Business Patterns Data to Measure Alcohol Outlet Density

    PubMed Central

    Matthews, Stephen A.; McCarthy, John D.; Rafail, Patrick S.

    2014-01-01

    Some states maintain high-quality alcohol outlet databases but quality varies by state, making comprehensive comparative analysis across US communities difficult. This study assesses the adequacy of using ZIP Code Business Patterns (ZIP-BP) data on establishments as estimates of the number of alcohol outlets by ZIP code. Specifically we compare ZIP-BP alcohol outlet counts with high-quality data from state and local records surrounding 44 college campus communities across 10 states plus the District of Columbia. Results show that a composite measure is strongly correlated (R=0.89) with counts of alcohol outlets generated from official state records. Analyses based on Generalized Estimation Equation models show that community and contextual factors have little impact on the concordance between the two data sources. There are also minimal inter-state differences in the level of agreement. To validate the use of a convenient secondary data set (ZIP-BP) it is important to have a high correlation with the more complex, high quality and more costly data product (i.e., datasets based on the acquisition and geocoding of state and local records) and then to clearly demonstrate that the discrepancy between the two to be unrelated to relevant explanatory variables. Thus our overall findings support the adequacy of using a conveniently available data set (ZIP-BP data) to estimate alcohol outlet densities in ZIP code areas in future research. PMID:21411233

  6. Using ZIP code business patterns data to measure alcohol outlet density.

    PubMed

    Matthews, Stephen A; McCarthy, John D; Rafail, Patrick S

    2011-07-01

    Some states maintain high-quality alcohol outlet databases but quality varies by state, making comprehensive comparative analysis across US communities difficult. This study assesses the adequacy of using ZIP Code Business Patterns (ZIP-BP) data on establishments as estimates of the number of alcohol outlets by ZIP code. Specifically we compare ZIP-BP alcohol outlet counts with high-quality data from state and local records surrounding 44 college campus communities across 10 states plus the District of Columbia. Results show that a composite measure is strongly correlated (R=0.89) with counts of alcohol outlets generated from official state records. Analyses based on Generalized Estimation Equation models show that community and contextual factors have little impact on the concordance between the two data sources. There are also minimal inter-state differences in the level of agreement. To validate the use of a convenient secondary data set (ZIP-BP) it is important to have a high correlation with the more complex, high quality and more costly data product (i.e., datasets based on the acquisition and geocoding of state and local records) and then to clearly demonstrate that the discrepancy between the two to be unrelated to relevant explanatory variables. Thus our overall findings support the adequacy of using a conveniently available data set (ZIP-BP data) to estimate alcohol outlet densities in ZIP code areas in future research. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Hyper-X Mach 10 Trajectory Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Martin, John G.; Tartabini, Paul V.; Thornblom, Mark N.

    2005-01-01

    This paper discusses the formulation and development of a trajectory reconstruction tool for the NASA X-43A/Hyper-X high speed research vehicle, and its implementation for the reconstruction and analysis of flight test data. Extended Kalman filtering techniques are employed to reconstruct the trajectory of the vehicle, based upon numerical integration of inertial measurement data along with redundant measurements of the vehicle state. The equations of motion are formulated in order to include the effects of several systematic error sources, whose values may also be estimated by the filtering routines. Additionally, smoothing algorithms have been implemented in which the final value of the state (or an augmented state that includes other systematic error parameters to be estimated) and covariance are propagated back to the initial time to generate the best-estimated trajectory, based upon all available data. The methods are applied to the problem of reconstructing the trajectory of the Hyper-X vehicle from data obtained during the Mach 10 test flight, which occurred on November 16th 2004.

  8. Assssment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Paul T.; Ravens, Thomas M.; Cunningham, Keith W.

    2012-12-14

    The U.S. Department of Energy (DOE) funded the Electric Power Research Institute and its collaborative partners, University of Alaska ? Anchorage, University of Alaska ? Fairbanks, and the National Renewable Energy Laboratory, to provide an assessment of the riverine hydrokinetic resource in the continental United States. The assessment benefited from input obtained during two workshops attended by individuals with relevant expertise and from a National Research Council panel commissioned by DOE to provide guidance to this and other concurrent, DOE-funded assessments of water based renewable energy. These sources of expertise provided valuable advice regarding data sources and assessment methodology. Themore » assessment of the hydrokinetic resource in the 48 contiguous states is derived from spatially-explicit data contained in NHDPlus ?a GIS-based database containing river segment-specific information on discharge characteristics and channel slope. 71,398 river segments with mean annual flow greater than 1,000 cubic feet per second (cfs) mean discharge were included in the assessment. Segments with discharge less than 1,000 cfs were dropped from the assessment, as were river segments with hydroelectric dams. The results for the theoretical and technical resource in the 48 contiguous states were found to be relatively insensitive to the cutoff chosen. Raising the cutoff to 1,500 cfs had no effect on estimate of the technically recoverable resource, and the theoretical resource was reduced by 5.3%. The segment-specific theoretical resource was estimated from these data using the standard hydrological engineering equation that relates theoretical hydraulic power (Pth, Watts) to discharge (Q, m3 s-1) and hydraulic head or change in elevation (??, m) over the length of the segment, where ? is the specific weight of water (9800 N m-3): ??? = ? ? ?? For Alaska, which is not encompassed by NPDPlus, hydraulic head and discharge data were manually obtained from Idaho National Laboratory?s Virtual Hydropower Prospector, Google Earth, and U.S. Geological Survey gages. Data were manually obtained for the eleven largest rivers with average flow rates greater than 10,000 cfs and the resulting estimate of the theoretical resource was expanded to include rivers with discharge between 1,000 cfs and 10,000 cfs based upon the contribution of rivers in the latter flow class to the total estimate in the contiguous 48 states. Segment-specific theoretical resource was aggregated by major hydrologic region in the contiguous, lower 48 states and totaled 1,146 TWh/yr. The aggregate estimate of the Alaska theoretical resource is 235 TWh/yr, yielding a total theoretical resource estimate of 1,381 TWh/yr for the continental US. The technically recoverable resource in the contiguous 48 states was estimated by applying a recovery factor to the segment-specific theoretical resource estimates. The recovery factor scales the theoretical resource for a given segment to take into account assumptions such as minimum required water velocity and depth during low flow conditions, maximum device packing density, device efficiency, and flow statistics (e.g., the 5 percentile flow relative to the average flow rate). The recovery factor also takes account of ?back effects? ? feedback effects of turbine presence on hydraulic head and velocity. The recovery factor was determined over a range of flow rates and slopes using the hydraulic model, HEC-RAS. In the hydraulic modeling, presence of turbines was accounted for by adjusting the Manning coefficient. This analysis, which included 32 scenarios, led to an empirical function relating recovery factor to slope and discharge. Sixty-nine percent of NHDPlus segments included in the theoretical resource estimate for the contiguous 48 states had an estimated recovery factor of zero. For Alaska, data on river slope was not readily available; hence, the recovery factor was estimated based on the flow rate alone. Segment-specific estimates of the theoretical resource were multiplied by the corresponding recovery factor to estimate the technically recoverable resource. The resulting technically recoverable resource estimate for the continental United States is 120 TWh/yr.« less

  9. Evaluation of the vehicle state with vibration-based diagnostics methods

    NASA Astrophysics Data System (ADS)

    Gai, V. E.; Polyakov, I. V.; Krasheninnikov, M. S.; Koshurina, A. A.; Dorofeev, R. A.

    2017-02-01

    Timely detection of a trouble in the mechanisms work is a guarantee of the stable operation of the entire machine complex. It allows minimizing unexpected losses, and avoiding any injuries inflicted on working people. The solution of the problem is the most important for vehicles and machines, working in remote areas of the infrastructure. All-terrain vehicles can be referred to such type of transport. The potential object of application of the described methodology is the multipurpose rotary-screw amphibious vehicle for rescue; reconnaissance; transport and technological operations. At the present time, there is no information on the use of these kinds of systems in ground-based vehicles. The present paper is devoted to the state estimation of a mechanism based on the analysis of vibration signals produced by the mechanism, in particular, the vibration signals of rolling bearings. The theory of active perception was used for the solution of the problem of the state estimation.

  10. Data-based fault-tolerant control for affine nonlinear systems with actuator faults.

    PubMed

    Xie, Chun-Hua; Yang, Guang-Hong

    2016-09-01

    This paper investigates the fault-tolerant control (FTC) problem for unknown nonlinear systems with actuator faults including stuck, outage, bias and loss of effectiveness. The upper bounds of stuck faults, bias faults and loss of effectiveness faults are unknown. A new data-based FTC scheme is proposed. It consists of the online estimations of the bounds and a state-dependent function. The estimations are adjusted online to compensate automatically the actuator faults. The state-dependent function solved by using real system data helps to stabilize the system. Furthermore, all signals in the resulting closed-loop system are uniformly bounded and the states converge asymptotically to zero. Compared with the existing results, the proposed approach is data-based. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Cost-effectiveness of human papillomavirus vaccination in the United States.

    PubMed

    Chesson, Harrell W; Ekwueme, Donatus U; Saraiya, Mona; Markowitz, Lauri E

    2008-02-01

    We describe a simplified model, based on the current economic and health effects of human papillomavirus (HPV), to estimate the cost-effectiveness of HPV vaccination of 12-year-old girls in the United States. Under base-case parameter values, the estimated cost per quality-adjusted life year gained by vaccination in the context of current cervical cancer screening practices in the United States ranged from $3,906 to $14,723 (2005 US dollars), depending on factors such as whether herd immunity effects were assumed; the types of HPV targeted by the vaccine; and whether the benefits of preventing anal, vaginal, vulvar, and oropharyngeal cancers were included. The results of our simplified model were consistent with published studies based on more complex models when key assumptions were similar. This consistency is reassuring because models of varying complexity will be essential tools for policy makers in the development of optimal HPV vaccination strategies.

  12. Estimation of Disability Weights in the General Population of South Korea Using a Paired Comparison

    PubMed Central

    Ock, Minsu; Ahn, Jeonghoon; Yoon, Seok-Jun; Jo, Min-Woo

    2016-01-01

    We estimated the disability weights in the South Korean population by using a paired comparison-only model wherein ‘full health’ and ‘being dead’ were included as anchor points, without resorting to a cardinal method, such as person trade-off. The study was conducted via 2 types of survey: a household survey involving computer-assisted face-to-face interviews and a web-based survey (similar to that of the GBD 2010 disability weight study). With regard to the valuation methods, paired comparison, visual analogue scale (VAS), and standard gamble (SG) were used in the household survey, whereas paired comparison and population health equivalence (PHE) were used in the web-based survey. Accordingly, we described a total of 258 health states, with ‘full health’ and ‘being dead’ designated as anchor points. In the analysis, 4 models were considered: a paired comparison-only model; hybrid model between paired comparison and PHE; VAS model; and SG model. A total of 2,728 and 3,188 individuals participated in the household and web-based survey, respectively. The Pearson correlation coefficients of the disability weights of health states between the GBD 2010 study and the current models were 0.802 for Model 2, 0.796 for Model 1, 0.681 for Model 3, and 0.574 for Model 4 (all P-values<0.001). The discrimination of values according to health state severity was most suitable in Model 1. Based on these results, the paired comparison-only model was selected as the best model for estimating disability weights in South Korea, and for maintaining simplicity in the analysis. Thus, disability weights can be more easily estimated by using paired comparison alone, with ‘full health’ and ‘being dead’ as one of the health states. As noted in our study, we believe that additional evidence regarding the universality of disability weight can be observed by using a simplified methodology of estimating disability weights. PMID:27606626

  13. GNSS/Electronic Compass/Road Segment Information Fusion for Vehicle-to-Vehicle Collision Avoidance Application

    PubMed Central

    Cheng, Qi; Xue, Dabin; Wang, Guanyu; Ochieng, Washington Yotto

    2017-01-01

    The increasing number of vehicles in modern cities brings the problem of increasing crashes. One of the applications or services of Intelligent Transportation Systems (ITS) conceived to improve safety and reduce congestion is collision avoidance. This safety critical application requires sub-meter level vehicle state estimation accuracy with very high integrity, continuity and availability, to detect an impending collision and issue a warning or intervene in the case that the warning is not heeded. Because of the challenging city environment, to date there is no approved method capable of delivering this high level of performance in vehicle state estimation. In particular, the current Global Navigation Satellite System (GNSS) based collision avoidance systems have the major limitation that the real-time accuracy of dynamic state estimation deteriorates during abrupt acceleration and deceleration situations, compromising the integrity of collision avoidance. Therefore, to provide the Required Navigation Performance (RNP) for collision avoidance, this paper proposes a novel Particle Filter (PF) based model for the integration or fusion of real-time kinematic (RTK) GNSS position solutions with electronic compass and road segment data used in conjunction with an Autoregressive (AR) motion model. The real-time vehicle state estimates are used together with distance based collision avoidance algorithms to predict potential collisions. The algorithms are tested by simulation and in the field representing a low density urban environment. The results show that the proposed algorithm meets the horizontal positioning accuracy requirement for collision avoidance and is superior to positioning accuracy of GNSS only, traditional Constant Velocity (CV) and Constant Acceleration (CA) based motion models, with a significant improvement in the prediction accuracy of potential collision. PMID:29186851

  14. GNSS/Electronic Compass/Road Segment Information Fusion for Vehicle-to-Vehicle Collision Avoidance Application.

    PubMed

    Sun, Rui; Cheng, Qi; Xue, Dabin; Wang, Guanyu; Ochieng, Washington Yotto

    2017-11-25

    The increasing number of vehicles in modern cities brings the problem of increasing crashes. One of the applications or services of Intelligent Transportation Systems (ITS) conceived to improve safety and reduce congestion is collision avoidance. This safety critical application requires sub-meter level vehicle state estimation accuracy with very high integrity, continuity and availability, to detect an impending collision and issue a warning or intervene in the case that the warning is not heeded. Because of the challenging city environment, to date there is no approved method capable of delivering this high level of performance in vehicle state estimation. In particular, the current Global Navigation Satellite System (GNSS) based collision avoidance systems have the major limitation that the real-time accuracy of dynamic state estimation deteriorates during abrupt acceleration and deceleration situations, compromising the integrity of collision avoidance. Therefore, to provide the Required Navigation Performance (RNP) for collision avoidance, this paper proposes a novel Particle Filter (PF) based model for the integration or fusion of real-time kinematic (RTK) GNSS position solutions with electronic compass and road segment data used in conjunction with an Autoregressive (AR) motion model. The real-time vehicle state estimates are used together with distance based collision avoidance algorithms to predict potential collisions. The algorithms are tested by simulation and in the field representing a low density urban environment. The results show that the proposed algorithm meets the horizontal positioning accuracy requirement for collision avoidance and is superior to positioning accuracy of GNSS only, traditional Constant Velocity (CV) and Constant Acceleration (CA) based motion models, with a significant improvement in the prediction accuracy of potential collision.

  15. Boundary conditions estimation on a road network using compressed sensing.

    DOT National Transportation Integrated Search

    2016-02-01

    This report presents a new boundary condition estimation framework for transportation networks in which : the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a : Hamilton-Jacobi equation, we pose th...

  16. Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Lemr, Karel; Černoch, Antonín; Miranowicz, Adam

    2017-03-01

    We propose and experimentally implement an efficient procedure based on entanglement swapping to determine the Bell nonlocality measure of Horodecki et al. [Phys. Lett. A 200, 340 (1995), 10.1016/0375-9601(95)00214-N] and the fully entangled fraction of Bennett et al. [Phys. Rev. A 54, 3824 (1996), 10.1103/PhysRevA.54.3824] of an arbitrary two-qubit polarization-encoded state. The nonlocality measure corresponds to the amount of the violation of the Clauser-Horne-Shimony-Holt (CHSH) optimized over all measurement settings. By using simultaneously two copies of a given state, we measure directly only six parameters. This is an experimental determination of these quantities without quantum state tomography or continuous monitoring of all measurement bases in the usual CHSH inequality tests. We analyze how well the measured degrees of Bell nonlocality and other entanglement witnesses (including the fully entangled fraction and a nonlinear entropic witness) of an arbitrary two-qubit state can estimate its entanglement. In particular, we measure these witnesses and estimate the negativity of various two-qubit Werner states. Our approach could especially be useful for quantum communication protocols based on entanglement swapping.

  17. Application of Consider Covariance to the Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Lundberg, John B.

    1996-01-01

    The extended Kalman filter (EKF) is the basis for many applications of filtering theory to real-time problems where estimates of the state of a dynamical system are to be computed based upon some set of observations. The form of the EKF may vary somewhat from one application to another, but the fundamental principles are typically unchanged among these various applications. As is the case in many filtering applications, models of the dynamical system (differential equations describing the state variables) and models of the relationship between the observations and the state variables are created. These models typically employ a set of constants whose values are established my means of theory or experimental procedure. Since the estimates of the state are formed assuming that the models are perfect, any modeling errors will affect the accuracy of the computed estimates. Note that the modeling errors may be errors of commission (errors in terms included in the model) or omission (errors in terms excluded from the model). Consequently, it becomes imperative when evaluating the performance of real-time filters to evaluate the effect of modeling errors on the estimates of the state.

  18. A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states

    NASA Astrophysics Data System (ADS)

    Nejad, S.; Gladwin, D. T.; Stone, D. A.

    2016-06-01

    This paper presents a systematic review for the most commonly used lumped-parameter equivalent circuit model structures in lithium-ion battery energy storage applications. These models include the Combined model, Rint model, two hysteresis models, Randles' model, a modified Randles' model and two resistor-capacitor (RC) network models with and without hysteresis included. Two variations of the lithium-ion cell chemistry, namely the lithium-ion iron phosphate (LiFePO4) and lithium nickel-manganese-cobalt oxide (LiNMC) are used for testing purposes. The model parameters and states are recursively estimated using a nonlinear system identification technique based on the dual Extended Kalman Filter (dual-EKF) algorithm. The dynamic performance of the model structures are verified using the results obtained from a self-designed pulsed-current test and an electric vehicle (EV) drive cycle based on the New European Drive Cycle (NEDC) profile over a range of operating temperatures. Analysis on the ten model structures are conducted with respect to state-of-charge (SOC) and state-of-power (SOP) estimation with erroneous initial conditions. Comparatively, both RC model structures provide the best dynamic performance, with an outstanding SOC estimation accuracy. For those cell chemistries with large inherent hysteresis levels (e.g. LiFePO4), the RC model with only one time constant is combined with a dynamic hysteresis model to further enhance the performance of the SOC estimator.

  19. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter

    PubMed Central

    Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Gu, Chengfan

    2018-01-01

    This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation. PMID:29415509

  20. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.

    PubMed

    Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan

    2018-02-06

    This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.

  1. Performability modeling based on real data: A case study

    NASA Technical Reports Server (NTRS)

    Hsueh, M. C.; Iyer, R. K.; Trivedi, K. S.

    1988-01-01

    Described is a measurement-based performability model based on error and resource usage data collected on a multiprocessor system. A method for identifying the model structure is introduced and the resulting model is validated against real data. Model development from the collection of raw data to the estimation of the expected reward is described. Both normal and error behavior of the system are characterized. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model system behavior. A reward function, based on the service rate and the error rate in each state, is then defined in order to estimate the performability of the system and to depict the cost of apparent types of errors.

  2. Performability modeling based on real data: A casestudy

    NASA Technical Reports Server (NTRS)

    Hsueh, M. C.; Iyer, R. K.; Trivedi, K. S.

    1987-01-01

    Described is a measurement-based performability model based on error and resource usage data collected on a multiprocessor system. A method for identifying the model structure is introduced and the resulting model is validated against real data. Model development from the collection of raw data to the estimation of the expected reward is described. Both normal and error behavior of the system are characterized. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model the system behavior. A reward function, based on the service rate and the error rate in each state, is then defined in order to estimate the performability of the system and to depict the cost of different types of errors.

  3. A switched systems approach to image-based estimation

    NASA Astrophysics Data System (ADS)

    Parikh, Anup

    With the advent of technological improvements in imaging systems and computational resources, as well as the development of image-based reconstruction techniques, it is necessary to understand algorithm performance when subject to real world conditions. Specifically, this dissertation focuses on the stability and performance of a class of image-based observers in the presence of intermittent measurements, caused by e.g., occlusions, limited FOV, feature tracking losses, communication losses, or finite frame rates. Observers or filters that are exponentially stable under persistent observability may have unbounded error growth during intermittent sensing, even while providing seemingly accurate state estimates. In Chapter 3, dwell time conditions are developed to guarantee state estimation error convergence to an ultimate bound for a class of observers while undergoing measurement loss. Bounds are developed on the unstable growth of the estimation errors during the periods when the object being tracked is not visible. A Lyapunov-based analysis for the switched system is performed to develop an inequality in terms of the duration of time the observer can view the moving object and the duration of time the object is out of the field of view. In Chapter 4, a motion model is used to predict the evolution of the states of the system while the object is not visible. This reduces the growth rate of the bounding function to an exponential and enables the use of traditional switched systems Lyapunov analysis techniques. The stability analysis results in an average dwell time condition to guarantee state error convergence with a known decay rate. In comparison with the results in Chapter 3, the estimation errors converge to zero rather than a ball, with relaxed switching conditions, at the cost of requiring additional information about the motion of the feature. In some applications, a motion model of the object may not be available. Numerous adaptive techniques have been developed to compensate for unknown parameters or functions in system dynamics; however, persistent excitation (PE) conditions are typically required to ensure parameter convergence, i.e., learning. Since the motion model is needed in the predictor, model learning is desired; however, PE is difficult to insure a priori and infeasible to check online for nonlinear systems. Concurrent learning (CL) techniques have been developed to use recorded data and a relaxed excitation condition to ensure convergence. In CL, excitation is only required for a finite period of time, and the recorded data can be checked to determine if it is sufficiently rich. However, traditional CL requires knowledge of state derivatives, which are typically not measured and require extensive filter design and tuning to develop satisfactory estimates. In Chapter 5 of this dissertation, a novel formulation of CL is developed in terms of an integral (ICL), removing the need to estimate state derivatives while preserving parameter convergence properties. Using ICL, an estimator is developed in Chapter 6 for simultaneously estimating the pose of an object as well as learning a model of its motion for use in a predictor when the object is not visible. A switched systems analysis is provided to demonstrate the stability of the estimation and prediction with learning scheme. Dwell time conditions as well as excitation conditions are developed to ensure estimation errors converge to an arbitrarily small bound. Experimental results are provided to illustrate the performance of each of the developed estimation schemes. The dissertation concludes with a discussion of the contributions and limitations of the developed techniques, as well as avenues for future extensions.

  4. Utilizing Adjoint-Based Error Estimates for Surrogate Models to Accurately Predict Probabilities of Events

    DOE PAGES

    Butler, Troy; Wildey, Timothy

    2018-01-01

    In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less

  5. Utilizing Adjoint-Based Error Estimates for Surrogate Models to Accurately Predict Probabilities of Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Troy; Wildey, Timothy

    In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less

  6. Adaptive particle filter for robust visual tracking

    NASA Astrophysics Data System (ADS)

    Dai, Jianghua; Yu, Shengsheng; Sun, Weiping; Chen, Xiaoping; Xiang, Jinhai

    2009-10-01

    Object tracking plays a key role in the field of computer vision. Particle filter has been widely used for visual tracking under nonlinear and/or non-Gaussian circumstances. In particle filter, the state transition model for predicting the next location of tracked object assumes the object motion is invariable, which cannot well approximate the varying dynamics of the motion changes. In addition, the state estimate calculated by the mean of all the weighted particles is coarse or inaccurate due to various noise disturbances. Both these two factors may degrade tracking performance greatly. In this work, an adaptive particle filter (APF) with a velocity-updating based transition model (VTM) and an adaptive state estimate approach (ASEA) is proposed to improve object tracking. In APF, the motion velocity embedded into the state transition model is updated continuously by a recursive equation, and the state estimate is obtained adaptively according to the state posterior distribution. The experiment results show that the APF can increase the tracking accuracy and efficiency in complex environments.

  7. Parameter estimation of qubit states with unknown phase parameter

    NASA Astrophysics Data System (ADS)

    Suzuki, Jun

    2015-02-01

    We discuss a problem of parameter estimation for quantum two-level system, qubit system, in presence of unknown phase parameter. We analyze trade-off relations for mean square errors (MSEs) when estimating relevant parameters with separable measurements based on known precision bounds; the symmetric logarithmic derivative (SLD) Cramér-Rao (CR) bound and Hayashi-Gill-Massar (HGM) bound. We investigate the optimal measurement which attains the HGM bound and discuss its properties. We show that the HGM bound for relevant parameters can be attained asymptotically by using some fraction of given n quantum states to estimate the phase parameter. We also discuss the Holevo bound which can be attained asymptotically by a collective measurement.

  8. Application of super-twisting observers to the estimation of state and unknown inputs in an anaerobic digestion system.

    PubMed

    Sbarciog, M; Moreno, J A; Vande Wouwer, A

    2014-01-01

    This paper presents the estimation of the unknown states and inputs of an anaerobic digestion system characterized by a two-step reaction model. The estimation is based on the measurement of the two substrate concentrations and of the outflow rate of biogas and relies on the use of an observer, consisting of three parts. The first is a generalized super-twisting observer, which estimates a linear combination of the two input concentrations. The second is an asymptotic observer, which provides one of the two biomass concentrations, whereas the third is a super-twisting observer for one of the input concentrations and the second biomass concentration.

  9. An improved adaptive weighting function method for State Estimation in Power Systems with VSC-MTDC

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Yang, Xiaonan; Lang, Yansheng; Song, Xuri; Wang, Minkun; Luo, Yadi; Wu, Lingyun; Liu, Peng

    2017-04-01

    This paper presents an effective approach for state estimation in power systems that include multi-terminal voltage source converter based high voltage direct current (VSC-MTDC), called improved adaptive weighting function method. The proposed approach is simplified in which the VSC-MTDC system is solved followed by the AC system. Because the new state estimation method only changes the weight and keeps the matrix dimension unchanged. Accurate and fast convergence of AC/DC system can be realized by adaptive weight function method. This method also provides the technical support for the simulation analysis and accurate regulation of AC/DC system. Both the oretical analysis and numerical tests verify practicability, validity and convergence of new method.

  10. A pose estimation method for unmanned ground vehicles in GPS denied environments

    NASA Astrophysics Data System (ADS)

    Tamjidi, Amirhossein; Ye, Cang

    2012-06-01

    This paper presents a pose estimation method based on the 1-Point RANSAC EKF (Extended Kalman Filter) framework. The method fuses the depth data from a LIDAR and the visual data from a monocular camera to estimate the pose of a Unmanned Ground Vehicle (UGV) in a GPS denied environment. Its estimation framework continuy updates the vehicle's 6D pose state and temporary estimates of the extracted visual features' 3D positions. In contrast to the conventional EKF-SLAM (Simultaneous Localization And Mapping) frameworks, the proposed method discards feature estimates from the extended state vector once they are no longer observed for several steps. As a result, the extended state vector always maintains a reasonable size that is suitable for online calculation. The fusion of laser and visual data is performed both in the feature initialization part of the EKF-SLAM process and in the motion prediction stage. A RANSAC pose calculation procedure is devised to produce pose estimate for the motion model. The proposed method has been successfully tested on the Ford campus's LIDAR-Vision dataset. The results are compared with the ground truth data of the dataset and the estimation error is ~1.9% of the path length.

  11. An "Ensemble Approach" to Modernizing Extreme Precipitation Estimation for Dam Safety Decision-Making

    NASA Astrophysics Data System (ADS)

    Cifelli, R.; Mahoney, K. M.; Webb, R. S.; McCormick, B.

    2017-12-01

    To ensure structural and operational safety of dams and other water management infrastructure, water resources managers and engineers require information about the potential for heavy precipitation. The methods and data used to estimate extreme rainfall amounts for managing risk are based on 40-year-old science and in need of improvement. The need to evaluate new approaches based on the best science available has led the states of Colorado and New Mexico to engage a body of scientists and engineers in an innovative "ensemble approach" to updating extreme precipitation estimates. NOAA is at the forefront of one of three technical approaches that make up the "ensemble study"; the three approaches are conducted concurrently and in collaboration with each other. One approach is the conventional deterministic, "storm-based" method, another is a risk-based regional precipitation frequency estimation tool, and the third is an experimental approach utilizing NOAA's state-of-the-art High Resolution Rapid Refresh (HRRR) physically-based dynamical weather prediction model. The goal of the overall project is to use the individual strengths of these different methods to define an updated and broadly acceptable state of the practice for evaluation and design of dam spillways. This talk will highlight the NOAA research and NOAA's role in the overarching goal to better understand and characterizing extreme precipitation estimation uncertainty. The research led by NOAA explores a novel high-resolution dataset and post-processing techniques using a super-ensemble of hourly forecasts from the HRRR model. We also investigate how this rich dataset may be combined with statistical methods to optimally cast the data in probabilistic frameworks. NOAA expertise in the physical processes that drive extreme precipitation is also employed to develop careful testing and improved understanding of the limitations of older estimation methods and assumptions. The process of decision making in the midst of uncertainty is a major part of this study. We will speak to how the ensemble approach may be used in concert with one another to manage risk and enhance resiliency in the midst of uncertainty. Finally, the presentation will also address the implications of including climate change in future extreme precipitation estimation studies.

  12. Overview of causes and costs of injuries in Massachusetts: a methodology for analysis of state data.

    PubMed Central

    Schuster, M; Cohen, B B; Rodgers, C G; Walker, D K; Friedman, D J; Ozonoff, V V

    1995-01-01

    Massachusetts has developed the first State profile of the causes and costs of injury based on the national study, "Cost of Injury in the United States: A Report to Congress." Incidence of fatal injuries is based on Massachusetts data; nonfatal hospitalized injuries, on Massachusetts age and sex rates and U.S. cause data; and nonhospitalized injuries, on U.S. rates applied to Massachusetts census data. Lifetime costs per injured person are based on national data adjusted for higher personal health care expenditures and for higher mean annual earnings in Massachusetts. The estimated total lifetime cost for the 1.4 million injuries that occurred in 1989 is $4.4 billion--$1.7 billion for health care and $2.7 billion for lost earnings. Injuries attributed to motor vehicles and falls account for more than half of the total cost. The other cause categories are poisonings, fire-burns, firearms, drowings-near drownings, and other. For every person who dies from an injury, 17 people are hospitalized, and an estimated 535 people require outpatient treatment, consultation, or restricted activity. Development of a State-based cost report can be useful in monitoring the contribution of injuries to health status and in planning effective injury prevention strategies in a community-based health care system. The methodology described in this paper can be replicated by other States through accessing their State-specific mortality and hospital discharge data bases. PMID:7610211

  13. A stochastic estimation procedure for intermittently-observed semi-Markov multistate models with back transitions.

    PubMed

    Aralis, Hilary; Brookmeyer, Ron

    2017-01-01

    Multistate models provide an important method for analyzing a wide range of life history processes including disease progression and patient recovery following medical intervention. Panel data consisting of the states occupied by an individual at a series of discrete time points are often used to estimate transition intensities of the underlying continuous-time process. When transition intensities depend on the time elapsed in the current state and back transitions between states are possible, this intermittent observation process presents difficulties in estimation due to intractability of the likelihood function. In this manuscript, we present an iterative stochastic expectation-maximization algorithm that relies on a simulation-based approximation to the likelihood function and implement this algorithm using rejection sampling. In a simulation study, we demonstrate the feasibility and performance of the proposed procedure. We then demonstrate application of the algorithm to a study of dementia, the Nun Study, consisting of intermittently-observed elderly subjects in one of four possible states corresponding to intact cognition, impaired cognition, dementia, and death. We show that the proposed stochastic expectation-maximization algorithm substantially reduces bias in model parameter estimates compared to an alternative approach used in the literature, minimal path estimation. We conclude that in estimating intermittently observed semi-Markov models, the proposed approach is a computationally feasible and accurate estimation procedure that leads to substantial improvements in back transition estimates.

  14. Spread-Spectrum Carrier Estimation With Unknown Doppler Shift

    NASA Technical Reports Server (NTRS)

    DeLeon, Phillip L.; Scaife, Bradley J.

    1998-01-01

    We present a method for the frequency estimation of a BPSK modulated, spread-spectrum carrier with unknown Doppler shift. The approach relies on a classic periodogram in conjunction with a spectral matched filter. Simulation results indicate accurate carrier estimation with processing gains near 40. A DSP-based prototype has been implemented for real-time carrier estimation for use in New Mexico State University's proposal for NASA's Demand Assignment Multiple Access service.

  15. Combining facial dynamics with appearance for age estimation.

    PubMed

    Dibeklioglu, Hamdi; Alnajar, Fares; Ali Salah, Albert; Gevers, Theo

    2015-06-01

    Estimating the age of a human from the captured images of his/her face is a challenging problem. In general, the existing approaches to this problem use appearance features only. In this paper, we show that in addition to appearance information, facial dynamics can be leveraged in age estimation. We propose a method to extract and use dynamic features for age estimation, using a person's smile. Our approach is tested on a large, gender-balanced database with 400 subjects, with an age range between 8 and 76. In addition, we introduce a new database on posed disgust expressions with 324 subjects in the same age range, and evaluate the reliability of the proposed approach when used with another expression. State-of-the-art appearance-based age estimation methods from the literature are implemented as baseline. We demonstrate that for each of these methods, the addition of the proposed dynamic features results in statistically significant improvement. We further propose a novel hierarchical age estimation architecture based on adaptive age grouping. We test our approach extensively, including an exploration of spontaneous versus posed smile dynamics, and gender-specific age estimation. We show that using spontaneity information reduces the mean absolute error by up to 21%, advancing the state of the art for facial age estimation.

  16. State Carbon Dioxide Emissions Data

    EIA Publications

    2017-01-01

    These estimates of energy-related carbon dioxide (CO2) are based on the State Energy Data System. The state data include a summary table with total energy-related CO2 by state beginning in 1990, tables with emissions by all fuels and sectors in 2015, and additional tables for each fuel and sector with history going back to 1980

  17. Constrained State Estimation for Individual Localization in Wireless Body Sensor Networks

    PubMed Central

    Feng, Xiaoxue; Snoussi, Hichem; Liang, Yan; Jiao, Lianmeng

    2014-01-01

    Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF) show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS), which gets better filtering performance than NILS without constraint. PMID:25390408

  18. Discrete Inverse and State Estimation Problems

    NASA Astrophysics Data System (ADS)

    Wunsch, Carl

    2006-06-01

    The problems of making inferences about the natural world from noisy observations and imperfect theories occur in almost all scientific disciplines. This book addresses these problems using examples taken from geophysical fluid dynamics. It focuses on discrete formulations, both static and time-varying, known variously as inverse, state estimation or data assimilation problems. Starting with fundamental algebraic and statistical ideas, the book guides the reader through a range of inference tools including the singular value decomposition, Gauss-Markov and minimum variance estimates, Kalman filters and related smoothers, and adjoint (Lagrange multiplier) methods. The final chapters discuss a variety of practical applications to geophysical flow problems. Discrete Inverse and State Estimation Problems is an ideal introduction to the topic for graduate students and researchers in oceanography, meteorology, climate dynamics, and geophysical fluid dynamics. It is also accessible to a wider scientific audience; the only prerequisite is an understanding of linear algebra. Provides a comprehensive introduction to discrete methods of inference from incomplete information Based upon 25 years of practical experience using real data and models Develops sequential and whole-domain analysis methods from simple least-squares Contains many examples and problems, and web-based support through MIT opencourseware

  19. Isonymy structure of Sucre and Táchira, two Venezuelan states.

    PubMed

    Rodríguez-Larralde, A; Barrai, I

    1997-10-01

    The isonymy structure of two Venezuelan states, Sucre and Táchira, is described using the surnames of the Register of Electors updated in 1991. The frequency distribution of surnames pooled together by sex was obtained for the 57 counties of Sucre and the 52 counties of Táchira, based on total population sizes of 158,705 and 160,690 individuals, respectively. The coefficient of consanguinity resulting from random isonymy (phi ii), Karlin and McGregor's ni (identical to v), and the proportion of the population included in surnames represented only once (estimator A) and in the seven most frequent surnames (estimator B) were calculated for each county. RST, a measure of microdifferentiation, was estimated for each state. The Euclidean distance between pairs of counties within states was calculated together with the corresponding geographic distances. The correlations between their logarithmic transformations were significant in both cases, indicating differentiation of surnames by distance. Dendrograms based on the Euclidean distance matrix were constructed. From them a first approximation of the effect of internal migration within states was obtained. Ninety-six percent of the coefficient of consanguinity resulting from random isonymy is determined by the proportion of the population included in the seven most frequent surnames, whereas between 72% and 88% of Karlin and McGregor's ni for Sucre and Táchira, respectively, is determined by the proportion of population included in surnames represented only once. Surnames with generalized and with focal distribution were identified for both states, to be used as possible indicators of the geographic origin of their carriers. Our results indicate that Táchira's counties, on average, tend to be more isolated than Sucre's counties, as measured by RST, estimator B, and phi ii. Comparisons with the results obtained for other. Venezuelan states and other non-Venezuelan populations are also given.

  20. Estimation of Subjective Mental Work Load Level with Heart Rate Variability by Tolerance to Driver's Mental Load

    NASA Astrophysics Data System (ADS)

    Yokoi, Toshiyuki; Itoh, Michimasa; Oguri, Koji

    Most of the traffic accidents have been caused by inappropriate driver's mental state. Therefore, driver monitoring is one of the most important challenges to prevent traffic accidents. Some studies for evaluating the driver's mental state while driving have been reported; however driver's mental state should be estimated in real-time in the future. This paper proposes a way to estimate quantitatively driver's mental workload using heart rate variability. It is assumed that the tolerance to driver's mental workload is different depending on the individual. Therefore, we classify people based on their individual tolerance to mental workload. Our estimation method is multiple linear regression analysis, and we compare it to NASA-TLX which is used as the evaluation method of subjective mental workload. As a result, the coefficient of correlation improved from 0.83 to 0.91, and the standard deviation of error also improved. Therefore, our proposed method demonstrated the possibility to estimate mental workload.

  1. National Stormwater Calculator - Version 1.1 (Model)

    EPA Science Inventory

    EPA’s National Stormwater Calculator (SWC) is a desktop application that estimates the annual amount of rainwater and frequency of runoff from a specific site anywhere in the United States (including Puerto Rico). The SWC estimates runoff at a site based on available information ...

  2. Observer-based sliding mode control of Markov jump systems with random sensor delays and partly unknown transition rates

    NASA Astrophysics Data System (ADS)

    Yao, Deyin; Lu, Renquan; Xu, Yong; Ren, Hongru

    2017-10-01

    In this paper, the sliding mode control problem of Markov jump systems (MJSs) with unmeasured state, partly unknown transition rates and random sensor delays is probed. In the practical engineering control, the exact information of transition rates is hard to obtain and the measurement channel is supposed to subject to random sensor delay. Design a Luenberger observer to estimate the unmeasured system state, and an integral sliding mode surface is constructed to ensure the exponential stability of MJSs. A sliding mode controller based on estimator is proposed to drive the system state onto the sliding mode surface and render the sliding mode dynamics exponentially mean-square stable with H∞ performance index. Finally, simulation results are provided to illustrate the effectiveness of the proposed results.

  3. Modeling habitat dynamics accounting for possible misclassification

    USGS Publications Warehouse

    Veran, Sophie; Kleiner, Kevin J.; Choquet, Remi; Collazo, Jaime; Nichols, James D.

    2012-01-01

    Land cover data are widely used in ecology as land cover change is a major component of changes affecting ecological systems. Landscape change estimates are characterized by classification errors. Researchers have used error matrices to adjust estimates of areal extent, but estimation of land cover change is more difficult and more challenging, with error in classification being confused with change. We modeled land cover dynamics for a discrete set of habitat states. The approach accounts for state uncertainty to produce unbiased estimates of habitat transition probabilities using ground information to inform error rates. We consider the case when true and observed habitat states are available for the same geographic unit (pixel) and when true and observed states are obtained at one level of resolution, but transition probabilities estimated at a different level of resolution (aggregations of pixels). Simulation results showed a strong bias when estimating transition probabilities if misclassification was not accounted for. Scaling-up does not necessarily decrease the bias and can even increase it. Analyses of land cover data in the Southeast region of the USA showed that land change patterns appeared distorted if misclassification was not accounted for: rate of habitat turnover was artificially increased and habitat composition appeared more homogeneous. Not properly accounting for land cover misclassification can produce misleading inferences about habitat state and dynamics and also misleading predictions about species distributions based on habitat. Our models that explicitly account for state uncertainty should be useful in obtaining more accurate inferences about change from data that include errors.

  4. Estimation of Faults in DC Electrical Power System

    NASA Technical Reports Server (NTRS)

    Gorinevsky, Dimitry; Boyd, Stephen; Poll, Scott

    2009-01-01

    This paper demonstrates a novel optimization-based approach to estimating fault states in a DC power system. Potential faults changing the circuit topology are included along with faulty measurements. Our approach can be considered as a relaxation of the mixed estimation problem. We develop a linear model of the circuit and pose a convex problem for estimating the faults and other hidden states. A sparse fault vector solution is computed by using 11 regularization. The solution is computed reliably and efficiently, and gives accurate diagnostics on the faults. We demonstrate a real-time implementation of the approach for an instrumented electrical power system testbed, the ADAPT testbed at NASA ARC. The estimates are computed in milliseconds on a PC. The approach performs well despite unmodeled transients and other modeling uncertainties present in the system.

  5. State of charge estimation in Ni-MH rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Milocco, R. H.; Castro, B. E.

    In this work we estimate the state of charge (SOC) of Ni-MH rechargeable batteries using the Kalman filter based on a simplified electrochemical model. First, we derive the complete electrochemical model of the battery which includes diffusional processes and kinetic reactions in both Ni and MH electrodes. The full model is further reduced in a cascade of two parts, a linear time invariant dynamical sub-model followed by a static nonlinearity. Both parts are identified using the current and potential measured at the terminals of the battery with a simple 1-D minimization procedure. The inverse of the static nonlinearity together with a Kalman filter provide the SOC estimation as a linear estimation problem. Experimental results with commercial batteries are provided to illustrate the estimation procedure and to show the performance.

  6. Estimation of the Thermodynamic Efficiency of a Solid-State Cooler Based on the Multicaloric Effect

    NASA Astrophysics Data System (ADS)

    Starkov, A. S.; Pakhomov, O. V.; Rodionov, V. V.; Amirov, A. A.; Starkov, I. A.

    2018-03-01

    The thermodynamic efficiency of using the multicaloric effect (μCE) in solid-state cooler systems has been studied in comparison to single-component caloric effects. This approach is illustrated by example of the Brayton cycle for μCE and magnetocaloric effect (MCE). Based on the results of experiments with Fe48Rh52-PbZr0.53Ti0.47O3 two-layer ferroic composite, the temperature dependence of the relative efficiency is determined and the temperature range is estimated in which the μCE is advantageous to MCE. The proposed theory of μCE is compared to experimental data.

  7. The charger transfer electronic coupling in diabatic perspective: A multi-state density functional theory study

    NASA Astrophysics Data System (ADS)

    Guo, Xinwei; Qu, Zexing; Gao, Jiali

    2018-01-01

    The multi-state density functional theory (MSDFT) provides a convenient way to estimate electronic coupling of charge transfer processes based on a diabatic representation. Its performance has been benchmarked against the HAB11 database with a mean unsigned error (MUE) of 17 meV between MSDFT and ab initio methods. The small difference may be attributed to different representations, diabatic from MSDFT and adiabatic from ab initio calculations. In this discussion, we conclude that MSDFT provides a general and efficient way to estimate the electronic coupling for charge-transfer rate calculations based on the Marcus-Hush model.

  8. RESEARCH: An Ecoregional Approach to the Economic Valuation of Land- and Water-Based Recreation in the United States

    PubMed

    Bhat; Bergstrom; Teasley; Bowker; Cordell

    1998-01-01

    / This paper describes a framework for estimating the economic value of outdoor recreation across different ecoregions. Ten ecoregions in the continental United States were defined based on similarly functioning ecosystem characters. The individual travel cost method was employed to estimate recreation demand functions for activities such as motor boating and waterskiing, developed and primitive camping, coldwater fishing, sightseeing and pleasure driving, and big game hunting for each ecoregion. While our ecoregional approach differs conceptually from previous work, our results appear consistent with the previous travel cost method valuation studies.KEY WORDS: Recreation; Ecoregion; Travel cost method; Truncated Poisson model

  9. Reliability-Based Control Design for Uncertain Systems

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.

    2005-01-01

    This paper presents a robust control design methodology for systems with probabilistic parametric uncertainty. Control design is carried out by solving a reliability-based multi-objective optimization problem where the probability of violating design requirements is minimized. Simultaneously, failure domains are optimally enlarged to enable global improvements in the closed-loop performance. To enable an efficient numerical implementation, a hybrid approach for estimating reliability metrics is developed. This approach, which integrates deterministic sampling and asymptotic approximations, greatly reduces the numerical burden associated with complex probabilistic computations without compromising the accuracy of the results. Examples using output-feedback and full-state feedback with state estimation are used to demonstrate the ideas proposed.

  10. Estimation of Transport and Kinetic Parameters of Vanadium Redox Batteries Using Static Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seong Beom; Pratt, III, Harry D.; Anderson, Travis M.

    Mathematical models of Redox Flow Batteries (RFBs) can be used to analyze cell performance, optimize battery operation, and control the energy storage system efficiently. Among many other models, physics-based electrochemical models are capable of predicting internal states of the battery, such as temperature, state-of-charge, and state-of-health. In the models, estimating parameters is an important step that can study, analyze, and validate the models using experimental data. A common practice is to determine these parameters either through conducting experiments or based on the information available in the literature. However, it is not easy to investigate all proper parameters for the modelsmore » through this way, and there are occasions when important information, such as diffusion coefficients and rate constants of ions, has not been studied. Also, the parameters needed for modeling charge-discharge are not always available. In this paper, an efficient way to estimate parameters of physics-based redox battery models will be proposed. Furthermore, this paper also demonstrates that the proposed approach can study and analyze aspects of capacity loss/fade, kinetics, and transport phenomena of the RFB system.« less

  11. Estimation of Transport and Kinetic Parameters of Vanadium Redox Batteries Using Static Cells

    DOE PAGES

    Lee, Seong Beom; Pratt, III, Harry D.; Anderson, Travis M.; ...

    2018-03-27

    Mathematical models of Redox Flow Batteries (RFBs) can be used to analyze cell performance, optimize battery operation, and control the energy storage system efficiently. Among many other models, physics-based electrochemical models are capable of predicting internal states of the battery, such as temperature, state-of-charge, and state-of-health. In the models, estimating parameters is an important step that can study, analyze, and validate the models using experimental data. A common practice is to determine these parameters either through conducting experiments or based on the information available in the literature. However, it is not easy to investigate all proper parameters for the modelsmore » through this way, and there are occasions when important information, such as diffusion coefficients and rate constants of ions, has not been studied. Also, the parameters needed for modeling charge-discharge are not always available. In this paper, an efficient way to estimate parameters of physics-based redox battery models will be proposed. Furthermore, this paper also demonstrates that the proposed approach can study and analyze aspects of capacity loss/fade, kinetics, and transport phenomena of the RFB system.« less

  12. Distributed ESO based cooperative tracking control for high-order nonlinear multiagent systems with lumped disturbance and application in multi flight simulators systems.

    PubMed

    Cong, Zhang

    2018-03-01

    Based on extended state observer, a novel and practical design method is developed to solve the distributed cooperative tracking problem of higher-order nonlinear multiagent systems with lumped disturbance in a fixed communication topology directed graph. The proposed method is designed to guarantee all the follower nodes ultimately and uniformly converge to the leader node with bounded residual errors. The leader node, modeled as a higher-order non-autonomous nonlinear system, acts as a command generator giving commands only to a small portion of the networked follower nodes. Extended state observer is used to estimate the local states and lumped disturbance of each follower node. Moreover, each distributed controller can work independently only requiring the relative states and/or the estimated relative states information between itself and its neighbors. Finally an engineering application of multi flight simulators systems is demonstrated to test and verify the effectiveness of the proposed algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Estimation and modeling of forest attributes across large spatial scales using BiomeBGC, high-resolution imagery, LiDAR data, and inventory data

    NASA Astrophysics Data System (ADS)

    Golinkoff, Jordan Seth

    The accurate estimation of forest attributes at many different spatial scales is a critical problem. Forest landowners may be interested in estimating timber volume, forest biomass, and forest structure to determine their forest's condition and value. Counties and states may be interested to learn about their forests to develop sustainable management plans and policies related to forests, wildlife, and climate change. Countries and consortiums of countries need information about their forests to set global and national targets to deal with issues of climate change and deforestation as well as to set national targets and understand the state of their forest at a given point in time. This dissertation approaches these questions from two perspectives. The first perspective uses the process model Biome-BGC paired with inventory and remote sensing data to make inferences about a current forest state given known climate and site variables. Using a model of this type, future climate data can be used to make predictions about future forest states as well. An example of this work applied to a forest in northern California is presented. The second perspective of estimating forest attributes uses high resolution aerial imagery paired with light detection and ranging (LiDAR) remote sensing data to develop statistical estimates of forest structure. Two approaches within this perspective are presented: a pixel based approach and an object based approach. Both approaches can serve as the platform on which models (either empirical growth and yield models or process models) can be run to generate inferences about future forest state and current forest biogeochemical cycling.

  14. Event-Based Stereo Depth Estimation Using Belief Propagation.

    PubMed

    Xie, Zhen; Chen, Shengyong; Orchard, Garrick

    2017-01-01

    Compared to standard frame-based cameras, biologically-inspired event-based sensors capture visual information with low latency and minimal redundancy. These event-based sensors are also far less prone to motion blur than traditional cameras, and still operate effectively in high dynamic range scenes. However, classical framed-based algorithms are not typically suitable for these event-based data and new processing algorithms are required. This paper focuses on the problem of depth estimation from a stereo pair of event-based sensors. A fully event-based stereo depth estimation algorithm which relies on message passing is proposed. The algorithm not only considers the properties of a single event but also uses a Markov Random Field (MRF) to consider the constraints between the nearby events, such as disparity uniqueness and depth continuity. The method is tested on five different scenes and compared to other state-of-art event-based stereo matching methods. The results show that the method detects more stereo matches than other methods, with each match having a higher accuracy. The method can operate in an event-driven manner where depths are reported for individual events as they are received, or the network can be queried at any time to generate a sparse depth frame which represents the current state of the network.

  15. The estimated lifetime probability of acquiring human papillomavirus in the United States.

    PubMed

    Chesson, Harrell W; Dunne, Eileen F; Hariri, Susan; Markowitz, Lauri E

    2014-11-01

    Estimates of the lifetime probability of acquiring human papillomavirus (HPV) can help to quantify HPV incidence, illustrate how common HPV infection is, and highlight the importance of HPV vaccination. We developed a simple model, based primarily on the distribution of lifetime numbers of sex partners across the population and the per-partnership probability of acquiring HPV, to estimate the lifetime probability of acquiring HPV in the United States in the time frame before HPV vaccine availability. We estimated the average lifetime probability of acquiring HPV among those with at least 1 opposite sex partner to be 84.6% (range, 53.6%-95.0%) for women and 91.3% (range, 69.5%-97.7%) for men. Under base case assumptions, more than 80% of women and men acquire HPV by age 45 years. Our results are consistent with estimates in the existing literature suggesting a high lifetime probability of HPV acquisition and are supported by cohort studies showing high cumulative HPV incidence over a relatively short period, such as 3 to 5 years.

  16. Multiunit Activity-Based Real-Time Limb-State Estimation from Dorsal Root Ganglion Recordings

    PubMed Central

    Han, Sungmin; Chu, Jun-Uk; Kim, Hyungmin; Park, Jong Woong; Youn, Inchan

    2017-01-01

    Proprioceptive afferent activities could be useful for providing sensory feedback signals for closed-loop control during functional electrical stimulation (FES). However, most previous studies have used the single-unit activity of individual neurons to extract sensory information from proprioceptive afferents. This study proposes a new decoding method to estimate ankle and knee joint angles using multiunit activity data. Proprioceptive afferent signals were recorded from a dorsal root ganglion with a single-shank microelectrode during passive movements of the ankle and knee joints, and joint angles were measured as kinematic data. The mean absolute value (MAV) was extracted from the multiunit activity data, and a dynamically driven recurrent neural network (DDRNN) was used to estimate ankle and knee joint angles. The multiunit activity-based MAV feature was sufficiently informative to estimate limb states, and the DDRNN showed a better decoding performance than conventional linear estimators. In addition, processing time delay satisfied real-time constraints. These results demonstrated that the proposed method could be applicable for providing real-time sensory feedback signals in closed-loop FES systems. PMID:28276474

  17. 2014 Highlights of Ferry Operations in the United States

    DOT National Transportation Integrated Search

    2016-05-01

    Based on information provided by operators who responded to the 2014 National Census of Ferry Operators (NCFO), the Bureau of Transportation Statistics (BTS) conservatively estimates that ferries in the United States carried just over 115 million pas...

  18. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models

    PubMed Central

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005

  19. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    PubMed

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  20. County-based estimates of nitrogen and phosphorus content of animal manure in the United States for 1982, 1987, and 1992

    USGS Publications Warehouse

    Puckett, Larry; Hitt, Kerie; Alexander, Richard

    1998-01-01

    names that correspond to the FIPS codes. 2. Tabular component - Nine tab-delimited ASCII lookup tables of animal counts and nutrient estimates organized by 5-digit state/county FIPS (Federal Information Processing Standards) code. Another table lists the county names that correspond to the FIPS codes. The use of trade names is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

  1. Unsupervised heart-rate estimation in wearables with Liquid states and a probabilistic readout.

    PubMed

    Das, Anup; Pradhapan, Paruthi; Groenendaal, Willemijn; Adiraju, Prathyusha; Rajan, Raj Thilak; Catthoor, Francky; Schaafsma, Siebren; Krichmar, Jeffrey L; Dutt, Nikil; Van Hoof, Chris

    2018-03-01

    Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine learning technique to estimate heart-rate from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery-life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects is considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Estimated use of water in the New England States, 1990

    USGS Publications Warehouse

    Korzendorfer, B.A.; Horn, M.A.

    1995-01-01

    Data on freshwater withdrawals in 1990 were compiled for the New England States. An estimated 4,160 Mgal/d (million gallons per day) of freshwater was withdrawn in 1990 in the six States. Of this total, 1,430 Mgal/d was withdrawn by public suppliers and delivered to users, and 2,720 Mgal/d was withdrawn by domestic, commercial, industrial, agricultural, mining, and thermoelectric power-generation users. More than 83 percent of the freshwater was from surface-water sources. Massachusetts, with the largest population, had the largest withdrawals of water. Data on saline water withdraw, and instream flow at hydroelectric plants were also compiled. An estimated 9, 170 Mgal/d of saline water was used for thermoelectric-power generation and industrial use in Connecticut, Maine, Massachusetts, New Hampshire, and Rhode Island. Return flow fro public wastewater-treatment plants totaled 1,750 Mgal/d; more than half (55 percent) of this return flow was in Massachusetts. In addition, about 178,000 Mgal/d was used for instream hydroelectric power generation; the largest users were Maine (about 83,000 Mgal/d) and New Hampshire (46,000 Mgal/d). These data, some of which were based on site-specific water-use information and some based on estimation techniques, were compiled through joint efforts by the U.S. Geological Survey and State cooperators for the 1990 national water-use compilation.

  3. A Minimum Fuel Based Estimator for Maneuver and Natrual Dynamics Reconstruction

    NASA Astrophysics Data System (ADS)

    Lubey, D.; Scheeres, D.

    2013-09-01

    The vast and growing population of objects in Earth orbit (active and defunct spacecraft, orbital debris, etc.) offers many unique challenges when it comes to tracking these objects and associating the resulting observations. Complicating these challenges are the inaccurate natural dynamical models of these objects, the active maneuvers of spacecraft that deviate them from their ballistic trajectories, and the fact that spacecraft are tracked and operated by separate agencies. Maneuver detection and reconstruction algorithms can help with each of these issues by estimating mismodeled and unmodeled dynamics through indirect observation of spacecraft. It also helps to verify the associations made by an object correlation algorithm or aid in making those associations, which is essential when tracking objects in orbit. The algorithm developed in this study applies an Optimal Control Problem (OCP) Distance Metric approach to the problems of Maneuver Reconstruction and Dynamics Estimation. This was first developed by Holzinger, Scheeres, and Alfriend (2011), with a subsequent study by Singh, Horwood, and Poore (2012). This method estimates the minimum fuel control policy rather than the state as a typical Kalman Filter would. This difference ensures that the states are connected through a given dynamical model and allows for automatic covariance manipulation, which can help to prevent filter saturation. Using a string of measurements (either verified or hypothesized to correlate with one another), the algorithm outputs a corresponding string of adjoint and state estimates with associated noise. Post-processing techniques are implemented, which when applied to the adjoint estimates can remove noise and expose unmodeled maneuvers and mismodeled natural dynamics. Specifically, the estimated controls are used to determine spacecraft dependent accelerations (atmospheric drag and solar radiation pressure) using an adapted form of the Optimal Control based natural dynamics estimation scheme developed by Lubey and Scheeres (2012). In order to allow for direct comparison, the estimator developed here was modeled after a typical Kalman Filter. The estimator forces the terminal state to lie on a manifold that satisfies the least squares with a priori information cost function, thus establishing a link with a typical Kalman filter. Terms are collected into a pseudo-Kalman Gain, which creates an equivalent form in the state estimates and covariances between the two estimators. While the two estimators share common roots, the inclusion of control in the Minimum Fuel Estimator gives it special properties. For instance, the inclusion of adjoint noise can help to automatically prevent filter saturation in a manner similar to a State Noise Compensation Algorithm. This property is quite important when considering dynamics mismodeling as filter saturation will cause estimate divergence for mismodeled systems. Additional properties and alternative forms of the estimator are also explored in this study. Several implementations of this estimator are given in this paper. It is applied to LEO, GEO, and GTO orbits with drag and SRP mismodeling. The inclusion of unmodeled maneuvers is also considered. These numerical simulations verify the mathematical properties of this estimator, and demonstrate the advantages that this estimator has over typical Kalman Filters.

  4. Chemical-specific screening criteria for interpretation of biomonitoring data for volatile organic compounds (VOCs)--application of steady-state PBPK model solutions.

    PubMed

    Aylward, Lesa L; Kirman, Chris R; Blount, Ben C; Hays, Sean M

    2010-10-01

    The National Health and Nutrition Examination Survey (NHANES) generates population-representative biomonitoring data for many chemicals including volatile organic compounds (VOCs) in blood. However, no health or risk-based screening values are available to evaluate these data from a health safety perspective or to use in prioritizing among chemicals for possible risk management actions. We gathered existing risk assessment-based chronic exposure reference values such as reference doses (RfDs), reference concentrations (RfCs), tolerable daily intakes (TDIs), cancer slope factors, etc. and key pharmacokinetic model parameters for 47 VOCs. Using steady-state solutions to a generic physiologically-based pharmacokinetic (PBPK) model structure, we estimated chemical-specific steady-state venous blood concentrations across chemicals associated with unit oral and inhalation exposure rates and with chronic exposure at the identified exposure reference values. The geometric means of the slopes relating modeled steady-state blood concentrations to steady-state exposure to a unit oral dose or unit inhalation concentration among 38 compounds with available pharmacokinetic parameters were 12.0 microg/L per mg/kg-d (geometric standard deviation [GSD] of 3.2) and 3.2 microg/L per mg/m(3) (GSD=1.7), respectively. Chemical-specific blood concentration screening values based on non-cancer reference values for both oral and inhalation exposure range from 0.0005 to 100 microg/L; blood concentrations associated with cancer risk-specific doses at the 1E-05 risk level ranged from 5E-06 to 6E-02 microg/L. The distribution of modeled steady-state blood concentrations associated with unit exposure levels across VOCs may provide a basis for estimating blood concentration screening values for VOCs that lack chemical-specific pharmacokinetic data. The screening blood concentrations presented here provide a tool for risk assessment-based evaluation of population biomonitoring data for VOCs and are most appropriately applied to central tendency estimates for such datasets. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  5. Power system observability and dynamic state estimation for stability monitoring using synchrophasor measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kai; Qi, Junjian; Kang, Wei

    2016-08-01

    Growing penetration of intermittent resources such as renewable generations increases the risk of instability in a power grid. This paper introduces the concept of observability and its computational algorithms for a power grid monitored by the wide-area measurement system (WAMS) based on synchrophasors, e.g. phasor measurement units (PMUs). The goal is to estimate real-time states of generators, especially for potentially unstable trajectories, the information that is critical for the detection of rotor angle instability of the grid. The paper studies the number and siting of synchrophasors in a power grid so that the state of the system can be accuratelymore » estimated in the presence of instability. An unscented Kalman filter (UKF) is adopted as a tool to estimate the dynamic states that are not directly measured by synchrophasors. The theory and its computational algorithms are illustrated in detail by using a 9-bus 3-generator power system model and then tested on a 140-bus 48-generator Northeast Power Coordinating Council power grid model. Case studies on those two systems demonstrate the performance of the proposed approach using a limited number of synchrophasors for dynamic state estimation for stability assessment and its robustness against moderate inaccuracies in model parameters.« less

  6. US forest carbon calculation tool: forest-land carbon stocks and net annual stock change

    Treesearch

    James E. Smith; Linda S. Heath; Michael C. Nichols

    2007-01-01

    The Carbon Calculation Tool 4.0, CCTv40.exe, is a computer application that reads publicly available forest inventory data collected by the U.S. Forest Service's Forest Inventory and Analysis Program (FIA) and generates state-level annualized estimates of carbon stocks on forest land based on FORCARB2 estimators. Estimates can be recalculated as...

  7. What Would It Cost to Coach Every New Principal? An Estimate Using Statewide Personnel Data

    ERIC Educational Resources Information Center

    Lochmiller, Chad R.

    2014-01-01

    In this paper, I use Levin and McEwan's (2001) cost feasibility approach and personnel data obtained from the Superintendent of Public Instruction to estimate the cost of providing coaching support to every newly hired principal in Washington State. Based on this descriptive analysis, I estimate that the cost to provide leadership coaching to…

  8. Ideology of a multiparametric system for estimating the insulation system of electric machines on the basis of absorption testing methods

    NASA Astrophysics Data System (ADS)

    Kislyakov, M. A.; Chernov, V. A.; Maksimkin, V. L.; Bozhin, Yu. M.

    2017-12-01

    The article deals with modern methods of monitoring the state and predicting the life of electric machines. In 50% of the cases of failure in the performance of electric machines is associated with insulation damage. As promising, nondestructive methods of control, methods based on the investigation of the processes of polarization occurring in insulating materials are proposed. To improve the accuracy of determining the state of insulation, a multiparametric approach is considered, which is a basis for the development of an expert system for estimating the state of health.

  9. A Robust Nonlinear Observer for Real-Time Attitude Estimation Using Low-Cost MEMS Inertial Sensors

    PubMed Central

    Guerrero-Castellanos, José Fermi; Madrigal-Sastre, Heberto; Durand, Sylvain; Torres, Lizeth; Muñoz-Hernández, German Ardul

    2013-01-01

    This paper deals with the attitude estimation of a rigid body equipped with angular velocity sensors and reference vector sensors. A quaternion-based nonlinear observer is proposed in order to fuse all information sources and to obtain an accurate estimation of the attitude. It is shown that the observer error dynamics can be separated into two passive subsystems connected in “feedback”. Then, this property is used to show that the error dynamics is input-to-state stable when the measurement disturbance is seen as an input and the error as the state. These results allow one to affirm that the observer is “robustly stable”. The proposed observer is evaluated in real-time with the design and implementation of an Attitude and Heading Reference System (AHRS) based on low-cost MEMS (Micro-Electro-Mechanical Systems) Inertial Measure Unit (IMU) and magnetic sensors and a 16-bit microcontroller. The resulting estimates are compared with a high precision motion system to demonstrate its performance. PMID:24201316

  10. Estimated Incidence of Antimicrobial Drug-Resistant Nontyphoidal Salmonella Infections, United States, 2004-2012.

    PubMed

    Medalla, Felicita; Gu, Weidong; Mahon, Barbara E; Judd, Michael; Folster, Jason; Griffin, Patricia M; Hoekstra, Robert M

    2016-01-01

    Salmonella infections are a major cause of illness in the United States. The antimicrobial agents used to treat severe infections include ceftriaxone, ciprofloxacin, and ampicillin. Antimicrobial drug resistance has been associated with adverse clinical outcomes. To estimate the incidence of resistant culture-confirmed nontyphoidal Salmonella infections, we used Bayesian hierarchical models of 2004-2012 data from the Centers for Disease Control and Prevention National Antimicrobial Resistance Monitoring System and Laboratory-based Enteric Disease Surveillance. We based 3 mutually exclusive resistance categories on susceptibility testing: ceftriaxone and ampicillin resistant, ciprofloxacin nonsusceptible but ceftriaxone susceptible, and ampicillin resistant but ceftriaxone and ciprofloxacin susceptible. We estimated the overall incidence of resistant infections as 1.07/100,000 person-years for ampicillin-only resistance, 0.51/100,000 person-years for ceftriaxone and ampicillin resistance, and 0.35/100,000 person-years for ciprofloxacin nonsusceptibility, or ≈6,200 resistant culture-confirmed infections annually. These national estimates help define the magnitude of the resistance problem so that control measures can be appropriately targeted.

  11. A comparison of three federal datasets for thermoelectric water withdrawals in the United States for 2010

    USGS Publications Warehouse

    Harris, Melissa A.; Diehl, Timothy H.

    2017-01-01

    Historically, thermoelectric water withdrawal has been estimated by the Energy Information Administration (EIA) and the U.S. Geological Survey's (USGS) water-use compilations. Recently, the USGS developed models for estimating withdrawal at thermoelectric plants to provide estimates independent from plant operator-reported withdrawal data. This article compares three federal datasets of thermoelectric withdrawals for the United States in 2010: one based on the USGS water-use compilation, another based on EIA data, and the third based on USGS model-estimated data. The withdrawal data varied widely. Many plants had three different withdrawal values, and for approximately 54% of the plants the largest withdrawal value was twice the smallest, or larger. The causes of discrepancies among withdrawal estimates included definitional differences, definitional noise, and various nondefinitional causes. The uncertainty in national totals can be characterized by the range among the three datasets, from 5,640 m3/s (129 billion gallons per day [bgd]) to 6,954 m3/s (158 bgd), or by the aggregate difference between the smallest and largest values at each plant, from 4,014 m3/s (92 bgd) to 8,590 m3/s (196 bgd). When used to assess the accuracy of reported values, the USGS model estimates identify plants that need to be reviewed.

  12. Deriving Continuous Fields of Tree Cover at 1-m over the Continental United States From the National Agriculture Imagery Program (NAIP) Imagery to Reduce Uncertainties in Forest Carbon Stock Estimation

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Basu, S.; Mukhopadhyay, S.; Michaelis, A.; Milesi, C.; Votava, P.; Nemani, R. R.

    2013-12-01

    An unresolved issue with coarse-to-medium resolution satellite-based forest carbon mapping over regional to continental scales is the high level of uncertainty in above ground biomass (AGB) estimates caused by the absence of forest cover information at a high enough spatial resolution (current spatial resolution is limited to 30-m). To put confidence in existing satellite-derived AGB density estimates, it is imperative to create continuous fields of tree cover at a sufficiently high resolution (e.g. 1-m) such that large uncertainties in forested area are reduced. The proposed work will provide means to reduce uncertainty in present satellite-derived AGB maps and Forest Inventory and Analysis (FIA) based regional estimates. Our primary objective will be to create Very High Resolution (VHR) estimates of tree cover at a spatial resolution of 1-m for the Continental United States using all available National Agriculture Imaging Program (NAIP) color-infrared imagery from 2010 till 2012. We will leverage the existing capabilities of the NASA Earth Exchange (NEX) high performance computing and storage facilities. The proposed 1-m tree cover map can be further aggregated to provide percent tree cover at any medium-to-coarse resolution spatial grid, which will aid in reducing uncertainties in AGB density estimation at the respective grid and overcome current limitations imposed by medium-to-coarse resolution land cover maps. We have implemented a scalable and computationally-efficient parallelized framework for tree-cover delineation - the core components of the algorithm [that] include a feature extraction process, a Statistical Region Merging image segmentation algorithm and a classification algorithm based on Deep Belief Network and a Feedforward Backpropagation Neural Network algorithm. An initial pilot exercise has been performed over the state of California (~11,000 scenes) to create a wall-to-wall 1-m tree cover map and the classification accuracy has been assessed. Results show an improvement in accuracy of tree-cover delineation as compared to existing forest cover maps from NLCD, especially over fragmented, heterogeneous and urban landscapes. Estimates of VHR tree cover will complement and enhance the accuracy of present remote-sensing based AGB modeling approaches and forest inventory based estimates at both national and local scales. A requisite step will be to characterize the inherent uncertainties in tree cover estimates and propagate them to estimate AGB.

  13. Ensemble-based simultaneous state and parameter estimation for treatment of mesoscale model error: A real-data study

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Ming; Zhang, Fuqing; Nielsen-Gammon, John W.

    2010-04-01

    This study explores the treatment of model error and uncertainties through simultaneous state and parameter estimation (SSPE) with an ensemble Kalman filter (EnKF) in the simulation of a 2006 air pollution event over the greater Houston area during the Second Texas Air Quality Study (TexAQS-II). Two parameters in the atmospheric boundary layer parameterization associated with large model sensitivities are combined with standard prognostic variables in an augmented state vector to be continuously updated through assimilation of wind profiler observations. It is found that forecasts of the atmosphere with EnKF/SSPE are markedly improved over experiments with no state and/or parameter estimation. More specifically, the EnKF/SSPE is shown to help alleviate a near-surface cold bias and to alter the momentum mixing in the boundary layer to produce more realistic wind profiles.

  14. Adaptive optimal stochastic state feedback control of resistive wall modes in tokamaks

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Sen, A. K.; Longman, R. W.

    2006-01-01

    An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least-square method with exponential forgetting factor and covariance resetting is used to identify (experimentally determine) the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time-dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used.

  15. Adaptive Optimal Stochastic State Feedback Control of Resistive Wall Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Sen, A. K.; Longman, R. W.

    2007-06-01

    An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least square method with exponential forgetting factor and covariance resetting is used to identify the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used.

  16. The American College of Surgeons Needs-Based Assessment of Trauma Systems: Estimates for the State of California.

    PubMed

    Uribe-Leitz, Tarsicio; Esquivel, Micaela M; Knowlton, Lisa M; Ciesla, David; Lin, Feng; Hsia, Renee Y; Spain, David A; Winchell, Robert J; Staudenmayer, Kristan L

    2017-05-01

    In 2015, the American College of Surgeons Committee on Trauma convened a consensus conference to develop the Needs-Based Assessment of Trauma Systems (NBATS) tool to assist in determining the number of trauma centers required for a region. We tested the performance of NBATS with respect to the optimal number of trauma centers needed by region in California. Trauma center data were obtained from the California Emergency Services Authority Information Systems (CEMSIS). Numbers of admitted trauma patients (ISS > 15) were obtained using statewide nonpublic admissions data from the California Office of Statewide Health Planning and Development (OSHPD), CEMSIS, and data from local emergency medical service agency (LEMSA) directors who agreed to participate in a telephone survey. Population estimates per county for 2014 were obtained from the U.S. Census. NBATS criteria used included population, transport time, community support, and number of discharges for severely injured patients (ISS > 15) at nontrauma centers and trauma centers. Estimates for the number of trauma centers per region were created for each of the three data sources and compared to the number of existing centers. A total of 62 state-designated trauma centers were identified for California: 13 (21%) Level I, 36 (58%) Level II, and 13 (11%) Level III. NBATS estimates for the total number of trauma centers in California were 27% to 47% lower compared to the number of trauma centers in existence, but this varied based on urban/rural status. NBATS estimates were lower than the current state in 70% of urban areas but were higher in almost 90% of rural areas. All data sources (OSHPD, CEMSIS, local data) produced similar results. Estimates from the NBATS tool are different from what is currently in existence in California, and differences exist based on whether the region is rural or urban. Findings from the current study can help inform future iterations of the NBATS tool. Economic, level V.

  17. Battery Calendar Life Estimator Manual Modeling and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jon P. Christophersen; Ira Bloom; Ed Thomas

    2012-10-01

    The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

  18. Battery Life Estimator Manual Linear Modeling and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jon P. Christophersen; Ira Bloom; Ed Thomas

    2009-08-01

    The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

  19. Estimation of Nitrous Oxide Emissions from US Grasslands.

    PubMed

    Mummey; Smith; Bluhm

    2000-02-01

    / Nitrous oxide (N(2)O) emissions from temperate grasslands are poorly quantified and may be an important part of the atmospheric N(2)O budget. In this study N(2)O emissions were simulated for 1052 grassland sites in the United States using the NGAS model of Parton and others (1996) coupled with an organic matter decomposition model. N(2)O flux was calculated for each site using soil and land use data obtained from the National Resource Inventory (NRI) database and weather data obtained from NASA. The estimates were regionalized based upon temperature and moisture isotherms. Annual N(2)O emissions for each region were based on the grassland area of each region and the mean estimated annual N(2)O flux from NRI grassland sites in the region. The regional fluxes ranged from 0.18 to 1.02 kg N(2)O N/ha/yr with the mean flux for all regions being 0.28 kg N(2)O N/ha/yr. Even though fluxes from the western regions were relatively low, these regions made the largest contribution to total emissions due to their large grassland area. Total US grassland N(2)O emissions were estimated to be about 67 Gg N(2)O N/yr. Emissions from the Great Plains states, which contain the largest expanse of natural grassland in the United States, were estimated to average 0.24 kg N(2)O N/ha/yr. Using the annual flux estimate for the temperate Great Plains, we estimate that temperate grasslands worldwide may potentially produce 0.27 Tg N(2)O N/yr. Even though our estimate for global temperate grassland N(2)O emissions is less than published estimates for other major temperate and tropical biomes, our results indicate that temperate grasslands are a significant part of both United States and global atmospheric N(2)O budgets. This study demonstrates the utility of models for regional N(2)O flux estimation although additional data from carefully designed field studies is needed to further validate model results.

  20. Influenza vaccination coverage estimates in the fee-for service Medicare beneficiary population 2006 - 2016: Using population-based administrative data to support a geographic based near real-time tool.

    PubMed

    Shen, Angela K; Warnock, Rob; Brereton, Stephaeno; McKean, Stephen; Wernecke, Michael; Chu, Steve; Kelman, Jeffrey A

    2018-04-11

    Older adults are at great risk of developing serious complications from seasonal influenza. We explore vaccination coverage estimates in the Medicare population through the use of administrative claims data and describe a tool designed to help shape outreach efforts and inform strategies to help raise influenza vaccination rates. This interactive mapping tool uses claims data to compare vaccination levels between geographic (i.e., state, county, zip code) and demographic (i.e., race, age) groups at different points in a season. Trends can also be compared across seasons. Utilization of this tool can assist key actors interested in prevention - medical groups, health plans, hospitals, and state and local public health authorities - in supporting strategies for reaching pools of unvaccinated beneficiaries where general national population estimates of coverage are less informative. Implementing evidence-based tools can be used to address persistent racial and ethnic disparities and prevent a substantial number of influenza cases and hospitalizations.

  1. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.

    PubMed

    Tamayao, Mili-Ann M; Michalek, Jeremy J; Hendrickson, Chris; Azevedo, Inês M L

    2015-07-21

    We characterize regionally specific life cycle CO2 emissions per mile traveled for plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) across the United States under alternative assumptions for regional electricity emission factors, regional boundaries, and charging schemes. We find that estimates based on marginal vs average grid emission factors differ by as much as 50% (using National Electricity Reliability Commission (NERC) regional boundaries). Use of state boundaries versus NERC region boundaries results in estimates that differ by as much as 120% for the same location (using average emission factors). We argue that consumption-based marginal emission factors are conceptually appropriate for evaluating the emissions implications of policies that increase electric vehicle sales or use in a region. We also examine generation-based marginal emission factors to assess robustness. Using these two estimates of NERC region marginal emission factors, we find the following: (1) delayed charging (i.e., starting at midnight) leads to higher emissions in most cases due largely to increased coal in the marginal generation mix at night; (2) the Chevrolet Volt has higher expected life cycle emissions than the Toyota Prius hybrid electric vehicle (the most efficient U.S. gasoline vehicle) across the U.S. in nearly all scenarios; (3) the Nissan Leaf BEV has lower life cycle emissions than the Prius in the western U.S. and in Texas, but the Prius has lower emissions in the northern Midwest regardless of assumed charging scheme and marginal emissions estimation method; (4) in other regions the lowest emitting vehicle depends on charge timing and emission factor estimation assumptions.

  2. Regional and seasonal estimates of fractional storm coverage based on station precipitation observations

    NASA Technical Reports Server (NTRS)

    Gong, Gavin; Entekhabi, Dara; Salvucci, Guido D.

    1994-01-01

    Simulated climates using numerical atmospheric general circulation models (GCMs) have been shown to be highly sensitive to the fraction of GCM grid area assumed to be wetted during rain events. The model hydrologic cycle and land-surface water and energy balance are influenced by the parameter bar-kappa, which is the dimensionless fractional wetted area for GCM grids. Hourly precipitation records for over 1700 precipitation stations within the contiguous United States are used to obtain observation-based estimates of fractional wetting that exhibit regional and seasonal variations. The spatial parameter bar-kappa is estimated from the temporal raingauge data using conditional probability relations. Monthly bar-kappa values are estimated for rectangular grid areas over the contiguous United States as defined by the Goddard Institute for Space Studies 4 deg x 5 deg GCM. A bias in the estimates is evident due to the unavoidably sparse raingauge network density, which causes some storms to go undetected by the network. This bias is corrected by deriving the probability of a storm escaping detection by the network. A Monte Carlo simulation study is also conducted that consists of synthetically generated storm arrivals over an artificial grid area. It is used to confirm the bar-kappa estimation procedure and to test the nature of the bias and its correction. These monthly fractional wetting estimates, based on the analysis of station precipitation data, provide an observational basis for assigning the influential parameter bar-kappa in GCM land-surface hydrology parameterizations.

  3. Alternating steady state free precession for estimation of current-induced magnetic flux density: A feasibility study.

    PubMed

    Lee, Hyunyeol; Jeong, Woo Chul; Kim, Hyung Joong; Woo, Eung Je; Park, Jaeseok

    2016-05-01

    To develop a novel, current-controlled alternating steady-state free precession (SSFP)-based conductivity imaging method and corresponding MR signal models to estimate current-induced magnetic flux density (Bz ) and conductivity distribution. In the proposed method, an SSFP pulse sequence, which is in sync with alternating current pulses, produces dual oscillating steady states while yielding nonlinear relation between signal phase and Bz . A ratiometric signal model between the states was analytically derived using the Bloch equation, wherein Bz was estimated by solving a nonlinear inverse problem for conductivity estimation. A theoretical analysis on the signal-to-noise ratio of Bz was given. Numerical and experimental studies were performed using SSFP-FID and SSFP-ECHO with current pulses positioned either before or after signal encoding to investigate the feasibility of the proposed method in conductivity estimation. Given all SSFP variants herein, SSFP-FID with alternating current pulses applied before signal encoding exhibits the highest Bz signal-to-noise ratio and conductivity contrast. Additionally, compared with conventional conductivity imaging, the proposed method benefits from rapid SSFP acquisition without apparent loss of conductivity contrast. We successfully demonstrated the feasibility of the proposed method in estimating current-induced Bz and conductivity distribution. It can be a promising, rapid imaging strategy for quantitative conductivity imaging. © 2015 Wiley Periodicals, Inc.

  4. A regularized auxiliary particle filtering approach for system state estimation and battery life prediction

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Wang, Wilson; Ma, Fai

    2011-07-01

    System current state estimation (or condition monitoring) and future state prediction (or failure prognostics) constitute the core elements of condition-based maintenance programs. For complex systems whose internal state variables are either inaccessible to sensors or hard to measure under normal operational conditions, inference has to be made from indirect measurements using approaches such as Bayesian learning. In recent years, the auxiliary particle filter (APF) has gained popularity in Bayesian state estimation; the APF technique, however, has some potential limitations in real-world applications. For example, the diversity of the particles may deteriorate when the process noise is small, and the variance of the importance weights could become extremely large when the likelihood varies dramatically over the prior. To tackle these problems, a regularized auxiliary particle filter (RAPF) is developed in this paper for system state estimation and forecasting. This RAPF aims to improve the performance of the APF through two innovative steps: (1) regularize the approximating empirical density and redraw samples from a continuous distribution so as to diversify the particles; and (2) smooth out the rather diffused proposals by a rejection/resampling approach so as to improve the robustness of particle filtering. The effectiveness of the proposed RAPF technique is evaluated through simulations of a nonlinear/non-Gaussian benchmark model for state estimation. It is also implemented for a real application in the remaining useful life (RUL) prediction of lithium-ion batteries.

  5. Estimation of electronic coupling in π-stacked donor-bridge-acceptor systems: Correction of the two-state model

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-02-01

    Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽda=(E2-E1)μ12/Rda+(2E3-E1-E2)2μ13μ23/Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model.

  6. Estimation of electronic coupling in pi-stacked donor-bridge-acceptor systems: correction of the two-state model.

    PubMed

    Voityuk, Alexander A

    2006-02-14

    Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of V(da) because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a pi stack, where donor and acceptor are separated by a bridging unit, can be obtained as V(da) = (E(2)-E(1))mu(12)R(da) + (2E(3)-E(1)-E(2))2mu(13)mu(23)R(da) (2), where E(1), E(2), and E(3) are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, mu(ij) is the transition dipole moments between the states i and j, and R(da) is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model.

  7. Accurate discrimination of the wake-sleep states of mice using non-invasive whole-body plethysmography.

    PubMed

    Bastianini, Stefano; Alvente, Sara; Berteotti, Chiara; Lo Martire, Viviana; Silvani, Alessandro; Swoap, Steven J; Valli, Alice; Zoccoli, Giovanna; Cohen, Gary

    2017-01-31

    A major limitation in the study of sleep breathing disorders in mouse models of pathology is the need to combine whole-body plethysmography (WBP) to measure respiration with electroencephalography/electromyography (EEG/EMG) to discriminate wake-sleep states. However, murine wake-sleep states may be discriminated from breathing and body movements registered by the WBP signal alone. Our goal was to compare the EEG/EMG-based and the WBP-based scoring of wake-sleep states of mice, and provide formal guidelines for the latter. EEG, EMG, blood pressure and WBP signals were simultaneously recorded from 20 mice. Wake-sleep states were scored based either on EEG/EMG or on WBP signals and sleep-dependent respiratory and cardiovascular estimates were calculated. We found that the overall agreement between the 2 methods was 90%, with a high Cohen's Kappa index (0.82). The inter-rater agreement between 2 experts and between 1 expert and 1 naïve sleep investigators gave similar results. Sleep-dependent respiratory and cardiovascular estimates did not depend on the scoring method. We show that non-invasive discrimination of the wake-sleep states of mice based on visual inspection of the WBP signal is accurate, reliable and reproducible. This work may set the stage for non-invasive high-throughput experiments evaluating sleep and breathing patterns on mouse models of pathophysiology.

  8. Proof of Concept for an Approach to a Finer Resolution Inventory

    Treesearch

    Chris J. Cieszewski; Kim Iles; Roger C. Lowe; Michal Zasada

    2005-01-01

    This report presents a proof of concept for a statistical framework to develop a timely, accurate, and unbiased fiber supply assessment in the State of Georgia, U.S.A. The proposed approach is based on using various data sources and modeling techniques to calibrate satellite image-based statewide stand lists, which provide initial estimates for a State inventory on a...

  9. A Nonlinear Dynamics-Based Estimator for Functional Electrical Stimulation: Preliminary Results From Lower-Leg Extension Experiments.

    PubMed

    Allen, Marcus; Zhong, Qiang; Kirsch, Nicholas; Dani, Ashwin; Clark, William W; Sharma, Nitin

    2017-12-01

    Miniature inertial measurement units (IMUs) are wearable sensors that measure limb segment or joint angles during dynamic movements. However, IMUs are generally prone to drift, external magnetic interference, and measurement noise. This paper presents a new class of nonlinear state estimation technique called state-dependent coefficient (SDC) estimation to accurately predict joint angles from IMU measurements. The SDC estimation method uses limb dynamics, instead of limb kinematics, to estimate the limb state. Importantly, the nonlinear limb dynamic model is formulated into state-dependent matrices that facilitate the estimator design without performing a Jacobian linearization. The estimation method is experimentally demonstrated to predict knee joint angle measurements during functional electrical stimulation of the quadriceps muscle. The nonlinear knee musculoskeletal model was identified through a series of experiments. The SDC estimator was then compared with an extended kalman filter (EKF), which uses a Jacobian linearization and a rotation matrix method, which uses a kinematic model instead of the dynamic model. Each estimator's performance was evaluated against the true value of the joint angle, which was measured through a rotary encoder. The experimental results showed that the SDC estimator, the rotation matrix method, and EKF had root mean square errors of 2.70°, 2.86°, and 4.42°, respectively. Our preliminary experimental results show the new estimator's advantage over the EKF method but a slight advantage over the rotation matrix method. However, the information from the dynamic model allows the SDC method to use only one IMU to measure the knee angle compared with the rotation matrix method that uses two IMUs to estimate the angle.

  10. Fuzzy multinomial logistic regression analysis: A multi-objective programming approach

    NASA Astrophysics Data System (ADS)

    Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan

    2017-05-01

    Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in cases of small datasets.

  11. Large Area Crop Inventory Experiment (LACIE). Phase 2 evaluation report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Documentation of the activities of the Large Area Crop Inventory Experiment during the 1976 Northern Hemisphere crop year is presented. A brief overview of the experiment is included as well as phase two area, yield, and production estimates for the United States Great Plains, Canada, and the Union of Soviet Socialist Republics spring winter wheat regions. The accuracies of these estimates are compared with independent government estimates. Accuracy assessment of the United States Great Plains yardstick region based on a through blind sight analysis is given, and reasons for variations in estimating performance are discussed. Other phase two technical activities including operations, exploratory analysis, reporting, methods of assessment, phase three and advanced system design, technical issues, and developmental activities are also included.

  12. Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2003-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops an analytic method of incorporating state variable inequality constraints in the Kalman filter. The resultant filter is a combination of a standard Kalman filter and a quadratic programming problem. The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is proven theoretically and shown via simulation results obtained from application to a turbofan engine model. This model contains 16 state variables, 12 measurements, and 8 component health parameters. It is shown that the new algorithms provide improved performance in this example over unconstrained Kalman filtering.

  13. A MAP-based image interpolation method via Viterbi decoding of Markov chains of interpolation functions.

    PubMed

    Vedadi, Farhang; Shirani, Shahram

    2014-01-01

    A new method of image resolution up-conversion (image interpolation) based on maximum a posteriori sequence estimation is proposed. Instead of making a hard decision about the value of each missing pixel, we estimate the missing pixels in groups. At each missing pixel of the high resolution (HR) image, we consider an ensemble of candidate interpolation methods (interpolation functions). The interpolation functions are interpreted as states of a Markov model. In other words, the proposed method undergoes state transitions from one missing pixel position to the next. Accordingly, the interpolation problem is translated to the problem of estimating the optimal sequence of interpolation functions corresponding to the sequence of missing HR pixel positions. We derive a parameter-free probabilistic model for this to-be-estimated sequence of interpolation functions. Then, we solve the estimation problem using a trellis representation and the Viterbi algorithm. Using directional interpolation functions and sequence estimation techniques, we classify the new algorithm as an adaptive directional interpolation using soft-decision estimation techniques. Experimental results show that the proposed algorithm yields images with higher or comparable peak signal-to-noise ratios compared with some benchmark interpolation methods in the literature while being efficient in terms of implementation and complexity considerations.

  14. Trajectory prediction for ballistic missiles based on boost-phase LOS measurements

    NASA Astrophysics Data System (ADS)

    Yeddanapudi, Murali; Bar-Shalom, Yaakov

    1997-10-01

    This paper addresses the problem of the estimation of the trajectory of a tactical ballistic missile using line of sight (LOS) measurements from one or more passive sensors (typically satellites). The major difficulties of this problem include: the estimation of the unknown time of launch, incorporation of (inaccurate) target thrust profiles to model the target dynamics during the boost phase and an overall ill-conditioning of the estimation problem due to poor observability of the target motion via the LOS measurements. We present a robust estimation procedure based on the Levenberg-Marquardt algorithm that provides both the target state estimate and error covariance taking into consideration the complications mentioned above. An important consideration in the defense against tactical ballistic missiles is the determination of the target position and error covariance at the acquisition range of a surveillance radar in the vicinity of the impact point. We present a systematic procedure to propagate the target state and covariance to a nominal time, when it is within the detection range of a surveillance radar to obtain a cueing volume. Mont Carlo simulation studies on typical single and two sensor scenarios indicate that the proposed algorithms are accurate in terms of the estimates and the estimator calculated covariances are consistent with the errors.

  15. Utility of Capture-Recapture Methodology to Estimate Prevalence of Congenital Heart Defects Among Adolescents in 11 New York State Counties: 2008 to 2010.

    PubMed

    Akkaya-Hocagil, Tugba; Hsu, Wan-Hsiang; Sommerhalter, Kristin; McGarry, Claire; Van Zutphen, Alissa

    2017-11-01

    Congenital heart defects (CHDs) are the most common birth defects in the United States, and the population of individuals living with CHDs is growing. Though CHD prevalence in infancy has been well characterized, better prevalence estimates among children and adolescents in the United States are still needed. We used capture-recapture methods to estimate CHD prevalence among adolescents residing in 11 New York counties. The three data sources used for analysis included Statewide Planning and Research Cooperative System (SPARCS) hospital inpatient records, SPARCS outpatient records, and medical records provided by seven pediatric congenital cardiac clinics from 2008 to 2010. Bayesian log-linear models were fit using the R package Conting to account for dataset dependencies and heterogeneous catchability. A total of 2537 adolescent CHD cases were captured in our three data sources. Forty-four cases were identified in all data sources, 283 cases were identified in two of three data sources, and 2210 cases were identified in a single data source. The final model yielded an estimated total adolescent CHD population of 3845, indicating that 66% of the cases in the catchment area were identified in the case-identifying data sources. Based on 2010 Census estimates, we estimated adolescent CHD prevalence as 6.4 CHD cases per 1000 adolescents (95% confidence interval: 6.2-6.6). We used capture-recapture methodology with a population-based surveillance system in New York to estimate CHD prevalence among adolescents. Future research incorporating additional data sources may improve prevalence estimates in this population. Birth Defects Research 109:1423-1429, 2017.© 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Support vector machines for nuclear reactor state estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavaljevski, N.; Gross, K. C.

    2000-02-14

    Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformedmore » into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm.« less

  17. Parameter estimation for stiff deterministic dynamical systems via ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Arnold, Andrea; Calvetti, Daniela; Somersalo, Erkki

    2014-10-01

    A commonly encountered problem in numerous areas of applications is to estimate the unknown coefficients of a dynamical system from direct or indirect observations at discrete times of some of the components of the state vector. A related problem is to estimate unobserved components of the state. An egregious example of such a problem is provided by metabolic models, in which the numerous model parameters and the concentrations of the metabolites in tissue are to be estimated from concentration data in the blood. A popular method for addressing similar questions in stochastic and turbulent dynamics is the ensemble Kalman filter (EnKF), a particle-based filtering method that generalizes classical Kalman filtering. In this work, we adapt the EnKF algorithm for deterministic systems in which the numerical approximation error is interpreted as a stochastic drift with variance based on classical error estimates of numerical integrators. This approach, which is particularly suitable for stiff systems where the stiffness may depend on the parameters, allows us to effectively exploit the parallel nature of particle methods. Moreover, we demonstrate how spatial prior information about the state vector, which helps the stability of the computed solution, can be incorporated into the filter. The viability of the approach is shown by computed examples, including a metabolic system modeling an ischemic episode in skeletal muscle, with a high number of unknown parameters.

  18. Estimation of actual residual stresses due to braking and contact loading of rail vehicle wheels

    DOT National Transportation Integrated Search

    1996-03-01

    A finite element formulation for shakedown stress analysis of rail vehicle wheels is presented, based on a hypothesis that the shakedown state is axisymmetric. The method can be used to estimate shakedown stresses in wheels subjected to combined mech...

  19. Estimating release of carbon from 1990 and 1991 forest fires in Alaska

    NASA Technical Reports Server (NTRS)

    Kaisischke, Eric S.; French, Nancy H. F.; Bourgeau-Chavez, Laura L.; Christensen, N. L., Jr.

    1995-01-01

    An improved method to estimate the amounts of carbon released during fires in the boreal forest zone of Alaska in 1990 and 1991 is described. This method divides the state into 64 distinct physiographic regions and estimates areal extent of five different land covers: two forest types, peat land, tundra, and nonvegetated. The areal extent of each cover type was estimated from a review of topographic maps of each region and observations on the distribution of foreat types within the state. Using previous observations and theoretical models for the two forest types found in interior Alaska, models of biomass accumulation as a function of stand age were developed. Stand age distributions for each region were determined using a statistical distribution based on fire frequency, which was from available long-term historical records. Estimates of the degree of biomass combusted were based on recent field observations as well as research reported in the literature. The location and areal extent of fires in this region for 1990 and 1991 were based on both field observations and analysis of satellite (advanced very high resolution radiometer (AVHRR)) data sets. Estimates of average carbon release for the two study years ranged between 2.54 and 3.00 kg/sq m, which are 2.2 to 2.6 times greater than estimates used in other studies of carbon release through biomass burning in boreal forests. Total average annual carbon release for the two years ranged between 0.012 and 0.018 Pg C/yr, with the lower value resulting from the AVHRR estimates of fire location and area.

  20. A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement

    NASA Astrophysics Data System (ADS)

    Zhu, J. G.; Sun, Z. C.; Wei, X. Z.; Dai, H. F.

    2015-01-01

    The power battery thermal management problem in EV (electric vehicle) and HEV (hybrid electric vehicle) has been widely discussed, and EIS (electrochemical impedance spectroscopy) is an effective experimental method to test and estimate the status of the battery. Firstly, an electrochemical-based impedance matrix analysis for lithium-ion battery is developed to describe the impedance response of electrochemical impedance spectroscopy. Then a method, based on electrochemical impedance spectroscopy measurement, has been proposed to estimate the internal temperature of power lithium-ion battery by analyzing the phase shift and magnitude of impedance at different ambient temperatures. Respectively, the SoC (state of charge) and temperature have different effects on the impedance characteristics of battery at various frequency ranges in the electrochemical impedance spectroscopy experimental study. Also the impedance spectrum affected by SoH (state of health) is discussed in the paper preliminary. Therefore, the excitation frequency selected to estimate the inner temperature is in the frequency range which is significantly influenced by temperature without the SoC and SoH. The intrinsic relationship between the phase shift and temperature is established under the chosen excitation frequency. And the magnitude of impedance related to temperature is studied in the paper. In practical applications, through obtaining the phase shift and magnitude of impedance, the inner temperature estimation could be achieved. Then the verification experiments are conduced to validate the estimate method. Finally, an estimate strategy and an on-line estimation system implementation scheme utilizing battery management system are presented to describe the engineering value.

  1. Estimates of electronic coupling for excess electron transfer in DNA

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2005-07-01

    Electronic coupling Vda is one of the key parameters that determine the rate of charge transfer through DNA. While there have been several computational studies of Vda for hole transfer, estimates of electronic couplings for excess electron transfer (ET) in DNA remain unavailable. In the paper, an efficient strategy is established for calculating the ET matrix elements between base pairs in a π stack. Two approaches are considered. First, we employ the diabatic-state (DS) method in which donor and acceptor are represented with radical anions of the canonical base pairs adenine-thymine (AT) and guanine-cytosine (GC). In this approach, similar values of Vda are obtained with the standard 6-31G* and extended 6-31++G** basis sets. Second, the electronic couplings are derived from lowest unoccupied molecular orbitals (LUMOs) of neutral systems by using the generalized Mulliken-Hush or fragment charge methods. Because the radical-anion states of AT and GC are well reproduced by LUMOs of the neutral base pairs calculated without diffuse functions, the estimated values of Vda are in good agreement with the couplings obtained for radical-anion states using the DS method. However, when the calculation of a neutral stack is carried out with diffuse functions, LUMOs of the system exhibit the dipole-bound character and cannot be used for estimating electronic couplings. Our calculations suggest that the ET matrix elements Vda for models containing intrastrand thymine and cytosine bases are essentially larger than the couplings in complexes with interstrand pyrimidine bases. The matrix elements for excess electron transfer are found to be considerably smaller than the corresponding values for hole transfer and to be very responsive to structural changes in a DNA stack.

  2. Comparison of estimators for rolling samples using Forest Inventory and Analysis data

    Treesearch

    Devin S. Johnson; Michael S. Williams; Raymond L. Czaplewski

    2003-01-01

    The performance of three classes of weighted average estimators is studied for an annual inventory design similar to the Forest Inventory and Analysis program of the United States. The first class is based on an ARIMA(0,1,1) time series model. The equal weight, simple moving average is a member of this class. The second class is based on an ARIMA(0,2,2) time series...

  3. Assisted Perception, Planning and Control for Remote Mobility and Dexterous Manipulation

    DTIC Science & Technology

    2017-04-01

    on unmanned aerial vehicles (UAVs). The underlying algorithm is based on an Extended Kalman Filter (EKF) that simultaneously estimates robot state...and sensor biases. The filter developed provided a probabilistic fusion of sensor data from many modalities to produce a single consistent position...estimation for a walking humanoid. Given a prior map using a Gaussian particle filter , the LIDAR based system is able to provide a drift-free

  4. Inertial Measurements for Aero-assisted Navigation (IMAN)

    NASA Technical Reports Server (NTRS)

    Jah, Moriba; Lisano, Michael; Hockney, George

    2007-01-01

    IMAN is a Python tool that provides inertial sensor-based estimates of spacecraft trajectories within an atmospheric influence. It provides Kalman filter-derived spacecraft state estimates based upon data collected onboard, and is shown to perform at a level comparable to the conventional methods of spacecraft navigation in terms of accuracy and at a higher level with regard to the availability of results immediately after completion of an atmospheric drag pass.

  5. HIGH-TEMPERATURE GEOTHERMAL RESOURCES IN HYDROTHERMAL CONVECTION SYSTEMS IN THE UNITED STATES.

    USGS Publications Warehouse

    Nathenson, Manuel

    1983-01-01

    The calculation of high-temperature geothermal resources ( greater than 150 degree C) in the United States has been done by estimating the temperature, area, and thickness of each identified system. These data, along with a general model for recoverability of geothermal energy and a calculation that takes account of the conversion of thermal energy to electricity, yielded an estimate of 23,000 MW//e for 30 years. The undiscovered component was estimated based on multipliers of the identified resource as either 72,000 or 127,000 MW//e for 30 years depending on the model chosen for the distribution of undiscovered energy as a function of temperature.

  6. Latent degradation indicators estimation and prediction: A Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Zhou, Yifan; Sun, Yong; Mathew, Joseph; Wolff, Rodney; Ma, Lin

    2011-01-01

    Asset health inspections can produce two types of indicators: (1) direct indicators (e.g. the thickness of a brake pad, and the crack depth on a gear) which directly relate to a failure mechanism; and (2) indirect indicators (e.g. the indicators extracted from vibration signals and oil analysis data) which can only partially reveal a failure mechanism. While direct indicators enable more precise references to asset health condition, they are often more difficult to obtain than indirect indicators. The state space model provides an efficient approach to estimating direct indicators by using indirect indicators. However, existing state space models to estimate direct indicators largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires fixed inspection intervals. The discrete state assumption entails discretising continuous degradation indicators, which often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This paper proposes a state space model without these assumptions. Monte Carlo-based algorithms are developed to estimate the model parameters and the remaining useful life. These algorithms are evaluated for performance using numerical simulations through MATLAB. The result shows that both the parameters and the remaining useful life are estimated accurately. Finally, the new state space model is used to process vibration and crack depth data from an accelerated test of a gearbox. During this application, the new state space model shows a better fitness result than the state space model with linear and Gaussian assumption.

  7. A comparison of foetal and infant mortality in the United States and Canada.

    PubMed

    Ananth, Cande V; Liu, Shiliang; Joseph, K S; Kramer, Michael S

    2009-04-01

    Infant mortality rates are higher in the United States than in Canada. We explored this difference by comparing gestational age distributions and gestational age-specific mortality rates in the two countries. Stillbirth and infant mortality rates were compared for singleton births at >or=22 weeks and newborns weighing>or=500 g in the United States and Canada (1996-2000). Since menstrual-based gestational age appears to misclassify gestational duration and overestimate both preterm and postterm birth rates, and because a clinical estimate of gestation is the only available measure of gestational age in Canada, all comparisons were based on the clinical estimate. Data for California were excluded because they lacked a clinical estimate. Gestational age-specific comparisons were based on the foetuses-at-risk approach. The overall stillbirth rate in the United States (37.9 per 10,000 births) was similar to that in Canada (38.2 per 10,000 births), while the overall infant mortality rate was 23% (95% CI 19-26%) higher (50.8 vs 41.4 per 10,000 births, respectively). The gestational age distribution was left-shifted in the United States relative to Canada; consequently, preterm birth rates were 8.0 and 6.0%, respectively. Stillbirth and early neonatal mortality rates in the United States were lower at term gestation only. However, gestational age-specific late neonatal, post-neonatal and infant mortality rates were higher in the United States at virtually every gestation. The overall stillbirth rates (per 10,000 foetuses at risk) among Blacks and Whites in the United States, and in Canada were 59.6, 35.0 and 38.3, respectively, whereas the corresponding infant mortality rates were 85.6, 49.7 and 42.2, respectively. Differences in gestational age distributions and in gestational age-specific stillbirth and infant mortality in the United States and Canada underscore substantial differences in healthcare services, population health status and health policy between the two neighbouring countries.

  8. Techniques for estimating 7-day, 10-year low-flow characteristics for ungaged sites on streams in Mississippi

    USGS Publications Warehouse

    Telis, Pamela A.

    1992-01-01

    Mississippi State water laws require that the 7-day, 10-year low-flow characteristic (7Q10) of streams be used as a criterion for issuing wastedischarge permits to dischargers to streams and for limiting withdrawals of water from streams. This report presents techniques for estimating the 7Q10 for ungaged sites on streams in Mississippi based on the availability of baseflow discharge measurements at the site, location of nearby gaged sites on the same stream, and drainage area of the ungaged site. These techniques may be used to estimate the 7Q10 at sites on natural, unregulated or partially regulated, and non-tidal streams. Low-flow characteristics for streams in the Mississippi River alluvial plain were not estimated because the annual lowflow data exhibit decreasing trends with time. Also presented are estimates of the 7Q10 for 493 gaged sites on Mississippi streams.Techniques for estimating the 7Q10 have been developed for ungaged sites with base-flow discharge measurements, for ungaged sites on gaged streams, and for ungaged sites on ungaged streams. For an ungaged site with one or more base-flow discharge measurements, base-flow discharge data at the ungaged site are related to concurrent discharge data at a nearby gaged site. For ungaged sites on gaged streams, several methods of transferring the 7Q10 from a gaged site to an ungaged site were developed; the resulting 7Q10 values are based on drainage area prorations for the sites. For ungaged sites on ungaged streams, the 7Q10 is estimated from a map developed for. this study that shows the unit 7Q10 (7Q10 per square mile of drainage area) for ungaged basins in the State. The mapped values were estimated from the unit 7Q10 determined for nearby gaged basins, adjusted on the basis of the geology and topography of the ungaged basins.

  9. An Inertial Dual-State State Estimator for Precision Planetary Landing with Hazard Detection and Avoidance

    NASA Technical Reports Server (NTRS)

    Bishop, Robert H.; DeMars, Kyle; Trawny, Nikolas; Crain, Tim; Hanak, Chad; Carson, John M.; Christian, John

    2016-01-01

    The navigation filter architecture successfully deployed on the Morpheus flight vehicle is presented. The filter was developed as a key element of the NASA Autonomous Landing and Hazard Avoidance Technology (ALHAT) project and over the course of 15 free fights was integrated into the Morpheus vehicle, operations, and flight control loop. Flight testing completed by demonstrating autonomous hazard detection and avoidance, integration of an altimeter, surface relative velocity (velocimeter) and hazard relative navigation (HRN) measurements into the onboard dual-state inertial estimator Kalman flter software, and landing within 2 meters of the vertical testbed GPS-based navigation solution at the safe landing site target. Morpheus followed a trajectory that included an ascent phase followed by a partial descent-to-landing, although the proposed filter architecture is applicable to more general planetary precision entry, descent, and landings. The main new contribution is the incorporation of a sophisticated hazard relative navigation sensor-originally intended to locate safe landing sites-into the navigation system and employed as a navigation sensor. The formulation of a dual-state inertial extended Kalman filter was designed to address the precision planetary landing problem when viewed as a rendezvous problem with an intended landing site. For the required precision navigation system that is capable of navigating along a descent-to-landing trajectory to a precise landing, the impact of attitude errors on the translational state estimation are included in a fully integrated navigation structure in which translation state estimation is combined with attitude state estimation. The map tie errors are estimated as part of the process, thereby creating a dual-state filter implementation. Also, the filter is implemented using inertial states rather than states relative to the target. External measurements include altimeter, velocimeter, star camera, terrain relative navigation sensor, and a hazard relative navigation sensor providing information regarding hazards on a map generated on-the-fly.

  10. Asynchronous State Estimation for Discrete-Time Switched Complex Networks With Communication Constraints.

    PubMed

    Zhang, Dan; Wang, Qing-Guo; Srinivasan, Dipti; Li, Hongyi; Yu, Li

    2018-05-01

    This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-based communication, signal quantization, and the random packet dropout problems are studied due to the limited communication resource. With the help of switched system theory and by resorting to some stochastic system analysis method, a sufficient condition is proposed to guarantee the exponential stability of estimation error system in the mean-square sense and a prescribed performance level is also ensured. The characterization of the desired estimator gains is derived in terms of the solution to a convex optimization problem. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example.

  11. An Empirical State Error Covariance Matrix Orbit Determination Example

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2015-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. First, consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. Then it follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix of the estimate will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully include all of the errors in the state estimate. The empirical error covariance matrix is determined from a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm. It is a formally correct, empirical state error covariance matrix obtained through use of the average form of the weighted measurement residual variance performance index rather than the usual total weighted residual form. Based on its formulation, this matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty and whether the source is anticipated or not. It is expected that the empirical error covariance matrix will give a better, statistical representation of the state error in poorly modeled systems or when sensor performance is suspect. In its most straight forward form, the technique only requires supplemental calculations to be added to existing batch estimation algorithms. In the current problem being studied a truth model making use of gravity with spherical, J2 and J4 terms plus a standard exponential type atmosphere with simple diurnal and random walk components is used. The ability of the empirical state error covariance matrix to account for errors is investigated under four scenarios during orbit estimation. These scenarios are: exact modeling under known measurement errors, exact modeling under corrupted measurement errors, inexact modeling under known measurement errors, and inexact modeling under corrupted measurement errors. For this problem a simple analog of a distributed space surveillance network is used. The sensors in this network make only range measurements and with simple normally distributed measurement errors. The sensors are assumed to have full horizon to horizon viewing at any azimuth. For definiteness, an orbit at the approximate altitude and inclination of the International Space Station is used for the study. The comparison analyses of the data involve only total vectors. No investigation of specific orbital elements is undertaken. The total vector analyses will look at the chisquare values of the error in the difference between the estimated state and the true modeled state using both the empirical and theoretical error covariance matrices for each of scenario.

  12. Lost in Translation: Public Policies, Evidence-Based Practice, and Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Dillenburger, Karola; McKerr, Lyn; Jordan, Julie-Ann

    2014-01-01

    Prevalence rates of autism spectrum disorder have risen dramatically over the past few decades (now estimated at 1:50 children). The estimated total annual cost to the public purse in the United States is US$137 billion, with an individual lifetime cost in the United Kingdom estimated at between £0.8 million and £1.23 million depending on the…

  13. Estimates of Smoking Before and During Pregnancy, and Smoking Cessation During Pregnancy: Comparing Two Population-Based Data Sources

    PubMed Central

    Dietz, Patricia M.; Farr, Sherry L.; D'Angelo, Denise V.; England, Lucinda J.

    2013-01-01

    Objectives We compared three measures of maternal smoking status—-prepregnancy, during pregnancy, and smoking cessation during pregnancy—between the Pregnancy Risk Assessment Monitoring System (PRAMS) questionnaire and the 2003 revised birth certificate (BC). Methods We analyzed data from 10,485 women with live births in eight states from the 2008 PRAMS survey, a confidential, anonymous survey administered in the postpartum period that is linked to select BC variables. We calculated self-reported prepregnancy and prenatal smoking (last trimester only) prevalence based on the BC, the PRAMS survey, and the two data sources combined, and the percentage of smoking cessation during pregnancy based on the BC and PRAMS survey. We used two-sided t-tests to compare BC and PRAMS estimates. Results Prepregnancy smoking prevalence estimates were 17.3% from the BC, 24.4% from PRAMS, and 25.4% on one or both data sources. Prenatal smoking prevalence estimates were 11.3% from the BC, 14.0% from PRAMS, and 15.2% on one or both data sources. The percentages of prepregnancy smokers who indicated that they quit smoking by the last trimester were 35.1% from the BC and 42.6% from PRAMS. The PRAMS estimates of prepregnancy and prenatal smoking, and smoking cessation during pregnancy were statistically higher than the corresponding BC estimates (t-tests, p<0.05). Conclusions PRAMS captured more women who smoked before and during the last trimester than the revised BC. States implementing PRAMS and the revised BC should consider information from both sources when developing population-based estimates of smoking before pregnancy and during the last trimester of pregnancy. PMID:23633733

  14. The episodic random utility model unifies time trade-off and discrete choice approaches in health state valuation

    PubMed Central

    Craig, Benjamin M; Busschbach, Jan JV

    2009-01-01

    Background To present an episodic random utility model that unifies time trade-off and discrete choice approaches in health state valuation. Methods First, we introduce two alternative random utility models (RUMs) for health preferences: the episodic RUM and the more common instant RUM. For the interpretation of time trade-off (TTO) responses, we show that the episodic model implies a coefficient estimator, and the instant model implies a mean slope estimator. Secondly, we demonstrate these estimators and the differences between the estimates for 42 health states using TTO responses from the seminal Measurement and Valuation in Health (MVH) study conducted in the United Kingdom. Mean slopes are estimates with and without Dolan's transformation of worse-than-death (WTD) responses. Finally, we demonstrate an exploded probit estimator, an extension of the coefficient estimator for discrete choice data that accommodates both TTO and rank responses. Results By construction, mean slopes are less than or equal to coefficients, because slopes are fractions and, therefore, magnify downward errors in WTD responses. The Dolan transformation of WTD responses causes mean slopes to increase in similarity to coefficient estimates, yet they are not equivalent (i.e., absolute mean difference = 0.179). Unlike mean slopes, coefficient estimates demonstrate strong concordance with rank-based predictions (Lin's rho = 0.91). Combining TTO and rank responses under the exploded probit model improves the identification of health state values, decreasing the average width of confidence intervals from 0.057 to 0.041 compared to TTO only results. Conclusion The episodic RUM expands upon the theoretical framework underlying health state valuation and contributes to health econometrics by motivating the selection of coefficient and exploded probit estimators for the analysis of TTO and rank responses. In future MVH surveys, sample size requirements may be reduced through the incorporation of multiple responses under a single estimator. PMID:19144115

  15. Estimation of sojourn time in chronic disease screening without data on interval cases.

    PubMed

    Chen, T H; Kuo, H S; Yen, M F; Lai, M S; Tabar, L; Duffy, S W

    2000-03-01

    Estimation of the sojourn time on the preclinical detectable period in disease screening or transition rates for the natural history of chronic disease usually rely on interval cases (diagnosed between screens). However, to ascertain such cases might be difficult in developing countries due to incomplete registration systems and difficulties in follow-up. To overcome this problem, we propose three Markov models to estimate parameters without using interval cases. A three-state Markov model, a five-state Markov model related to regional lymph node spread, and a five-state Markov model pertaining to tumor size are applied to data on breast cancer screening in female relatives of breast cancer cases in Taiwan. Results based on a three-state Markov model give mean sojourn time (MST) 1.90 (95% CI: 1.18-4.86) years for this high-risk group. Validation of these models on the basis of data on breast cancer screening in the age groups 50-59 and 60-69 years from the Swedish Two-County Trial shows the estimates from a three-state Markov model that does not use interval cases are very close to those from previous Markov models taking interval cancers into account. For the five-state Markov model, a reparameterized procedure using auxiliary information on clinically detected cancers is performed to estimate relevant parameters. A good fit of internal and external validation demonstrates the feasibility of using these models to estimate parameters that have previously required interval cancers. This method can be applied to other screening data in which there are no data on interval cases.

  16. Fan-out Estimation in Spin-based Quantum Computer Scale-up.

    PubMed

    Nguyen, Thien; Hill, Charles D; Hollenberg, Lloyd C L; James, Matthew R

    2017-10-17

    Solid-state spin-based qubits offer good prospects for scaling based on their long coherence times and nexus to large-scale electronic scale-up technologies. However, high-threshold quantum error correction requires a two-dimensional qubit array operating in parallel, posing significant challenges in fabrication and control. While architectures incorporating distributed quantum control meet this challenge head-on, most designs rely on individual control and readout of all qubits with high gate densities. We analysed the fan-out routing overhead of a dedicated control line architecture, basing the analysis on a generalised solid-state spin qubit platform parameterised to encompass Coulomb confined (e.g. donor based spin qubits) or electrostatically confined (e.g. quantum dot based spin qubits) implementations. The spatial scalability under this model is estimated using standard electronic routing methods and present-day fabrication constraints. Based on reasonable assumptions for qubit control and readout we estimate 10 2 -10 5 physical qubits, depending on the quantum interconnect implementation, can be integrated and fanned-out independently. Assuming relatively long control-free interconnects the scalability can be extended. Ultimately, the universal quantum computation may necessitate a much higher number of integrated qubits, indicating that higher dimensional electronics fabrication and/or multiplexed distributed control and readout schemes may be the preferredstrategy for large-scale implementation.

  17. On the Error State Selection for Stationary SINS Alignment and Calibration Kalman Filters—Part II: Observability/Estimability Analysis

    PubMed Central

    Silva, Felipe O.; Hemerly, Elder M.; Leite Filho, Waldemar C.

    2017-01-01

    This paper presents the second part of a study aiming at the error state selection in Kalman filters applied to the stationary self-alignment and calibration (SSAC) problem of strapdown inertial navigation systems (SINS). The observability properties of the system are systematically investigated, and the number of unobservable modes is established. Through the analytical manipulation of the full SINS error model, the unobservable modes of the system are determined, and the SSAC error states (except the velocity errors) are proven to be individually unobservable. The estimability of the system is determined through the examination of the major diagonal terms of the covariance matrix and their eigenvalues/eigenvectors. Filter order reduction based on observability analysis is shown to be inadequate, and several misconceptions regarding SSAC observability and estimability deficiencies are removed. As the main contributions of this paper, we demonstrate that, except for the position errors, all error states can be minimally estimated in the SSAC problem and, hence, should not be removed from the filter. Corroborating the conclusions of the first part of this study, a 12-state Kalman filter is found to be the optimal error state selection for SSAC purposes. Results from simulated and experimental tests support the outlined conclusions. PMID:28241494

  18. Real-Time State Estimation and Long-Term Model Adaptation: A Two-Sided Approach toward Personalized Diagnosis of Glucose and Insulin Levels

    PubMed Central

    Eberle, Claudia; Ament, Christoph

    2012-01-01

    Background With continuous glucose sensors (CGSs), it is possible to obtain a dynamical signal of the patient’s subcutaneous glucose concentration in real time. How could that information be exploited? We suggest a model-based diagnosis system with a twofold objective: real-time state estimation and long-term model parameter identification. Methods To obtain a dynamical model, Bergman’s nonlinear minimal model (considering plasma glucose G, insulin I, and interstitial insulin X) is extended by two states describing first and second insulin response. Furthermore, compartments for oral glucose and subcutaneous insulin inputs as well as for subcutaneous glucose measurement are added. The observability of states and external inputs as well as the identifiability of model parameters are assessed using the empirical observability Gramian. Signals are estimated for different nondiabetic and diabetic scenarios by unscented Kalman filter. Results (1) Observability of different state subsets is evaluated, e.g., from CGSs, {G, I} or {G, X} can be observed and the set {G, I, X} cannot. (2) Model parameters are included, e.g., it is possible to estimate the second-phase insulin response gain kG2 additionally. This can be used for model adaptation and as a diagnostic parameter that is almost zero for diabetes patients. (3) External inputs are considered, e.g., oral glucose is theoretically observable for nondiabetic patients, but estimation scenarios show that the time delay of 1 h limits application. Conclusions A real-time estimation of states (such as plasma insulin I) and parameters (such as kG2) is possible, which allows an improved real-time state prediction and a personalized model. PMID:23063042

  19. Experience-based utility and own health state valuation for a health state classification system: why and how to do it.

    PubMed

    Brazier, John; Rowen, Donna; Karimi, Milad; Peasgood, Tessa; Tsuchiya, Aki; Ratcliffe, Julie

    2017-10-11

    In the estimation of population value sets for health state classification systems such as the EuroQOL five dimensions questionnaire (EQ-5D), there is increasing interest in asking respondents to value their own health state, sometimes referred to as "experience-based utility values" or, more correctly, own rather than hypothetical health states. Own health state values differ to hypothetical health state values, and this may be attributable to many reasons. This paper critically examines whose values matter; why there is a difference between own and hypothetical values; how to measure own health state values; and why to use own health state values. Finally, the paper examines other ways that own health state values can be taken into account, such as including the use of informed general population preferences that may better take into account experience-based values.

  20. Beyond Happiness and Satisfaction: Toward Well-Being Indices Based on Stated Preference*

    PubMed Central

    Benjamin, Daniel J.; Kimball, Miles S.; Heffetz, Ori; Szembrot, Nichole

    2014-01-01

    This paper proposes foundations and a methodology for survey-based tracking of well-being. First, we develop a theory in which utility depends on “fundamental aspects” of well-being, measurable with surveys. Second, drawing from psychologists, philosophers, and economists, we compile a comprehensive list of such aspects. Third, we demonstrate our proposed method for estimating the aspects’ relative marginal utilities—a necessary input for constructing an individual-level well-being index—by asking ~4,600 U.S. survey respondents to state their preference between pairs of aspect bundles. We estimate high relative marginal utilities for aspects related to family, health, security, values, freedom, happiness, and life satisfaction. PMID:25404760

  1. Combining Video, Audio and Lexical Indicators of Affect in Spontaneous Conversation via Particle Filtering

    PubMed Central

    Savran, Arman; Cao, Houwei; Shah, Miraj; Nenkova, Ani; Verma, Ragini

    2013-01-01

    We present experiments on fusing facial video, audio and lexical indicators for affect estimation during dyadic conversations. We use temporal statistics of texture descriptors extracted from facial video, a combination of various acoustic features, and lexical features to create regression based affect estimators for each modality. The single modality regressors are then combined using particle filtering, by treating these independent regression outputs as measurements of the affect states in a Bayesian filtering framework, where previous observations provide prediction about the current state by means of learned affect dynamics. Tested on the Audio-visual Emotion Recognition Challenge dataset, our single modality estimators achieve substantially higher scores than the official baseline method for every dimension of affect. Our filtering-based multi-modality fusion achieves correlation performance of 0.344 (baseline: 0.136) and 0.280 (baseline: 0.096) for the fully continuous and word level sub challenges, respectively. PMID:25300451

  2. Combining Video, Audio and Lexical Indicators of Affect in Spontaneous Conversation via Particle Filtering.

    PubMed

    Savran, Arman; Cao, Houwei; Shah, Miraj; Nenkova, Ani; Verma, Ragini

    2012-01-01

    We present experiments on fusing facial video, audio and lexical indicators for affect estimation during dyadic conversations. We use temporal statistics of texture descriptors extracted from facial video, a combination of various acoustic features, and lexical features to create regression based affect estimators for each modality. The single modality regressors are then combined using particle filtering, by treating these independent regression outputs as measurements of the affect states in a Bayesian filtering framework, where previous observations provide prediction about the current state by means of learned affect dynamics. Tested on the Audio-visual Emotion Recognition Challenge dataset, our single modality estimators achieve substantially higher scores than the official baseline method for every dimension of affect. Our filtering-based multi-modality fusion achieves correlation performance of 0.344 (baseline: 0.136) and 0.280 (baseline: 0.096) for the fully continuous and word level sub challenges, respectively.

  3. FAQ-HDSC/OWP

    Science.gov Websites

    improve transition, they will be different from the ones published on the PFDS around volumes' boundaries . 2.7 Why do I see inconsistencies in some NOAA Atlas 14 estimates at boundaries of different NOAA Atlas different times in volumes based on state boundaries, some differences in estimates between volumes at

  4. A Model-Based Approach to Inventory Stratification

    Treesearch

    Ronald E. McRoberts

    2006-01-01

    Forest inventory programs report estimates of forest variables for areas of interest ranging in size from municipalities to counties to States and Provinces. Classified satellite imagery has been shown to be an effective source of ancillary data that, when used with stratified estimation techniques, contributes to increased precision with little corresponding increase...

  5. An estimate of undiscovered conventional oil and gas resources of the world, 2012

    USGS Publications Warehouse

    Schenk, Christopher J.

    2012-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 565 billion barrels of conventional oil and 5,606 trillion cubic feet of undiscovered conventional natural gas in 171 priority geologic provinces of the world, exclusive of the United States.

  6. Variation in bird-window collision mortality and scavenging rates within an urban landscape

    EPA Science Inventory

    Annual avian mortality from collisions with windows and buildings is estimated to range from a million to a billion birds in the United States alone. However, estimates of mortality based on carcass counts suffer from bias due to imperfect detection and carcass scavenging. We stu...

  7. Uninformative Prior Multiple Target Tracking Using Evidential Particle Filters

    NASA Astrophysics Data System (ADS)

    Worthy, J. L., III; Holzinger, M. J.

    Space situational awareness requires the ability to initialize state estimation from short measurements and the reliable association of observations to support the characterization of the space environment. The electro-optical systems used to observe space objects cannot fully characterize the state of an object given a short, unobservable sequence of measurements. Further, it is difficult to associate these short-arc measurements if many such measurements are generated through the observation of a cluster of satellites, debris from a satellite break-up, or from spurious detections of an object. An optimization based, probabilistic short-arc observation association approach coupled with a Dempster-Shafer based evidential particle filter in a multiple target tracking framework is developed and proposed to address these problems. The optimization based approach is shown in literature to be computationally efficient and can produce probabilities of association, state estimates, and covariances while accounting for systemic errors. Rigorous application of Dempster-Shafer theory is shown to be effective at enabling ignorance to be properly accounted for in estimation by augmenting probability with belief and plausibility. The proposed multiple hypothesis framework will use a non-exclusive hypothesis formulation of Dempster-Shafer theory to assign belief mass to candidate association pairs and generate tracks based on the belief to plausibility ratio. The proposed algorithm is demonstrated using simulated observations of a GEO satellite breakup scenario.

  8. Internet-based wide area measurement applications in deregulated power systems

    NASA Astrophysics Data System (ADS)

    Khatib, Abdel-Rahman Amin

    Since the deregulation of power systems was started in 1989 in the UK, many countries have been motivated to undergo deregulation. The United State started deregulation in the energy sector in California back in 1996. Since that time many other states have also started the deregulation procedures in different utilities. Most of the deregulation market in the United States now is in the wholesale market area, however, the retail market is still undergoing changes. Deregulation has many impacts on power system network operation and control. The number of power transactions among the utilities has increased and many Independent Power Producers (IPPs) now have a rich market for competition especially in the green power market. The Federal Energy Regulatory Commission (FERC) called upon utilities to develop the Regional Transmission Organization (RTO). The RTO is a step toward the national transmission grid. RTO is an independent entity that will operate the transmission system in a large region. The main goal of forming RTOs is to increase the operation efficiency of the power network under the impact of the deregulated market. The objective of this work is to study Internet based Wide Area Information Sharing (WAIS) applications in the deregulated power system. The study is the first step toward building a national transmission grid picture using information sharing among utilities. Two main topics are covered as applications for the WAIS in the deregulated power system, state estimation and Total Transfer Capability (TTC) calculations. As a first step for building this national transmission grid picture, WAIS and the level of information sharing of the state estimation calculations have been discussed. WAIS impacts to the TTC calculations are also covered. A new technique to update the TTC using on line measurements based on WAIS created by sharing state estimation is presented.

  9. State Incentives for Innovation, Star Scientists, and Jobs: Evidence from Biotech. Upjohn Institute Working Paper No. 14-203

    ERIC Educational Resources Information Center

    Moretti, Enrico; Wilson, Daniel J.

    2013-01-01

    We evaluate the effects of state-provided financial incentives for biotech companies, which are part of a growing trend of placed-based policies designed to spur innovation clusters. We estimate that the adoption of subsidies for biotech employers by a state raises the number of star biotech scientists in that state by about 15 percent over a…

  10. 77 FR 65693 - Notice of Intent To Make Changes in the State Title V Maternal and Child Health Block Grant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... (ACS) poverty estimates. Title V MCH Block Grant funds are currently allocated to states based in part on a calculation of the number of children living in poverty (in an individual state) as compared to the total number of children living in poverty in the United States. Historically, data for the number...

  11. Development of a preference-based index from the National Eye Institute Visual Function Questionnaire-25.

    PubMed

    Rentz, Anne M; Kowalski, Jonathan W; Walt, John G; Hays, Ron D; Brazier, John E; Yu, Ren; Lee, Paul; Bressler, Neil; Revicki, Dennis A

    2014-03-01

    Understanding how individuals value health states is central to patient-centered care and to health policy decision making. Generic preference-based measures of health may not effectively capture the impact of ocular diseases. Recently, 6 items from the National Eye Institute Visual Function Questionnaire-25 were used to develop the Visual Function Questionnaire-Utility Index health state classification, which defines visual function health states. To describe elicitation of preferences for health states generated from the Visual Function Questionnaire-Utility Index health state classification and development of an algorithm to estimate health preference scores for any health state. Nonintervention, cross-sectional study of the general community in 4 countries (Australia, Canada, United Kingdom, and United States). A total of 607 adult participants were recruited from local newspaper advertisements. In the United Kingdom, an existing database of participants from previous studies was used for recruitment. Eight of 15,625 possible health states from the Visual Function Questionnaire-Utility Index were valued using time trade-off technique. A θ severity score was calculated for Visual Function Questionnaire-Utility Index-defined health states using item response theory analysis. Regression models were then used to develop an algorithm to assign health state preference values for all potential health states defined by the Visual Function Questionnaire-Utility Index. Health state preference values for the 8 states ranged from a mean (SD) of 0.343 (0.395) to 0.956 (0.124). As expected, preference values declined with worsening visual function. Results indicate that the Visual Function Questionnaire-Utility Index describes states that participants view as spanning most of the continuum from full health to dead. Visual Function Questionnaire-Utility Index health state classification produces health preference scores that can be estimated in vision-related studies that include the National Eye Institute Visual Function Questionnaire-25. These preference scores may be of value for estimating utilities in economic and health policy analyses.

  12. The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States

    Treesearch

    Brad Upton; Reid Miner; Mike Spinney; Linda S. Heath

    2008-01-01

    Data developed by the Consortium for Research on Renewable Industrial Materials were used to estimate savings of greenhouse gas emissions and energy consumption associated with use of wood-based building materials in residential construction in the United States. Results indicate that houses with wood-based wall systems require 15-16% less total energy for non-heating/...

  13. Finite-time output feedback control of uncertain switched systems via sliding mode design

    NASA Astrophysics Data System (ADS)

    Zhao, Haijuan; Niu, Yugang; Song, Jun

    2018-04-01

    The problem of sliding mode control (SMC) is investigated for a class of uncertain switched systems subject to unmeasurable state and assigned finite (possible short) time constraint. A key issue is how to ensure the finite-time boundedness (FTB) of system state during reaching phase and sliding motion phase. To this end, a state observer is constructed to estimate the unmeasured states. And then, a state estimate-based SMC law is designed such that the state trajectories can be driven onto the specified integral sliding surface during the assigned finite time interval. By means of partitioning strategy, the corresponding FTB over reaching phase and sliding motion phase are guaranteed and the sufficient conditions are derived via average dwell time technique. Finally, an illustrative example is given to illustrate the proposed method.

  14. Development and verification of NRC`s single-rod fuel performance codes FRAPCON-3 AND FRAPTRAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyer, C.E.; Cunningham, M.E.; Lanning, D.D.

    1998-03-01

    The FRAPCON and FRAP-T code series, developed in the 1970s and early 1980s, are used by the US Nuclear Regulatory Commission (NRC) to predict fuel performance during steady-state and transient power conditions, respectively. Both code series are now being updated by Pacific Northwest National Laboratory to improve their predictive capabilities at high burnup levels. The newest versions of the codes are called FRAPCON-3 and FRAPTRAN. The updates to fuel property and behavior models are focusing on providing best estimate predictions under steady-state and fast transient power conditions up to extended fuel burnups (> 55 GWd/MTU). Both codes will be assessedmore » against a data base independent of the data base used for code benchmarking and an estimate of code predictive uncertainties will be made based on comparisons to the benchmark and independent data bases.« less

  15. ADMIT: a toolbox for guaranteed model invalidation, estimation and qualitative–quantitative modeling

    PubMed Central

    Streif, Stefan; Savchenko, Anton; Rumschinski, Philipp; Borchers, Steffen; Findeisen, Rolf

    2012-01-01

    Summary: Often competing hypotheses for biochemical networks exist in the form of different mathematical models with unknown parameters. Considering available experimental data, it is then desired to reject model hypotheses that are inconsistent with the data, or to estimate the unknown parameters. However, these tasks are complicated because experimental data are typically sparse, uncertain, and are frequently only available in form of qualitative if–then observations. ADMIT (Analysis, Design and Model Invalidation Toolbox) is a MatLabTM-based tool for guaranteed model invalidation, state and parameter estimation. The toolbox allows the integration of quantitative measurement data, a priori knowledge of parameters and states, and qualitative information on the dynamic or steady-state behavior. A constraint satisfaction problem is automatically generated and algorithms are implemented for solving the desired estimation, invalidation or analysis tasks. The implemented methods built on convex relaxation and optimization and therefore provide guaranteed estimation results and certificates for invalidity. Availability: ADMIT, tutorials and illustrative examples are available free of charge for non-commercial use at http://ifatwww.et.uni-magdeburg.de/syst/ADMIT/ Contact: stefan.streif@ovgu.de PMID:22451270

  16. ADMIT: a toolbox for guaranteed model invalidation, estimation and qualitative-quantitative modeling.

    PubMed

    Streif, Stefan; Savchenko, Anton; Rumschinski, Philipp; Borchers, Steffen; Findeisen, Rolf

    2012-05-01

    Often competing hypotheses for biochemical networks exist in the form of different mathematical models with unknown parameters. Considering available experimental data, it is then desired to reject model hypotheses that are inconsistent with the data, or to estimate the unknown parameters. However, these tasks are complicated because experimental data are typically sparse, uncertain, and are frequently only available in form of qualitative if-then observations. ADMIT (Analysis, Design and Model Invalidation Toolbox) is a MatLab(TM)-based tool for guaranteed model invalidation, state and parameter estimation. The toolbox allows the integration of quantitative measurement data, a priori knowledge of parameters and states, and qualitative information on the dynamic or steady-state behavior. A constraint satisfaction problem is automatically generated and algorithms are implemented for solving the desired estimation, invalidation or analysis tasks. The implemented methods built on convex relaxation and optimization and therefore provide guaranteed estimation results and certificates for invalidity. ADMIT, tutorials and illustrative examples are available free of charge for non-commercial use at http://ifatwww.et.uni-magdeburg.de/syst/ADMIT/

  17. Estimation and Fusion for Tracking Over Long-Haul Links Using Artificial Neural Networks

    DOE PAGES

    Liu, Qiang; Brigham, Katharine; Rao, Nageswara S. V.

    2017-02-01

    In a long-haul sensor network, sensors are remotely deployed over a large geographical area to perform certain tasks, such as tracking and/or monitoring of one or more dynamic targets. A remote fusion center fuses the information provided by these sensors so that a final estimate of certain target characteristics – such as the position – is expected to possess much improved quality. In this paper, we pursue learning-based approaches for estimation and fusion of target states in longhaul sensor networks. In particular, we consider learning based on various implementations of artificial neural networks (ANNs). Finally, the joint effect of (i)more » imperfect communication condition, namely, link-level loss and delay, and (ii) computation constraints, in the form of low-quality sensor estimates, on ANN-based estimation and fusion, is investigated by means of analytical and simulation studies.« less

  18. Estimation and Fusion for Tracking Over Long-Haul Links Using Artificial Neural Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qiang; Brigham, Katharine; Rao, Nageswara S. V.

    In a long-haul sensor network, sensors are remotely deployed over a large geographical area to perform certain tasks, such as tracking and/or monitoring of one or more dynamic targets. A remote fusion center fuses the information provided by these sensors so that a final estimate of certain target characteristics – such as the position – is expected to possess much improved quality. In this paper, we pursue learning-based approaches for estimation and fusion of target states in longhaul sensor networks. In particular, we consider learning based on various implementations of artificial neural networks (ANNs). Finally, the joint effect of (i)more » imperfect communication condition, namely, link-level loss and delay, and (ii) computation constraints, in the form of low-quality sensor estimates, on ANN-based estimation and fusion, is investigated by means of analytical and simulation studies.« less

  19. Evaluation of quality of precipitation products: A case study using WRF and IMERG data over the central United States

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lin, L. F.; Bras, R. L.

    2017-12-01

    Hydrological applications rely on the availability and quality of precipitation products, specially model- and satellite-based products for use in areas without ground measurements. It is known that the quality of model- and satellite-based precipitation products are complementary—model-based products exhibiting high quality during winters while satellite-based products seem to be better during summers. To explore that behavior, this study uses 2-m air temperature as auxiliary information to evaluate high-resolution (0.1°×0.1° every hour) precipitation products from Weather Research and Forecasting (WRF) simulations and from version-4 Integrated Multi-satellite Retrievals for GPM (IMERG) early and final runs. The products are evaluated relative to the reference NCEP Stage IV precipitation estimates over the central United States in 2016. The results show that the WRF and IMERG final-run estimates are nearly unbiased while the IMERG early-run estimates positively biased. The results also show that the WRF estimates exhibit high correlations with the reference data when the temperature falls below 280°K and the IMERG estimates (i.e., both early and final runs) do so when the temperature exceeds 280°K. Moreover, the temperature threshold of 280°K, which distinguishes the quality of the WRF and the IMERG products, does not vary significantly with either season or location. This study not only adds insight into current precipitation research on the quality of precipitation products but also suggests a simple way for choosing either a model- or satellite-based product or a hybrid model/satellite product for applications.

  20. A selective-update affine projection algorithm with selective input vectors

    NASA Astrophysics Data System (ADS)

    Kong, NamWoong; Shin, JaeWook; Park, PooGyeon

    2011-10-01

    This paper proposes an affine projection algorithm (APA) with selective input vectors, which based on the concept of selective-update in order to reduce estimation errors and computations. The algorithm consists of two procedures: input- vector-selection and state-decision. The input-vector-selection procedure determines the number of input vectors by checking with mean square error (MSE) whether the input vectors have enough information for update. The state-decision procedure determines the current state of the adaptive filter by using the state-decision criterion. As the adaptive filter is in transient state, the algorithm updates the filter coefficients with the selected input vectors. On the other hand, as soon as the adaptive filter reaches the steady state, the update procedure is not performed. Through these two procedures, the proposed algorithm achieves small steady-state estimation errors, low computational complexity and low update complexity for colored input signals.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, David W.; Jarman, Kenneth D.; Xu, Zhijie

    This report describes our initial research to quantify uncertainties in the identification and characterization of possible attack states in a network. As a result, we should be able to estimate the current state in which the network is operating, based on a wide variety of network data, and attach a defensible measure of confidence to these state estimates. The output of this research will be new uncertainty quantification (UQ) methods to help develop a process for model development and apply UQ to characterize attacks/adversaries, create an understanding of the degree to which methods scale to "big" data, and offer methodsmore » for addressing model approaches with regard to validation and accuracy.« less

  2. Autonomous Component Health Management with Failed Component Detection, Identification, and Avoidance

    NASA Technical Reports Server (NTRS)

    Davis, Robert N.; Polites, Michael E.; Trevino, Luis C.

    2004-01-01

    This paper details a novel scheme for autonomous component health management (ACHM) with failed actuator detection and failed sensor detection, identification, and avoidance. This new scheme has features that far exceed the performance of systems with triple-redundant sensing and voting, yet requires fewer sensors and could be applied to any system with redundant sensing. Relevant background to the ACHM scheme is provided, and the simulation results for the application of that scheme to a single-axis spacecraft attitude control system with a 3rd order plant and dual-redundant measurement of system states are presented. ACHM fulfills key functions needed by an integrated vehicle health monitoring (IVHM) system. It is: autonomous; adaptive; works in realtime; provides optimal state estimation; identifies failed components; avoids failed components; reconfigures for multiple failures; reconfigures for intermittent failures; works for hard-over, soft, and zero-output failures; and works for both open- and closed-loop systems. The ACHM scheme combines a prefilter that generates preliminary state estimates, detects and identifies failed sensors and actuators, and avoids the use of failed sensors in state estimation with a fixed-gain Kalman filter that generates optimal state estimates and provides model-based state estimates that comprise an integral part of the failure detection logic. The results show that ACHM successfully isolates multiple persistent and intermittent hard-over, soft, and zero-output failures. It is now ready to be tested on a computer model of an actual system.

  3. Estimating monetary damages from flooding in the United States under a changing climate

    EPA Science Inventory

    A national-scale analysis of potential changes in monetary damages from flooding under climate change. The approach uses empirically based statistical relationships between historical precipitation and flood damage records from 18 hydrologic regions of the United States, along w...

  4. Changing demographics and state fiscal outlook: the case of sales taxes.

    PubMed

    Mullins, D R; Wallace, S

    1996-04-01

    "Broad-scale demographic changes have implications for state and local finance in terms of the composition of the base of revenue sources and their yields. This article examines the effect of such changes on the potential future yield of consumption-based taxes. The effect of household characteristics and composition on the consumption of selected groups of goods subject to ad valorem retail sales taxes is estimated, generating demographic elasticities of consumption. These elasticities are applied to projected demographic changes in eight states through the year 2000. The results show rather wide variation in expected consumption shifts and potential tax bases across the states, with income growth having the greatest effect...." The geographical focus is on the United States. excerpt

  5. A review of the population estimation approach of the North American landbird conservation plan

    USGS Publications Warehouse

    Thogmartin, Wayne E.; Howe, Frank P.; James, Frances C.; Johnson, Douglas H.; Reed, Eric T.; Sauer, John R.; Thompson, Frank R.

    2006-01-01

    As part of their development of a continental plan for monitoring landbirds (Rich et al. 2004), Partners in Flight (PIF) applied a new method to make preliminary estimates of population size for all 448 species of landbirds present in the continental United States and Canada (Table 1). Estimation of the global population size of North American landbirds was intended to (1) identify the degree of vulnerability of each species, (2) provide estimates of the current population size for each species, and (3) provide a starting point for estimating population sizes in states, provinces, territories, and Bird Conservation Regions (Rich et al. 2004). A method proposed by Rosenberg and Blancher (2005) was used to derive population estimates from available survey data. To enhance the credibility of these estimates, PIF organized a review of the methodology used to estimate North American landbird population sizes. A planning committee selected members from the ornithological and biometrical communities (hereafter “the panel”), with the aim of selecting individuals from academia, state natural-resource agencies, and the U.S. and Canadian federal governments, including the Canadian Wildlife Service, the U.S. Geological Survey, and the U.S. Department of Agriculture Forest Service.The panel addressed three questions: (1) Were the methods of population estimation proposed by PIF reasonable? (2) What actions could be taken to improve the data or analyses on which the PIF population estimates were based? and (3) How should the PIF population estimates be interpreted?

  6. Online Kinematic and Dynamic-State Estimation for Constrained Multibody Systems Based on IMUs

    PubMed Central

    Torres-Moreno, José Luis; Blanco-Claraco, José Luis; Giménez-Fernández, Antonio; Sanjurjo, Emilio; Naya, Miguel Ángel

    2016-01-01

    This article addresses the problems of online estimations of kinematic and dynamic states of a mechanism from a sequence of noisy measurements. In particular, we focus on a planar four-bar linkage equipped with inertial measurement units (IMUs). Firstly, we describe how the position, velocity, and acceleration of all parts of the mechanism can be derived from IMU signals by means of multibody kinematics. Next, we propose the novel idea of integrating the generic multibody dynamic equations into two variants of Kalman filtering, i.e., the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), in a way that enables us to handle closed-loop, constrained mechanisms, whose state space variables are not independent and would normally prevent the direct use of such estimators. The proposal in this work is to apply those estimators over the manifolds of allowed positions and velocities, by means of estimating a subset of independent coordinates only. The proposed techniques are experimentally validated on a testbed equipped with encoders as a means of establishing the ground-truth. Estimators are run online in real-time, a feature not matched by any previous procedure of those reported in the literature on multibody dynamics. PMID:26959027

  7. Cortical connective field estimates from resting state fMRI activity.

    PubMed

    Gravel, Nicolás; Harvey, Ben; Nordhjem, Barbara; Haak, Koen V; Dumoulin, Serge O; Renken, Remco; Curčić-Blake, Branislava; Cornelissen, Frans W

    2014-01-01

    One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual cortex during resting state functional magnetic resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural activity in a voxel as a function of response selectivity to stimulus position in visual space, CF modeling predicts the activity of voxels in one visual area as a function of the aggregate activity in voxels in another visual area. In combination with pRF mapping, CF locations on the cortical surface can be interpreted in visual space, thus enabling reconstruction of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization. Therefore, we conclude that-despite some variability in CF estimates between RS scans-neural properties such as CF maps and CF size can be derived from resting state data.

  8. Nonlinear stability of traffic models and the use of Lyapunov vectors for estimating the traffic state

    NASA Astrophysics Data System (ADS)

    Palatella, Luigi; Trevisan, Anna; Rambaldi, Sandro

    2013-08-01

    Valuable information for estimating the traffic flow is obtained with current GPS technology by monitoring position and velocity of vehicles. In this paper, we present a proof of concept study that shows how the traffic state can be estimated using only partial and noisy data by assimilating them in a dynamical model. Our approach is based on a data assimilation algorithm, developed by the authors for chaotic geophysical models, designed to be equivalent but computationally much less demanding than the traditional extended Kalman filter. Here we show that the algorithm is even more efficient if the system is not chaotic and demonstrate by numerical experiments that an accurate reconstruction of the complete traffic state can be obtained at a very low computational cost by monitoring only a small percentage of vehicles.

  9. JEDI: Jobs and Economic Development Impacts Model, National Renewable Energy Laboratory (NREL) (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-12-01

    The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local (usually state) level. First developed by NREL's Wind Powering America program to model wind energy jobs and impacts, JEDI has been expanded to biofuels, concentrating solar power, coal, and natural gas power plants. Based on project-specific and default inputs (derived from industry norms), JEDI estimates the number of jobs and economic impacts to a local area (usually a state) that could reasonably be supported by a power generation project. For example, JEDImore » estimates the number of in-state construction jobs from a new wind farm. This fact sheet provides an overview of the JEDI model as it pertains to wind energy projects.« less

  10. Estimation of geographic variation in human papillomavirus vaccine uptake in men and women: an online survey using facebook recruitment.

    PubMed

    Nelson, Erik J; Hughes, John; Oakes, J Michael; Pankow, James S; Kulasingam, Shalini L

    2014-09-01

    Federally funded surveys of human papillomavirus (HPV) vaccine uptake are important for pinpointing geographically based health disparities. Although national and state level data are available, local (ie, county and postal code level) data are not due to small sample sizes, confidentiality concerns, and cost. Local level HPV vaccine uptake data may be feasible to obtain by targeting specific geographic areas through social media advertising and recruitment strategies, in combination with online surveys. Our goal was to use Facebook-based recruitment and online surveys to estimate local variation in HPV vaccine uptake among young men and women in Minnesota. From November 2012 to January 2013, men and women were recruited via a targeted Facebook advertisement campaign to complete an online survey about HPV vaccination practices. The Facebook advertisements were targeted to recruit men and women by location (25 mile radius of Minneapolis, Minnesota, United States), age (18-30 years), and language (English). Of the 2079 men and women who responded to the Facebook advertisements and visited the study website, 1003 (48.2%) enrolled in the study and completed the survey. The average advertising cost per completed survey was US $1.36. Among those who reported their postal code, 90.6% (881/972) of the participants lived within the previously defined geographic study area. Receipt of 1 dose or more of HPV vaccine was reported by 65.6% women (351/535), and 13.0% (45/347) of men. These results differ from previously reported Minnesota state level estimates (53.8% for young women and 20.8% for young men) and from national estimates (34.5% for women and 2.3% for men). This study shows that recruiting a representative sample of young men and women based on county and postal code location to complete a survey on HPV vaccination uptake via the Internet is a cost-effective and feasible strategy. This study also highlights the need for local estimates to assess the variation in HPV vaccine uptake, as these estimates differ considerably from those obtained using survey data that are aggregated to the state or federal level.

  11. Estimation of Geographic Variation in Human Papillomavirus Vaccine Uptake in Men and Women: An Online Survey Using Facebook Recruitment

    PubMed Central

    Hughes, John; Oakes, J Michael; Pankow, James S; Kulasingam, Shalini L

    2014-01-01

    Background Federally funded surveys of human papillomavirus (HPV) vaccine uptake are important for pinpointing geographically based health disparities. Although national and state level data are available, local (ie, county and postal code level) data are not due to small sample sizes, confidentiality concerns, and cost. Local level HPV vaccine uptake data may be feasible to obtain by targeting specific geographic areas through social media advertising and recruitment strategies, in combination with online surveys. Objective Our goal was to use Facebook-based recruitment and online surveys to estimate local variation in HPV vaccine uptake among young men and women in Minnesota. Methods From November 2012 to January 2013, men and women were recruited via a targeted Facebook advertisement campaign to complete an online survey about HPV vaccination practices. The Facebook advertisements were targeted to recruit men and women by location (25 mile radius of Minneapolis, Minnesota, United States), age (18-30 years), and language (English). Results Of the 2079 men and women who responded to the Facebook advertisements and visited the study website, 1003 (48.2%) enrolled in the study and completed the survey. The average advertising cost per completed survey was US $1.36. Among those who reported their postal code, 90.6% (881/972) of the participants lived within the previously defined geographic study area. Receipt of 1 dose or more of HPV vaccine was reported by 65.6% women (351/535), and 13.0% (45/347) of men. These results differ from previously reported Minnesota state level estimates (53.8% for young women and 20.8% for young men) and from national estimates (34.5% for women and 2.3% for men). Conclusions This study shows that recruiting a representative sample of young men and women based on county and postal code location to complete a survey on HPV vaccination uptake via the Internet is a cost-effective and feasible strategy. This study also highlights the need for local estimates to assess the variation in HPV vaccine uptake, as these estimates differ considerably from those obtained using survey data that are aggregated to the state or federal level. PMID:25231937

  12. Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis

    PubMed Central

    Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel

    2013-01-01

    This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007

  13. Influence of capillary end effects on steady-state relative permeability estimates from direct pore-scale simulations

    NASA Astrophysics Data System (ADS)

    Guédon, Gaël Raymond; Hyman, Jeffrey De'Haven; Inzoli, Fabio; Riva, Monica; Guadagnini, Alberto

    2017-12-01

    We investigate and characterize the influence of capillary end effects on steady-state relative permeabilities obtained in pore-scale numerical simulations of two-phase flows. Our study is motivated by the observation that capillary end effects documented in two-phase laboratory-scale experiments can significantly influence permeability estimates. While numerical simulations of two-phase flows in reconstructed pore-spaces are increasingly employed to characterize relative permeabilities, a phenomenon which is akin to capillary end effects can also arise in such analyses due to the constraints applied at the boundaries of the computational domain. We profile the relative strength of these capillary end effects on the calculation of steady-state relative permeabilities obtained within randomly generated porous micro-structures using a finite volume-based two-phase flow solver. We suggest a procedure to estimate the extent of the regions influenced by these capillary end effects, which in turn allows for the alleviation of bias in the estimation of relative permeabilities.

  14. Maneuver Algorithm for Bearings-Only Target Tracking with Acceleration and Field of View Constraints

    NASA Astrophysics Data System (ADS)

    Roh, Heekun; Shim, Sang-Wook; Tahk, Min-Jea

    2018-05-01

    This paper proposes a maneuver algorithm for the agent performing target tracking with bearing angle information only. The goal of the agent is to estimate the target position and velocity based only on the bearing angle data. The methods of bearings-only target state estimation are outlined. The nature of bearings-only target tracking problem is then addressed. Based on the insight from above-mentioned properties, the maneuver algorithm for the agent is suggested. The proposed algorithm is composed of a nonlinear, hysteresis guidance law and the estimation accuracy assessment criteria based on the theory of Cramer-Rao bound. The proposed guidance law generates lateral acceleration command based on current field of view angle. The accuracy criteria supply the expected estimation variance, which acts as a terminal criterion for the proposed algorithm. The aforementioned algorithm is verified with a two-dimensional simulation.

  15. An expert system for diagnostics and estimation of steam turbine components condition

    NASA Astrophysics Data System (ADS)

    Murmansky, B. E.; Aronson, K. E.; Brodov, Yu. M.

    2017-11-01

    The report describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems components. The expert system is based on Bayes’ theorem and permits to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and of 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 evidence (indications); the procedures are also designated for 20 state parameters estimation. Similar knowledge base containing the diagnostic features and faults hypotheses are formulated for other technological subsystems of turbine unit. With the necessary initial information available a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path it is the correlation and regression analysis of multifactor relationship between the vibration parameters variations and the regime parameters; for system of thermal expansions it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement and so forth. With a lack of initial information the expert system enables to formulate a diagnosis, calculating the probability of faults hypotheses, given the degree of the expert confidence in estimation of turbine components operation parameters.

  16. Enhanced Performance Controller Design for Stochastic Systems by Adding Extra State Estimation onto the Existing Closed Loop Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyang; Zhang, Qichun; Wang, Hong

    To enhance the performance of the tracking property , this paper presents a novel control algorithm for a class of linear dynamic stochastic systems with unmeasurable states, where the performance enhancement loop is established based on Kalman filter. Without changing the existing closed loop with the PI controller, the compensative controller is designed to minimize the variances of the tracking errors using the estimated states and the propagation of state variances. Moreover, the stability of the closed-loop systems has been analyzed in the mean-square sense. A simulated example is included to show the effectiveness of the presented control algorithm, wheremore » encouraging results have been obtained.« less

  17. Large Area Crop Inventory Experiment (LACIE). YES phase 1 yield feasibility report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The author has identified the following significant results. Each state model was separately evaluated to determine if a projected performance to the country level would satisfy a 90/90 criterion. All state models, except the North Dakota and Kansas models, satisfied that criterion both for district estimates aggregated to the state level and for state estimates directly from the models. In addition to the tests of the 90/90 criterion, the models were examined for their ability to adequately respond to fluctuations in weather. This portion of the analysis was based on a subjective interpretation of values of certain description statistics. As a result, 10 of the 12 models were judged to respond inadequately to variation in weather-related variables.

  18. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter

    NASA Astrophysics Data System (ADS)

    Li, Yi; Abdel-Monem, Mohamed; Gopalakrishnan, Rahul; Berecibar, Maitane; Nanini-Maury, Elise; Omar, Noshin; van den Bossche, Peter; Van Mierlo, Joeri

    2018-01-01

    This paper proposes an advanced state of health (SoH) estimation method for high energy NMC lithium-ion batteries based on the incremental capacity (IC) analysis. IC curves are used due to their ability of detect and quantify battery degradation mechanism. A simple and robust smoothing method is proposed based on Gaussian filter to reduce the noise on IC curves, the signatures associated with battery ageing can therefore be accurately identified. A linear regression relationship is found between the battery capacity with the positions of features of interest (FOIs) on IC curves. Results show that the developed SoH estimation function from one single battery cell is able to evaluate the SoH of other batteries cycled under different cycling depth with less than 2.5% maximum errors, which proves the robustness of the proposed method on SoH estimation. With this technique, partial charging voltage curves can be used for SoH estimation and the testing time can be therefore largely reduced. This method shows great potential to be applied in reality, as it only requires static charging curves and can be easily implemented in battery management system (BMS).

  19. Extrapolating existing soil organic carbon data to estimate soil organic carbon stocks below 20 cm

    Treesearch

    An-Min Wu; Cinzia Fissore; Charles H. Perry; An-Min Wu; Brent Dalzell; Barry T. Wilson

    2015-01-01

    Estimates of forest soil organic carbon stocks across the US are currently developed from expert opinion in STATSGO/SSURGO and linked to forest type. The results are reported to the US EPA as the official United States submission to the UN Framework Convention on Climate Change. Beginning in 2015, however, estimates of soil organic carbon (SOC) stocks will be based on...

  20. Variation between last-menstrual-period and clinical estimates of gestational age in vital records.

    PubMed

    Qin, Cheng; Hsia, Jason; Berg, Cynthia J

    2008-03-15

    An accurate assessment of gestational age is vital to population-based research and surveillance in maternal and infant health. However, the quality of gestational age measurements derived from birth certificates has been in question. Using the 2002 US public-use natality file, the authors examined the agreement between estimates of gestational age based on the last menstrual period (LMP) and clinical estimates in vital records across durations of gestation and US states and explored reasons for disagreement. Agreement between the LMP and the clinical estimate of gestational age varied substantially across gestations and among states. Preterm births were more likely than term births to have disagreement between the two estimates. Maternal age, maternal education, initiation of prenatal care, order of livebirth, and use of ultrasound had significant independent effects on the disagreement between the two measures, regardless of gestational age, but these factors made little difference in the magnitude of gestational age group differences. Information available on birth certificates was not sufficient to understand this disparity. The lowest agreement between the LMP and the clinical estimate was observed among preterm infants born at 28-36 weeks' gestation, who accounted for more than 90% of total preterm births. This finding deserves particular attention and further investigation.

  1. Matter effects on binary neutron star waveforms

    NASA Astrophysics Data System (ADS)

    Read, Jocelyn S.; Baiotti, Luca; Creighton, Jolien D. E.; Friedman, John L.; Giacomazzo, Bruno; Kyutoku, Koutarou; Markakis, Charalampos; Rezzolla, Luciano; Shibata, Masaru; Taniguchi, Keisuke

    2013-08-01

    Using an extended set of equations of state and a multiple-group multiple-code collaborative effort to generate waveforms, we improve numerical-relativity-based data-analysis estimates of the measurability of matter effects in neutron-star binaries. We vary two parameters of a parametrized piecewise-polytropic equation of state (EOS) to analyze the measurability of EOS properties, via a parameter Λ that characterizes the quadrupole deformability of an isolated neutron star. We find that, to within the accuracy of the simulations, the departure of the waveform from point-particle (or spinless double black-hole binary) inspiral increases monotonically with Λ and changes in the EOS that did not change Λ are not measurable. We estimate with two methods the minimal and expected measurability of Λ in second- and third-generation gravitational-wave detectors. The first estimate using numerical waveforms alone shows that two EOSs which vary in radius by 1.3 km are distinguishable in mergers at 100 Mpc. The second estimate relies on the construction of hybrid waveforms by matching to post-Newtonian inspiral and estimates that the same EOSs are distinguishable in mergers at 300 Mpc. We calculate systematic errors arising from numerical uncertainties and hybrid construction, and we estimate the frequency at which such effects would interfere with template-based searches.

  2. Markov Chain-Based Acute Effect Estimation of Air Pollution on Elder Asthma Hospitalization

    PubMed Central

    Luo, Li; Zhang, Fengyi; Sun, Lin; Li, Chunyang; Huang, Debin; Han, Gao; Wang, Bin

    2017-01-01

    Background Asthma caused substantial economic and health care burden and is susceptible to air pollution. Particularly, when it comes to elder asthma patient (older than 65), the phenomenon is more significant. The aim of this study is to investigate the Markov-based acute effects of air pollution on elder asthma hospitalizations, in forms of transition probabilities. Methods A retrospective, population-based study design was used to assess temporal patterns in hospitalizations for asthma in a region of Sichuan province, China. Approximately 12 million residents were covered during this period. Relative risk analysis and Markov chain model were employed on daily hospitalization state estimation. Results Among PM2.5, PM10, NO2, and SO2, only SO2 was significant. When air pollution is severe, the transition probability from a low-admission state (previous day) to high-admission state (next day) is 35.46%, while it is 20.08% when air pollution is mild. In particular, for female-cold subgroup, the counterparts are 30.06% and 0.01%, respectively. Conclusions SO2 was a significant risk factor for elder asthma hospitalization. When air pollution worsened, the transition probabilities from each state to high admission states increase dramatically. This phenomenon appeared more evidently, especially in female-cold subgroup (which is in cold season for female admissions). Based on our work, admission amount forecast, asthma intervention, and corresponding healthcare allocation can be done. PMID:29147496

  3. Multimodel Kalman filtering for adaptive nonuniformity correction in infrared sensors.

    PubMed

    Pezoa, Jorge E; Hayat, Majeed M; Torres, Sergio N; Rahman, Md Saifur

    2006-06-01

    We present an adaptive technique for the estimation of nonuniformity parameters of infrared focal-plane arrays that is robust with respect to changes and uncertainties in scene and sensor characteristics. The proposed algorithm is based on using a bank of Kalman filters in parallel. Each filter independently estimates state variables comprising the gain and the bias matrices of the sensor, according to its own dynamic-model parameters. The supervising component of the algorithm then generates the final estimates of the state variables by forming a weighted superposition of all the estimates rendered by each Kalman filter. The weights are computed and updated iteratively, according to the a posteriori-likelihood principle. The performance of the estimator and its ability to compensate for fixed-pattern noise is tested using both simulated and real data obtained from two cameras operating in the mid- and long-wave infrared regime.

  4. Improved mapping of National Atmospheric Deposition Program wet-deposition in complex terrain using PRISM-gridded data sets

    USGS Publications Warehouse

    Latysh, Natalie E.; Wetherbee, Gregory Alan

    2012-01-01

    High-elevation regions in the United States lack detailed atmospheric wet-deposition data. The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) measures and reports precipitation amounts and chemical constituent concentration and deposition data for the United States on annual isopleth maps using inverse distance weighted (IDW) interpolation methods. This interpolation for unsampled areas does not account for topographic influences. Therefore, NADP/NTN isopleth maps lack detail and potentially underestimate wet deposition in high-elevation regions. The NADP/NTN wet-deposition maps may be improved using precipitation grids generated by other networks. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) produces digital grids of precipitation estimates from many precipitation-monitoring networks and incorporates influences of topographical and geographical features. Because NADP/NTN ion concentrations do not vary with elevation as much as precipitation depths, PRISM is used with unadjusted NADP/NTN data in this paper to calculate ion wet deposition in complex terrain to yield more accurate and detailed isopleth deposition maps in complex terrain. PRISM precipitation estimates generally exceed NADP/NTN precipitation estimates for coastal and mountainous regions in the western United States. NADP/NTN precipitation estimates generally exceed PRISM precipitation estimates for leeward mountainous regions in Washington, Oregon, and Nevada, where abrupt changes in precipitation depths induced by topography are not depicted by IDW interpolation. PRISM-based deposition estimates for nitrate can exceed NADP/NTN estimates by more than 100% for mountainous regions in the western United States.

  5. Improved mapping of National Atmospheric Deposition Program wet-deposition in complex terrain using PRISM-gridded data sets.

    PubMed

    Latysh, Natalie E; Wetherbee, Gregory Alan

    2012-01-01

    High-elevation regions in the United States lack detailed atmospheric wet-deposition data. The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) measures and reports precipitation amounts and chemical constituent concentration and deposition data for the United States on annual isopleth maps using inverse distance weighted (IDW) interpolation methods. This interpolation for unsampled areas does not account for topographic influences. Therefore, NADP/NTN isopleth maps lack detail and potentially underestimate wet deposition in high-elevation regions. The NADP/NTN wet-deposition maps may be improved using precipitation grids generated by other networks. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) produces digital grids of precipitation estimates from many precipitation-monitoring networks and incorporates influences of topographical and geographical features. Because NADP/NTN ion concentrations do not vary with elevation as much as precipitation depths, PRISM is used with unadjusted NADP/NTN data in this paper to calculate ion wet deposition in complex terrain to yield more accurate and detailed isopleth deposition maps in complex terrain. PRISM precipitation estimates generally exceed NADP/NTN precipitation estimates for coastal and mountainous regions in the western United States. NADP/NTN precipitation estimates generally exceed PRISM precipitation estimates for leeward mountainous regions in Washington, Oregon, and Nevada, where abrupt changes in precipitation depths induced by topography are not depicted by IDW interpolation. PRISM-based deposition estimates for nitrate can exceed NADP/NTN estimates by more than 100% for mountainous regions in the western United States.

  6. Smoothing-based compressed state Kalman filter for joint state-parameter estimation: Applications in reservoir characterization and CO2 storage monitoring

    NASA Astrophysics Data System (ADS)

    Li, Y. J.; Kokkinaki, Amalia; Darve, Eric F.; Kitanidis, Peter K.

    2017-08-01

    The operation of most engineered hydrogeological systems relies on simulating physical processes using numerical models with uncertain parameters and initial conditions. Predictions by such uncertain models can be greatly improved by Kalman-filter techniques that sequentially assimilate monitoring data. Each assimilation constitutes a nonlinear optimization, which is solved by linearizing an objective function about the model prediction and applying a linear correction to this prediction. However, if model parameters and initial conditions are uncertain, the optimization problem becomes strongly nonlinear and a linear correction may yield unphysical results. In this paper, we investigate the utility of one-step ahead smoothing, a variant of the traditional filtering process, to eliminate nonphysical results and reduce estimation artifacts caused by nonlinearities. We present the smoothing-based compressed state Kalman filter (sCSKF), an algorithm that combines one step ahead smoothing, in which current observations are used to correct the state and parameters one step back in time, with a nonensemble covariance compression scheme, that reduces the computational cost by efficiently exploring the high-dimensional state and parameter space. Numerical experiments show that when model parameters are uncertain and the states exhibit hyperbolic behavior with sharp fronts, as in CO2 storage applications, one-step ahead smoothing reduces overshooting errors and, by design, gives physically consistent state and parameter estimates. We compared sCSKF with commonly used data assimilation methods and showed that for the same computational cost, combining one step ahead smoothing and nonensemble compression is advantageous for real-time characterization and monitoring of large-scale hydrogeological systems with sharp moving fronts.

  7. Model-based estimation and control for off-axis parabolic mirror alignment

    NASA Astrophysics Data System (ADS)

    Fang, Joyce; Savransky, Dmitry

    2018-02-01

    This paper propose an model-based estimation and control method for an off-axis parabolic mirror (OAP) alignment. Current studies in automated optical alignment systems typically require additional wavefront sensors. We propose a self-aligning method using only focal plane images captured by the existing camera. Image processing methods and Karhunen-Loève (K-L) decomposition are used to extract measurements for the observer in closed-loop control system. Our system has linear dynamic in state transition, and a nonlinear mapping from the state to the measurement. An iterative extended Kalman filter (IEKF) is shown to accurately predict the unknown states, and nonlinear observability is discussed. Linear-quadratic regulator (LQR) is applied to correct the misalignments. The method is validated experimentally on the optical bench with a commercial OAP. We conduct 100 tests in the experiment to demonstrate the consistency in between runs.

  8. Cloud cover and solar disk state estimation using all-sky images: deep neural networks approach compared to routine methods

    NASA Astrophysics Data System (ADS)

    Krinitskiy, Mikhail; Sinitsyn, Alexey

    2017-04-01

    Shortwave radiation is an important component of surface heat budget over sea and land. To estimate them accurate observations of cloud conditions are needed including total cloud cover, spatial and temporal cloud structure. While massively observed visually, for building accurate SW radiation parameterizations cloud structure needs also to be quantified using precise instrumental measurements. While there already exist several state of the art land-based cloud-cameras that satisfy researchers needs, their major disadvantages are associated with inaccuracy of all-sky images processing algorithms which typically result in the uncertainties of 2-4 octa of cloud cover estimates with the resulting true-scoring cloud cover accuracy of about 7%. Moreover, none of these algorithms determine cloud types. We developed an approach for cloud cover and structure estimating, which provides much more accurate estimates and also allows for measuring additional characteristics. This method is based on the synthetic controlling index, namely the "grayness rate index", that we introduced in 2014. Since then this index has already demonstrated high efficiency being used along with the technique namely the "background sunburn effect suppression", to detect thin clouds. This made it possible to significantly increase the accuracy of total cloud cover estimation in various sky image states using this extension of routine algorithm type. Errors for the cloud cover estimates significantly decreased down resulting the mean squared error of about 1.5 octa. Resulting true-scoring accuracy is more than 38%. The main source of this approach uncertainties is the solar disk state determination errors. While the deep neural networks approach lets us to estimate solar disk state with 94% accuracy, the final result of total cloud estimation still isn`t satisfying. To solve this problem completely we applied the set of machine learning algorithms to the problem of total cloud cover estimation directly. The accuracy of this approach varies depending on algorithm choice. Deep neural networks demonstrated the best accuracy of more than 96%. We will demonstrate some approaches and the most influential statistical features of all-sky images that lets the algorithm reach that high accuracy. With the use of our new optical package a set of over 480`000 samples has been collected in several sea missions in 2014-2016 along with concurrent standard human observed and instrumentally recorded meteorological parameters. We will demonstrate the results of the field measurements and will discuss some still remaining problems and the potential of the further developments of machine learning approach.

  9. A Systematic Approach for Model-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A requirement for effective aircraft engine performance estimation is the ability to account for engine degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. This paper presents a linear point design methodology for minimizing the degradation-induced error in model-based aircraft engine performance estimation applications. The technique specifically focuses on the underdetermined estimation problem, where there are more unknown health parameters than available sensor measurements. A condition for Kalman filter-based estimation is that the number of health parameters estimated cannot exceed the number of sensed measurements. In this paper, the estimated health parameter vector will be replaced by a reduced order tuner vector whose dimension is equivalent to the sensed measurement vector. The reduced order tuner vector is systematically selected to minimize the theoretical mean squared estimation error of a maximum a posteriori estimator formulation. This paper derives theoretical estimation errors at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the estimation accuracy achieved through conventional maximum a posteriori and Kalman filter estimation approaches. Maximum a posteriori estimation results demonstrate that reduced order tuning parameter vectors can be found that approximate the accuracy of estimating all health parameters directly. Kalman filter estimation results based on the same reduced order tuning parameter vectors demonstrate that significantly improved estimation accuracy can be achieved over the conventional approach of selecting a subset of health parameters to serve as the tuner vector. However, additional development is necessary to fully extend the methodology to Kalman filter-based estimation applications.

  10. Producing remote sensing-based emission estimates of prescribed burning in the contiguous United States for the U.S. Environmental Protection Agency 2011 National Emissions Inventory

    NASA Astrophysics Data System (ADS)

    McCarty, J. L.; Pouliot, G. A.; Soja, A. J.; Miller, M. E.; Rao, T.

    2013-12-01

    Prescribed fires in agricultural landscapes generally produce smaller burned areas than wildland fires but are important contributors to emissions impacting air quality and human health. Currently, there are a variety of available satellite-based estimates of crop residue burning, including the NOAA/NESDIS Hazard Mapping System (HMS) the Satellite Mapping Automated Reanalysis Tool for Fire Incident Reconciliation (SMARTFIRE 2), the Moderate Resolution Imaging Spectroradiometer (MODIS) Official Burned Area Product (MCD45A1)), the MODIS Direct Broadcast Burned Area Product (MCD64A1) the MODIS Active Fire Product (MCD14ML), and a regionally-tuned 8-day cropland differenced Normalized Burn Ratio product for the contiguous U.S. The purpose of this NASA-funded research was to refine the regionally-tuned product utilizing higher spatial resolution crop type data from the USDA NASS Cropland Data Layer and burned area training data from field work and high resolution commercial satellite data to improve the U.S. Environmental Protection Agency's (EPA) National Emissions Inventory (NEI). The final product delivered to the EPA included a detailed database of 25 different atmospheric emissions at the county level, emission distributions by crop type and seasonality, and GIS data. The resulting emission databases were shared with the U.S. EPA and regional offices, the National Wildfire Coordinating Group (NWGC) Smoke Committee, and all 48 states in the contiguous U.S., with detailed error estimations for Wyoming and Indiana and detailed analyses of results for Florida, Minnesota, North Dakota, Oklahoma, and Oregon. This work also provided opportunities in discovering the different needs of federal and state partners, including the various geospatial abilities and platforms across the many users and how to incorporate expert air quality, policy, and land management knowledge into quantitative earth observation-based estimations of prescribed fire emissions. Finally, this work created direct communication paths between federal and state partners to the scientists creating the remote sensing-based products, further improving the geospatial products and understanding of air quality impacts of prescribed burning at the state, regional, and national scales.

  11. Efficient Ensemble State-Parameters Estimation Techniques in Ocean Ecosystem Models: Application to the North Atlantic

    NASA Astrophysics Data System (ADS)

    El Gharamti, M.; Bethke, I.; Tjiputra, J.; Bertino, L.

    2016-02-01

    Given the recent strong international focus on developing new data assimilation systems for biological models, we present in this comparative study the application of newly developed state-parameters estimation tools to an ocean ecosystem model. It is quite known that the available physical models are still too simple compared to the complexity of the ocean biology. Furthermore, various biological parameters remain poorly unknown and hence wrong specifications of such parameters can lead to large model errors. Standard joint state-parameters augmentation technique using the ensemble Kalman filter (Stochastic EnKF) has been extensively tested in many geophysical applications. Some of these assimilation studies reported that jointly updating the state and the parameters might introduce significant inconsistency especially for strongly nonlinear models. This is usually the case for ecosystem models particularly during the period of the spring bloom. A better handling of the estimation problem is often carried out by separating the update of the state and the parameters using the so-called Dual EnKF. The dual filter is computationally more expensive than the Joint EnKF but is expected to perform more accurately. Using a similar separation strategy, we propose a new EnKF estimation algorithm in which we apply a one-step-ahead smoothing to the state. The new state-parameters estimation scheme is derived in a consistent Bayesian filtering framework and results in separate update steps for the state and the parameters. Unlike the classical filtering path, the new scheme starts with an update step and later a model propagation step is performed. We test the performance of the new smoothing-based schemes against the standard EnKF in a one-dimensional configuration of the Norwegian Earth System Model (NorESM) in the North Atlantic. We use nutrients profile (up to 2000 m deep) data and surface partial CO2 measurements from Mike weather station (66o N, 2o E) to estimate different biological parameters of phytoplanktons and zooplanktons. We analyze the performance of the filters in terms of complexity and accuracy of the state and parameters estimates.

  12. Nonparametric identification of nonlinear dynamic systems using a synchronisation-based method

    NASA Astrophysics Data System (ADS)

    Kenderi, Gábor; Fidlin, Alexander

    2014-12-01

    The present study proposes an identification method for highly nonlinear mechanical systems that does not require a priori knowledge of the underlying nonlinearities to reconstruct arbitrary restoring force surfaces between degrees of freedom. This approach is based on the master-slave synchronisation between a dynamic model of the system as the slave and the real system as the master using measurements of the latter. As the model synchronises to the measurements, it becomes an observer of the real system. The optimal observer algorithm in a least-squares sense is given by the Kalman filter. Using the well-known state augmentation technique, the Kalman filter can be turned into a dual state and parameter estimator to identify parameters of a priori characterised nonlinearities. The paper proposes an extension of this technique towards nonparametric identification. A general system model is introduced by describing the restoring forces as bilateral spring-dampers with time-variant coefficients, which are estimated as augmented states. The estimation procedure is followed by an a posteriori statistical analysis to reconstruct noise-free restoring force characteristics using the estimated states and their estimated variances. Observability is provided using only one measured mechanical quantity per degree of freedom, which makes this approach less demanding in the number of necessary measurement signals compared with truly nonparametric solutions, which typically require displacement, velocity and acceleration signals. Additionally, due to the statistical rigour of the procedure, it successfully addresses signals corrupted by significant measurement noise. In the present paper, the method is described in detail, which is followed by numerical examples of one degree of freedom (1DoF) and 2DoF mechanical systems with strong nonlinearities of vibro-impact type to demonstrate the effectiveness of the proposed technique.

  13. Towards Real-Time Maneuver Detection: Automatic State and Dynamics Estimation with the Adaptive Optimal Control Based Estimator

    NASA Astrophysics Data System (ADS)

    Lubey, D.; Scheeres, D.

    Tracking objects in Earth orbit is fraught with complications. This is due to the large population of orbiting spacecraft and debris that continues to grow, passive (i.e. no direct communication) and data-sparse observations, and the presence of maneuvers and dynamics mismodeling. Accurate orbit determination in this environment requires an algorithm to capture both a system's state and its state dynamics in order to account for mismodelings. Previous studies by the authors yielded an algorithm called the Optimal Control Based Estimator (OCBE) - an algorithm that simultaneously estimates a system's state and optimal control policies that represent dynamic mismodeling in the system for an arbitrary orbit-observer setup. The stochastic properties of these estimated controls are then used to determine the presence of mismodelings (maneuver detection), as well as characterize and reconstruct the mismodelings. The purpose of this paper is to develop the OCBE into an accurate real-time orbit tracking and maneuver detection algorithm by automating the algorithm and removing its linear assumptions. This results in a nonlinear adaptive estimator. In its original form the OCBE had a parameter called the assumed dynamic uncertainty, which is selected by the user with each new measurement to reflect the level of dynamic mismodeling in the system. This human-in-the-loop approach precludes real-time application to orbit tracking problems due to their complexity. This paper focuses on the Adaptive OCBE, a version of the estimator where the assumed dynamic uncertainty is chosen automatically with each new measurement using maneuver detection results to ensure that state uncertainties are properly adjusted to account for all dynamic mismodelings. The paper also focuses on a nonlinear implementation of the estimator. Originally, the OCBE was derived from a nonlinear cost function then linearized about a nominal trajectory, which is assumed to be ballistic (i.e. the nominal optimal control policy is zero for all times). In this paper, we relax this assumption on the nominal trajectory in order to allow for controlled nominal trajectories. This allows the estimator to be iterated to obtain a more accurate nonlinear solution for both the state and control estimates. Beyond these developments to the estimator, this paper also introduces a modified distance metric for maneuver detection. The original metric used in the OCBE only accounted for the estimated control and its uncertainty. This new metric accounts for measurement deviation and a priori state deviations, such that it accounts for all three major forms of uncertainty in orbit determination. This allows the user to understand the contributions of each source of uncertainty toward the total system mismodeling so that the user can properly account for them. Together these developments create an accurate orbit determination algorithm that is automated, robust to mismodeling, and capable of detecting and reconstructing the presence of mismodeling. These qualities make this algorithm a good foundation from which to approach the problem of real-time maneuver detection and reconstruction for Space Situational Awareness applications. This is further strengthened by the algorithm's general formulation that allows it to be applied to problems with an arbitrary target and observer.

  14. Nongovernment Philanthropic Spending on Public Health in the United States.

    PubMed

    Shaw-Taylor, Yoku

    2016-01-01

    The objective of this study was to estimate the dollar amount of nongovernment philanthropic spending on public health activities in the United States. Health expenditure data were derived from the US National Health Expenditures Accounts and the US Census Bureau. Results reveal that spending on public health is not disaggregated from health spending in general. The level of philanthropic spending is estimated as, on average, 7% of overall health spending, or about $150 billion annually according to National Health Expenditures Accounts data tables. When a point estimate of charity care provided by hospitals and office-based physicians is added, the value of nongovernment philanthropic expenditures reaches approximately $203 billion, or about 10% of all health spending annually.

  15. ASSESSMENT OF HIGH-TEMPERATURE GEOTHERMAL RESOURCES IN HYDROTHERMAL CONVECTION SYSTEMS IN THE UNITED STATES.

    USGS Publications Warehouse

    Nathenson, Manuel

    1984-01-01

    The amount of thermal energy in high-temperature geothermal systems (>150 degree C) in the United States has been calculated by estimating the temperature, area, and thickness of each identified system. These data, along with a general model for recoverability of geothermal energy and a calculation that takes account of the conversion of thermal energy to electricity, yield a resource estimate of 23,000 MWe for 30 years. The undiscovered component was estimated based on multipliers of the identified resource as either 72,000 or 127,000 MWe for 30 years depending on the model chosen for the distribution of undiscovered energy as a function of temperature.

  16. Causes and prevalence of visual impairment among adults in the United States.

    PubMed

    Congdon, Nathan; O'Colmain, Benita; Klaver, Caroline C W; Klein, Ronald; Muñoz, Beatriz; Friedman, David S; Kempen, John; Taylor, Hugh R; Mitchell, Paul

    2004-04-01

    To estimate the cause-specific prevalence and distribution of blindness and low vision in the United States by age, race/ethnicity, and gender, and to estimate the change in these prevalence figures over the next 20 years. Summary prevalence estimates of blindness (both according to the US definition of < or =6/60 [< or =20/200] best-corrected visual acuity in the better-seeing eye and the World Health Organization standard of < 6/120 [< 20/400]) and low vision (< 6/12 [< 20/40] best-corrected vision in the better-seeing eye) were prepared separately for black, Hispanic, and white persons in 5-year age intervals starting at 40 years. The estimated prevalences were based on recent population-based studies in the United States, Australia, and Europe. These estimates were applied to 2000 US Census data, and to projected US population figures for 2020, to estimate the number of Americans with visual impairment. Cause-specific prevalences of blindness and low vision were also estimated for the different racial/ethnic groups. Based on demographics from the 2000 US Census, an estimated 937 000 (0.78%) Americans older than 40 years were blind (US definition). An additional 2.4 million Americans (1.98%) had low vision. The leading cause of blindness among white persons was age-related macular degeneration (54.4% of the cases), while among black persons, cataract and glaucoma accounted for more than 60% of blindness. Cataract was the leading cause of low vision, responsible for approximately 50% of bilateral vision worse than 6/12 (20/40) among white, black, and Hispanic persons. The number of blind persons in the US is projected to increase by 70% to 1.6 million by 2020, with a similar rise projected for low vision. Blindness or low vision affects approximately 1 in 28 Americans older than 40 years. The specific causes of visual impairment, and especially blindness, vary greatly by race/ethnicity. The prevalence of visual disabilities will increase markedly during the next 20 years, owing largely to the aging of the US population.

  17. A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Yujie; Liu, Chang; Chen, Zonghai

    2018-02-01

    An accurate battery pack state of health (SOH) estimation is important to characterize the dynamic responses of battery pack and ensure the battery work with safety and reliability. However, the different performances in battery discharge/charge characteristics and working conditions in battery pack make the battery pack SOH estimation difficult. In this paper, the battery pack SOH is defined as the change of battery pack maximum energy storage. It contains all the cells' information including battery capacity, the relationship between state of charge (SOC) and open circuit voltage (OCV), and battery inconsistency. To predict the battery pack SOH, the method of particle swarm optimization-genetic algorithm is applied in battery pack model parameters identification. Based on the results, a particle filter is employed in battery SOC and OCV estimation to avoid the noise influence occurring in battery terminal voltage measurement and current drift. Moreover, a recursive least square method is used to update cells' capacity. Finally, the proposed method is verified by the profiles of New European Driving Cycle and dynamic test profiles. The experimental results indicate that the proposed method can estimate the battery states with high accuracy for actual operation. In addition, the factors affecting the change of SOH is analyzed.

  18. A novel method for state of charge estimation of lithium-ion batteries using a nonlinear observer

    NASA Astrophysics Data System (ADS)

    Xia, Bizhong; Chen, Chaoren; Tian, Yong; Sun, Wei; Xu, Zhihui; Zheng, Weiwei

    2014-12-01

    The state of charge (SOC) is important for the safety and reliability of battery operation since it indicates the remaining capacity of a battery. However, as the internal state of each cell cannot be directly measured, the value of the SOC has to be estimated. In this paper, a novel method for SOC estimation in electric vehicles (EVs) using a nonlinear observer (NLO) is presented. One advantage of this method is that it does not need complicated matrix operations, so the computation cost can be reduced. As a key step in design of the nonlinear observer, the state-space equations based on the equivalent circuit model are derived. The Lyapunov stability theory is employed to prove the convergence of the nonlinear observer. Four experiments are carried out to evaluate the performance of the presented method. The results show that the SOC estimation error converges to 3% within 130 s while the initial SOC error reaches 20%, and does not exceed 4.5% while the measurement suffers both 2.5% voltage noise and 5% current noise. Besides, the presented method has advantages over the extended Kalman filter (EKF) and sliding mode observer (SMO) algorithms in terms of computation cost, estimation accuracy and convergence rate.

  19. Current-induced alternating reversed dual-echo-steady-state for joint estimation of tissue relaxation and electrical properties.

    PubMed

    Lee, Hyunyeol; Sohn, Chul-Ho; Park, Jaeseok

    2017-07-01

    To develop a current-induced, alternating reversed dual-echo-steady-state-based magnetic resonance electrical impedance tomography for joint estimation of tissue relaxation and electrical properties. The proposed method reverses the readout gradient configuration of conventional, in which steady-state-free-precession (SSFP)-ECHO is produced earlier than SSFP-free-induction-decay (FID) while alternating current pulses are applied in between the two SSFPs to secure high sensitivity of SSFP-FID to injection current. Additionally, alternating reversed dual-echo-steady-state signals are modulated by employing variable flip angles over two orthogonal injections of current pulses. Ratiometric signal models are analytically constructed, from which T 1 , T 2 , and current-induced B z are jointly estimated by solving a nonlinear inverse problem for conductivity reconstruction. Numerical simulations and experimental studies are performed to investigate the feasibility of the proposed method in estimating relaxation parameters and conductivity. The proposed method, if compared with conventional magnetic resonance electrical impedance tomography, enables rapid data acquisition and simultaneous estimation of T 1 , T 2 , and current-induced B z , yielding a comparable level of signal-to-noise ratio in the parameter estimates while retaining a relative conductivity contrast. We successfully demonstrated the feasibility of the proposed method in jointly estimating tissue relaxation parameters as well as conductivity distributions. It can be a promising, rapid imaging strategy for quantitative conductivity estimation. Magn Reson Med 78:107-120, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Site quality relationships for shortleaf pine

    Treesearch

    David L. Graney

    1986-01-01

    Existing information about site quality relationships for shortleaf pine (Pinus echinata Mill.) in the southeastern United States is reviewed in this paper. Estimates of site quality, whether from direct tree measurements or indirect estimates based on soil and site features, are only local observations for many points on the landscape. To be of value to the land...

  1. SEASONAL AND REGIONAL VARIATIONS OF PRIMARY AND SECONDARY ORGANIC AEROSOLS OVER THE CONTINENTAL UNITED STATES: OBSERVATION-BASED ESTIMATES AND MODEL EVALUATION

    EPA Science Inventory

    Due to the lack of an analytical technique for directly quantifying the atmospheric concentrations of primary (OCpri) and secondary (OCsec) organic carbon aerosols, different indirect methods have been developed to estimate their concentrations. In this stu...

  2. Wireless Computing Architecture III

    DTIC Science & Technology

    2013-09-01

    MIMO Multiple-Input and Multiple-Output MIMO /CON MIMO with concurrent hannel access and estimation MU- MIMO Multiuser MIMO OFDM Orthogonal...compressive sensing \\; a design for concurrent channel estimation in scalable multiuser MIMO networking; and novel networking protocols based on machine...Network, Antenna Arrays, UAV networking, Angle of Arrival, Localization MIMO , Access Point, Channel State Information, Compressive Sensing 16

  3. SEASONAL NH3 EMISSION ESTIMATES FOR THE EASTERN UNITED STATES BASED ON AMMONIUM WET CONCENTRATIONS AND AN INVERSE MODELING METHOD

    EPA Science Inventory

    Significant uncertainty exists in the magnitude and variability of ammonia (NH3) emissions. NH3 emissions are needed as input for air quality modeling of aerosols and deposition of nitrogen compounds. Approximately 85% of NH3 emissions are estimated to come from agricultural ...

  4. Estimated Incidence of Antimicrobial Drug–Resistant Nontyphoidal Salmonella Infections, United States, 2004–2012

    PubMed Central

    Gu, Weidong; Mahon, Barbara E.; Judd, Michael; Folster, Jason; Griffin, Patricia M.; Hoekstra, Robert M.

    2017-01-01

    Salmonella infections are a major cause of illness in the United States. The antimicrobial agents used to treat severe infections include ceftriaxone, ciprofloxacin, and ampicillin. Antimicrobial drug resistance has been associated with adverse clinical outcomes. To estimate the incidence of resistant culture-confirmed nontyphoidal Salmonella infections, we used Bayesian hierarchical models of 2004–2012 data from the Centers for Disease Control and Prevention National Antimicrobial Resistance Monitoring System and Laboratory-based Enteric Disease Surveillance. We based 3 mutually exclusive resistance categories on susceptibility testing: ceftriaxone and ampicillin resistant, ciprofloxacin nonsusceptible but ceftriaxone susceptible, and ampicillin resistant but ceftriaxone and ciprofloxacin susceptible. We estimated the overall incidence of resistant infections as 1.07/100,000 person-years for ampicillin-only resistance, 0.51/100,000 person-years for ceftriaxone and ampicillin resistance, and 0.35/100,000 person-years for ciprofloxacin nonsusceptibility, or ≈6,200 resistant culture-confirmed infections annually. These national estimates help define the magnitude of the resistance problem so that control measures can be appropriately targeted. PMID:27983506

  5. Multirate state and parameter estimation in an antibiotic fermentation with delayed measurements.

    PubMed

    Gudi, R D; Shah, S L; Gray, M R

    1994-12-01

    This article discusses issues related to estimation and monitoring of fermentation processes that exhibit endogenous metabolism and time-varying maintenance activity. Such culture-related activities hamper the use of traditional, software sensor-based algorithms, such as the extended kalman filter (EKF). In the approach presented here, the individual effects of the endogenous decay and the true maintenance processes have been lumped to represent a modified maintenance coefficient, m(c). Model equations that relate measurable process outputs, such as the carbon dioxide evolution rate (CER) and biomass, to the observable process parameters (such as net specific growth rate and the modified maintenance coefficient) are proposed. These model equations are used in an estimator that can formally accommodate delayed, infrequent measurements of the culture states (such as the biomass) as well as frequent, culture-related secondary measurements (such as the CER). The resulting multirate software sensor-based estimation strategy is used to monitor biomass profiles as well as profiles of critical fermentation parameters, such as the specific growth for a fed-batch fermentation of Streptomyces clavuligerus.

  6. The Costs and Benefits of Compliance with Renewable Portfolio Standards: Reviewing Experience to Date

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, Jenny; Barbose, Galen; Bird, Lori

    2014-03-12

    More than half of U.S. states have renewable portfolio standards (RPS) in place and have collectively deployed approximately 46,000 MW of new renewable energy capacity through year-end 2012. Most of these policies have five or more years of implementation experience, enabling an assessment of their costs and benefits. Understanding RPS benefits and costs is essential for policymakers evaluating existing RPS policies, assessing the need for modifications, and considering new policies. A key aspect of this study is the comprehensive review of existing RPS cost and benefit estimates, in addition to an examination of the variety of methods used to calculatemore » such estimates. Based on available data and estimates reported by utilities and regulators, this study summarizes RPS costs to date. The study considers how those costs may evolve going forward, given scheduled increases in RPS targets and cost containment mechanisms incorporated into existing policies. The report also summarizes RPS benefits estimates, based on published studies for individual states, and discusses key methodological considerations.« less

  7. The link between judgments of comparative risk and own risk: further evidence.

    PubMed

    Gold, Ron S

    2007-03-01

    Individuals typically believe that they are less likely than the average person to experience negative events, a phenomenon termed "unrealistic optimism". The direct method of assessing unrealistic optimism employs a question of the form, "Compared with the average person, what is the chance that X will occur to you?". However, it has been proposed that responses to such a question (direct-estimates) are based essentially just on estimates that X will occur to the self (self-estimates). If this is so, any factors that affect one of these estimates should also affect the other. This prediction was tested in two experiments. In each, direct- and self-estimates for an unfamiliar health threat - homocysteine-related heart problems - were recorded. It was found that both types of estimate were affected in the same way by varying the stated probability of having unsafe levels of homocysteine (Study 1, N=149) and varying the stated probability that unsafe levels of homocysteine will lead to heart problems (Study 2, N=111). The results are consistent with the proposal that direct-estimates are constructed just from self-estimates.

  8. NIRS-EEG joint imaging during transcranial direct current stimulation: Online parameter estimation with an autoregressive model.

    PubMed

    Sood, Mehak; Besson, Pierre; Muthalib, Makii; Jindal, Utkarsh; Perrey, Stephane; Dutta, Anirban; Hayashibe, Mitsuhiro

    2016-12-01

    Transcranial direct current stimulation (tDCS) has been shown to perturb both cortical neural activity and hemodynamics during (online) and after the stimulation, however mechanisms of these tDCS-induced online and after-effects are not known. Here, online resting-state spontaneous brain activation may be relevant to monitor tDCS neuromodulatory effects that can be measured using electroencephalography (EEG) in conjunction with near-infrared spectroscopy (NIRS). We present a Kalman Filter based online parameter estimation of an autoregressive (ARX) model to track the transient coupling relation between the changes in EEG power spectrum and NIRS signals during anodal tDCS (2mA, 10min) using a 4×1 ring high-definition montage. Our online ARX parameter estimation technique using the cross-correlation between log (base-10) transformed EEG band-power (0.5-11.25Hz) and NIRS oxy-hemoglobin signal in the low frequency (≤0.1Hz) range was shown in 5 healthy subjects to be sensitive to detect transient EEG-NIRS coupling changes in resting-state spontaneous brain activation during anodal tDCS. Conventional sliding window cross-correlation calculations suffer a fundamental problem in computing the phase relationship as the signal in the window is considered time-invariant and the choice of the window length and step size are subjective. Here, Kalman Filter based method allowed online ARX parameter estimation using time-varying signals that could capture transients in the coupling relationship between EEG and NIRS signals. Our new online ARX model based tracking method allows continuous assessment of the transient coupling between the electrophysiological (EEG) and the hemodynamic (NIRS) signals representing resting-state spontaneous brain activation during anodal tDCS. Published by Elsevier B.V.

  9. Valuing setting-based recreation for selected visitors to national forests in the southern United States

    Treesearch

    Kavita Sardana; John C. Bergstrom; J. M.  Bowker

    2016-01-01

    In this study we estimate selected visitors’ demand and value for recreational trips to settings such as developed vs. undeveloped sites in U.S. national forests in the Southern United States using the travel cost method. The setting-based approach allows for valuation of multi-activity trips to particular settings. The results from an adjusted Poisson lognormal...

  10. Detection of sea otters in boat-based surveys of Prince William Sound, Alaska. Marine mammal study 6-19. Exxon Valdez oil spill state/federal natural resource damage assessment final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udevitz, M.S.; Bodkin, J.L.; Costa, D.P.

    1995-05-01

    Boat-based surveys were used to monitor the Prince William Sound sea otter population before and after the Exxon Valdez oil spill. Population and loss estimates could be obtained from these surveys by direct expansion from the counts in the surveyed transects under the assumption that all otters in those transects were observed. The authors conducted a pilot study using ground-based observers in conjunction with the August 1990 survey of marine mammals and birds to investigate the validity of this assumption. The proportion of otters detected by boat crews was estimated by comparing boat and ground-based observations on 22 segments ofmore » shoreline transects. Overall, the authors estimated that only 70% of the otters in surveyed shoreline transects were detected by the boat crews. These results suggest that unadjusted expansions of boat survey transect counts will underestimate sea otter population size and that loss estimates based on comparisons of unadjusted population estimates will be biased.« less

  11. Primary CNS germ cell tumors in Japan and the United States: an analysis of 4 tumor registries

    PubMed Central

    McCarthy, Bridget J.; Shibui, Soichiro; Kayama, Takamasa; Miyaoka, Etsuo; Narita, Yoshitaka; Murakami, Michiko; Matsuda, Ayako; Matsuda, Tomohiro; Sobue, Tomotaka; Palis, Bryan E.; Dolecek, Therese A.; Kruchko, Carol; Engelhard, Herbert H.; Villano, J. Lee

    2012-01-01

    Intracranial germ cell tumors (GCTs) are relatively rare. Their incidence has been considered to be higher in East Asia than in the United States. This study estimates the incidence of CNS GCTs in Japan and the United States, investigates gender discrepancies in each country, and describes treatment outcomes. Data on primary CNS GCTs from 4 databases were utilized: population-based malignant incidence data from (1) the Japan Cancer Surveillance Research Group (2004–2006; 14 registries), malignant and nonmalignant incidence data from (2) the Surveillance, Epidemiology, and End Results Program (2004–2008; 17 registries), and hospital-based observed survival data from (3) the Brain Tumor Registry of Japan (1984–2000) and (4) the US National Cancer Data Base (1990–2003). Incidence rates per 100 000 for malignant GCTs were not statistically significantly different between Japan (males = 0.143, females = 0.046) and the United States (males = 0.118, females = 0.030). The malignant incidence-rate ratio was higher for pineal GCTs versus nonpineal (ie, the rest of the brain) GCTs in Japan (11.5:1 vs 1.9:1, respectively) and the United States (16.0:1 vs 1.7:1, respectively). In general, 5-year survival estimates were high: over 75% for all GCTs, and over 81% for germinomas, regardless of the type of treatment in either Japan or the United States. The incidence of primary GCTs is similar between Japan and the United States and has the same gender-based patterns by location. High rates of survival were observed in both countries. PMID:22869621

  12. Application of a mechanistic model as a tool for on-line monitoring of pilot scale filamentous fungal fermentation processes-The importance of evaporation effects.

    PubMed

    Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Sin, Gürkan; Gernaey, Krist V

    2017-03-01

    A mechanistic model-based soft sensor is developed and validated for 550L filamentous fungus fermentations operated at Novozymes A/S. The soft sensor is comprised of a parameter estimation block based on a stoichiometric balance, coupled to a dynamic process model. The on-line parameter estimation block models the changing rates of formation of product, biomass, and water, and the rate of consumption of feed using standard, available on-line measurements. This parameter estimation block, is coupled to a mechanistic process model, which solves the current states of biomass, product, substrate, dissolved oxygen and mass, as well as other process parameters including k L a, viscosity and partial pressure of CO 2 . State estimation at this scale requires a robust mass model including evaporation, which is a factor not often considered at smaller scales of operation. The model is developed using a historical data set of 11 batches from the fermentation pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L fermentation processes operated at Novozymes A/S in order to validate the state estimator model on 14 new batches utilizing a new strain. The product concentration in the validation batches was predicted with an average root mean sum of squared error (RMSSE) of 16.6%. In addition, calculation of the Janus coefficient for the validation batches shows a suitably calibrated model. The robustness of the model prediction is assessed with respect to the accuracy of the input data. Parameter estimation uncertainty is also carried out. The application of this on-line state estimator allows for on-line monitoring of pilot scale batches, including real-time estimates of multiple parameters which are not able to be monitored on-line. With successful application of a soft sensor at this scale, this allows for improved process monitoring, as well as opening up further possibilities for on-line control algorithms, utilizing these on-line model outputs. Biotechnol. Bioeng. 2017;114: 589-599. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Assimilation of thermospheric measurements for ionosphere-thermosphere state estimation

    NASA Astrophysics Data System (ADS)

    Miladinovich, Daniel S.; Datta-Barua, Seebany; Bust, Gary S.; Makela, Jonathan J.

    2016-12-01

    We develop a method that uses data assimilation to estimate ionospheric-thermospheric (IT) states during midlatitude nighttime storm conditions. The algorithm Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE) uses time-varying electron densities in the F region, derived primarily from total electron content data, to estimate two drivers of the IT: neutral winds and electric potential. A Kalman filter is used to update background models based on ingested plasma densities and neutral wind measurements. This is the first time a Kalman filtering technique is used with the EMPIRE algorithm and the first time neutral wind measurements from 630.0 nm Fabry-Perot interferometers (FPIs) are ingested to improve estimates of storm time ion drifts and neutral winds. The effects of assimilating remotely sensed neutral winds from FPI observations are studied by comparing results of ingesting: electron densities (N) only, N plus half the measurements from a single FPI, and then N plus all of the FPI data. While estimates of ion drifts and neutral winds based on N give estimates similar to the background models, this study's results show that ingestion of the FPI data can significantly change neutral wind and ion drift estimation away from background models. In particular, once neutral winds are ingested, estimated neutral winds agree more with validation wind data, and estimated ion drifts in the magnetic field-parallel direction are more sensitive to ingestion than the field-perpendicular zonal and meridional directions. Also, data assimilation with FPI measurements helps provide insight into the effects of contamination on 630.0 nm emissions experienced during geomagnetic storms.

  14. Output Feedback-Based Boundary Control of Uncertain Coupled Semilinear Parabolic PDE Using Neurodynamic Programming.

    PubMed

    Talaei, Behzad; Jagannathan, Sarangapani; Singler, John

    2018-04-01

    In this paper, neurodynamic programming-based output feedback boundary control of distributed parameter systems governed by uncertain coupled semilinear parabolic partial differential equations (PDEs) under Neumann or Dirichlet boundary control conditions is introduced. First, Hamilton-Jacobi-Bellman (HJB) equation is formulated in the original PDE domain and the optimal control policy is derived using the value functional as the solution of the HJB equation. Subsequently, a novel observer is developed to estimate the system states given the uncertain nonlinearity in PDE dynamics and measured outputs. Consequently, the suboptimal boundary control policy is obtained by forward-in-time estimation of the value functional using a neural network (NN)-based online approximator and estimated state vector obtained from the NN observer. Novel adaptive tuning laws in continuous time are proposed for learning the value functional online to satisfy the HJB equation along system trajectories while ensuring the closed-loop stability. Local uniformly ultimate boundedness of the closed-loop system is verified by using Lyapunov theory. The performance of the proposed controller is verified via simulation on an unstable coupled diffusion reaction process.

  15. Application of a rule-based model to estimate mercury exchange for three background biomes in the continental United States

    USGS Publications Warehouse

    Hartman, J.S.; Weisberg, P.J.; Pillai, R.; Ericksen, J.A.; Kuiken, T.; Lindberg, S.E.; Zhang, H.; Rytuba, J.J.; Gustin, M.S.

    2009-01-01

    Ecosystems that have low mercury (Hg) concentrations (i.e., not enriched or impactedbygeologic or anthropogenic processes) cover most of the terrestrial surface area of the earth yet their role as a net source or sink for atmospheric Hg is uncertain. Here we use empirical data to develop a rule-based model implemented within a geographic information system framework to estimate the spatial and temporal patterns of Hg flux for semiarid deserts, grasslands, and deciduous forests representing 45% of the continental United States. This exercise provides an indication of whether these ecosystems are a net source or sink for atmospheric Hg as well as a basis for recommendation of data to collect in future field sampling campaigns. Results indicated that soil alone was a small net source of atmospheric Hg and that emitted Hg could be accounted for based on Hg input by wet deposition. When foliar assimilation and wet deposition are added to the area estimate of soil Hg flux these biomes are a sink for atmospheric Hg. ?? 2009 American Chemical Society.

  16. Review of the Current Body Fat Taping Method and Its Importance in Ascertaining Fitness Levels in the United States Marine Corps

    DTIC Science & Technology

    2015-06-01

    Defense (DOD) body fat estimate was developed based on data collected in 1984 from the Naval Health Research Center, San Diego. In this thesis, multiple...Defense (DOD) body fat estimate was developed based on data collected in 1984 from the Naval Health Research Center, San Diego. In this thesis...7   B.   EVOLUTION OF WEIGHT AND FITNESS STANDARDS: CIVIL WAR THROUGH 1980

  17. Experimental demonstration of real-time adaptive one-qubit quantum-state tomography

    NASA Astrophysics Data System (ADS)

    Yin, Qi; Li, Li; Xiang, Xiao; Xiang, Guo-Yong; Li, Chuang-Feng; Guo, Guang-Can

    2017-01-01

    Quantum-state tomography plays a pivotal role in quantum computation and information processing. To improve the accuracy in estimating an unknown state, carefully designed measurement schemes, such as adopting an adaptive strategy, are necessarily needed, which have gained great interest recently. In this work, based on the proposal of Sugiyama et al. [Phys. Rev. A 85, 052107 (2012)], 10.1103/PhysRevA.85.052107, we experimentally realize an adaptive quantum-state tomography for one qubit in an optical system. Since this scheme gives an analytical solution to the optimal measurement basis problem, our experiment is updated in real time and the infidelity between the real state and the estimated state is tracked with the detected photons. We observe an almost 1 /N scaling rule of averaged infidelity against the overall number of photons, N , in our experiment, which outperforms 1 /√{N } of nonadaptive schemes.

  18. The benefits of improved technologies in agricultural aviation. [economic impact and aircraft configurations

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The economic benefits attributable to a variety of potential technological improvements in agricultural aviation are discussed. Topics covered include: the ag-air industry, the data base used to estimate the potential benefits and a summary of the potential benefits from technological improvements; ag-air activities in the United States; foreign ag-air activities; major ag-air aircraft is use and manufacturers' sales and distribution networks; and estimates of the benefits to the United States of proposed technological improvements to the aircraft and dispersal equipment. A bibliography of references is appended.

  19. Dynamic electrical impedance imaging with the interacting multiple model scheme.

    PubMed

    Kim, Kyung Youn; Kim, Bong Seok; Kim, Min Chan; Kim, Sin; Isaacson, David; Newell, Jonathan C

    2005-04-01

    In this paper, an effective dynamical EIT imaging scheme is presented for on-line monitoring of the abruptly changing resistivity distribution inside the object, based on the interacting multiple model (IMM) algorithm. The inverse problem is treated as a stochastic nonlinear state estimation problem with the time-varying resistivity (state) being estimated on-line with the aid of the IMM algorithm. In the design of the IMM algorithm multiple models with different process noise covariance are incorporated to reduce the modeling uncertainty. Simulations and phantom experiments are provided to illustrate the proposed algorithm.

  20. Wald Sequential Probability Ratio Test for Analysis of Orbital Conjunction Data

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Markley, F. Landis; Gold, Dara

    2013-01-01

    We propose a Wald Sequential Probability Ratio Test for analysis of commonly available predictions associated with spacecraft conjunctions. Such predictions generally consist of a relative state and relative state error covariance at the time of closest approach, under the assumption that prediction errors are Gaussian. We show that under these circumstances, the likelihood ratio of the Wald test reduces to an especially simple form, involving the current best estimate of collision probability, and a similar estimate of collision probability that is based on prior assumptions about the likelihood of collision.

Top