Static Orbits in Rotating Spacetimes
NASA Astrophysics Data System (ADS)
Collodel, Lucas G.; Kleihaus, Burkhard; Kunz, Jutta
2018-05-01
We show that under certain conditions an axisymmetric rotating spacetime contains a ring of points in the equatorial plane, where a particle at rest with respect to an asymptotic static observer remains at rest in a static orbit. We illustrate the emergence of such orbits for boson stars. Further examples are wormholes, hairy black holes, and Kerr-Newman solutions.
Black holes in multi-fractional and Lorentz-violating models
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Rodríguez Fernández, David; Ronco, Michele
2017-05-01
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q-derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length ℓ _*. In the q-derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to ℓ _*. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q-derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models.
Black holes in multi-fractional and Lorentz-violating models.
Calcagni, Gianluca; Rodríguez Fernández, David; Ronco, Michele
2017-01-01
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q -derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length [Formula: see text]. In the q -derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to [Formula: see text]. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q -derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models.
Multiple shadows from distorted static black holes
NASA Astrophysics Data System (ADS)
Grover, Jai; Kunz, Jutta; Nedkova, Petya; Wittig, Alexander; Yazadjiev, Stoytcho
2018-04-01
We study the local shadow of the Schwarzschild black hole with a quadrupole distortion and the influence of the external gravitational field on the photon dynamics. The external matter sources modify the light ring structure and lead to the appearance of multiple shadow images. In the case of negative quadrupole moments we identify the most prominent mechanism causing multiple shadow formation. Furthermore, we obtain a condition under which this mechanism can be realized. This condition depends on the quadrupole moment, but also on the position of the observer and the celestial sphere.
NASA Astrophysics Data System (ADS)
Nasaruddin, N. H.; Yusoff, A. N.; Kaur, S.
2014-11-01
The objective of this multiple-subjects functional magnetic resonance imaging (fMRI) study was to identify the common brain areas that are activated when viewing black-and-white checkerboard pattern stimuli of various shapes, pattern and size and to investigate specific brain areas that are involved in processing static and moving visual stimuli. Sixteen participants viewed the moving (expanding ring, rotating wedge, flipping hour glass and bowtie and arc quadrant) and static (full checkerboard) stimuli during an fMRI scan. All stimuli have black-and-white checkerboard pattern. Statistical parametric mapping (SPM) was used in generating brain activation. Differential analyses were implemented to separately search for areas involved in processing static and moving stimuli. In general, the stimuli of various shapes, pattern and size activated multiple brain areas mostly in the left hemisphere. The activation in the right middle temporal gyrus (MTG) was found to be significantly higher in processing moving visual stimuli as compared to static stimulus. In contrast, the activation in the left calcarine sulcus and left lingual gyrus were significantly higher for static stimulus as compared to moving stimuli. Visual stimulation of various shapes, pattern and size used in this study indicated left lateralization of activation. The involvement of the right MTG in processing moving visual information was evident from differential analysis, while the left calcarine sulcus and left lingual gyrus are the areas that are involved in the processing of static visual stimulus.
Geometry of deformed black holes. I. Majumdar-Papapetrou binary
NASA Astrophysics Data System (ADS)
Semerák, O.; Basovník, M.
2016-08-01
Although black holes are eminent manifestations of very strong gravity, the geometry of space-time around and even inside them can be significantly affected by additional bodies present in their surroundings. We study such an influence within static and axially symmetric (electro)vacuum space-times described by exact solutions of Einstein's equations, considering astrophysically motivated configurations (such as black holes surrounded by rings) as well as those of pure academic interest (such as specifically "tuned" systems of multiple black holes). The geometry is represented by the simplest invariants determined by the metric (the lapse function) and its gradient (gravitational acceleration), with special emphasis given to curvature (the Kretschmann and Ricci-square scalars). These quantities are analyzed and their level surfaces plotted both above and below the black-hole horizons, in particular near the central singularities. Estimating that the black hole could be most strongly affected by the other black hole, we focus, in this first paper, on the Majumdar-Papapetrou solution for a binary black hole and compare the deformation caused by "the other" hole (and the electrostatic field) with that induced by rotational dragging in the well-known Kerr and Kerr-Newman solutions.
Feitosa, Darlan Tavares; Da Silva, Nelson Jorge Jr; Pires, Matheus Godoy; Zaher, Hussam; Prudente, Ana Lúcia Da Costa
2015-06-24
We described a new species of monadal coral snake of the genus Micrurus from the region of Tabatinga and Leticia, along the boundaries of Brazil, Colombia, and Peru. The new species can be distinguished from the other congeners by the combination of the following characters: absence of a pale nuchal collar; black cephalic-cap extending from rostral to firstdorsal scale and enclosing white tipped prefrontal scales; upper half of first to four supralabials and postoculars black; tricolor body coloration, with 27-31 black rings bordered by narrower white rings and 27-31 red rings; tail coloration similar to body, with alternating black rings bordered by irregular narrow white rings, red rings of the same width as the black rings; ventral scales 205-225; subcaudal scales 39-47.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bena, Iosif; Kraus, Per; Warner, Nicholas P.
We construct the most generic three-charge, three-dipole-charge, BPS black-ring solutions in a Taub-NUT background. These solutions depend on seven charges and six moduli, and interpolate between a four-dimensional black hole and a five-dimensional black ring. They are also instrumental in determining the correct microscopic description of the five-dimensional BPS black rings.
Circular geodesic of Bardeen and Ayon-Beato-Garcia regular black-hole and no-horizon spacetimes
NASA Astrophysics Data System (ADS)
Stuchlík, Zdeněk; Schee, Jan
2015-12-01
In this paper, we study circular geodesic motion of test particles and photons in the Bardeen and Ayon-Beato-Garcia (ABG) geometry describing spherically symmetric regular black-hole or no-horizon spacetimes. While the Bardeen geometry is not exact solution of Einstein's equations, the ABG spacetime is related to self-gravitating charged sources governed by Einstein's gravity and nonlinear electrodynamics. They both are characterized by the mass parameter m and the charge parameter g. We demonstrate that in similarity to the Reissner-Nordstrom (RN) naked singularity spacetimes an antigravity static sphere should exist in all the no-horizon Bardeen and ABG solutions that can be surrounded by a Keplerian accretion disc. However, contrary to the RN naked singularity spacetimes, the ABG no-horizon spacetimes with parameter g/m > 2 can contain also an additional inner Keplerian disc hidden under the static antigravity sphere. Properties of the geodesic structure are reflected by simple observationally relevant optical phenomena. We give silhouette of the regular black-hole and no-horizon spacetimes, and profiled spectral lines generated by Keplerian rings radiating at a fixed frequency and located in strong gravity region at or nearby the marginally stable circular geodesics. We demonstrate that the profiled spectral lines related to the regular black-holes are qualitatively similar to those of the Schwarzschild black-holes, giving only small quantitative differences. On the other hand, the regular no-horizon spacetimes give clear qualitative signatures of their presence while compared to the Schwarschild spacetimes. Moreover, it is possible to distinguish the Bardeen and ABG no-horizon spacetimes, if the inclination angle to the observer is known.
End Point of Black Ring Instabilities and the Weak Cosmic Censorship Conjecture.
Figueras, Pau; Kunesch, Markus; Tunyasuvunakool, Saran
2016-02-19
We produce the first concrete evidence that violation of the weak cosmic censorship conjecture can occur in asymptotically flat spaces of five dimensions by numerically evolving perturbed black rings. For certain thin rings, we identify a new, elastic-type instability dominating the evolution, causing the system to settle to a spherical black hole. However, for sufficiently thin rings the Gregory-Laflamme mode is dominant, and the instability unfolds similarly to that of black strings, where the horizon develops a structure of bulges connected by necks which become ever thinner over time.
Is "black geode" sign a characteristic MRI finding for extracranial schwannomas?
Kato, Hiroki; Kanematsu, Masayuki; Ohno, Takatoshi; Nishimoto, Yutaka; Oshima, Koji; Hirose, Yoshinobu; Nishibori, Hironori
2013-04-01
To evaluate whether the "black geode" sign is a characteristic magnetic resonance imaging (MRI) finding for extracranial schwannomas. Forty-three patients with pathologically confirmed extracranial schwannomas underwent preoperative gadolinium-enhanced MRI. The black geode sign was defined as the appearance of enhanced outer and inner rings. MR images were retrospectively reviewed for size, configuration, and signal intensity of the lesions in addition to the presence of the black geode sign. Gadolinium-enhanced T1-weighted images revealed the black geode sign in seven of 43 patients (16%). The thickness of inner rings (mean 0.6 cm, range 0.3-0.8 cm) was significantly greater than that of outer rings (mean 0.2 cm, range 0.1-0.3 cm) (P < 0.01). While outer rings were circular or elliptical in shape with smooth contours, inner rings had a lobular configuration with irregular thickness and contours. The degrees of enhancement were significantly stronger with inner rings than with outer rings (P < 0.01). In histopathological correlation of five patients who underwent total excision, inner and outer rings corresponded to peridegenerative areas and fibrous capsules, respectively. The black geode sign may be fairly specific to extracranial schwannomas on gadolinium-enhanced MR images. Copyright © 2012 Wiley Periodicals, Inc.
Charged black rings at large D
NASA Astrophysics Data System (ADS)
Chen, Bin; Li, Peng-Cheng; Wang, Zi-zhi
2017-04-01
We study the charged slowly rotating black holes in the Einstein-Maxwell theory in the large dimensions ( D). By using the 1 /D expansion in the near regions of the black holes we obtain the effective equations for the charged slowly rotating black holes. The effective equations capture the dynamics of various stationary solutions, including the charged black ring, the charged slowly rotating Myers-Perry black hole and the charged slowly boosted black string. Via different embeddings we construct these stationary solutions explicitly. For the charged black ring at large D, we find that the charge lowers the angular momentum due to the regularity condition on the solution. By performing the perturbation analysis of the effective equations, we obtain the quasinormal modes of the charge perturbation and the gravitational perturbation analytically. Like the neutral case the charged thin black ring suffers from the Gregory-Laflamme-like instability under the non-axisymmetric perturbations, but the charge weakens the instability. Besides, we find that the large D analysis always respects the cosmic censorship.
A black hole with torsion in 5D Lovelock gravity
NASA Astrophysics Data System (ADS)
Cvetković, B.; Simić, D.
2018-03-01
We analyze static spherically symmetric solutions of five dimensional (5D) Lovelock gravity in the first order formulation. In the Riemannian sector, when torsion vanishes, the Boulware–Deser black hole represents a unique static spherically symmetric black hole solution for the generic choice of the Lagrangian parameters. We show that a special choice of the Lagrangian parameters, different from the Lovelock Chern–Simons gravity, leads to the existence of a static black hole solution with torsion, the metric of which is asymptotically anti-de Sitter (AdS). We calculate the conserved charges and thermodynamical quantities of this black hole solution.
Hawking radiation from black rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, Umpei; Murata, Keiju
2008-01-15
We calculate the quantum radiation from the 5-dimensional charged rotating black rings by demanding the radiation eliminate the possible anomalies on the horizons. It is shown that the temperature, energy flux, and angular-momentum flux exactly coincide with those of the Hawking radiation. The black rings considered in this paper contain the Myers-Perry black hole as a limit, and the quantum radiation for this black hole, obtained in the literature, is recovered in the limit. The results support the picture that the Hawking radiation can be regarded as the anomaly eliminator on horizons and suggest its general applicability to the higher-dimensionalmore » black holes discovered recently.« less
No static bubbling spacetimes in higher dimensional Einstein–Maxwell theory
NASA Astrophysics Data System (ADS)
Kunduri, Hari K.; Lucietti, James
2018-03-01
We prove that any asymptotically flat static spacetime in higher dimensional Einstein–Maxwell theory must have no magnetic field. This implies that there are no static soliton spacetimes and completes the classification of static non-extremal black holes in this theory. In particular, these results establish that there are no asymptotically flat static spacetimes with non-trivial topology, with or without a black hole, in Einstein–Maxwell theory.
Anomalous dark growth rings in black cherry
Robert P. Long; David W. Trimpey; Michael C. Wiemann; Susan L. Stout
2012-01-01
Anomalous dark growth rings have been observed in black cherry (Prunus serotina) sawlogs from northwestern Pennsylvania making the logs unsuitable for veneer products. Thirty-six cross sections with dark rings, each traceable to one of ten stands, were obtained from a local mill and sections were dated and annual ring widths were measured. One or...
An easily implemented static condensation method for structural sensitivity analysis
NASA Technical Reports Server (NTRS)
Gangadharan, S. N.; Haftka, R. T.; Nikolaidis, E.
1990-01-01
A black-box approach to static condensation for sensitivity analysis is presented with illustrative examples of a cube and a car structure. The sensitivity of the structural response with respect to joint stiffness parameter is calculated using the direct method, forward-difference, and central-difference schemes. The efficiency of the various methods for identifying joint stiffness parameters from measured static deflections of these structures is compared. The results indicate that the use of static condensation can reduce computation times significantly and the black-box approach is only slightly less efficient than the standard implementation of static condensation. The ease of implementation of the black-box approach recommends it for use with general-purpose finite element codes that do not have a built-in facility for static condensation.
Five dimensional microstate geometries
NASA Astrophysics Data System (ADS)
Wang, Chih-Wei
In this thesis, we discuss the possibility of exploring the statistical mechanics description of a black hole from the point view of supergravity. Specifically, we study five dimensional microstate geometries of a black hole or black ring. At first, we review the method to find the general three-charge BPS supergravity solutions proposed by Bena and Warner. By applying this method, we show the classical merger of a black ring and black hole on [Special characters omitted.] base space in general are irreversible. On the other hand, we review the solutions on ambi-polar Gibbons-Hawking (GH) base which are bubbled geometries. There are many possible microstate geometries among the bubbled geometries. Particularly, we show that a generic blob of GH points that satisfy certain conditions can be either microstate geometry of a black hole or black ring without horizon. Furthermore, using the result of the entropy analysis in classical merger as a guide, we show that one can have a merger of a black-hole blob and a black-ring blob or two black-ring blobs that corresponds to a classical irreversible merger. From the irreversible mergers, we find the scaling solutions and deep microstates which are microstate geometries of a black hole/ring with macroscopic horizon. These solutions have the same AdS throats as classical black holes/rings but instead of having infinite throats, the throat is smoothly capped off at a very large depth with some local structure at the bottom. For solutions that produced from U (1) × U (1) invariant merger, the depth of the throat is limited by flux quantization. The mass gap is related with the depth of this throat and we show the mass gap of these solutions roughly match with the mass gap of the typical conformal-field-theory (CFT) states. Therefore, based on AdS/CFT correspondence, they can be dual geometries of the typical CFT states that contribute to the entropy of a black hole/ring. On the other hand, we show that for the solutions produced from more general merger (without U (1) × U (1) invariance), the throat can be arbitrarily deep. This presents a puzzle from the point view of AdS/CFT correspondence. We propose that this puzzle may be solved by some quantization of the angle or promoting the flux vectors to quantum spins. Finally, we suggest some future directions of further study including the puzzle of arbitrary long AdS throat and a general coarse-graining picture of microstate geometries.
Conformal Field Theory and black hole physics
NASA Astrophysics Data System (ADS)
Sidhu, Steve
2012-01-01
This thesis reviews the use of 2-dimensional conformal field theory applied to gravity, specifically calculating Bekenstein-Hawking entropy of black holes in (2+1) dimensions. A brief review of general relativity, Conformal Field Theory, energy extraction from black holes, and black hole thermodynamics will be given. The Cardy formula, which calculates the entropy of a black hole from the AdS/CFT duality, will be shown to calculate the correct Bekenstein-Hawking entropy of the static and rotating BTZ black holes. The first law of black hole thermodynamics of the static, rotating, and charged-rotating BTZ black holes will be verified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz
We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituentmore » of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.« less
Yabsley, Michael J; Jordan, Carly N; Mitchell, Sheila M; Norton, Terry M; Lindsay, David S
2007-03-15
In the current study, we determined the seroprevalence of Toxoplasma gondii, Sarcocystis neurona, and Encephalitozoon cuniculi in three species of lemurs from St. Catherines Island, Georgia. Serum samples were tested from 52 ring-tailed lemurs (Lemur catta), six blue-eyed black lemurs (Eulemur macaco flavifrons), and four black and white ruffed lemurs (Varecia variegata variegata) using an agglutination assay. Three ring-tailed lemurs (5.8%) were positive for T. gondii (titer of 1:50); one ring-tailed lemur (1.9%) and one black and white ruffed lemur (25%) were positive for S. neurona (titers of 1:1000); and one ring-tailed lemur (1.9%) was positive for E. cuniculi (titer of 1:400). All blue-eyed black lemurs were negative for antibodies to T. gondii, S. neurona, and E. cuniculi. This is the first detection of antibodies to T. gondii in ring-tailed lemurs and antibodies to S. neurona and E. cuniculi in any species of prosimian.
David R. DeWalle; Jeffrey S. Tepp; Callie J. Pickens; Pamela J. Edwards; William E. Sharpe
1995-01-01
The chemical element content of black cherry (Prunus serotina Ehrh.) tree rings showed significant changes related to annual ammonium sulfate treatments on one watershed (Fernow WS-3) which exhibited a significant increase in streamflow N export due to treatment. However, tree-ring, soil and streamflow chemistry did not respond to the same treatment...
FAST TRACK COMMUNICATION: Uniqueness of static black holes without analyticity
NASA Astrophysics Data System (ADS)
Chruściel, Piotr T.; Galloway, Gregory J.
2010-08-01
We show that the hypothesis of analyticity in the uniqueness theory of vacuum, or electrovacuum, static black holes is not needed. More generally, we show that prehorizons covering a closed set cannot occur in well-behaved domains of outer communications.
Fermion tunneling from a non-static black hole with the internal global monopole
NASA Astrophysics Data System (ADS)
Li, Hui-Ling; Cai, Min; Lin, Rong
2009-10-01
Kerner and Mann’s recent research shows that the Hawking temperature and tunneling rate can be obtained by the fermion tunneling method from the Rindler space-time and a general non-rotating black hole. In this paper, considering the tunneling particles with spin 1/2 and taking into account the particle’s self-gravitation in the dynamical background space-time, we further improve Kerner and Man’s fermion tunneling method to investigate Hawking radiation via tunneling from a non-static black hole with the internal global monopole. The result shows that the tunneling rate of the non-static black hole is related to the integral of the changing horizon besides the change of Bekenstein-Hawking entropy, which is different from the stationary cases. It also essentially implies that the unitary is violated for the reason that the black hole is non-stationary and cannot be treated as an isolated system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugliese, D.; Stuchlík, Z., E-mail: daniela.pugliese@fpf.slu.cz, E-mail: zdenek.stuchlik@physics.cz
We investigate ringed accretion disks composed of two tori (rings) orbiting on the equatorial plane of a central supermassive Kerr black hole. We discuss the emergence of the instability phases of each ring of the macro-configuration (ringed disk) according to the Paczynski violation of mechanical equilibrium. In the full general relativistic treatment, we consider the effects of the geometry of the Kerr spacetimes relevant to the characterization of the evolution of these configurations. The discussion of ring stability in different spacetimes enables us to identify particular classes of central Kerr attractors depending on their dimensionless spin. As a result ofmore » this analysis, we set constraints on the evolutionary schemes of the ringed disks relative to the torus morphology and on their rotation relative to the central black hole and to each other. The dynamics of the unstable phases of this system is significant for the high-energy phenomena related to accretion onto supermassive black holes in active galactic nuclei and the extremely energetic phenomena in quasars, which could be observed in their X-ray emission.« less
TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johannsen, Tim; Psaltis, Dimitrios, E-mail: timj@physics.arizona.ed, E-mail: dpsaltis@email.arizona.ed
2010-07-20
According to the no-hair theorem, all astrophysical black holes are fully described by their masses and spins. This theorem can be tested observationally by measuring (at least) three different multipole moments of the spacetimes of black holes. In this paper, we analyze images of black holes within a framework that allows us to calculate observables in the electromagnetic spectrum as a function of the mass, spin, and, independently, the quadrupole moment of a black hole. We show that a deviation of the quadrupole moment from the expected Kerr value leads to images of black holes that are either prolate ormore » oblate depending on the sign and magnitude of the deviation. In addition, there is a ring-like structure around the black hole shadow with a diameter of {approx}10 black hole masses that is substantially brighter than the image of the underlying accretion flow and that is independent of the astrophysical details of accretion flow models. We show that the shape of this ring depends directly on the mass, spin, and quadrupole moment of the black hole and can be used for an independent measurement of all three parameters. In particular, we demonstrate that this ring is highly circular for a Kerr black hole with a spin a {approx}< 0.9 M, independent of the observer's inclination, but becomes elliptical and asymmetric if the no-hair theorem is violated. Near-future very long baseline interferometric observations of Sgr A* will image this ring and may allow for an observational test of the no-hair theorem.« less
Uniformly accelerated black holes
NASA Astrophysics Data System (ADS)
Letelier, Patricio S.; Oliveira, Samuel R.
2001-09-01
The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.
Black holes surrounded by uniformly rotating rings
NASA Astrophysics Data System (ADS)
Petroff, D.; Ansorg, M.
2006-01-01
This paper provides a brief summary of a talk on rings surrounding Black Holes that was given at the spring meeting 2005 of the German physical society (DPG). A detailed discussion of the topics covered in the talk can be found in [1].
Dadhich, Naresh; Pons, Josep M
We study static black hole solutions in Einstein and Einstein-Gauss-Bonnet gravity with the topology of the product of two spheres, [Formula: see text], in higher dimensions. There is an unusual new feature of the Gauss-Bonnet black hole: the avoidance of a non-central naked singularity prescribes a mass range for the black hole in terms of [Formula: see text]. For an Einstein-Gauss-Bonnet black hole a limited window of negative values for [Formula: see text] is also permitted. This topology encompasses black strings, branes, and generalized Nariai metrics. We also give new solutions with the product of two spheres of constant curvature.
NASA Astrophysics Data System (ADS)
Quagliato, Luca; Berti, Guido A.
2017-10-01
In this paper, a statically determined slip-line solution algorithm is proposed for the calculation of the axial forming force in the radial-axial ring rolling process of flat rings. The developed solution is implemented in an Excel spreadsheet for the construction of the slip-line field and the calculation of the pressure factor to be used in the force model. The comparison between analytical solution and authors' FE simulation allows stating that the developed model supersedes the previous literature ones and proves the reliability of the proposed approach.
Nonexistence of extremal de Sitter black rings
NASA Astrophysics Data System (ADS)
Khuri, Marcus; Woolgar, Eric
2017-11-01
We show that near-horizon geometries in the presence of a positive cosmological constant cannot exist with ring topology. In particular, de Sitter black rings with vanishing surface gravity do not exist. Our result relies on a known mathematical theorem which is a straightforward consequence of a type of energy condition for a modified Ricci tensor, similar to the curvature-dimension conditions for the m-Bakry-Émery-Ricci tensor.
Static Einstein-Maxwell Black Holes with No Spatial Isometries in AdS Space.
Herdeiro, Carlos A R; Radu, Eugen
2016-11-25
We explicitly construct static black hole solutions to the fully nonlinear, D=4, Einstein-Maxwell-anti-de Sitter (AdS) equations that have no continuous spatial symmetries. These black holes have a smooth, topologically spherical horizon (section), but without isometries, and approach, asymptotically, global AdS spacetime. They are interpreted as bound states of a horizon with the Einstein-Maxwell-AdS solitons recently discovered, for appropriate boundary data. In sharp contrast to the uniqueness results for a Minkowski electrovacuum, the existence of these black holes shows that single, equilibrium, black hole solutions in an AdS electrovacuum admit an arbitrary multipole structure.
Self-Consistent Field Theory of Gaussian Ring Polymers
NASA Astrophysics Data System (ADS)
Kim, Jaeup; Yang, Yong-Biao; Lee, Won Bo
2012-02-01
Ring polymers, being free from chain ends, have fundamental importance in understanding the polymer statics and dynamics which are strongly influenced by the chain end effects. At a glance, their theoretical treatment may not seem particularly difficult, but the absence of chain ends and the topological constraints make the problem non-trivial, which results in limited success in the analytical or semi-analytical formulation of ring polymer theory. Here, I present a self-consistent field theory (SCFT) formalism of Gaussian (topologically unconstrained) ring polymers for the first time. The resulting static property of homogeneous and inhomogeneous ring polymers are compared with the random phase approximation (RPA) results. The critical point for ring homopolymer system is exactly the same as the linear polymer case, χN = 2, since a critical point does not depend on local structures of polymers. The critical point for ring diblock copolymer melts is χN 17.795, which is approximately 1.7 times of that of linear diblock copolymer melts, χN 10.495. The difference is due to the ring structure constraint.
Binary black hole in a double magnetic monopole field
NASA Astrophysics Data System (ADS)
Rodriguez, Maria J.
2018-01-01
Ambient magnetic fields are thought to play a critical role in black hole jet formation. Furthermore, dual electromagnetic signals could be produced during the inspiral and merger of binary black hole systems. In this paper, we derive the exact solution for the electromagnetic field occurring when a static, axisymmetric binary black hole system is placed in the field of two magnetic or electric monopoles. As a by-product of this derivation, we also find the exact solution of the binary black hole configuration in a magnetic or electric dipole field. The presence of conical singularities in the static black hole binaries represent the gravitational attraction between the black holes that also drag the external two monopole field. We show that these off-balance configurations generate no energy outflows.
Wormholes versus black holes: quasinormal ringing at early and late times
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konoplya, R.A.; Zhidenko, A., E-mail: roman.konoplya@uni-tuebingen.de, E-mail: olexandr.zhydenko@ufabc.edu.br
Recently it has been argued that the phantom thin-shell wormholes matched with the Schwarzschild space-time near the Schwarzschild radius ring like Schwarzschild black holes at early times, but differently at late times [1]. Here we consider perturbations of the wormhole which was constructed without thin-shells: the Bronnikov-Ellis wormhole supported by the phantom matter and electromagnetic field. This wormhole solution is known to be stable under specific equation of state of the phantom matter. We show that if one does not use the above thin-shell matching, the wormhole, depending on the values of its parameters, either rings as the black holemore » at all times or rings differently also at all times . The wormhole's spectrum, investigated here, posses a number of distinctive features. In the final part we have considered general properties of scattering around arbitrary rotating traversable wormholes. We have found that symmetric and non-symmetric (with respect to the throat) wormholes are qualitatively different in this respect: first, superradiance is allowed only if for those non-symmetric wormholes for which the asymptotic values of the rotation parameters are different on both sides from the throat. Second, the symmetric wormholes cannot mimic effectively the ringing of a black hole at a few various dominant multipoles at the same time, so that the future observations of various events should easily tell the symmetric wormhole from a black hole.« less
Black hole and cosmos with multiple horizons and multiple singularities in vector-tensor theories
NASA Astrophysics Data System (ADS)
Gao, Changjun; Lu, Youjun; Yu, Shuang; Shen, You-Gen
2018-05-01
A stationary and spherically symmetric black hole (e.g., Reissner-Nordström black hole or Kerr-Newman black hole) has, at most, one singularity and two horizons. One horizon is the outer event horizon and the other is the inner Cauchy horizon. Can we construct static and spherically symmetric black hole solutions with N horizons and M singularities? The de Sitter cosmos has only one apparent horizon. Can we construct cosmos solutions with N horizons? In this article, we present the static and spherically symmetric black hole and cosmos solutions with N horizons and M singularities in the vector-tensor theories. Following these motivations, we also construct the black hole solutions with a firewall. The deviation of these black hole solutions from the usual ones can be potentially tested by future measurements of gravitational waves or the black hole continuum spectrum.
Quasinormal modes, bifurcations, and nonuniqueness of charged scalar-tensor black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doneva, Daniela D.; Theoretical Astrophysics, Eberhard-Karls University of Tuebingen, Tuebingen 72076; Yazadjiev, Stoytcho S.
In the present paper, we study the scalar sector of the quasinormal modes of charged general relativistic, static, and spherically symmetric black holes coupled to nonlinear electrodynamics and embedded in a class of scalar-tensor theories. We find that for a certain domain of the parametric space, there exists unstable quasinormal modes. The presence of instabilities implies the existence of scalar-tensor black holes with primary hair that bifurcate from the embedded general relativistic black-hole solutions at critical values of the parameters corresponding to the static zero modes. We prove that such scalar-tensor black holes really exist by solving the full systemmore » of scalar-tensor field equations for the static, spherically symmetric case. The obtained solutions for the hairy black holes are nonunique, and they are in one-to-one correspondence with the bounded states of the potential governing the linear perturbations of the scalar field. The stability of the nonunique hairy black holes is also examined, and we find that the solutions for which the scalar field has zeros are unstable against radial perturbations. The paper ends with a discussion of possible formulations of a new classification conjecture.« less
NASA Astrophysics Data System (ADS)
Rogatko, Marek
1998-08-01
Using the ADM formulation of the Einstein-Maxwell axion-dilaton gravity we derive the formulas for the variation of mass and other asymptotic conserved quantities in the theory under consideration. Generalizing this kind of reasoning to the initial data for the manifold with an interior boundary we get the generalized first law of black hole mechanics. We consider an asymptotically flat solution to the Einstein-Maxwell axion-dilaton gravity describing a black hole with a Killing vector field timelike at infinity, the horizon of which comprises a bifurcate Killing horizon with a bifurcate surface. Supposing that the Killing vector field is asymptotically orthogonal to the static hypersurface with boundary S and a compact interior, we find that the solution is static in the exterior world, when the timelike vector field is normal to the horizon and has vanishing electric and axion-electric fields on static slices.
No hair theorem in quasi-dilaton massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, De-Jun; Zhou, Shuang-Yong
We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter ormore » de Sitter asymptotics. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less
Asymptotically flat black holes in Horndeski theory and beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babichev, E.; Charmousis, C.; Lehébel, A., E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: antoine.lehebel@th.u-psud.fr
We find spherically symmetric and static black holes in shift-symmetric Horndeski and beyond Horndeski theories. They are asymptotically flat and sourced by a non trivial static scalar field. The first class of solutions is constructed in such a way that the Noether current associated with shift symmetry vanishes, while the scalar field cannot be trivial. This in certain cases leads to hairy black hole solutions (for the quartic Horndeski Lagrangian), and in others to singular solutions (for a Gauss-Bonnet term). Additionally, we find the general spherically symmetric and static solutions for a pure quartic Lagrangian, the metric of which ismore » Schwarzschild. We show that under two requirements on the theory in question, any vacuum GR solution is also solution to the quartic theory. As an example, we show that a Kerr black hole with a non-trivial scalar field is an exact solution to these theories.« less
No hair theorem in quasi-dilaton massive gravity
Wu, De-Jun; Zhou, Shuang-Yong
2016-04-11
We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter ormore » de Sitter asymptotics. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less
Platelets to rings: Influence of sodium dodecyl sulfate on Zn-Al layered double hydroxide morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yilmaz, Ceren; Unal, Ugur; Koc University, Chemistry Department, Rumelifeneri yolu, Sariyer 34450, Istanbul
2012-03-15
In the current study, influence of sodium dodecyl sulfate (SDS) on the crystallization of Zn-Al layered double hydroxide (LDH) was investigated. Depending on the SDS concentration coral-like and for the first time ring-like morphologies were obtained in a urea-hydrolysis method. It was revealed that the surfactant level in the starting solution plays an important role in the morphology. Concentration of surfactant equal to or above the anion exchange capacity of the LDH is influential in creating different morphologies. Another important parameter was the critical micelle concentration (CMC) of the surfactant. Surfactant concentrations well above CMC value resulted in ring-like structures.more » The crystallization mechanism was discussed. - Graphical abstract: Dependence of ZnAl LDH Morphology on SDS concentration. Highlights: Black-Right-Pointing-Pointer In-situ intercalation of SDS in ZnAl LDH was achieved via urea hydrolysis method. Black-Right-Pointing-Pointer Morphology of ZnAl LDH intercalated with SDS depended on the SDS concentration. Black-Right-Pointing-Pointer Ring like morphology for SDS intercalated ZnAl LDH was obtained for the first time. Black-Right-Pointing-Pointer Growth mechanism was discussed. Black-Right-Pointing-Pointer Template assisted growth of ZnAl LDH was proposed.« less
Hawking Radiation from an Acoustic Black Hole on an Ion Ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horstmann, B.; Cirac, J. I.; Reznik, B.
2010-06-25
In this Letter we propose to simulate acoustic black holes with ions in rings. If the ions are rotating with a stationary and inhomogeneous velocity profile, regions can appear where the ion velocity exceeds the group velocity of the phonons. In these regions phonons are trapped like light in black holes, even though we have a discrete field theory and a nonlinear dispersion relation. We study the appearance of Hawking radiation in this setup and propose a scheme to detect it.
Hawking radiation from an acoustic black hole on an ion ring.
Horstmann, B; Reznik, B; Fagnocchi, S; Cirac, J I
2010-06-25
In this Letter we propose to simulate acoustic black holes with ions in rings. If the ions are rotating with a stationary and inhomogeneous velocity profile, regions can appear where the ion velocity exceeds the group velocity of the phonons. In these regions phonons are trapped like light in black holes, even though we have a discrete field theory and a nonlinear dispersion relation. We study the appearance of Hawking radiation in this setup and propose a scheme to detect it.
Can we identify massless braneworld black holes by observations?
NASA Astrophysics Data System (ADS)
Kuniyasu, Masashi; Nanri, Keitaro; Sakai, Nobuyuki; Ohgami, Takayuki; Fukushige, Ryosuke; Komura, Subaru
2018-05-01
For an extension of the previous work on gravitational lensing by massless braneworld black holes, we investigate their microlensing phenomena and shadows and discuss how to distinguish them from standard Schwarzschild black holes and Ellis wormholes. Microlensing is known as the phenomenon in which luminosity amplification appears when a bright object passes behind a black hole or another massive object. We find that, for the braneworld black hole as well as for the Ellis wormhole, there appears luminosity reduction just before and after the amplification. This means that observation of such a reduction would indicate the lens object is either a braneworld black hole or a wormhole, though it is difficult to distinguish one from the other by microlensing solely. Therefore, we next analyze the optical images, or shadows of the braneworld black hole surrounded by optically thin dust, and compare them to those of the Ellis wormhole. Because the spacetime around the braneworld black hole possesses unstable circular orbits of photons, a bright ring appears in the image, just as in Schwarzschild spacetime or in the wormhole spacetime. This indicates that the appearance of a bright ring does not solely confirm a braneworld black hole, a Schwarzschild, nor an Ellis wormhole. However, we find that only for the wormhole is the intensity inside the ring larger than that the outsider intensity. Therefore, with future high-resolution observations of microlensing and shadows together, we could identify the braneworld black holes if they exist.
a Virtual Trip to the Schwarzschild-De Sitter Black Hole
NASA Astrophysics Data System (ADS)
Bakala, Pavel; Hledík, Stanislav; Stuchlík, Zdenĕk; Truparová, Kamila; Čermák, Petr
2008-09-01
We developed realistic fully general relativistic computer code for simulation of optical projection in a strong, spherically symmetric gravitational field. Standard theoretical analysis of optical projection for an observer in the vicinity of a Schwarzschild black hole is extended to black hole spacetimes with a repulsive cosmological constant, i.e, Schwarzschild-de Sitter (SdS) spacetimes. Influence of the cosmological constant is investigated for static observers and observers radially free-falling from static radius. Simulation includes effects of gravitational lensing, multiple images, Doppler and gravitational frequency shift, as well as the amplification of intensity. The code generates images of static observers sky and a movie simulations for radially free-falling observers. Techniques of parallel programming are applied to get high performance and fast run of the simulation code.
NASA Astrophysics Data System (ADS)
Sullivan, Patrick F.; Pattison, Robert R.; Brownlee, Annalis H.; Cahoon, Sean M. P.; Hollingsworth, Teresa N.
2016-11-01
Boreal forests are critical sinks in the global carbon cycle. However, recent studies have revealed increasing frequency and extent of wildfires, decreasing landscape greenness, increasing tree mortality and declining growth of black and white spruce in boreal North America. We measured ring widths from a large set of increment cores collected across a vast area of interior Alaska and examined implications of data processing decisions for apparent trends in black and white spruce growth. We found that choice of detrending method had important implications for apparent long-term growth trends and the strength of climate-growth correlations. Trends varied from strong increases in growth since the Industrial Revolution, when ring widths were detrended using single-curve regional curve standardization (RCS), to strong decreases in growth, when ring widths were normalized by fitting a horizontal line to each ring width series. All methods revealed a pronounced growth peak for black and white spruce centered near 1940. Most detrending methods showed a decline from the peak, leaving recent growth of both species near the long-term mean. Climate-growth analyses revealed negative correlations with growing season temperature and positive correlations with August precipitation for both species. Multiple-curve RCS detrending produced the strongest and/or greatest number of significant climate-growth correlations. Results provide important historical context for recent growth of black and white spruce. Growth of both species might decline with future warming, if not mitigated by increasing precipitation. However, widespread drought-induced mortality is probably not imminent, given that recent growth was near the long-term mean.
van der Maaten, Ernst; van der Maaten-Theunissen, Marieke; Buras, Allan; Scharnweber, Tobias; Simard, Sonia; Kaiser, Knut; Lorenz, Sebastian; Wilmking, Martin
2015-01-01
In this study, we explore the potential to reconstruct lake-level (and groundwater) fluctuations from tree-ring chronologies of black alder (Alnus glutinosa L.) for three study lakes in the Mecklenburg Lake District, northeastern Germany. As gauging records for lakes in this region are generally short, long-term reconstructions of lake-level fluctuations could provide valuable information on past hydrological conditions, which, in turn, are useful to assess dynamics of climate and landscape evolution. We selected black alder as our study species as alder typically thrives as riparian vegetation along lakeshores. For the study lakes, we tested whether a regional signal in lake-level fluctuations and in the growth of alder exists that could be used for long-term regional hydrological reconstructions, but found that local (i.e. site-specific) signals in lake level and tree-ring chronologies prevailed. Hence, we built lake/groundwater-level reconstruction models for the three study lakes individually. Two sets of models were considered based on (1) local tree-ring series of black alder, and (2) site-specific Standardized Precipitation Evapotranspiration Indices (SPEI). Although the SPEI-based models performed statistically well, we critically reflect on the reliability of these reconstructions, as SPEI cannot account for human influence. Tree-ring based reconstruction models, on the other hand, performed poor. Combined, our results suggest that, for our study area, long-term regional reconstructions of lake-level fluctuations that consider both recent and ancient (e.g., archaeological) wood of black alder seem extremely challenging, if not impossible. PMID:26317768
Hawking Radiation from a Spherically Symmetric Static Black Hole
NASA Astrophysics Data System (ADS)
Dai, Qian; Liu, Wenbiao
2007-08-01
The massive particles’ Hawking radiation from a spherically symmetric static black hole is investigated with Parikh-Wilczek method, Hamilton Jacobi method and Damour Ruffini’s method. When energy conservation is considered, the same result can be concluded that the radiation spectrum is not precisely thermal. The corrected spectrum is consistent to the underlying unitary quantum theory, which can be used to explain the information loss paradox possibly.
Patrick F Sullivan; Robert R Pattison; Annalis H Brownlee; Sean M P Cahoon; Teresa N Hollingsworth
2016-01-01
Boreal forests are critical sinks in the global carbon cycle. However, recent studies have revealed increasing frequency and extent of wildfires, decreasing landscape greenness, increasing tree mortality and declining growth of black and white spruce in boreal North America. We measured ring widths from a large set of increment cores collected across a vast area of...
Internal defects associated with pruned and nonpruned branch stubs in black walnut
Alex L. Shigo; E. Allen, Jr. McGinnes; David T. Funk; Nelson Rogers
1979-01-01
Dissections of 50 branch stubs from seven black walnut trees revealed that some discolored wood was associated with all stubs, and that ring shakes and dark bands of discolored wood were associated with 14 of 17 stubs that were "flush cut" (branch collar removed) 13 years earlier while they were living or dead. Ring shakes formed along the barrier zone...
Space shuttle Production Verification Motor 1 (PV-1) static fire
NASA Technical Reports Server (NTRS)
1989-01-01
All inspection and instrumentation data indicate that the PV-1 static test firing conducted 18 Aug. 1988 was successful. With the exception of the intentionally flawed joints and static test modifications, PV-1 was flight configuration. Fail-safe flaws guaranteeing pressure to test the sealing capability of primary O-rings were included in the aft field joint, case-to-nozzle joint, and nozzle internal Joint 5. The test was conducted at ambient conditions, with the exception of the field joints and case/nozzle joints which were maintained at a minimum of 75 F. Ballistics performance values were within specification requirements. The PV-1 motor exhibited chamber pressure oscillations similar to previously tested Space Shuttle redesigned solid rocket motors, particularly QM-7. The first longitudinal mode oscillations experienced by PV-1 were the strongest ever measured in a Space Shuttle motor. Investigation into this observation is being conducted. Joint insulation performed as designed with no evidence of gas flow within unflawed forward field joints. The intentionally flawed center and aft case field joint insulation performance was excellent. There was no evidence of hot gas past the center field joint capture feature O-ring, the case-to-nozzle joint primary O-ring, or the aft field joint primary O-ring. O-ring seals and barriers with assured pressure at the flaws showed erosion and heat effect, but all sealed against passage of hot gases with the exception of the aft field joint capture feature O-ring. There was no evidence of erosion, heat effect, or blowby on any O-ring seals or barriers at the unflawed joints. Nozzle performance was nominal with typical erosion. Post-test examination revealed that the forward nose ring was of the old high performance motor design configuration with the 150-deg ply angle. All nozzle components remained intact for post-test evaluation. The thrust vector control system operated correctly. The water deluge system, CO2 quench, and other test equipment performed as planned during all required test operations.
Conformal Killing horizons and their thermodynamics
NASA Astrophysics Data System (ADS)
Nielsen, Alex B.; Shoom, Andrey A.
2018-05-01
Certain dynamical black hole solutions can be mapped to static spacetimes by conformal metric transformations. This mapping provides a physical link between the conformal Killing horizon of the dynamical black hole and the Killing horizon of the static spacetime. Using the Vaidya spacetime as an example, we show how this conformal relation can be used to derive thermodynamic properties of such dynamical black holes. Although these horizons are defined quasi-locally and can be located by local experiments, they are distinct from other popular notions of quasi-local horizons such as apparent horizons. Thus in the dynamical Vaidya spacetime describing constant accretion of null dust, the conformal Killing horizon, which is null by construction, is the natural horizon to describe the black hole.
Planetary Ring Simulation Experiment in Fine Particle Plasmas
NASA Astrophysics Data System (ADS)
Yokota, Toshiaki
We are experimenting on the planetary ring formation by using two component fine particle plasmas generated by a boat method. Two component plasmas which were composed of positively charged particles and negatively charged particles were generated by UV irradiation of fine aluminum particles. A small insulator sphere in which a small permanent magnet was inserted was put into the fine particle plasmas, and was connected using insulator rods and rotated by a small motor. We were able to create a ring form of fine particle plasmas just like the Saturn ring by unipolar induction. The ring formation process was recorded on VTR and its motion was analyzed by using a computer. The experimental parameters for ring formation coincides almost with the estimated values. The particles had charges of ±25 electrons from analysis of the particle beam splitting after passage through a static electric and a static magnetic field. It is estimated that the fine particle plasmas were in strongly coupled state (Γ>1) in these experimental conditions. The charges of particles increased and Γ also increased when the power of the halogen lamp was increased. The relations between the rotating frequency and the motion of ring and charge dependency were investigated mainly by using an optical method
Acceleration of a Static Observer Near the Event Horizon of a Static Isolated Black Hole.
ERIC Educational Resources Information Center
Doughty, Noel A.
1981-01-01
Compares the magnitude of the proper acceleration of a static observer in a static, isolated, spherically symmetric space-time region with the Newtonian result including the situation in the interior of a perfect-fluid star. This provides a simple physical interpretation of surface gravity and illustrates the global nature of the event horizon.…
Structural design and static analysis of a double-ring deployable truss for mesh antennas
NASA Astrophysics Data System (ADS)
Xu, Yan; Guan, Fuling; Chen, Jianjun; Zheng, Yao
2012-12-01
This paper addresses the structural design, the deployment control design, the static analysis and the model testing of a new double-ring deployable truss that is intended for large mesh antennas. This deployable truss is a multi-DOF (degree-of-freedom), over-constrained mechanism. Two kinds of deployable basic elements were introduced, as well as a process to synthesise the structure of the deployable truss. The geometric equations were formulated to determine the length of each strut, including the effects of the joint size. A DOF evaluation showed that the mechanism requires two active cables and requires deployment control. An open-loop control system was designed to control the rotational velocities of two motors. The structural stiffness of the truss was assessed by static analysis that considered the effects of the constraint condition and the pre-stress of the passive cables. A 4.2-metre demonstration model of an antenna was designed and fabricated. The geometry and the deployment behaviour of the double-ring truss were validated by the experiments using this model.
Structure reliability design and analysis of support ring for cylinder seal
NASA Astrophysics Data System (ADS)
Minmin, Zhao
2017-09-01
In this paper, the general reliability design process of the cross-sectional dimension of the support ring is introduced, which is used for the cylinder sealing. Then, taking a certain section shape support ring as an example, the every size parameters of section are determined from the view point of reliability design. Last, the static strength and reliability of the support ring are analyzed to verify the correctness of the reliability design result.
Old Black Hills ponderosa pines tell a story
Matthew J. Bunkers; L. Ronald Johnson; James R. Miller; Carolyn Hull Sieg
1999-01-01
A single ponderosa pine tree found in the central Black Hills of SouthDakota revealed its age of more than 700 years by its tree rings taken from coring in 1992. The purpose of this study was to examine historic climatic patterns from the 13th century through most of the 20th century as inferred from ring widths of this and other nearby trees. The steep, rocky site...
NASA Astrophysics Data System (ADS)
Shaymatov, Sanjar; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Abdujabbarov, Ahmadjon
We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (‑1; ‑1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.
Compact multi-bounce projection system for extreme ultraviolet projection lithography
Hudyma, Russell M.
2002-01-01
An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four optical elements providing five reflective surfaces for projecting a mask image onto a substrate. The five optical surfaces are characterized in order from object to image as concave, convex, concave, convex and concave mirrors. The second and fourth reflective surfaces are part of the same optical element. The optical system is particularly suited for ring field step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width, which effectively minimizes dynamic distortion.
2006-10-11
With giant Saturn hanging in the blackness and sheltering Cassini from the sun blinding glare, the spacecraft viewed the rings as never before, revealing previously unknown faint rings and even glimpsing its home world.
NASA Astrophysics Data System (ADS)
Finster, Felix; Smoller, Joel; Yau, Shing-Tung
We consider for j=1/2, 3/2,... a spherically symmetric, static system of (2j+1) Dirac particles, each having total angular momentum j. The Dirac particles interact via a classical gravitational and electromagnetic field. The Einstein-Dirac-Maxwell equations for this system are derived. It is shown that, under weak regularity conditions on the form of the horizon, the only black hole solutions of the EDM equations are the Reissner-Nordstrom solutions. In other words, the spinors must vanish identically. Applied to the gravitational collapse of a "cloud" of spin-1/2-particles to a black hole, our result indicates that the Dirac particles must eventually disappear inside the event horizon.
Star formation around supermassive black holes.
Bonnell, I A; Rice, W K M
2008-08-22
The presence of young massive stars orbiting on eccentric rings within a few tenths of a parsec of the supermassive black hole in the galactic center is challenging for theories of star formation. The high tidal shear from the black hole should tear apart the molecular clouds that form stars elsewhere in the Galaxy, and transport of stars to the galactic center also appears unlikely during their lifetimes. We conducted numerical simulations of the infall of a giant molecular cloud that interacts with the black hole. The transfer of energy during closest approach allows part of the cloud to become bound to the black hole, forming an eccentric disk that quickly fragments to form stars. Compressional heating due to the black hole raises the temperature of the gas up to several hundred to several thousand kelvin, ensuring that the fragmentation produces relatively high stellar masses. These stars retain the eccentricity of the disk and, for a sufficiently massive initial cloud, produce an extremely top-heavy distribution of stellar masses. This potentially repetitive process may explain the presence of multiple eccentric rings of young stars in the presence of a supermassive black hole.
Rotary motion impairs attention to color change in 4-month-old infants.
Kavšek, Michael
2013-06-01
Continuous color changes of an array of elements appear to stop changing if the array undergoes a coherent motion. This silencing illusion was demonstrated for adults by Suchow and Alvarez (Current Biology, 2011, vol. 21, pp. 140-143). The current forced-choice preferential looking study examined 4-month-old infants' sensitivity to the silencing illusion. Two experimental conditions were conducted. In the dynamic condition, infants were tested with two rotating rings of circular different-colored dots. In one of these rings the dots continuously changed color, whereas in the other ring the dots did not change color. In the static condition, the global rotary motion was eliminated from the targets. Infants preferred looking at the color-changing target in the static condition but not in the dynamic condition; they attended to the color changes in the static condition but failed to detect them in the dynamic condition. This differential looking pattern is consistent with the hypothesis that the silencing illusion can be established during early infancy. A control group of adults also responded to the silencing phenomenon. This substantiates that the stimuli generate a robust illusory effect. Copyright © 2013 Elsevier Inc. All rights reserved.
No static black hole hairs in gravitational theories with broken Lorentz invariance
NASA Astrophysics Data System (ADS)
Lin, Kai; Mukohyama, Shinji; Wang, Anzhong; Zhu, Tao
2017-06-01
In this paper, we revisit the issue of static hairs of black holes in gravitational theories with broken Lorentz invariance in the case that the speed cϕ of the khronon field becomes infinitely large, cϕ=∞ , for which the sound horizon of the khronon field coincides with the universal horizon, and the boundary conditions at the sound horizon reduce to those given normally at the universal horizons. As a result, fewer boundary conditions are present in this extreme case in comparison with the case cϕ=finite . Consequently, it is expected that static hairs might exist. However, we show analytically that, even in this case, static hairs still cannot exist, based on a decoupling limit analysis. We also consider the cases in which cϕ is finite but with cϕ≫1 , and we obtain the same conclusion.
New charged black holes with conformal scalar hair
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anabalon, Andres; Centro de Estudios Cientificos; Maeda, Hideki
A new class of four-dimensional, hairy, stationary solutions of the Einstein-Maxwell-{Lambda} system with a conformally coupled scalar field is obtained. The metric belongs to the Plebanski-Demianski family and hence its static limit has the form of the charged (A)dS C metric. It is shown that, in the static case, a new family of hairy black holes arises. They turn out to be cohomogeneity-two, with horizons that are neither Einstein nor homogenous manifolds. The conical singularities in the C metric can be removed due to the backreaction of the scalar field providing a new kind of regular, radiative spacetime. The scalarmore » field carries a continuous parameter proportional to the usual acceleration present in the C metric. In the zero-acceleration limit, the static solution reduces to the dyonic Bocharova-Bronnikov-Melnikov-Bekenstein solution or the dyonic extension of the Martinez-Troncoso-Zanelli black holes, depending on the value of the cosmological constant.« less
Static black hole solutions with a self-interacting conformally coupled scalar field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dotti, Gustavo; Gleiser, Reinaldo J.; Martinez, Cristian
2008-05-15
We study static, spherically symmetric black hole solutions of the Einstein equations with a positive cosmological constant and a conformally coupled self-interacting scalar field. Exact solutions for this model found by Martinez, Troncoso, and Zanelli were subsequently shown to be unstable under linear gravitational perturbations, with modes that diverge arbitrarily fast. We find that the moduli space of static, spherically symmetric solutions that have a regular horizon--and satisfy the weak and dominant energy conditions outside the horizon--is a singular subset of a two-dimensional space parametrized by the horizon radius and the value of the scalar field at the horizon. Themore » singularity of this space of solutions provides an explanation for the instability of the Martinez, Troncoso, and Zanelli spacetimes and leads to the conclusion that, if we include stability as a criterion, there are no physically acceptable black hole solutions for this system that contain a cosmological horizon in the exterior of its event horizon.« less
NASA Astrophysics Data System (ADS)
Cai, Kun; Shi, Jiao; Liu, Lingnan; Qin, Qing H.
2017-09-01
As a low dimensional material, black phosphorus (BP) continues to attract much attention from researchers due to its excellent electric properties. In particular, the one-dimensional material, in the form of a ring or tube formed from BP, has been extensively studied and found to be a perfect semiconductor. But the BP ring has never been reported in laboratories. To form an ideal ring from a rectangular BP ribbon, we choose a carbon nanotube (CNT) bundle to attract the ribbon and move one or more CNTs in the bundle to induce the unsaturated ends of the BP ribbon to become covalently bonded. Numerical experiments are applied to BP ribbons with lengths either equal to, shorter, or longer than the perimeter of the CNT bundle, to investigate the formation of a BP ring. Experiments show that if one end of the BP ribbon is attracted by a CNT, moving the other CNTs away endows the ribbon with high probability of forming an ideal ring. The conclusions drawn from these results will benefit future in situ experiments involving forming a ring from a BP ribbon.
Black branes as piezoelectrics.
Armas, Jay; Gath, Jakob; Obers, Niels A
2012-12-14
We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six.
Black holes and black strings of N = 2, d = 5 supergravity in the H-FGK formalism
NASA Astrophysics Data System (ADS)
Meessen, Patrick; Ortín, Tomás; Perz, Jan; Shahbazi, C. S.
2012-09-01
We study general classes and properties of extremal and non-extremal static black-hole solutions of N = 2, d = 5 supergravity coupled to vector multiplets using the recently proposed H-FGK formalism, which we also extend to static black strings. We explain how to determine the integration constants and physical parameters of the blackhole and black-string solutions. We derive some model-independent statements, including the transformation of non-extremal flow equations to the form of those for the extremal flow. We apply our methods to the construction of example solutions (among others a new extremal string solution of heterotic string theory on K 3 × S 1). In the cases where we have calculated it explicitly, the product of areas of the inner and outer horizon of a non-extremal solution coincides with the square of the moduli-independent area of the horizon of the extremal solution with the same charges.
NASA Astrophysics Data System (ADS)
Tedela, Getachew; Singh, Sujeeta; Fiddler, Marc; Bililign, Solomon
2013-03-01
Accurate measurement of optical properties of aerosols is crucial for quantifying the influence of aerosols on climate. Aerosols that scatter and absorb radiation can have a cooling or warming effect depending on the magnitude of the respective scattering and absorption terms. One example is black carbon known for its strong absorption. The reported refractive indices for black carbon particles range from 1.2 +0i to 2.75 +1.44i. Our work attempts to measure extinction coefficient, and scattering coefficient of black carbon particles at different incident beam wavelengths using a cavity ring-down spectrometer and a Nephelometer and compare to Mie theory predictions. We report calibration results using polystyrene latex spheres and preliminary results on using commercial black carbon particles. The work is supported by the Department of Defense grant W911NF-11-1-0188.
A recipe for echoes from exotic compact objects
NASA Astrophysics Data System (ADS)
Mark, Zachary; Zimmerman, Aaron; Du, Song Ming; Chen, Yanbei
2017-10-01
Gravitational wave astronomy provides an unprecedented opportunity to test the nature of black holes and search for exotic, compact alternatives. Recent studies have shown that exotic compact objects (ECOs) can ring down in a manner similar to black holes, but can also produce a sequence of distinct pulses resembling the initial ringdown. These "echoes" would provide definite evidence for the existence of ECOs. In this work we study the generation of these echoes in a generic, parametrized model for the ECO, using Green's functions. We show how to reprocess radiation in the near-horizon region of a Schwarzschild black hole into the asymptotic radiation from the corresponding source in an ECO spacetime. Our methods allow us to understand the connection between distinct echoes and ringing at the resonant frequencies of the compact object. We find that the quasinormal mode ringing in the black hole spacetime plays a central role in determining the shape of the first few echoes. We use this observation to develop a simple template for echo waveforms. This template preforms well over a variety of ECO parameters, and with improvements may prove useful in the analysis of gravitational waves.
Functionalization of multi-walled carbon nanotubes by epoxide ring-opening polymerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Fanlong; Rhee, Kyong Yop; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr
2011-12-15
In this study, covalent functionalization of carbon nanotubes (CNTs) was accomplished by surface-initiated epoxide ring-opening polymerization. FT-IR spectra showed that polyether and epoxide group covalently attached to the sidewalls of CNTs. TGA results indicated that the polyether was successfully grown from the CNT surface, with the final products having a polymer weight percentage of ca. 14-74 wt%. The O/C ratio of CNTs increased significantly from 5.1% to 29.8% after surface functionalization of CNTs. SEM and TEM images of functionalized CNTs exhibited that the tubes were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs atmore » the center. - Graphical abstract: Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs at the center. Highlights: Black-Right-Pointing-Pointer CNTs were functionalized by epoxide ring-opening polymerization. Black-Right-Pointing-Pointer Polyether and epoxide group covalently attached to the sidewalls of CNTs. Black-Right-Pointing-Pointer Functionalized CNTs have a polymer weight percentage of ca. 14-74 wt%. Black-Right-Pointing-Pointer Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers.« less
Fermions tunneling from a general static Riemann black hole
NASA Astrophysics Data System (ADS)
Chen, Ge-Rui; Huang, Yong-Chang
2015-05-01
In this paper we investigate the tunneling of fermions from a general static Riemann black hole by following Kerner and Mann (Class Quantum Gravit 25:095014, 2008a; Phys Lett B 665:277-283, 2008b) methods. By applying the WKB approximation and the Hamilton-Jacobi ansatz to the Dirac equation, we obtain the standard Hawking temperature. Furthermore, Kerner and Mann (Class Quantum Gravit 25:095014, 2008a; Phys Lett B 665:277-283, 2008b) only calculated the tunneling spectrum of the Dirac particles with spin-up, and we extend the methods to investigate the tunneling of Dirac particles with arbitrary spin directions and also obtain the expected Hawking temperature. Our result provides further evidence for the universality of black hole radiation.
Radial patterns of tree-ring chemical element concentration in two Appalachian hardwood stands
D.R. Dewalle; B.R. Swistock; W.E. Sharpe
1991-01-01
Radial patterns in tree-ring chemical element concentration in red oak (Quercus rubra L.) and black (Prunus serotina Ehrh.) were analyzed to infer past environmental changes at two mature Appalachian forest sites.
Off-equatorial circular orbits in magnetic fields of compact objects
NASA Astrophysics Data System (ADS)
Stuchlík, Zdeněk; Kovář, Jiří; Karas, Vladimír
2009-04-01
We present results of investigation of the off-equatorial circular orbits existence in the vicinity of neutron stars, Schwarzschild black holes with plasma ring, and near Kerr-Newman black holes and naked singularities.
NASA Astrophysics Data System (ADS)
Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.
2017-02-01
In a (2 +1 )-dimensional spacetime with a negative cosmological constant, the thermodynamics and the entropy of an extremal rotating thin shell, i.e., an extremal rotating ring, are investigated. The outer and inner regions with respect to the shell are taken to be the Bañados-Teitelbom-Zanelli (BTZ) spacetime and the vacuum ground state anti-de Sitter spacetime, respectively. By applying the first law of thermodynamics to the extremal thin shell, one shows that the entropy of the shell is an arbitrary well-behaved function of the gravitational area A+ alone, S =S (A+). When the thin shell approaches its own gravitational radius r+ and turns into an extremal rotating BTZ black hole, it is found that the entropy of the spacetime remains such a function of A+, both when the local temperature of the shell at the gravitational radius is zero and nonzero. It is thus vindicated by this analysis that extremal black holes, here extremal BTZ black holes, have different properties from the corresponding nonextremal black holes, which have a definite entropy, the Bekenstein-Hawking entropy S (A+)=A/+4G , where G is the gravitational constant. It is argued that for extremal black holes, in particular for extremal BTZ black holes, one should set 0 ≤S (A+)≤A/+4G;i.e., the extremal black hole entropy has values in between zero and the maximum Bekenstein-Hawking entropy A/+4 G . Thus, rather than having just two entropies for extremal black holes, as previous results have debated, namely, 0 and A/+4 G , it is shown here that extremal black holes, in particular extremal BTZ black holes, may have a continuous range of entropies, limited by precisely those two entropies. Surely, the entropy that a particular extremal black hole picks must depend on past processes, notably on how it was formed. A remarkable relation between the third law of thermodynamics and the impossibility for a massive body to reach the velocity of light is also found. In addition, in the procedure, it becomes clear that there are two distinct angular velocities for the shell, the mechanical and thermodynamic angular velocities. We comment on the relationship between these two velocities. In passing, we clarify, for a static spacetime with a thermal shell, the meaning of the Tolman temperature formula at a generic radius and at the shell.
Vacuum energy density near static distorted black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, V.P.; Sanchez, N.
1986-03-15
We investigate the contribution of massless fields of spins 0, 1/2, and 1 to the vacuum polarization near the event horizon of static Ricci-flat space-times. We do not assume any particular spatial symmetry. Within the Page-Brown ''ansatz'' we calculate /sup ren/ and /sup ren/ near static distorted black holes, for both the Hartle-Hawking (Vertical Bar>/sub H/) and Boulware (Vertical Bar>/sub B/) vacua. Using Israel's description of static space-times, we express these quantities in an invariant geometric way. We obtain that /sub H//sup ren/ and /sub H//sup ren/ near the horizon depend only on the two-dimensional geometry of the horizon surface.more » We find /sub H//sup ren/ = (1/48..pi../sup 2/ )K/sub 0/, /sub H//sup ren/ = (7..cap alpha..+12..beta.. )K/sub 0/ /sup 2/-..cap alpha../sup(/sup 2/)..delta..K/sub 0/. $K sub 0: is the Gaussian curvature of the horizon, and ..cap alpha.. and ..beta.. are numerical coefficients depending on the spin of a field. The term in /sup(/sup 2/)..delta..K/sub 0/ is characteristic of the distortion of the black hole. When the event horizon is not distorted, K/sub 0/ is a constant and this term disappears.« less
Understanding and integrating native knowledge to determine and identify high quality ash resources
Suzanne Greenlaw; Marla R. Emery; Robin W. Kimmerer; Michael. Bridgen
2010-01-01
Black ash (Fraxinus nigra) is spiritually, economically, and culturally connected to Native American tribes throughout its range. Considered a cultural keystone species, black ash can be pounded and split along its growth rings to produce exceptionally strong and pliable strips to weave into baskets. Black ash harvesters and basketmakers (...
High numerical aperture projection system for extreme ultraviolet projection lithography
Hudyma, Russell M.
2000-01-01
An optical system is described that is compatible with extreme ultraviolet radiation and comprises five reflective elements for projecting a mask image onto a substrate. The five optical elements are characterized in order from object to image as concave, convex, concave, convex, and concave mirrors. The optical system is particularly suited for ring field, step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width which effectively minimizes dynamic distortion. The present invention allows for higher device density because the optical system has improved resolution that results from the high numerical aperture, which is at least 0.14.
Gravitational quasinormal modes of static Einstein-Gauss-Bonnet anti-de Sitter black holes
NASA Astrophysics Data System (ADS)
Ma, Hong; Li, Jin
2018-04-01
In this paper, we describe quasinormal modes (QNMs) for gravitational perturbations of Einstein-Gauss-Bonnet black holes (BHs) in higher dimensional spacetimes, and derive the corresponding parameters of such black holes in three types of spacetime (flat, de Sitter (dS) and anti-de Sitter (AdS)). Our attention is concentrated on discussing the (in)stability of Einstein-Gauss-Bonnet AdS BHs through the temporal evolution of all types of gravitational perturbation fields (tensor, vector and scalar). It is concluded that the potential functions in vector and scalar gravitational perturbations have negative regions, which suppress quasinormal ringing. Furthermore, the influences of the Gauss-Bonnet coupling parameter α, the number of dimensions n and the angular momentum quantum number l on the Einstein-Gauss-Bonnet AdS BHs quasinormal spectrum are analyzed. The QNM frequencies have greater oscillation and lower damping rate with the growth of α. This indicates that QNM frequencies become increasingly unstable with large α. Meanwhile, the dynamic evolutions of the perturbation field are compliant with the results of computation from the Horowitz and Hubeny method. Because the number of extra dimensions is connected with the string scale, the relationship between α and properties of Einstein-Gauss-Bonnet AdS BHs might be beneficial for the exploitation of string theory and extra-dimensional brane worlds. Supported by FAPESP (2012/08934-0), National Natural Science Foundation of China (11205254, 11178018, 11375279, 11605015), the Natural Science Foundation Project of CQ CSTC (2011BB0052), and the Fundamental Research Funds for the Central Universities (106112016CDJXY300002, 106112017CDJXFLX0014, CDJRC10300003)
Action growth for black holes in modified gravity
NASA Astrophysics Data System (ADS)
Sebastiani, Lorenzo; Vanzo, Luciano; Zerbini, Sergio
2018-02-01
The general form of the action growth for a large class of static black hole solutions in modified gravity which includes F (R ) -gravity models is computed. The cases of black hole solutions with nonconstant Ricci scalar are also considered, generalizing the results previously found and valid only for black holes with constant Ricci scalar. An argument is put forward to provide a physical interpretation of the results, which seem tightly connected with the generalized second law of black hole thermodynamics.
“Kerrr” black hole: The lord of the string
NASA Astrophysics Data System (ADS)
Smailagic, Anais; Spallucci, Euro
2010-04-01
Kerrr in the title is not a typo. The third “r” stands for regular, in the sense of pathology-free rotating black hole. We exhibit a long search-for, exact, Kerr-like, solution of the Einstein equations with novel features: (i) no curvature ring singularity; (ii) no “anti-gravity” universe with causality violating time-like closed world-lines; (iii) no “super-luminal” matter disk. The ring singularity is replaced by a classical, circular, rotating string with Planck tension representing the inner engine driving the rotation of all the surrounding matter. The resulting geometry is regular and smoothly interpolates among inner Minkowski space, borderline de Sitter and outer Kerr universe. The key ingredient to cure all unphysical features of the ordinary Kerr black hole is the choice of a “non-commutative geometry inspired” matter source as the input for the Einstein equations, in analogy with spherically symmetric black holes described in earlier works.
Structural analysis of the space shuttle solid rocket booster/external tank attach ring
NASA Technical Reports Server (NTRS)
Dorsey, John T.
1988-01-01
An External Tank (ET) attach ring is used in the Space Shuttle System to transfer lateral loads between the ET and the Solid Rocket Booster (SRB). Following the Challenger (51-L) accident, the flight performance of the ET attach ring was reviewed, and negative margins of safety and failed bolts in the attach ring were subsequently identified. The analyses described in this report were performed in order to understand the existing ET attach ring structural response to motor case internal pressurization as well as to aid in an ET attach ring redesign effort undertaken by NASA LaRC. The finite element model as well as the results from linear and nonlinear static structural analyses are described.
Accretion onto some well-known regular black holes
NASA Astrophysics Data System (ADS)
Jawad, Abdul; Shahzad, M. Umair
2016-03-01
In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.
Kawashima, Yukio; Tachikawa, Masanori
2014-01-14
Ab initio path integral molecular dynamics (PIMD) simulation was performed to understand the nuclear quantum effect on the out-of-plane ring deformation of hydrogen maleate anion and investigate the existence of a stable structure with ring deformation, which was suggested in experimental observation (Fillaux et al., Chem. Phys. 1999, 120, 387-403). The isotope effect and the temperature effect are studied as well. We first investigated the nuclear quantum effect on the proton transfer. In static calculation and classical ab initio molecular dynamics simulations, the proton in the hydrogen bond is localized to either oxygen atom. On the other hand, the proton is located at the center of two oxygen atoms in quantum ab initio PIMD simulations. The nuclear quantum effect washes out the barrier of proton transfer. We next examined the nuclear quantum effect on the motion of hydrogen maleate anion. Principal component analysis revealed that the out-of-plane ring bending modes have dominant contribution to the entire molecular motion. In quantum ab initio PIMD simulations, structures with ring deformation were the global minimum for the deuterated isotope at 300 K. We analyzed the out-of-plane ring bending mode further and found that there are three minima along a ring distortion mode. We successfully found a stable structure with ring deformation of hydrogen maleate for the first time, to our knowledge, using theoretical calculation. The structures with ring deformation found in quantum simulation of the deuterated isotope allowed the proton transfer to occur more frequently than the planar structure. Static ab initio electronic structure calculation found that the structures with ring deformation have very small proton transfer barrier compared to the planar structure. We suggest that the "proton transfer driven" mechanism is the origin of stabilization for the structure with out-of-plane ring deformation.
Supersymmetric attractors, topological strings, and the M5-brane CFT
NASA Astrophysics Data System (ADS)
Guica, Monica M.
One of the purposes of this thesis is to present the consistent and unifying picture that emerges in string and M-theory with eight supercharges. On one hand, this involves classifying and relating supersymmetric objects that occur in N = 2 compactifications of string and M-theory on a Calabi-Yau manifold. These come in a surprisingly wide variety of four and five-dimensional black holes, black rings and their sometimes very complicated bound states. On the other hand, the topological string also makes its appearance in theories with eight supercharges, and turns out to compute certain black hole degeneracies. We dedicate the introduction and the first chapter to summarizing and reviewing the beautiful relationships between black holes, black rings, their dual conformal field theory and the topological string, and we also outline the remaining puzzles and issues. Some of the black holes in question can be obtained by multiply-wrapping an M-theory M5-brane on a self-intersecting four-cycle in the Calabi-Yau manifold. Their dual microscopic description is known, and consists of a two-dimensional conformal field theory (CFT) which is the low-energy limit of the gauge theory that resides on the worldvolume of the M5 brane. We show that in a certain limit the M5-brane CFT is - perhaps surprisingly - able to reproduce the entropy of a completely different type of black holes, those obtained from wrapped M2-branes, whose microscopic description has not yet been understood. We also argue that certain black hole bound states should also be described by the same CFT, which suggests a unifying description of the various black objects in eight-supercharge supergravity theories. Finally, we describe and present a proof of the so-called OSV conjecture, which states that the mixed partition function of N = 2 four-dimensional BPS black holes equals the modulus square of the type A topological string partition function. We also attempt to use this relationship to better understand corrections to the entropy of supersymmetric black holes and rings in five dimensions.
Self-gravitating black hole scalar wigs
NASA Astrophysics Data System (ADS)
Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Núñez, Darío; Sarbach, Olivier
2017-07-01
It has long been known that no static, spherically symmetric, asymptotically flat Klein-Gordon scalar field configuration surrounding a nonrotating black hole can exist in general relativity. In a series of previous papers, we proved that, at the effective level, this no-hair theorem can be circumvented by relaxing the staticity assumption: for appropriate model parameters, there are quasibound scalar field configurations living on a fixed Schwarzschild background which, although not being strictly static, have a larger lifetime than the age of the universe. This situation arises when the mass of the scalar field distribution is much smaller than the black hole mass, and following the analogies with the hair in the literature we dubbed these long-lived field configurations wigs. Here we extend our previous work to include the gravitational backreaction produced by the scalar wigs. We derive new approximate solutions of the spherically symmetric Einstein-Klein-Gordon system which represent self-gravitating scalar wigs surrounding black holes. These configurations interpolate between boson star configurations and Schwarzschild black holes dressed with the long-lived scalar test field distributions discussed in previous papers. Nonlinear numerical evolutions of initial data sets extracted from our approximate solutions support the validity of our approach. Arbitrarily large lifetimes are still possible, although for the parameter space that we analyze in this paper they seem to decay faster than the quasibound states. Finally, we speculate about the possibility that these configurations could describe the innermost regions of dark matter halos.
Dendrochronology and lakes: using tree-rings of alder to reconstruct lake levels
NASA Astrophysics Data System (ADS)
van der Maaten, Ernst; Buras, Allan; Scharnweber, Tobias; Simard, Sonia; Kaiser, Knut; Lorenz, Sebastian; van der Maaten-Theunissen, Marieke; Wilmking, Martin
2014-05-01
Climate change is considered a major threat for ecosystems around the world. Assessing its effects is challenging, amongst others, as we are unsure how ecosystems may respond to climate conditions they were not exposed to before. However, increased insight may be obtained by analyzing responses of ecosystems to past climate variability. In this respect, lake ecosystems appear as valuable sentinels, because they provide direct and indirect indicators of change through effects of climate. Lake-level fluctuations of closed catchments, for example, reflect a dynamic water balance, provide detailed insight in past moisture variations, and thereby allow for assessments of effects of anticipated climate change. Up to now, lake-level data are mostly obtained from gauging records and reconstructions from sediments and landforms. However, these records are in many cases only available over relatively short time periods, and, since geoscientific work is highly demanding, lake-level reconstructions are lacking for many regions. Here, we present and discuss an alternative method to reconstruct lake levels, which is based on tree-ring data of black alder (Alnus glutinosa L.). This tree species tolerates permanently waterlogged and temporally flooded conditions (i.e. riparian vegetation), and is often found along lakeshores. As the yearly growth of trees varies depending upon the experienced environmental conditions, annual rings of black alder from lakeshore vegetation likely capture information on variations in water table, and may therefore be used to reconstruct lake levels. Although alder is a relatively short-lived tree species, the frequent use of its' decay-resistant wood in foundations of historical buildings offers the possibility of extending living tree-chronologies back in time for several centuries. In this study, the potential to reconstruct lake-level fluctuations from tree-ring chronologies of black alder is explored for three lake ecosystems in the Mecklenburg Lake District, northeastern Germany. Tree-ring data were collected from black alder forests surrounding the lakes 'Tiefer See', 'Drewitzer See' and 'Großer Fürstenseer See'. At all research sites, increment cores were extracted from at least 15 trees (2 cores per tree) using an increment borer. In the tree-ring lab DendroGreif, these cores were prepared and annual tree-ring widths were measured. Thereafter, site-specific tree-ring chronologies were built using established detrending and standardization procedures. Preliminary results show that the growth of alder reacts upon water level fluctuations. We visually and statistically compare the developed tree-ring chronologies with historical lake-level records, and retrospectively model lake levels. Findings will be presented while critically reflecting upon the quality of these reconstructions.
Large Randall-Sundrum II black holes
NASA Astrophysics Data System (ADS)
Abdolrahimi, Shohreh; Cattoën, Céline; Page, Don N.; Yaghoobpour-Tari, Shima
2013-03-01
Using a novel numerical spectral method, we have constructed an AdS5-CFT4 solution to the Einstein equation with a negative cosmological constant Λ that is asymptotically conformal to the Schwarzschild metric. This method is independent of the Ricci-DeTurck-flow method used by Figueras, Lucietti, and Wiseman. We have perturbed the solution to get large static black hole solutions to the Randall-Sundrum II (RSII) braneworld model. Our solution agrees closely with that of Figueras et al. and also allows us to deduce the new results that to first order in 1 / (- ΛM2), the Hawking temperature and entropy of an RSII static black hole have the same values as the Schwarzschild metric with the same mass, but the horizon area is increased by about 4.7 / (- Λ).
Evaluation of log submergence to control EAB and preserve black ash for native American basketry
Therese M. Poland; Damon J. Crook; Tina M. Ciaramitaro
2011-01-01
Many Native American cultures use black ash, Fraxinus nigra, for basket-making because its ring-porous wood allows the annual layers of xylem to be easily separated. The emerald ash borer (EAB, Agrilus planipennis) is threatening North America's ash resource including black ash, and a centuries-old native art form. Native...
Jamróz, Marta K; Jamróz, Michał H; Dobrowolski, Jan Cz; Gliński, Jan A; Davey, Matthew H; Wawer, Iwona
2011-01-01
A new triterpene xyloside, designated cimipodocarpaside was isolated from a Black Cohosh (Actea racemosa L.) extract and its structure was elucidated by means of 1H, 13C NMR, IR and Raman spectroscopy supported by B3LYP/6-31G** calculations. The vibrational spectra were interpreted using the PED analysis of 273 fundamentals. Its structure comprises four condensed rings A-D which are 6, 7, 6, and 5-membered, respectively. An oxiirane ring is located in the side chain and a xylose moiety is attached to the A-ring. Comparison of the experimental 13C NMR data with the theoretical chemical shifts of 24S- and 24R-cimipodocarpaside isomers revealed that the isolated compound has the 24S-configuration. Combined spectroscopic and computational studies enabled the determination of the structure of cimipodocarpaside as (24S)-3β-hydroxy-24,25-oxiirane-16,23-dione-9,10-seco-9,19-cyclolanost-7(8),9(11),10(19)-trien-3-O-β-D-xylopyranoside. Triterpenes with 7-membered ring were thus far isolated from only Actea podocarpa DC. plants. This is the first report on the isolation of such a compound from Black Cohosh. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jamróz, Marta K.; Jamróz, Michał H.; Dobrowolski, Jan Cz.; Gliński, Jan A.; Davey, Matthew H.; Wawer, Iwona
2011-01-01
A new triterpene xyloside, designated cimipodocarpaside was isolated from a Black Cohosh ( Actea racemosa L.) extract and its structure was elucidated by means of 1H, 13C NMR, IR and Raman spectroscopy supported by B3LYP/6-31G** calculations. The vibrational spectra were interpreted using the PED analysis of 273 fundamentals. Its structure comprises four condensed rings A-D which are 6, 7, 6, and 5-membered, respectively. An oxiirane ring is located in the side chain and a xylose moiety is attached to the A-ring. Comparison of the experimental 13C NMR data with the theoretical chemical shifts of 24 S- and 24 R-cimipodocarpaside isomers revealed that the isolated compound has the 24 S-configuration. Combined spectroscopic and computational studies enabled the determination of the structure of cimipodocarpaside as (24 S)-3β-hydroxy-24,25-oxiirane-16,23-dione-9,10- seco-9,19-cyclolanost-7(8),9(11),10(19)-trien-3-O-β- D-xylopyranoside. Triterpenes with 7-membered ring were thus far isolated from only Actea podocarpa DC. plants. This is the first report on the isolation of such a compound from Black Cohosh.
NASA Astrophysics Data System (ADS)
Coppi, B.
2012-03-01
Field and plasma configurations that can be the distinguishing feature of and surround ``shining'' black holes have been identified. Considering the observation of the Quasi Periodic Oscillations that can be associated with inhomogeneous rotating plasmas, tri-dimensional rotating configurations have been looked for and found under special conditions. One is that these configurations are radially localized, such as narrow plasma ring pairs. Another is that the rotation frequency is nearly constant over the rings. Only axisymmetric local configurations consisting of solitary plasma rings or periodic sequences of rings are found when the gradient of the rotation frequency is (locally) significant. Assuming that the plasma pressure is scalar the problem is reduced to the solution of two coupled non-linear differential equations. One, the ``Master Equation'' [1], relates the magnetic surface function to the plasma rotation frequency that is connected to the gravity field. The other, the Vertical Equilibrium Equation, relates the plasma pressure gradient to both the Lorentz force and to the plasma density profile through the gravitational force.[4pt] [1] B. Coppi, Phys. Plasmas 18, 032901 (2011).
Spectral methods in general relativity and large Randall-Sundrum II black holes
NASA Astrophysics Data System (ADS)
Abdolrahimi, Shohreh; Cattoën, Céline; Page, Don N.; \\\\; Yaghoobpour-Tari, Shima
2013-06-01
Using a novel numerical spectral method, we have found solutions for large static Randall-Sundrum II (RSII) black holes by perturbing a numerical AdS5-CFT4 solution to the Einstein equation with a negative cosmological constant Λ that is asymptotically conformal to the Schwarzschild metric. We used a numerical spectral method independent of the Ricci-DeTurck-flow method used by Figueras, Lucietti, and Wiseman for a similar numerical solution. We have compared our black-hole solution to the one Figueras and Wiseman have derived by perturbing their numerical AdS5-CFT4 solution, showing that our solution agrees closely with theirs. We have obtained a closed-form approximation to the metric of the black hole on the brane. We have also deduced the new results that to first order in 1/(-ΛM2), the Hawking temperature and entropy of an RSII static black hole have the same values as the Schwarzschild metric with the same mass, but the horizon area is increased by about 4.7/(-Λ).
From GLC to double-null coordinates and illustration with static black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nugier, Fabien, E-mail: fnugier@ntu.edu.tw
We present a system of coordinates deriving directly from the so-called Geodesic Light-Cone (GLC) coordinates and made of two null scalars intersecting on a 2-dimensional sphere parameterized by two constant angles along geodesics. These coordinates are shown to be equivalent to the well-known double-null coordinates. As GLC, they present interesting properties for cosmology and astrophysics. We discuss this latter topic for static black holes, showing simple descriptions for the metric or particles and photons trajectories. We also briefly comment on the time of flight of ultra-relativistic particles.
Influence of magnetic field on evaporation of a ferrofluid droplet
NASA Astrophysics Data System (ADS)
Jadav, Mudra; Patel, R. J.; Mehta, R. V.
2017-10-01
This paper reports the influence of the static magnetic field on the evaporation of a ferrofluid droplet placed on a plane glass substrate. A water based ferrofluid drop is allowed to dry under ambient conditions. Like all other fluids, this fluid also exhibits well-known coffee ring patterns under zero field conditions. This pattern is shown to be modulated by applying the static magnetic field. When the field is applied in a direction perpendicular to the plane of the substrate, the thickness of the ring decreases with an increase in the field, and under a critical value of the field, the coffee-ring effect is suppressed. For the parallel field configuration, linear chains parallel to the plane of the substrate are observed. The effect of the field on the evaporation rate and temporal variation of the contact angle is also studied. The results are analyzed in light of available models. These findings may be useful in applications like ink-jet printing, lithography, and painting and display devices involving ferrofluids.
NASA Technical Reports Server (NTRS)
Aperlo, P. J. A.; Buck, P. A.; Weldon, V. A.
1981-01-01
In ball and socket joint where electrical insulator such as polytetrafluoroethylene is used as line to minimize friction, good electrical contact across joint may be needed for lightning protection or to prevent static-charge build-up. Electrical contact is maintained by ring of spring-loaded fingers mounted in socket. It may be useful in industry for cranes, trailers, and other applications requiring ball and socket joint.
Sonic analog of gravitational black holes in bose-einstein condensates
Garay; Anglin; Cirac; Zoller
2000-11-27
It is shown that, in dilute-gas Bose-Einstein condensates, there exist both dynamically stable and unstable configurations which, in the hydrodynamic limit, exhibit a behavior resembling that of gravitational black holes. The dynamical instabilities involve creation of quasiparticle pairs in positive and negative energy states, as in the well-known suggested mechanism for black-hole evaporation. We propose a scheme to generate a stable sonic black hole in a ring trap.
Maximal analytic extension and hidden symmetries of the dipole black ring
NASA Astrophysics Data System (ADS)
Armas, Jay
2011-12-01
We construct analytic extensions across the Killing horizons of non-extremal and extremal dipole black rings in Einstein-Maxwell’s theory using different methods. We show that these extensions are non-globally hyperbolic, have multiple asymptotically flat regions and, in the non-extremal case, are also maximal and timelike complete. Moreover, we find that in both cases, the causal structure of the maximally extended spacetime resembles that of the four-dimensional Reissner-Nordström black hole. Furthermore, motivated by the physical interpretation of one of these extensions, we find a separable solution to the Hamilton-Jacobi equation corresponding to zero energy null geodesics and relate it to the existence of a conformal Killing tensor and a conformal Killing-Yano tensor in a specific dimensionally reduced spacetime.
Black holes in vector-tensor theories and their thermodynamics
NASA Astrophysics Data System (ADS)
Fan, Zhong-Ying
2018-01-01
In this paper, we study Einstein gravity either minimally or non-minimally coupled to a vector field which breaks the gauge symmetry explicitly in general dimensions. We first consider a minimal theory which is simply the Einstein-Proca theory extended with a quartic self-interaction term for the vector field. We obtain its general static maximally symmetric black hole solution and study the thermodynamics using Wald formalism. The aspects of the solution are much like a Reissner-Nordstrøm black hole in spite of that a global charge cannot be defined for the vector. For non-minimal theories, we obtain a lot of exact black hole solutions, depending on the parameters of the theories. In particular, many of the solutions are general static and have maximal symmetry. However, there are some subtleties and ambiguities in the derivation of the first laws because the existence of an algebraic degree of freedom of the vector in general invalids the Wald entropy formula. The thermodynamics of these solutions deserves further studies.
Strong lensing of a regular black hole with an electrodynamics source
NASA Astrophysics Data System (ADS)
Manna, Tuhina; Rahaman, Farook; Molla, Sabiruddin; Bhadra, Jhumpa; Shah, Hasrat Hussain
2018-05-01
In this paper we have investigated the gravitational lensing phenomenon in the strong field regime for a regular, charged, static black holes with non-linear electrodynamics source. We have obtained the angle of deflection and compared it to a Schwarzschild black hole and Reissner Nordström black hole with similar properties. We have also done a graphical study of the relativistic image positions and magnifications. We hope that this method may be useful in the detection of non-luminous bodies like this current black hole.
Archaea S-layer nanotube from a "black smoker" in complex with cyclo-octasulfur (S8 ) rings.
McDougall, Matthew; Francisco, Olga; Harder-Viddal, Candice; Roshko, Roy; Meier, Markus; Stetefeld, Jörg
2017-12-01
Elemental sulfur exists primarily as an S80 ring and serves as terminal electron acceptor for a variety of sulfur-fermenting bacteria. Hyperthermophilic archaea from black smoker vents are an exciting research tool to advance our knowledge of sulfur respiration under extreme conditions. Here, we use a hybrid method approach to demonstrate that the proteinaceous cavities of the S-layer nanotube of the hyperthermophilic archaeon Staphylothermus marinus act as a storage reservoir for cyclo-octasulfur S8. Fully atomistic molecular dynamics (MD) simulations were performed and the method of multiconfigurational thermodynamic integration was employed to compute the absolute free energy for transferring a ring of elemental sulfur S8 from an aqueous bath into the largest hydrophobic cavity of a fragment of archaeal tetrabrachion. Comparisons with earlier MD studies of the free energy of hydration as a function of water occupancy in the same cavity of archaeal tetrabrachion show that the sulfur ring is energetically favored over water. © 2017 Wiley Periodicals, Inc.
Experimental GMPLS-Based Provisioning for Future All-Optical DPRing-Based MAN
NASA Astrophysics Data System (ADS)
Mu�oz, Ra�l; V�ctor Mart�nez Rivera, Ricardo; Sorribes, Jordi; Junyent Giralt, Gabriel
2005-10-01
Given the abundance and strategic importance of ring fiber plants in metropolitan area networks (MANs), and the accelerating growth of Internet traffic, it is crucial to extend the existing Internet protocol (IP)-based generalized multiprotocol label switching (GMPLS) framework to provision dynamic wavelength division multiplexing (WDM) optical rings. Nevertheless, the emerging GMPLS-based lightpath provisioning does not cover the intricacies of optical rings. No GMPLS standard exists for optical add-drop multiplexer (OADM) rings, relying instead upon proprietary static solution. The objective of this paper is to propose and evaluate novel GMPLS-based lightpath signaling and wavelength reservation schemes specifically designed for dedicated protection ring (DPRing)-based MANs. Performance evaluation has been carried out in a GMPLS-based testbed named ADRENALINE.
NASA Astrophysics Data System (ADS)
Kleihaus, Burkhard; Kunz, Jutta; Yazadjiev, Stoytcho
2015-05-01
In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
NASA Astrophysics Data System (ADS)
Finster, Felix; Smoller, Joel; Yau, Shing-Tung
2000-04-01
It is shown analytically that the Dirac equation has no normalizable, time-periodic solutions in a Reissner-Nordström black hole background; in particular, there are no static solutions of the Dirac equation in such a background metric. The physical interpretation is that Dirac particles can either disappear into the black hole or escape to infinity, but they cannot stay on a periodic orbit around the black hole.
Smarr formula for Lovelock black holes: A Lagrangian approach
NASA Astrophysics Data System (ADS)
Liberati, Stefano; Pacilio, Costantino
2016-04-01
The mass formula for black holes can be formally expressed in terms of a Noether charge surface integral plus a suitable volume integral, for any gravitational theory. The integrals can be constructed as an application of Wald's formalism. We apply this formalism to compute the mass and the Smarr formula for static Lovelock black holes. Finally, we propose a new prescription for Wald's entropy in the case of Lovelock black holes, which takes into account topological contributions to the entropy functional.
7 CFR 51.3416 - Classification of defects.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ring Internal Black Spot, Internal Discoloration, Vascular Browning, Fusarium Wilt, Net Necrosis, Other Necrosis, Stem End Browning 5% waste 10% waste. Occurring entirely within the vascular ring Hollow Heart or... diameter in a 10 ounce potato. 1 Internal Brown Spot and similar discoloration (Heat Necrosis) Not more...
7 CFR 51.3416 - Classification of defects.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ring Internal Black Spot, Internal Discoloration, Vascular Browning, Fusarium Wilt, Net Necrosis, Other Necrosis, Stem End Browning 5% waste 10% waste. Occurring entirely within the vascular ring Hollow Heart or... diameter in a 10 ounce potato. 1 Internal Brown Spot and similar discoloration (Heat Necrosis) Not more...
7 CFR 51.3416 - Classification of defects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Maximum allowed for U.S. No. 2 processing Occurring outside of or not entirely confined to the vascular ring Internal Black Spot, Internal Discoloration, Vascular Browning, Fusarium Wilt, Net Necrosis, Other Necrosis, Stem End Browning 5% waste 10% waste. Occurring entirely within the vascular ring Hollow Heart or...
Black Suburbanization: Access to Improved Quality of Life or Maintenance of the Status Quo?
ERIC Educational Resources Information Center
Rose, Harold M.
Large numbers of blacks have been moving into residential zones outside the central city but within what is sometimes called the metropolitan ring. By 1970, 3.5 million blacks, or a million more than in 1960, lived in these areas. Although these areas are outside the city proper, they should not be linked to the images held of typical suburbia.…
Effect of two layouts on high technology AAC navigation and content location by people with aphasia.
Wallace, Sarah E; Hux, Karen
2014-03-01
Navigating high-technology augmentative and alternative communication (AAC) devices with dynamic displays can be challenging for people with aphasia. The purpose of this study was to determine which of two AAC interfaces two people with aphasia could use most efficiently and accurately. The researchers used a BCB'C' alternating treatment design to provide device-use instruction to two people with severe aphasia regarding two personalised AAC interfaces that had different navigation layouts but identical content. One interface had static buttons for homepage and go-back features, and the other interface had static buttons in a navigation ring layout. Throughout treatment, the researchers monitored participants' mastery patterns regarding navigation efficiency and accuracy when locating target messages. Participants' accuracy and efficiency improved with both interfaces given intervention; however, the navigation ring layout appeared more transparent and better facilitated navigation than the homepage layout. People with aphasia can learn to navigate computerised devices; however, interface layout can substantially affect the efficiency and accuracy with which they locate messages. Given intervention incorporating errorless learning principles, people with chronic aphasia can learn to navigate across multiple device levels to locate target sentences. Both navigation ring and homepage interfaces may be used by people with aphasia. Some people with aphasia may be more consistent and efficient in finding target sentences using the navigation ring interface than the homepage interface. Additionally, the navigation ring interface may be more transparent and easier for people with aphasia to master--that is, they may require fewer intervention sessions to learn to navigate the navigation ring interface. Generalisation of learning may result from use of the navigation ring interface. Specifically, people with aphasia may improve navigation with the homepage interface as a result of instruction on the navigation interface, but not vice versa.
Can mixed star-plus-wormhole systems mimic black holes?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzhunushaliev, Vladimir; Folomeev, Vladimir; Kleihaus, Burkhard
We consider mixed strongly gravitating configurations consisting of a wormhole threaded by two types of ordinary matter. For such systems, the possibility of obtaining static spherically symmetric solutions describing compact massive central objects enclosed by high-redshift surfaces (black-hole-like configurations) is studied. Using the standard thin accretion disk model, we exhibit potentially observable differences allowing to distinguish the mixed systems from ordinary black holes with the same masses.
Thermodynamics and luminosities of rainbow black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Benrong; Wang, Peng; Yang, Haitang, E-mail: mubenrong@uestc.edu.cn, E-mail: pengw@scu.edu.cn, E-mail: hyanga@scu.edu.cn
2015-11-01
Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ''Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ''Amelino-Camelia dispersion relation'' which is E{sup 2} = m{sup 2}+p{sup 2}[1−η(E/m{sub p}){sup n}] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework ofmore » rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n ≥ 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.« less
World-volume effective theory for higher-dimensional black holes.
Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A
2009-05-15
We argue that the main feature behind novel properties of higher-dimensional black holes, compared to four-dimensional ones, is that their horizons can have two characteristic lengths of very different size. We develop a long-distance world-volume effective theory that captures the black hole dynamics at scales much larger than the short scale. In this limit the black hole is regarded as a blackfold: a black brane (possibly boosted locally) whose world volume spans a curved submanifold of the spacetime. This approach reveals black objects with novel horizon geometries and topologies more complex than the black ring, but more generally it provides a new organizing framework for the dynamics of higher-dimensional black holes.
Nonexistence of degenerate horizons in static vacua and black hole uniqueness
NASA Astrophysics Data System (ADS)
Khuri, Marcus; Woolgar, Eric
2018-02-01
We show that in any spacetime dimension D ≥ 4, degenerate components of the event horizon do not exist in static vacuum configurations with positive cosmological constant. We also show that without a cosmological constant asymptotically flat solutions cannot possess a degenerate horizon component. Several independent proofs are presented. One proof follows easily from differential geometry in the near-horizon limit, while others use Bakry-Émery-Ricci bounds for static Einstein manifolds.
Static solutions for fourth order gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, William
2010-11-15
The Lichnerowicz and Israel theorems are extended to higher order theories of gravity. In particular it is shown that Schwarzschild is the unique spherically symmetric, static, asymptotically flat, black-hole solution, provided the spatial curvature is less than the quantum gravity scale outside the horizon. It is then shown that in the presence of matter (satisfying certain positivity requirements), the only static and asymptotically flat solutions of general relativity that are also solutions of higher order gravity are the vacuum solutions.
Rotating black holes with non-Abelian hair
NASA Astrophysics Data System (ADS)
Kleihaus, Burkhard; Kunz, Jutta; Navarro-Lérida, Francisco
2016-12-01
We here review asymptotically flat rotating black holes in the presence of non-Abelian gauge fields. Like their static counterparts these black holes are no longer uniquely determined by their global charges. In the case of pure SU(2) Yang-Mills fields, the rotation generically induces an electric charge, while the black holes do not carry a magnetic charge. When a Higgs field is coupled, rotating black holes with monopole hair arise in the case of a Higgs triplet, while in the presence of a complex Higgs doublet the black holes carry sphaleron hair. The inclusion of a dilaton allows for Smarr type mass formulae.
Hairy black holes in scalar extended massive gravity
NASA Astrophysics Data System (ADS)
Tolley, Andrew J.; Wu, De-Jun; Zhou, Shuang-Yong
2015-12-01
We construct static, spherically symmetric black hole solutions in scalar extended ghost-free massive gravity and show the existence of hairy black holes in this class of extension. While the existence seems to be a generic feature, we focus on the simplest models of this extension and find that asymptotically flat hairy black holes can exist without fine-tuning the theory parameters, unlike the bi-gravity extension, where asymptotical flatness requires fine-tuning in the parameter space. Like the bi-gravity extension, we are unable to obtain asymptotically dS regular black holes in the simplest models considered, but it is possible to obtain asymptotically AdS black holes.
Static black hole and vacuum energy: thin shell and incompressible fluid
NASA Astrophysics Data System (ADS)
Ho, Pei-Ming; Matsuo, Yoshinori
2018-03-01
With the back reaction of the vacuum energy-momentum tensor consistently taken into account, we study static spherically symmetric black-hole-like solutions to the semi-classical Einstein equation. The vacuum energy is assumed to be given by that of 2-dimensional massless scalar fields, as a widely used model in the literature for black holes. The solutions have no horizon. Instead, there is a local minimum in the radius. We consider thin shells as well as incompressible fluid as the matter content of the black-hole-like geometry. The geometry has several interesting features due to the back reaction of vacuum energy. In particular, Buchdahl's inequality can be violated without divergence in pressure, even if the surface is below the Schwarzschild radius. At the same time, the surface of the star can not be far below the Schwarzschild radius for a density not much higher than the Planck scale, and the proper distance from its surface to the origin can be very short even for very large Schwarzschild radius. The results also imply that, contrary to the folklore, in principle the Boulware vacuum can be physical for black holes.
Blackfolds, plane waves and minimal surfaces
NASA Astrophysics Data System (ADS)
Armas, Jay; Blau, Matthias
2015-07-01
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.
Skyrmions, Skyrme stars and black holes with Skyrme hair in five spacetime dimension
NASA Astrophysics Data System (ADS)
Brihaye, Yves; Herdeiro, Carlos; Radu, Eugen; Tchrakian, D. H.
2017-11-01
We consider a class of generalizations of the Skyrme model to five spacetime dimensions ( d = 5), which is defined in terms of an O(5) sigma model. A special ansatz for the Skyrme field allows angular momentum to be present and equations of motion with a radial dependence only. Using it, we obtain: 1) everywhere regular solutions describing localised energy lumps ( Skyrmions); 2) Self-gravitating, asymptotically flat, everywhere non-singular solitonic solutions ( Skyrme stars), upon minimally coupling the model to Einstein's gravity; 3) both static and spinning black holes with Skyrme hair, the latter with rotation in two orthogonal planes, with both angular momenta of equal magnitude. In the absence of gravity we present an analytic solution that satisfies a BPS-type bound and explore numerically some of the non-BPS solutions. In the presence of gravity, we contrast the solutions to this model with solutions to a complex scalar field model, namely boson stars and black holes with synchronised hair. Remarkably, even though the two models present key differences, and in particular the Skyrme model allows static hairy black holes, when introducing rotation, the synchronisation condition becomes mandatory, providing further evidence for its generality in obtaining rotating hairy black holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan Qiyuan; Jing Jiliang
2008-09-15
The effect of the Hawking temperature on the entanglement and teleportation for the scalar field in a most general, static, and asymptotically flat black hole with spherical symmetry has been investigated. It has been shown that the same 'initial entanglement' for the state parameter {alpha} and its 'normalized partners'{radical}(1-{alpha}{sup 2}) will be degraded by the Hawking effect with increasing Hawking temperature along two different trajectories except for the maximally entangled state. In the infinite Hawking temperature limit, corresponding to the case of the black hole evaporating completely, the state no longer has distillable entanglement for any {alpha}. It is interestingmore » to note that the mutual information in this limit is equal to just half of the 'initially mutual information'. It has also been demonstrated that the fidelity of teleportation decreases as the Hawking temperature increases, which indicates the degradation of entanglement.« less
NASA Technical Reports Server (NTRS)
Indoe, William
2012-01-01
A gas-charging plug can be easily analyzed for random vibration. The design features two steeped O-rings in a radial configuration at two different diameters, with a 0.050-in. (.1.3-mm) diameter through-hole between the two O-rings. In the charging state, the top O-ring is engaged and sealing. The bottom O-ring outer diameter is not squeezed, and allows air to flow by it into the tank. The inner diameter is stretched to plug the gland diameter, and is restrained by the O-ring groove. The charging port bushing provides mechanical stop to restrain the plug during gas charge removal. It also prevents the plug from becoming a projectile when removing gas charge from the accumulator. The plug can easily be verified after installation to ensure leakage requirements are met.
7-Methoxy-2-phenylchroman-4-one
Piaskowska, Agata; Hodorowicz, Maciej; Nitek, Wojciech
2013-01-01
In the title compound, C16H14O3, the ring O atom and the two adjacent non-fused C atoms, as well as the attached phenyl ring, exhibit static disorder [occupancy ratio 0.559 (12):0.441 (12)]. The crystal packing features π–π [centroid–centroid distance = 3.912 (1) Å] and C—H⋯π interactions. PMID:23424545
Li, Rufeng; Feng, Chenghong; Wang, Dongxin; He, Maozhi; Hu, Lijuan; Shen, Zhenyao
2016-12-01
Historical distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) and their carriers (i.e., organic matter and mineral particles) in the sediment cores of the Yangtze Estuary were investigated, with emphasis laid on the role of the Yangtze River. Grain size component of sediments (clay, silt, and sand) and organic carbon (black carbon and total organic carbon) in the sediment cores were markedly affected by water flux and sediment discharge of the Yangtze River. Qualitative and quantitative analysis results showed that sands and black carbon acted as the main carriers of PAHs. The sedimentation of two-ring to three-ring PAHs in the estuary had significant correlations with water flux and sediment discharge of the Yangtze River. The relative lower level of the four-ring and five-ring to six-ring PAHs concentrations appeared around the year 2003 and remained for the following several years. This time period accorded well with the water impoundment time of the Three Gorges Reservoir. The decreased level of two-ring to three-ring PAHs occurred in the year 1994, and the peak points around the year 2009 indicated that PAHs sedimentation in the estuary also had close relationship to severe drought and flood in the catchments. The findings presented in this paper could provide references for assessing the impacts of water flux and sediment discharge on the historical deposition of PAHs and their carriers in the Yangtze Estuary.
Uncertainty relation in Schwarzschild spacetime
NASA Astrophysics Data System (ADS)
Feng, Jun; Zhang, Yao-Zhong; Gould, Mark D.; Fan, Heng
2015-04-01
We explore the entropic uncertainty relation in the curved background outside a Schwarzschild black hole, and find that Hawking radiation introduces a nontrivial modification on the uncertainty bound for particular observer, therefore it could be witnessed by proper uncertainty game experimentally. We first investigate an uncertainty game between a free falling observer and his static partner holding a quantum memory initially entangled with the quantum system to be measured. Due to the information loss from Hawking decoherence, we find an inevitable increase of the uncertainty on the outcome of measurements in the view of static observer, which is dependent on the mass of the black hole, the distance of observer from event horizon, and the mode frequency of quantum memory. To illustrate the generality of this paradigm, we relate the entropic uncertainty bound with other uncertainty probe, e.g., time-energy uncertainty. In an alternative game between two static players, we show that quantum information of qubit can be transferred to quantum memory through a bath of fluctuating quantum fields outside the black hole. For a particular choice of initial state, we show that the Hawking decoherence cannot counteract entanglement generation after the dynamical evolution of system, which triggers an effectively reduced uncertainty bound that violates the intrinsic limit -log2 c. Numerically estimation for a proper choice of initial state shows that our result is comparable with possible real experiments. Finally, a discussion on the black hole firewall paradox in the context of entropic uncertainty relation is given.
Solitary Ring Pairs and Non-Thermal Regimes in Plasmas Connected with Black Holes*
NASA Astrophysics Data System (ADS)
Coppi, Bruno
2011-10-01
The two-dimensional plasma and field configurations that can be associated with compact objects such as black holes are described, (in the limit where assuming a scalar pressure can be justified), by two characteristic non-linear equations: i) one that connects the plasma density profile to that of the relevant magnetic surfaces and is called the ``master equation'': ii) the other, the ``vertical equilibrium equation,'' connects the plasma pressure to the density and the magnetic surfaces and is closely related to the G-S equation for magnetically confined laboratory plasmas. Two kinds of solutions are found that consist of: i) a periodic sequence of plasma rings; ii) solitary pairs of rings. Experimental observations support the presence of rings around collapsed objects. Tridimensional configuration are found in the linear approximation as consisting of trailing spirals. Observations of High Frequency Quasi-Periodic oscillations implies that they originate from 3-dimentional structures. The existing theory is extended to involve non-thermal particle distributions in order to comply with relevant experimental observations. *Sponsored in part by the U.S. DOE.
Relation of Nickel Concentrations in Tree Rings to Groundwater Contamination
NASA Astrophysics Data System (ADS)
Yanosky, Thomas M.; Vroblesky, Don A.
1992-08-01
Increment cores were collected from trees growing at two sites where groundwater is contaminated by nickel. Proton-induced X ray emission spectroscopy was used to determine the nickel concentrations in selected individual rings and in parts of individual rings. Ring nickel concentrations were interpreted on the basis of recent concentrations of nickel in aquifers, historical information about site use activities, and model simulations of groundwater flow. Nickel concentrations in rings increased during years of site use but not in trees outside the contaminated aquifers. Consequently, it was concluded that trees may preserve in their rings an annual record of nickel contamination in groundwater. Tulip trees and oaks contained higher concentrations of nickel than did sassafras, sweet gum, or black cherry. No evidence was found that nickel accumulates consistently within parts of individual rings or that nickel is translocated across ring boundaries.
Relation of nickel concentrations in tree rings to groundwater contamination
Yanosky, Thomas M.; Vroblesky, Don A.
1992-01-01
Increment cores were collected from trees growing at two sites where groundwater is contaminated by nickel. Proton-induced X ray emission spectroscopy was used to determine the nickel concentrations in selected individual rings and in parts of individual rings. Ring nickel concentrations were interpreted on the basis of recent concentrations of nickel in aquifers, historical information about site use activities, and model simulations of groundwater flow. Nickel concentrations in rings increased during years of site use but not in trees outside the contaminated aquifers. Consequently, it was concluded that trees may preserve in their rings an annual record of nickel contamination in groundwater. Tulip trees and oaks contained higher concentrations of nickel than did sassafras, sweet gum, or black cherry. No evidence was found that nickel accumulates consistently within parts of individual rings or that nickel is translocated across ring boundaries.
NASA Technical Reports Server (NTRS)
Wanjek, Christopher
2003-01-01
Regardless of size, black holes easily acquire accretion disks. Supermassive black holes can feast on the bountiful interstellar gas in galactic nuclei. Small black holes formed from collapsing stars often belong to binary systems in which a bulging companion star can spill some of its gas into the black hole s reach. In the chaotic mess of the accretion disk, atoms collide with one another. Swirling plasma reaches speeds upward of 10% that of light and glows brightly in many wavebands, particularly in X-rays. Gas gets blown back by a wind of radiation from the inner disk. New material enters the disks from different directions.
Pan, Li; Cao, Jujiang; Liu, Min; Fu, Weiwei
2017-11-30
High speed data transmission rotating connector system for signal high-speed transmission used in the fixed end and rotating end, it is one of the core component in the CT system. This paper involves structure design and analysis of the retaining ring in the CT high speed data transmission rotating connector system based on the principle of off-axis free space optical transmission. According to the problem of the actual engineering application of space limitations, optical fiber fixed and collimator installation location, we designed the structure of the retaining ring. Using the static analysis function of ANSYS Workbench, it verifies rationality and safety of the strength of retaining ring structure. And based on modal analysis function of ANSYS Workbench, it evaluates the effect of the retaining ring on the stability of the system date transmission, and provides theoretical basis for the feasibility of the structure in practical application.
The spectrum of static subtracted geometries
NASA Astrophysics Data System (ADS)
Andrade, Tomás; Castro, Alejandra; Cohen-Maldonado, Diego
2017-05-01
Subtracted geometries are black hole solutions of the four dimensional STU model with rather interesting ties to asymptotically flat black holes. A peculiar feature is that the solutions to the Klein-Gordon equation on this subtracted background can be organized according to representations of the conformal group SO(2, 2). We test if this behavior persists for the linearized fluctuations of gravitational and matter fields on static, electrically charged backgrounds of this kind. We find that there is a subsector of the modes that do display conformal symmetry, while some modes do not. We also discuss two different effective actions that describe these subtracted geometries and how the spectrum of quasinormal modes is dramatically different depending upon the action used.
NASA Astrophysics Data System (ADS)
Nelson, E. A.; Thomas, S. C.
2007-12-01
Global increases in temperature and atmospheric CO2 concentration are predicted to enhance tree growth in the short term, but studies of current impacts of climate change on Canada's forests are limited. This study examined the effects of increasing temperature and atmospheric CO2 concentration on tree ring growth in west-central Manitoba and northern Ontario, sampling white spruce (Picea glauca) and black spruce (Picea mariana), respectively. Over 50 tree cores from each site were sampled, analysed for ring-width, cross-dated and detrended, generating a ~100 y chronology for each population. We found a positive correlation between ring-width increment and spring temperatures (April-May: p<0.005) in Ontario. In Manitoba, however, we found a negative correlation between summer temperatures (Jul-Aug: p<0.005) and ring-width increment coincident with a positive relationship with summer precipitation (July: p<0.03). We examined the residuals following a regression with temperature for a positive trend over time, which has been interpreted in prior studies as evidence for a CO2 fertilization effect. We detected no such putative CO2 fertilization signal in either spruce population. Our results suggest that temperature-limited lowland black spruce communities may respond positively to moderate warming, but that water-limited upland white spruce communities may suffer from drought stress under high temperature conditions. Neither population appears to benefit from increasing CO2 availability.
Black hole shadows and invariant phase space structures
NASA Astrophysics Data System (ADS)
Grover, J.; Wittig, A.
2017-07-01
Utilizing concepts from dynamical systems theory, we demonstrate how the existence of light rings, or fixed points, in a spacetime will give rise to families of periodic orbits and invariant manifolds in phase space. It is shown that these structures can define the shape of the black hole shadow as well as a number of salient features of the spacetime lensing. We illustrate this through the analysis of lensing by a hairy black hole.
NASA Astrophysics Data System (ADS)
Rodrigue, Kamiko Kouemeni Jean; Saleh, Mahamat; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin
2018-05-01
In this paper, we investigate the thermodynamics and Hawking radiation of Schwarzschild black hole with quintessence-like matter and deficit solid angle. From the metric of the black hole, we derive the expressions of temperature and specific heat using the laws of black hole thermodynamics. Using the null geodesics method and Parikh-Wilczeck tunneling method, we derive the expressions of Boltzmann factor and the change of Bekenstein-Hawking entropy for the black hole. The behaviors of the temperature, specific heat, Boltzmann factor and the change of Bekenstein entropy versus the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter (ρ 0) were explicitly plotted. The results show that, when the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter at r=1 (ρ 0) vanish (ρ 0=ɛ =0), these four thermodynamics quantities are reduced to those obtained for the simple case of Schwarzschild black hole. For low entropies, the presence of quintessence-like matter induces a first order phase transition of the black hole and for the higher values of the entropies, we observe the second order phase transition. When increasing ρ 0, the transition points are shifted to lower entropies. The same thing is observed when increasing ɛ 2. In the absence of quintessence-like matter (ρ 0=0), these transition phenomena disappear. Moreover the rate of radiation decreases when increasing ρ 0 or (ɛ ^2).
Ch’ng, Shiau Ying; Andriyana, Andri; Tee, Yun Lu; Verron, Erwan
2015-01-01
The effect of carbon black on the mechanical properties of elastomers is of great interest, because the filler is one of principal ingredients for the manufacturing of rubber products. While fillers can be used to enhance the properties of elastomers, including stress-free swelling resistance in solvent, it is widely known that the introduction of fillers yields significant inelastic responses of elastomers under cyclic mechanical loading, such as stress-softening, hysteresis and permanent set. When a filled elastomer is under mechanical deformation, the filler acts as a strain amplifier in the rubber matrix. Since the matrix local strain has a profound effect on the material’s ability to absorb solvent, the study of the effect of carbon black content on the swelling characteristics of elastomeric components exposed to solvent in the presence of mechanical deformation is a prerequisite for durability analysis. The aim of this study is to investigate the effect of carbon black content on the swelling of elastomers in solvent in the presence of static mechanical strains: simple extension and simple torsion. Three different types of elastomers are considered: unfilled, filled with 33 phr (parts per hundred) and 66 phr of carbon black. The peculiar role of carbon black on the swelling characteristics of elastomers in solvent in the presence of mechanical strain is explored. PMID:28787977
Stationary black holes with stringy hair
NASA Astrophysics Data System (ADS)
Boos, Jens; Frolov, Valeri P.
2018-01-01
We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.
Plunge waveforms from inspiralling binary black holes.
Baker, J; Brügmann, B; Campanelli, M; Lousto, C O; Takahashi, R
2001-09-17
We study the coalescence of nonspinning binary black holes from near the innermost stable circular orbit down to the final single rotating black hole. We use a technique that combines the full numerical approach to solve the Einstein equations, applied in the truly nonlinear regime, and linearized perturbation theory around the final distorted single black hole at later times. We compute the plunge waveforms, which present a non-negligible signal lasting for t approximately 100M showing early nonlinear ringing, and we obtain estimates for the total gravitational energy and angular momentum radiated.
Jamaica Bay studies III: Abiotic determinants of distribution and abundance of gulls ( Larus)
NASA Astrophysics Data System (ADS)
Burger, Joanna
1983-02-01
The distribution and abundance of gulls were examined at Jamaica Bay Wildlife Refuge (New York) from 31 May 1978 to 31 May 1979. Gulls were found to be affected by tidal, temporal and weather-related factors. The distribution of gulls was affected primarily by tidal factors on the bay, and by temporal (seasonal, circadian) and weather-related factors on the freshwater ponds. The most important weather-related factors were temperature, wind velocity and wind direction. Herring ( L. argentatus), great black-backed ( L. fuscus) and ring-billed gulls ( L. delawarensis) fed on the bay at low tides, and used the ponds at high tide. Laughing gulls ( L. atricilla) fed on the bay at low tide and on rising tides. Herring and great black-backed gulls were present all year, but were most abundant in the winter, ring-billed gulls were abundant in spring and early fall, and laughing gulls were present in the summer following the breeding season but were absent in winter. Gulls used the ponds during high velocity, north winds, when they usually rested or preened. Multiple regression models were used to determine the factors explaining the variability in the numbers of gulls. Temporal variables were important contributors to accounting for the variability in the numbers of great black-backed and herring gulls only; tidal variables were significant for great black-backed and herring gulls on the bay, and for ring-billed and laughing gulls on all areas; and weather variables were significant for all species.
A dark jet dominates the power output of the stellar black hole Cygnus X-1.
Gallo, Elena; Fender, Rob; Kaiser, Christian; Russell, David; Morganti, Raffaella; Oosterloo, Tom; Heinz, Sebastian
2005-08-11
Black holes undergoing accretion are thought to emit the bulk of their power in the X-ray band by releasing the gravitational potential energy of the infalling matter. At the same time, they are capable of producing highly collimated jets of energy and particles flowing out of the system with relativistic velocities. Here we show that the 10-solar-mass (10M(o)) black hole in the X-ray binary Cygnus X-1 (refs 3-5) is surrounded by a large-scale (approximately 5 pc in diameter) ring-like structure that appears to be inflated by the inner radio jet. We estimate that in order to sustain the observed emission of the ring, the jet of Cygnus X-1 has to carry a kinetic power that can be as high as the bolometric X-ray luminosity of the binary system. This result may imply that low-luminosity stellar-mass black holes as a whole dissipate the bulk of the liberated accretion power in the form of 'dark', radiatively inefficient relativistic outflows, rather than locally in the X-ray-emitting inflow.
Modeling of anisotropic properties of double quantum rings by the terahertz laser field.
Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David
2018-04-18
The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.
Chen, H; Tuck-Muller, C M; Batista, D A; Wertelecki, W
1995-03-27
We report on a 15-year-old black boy with severe mental retardation, multiple congenital anomalies, and a supernumerary ring chromosome mosaicism. Fluorescence in situ hybridization with a chromosome 1 painting probe (pBS1) identified the ring as derived from chromosome 1. The karyotype was 46,XY/47,XY,+r(1)(p13q23). A review showed 8 reports of ring chromosome 1. In 5 cases, the patients had a non-supernumerary ring chromosome 1 resulting in partial monosomies of the short and/or long arm of chromosome 1. In 3 cases, the presence of a supernumerary ring resulted in partial trisomy of different segments of chromosome 1. In one of these cases the supernumerary ring was composed primarily of the centromere and the heterochromatic region of chromosome 1, resulting in normal phenotype. Our patient represents the third report of a supernumerary ring chromosome 1 resulting in abnormal phenotype.
Three-dimensional simulation of gas and dust in Io's Pele plume
NASA Astrophysics Data System (ADS)
McDoniel, William J.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.
2015-09-01
Io's giant Pele plume rises high above the moon's surface and produces a complex deposition pattern. We use the direct simulation Monte Carlo (DSMC) method to model the flow of SO2 gas and silicate ash from the surface of the lava lake, into the umbrella-shaped canopy of the plume, and eventually onto the surface where the flow leaves black "butterfly wings" surrounded by a large red ring. We show how the geometry of the lava lake, from which the gas is emitted, is responsible for significant asymmetry in the plume and for the shape of the red deposition ring by way of complicated gas-dynamic interactions between parts of the gas flow arising from different areas in the lava lake. We develop a model for gas flow in the immediate vicinity of the lava lake and use it to show that the behavior of ash particles of less than about 2 μm in diameter in the plume is insensitive to the details of how they are introduced into the flow because they are coupled to the gas at low altitudes. We simulate dust particles in the plume to show how particle size determines the distance from the lava lake at which particles deposit on the surface, and we use this dependence to find a size distribution of black dust particles in the plume that provides the best explanation for the observed black fans to the east and west of the lava lake. This best-fit particle size distribution suggests that there may be two distinct mechanisms of black dust creation at Pele, and when two log-normal distributions are fit to our results we obtain a mean particle diameter of 88 nm. We also propose a mechanism by which the condensible plume gas might overlay black dust in areas where black coloration is not observed and compare this to the observed overlaying of Pillanian dust by Pele's red ring.
On the motion of hairy black holes in Einstein-Maxwell-dilaton theories
NASA Astrophysics Data System (ADS)
Julié, Félix-Louis
2018-01-01
Starting from the static, spherically symmetric black hole solutions in massless Einstein-Maxwell-dilaton (EMD) theories, we build a "skeleton" action, that is, we phenomenologically replace black holes by an appropriate effective point particle action, which is well suited to the formal treatment of the many-body problem in EMD theories. We find that, depending crucially on the value of their scalar cosmological environment, black holes can undergo steep "scalarization" transitions, inducing large deviations to the general relativistic two-body dynamics, as shown, for example, when computing the first post-Keplerian Lagrangian of EMD theories.
Do semiclassical zero temperature black holes exist?
Anderson, P R; Hiscock, W A; Taylor, B E
2000-09-18
The semiclassical Einstein equations are solved to first order in epsilon = Planck's over 2pi/M2 for the case of a Reissner-Nordström black hole perturbed by the vacuum stress energy of quantized free fields. Massless and massive fields of spin 0, 1/2, and 1 are considered. We show that in all physically realistic cases, macroscopic zero temperature black hole solutions do not exist. Any static zero temperature semiclassical black hole solutions must then be microscopic and isolated in the space of solutions; they do not join smoothly onto the classical extreme Reissner-Nordström solution as epsilon-->0.
Aspects of black holes and the information paradox
NASA Astrophysics Data System (ADS)
Levi, Thomas S.
In this thesis we explore various aspects of string theory and the black hole information paradox. The thesis is divided into two parts. In the first part, we examine black holes in the context of the AdS/CFT correspondence and holography. We show how the correspondence is formulated in a time dependent background when multiple vacua exist. We explain how particle production and Hawking radiation is expressed in the dual field theory. We then investigate the rotating BTZ black hole using AdS/CFT. We show how to compute field theory correlation functions in two ways. The first involves integration over the region up to and including the inner (Cauchy) horizon. The second integrates over only the region outside the outer (event) horizon, but over a contour in the complex time plane. We then show that the inner horizon is unstable to generic perturbations and how this instability can be detected in the dual field theory. We conjecture that signatures in the complex time plane might encode information behind the horizon in the dual field theory. In the second part of the thesis we turn to the "fuzzball" conjecture where black holes are seen as emergent phenomena that arise from a coarse-graining over many smooth microstates. We present a solution generating technique for general three-charge spacetimes that are candidate microstates for finite area black holes and rings. We show these microstates have the same asymptotic behavior as black holes or black rings, but in the interior are characterized by an intricate geometry of 2-cycles we call spacetime foam.
Application of the Wavy Mechanical Face Seal to Submarine Seal Design.
1982-07-01
to Stainless Steel Bond Strength Tests. . . 31 3-1 Seal Design ...... .................... ... 54 3-2 Offset and Tilt Results...primer, Loctite Superbonder 420 with the addi- tion of two stainless steel rings for the inner and outer diam- eter of the carbon insert to give a...near zero clearance fit, and the use of the 3M 1838 B/A epoxy also with the same stainless steel rings. Static and dynamic tests on the seal under water
Space shuttle development Motor No. 9 (DM-9), volume 1
NASA Technical Reports Server (NTRS)
Garecht, Diane M.
1990-01-01
The results obtained during the December 23, 1987 static firing of the DM-9 test article are presented. The DM-9 full-scale static test article employed redesigned solid rocket motor (RSRM) field joint capture feature hardware with J-seal insulation configuration, and nozzle-to-case joint radial bolt design with bonded insulation configuration. The nozzle incorporated RSRM components, including a thicker cowl with involuted outer boot ring. The nozzle employed redundant and verifiable seals in all five joints, and room temperature vulcanization backfill in three joints. With very few exceptions, the DM-9 test article was flight configuration. The test was conducted under extreme weather conditions: temperature of 25 F and wind at 15 to 20 mph. Ballistics performance values were within specification requirements. The RSRM field joint (J-seal) insulation configuration functioned as predicted with no indication of hot gases reaching the capture feature O-rings. There was a blowhole in the polysulfide adhesive in the nozzle-to-case joint, but no evidence of hot gases past the wiper O-ring. Nozzle design changes appeared to perform nominally, with the exception of the outer boot ring, which suffered partial structural breakup late in the test. Field joint heaters maintained the controlling resistance temperature device temperature within the specified requirements during heater operation. The thrust vector control system operated properly. The redesigned water deluge system, temperature conditioning equipment, and other test support equipment performed as planned.
A Yang-Mills field on the extremal Reissner-Nordström black hole
NASA Astrophysics Data System (ADS)
Bizoń, Piotr; Kahl, Michał
2016-09-01
We consider a spherically symmetric (magnetic) SU(2) Yang-Mills field propagating on the exterior of the extremal Reissner-Nordström black hole. Taking advantage of the conformal symmetry, we reduce the problem to the study of the Yang-Mills equation in a geodesically complete spacetime with two asymptotically flat ends. We prove the existence of infinitely many static solutions (two of which are found in closed form) and determine the spectrum of their linear perturbations and quasinormal modes. Finally, using the hyperboloidal approach to the initial value problem, we describe the process of relaxation to the static endstates of evolution, both stable (for generic initial data) and unstable (for codimension-one initial data).
NASA Astrophysics Data System (ADS)
Gunara, Bobby Eka; Yaqin, Ainol
2018-06-01
We study static non-critical hairy black holes of four dimensional gravitational model with nonminimal derivative coupling and a scalar potential turned on. By taking an ansatz, namely, the first derivative of the scalar field is proportional to square root of a metric function, we reduce the Einstein field equation and the scalar field equation of motions into a single highly nonlinear differential equation. This setup implies that the hair is secondary-like since the scalar charge-like depends on the non-constant mass-like quantity in the asymptotic limit. Then, we show that near boundaries the solution is not the critical point of the scalar potential and the effective geometries become spaces of constant scalar curvature.
Energy levels of a scalar particle in a static gravitational field close to the black hole limit
NASA Astrophysics Data System (ADS)
Gossel, G. H.; Berengut, J. C.; Flambaum, V. V.
2011-10-01
The bound-state energy levels of a scalar particle in the gravitational field of finite-sized objects with interiors described by the Florides and Schwarzschild metrics are found. For these metrics, bound states with zero energy (where the binding energy is equal to the rest mass of the scalar particle) only exist when a singularity occurs in the metric. Therefore, in contrast to the Coulomb case, no pairs are produced in the non-singular static metric. For the Florides metric the singularity occurs in the black hole limit, while for the Schwarzschild interior metric it corresponds to infinite pressure at the center. Moreover, the energy spectrum is shown to become quasi-continuous as the metric becomes singular.
For blacks in America, the gap in neighborhood poverty has declined faster than segregation.
Firebaugh, Glenn; Acciai, Francesco
2016-11-22
Black residential segregation has been declining in the United States. That accomplishment rings hollow, however, if blacks continue to live in much poorer neighborhoods than other Americans. This study uses census data for all US metropolitan areas in 1980 and 2010 to compare decline in the neighborhood poverty gap between blacks and other Americans with decline in the residential segregation of blacks. We find that both declines resulted primarily from narrowing differences between blacks and whites as opposed to narrowing differences between blacks and Hispanics or blacks and Asians. Because black-white differences in neighborhood poverty declined much faster than black-white segregation, the neighborhood poverty disadvantage of blacks declined faster than black segregation-a noteworthy finding because the narrowing of the racial gap in neighborhood poverty for blacks has gone largely unnoticed. Further analysis reveals that the narrowing of the gap was produced by change in both the medians and shapes of the distribution of poverty across the neighborhoods where blacks, whites, Hispanics, and Asians reside.
California black oak drying problems and the bacterial factor
James C. Ward; Del Shedd
1979-01-01
It is often difficult to kiln dry California black oak lumber green from the saw without developing excessive degrade from honeycomb, ring failure, and collapse. Results from this study indicate that defect-prone lumber contains heartwood that was infected and weakened by anaerobic bacteria in the living tree. Green, bacterially infected boards should be segregated and...
Therese M. Poland; Tina M. Ciaramitaro; Marla R. Emery; Damon J. Crook; Ed Pigeon; Angie Pigeon
2015-01-01
Indigenous artisans in the Great Lakes region rely on the ring-porous property of black ash Fraxinus nigra Marshall (Oleaceae), which allows annual layers of xylem to be easily separated to make baskets that are important economic resources and vessels of culture. The emerald ash borer Agrilus planipennis Fairmaire (Coleoptera:...
1981-10-01
S82-31408 (May 1983) --- The Spacelab 2 emblem is a symbolic representation of the scientific objectives of the mission. The emblem is in the shape of a triangular shield with convexly curved edges. Across the top of a black out border are the words ?SPACELAB 2?. Within the black border is a sky blue border carryhing the words: ?ASTRONOMY?, ON TOP? ?PHYSICS?, on the left; and ?BIOLOGY?, on the right. Within the blue border is a schematic view of the sun, the earth, and the orbiter with Spacelab 2. The sun appears in the upper right background as a white disc surrounded by six concentric rings ranging grom bright yellow near the disc through yellow-red to a dark red out ring. A sector of the earth with blue ocean and a black portion of North America is in the upper left corner. The black and white Orbiter is seen from directly overhead in the foreground, the right side illuminated by the sun, the left side in shadow. Although the payload bay doors are not open, the Spacelab 2 payload is seen as if the doors were open. In black on white are seen the three pallets, and the separately mounted cosmic ray experiment at the aft end of the bay.
More White Supremacy? "The Lord of the Rings" as Pro-American Imperialism
ERIC Educational Resources Information Center
Knaus, Christopher
2005-01-01
"The Lord of the Rings" continues Hollywood's recurrent theme of good triumphing over evil. The viewer is supposed to identify with the heroes, whiteness, and goodness, which of course triumphs over evil and blackness. Although the cast is made up almost entirely of White people, people also do not question this narrative of White supremacy. To…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Anne-Christine; Jha, Rahul; Gregory, Ruth, E-mail: acd@damtp.cam.ac.uk, E-mail: r.a.w.gregory@durham.ac.uk, E-mail: r.jha@damtp.cam.ac.uk
We present a novel way to investigate scalar field profiles around black holes with an accretion disc for a range of models where the Compton wavelength of the scalar is large compared to other length scales. By analysing the problem in ''Weyl' coordinates, we are able to calculate the scalar profiles for accretion discs in the static Schwarzschild, as well as rotating Kerr, black holes. We comment on observational effects.
ERIC Educational Resources Information Center
Augousti, A. T.; Gawelczyk, M.; Siwek, A.; Radosz, A.
2012-01-01
The problem of communication between observers in the vicinity of a black hole in a Schwarzschild metric is considered. The classic example of an infalling observer Alice and a static distant mother station (MS) is extended to include a second infalling observer Bob, who follows Alice in falling towards the event horizon. Kruskal coordinates are…
The stresses in stiffener openings
NASA Technical Reports Server (NTRS)
Marguerre, K
1942-01-01
The present study treats as a typical example a ring the center line of which is produced by the intersection of two circular cylinders of different diameter. Three load cases are analyzed: (1) Axial and circumferential stresses in both cylinders, the cylinder stresses themselves to be in the ratio conformal to the cylinders loaded under internal pressure. (2) Pure longitudinal tension in the large cylinder. (3) Pure shear (torsion) in the large cylinder. To simplify the calculation, it is assumed that the ring, compared to the shell, is very strong, so that its deformations have no perceptible effect on the stress condition in the shell. This provides an upper limit for the ring stresses actually produced in a shell design, for, according to the theory of stressed skin statics the shells, by elastic flexibility of the ring, regroup the forces deposited on it in such a manner that the ring is relieved.
Cooling scheme for turbine hot parts
Hultgren, Kent Goran; Owen, Brian Charles; Dowman, Steven Wayne; Nordlund, Raymond Scott; Smith, Ricky Lee
2000-01-01
A closed-loop cooling scheme for cooling stationary combustion turbine components, such as vanes, ring segments and transitions, is provided. The cooling scheme comprises: (1) an annular coolant inlet chamber, situated between the cylinder and blade ring of a turbine, for housing coolant before being distributed to the turbine components; (2) an annular coolant exhaust chamber, situated between the cylinder and the blade ring and proximate the annular coolant inlet chamber, for collecting coolant exhaust from the turbine components; (3) a coolant inlet conduit for supplying the coolant to said coolant inlet chamber; (4) a coolant exhaust conduit for directing coolant from said coolant exhaust chamber; and (5) a piping arrangement for distributing the coolant to and directing coolant exhaust from the turbine components. In preferred embodiments of the invention, the cooling scheme further comprises static seals for sealing the blade ring to the cylinder and flexible joints for attaching the blade ring to the turbine components.
Black hole radiation with modified dispersion relation in tunneling paradigm: Static frame
NASA Astrophysics Data System (ADS)
Tao, Jun; Wang, Peng; Yang, Haitang
2017-09-01
To study possible deviations from the Hawking's prediction, we assume that the dispersion relations of matter fields are modified at high energies and use the Hamilton-Jacobi method to investigate the corresponding effects on the Hawking radiation in this paper. The preferred frame is the static frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energies but is modified near the Planck mass mp. We calculate the corrections to the Hawking temperature for massive and charged particles to O (mp-2) and massless and neutral particles to all orders. Our results suggest that the thermal spectrum of radiations near horizon is robust, e.g. corrections to the Hawking temperature are suppressed by mp. After the spectrum of radiations near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole. We find that the subleading logarithmic term of the entropy does not depend on how the dispersion relations of matter fields are modified. Finally, the luminosities of black holes are computed by using the geometric optics approximation.
Schwarzschild-de Sitter spacetimes, McVittie coordinates, and trumpet geometries
NASA Astrophysics Data System (ADS)
Dennison, Kenneth A.; Baumgarte, Thomas W.
2017-12-01
Trumpet geometries play an important role in numerical simulations of black hole spacetimes, which are usually performed under the assumption of asymptotic flatness. Our Universe is not asymptotically flat, however, which has motivated numerical studies of black holes in asymptotically de Sitter spacetimes. We derive analytical expressions for trumpet geometries in Schwarzschild-de Sitter spacetimes by first generalizing the static maximal trumpet slicing of the Schwarzschild spacetime to static constant mean curvature trumpet slicings of Schwarzschild-de Sitter spacetimes. We then switch to a comoving isotropic radial coordinate which results in a coordinate system analogous to McVittie coordinates. At large distances from the black hole the resulting metric asymptotes to a Friedmann-Lemaître-Robertson-Walker metric with an exponentially-expanding scale factor. While McVittie coordinates have another asymptotically de Sitter end as the radial coordinate goes to zero, so that they generalize the notion of a "wormhole" geometry, our new coordinates approach a horizon-penetrating trumpet geometry in the same limit. Our analytical expressions clarify the role of time-dependence, boundary conditions and coordinate conditions for trumpet slices in a cosmological context, and provide a useful test for black hole simulations in asymptotically de Sitter spacetimes.
Integrated mobile-robot design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kortenkamp, D.; Huber, M.; Cohen, C.
1993-08-01
Ten mobile robots entered the AAAI '92 Robot Competition, held at last year's national conference. Carmel, the University of Michigan entry, won. The competition consisted of three stages. The first stage required roaming a 22[times]22-meter arena while avoiding static and dynamic obstacles; the second involved searching for and visiting 10 objects in the same arena. The obstacles were at least 1.5 meters apart, while the objects were spaced roughly evenly throughout the arena. Visiting was defined as moving to within two robot diameters of the object. The last stage was a timed race to visit three of the objects locatedmore » earlier and return home. Since the first stage was primarily a subset of the second-stage requirements, and the third-stage implementation was very similar to that of the second, the authors' focus here on the second stage. Carmel (Computer-Aided Robotics for Maintenance, Emergency, and Life support) is based on a commercially available Cybermotion K2A mobile-robot platform. It has a top speed of approximately 800 millimeters per second and moves on three synchronously driven wheels. For sensing, Carmel, has a ring of 24 Polaroid sonar sensors and a single black-and-white charge-coupled-device camera mounted on a rotating table. Carmel has three processors: one controls the drive motors, one fires the sonar ring, and the third, a 486-based PC clone, executes all the high-level modules. The 486 also has a frame grabber for acquiring images. All computation and power are contained on-board.« less
Storage rings for spin-polarized hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, D.; Lovelace, R.V.E.; Lee, D.
1989-11-01
A strong-focusing storage ring is proposed for the long-term magnetic confinement of a collisional gas of neutral spin-polarized hydrogen atoms in the Za{l arrow} and Zb{l arrow} hyperfine states. The trap uses the interaction of the magnetic moments of the gas atoms with a static magnetic field. Laser cooling and evaporative cooling can be utilized to enhance the confinement and to offset the influence of viscous heating. An important application of the trap is to the attainment of Bose--Einstein condensation.
NASA Astrophysics Data System (ADS)
Zanotto, S.; Lange, C.; Maag, T.; Pitanti, A.; Miseikis, V.; Coletti, C.; Degl'Innocenti, R.; Baldacci, L.; Huber, R.; Tredicucci, A.
2016-09-01
In this paper we investigate the effect of a static magnetic field and of optical pumping on the transmittance of a hybrid graphene-split ring resonator metasurface. A significant modulation of the transmitted spectra is obtained, both by optical pumping, and by a combination of optical pumping and magnetostatic biasing. The transmittance modulation features spectral fingerprints that are characteristic of a non-trivial interplay between the bare graphene response and the split ring resonance.
For blacks in America, the gap in neighborhood poverty has declined faster than segregation
Acciai, Francesco
2016-01-01
Black residential segregation has been declining in the United States. That accomplishment rings hollow, however, if blacks continue to live in much poorer neighborhoods than other Americans. This study uses census data for all US metropolitan areas in 1980 and 2010 to compare decline in the neighborhood poverty gap between blacks and other Americans with decline in the residential segregation of blacks. We find that both declines resulted primarily from narrowing differences between blacks and whites as opposed to narrowing differences between blacks and Hispanics or blacks and Asians. Because black–white differences in neighborhood poverty declined much faster than black–white segregation, the neighborhood poverty disadvantage of blacks declined faster than black segregation—a noteworthy finding because the narrowing of the racial gap in neighborhood poverty for blacks has gone largely unnoticed. Further analysis reveals that the narrowing of the gap was produced by change in both the medians and shapes of the distribution of poverty across the neighborhoods where blacks, whites, Hispanics, and Asians reside. PMID:27821759
NASA Astrophysics Data System (ADS)
Bon, Edi; Jovanović, Predrag; Marziani, Paola; Bon, Nataša; Otašević, Aleksandar
2018-06-01
Here we investigate the connection of broad emission line shapes and continuum light curve variability time scales of type-1 Active Galactic Nuclei (AGN). We developed a new model to describe optical broad emission lines as an accretion disk model of a line profile with additional ring emission. We connect ring radii with orbital time scales derived from optical light curves, and using Kepler's third law, we calculate mass of central supermassive black hole (SMBH). The obtained results for central black hole masses are in a good agreement with other methods. This indicates that the variability time scales of AGN may not be stochastic, but rather connected to the orbital time scales which depend on the central SMBH mass.
Hawking temperature of constant curvature black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai Ronggen; Myung, Yun Soo; Institute of Basic Science and School of Computer Aided Science, Inje University, Gimhae 621-749
2011-05-15
The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M{sub D-1}xS{sup 1}, where D is the spacetime dimension and M{sub D-1} stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both themore » static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.« less
On the number of light rings in curved spacetimes of ultra-compact objects
NASA Astrophysics Data System (ADS)
Hod, Shahar
2018-01-01
In a very interesting paper, Cunha, Berti, and Herdeiro have recently claimed that ultra-compact objects, self-gravitating horizonless solutions of the Einstein field equations which have a light ring, must possess at least two (and, in general, an even number of) light rings, of which the inner one is stable. In the present compact paper we explicitly prove that, while this intriguing theorem is generally true, there is an important exception in the presence of degenerate light rings which, in the spherically symmetric static case, are characterized by the simple dimensionless relation 8 πrγ2 (ρ +pT) = 1 [here rγ is the radius of the light ring and { ρ ,pT } are respectively the energy density and tangential pressure of the matter fields]. Ultra-compact objects which belong to this unique family can have an odd number of light rings. As a concrete example, we show that spherically symmetric constant density stars with dimensionless compactness M / R = 1 / 3 possess only one light ring which, interestingly, is shown to be unstable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, Rishikesh N.; Bakker, Astrid D.; Everts, Vincent
Highlights: Black-Right-Pointing-Pointer Osteocyte incubation with IL-1{beta} stimulated osteocyte-modulated osteoclastogenesis. Black-Right-Pointing-Pointer Conditioned medium from IL-1{beta}-treated osteocytes increased osteoclastogenesis. Black-Right-Pointing-Pointer IL-1{beta} upregulated RANKL and downregulated OPG gene expression by osteocytes. Black-Right-Pointing-Pointer CYR61 is upregulated in mechanically stimulated osteocytes. Black-Right-Pointing-Pointer Mechanical loading of osteocytes may abolish IL-1{beta}-induced osteoclastogenesis. -- Abstract: Inflammatory diseases such as rheumatoid arthritis are often accompanied by higher plasma and synovial fluid levels of interleukin-1{beta} (IL-1{beta}), and by increased bone resorption. Since osteocytes are known to regulate bone resorption in response to changes in mechanical stimuli, we investigated whether IL-1{beta} affects osteocyte-modulated osteoclastogenesis in the presence or absence of mechanicalmore » loading of osteocytes. MLO-Y4 osteocytes were pre-incubated with IL-1{beta} (0.1-1 ng/ml) for 24 h. Cells were either or not subjected to mechanical loading by 1 h pulsating fluid flow (PFF; 0.7 {+-} 0.3 Pa, 5 Hz) in the presence of IL-1{beta} (0.1-1 ng/ml). Conditioned medium was collected after 1 h PFF or static cultures. Subsequently mouse bone marrow cells were seeded on top of the IL-1{beta}-treated osteocytes to determine osteoclastogenesis. Conditioned medium from mechanically loaded or static IL-1{beta}-treated osteocytes was added to co-cultures of untreated osteocytes and mouse bone marrow cells. Gene expression of cysteine-rich protein 61 (CYR61/CCN1), receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) by osteocytes was determined immediately after PFF. Incubation of osteocytes with IL-1{beta}, as well as conditioned medium from static IL-1{beta}-treated osteocytes increased the formation of osteoclasts. However, conditioned medium from mechanically loaded IL-1{beta}-treated osteocytes prevented osteoclast formation. Incubation with IL-1{beta} upregulated RANKL and downregulated OPG gene expression by static osteocytes. PFF upregulated CYR61, RANKL, and OPG gene expression by osteocytes. Our results suggest that IL-1{beta} increases osteocyte-modulated osteoclastogenesis, and that mechanical loading of osteocytes may abolish IL-1{beta}-induced osteoclastogenesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Songbai; Wang Bin; Su Rukeng
2008-06-15
We present a solution of Einstein equations with quintessential matter surrounding a d-dimensional black hole, whose asymptotic structures are determined by the state of the quintessential matter. We examine the thermodynamics of this black hole and find that the mass of the black hole depends on the equation of state of the quintessence, while the first law is universal. Investigating the Hawking radiation in this black hole background, we observe that the Hawking radiation dominates on the brane in the low-energy regime. For different asymptotic structures caused by the equation of state of the quintessential matter surrounding the black hole,more » we learn that the influences by the state parameter of the quintessence on Hawking radiation are different.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-01
... jackrabbit (Bednarz 1977, p. 14). The lower Animas Valley supports a variety of grass and forb species, such... Mexico as the density and vigor of grasses declined, while black-tailed jackrabbits and desert cottontail... the jackrabbit required 65 percent grass cover of species that included blue and black grama, ring...
Chowdhury, Chandra; Jahiruddin, Sheik; Datta, Ayan
2016-04-07
Phosphorene (Pn) is stabilized as a layered material like graphite, yet it possess a natural direct band gap (Eg = 2.0 eV). Interestingly, unlike graphene, Pn exhibits a much richer phase diagram which includes distorted forms like the stapler-clip (black Pn, α form) and chairlike (blue Pn, β form) structures. The existence of these phases is attributed to pseudo-Jahn-Teller (PJT) instability of planar hexagonal P6(6-) rings. In both cases, the condition for vibronic instability of the planar P6(6-) rings is satisfied. Doping with electron donors like tetrathiafulvalene and tetraamino-tetrathiafulvalene and electron acceptors like tetracyanoquinodimethane and tetracyanoethylene convert blue Pn into N-type and black Pn into efficient P-type semiconductors, respectively. Interestingly, pristine blue Pn, an indirect gap semiconductor, gets converted into a direct gap semiconductor on electron or hole doping. Because of comparatively smaller undulation in blue Pn (with respect to black Pn), the van der Waals interactions between the dopants and blue Pn is stronger. PJT distortions for two-dimensional phosphorus provides a unified understanding of structural features and chemical reactivity in its different phases.
Ergoregions in magnetized black hole spacetimes
NASA Astrophysics Data System (ADS)
Gibbons, G. W.; Mujtaba, A. H.; Pope, C. N.
2013-06-01
The spacetimes obtained by Ernst’s procedure for appending an external magnetic field B to a seed Kerr-Newman black hole are commonly believed to be asymptotic to the static Melvin metric. We show that this is not in general true. Unless the electric charge of the black hole satisfies Q= jB(1+{\\textstyle {\\frac{\\scriptstyle 1}{\\scriptstyle 4} } } j^2 B^4), where j is the angular momentum of the original seed solution, an ergoregion extends all the way from the black hole horizon to infinity. We find that if the condition on the electric charge is satisfied then the metric is asymptotic to the static Melvin metric, and the electromagnetic field carries not only magnetic, but also electric, flux along the axis. We give a self-contained account of the solution-generating procedure, including explicit formulae for the metric and the vector potential. In the case when Q= jB(1+{\\textstyle {\\frac{\\scriptstyle 1}{\\scriptstyle 4} } } j^2 B^4), we show that there is an arbitrariness in the choice of asymptotically timelike Killing field K_\\Omega = {\\partial }/{\\partial }t+ \\Omega \\, {\\partial }/{\\partial }\\phi, because there is no canonical choice of Ω. For one choice, Ω = Ωs, the metric is asymptotically static, and there is an ergoregion confined to the neighbourhood of the horizon. On the other hand, by choosing Ω = ΩH, so that K_{\\Omega _H} is co-rotating with the horizon, then for sufficiently large B numerical studies indicate there is no ergoregion at all. For smaller values, in a range B- < B < B+, there is a toroidal ergoregion outside and disjoint from the horizon. If B ⩽ B- this ergoregion expands all the way to infinity in a cylindrical region near to the rotation axis. For black holes whose size is small compared to the Melvin radius 2/B, and neglecting back-reaction of the electromagnetic field, we recover Wald’s result that it is energetically favourable for the hole to acquire a charge 2jB.
Construction of Penrose Diagrams for Dynamic Black Holes
NASA Technical Reports Server (NTRS)
Brown, Beth A.; Lindesay, James
2008-01-01
A set of Penrose diagrams is constructed in order to examine the large-scale causal structure of black holes with dynamic horizons. Coordinate dependencies of significant features, such as the event horizon and radial mass scale, are demonstrated on the diagrams. Unlike in static Schwarzschild geometries, the radial mass scale is clearly seen to differ from the horizon. Trajectories for photons near the horizon are briefly discussed.
Unified approach to redshift in cosmological/black hole spacetimes and synchronous frame
NASA Astrophysics Data System (ADS)
Toporensky, A. V.; Zaslavskii, O. B.; Popov, S. B.
2018-01-01
Usually, interpretation of redshift in static spacetimes (for example, near black holes) is opposed to that in cosmology. In this methodological note, we show that both explanations are unified in a natural picture. This is achieved if, considering the static spacetime, one (i) makes a transition to a synchronous frame, and (ii) returns to the original frame by means of local Lorentz boost. To reach our goal, we consider a rather general class of spherically symmetric spacetimes. In doing so, we construct frames that generalize the well-known Lemaitre and Painlevé-Gullstand ones and elucidate the relation between them. This helps us to understand, in a unifying approach, how gravitation reveals itself in different branches of general relativity. This framework can be useful for general relativity university courses.
Effects of translational and rotational motions and display polarity on visual performance.
Feng, Wen-Yang; Tseng, Feng-Yi; Chao, Chin-Jung; Lin, Chiuhsiang Joe
2008-10-01
This study investigated effects of both translational and rotational motion and display polarity on a visual identification task. Three different motion types--heave, roll, and pitch--were compared with the static (no motion) condition. The visual task was presented on two display polarities, black-on-white and white-on-black. The experiment was a 4 (motion conditions) x 2 (display polarities) within-subjects design with eight subjects (six men and two women; M age = 25.6 yr., SD = 3.2). The dependent variables used to assess the performance on the visual task were accuracy and reaction time. Motion environments, especially the roll condition, had statistically significant effects on the decrement of accuracy and reaction time. The display polarity was significant only in the static condition.
Static and Dynamic Disorder in Bacterial Light-Harvesting Complex LH2: A 2DES Simulation Study.
Rancova, Olga; Abramavicius, Darius
2014-07-10
Two-dimensional coherent electronic spectroscopy (2DES) is a powerful technique in distinguishing homogeneous and inhomogeneous broadening contributions to the spectral line shapes of molecular transitions induced by environment fluctuations. Using an excitonic model of a double-ring LH2 aggregate, we perform simulations of its 2DES spectra and find that the model of a harmonic environment cannot provide a consistent set of parameters for two temperatures: 77 K and room temperature. This indicates the highly anharmonic nature of protein fluctuations for the pigments of the B850 ring. However, the fluctuations of B800 ring pigments can be assumed as harmonic in this temperature range.
Dynamic response of a modified water tank exposed to concentrated solar energy
NASA Astrophysics Data System (ADS)
Alhamdo, M. H.; Alkhakani, A. J.
2017-08-01
Power generation by using concentrated solar thermal energy on liquid enclosures is one of the most promising renewable energy technologies. In this work, a developed liquid enclosure fitted with various number and configurations of horizontal metal rings have been analyzed, fabricated and tested. The influence of adding metal rings arrangement is investigated for its potential to enhance radial heat conduction to the center-line of the enclosure from the side-walls. Experiments were carried out for fluid in both static and dynamic modes of operation inside the enclosure that subjected to high heat flux. A developed two-dimensional CFD model to predict the transient flow and thermal fields within liquid enclosure subjected to heat flux has been developed and tested. The developed numerical model takes into consideration energy transport between the liquid inside enclosure and the solid material of the enclosure. The numerical simulations have been compared with experimental measurement. The computational code has been found in a good level of agreement with the experimental data except for liquid at the peak part of the enclosure. The results indicate that adding metal rings produce significant impact on the transient temperature difference inside enclosure during both static and dynamic modes. The six-ring model is found to be more effective for enhancing radial heat transfer than other three models that have been tested. The in-line arrangement is found to provide better thermal effect as compared to the staggered rings. Two new correlations for natural heat transfer inside liquid enclosures subjected to high heat flux have been formulated (one for no-ring model and the other for six-ring model). The natural Nusselt number is found to be around a constant value for Rayleigh number less than (5 X 108). The recommended use of metal rings inside liquid enclosures subjected to heat flux, and the predicted Nusselt number correlation, will add to local knowledge a significant mean to gain more heat in large scale concentrated solar power plants. Two new correlations for natural heat transfer inside liquid enclosures subjected to high heat flux have been formulated (one for no-ring model and the other for six-ring model). The natural Nusselt number is found to be around a constant value for Rayleigh number less than (5 X 108). The recommended use of metal rings inside liquid enclosures subjected to heat flux, and the predicted Nusselt number correlation, will add to local knowledge a significant mean to gain more heat in large scale concentrated solar power plants.
Black Walnut on Kansas Strip Mine Spoils: Some Observations 25 Years after Pruning
Alex L. Shigo; Nelson F. Rogers; E. Allen, Jr. McGinnes; David T. Funk
1978-01-01
Dissections of 14 slow-growing black walnut trees on a strip-mine site revealed that bands of discolored heartwood were associated with pruned and nonpruned branch stubs. Ring shakes were associated with a few pruned and nonpruned stubs, especially with groups of stubs at the same position on the stem. The advantage of early pruning was that even the defects that...
Static black holes with back reaction from vacuum energy
NASA Astrophysics Data System (ADS)
Ho, Pei-Ming; Matsuo, Yoshinori
2018-03-01
We study spherically symmetric static solutions to the semi-classical Einstein equation sourced by the vacuum energy of quantum fields in the curved space-time of the same solution. We found solutions that are small deformations of the Schwarzschild metric for distant observers, but without horizon. Instead of being a robust feature of objects with high densities, the horizon is sensitive to the energy–momentum tensor in the near-horizon region.
Precipitation-Static-Reduction Research
1943-03-31
if» 85 z \\ PRECIPITATION-STATIC-REDUCTION RESEARCH study of the effects of flame length , flame spacing, and burner spacing on B shows that there...unod: Flame length *. The visual length of the flame from the burner tip to the flame tip when examined in a darkened room against a black background...Postlve and Negative Flames The use of the second flame-conduction coefficient, B, facilitates considerably the study of the effect of flame length , spacing
Design and implementation of optical system for Placido-disc topography
NASA Astrophysics Data System (ADS)
Sui, Chenghua; Wo, Shengjie; Cai, Pinggen; Gao, Nan; Xu, Danyang; Han, Yonghao; Du, Chunnian
2017-11-01
Corneal topography provides powerful support in the diagnosis and treatment of corneal disease by displaying the corneal surface topography in data or image format. To realize the precise detection of corneal surface topography, an optical system for the corneal topography that is based on a Placido disc is designed, which includes a ring distribution on a Placido disc, an imaging system and a collimating illumination system. First, a mathematical model that is based on the corneal topography working principles is established with MATLAB to determine the distribution of white-and-black rings on the Placido disc, in which the ellipsoid facial rings-target of the Placido disc is utilized. Second, the imaging lens structure is designed and optimized by Zemax software. Last, the collimating illumination lens structure is designed by paraxial ray trace equations. The quality of the corneal topography, which is based on our designed optical system, is evaluated. The high-contrast image of uniformly distributed white-and-black rings is observed through the CCD camera. Our optical system for the corneal topography has high precision, with a measuring region of the cornea with a diameter of approximately 10 mm. Therefore, the creation of this optical system offers guidance for designing and improving the optical system of Placido-disc topography.
Renormalized vacuum polarization of rotating black holes
NASA Astrophysics Data System (ADS)
Ferreira, Hugo R. C.
2015-04-01
Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.
Dufresnes, Christophe; Litvinchuk, Spartak N; Leuenberger, Julien; Ghali, Karim; Zinenko, Oleksandr; Stöck, Matthias; Perrin, Nicolas
2016-09-01
Hotspots of intraspecific genetic diversity, which are of primary importance for the conservation of species, have been associated with glacial refugia, that is areas where species survived the Quaternary climatic oscillations. However, the proximate mechanisms generating these hotspots remain an open issue. Hotspots may reflect the long-term persistence of large refugial populations; alternatively, they may result from allopatric differentiation between small and isolated populations, that later admixed. Here, we test these two scenarios in a widely distributed species of tree frog, Hyla orientalis, which inhabits Asia Minor and southeastern Europe. We apply a fine-scale phylogeographic survey, combining fast-evolving mitochondrial and nuclear markers, with a dense sampling throughout the range, as well as ecological niche modelling, to understand what shaped the genetic variation of this species. We documented an important diversity centre around the Black Sea, composed of multiple allopatric and/or parapatric diversifications, likely driven by a combination of Pleistocene climatic fluctuations and complex regional topography. Remarkably, this diversification forms a ring around the Black Sea, from the Caucasus through Anatolia and eastern Europe, with terminal forms coming into contact and partially admixing in Crimea. Our results support the view that glacial refugia generate rather than host genetic diversity and can also function as evolutionary melting pots of biodiversity. Moreover, we report a new case of ring diversification, triggered by a large, yet cohesive dispersal barrier, a very rare situation in nature. Finally, we emphasize the Black Sea region as an important centre of intraspecific diversity in the Palearctic with implications for conservation. © 2016 John Wiley & Sons Ltd.
Radial accretion flows on static spherically symmetric black holes
NASA Astrophysics Data System (ADS)
Chaverra, Eliana; Sarbach, Olivier
2015-08-01
We analyze the steady radial accretion of matter into a nonrotating black hole. Neglecting the self-gravity of the accreting matter, we consider a rather general class of static, spherically symmetric and asymptotically flat background spacetimes with a regular horizon. In addition to the Schwarzschild metric, this class contains certain deformation of it, which could arise in alternative gravity theories or from solutions of the classical Einstein equations in the presence of external matter fields. Modeling the ambient matter surrounding the black hole by a relativistic perfect fluid, we reformulate the accretion problem as a dynamical system, and under rather general assumptions on the fluid equation of state, we determine the local and global qualitative behavior of its phase flow. Based on our analysis and generalizing previous work by Michel, we prove that for any given positive particle density number at infinity, there exists a unique radial, steady-state accretion flow which is regular at the horizon. We determine the physical parameters of the flow, including its accretion and compression rates, and discuss their dependency on the background metric.
Bound states of spin-half particles in a static gravitational field close to the black hole field
NASA Astrophysics Data System (ADS)
Spencer-Smith, A. F.; Gossel, G. H.; Berengut, J. C.; Flambaum, V. V.
2013-03-01
We consider the bound-state energy levels of a spin-1/2 fermion in the gravitational field of a near-black hole object. In the limit that the metric of the body becomes singular, all binding energies tend to the rest-mass energy (i.e. total energy approaches zero). We present calculations of the ground state energy for three specific interior metrics (Florides, Soffel and Schwarzschild) for which the spectrum collapses and becomes quasi-continuous in the singular metric limit. The lack of zero or negative energy states prior to this limit being reached prevents particle pair production occurring. Therefore, in contrast to the Coulomb case, no pairs are produced in the non-singular static metric. For the Florides and Soffel metrics the singularity occurs in the black hole limit, while for the Schwarzschild interior metric it corresponds to infinite pressure at the centre. The behaviour of the energy level spectrum is discussed in the context of the semi-classical approximation and using general properties of the metric.
NASA Technical Reports Server (NTRS)
Moore, C. E.; Cardelino, B. H.; Frazier, D. O.; Niles, J.; Wang, X.-Q.
1998-01-01
The static third-order polarizabilities (gamma) of C60, C70, five isomers of C78 and two isomers of C84 were analyzed in terms of three properties, from a geometric point of view: symmetry, aromaticity and size. The polarizability values were based on the finite field approximation using a semiempirical Hamiltonian (AM1) and applied to molecular structures obtained from density functional theory calculations. Symmetry was characterized by the molecular group order. The selection of 6-member rings as aromatic was determined from an analysis of bond lengths. Maximum interatomic distance and surface area were the parameters considered with respect to size. Based on triple linear regression analysis, it was found that the static linear polarizability (alpha) and gamma in these molecules respond differently to geometrical properties: alpha depends almost exclusively on surface area while gamma is affected by a combination of number of aromatic rings, length and group order, in decreasing importance. In the case of alpha, valence electron contributions provide the same information as all-electron estimates. For gamma, the best correlation coefficients are obtained when all-electron estimates are used and when the dependent parameter is ln(gamma) instead of gamma.
Transient analysis using conical shell elements
NASA Technical Reports Server (NTRS)
Yang, J. C. S.; Goeller, J. E.; Messick, W. T.
1973-01-01
The use of the NASTRAN conical shell element in static, eigenvalue, and direct transient analyses is demonstrated. The results of a NASTRAN static solution of an externally pressurized ring-stiffened cylinder agree well with a theoretical discontinuity analysis. Good agreement is also obtained between the NASTRAN direct transient response of a uniform cylinder to a dynamic end load and one-dimensional solutions obtained using a method of characteristics stress wave code and a standing wave solution. Finally, a NASTRAN eigenvalue analysis is performed on a hydroballistic model idealized with conical shell elements.
Universal properties of the near-horizon optical geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbons, G. W.; Warnick, C. M.
2009-03-15
Making use of the fact that the optical geometry near a static nondegenerate Killing horizon is asymptotically hyperbolic, we investigate some universal features of black-hole horizons. Applying the Gauss-Bonnet theorem allows us to establish some general properties of gravitational lensing, valid for all black holes. Hyperbolic geometry allows us to find rates for the loss of scalar, vector, and fermionic ''hair'' as objects fall quasistatically towards the horizon, extending previous results for Schwarzschild to all static Killing horizons. In the process we find the Lienard-Wiechert potential for hyperbolic space and calculate the force between electrons mediated by neutrinos, extending themore » flat space result of Feinberg and Sucher. We further demonstrate how these techniques allow us to derive the exact Copson-Linet potential due to a point charge in a Schwarzschild background in a simple fashion.« less
Accretion onto a noncommutative geometry inspired black hole
NASA Astrophysics Data System (ADS)
Kumar, Rahul; Ghosh, Sushant G.
2017-09-01
The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate \\dot{M}, sonic speed a_s and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that \\dot{M} ≈ {M^2} is still achievable but r_s seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process.
{pi}-{pi} Interactions and magnetic properties in a series of hybrid inorganic-organic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, M.; Lemus-Santana, A.A.; Rodriguez-Hernandez, J.
The series of hybrid inorganic-organic solids T(Im){sub 2}[Ni(CN){sub 4}] with T=Fe, Co, Ni and Im=imidazole were prepared by soft chemical routes from aqueous solutions of the involved building units: imidazole, T{sup 2+} metal and the [Ni(CN){sub 4}]{sup 2-} anionic block. The obtained samples were characterized from infrared and UV-vis spectroscopies, and thermogravimetric, X-ray diffraction and magnetic measurements. Anhydrous solids which crystallize with a monoclinic unit cell, in the I2/a space group with four formula units per cell (Z=4) were obtained. Their crystal structure was solved ab initio from the recorded X-ray powder patterns and then refined by the Rietveld method.more » The metal T is found with octahedral coordination to four N ends of CN groups and two imidazole molecules while the inner Ni atom preserves its planar coordination. The system of layers remains stacked in an ordered 3D structure through dipole-dipole and {pi}-{pi} interactions between imidazole rings from neighboring layers. In this way, a pillared structure is achieved without requiring the coordination of both nitrogen atoms from imidazole ring. The recorded magnetic data indicate the occurrence of a predominant ferromagnetic interaction at low temperature for Co and Ni but not for Fe. Such magnetic ordering is more favorable for Ni with transition temperature of 14.67 K, which was ascribed to the relatively high polarizing power for this metal. Within the considered T metals, to nickel the highest electron-withdrawing ability corresponds and this leads to an increase for the metal-ligand electron clouds overlapping and to a stronger {pi}-{pi} attractive interaction, two factors that result into a higher magnetic ordering temperature. - Graphical Abstract: Magnetic ordering through the {pi}-{pi} interaction between the imidazole rings. Highlights: Black-Right-Pointing-Pointer Hybrid inorganic-organic solids. Black-Right-Pointing-Pointer Hybrid inorganic-organic molecular based magnets. Black-Right-Pointing-Pointer Ferromagnetic interaction through {pi}-{pi} stacking of imidazole rings. Black-Right-Pointing-Pointer Organic pillars formed through {pi}-{pi} stacking.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripuramallu, Bharat Kumar; Das, Samar K., E-mail: skdsc@uohyd.ernet.in
2013-01-15
Two new compounds [Co (2,2 Prime -bipy) (H{sub 2}dbp)]{sub n} (1) and [Ni (2,2 Prime -bipy){sub 2}(H{sub 2}dbp)(H{sub 2}O)]{center_dot}H{sub 2}O (2) based on the flexible ligand 4,4 Prime -dimethylenebiphenyldiphosphonic acid (H{sub 4}dbp) with 2,2 Prime -bipyridine as secondary ligand have been synthesized under hydrothermal conditions. Both the compounds are well characterized by routine elemental analysis, IR, electronic spectroscopies, thermogravimetric analysis and finally by single crystal X-ray diffraction analysis. Compound 1 is a 1D extended coordination polymer and 2 is a discrete molecular compound. A comparative study between the geometries of H{sub 4}dbp ligand (in compounds 1 and 2, present study)more » and p-xylylenediphosphonic acid (H{sub 4}pxp) ligand (in previously reported compounds [Cu(2,2 Prime -bipy)(H{sub 2}pxp)]{center_dot}nH{sub 2}O (1A) and Ni(2,2 Prime -bipy){sub 2}H{sub 4}pxp]{sub n}[H{sub 2}pxp]{sub n} (2A), see text) demonstrate the effect of the twisting in the benzene rings in changing higher dimensional H{sub x}pxp (x refers to number of protonated hydroxyl groups) compounds to lower dimensional H{sub x}dbp compounds. The eight membered Co-dimer rings formed in compound 1 represents the simple and isolated Co-dimer, exhibiting weak antiferromagnetic exchange between metal centers through OPO bridges. - Graphical abstract: Two new compounds based on the dimethylenebiphenyldiphosphonic acid have been synthesized. The effect of twisting of benzene rings in the biphenyl spacer containing multidentate ligands alters dimensionality of final compounds. Highlights: Black-Right-Pointing-Pointer Cobalt containing coordination polymer and a nickel discrete compound have been synthesized. Black-Right-Pointing-Pointer Flexible ligand 4,4'-dimethylenebiphenyldiphosphonic acid has been employed. Black-Right-Pointing-Pointer Co(II) and Ni(II) ions are square pyramidal and octahedral respectively. Black-Right-Pointing-Pointer The effect of the twisting in the benzene rings in the associated ligand has been demonstrated.« less
Topology and entanglement in quench dynamics
NASA Astrophysics Data System (ADS)
Chang, Po-Yao
2018-06-01
We classify the topology of the quench dynamics by homotopy groups. A relation between the topological invariant of a postquench order parameter and the topological invariant of a static Hamiltonian is shown in d +1 dimensions (d =1 ,2 ,3 ). The midgap states in the entanglement spectrum of the postquench states reveal their topological nature. When a trivial quantum state is under a sudden quench to a Chern insulator, the midgap states in the entanglement spectrum form rings. These rings are analogous to the boundary Fermi rings in the Hopf insulators. Finally, we show a postquench order parameter in 3+1 dimensions can be characterized by the second Chern number. The number of Dirac cones in the entanglement spectrum is equal to the second Chern number.
Quantum information erasure inside black holes
Lowe, David A.; Thorlacius, Larus
2015-12-15
An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has beenmore » erased by the black hole singularity. Furthermore, this property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.« less
Regular black holes in Einstein-Gauss-Bonnet gravity
NASA Astrophysics Data System (ADS)
Ghosh, Sushant G.; Singh, Dharm Veer; Maharaj, Sunil D.
2018-05-01
Einstein-Gauss-Bonnet theory, a natural generalization of general relativity to a higher dimension, admits a static spherically symmetric black hole which was obtained by Boulware and Deser. This black hole is similar to its general relativity counterpart with a curvature singularity at r =0 . We present an exact 5D regular black hole metric, with parameter (k >0 ), that interpolates between the Boulware-Deser black hole (k =0 ) and the Wiltshire charged black hole (r ≫k ). Owing to the appearance of the exponential correction factor (e-k /r2), responsible for regularizing the metric, the thermodynamical quantities are modified, and it is demonstrated that the Hawking-Page phase transition is achievable. The heat capacity diverges at a critical radius r =rC, where incidentally the temperature is maximum. Thus, we have a regular black hole with Cauchy and event horizons, and evaporation leads to a thermodynamically stable double-horizon black hole remnant with vanishing temperature. The entropy does not satisfy the usual exact horizon area result of general relativity.
No-Hair Theorem for Black Holes in Astrophysical Environments
NASA Astrophysics Data System (ADS)
Gürlebeck, Norman
2015-04-01
According to the no-hair theorem, static black holes are described by a Schwarzschild spacetime provided there are no other sources of the gravitational field. This requirement, however, is in astrophysical realistic scenarios often violated, e.g., if the black hole is part of a binary system or if it is surrounded by an accretion disk. In these cases, the black hole is distorted due to tidal forces. Nonetheless, the subsequent formulation of the no-hair theorem holds: The contribution of the distorted black hole to the multipole moments that describe the gravitational field close to infinity and, thus, all sources is that of a Schwarzschild black hole. It still has no hair. This implies that there is no multipole moment induced in the black hole and that its second Love numbers, which measure some aspects of the distortion, vanish as was already shown in approximations to general relativity. But here we prove this property for astrophysical relevant black holes in full general relativity.
No-hair theorem for black holes in astrophysical environments.
Gürlebeck, Norman
2015-04-17
According to the no-hair theorem, static black holes are described by a Schwarzschild spacetime provided there are no other sources of the gravitational field. This requirement, however, is in astrophysical realistic scenarios often violated, e.g., if the black hole is part of a binary system or if it is surrounded by an accretion disk. In these cases, the black hole is distorted due to tidal forces. Nonetheless, the subsequent formulation of the no-hair theorem holds: The contribution of the distorted black hole to the multipole moments that describe the gravitational field close to infinity and, thus, all sources is that of a Schwarzschild black hole. It still has no hair. This implies that there is no multipole moment induced in the black hole and that its second Love numbers, which measure some aspects of the distortion, vanish as was already shown in approximations to general relativity. But here we prove this property for astrophysical relevant black holes in full general relativity.
Black holes in higher derivative gravity.
Lü, H; Perkins, A; Pope, C N; Stelle, K S
2015-05-01
Extensions of Einstein gravity with higher-order derivative terms arise in string theory and other effective theories, as well as being of interest in their own right. In this Letter we study static black-hole solutions in the example of Einstein gravity with additional quadratic curvature terms. A Lichnerowicz-type theorem simplifies the analysis by establishing that they must have vanishing Ricci scalar curvature. By numerical methods we then demonstrate the existence of further black-hole solutions over and above the Schwarzschild solution. We discuss some of their thermodynamic properties, and show that they obey the first law of thermodynamics.
Membrane paradigm of black holes in Chern-Simons modified gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Tian-Yi; Wang, Towe, E-mail: zhaotianyi5566@foxmail.com, E-mail: twang@phy.ecnu.edu.cn
2016-06-01
The membrane paradigm of black hole is studied in the Chern-Simons modified gravity. Derived with the action principle a la Parikh-Wilczek, the stress tensor of membrane manifests a rich structure arising from the Chern-Simons term. The membrane stress tensor, if related to the bulk stress tensor in a special form, obeys the low-dimensional fluid continuity equation and the Navier-Stokes equation. This paradigm is applied to spherically symmetric static geometries, and in particular, the Schwarzschild black hole, which is a solution of a large class of dynamical Chern-Simons gravity.
Slicing the vacuum: New accelerating mirror solutions of the dynamical Casimir effect
NASA Astrophysics Data System (ADS)
Good, Michael R. R.; Linder, Eric V.
2017-12-01
Radiation from accelerating mirrors in a Minkowski spacetime provides insights into the nature of horizons, black holes, and entanglement entropy. We introduce new, simple, symmetric and analytic moving mirror solutions and study their particle, energy, and entropy production. This includes an asymptotically static case with finite emission that is the black hole analog of complete evaporation. The total energy, total entropy, total particles, and spectrum are the same on both sides of the mirror. We also study its asymptotically inertial, drifting analog (which gives a black hole remnant) to explore differences in finite and infinite production.
Electromagnetic pulse-driven spin-dependent currents in semiconductor quantum rings.
Zhu, Zhen-Gang; Berakdar, Jamal
2009-04-08
We investigate the non-equilibrium charge and spin-dependent currents in a quantum ring with a Rashba spin-orbit interaction (SOI) driven by two asymmetric picosecond electromagnetic pulses. The equilibrium persistent charge and persistent spin-dependent currents are investigated as well. It is shown that the dynamical charge and the dynamical spin-dependent currents vary smoothly with a static external magnetic flux and the SOI provides a SU(2) effective flux that changes the phases of the dynamic charge and the dynamic spin-dependent currents. The period of the oscillation of the total charge current with the delay time between the pulses is larger in a quantum ring with a larger radius. The parameters of the pulse fields control to a certain extent the total charge and the total spin-dependent currents. The calculations are applicable to nanometre rings fabricated in heterojunctions of III-V and II-VI semiconductors containing several hundreds of electrons.
Variation in pin knot frequency in black walnut lumber cut from a small provenance/progeny test
Peter Y. S. Chen; Robert E. Bodkin; J. W. Van Sambeek
1995-01-01
This small study examined the frequency of knots (> 1 growth ring), pin knots (latent or suppressed buds), and pin knot clusters in 414 black walnut (Juglans nigra L.) lumber from 42 logs. 18 to 21 cm dbh, cut from a 14-year-old provenance/progeny test. Two boards from opposite sides of each log were analyzed for number of knots, pin knots, and...
Oscillations of Static Discs around Schwarzschild Black Holes: Effect of Self-Gravitation
NASA Astrophysics Data System (ADS)
Semerák, Oldřich; Žáček, Miroslav
2000-12-01
The oscillations of accretion-disc matter about roughly circular motion may produce a quasi-periodic variation in the observed signal (Ipser 1996, AAA 65.067.047). They were studied theoretically on non-gravitating, test discs, in a pseudo-Newtonian manner as well as in general relativity, both in static and in stationary fields. The present paper shows how the radial profiles of oscillation frequencies can be modified by the self-gravity of the disc. Exact superpositions of a Schwarzschild black hole with the Lemos and Letelier (1994, AAA 61.067.077) annular discs (static thin discs obtained by inversion of the first Morgan-Morgan solution) are considered to be simple (static) models of an accretion system. Both the epicyclic and perpendicular frequencies are plotted against the Schwarzschild radius, the circumferential radius, and the proper distance from the horizon. The curves indicate that in the innermost parts more massive discs are more stable with respect to horizontal perturbations, whereas they are less stable with respect to vertical perturbations. In the case of a sequence of discs interpretable as counter-rotating particles on stable time-like circular geodesics and having their inner rims just on marginally stable circular orbits, oscillations of the inner parts get faster with increasing disc mass; the maximum of the epicyclic frequency, important for trapping of the low-frequency modes near the inner radius, moves to smaller radii and becomes somewhat higher.
(Compactified) black branes in four dimensional f(R)-gravity
NASA Astrophysics Data System (ADS)
Dimakis, N.; Giacomini, Alex; Paliathanasis, Andronikos
2018-02-01
A new family of analytical solutions in a four dimensional static spacetime is presented for f (R) -gravity. In contrast to General Relativity, we find that a non trivial black brane/string solution is supported in vacuum power law f (R) -gravity for appropriate values of the parameters characterizing the model and when axisymmetry is introduced in the line element. For the aforementioned solution, we perform a brief investigation over its basic thermodynamic quantities.
Black holes and stars in Horndeski theory
NASA Astrophysics Data System (ADS)
Babichev, Eugeny; Charmousis, Christos; Lehébel, Antoine
2016-08-01
We review black hole and star solutions for Horndeski theory. For non-shift symmetric theories, black holes involve a Kaluza-Klein reduction of higher dimensional Lovelock solutions. On the other hand, for shift symmetric theories of Horndeski and beyond Horndeski, black holes involve two classes of solutions: those that include, at the level of the action, a linear coupling to the Gauss-Bonnet term and those that involve time dependence in the galileon field. We analyze the latter class in detail for a specific subclass of Horndeski theory, discussing the general solution of a static and spherically symmetric spacetime. We then discuss stability issues, slowly rotating solutions as well as black holes coupled to matter. The latter case involves a conformally coupled scalar field as well as an electromagnetic field and the (primary) hair black holes thus obtained. We review and discuss the recent results on neutron stars in Horndeski theories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomizawa, Shinya; Nozawa, Masato
2006-06-15
We study vacuum solutions of five-dimensional Einstein equations generated by the inverse scattering method. We reproduce the black ring solution which was found by Emparan and Reall by taking the Euclidean Levi-Civita metric plus one-dimensional flat space as a seed. This transformation consists of two successive processes; the first step is to perform the three-solitonic transformation of the Euclidean Levi-Civita metric with one-dimensional flat space as a seed. The resulting metric is the Euclidean C-metric with extra one-dimensional flat space. The second is to perform the two-solitonic transformation by taking it as a new seed. Our result may serve asmore » a stepping stone to find new exact solutions in higher dimensions.« less
Black hole binary inspiral: Analysis of the plunge
NASA Astrophysics Data System (ADS)
Price, Richard H.; Nampalliwar, Sourabh; Khanna, Gaurav
2016-02-01
Binary black hole coalescence has its peak of gravitational-wave generation during the "plunge," the transition from quasicircular early motion to late quasinormal ringing (QNR). Although advances in numerical relativity have provided plunge waveforms, there is still no intuitive or phenomenological understanding of plunge comparable to that of the early and late stages. Here we make progress in developing such understanding by relying on insights of the linear mathematics of the particle perturbation model for the extreme mass limit. Our analysis, based on the Fourier-domain Green function, and a simple initial model, point to the crucial role played by the kinematics near the "light ring" (the circular photon orbit) in determining the plunge radiation and the excitation of QNR. That insight is then shown to successfully explain results obtained for particle motion in a Schwarzschild background.
Active black holes: Relevant plasma structures, regimes and processes involving all phase space
NASA Astrophysics Data System (ADS)
Coppi, Bruno
2011-03-01
The presented theory is motivated by the growing body of experimental information on the characteristics, connected with relevant spectral, time, and space resolutions, of the radiation emission from objects considered as rotating black holes. In the immediate surroundings of these objects, three plasma regions are identified: an innermost Buffer Region, an intermediate Three-regime Region, and a Structured Peripheral Region. In the last region, a Composite Disk Structure made of a sequence of plasma rings corresponding to the formation of closed magnetic surfaces is considered to be present and to allow intermittent accretion flows along the relevant separatrices. The nonlinear ``Master Equation'' describing composite disk structures is derived and solved in appropriate asymptotic limits. A ring configuration, depending on the state of the plasma at the microscopic level: (i) can be excluded from forming given the strongly nonthermal nature of the electron distribution (in momentum space) within the Three-regime Region allowing the onset of a spiral structure; the observed High Frequency Quasi Periodic Oscillations are associated with these tridimensional structures; (ii) may be allowed to propagate to the outer edge of the Buffer Region where successive rings carrying currents in opposite directions are ejected vertically (in opposite directions) and originate the observed jets; or (iii) penetrates in the Three-regime Region and is dissipated before reaching the outer edge of the Buffer Region. The absence of a coherent composite disk structure guiding accretion in the presence of a significant magnetic field background is suggested to characterize quiescent black holes.
Stellar dynamics around a massive black hole - II. Resonant relaxation
NASA Astrophysics Data System (ADS)
Sridhar, S.; Touma, Jihad R.
2016-06-01
We present a first-principles theory of resonant relaxation (RR) of a low-mass stellar system orbiting a more massive black hole (MBH). We first extend the kinetic theory of Gilbert to include the Keplerian field of a black hole of mass M•. Specializing to a Keplerian stellar system of mass M ≪ M•, we use the orbit-averaging method of Sridhar & Touma to derive a kinetic equation for RR. This describes the collisional evolution of a system of N ≫ 1 Gaussian rings in a reduced 5-dim space, under the combined actions of self-gravity, 1 post-Newtonian (PN) and 1.5 PN relativistic effects of the MBH and an arbitrary external potential. In general geometries, RR is driven by both apsidal and nodal resonances, so the distinction between scalar RR and vector RR disappears. The system passes through a sequence of quasi-steady secular collisionless equilibria, driven by irreversible two-ring correlations that accrue through gravitational interactions, both direct and collective. This correlation function is related to a `wake function', which is the linear response of the system to the perturbation of a chosen ring. The wake function is easier to appreciate, and satisfies a simpler equation, than the correlation function. We discuss general implications for the interplay of secular dynamics and non-equilibrium statistical mechanics in the evolution of Keplerian stellar systems towards secular thermodynamic equilibria, and set the stage for applications to the RR of axisymmetric discs in Paper III.
Dynamics of Dwarf Galaxies Disfavor Stellar-Mass Black Holes as Dark Matter.
Koushiappas, Savvas M; Loeb, Abraham
2017-07-28
We study the effects of black hole dark matter on the dynamical evolution of stars in dwarf galaxies. We find that mass segregation leads to a depletion of stars in the center of dwarf galaxies and the appearance of a ring in the projected stellar surface density profile. Using Segue 1 as an example we show that current observations of the projected surface stellar density rule out at the 99.9% confidence level the possibility that more than 6% of the dark matter is composed of black holes with a mass of few tens of solar masses.
Uranium mobility across annual growth rings in three deciduous tree species
DOE Office of Scientific and Technical Information (OSTI.GOV)
McHugh, Kelly C.; Widom, Elisabeth; Spitz, Henry B.
Black walnut (Juglans nigra), slippery elm (Ulmus rubra), and white ash (Fraxinus americana) trees were evaluated as potential archives of past uranium (U) contamination. Like other metals, U mobility in annual growth rings of trees is potentially dependent on the tree species. Uranium concentrations and isotopic compositions (masses 234, 235, 236, and 238) were analyzed by thermal ionization mass spectrometry to test the efficacy of using tree rings to retroactively monitor U pollution from the FFMPC, a U purification facility operating from 1951 to 1989. This study found non-natural U (depleted U and detectable 236U) in growth rings of allmore » three tree species that pre-dated the start of operations at FFMPC and compositional trends that did not correspond with known contamination events. Therefore, the annual growth rings of these tree species cannot be used to reliably monitor the chronology of U contamination.« less
Uranium mobility across annual growth rings in three deciduous tree species.
McHugh, Kelly C; Widom, Elisabeth; Spitz, Henry B; Wiles, Gregory C; Glover, Sam E
2018-02-01
Black walnut (Juglans nigra), slippery elm (Ulmus rubra), and white ash (Fraxinus americana) trees were evaluated as potential archives of past uranium (U) contamination. Like other metals, U mobility in annual growth rings of trees is dependent on the tree species. Uranium concentrations and isotopic compositions (masses 234, 235, 236, and 238) were analyzed by thermal ionization mass spectrometry to test the efficacy of using tree rings to retroactively monitor U pollution from the FFMPC, a U purification facility operating from 1951 to 1989. This study found non-natural U (depleted U and detectable 236 U) in growth rings of all three tree species that pre-dated the start of operations at FFMPC and compositional trends that did not correspond with known contamination events. Therefore, the annual growth rings of these tree species cannot be used to reliably monitor the chronology of U contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.
Black Hole Formation in Randall-Sundrum II Braneworlds.
Wang, Daoyan; Choptuik, Matthew W
2016-07-01
We present the first numerical study of the full dynamics of a braneworld scenario, working within the framework of the single brane model of Randall and Sundrum. In particular, we study the process of gravitational collapse driven by a massless scalar field which is confined to the brane. Imposing spherical symmetry on the brane, we show that the evolutions of sufficiently strong initial configurations of the scalar field result in black holes that have finite extension into the bulk. Furthermore, we find preliminary evidence that the black holes generated form a unique sequence, irrespective of the details of the initial data. The black hole solutions we obtain from dynamical evolutions are consistent with those previously computed from a static vacuum ansatz.
NASA Astrophysics Data System (ADS)
Monten, Ruben; Toldo, Chiara
2018-02-01
We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.
Visible, invisible and trapped ghosts as sources of wormholes and black universes
NASA Astrophysics Data System (ADS)
Bolokhov, S. V.; Bronnikov, K. A.; Korolyov, P. A.; Skvortsova, M. V.
2016-02-01
We construct explicit examples of globally regular static, spherically symmetric solutions in general relativity with scalar and electromagnetic fields, describing traversable wormholes with flat and AdS asymptotics and regular black holes, in particular, black universes. (A black universe is a regular black hole with an expanding, asymptotically isotropic space-time beyond the horizon.) Such objects exist in the presence of scalar fields with negative kinetic energy (“phantoms”, or “ghosts”), which are not observed under usual physical conditions. To account for that, we consider what we call “trapped ghosts” (scalars whose kinetic energy is only negative in a strong-field region of space-time) and “invisible ghosts”, i.e., phantom scalar fields sufficiently rapidly decaying in the weak-field region. The resulting configurations contain different numbers of Killing horizons, from zero to four.
Bose-Einstein condensates in charged black-hole spacetimes
NASA Astrophysics Data System (ADS)
Castellanos, Elías; Degollado, Juan Carlos; Lämmerzahl, Claus; Macías, Alfredo; Perlick, Volker
2018-01-01
We analyze Bose-Einstein condensates on three types of spherically symmetric and static charged black-hole spacetimes: the Reissner-Nordström spacetime, Hoffmann's Born-Infeld black-hole spacetime, and the regular Ayón-Beato-García spacetime. The Bose-Einstein condensate is modeled in terms of a massive scalar field that satisfies a Klein-Gordon equation with a self-interaction term. The scalar field is assumed to be uncharged and not self-gravitating. If the mass parameter of the scalar field is chosen sufficiently small, there are quasi-bound states of the scalar field that may be interpreted as dark matter clouds. We estimate the size and the total energy of such clouds around charged supermassive black holes and we investigate if their observable features can be used for discriminating between the different types of charged black holes.
Lower bound on the compactness of isotropic ultracompact objects
NASA Astrophysics Data System (ADS)
Hod, Shahar
2018-04-01
Horizonless spacetimes describing spatially regular ultracompact objects which, like black-hole spacetimes, possess closed null circular geodesics (light rings) have recently attracted much attention from physicists and mathematicians. In the present paper we raise the following physically intriguing question: how compact is an ultracompact object? Using analytical techniques, we prove that ultracompact isotropic matter configurations with light rings are characterized by the dimensionless lower bound maxr{2 m (r )/r }>7 /12 on their global compactness parameter.
First Evidence of Jupiter Ring
NASA Technical Reports Server (NTRS)
1979-01-01
First evidence of a ring around the planet Jupiter is seen in this photograph taken by Voyager 1 on March 4, 1979. The multiple exposure of the extremely thin faint ring appears as a broad light band crossing the center of the picture. The edge of the ring is 1,212,000 km from the spacecraft and 57,000 km from the visible cloud deck of Jupiter. The background stars look like broken hair pins because of spacecraft motion during the 11 minute 12 second exposure. The wavy motion of the star trails is due to the ultra-slow natural oscillation of the spacecraft (with a period of 78 seconds). The black dots are geometric calibration points in the camera. The ring thickness is estimated to be 30 km or less. The photograph was part of a sequence planned to search for such rings in Jupiter's equatorial plane. The ring has been invisible from Earth because of its thinness and its transparency when viewed at any angle except straight on. JPL manages and controls the Voyager Project for NASA's Office of Space Science.
NASA Technical Reports Server (NTRS)
1979-01-01
First evidence of a ring around the planet Jupiter is seen in this photograph taken by Voyager 1 on March 4, 1979. The multiple exposure of the extremely thin faint ring appears as a broad light band crossing the center of the picture. The edge of the ring is 1,212,000 km from the spacecraft and 57,000 km from the visible cloud deck of Jupiter. The background stars look like broken hair pins because of spacecraft motion during the 11 minute 12 second exposure. The wavy motion of the star trails is due to the ultra-slow natural oscillation of the spacecraft (with a period of 78 seconds). The black dots are geometric calibration points in the camera. The ring thickness is estimated to be 30 km or less. The photograph was part of a sequence planned to search for such rings in Jupiter's equatorial plane. The ring has been invisible from Earth because of its thinness and its transparency when viewed at any angle except straight on. JPL manages and controls the Voyager Project for NASA's Office of Space Science.
2000-03-23
First evidence of a ring around the planet Jupiter is seen in this photograph taken by Voyager 1 on March 4, 1979. The multiple exposure of the extremely thin faint ring appears as a broad light band crossing the center of the picture. The edge of the ring is 1,212,000 km from the spacecraft and 57,000 km from the visible cloud deck of Jupiter. The background stars look like broken hair pins because of spacecraft motion during the 11 minute 12 second exposure. The wavy motion of the star trails is due to the ultra-slow natural oscillation of the spacecraft (with a period of 78 seconds). The black dots are geometric calibration points in the camera. The ring thickness is estimated to be 30 km or less. The photograph was part of a sequence planned to search for such rings in Jupiter's equatorial plane. The ring has been invisible from Earth because of its thinness and its transparency when viewed at any angle except straight on. JPL manages and controls the Voyager Project for NASA's Office of Space Science. http://photojournal.jpl.nasa.gov/catalog/PIA02251
Measurement at low strain rates of the elastic properties of dental polymeric materials.
Chabrier, F; Lloyd, C H; Scrimgeour, S N
1999-01-01
To evaluate a simple static test (i.e. a slow strain rate test) designed to measure Young's modulus and the bulk modulus of polymeric materials (The NOL Test). Though it is a 'mature' test as yet it has never been applied to dental materials. A small cylindrical specimen is contained in a close-fitting steel constraining ring and compressive force applied to the ends by steel pistons. The initial (unconstrained) deformation is controlled by Young's modulus. Lateral spreading leads to constraint from the ring and subsequent deformation is controlled by the bulk modulus. A range of dental materials and reference polymers were selected and both moduli measured. From these data Poisson's ratios were calculated. The test proved be a simple reliable method for obtaining values for these properties. For composite the value of Young's modulus was lower, bulk modulus relatively similar and Poisson's ratio higher than that obtained from high strain rate techniques (as expected for a strain rate sensitive material). This test does fulfil a requirement for a simple test to define fully the elastic properties of dental polymeric materials. Measurements are made at the strain rates used in conventional static tests and values reflect this test condition. The higher values obtained for Poisson's ratio at this slow strain rate has implications for FEA, in that analysis is concerned with static or slow rate loading situations.
Black hole entropy in massive Type IIA
NASA Astrophysics Data System (ADS)
Benini, Francesco; Khachatryan, Hrachya; Milan, Paolo
2018-02-01
We study the entropy of static dyonic BPS black holes in AdS4 in 4d N=2 gauged supergravities with vector and hyper multiplets, and how the entropy can be reproduced with a microscopic counting of states in the AdS/CFT dual field theory. We focus on the particular example of BPS black holes in AdS{\\hspace{0pt}}4 × S6 in massive Type IIA, whose dual three-dimensional boundary description is known and simple. To count the states in field theory we employ a supersymmetric topologically twisted index, which can be computed exactly with localization techniques. We find a perfect match at leading order.
Sine-Gordon solitonic scalar stars and black holes
NASA Astrophysics Data System (ADS)
Franzin, Edgardo; Cadoni, Mariano; Tuveri, Matteo
2018-06-01
We study exact, analytic, static, spherically symmetric, four-dimensional solutions of minimally coupled Einstein-scalar gravity, sourced by a scalar field whose profile has the form of the sine-Gordon soliton. We present a horizonless, everywhere regular and positive-mass solution—a solitonic star—and a black hole. The scalar potential behaves as a constant near the origin and vanishes at infinity. In particular, the solitonic scalar star interpolates between an anti-de Sitter and an asympototically flat spacetime. The black-hole spacetime is unstable against linear perturbations, while due to numerical issues, we were not able to determine with confidence whether or not the starlike background solution is stable.
NASA Astrophysics Data System (ADS)
Dons, Evi; Van Poppel, Martine; Kochan, Bruno; Wets, Geert; Int Panis, Luc
2013-08-01
Land use regression (LUR) modeling is a statistical technique used to determine exposure to air pollutants in epidemiological studies. Time-activity diaries can be combined with LUR models, enabling detailed exposure estimation and limiting exposure misclassification, both in shorter and longer time lags. In this study, the traffic related air pollutant black carbon was measured with μ-aethalometers on a 5-min time base at 63 locations in Flanders, Belgium. The measurements show that hourly concentrations vary between different locations, but also over the day. Furthermore the diurnal pattern is different for street and background locations. This suggests that annual LUR models are not sufficient to capture all the variation. Hourly LUR models for black carbon are developed using different strategies: by means of dummy variables, with dynamic dependent variables and/or with dynamic and static independent variables. The LUR model with 48 dummies (weekday hours and weekend hours) performs not as good as the annual model (explained variance of 0.44 compared to 0.77 in the annual model). The dataset with hourly concentrations of black carbon can be used to recalibrate the annual model, resulting in many of the original explaining variables losing their statistical significance, and certain variables having the wrong direction of effect. Building new independent hourly models, with static or dynamic covariates, is proposed as the best solution to solve these issues. R2 values for hourly LUR models are mostly smaller than the R2 of the annual model, ranging from 0.07 to 0.8. Between 6 a.m. and 10 p.m. on weekdays the R2 approximates the annual model R2. Even though models of consecutive hours are developed independently, similar variables turn out to be significant. Using dynamic covariates instead of static covariates, i.e. hourly traffic intensities and hourly population densities, did not significantly improve the models' performance.
NASA Astrophysics Data System (ADS)
Tiscareno, Matthew S.
Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of debate; formation scenarios are most plausible in the context of the early solar system, while signs of youthfulness indicate at least that rings have never been static phenomena.
Diez-Silva, Monica; Park, YongKeun; Huang, Sha; Bow, Hansen; Mercereau-Puijalon, Odile; Deplaine, Guillaume; Lavazec, Catherine; Perrot, Sylvie; Bonnefoy, Serge; Feld, Michael S.; Han, Jongyoon; Dao, Ming; Suresh, Subra
2012-01-01
Proteins exported by Plasmodium falciparum to the red blood cell (RBC) membrane modify the structural properties of the parasitized RBC (Pf-RBC). Although quasi-static single cell assays show reduced ring-stage Pf-RBCs deformability, the parameters influencing their microcirculatory behavior remain unexplored. Here, we study the dynamic properties of ring-stage Pf-RBCs and the role of the parasite protein Pf155/Ring-Infected Erythrocyte Surface Antigen (RESA). Diffraction phase microscopy revealed RESA-driven decreased Pf-RBCs membrane fluctuations. Microfluidic experiments showed a RESA-dependent reduction in the Pf-RBCs transit velocity, which was potentiated at febrile temperature. In a microspheres filtration system, incubation at febrile temperature impaired traversal of RESA-expressing Pf-RBCs. These results show that RESA influences ring-stage Pf-RBCs microcirculation, an effect that is fever-enhanced. This is the first identification of a parasite factor influencing the dynamic circulation of young asexual Pf-RBCs in physiologically relevant conditions, offering novel possibilities for interventions to reduce parasite survival and pathogenesis in its human host. PMID:22937223
NASA Astrophysics Data System (ADS)
Diez-Silva, Monica; Park, Yongkeun; Huang, Sha; Bow, Hansen; Mercereau-Puijalon, Odile; Deplaine, Guillaume; Lavazec, Catherine; Perrot, Sylvie; Bonnefoy, Serge; Feld, Michael S.; Han, Jongyoon; Dao, Ming; Suresh, Subra
2012-08-01
Proteins exported by Plasmodium falciparum to the red blood cell (RBC) membrane modify the structural properties of the parasitized RBC (Pf-RBC). Although quasi-static single cell assays show reduced ring-stage Pf-RBCs deformability, the parameters influencing their microcirculatory behavior remain unexplored. Here, we study the dynamic properties of ring-stage Pf-RBCs and the role of the parasite protein Pf155/Ring-Infected Erythrocyte Surface Antigen (RESA). Diffraction phase microscopy revealed RESA-driven decreased Pf-RBCs membrane fluctuations. Microfluidic experiments showed a RESA-dependent reduction in the Pf-RBCs transit velocity, which was potentiated at febrile temperature. In a microspheres filtration system, incubation at febrile temperature impaired traversal of RESA-expressing Pf-RBCs. These results show that RESA influences ring-stage Pf-RBCs microcirculation, an effect that is fever-enhanced. This is the first identification of a parasite factor influencing the dynamic circulation of young asexual Pf-RBCs in physiologically relevant conditions, offering novel possibilities for interventions to reduce parasite survival and pathogenesis in its human host.
NASA Astrophysics Data System (ADS)
Gibbons, Gary W.; Volkov, Mikhail S.
2017-05-01
We study solutions obtained via applying dualities and complexifications to the vacuum Weyl metrics generated by massive rods and by point masses. Rescaling them and extending to complex parameter values yields axially symmetric vacuum solutions containing singularities along circles that can be viewed as singular matter sources. These solutions have wormhole topology with several asymptotic regions interconnected by throats and their sources can be viewed as thin rings of negative tension encircling the throats. For a particular value of the ring tension the geometry becomes exactly flat although the topology remains non-trivial, so that the rings literally produce holes in flat space. To create a single ring wormhole of one metre radius one needs a negative energy equivalent to the mass of Jupiter. Further duality transformations dress the rings with the scalar field, either conventional or phantom. This gives rise to large classes of static, axially symmetric solutions, presumably including all previously known solutions for a gravity-coupled massless scalar field, as for example the spherically symmetric Bronnikov-Ellis wormholes with phantom scalar. The multi-wormholes contain infinite struts everywhere at the symmetry axes, apart from solutions with locally flat geometry.
50 CFR 92.22 - Subsistence migratory bird species.
Code of Federal Regulations, 2014 CFR
2014-10-01
...). (17) Canvasback (Aythya valisineria). (18) Redhead (Aythya americana). (19) Ring-necked Duck (Aythya... (Somateria spectabilis). (23) Common Eider (Somateria mollissima). (24) Harlequin Duck (Histrionicus...) Black Scoter (Melanitta nigra). (28) Long-tailed Duck (Clangula hyemalis). (29) Bufflehead (Bucephala...
50 CFR 92.22 - Subsistence migratory bird species.
Code of Federal Regulations, 2012 CFR
2012-10-01
...). (17) Canvasback (Aythya valisineria). (18) Redhead (Aythya americana). (19) Ring-necked Duck (Aythya... (Somateria spectabilis). (23) Common Eider (Somateria mollissima). (24) Harlequin Duck (Histrionicus...) Black Scoter (Melanitta nigra). (28) Long-tailed Duck (Clangula hyemalis). (29) Bufflehead (Bucephala...
50 CFR 92.22 - Subsistence migratory bird species.
Code of Federal Regulations, 2013 CFR
2013-10-01
...). (17) Canvasback (Aythya valisineria). (18) Redhead (Aythya americana). (19) Ring-necked Duck (Aythya... (Somateria spectabilis). (23) Common Eider (Somateria mollissima). (24) Harlequin Duck (Histrionicus...) Black Scoter (Melanitta nigra). (28) Long-tailed Duck (Clangula hyemalis). (29) Bufflehead (Bucephala...
Is the Gravitational-Wave Ringdown a Probe of the Event Horizon?
Cardoso, Vitor; Franzin, Edgardo; Pani, Paolo
2016-04-29
It is commonly believed that the ringdown signal from a binary coalescence provides a conclusive proof for the formation of an event horizon after the merger. This expectation is based on the assumption that the ringdown waveform at intermediate times is dominated by the quasinormal modes of the final object. We point out that this assumption should be taken with great care, and that very compact objects with a light ring will display a similar ringdown stage, even when their quasinormal-mode spectrum is completely different from that of a black hole. In other words, universal ringdown waveforms indicate the presence of light rings, rather than of horizons. Only precision observations of the late-time ringdown signal, where the differences in the quasinormal-mode spectrum eventually show up, can be used to rule out exotic alternatives to black holes and to test quantum effects at the horizon scale.
Probing the universality of synchronised hair around rotating black holes with Q-clouds
NASA Astrophysics Data System (ADS)
Herdeiro, Carlos; Kunz, Jutta; Radu, Eugen; Subagyo, Bintoro
2018-04-01
Recently, various families of black holes (BHs) with synchronised hair have been constructed. These are rotating BHs surrounded, as fully non-linear solutions of the appropriate Einstein-matter model, by a non-trivial bosonic field in synchronised rotation with the BH horizon. Some families bifurcate globally from a bald BH (e.g. the Kerr BH), whereas others bifurcate only locally from a bald BH (e.g. the D = 5 Myers-Perry BH). It would be desirable to understand how generically synchronisation allows hairy BHs to bifurcate from bald ones. However, the construction and scanning of the domain of existence of the former families of BHs can be a difficult and time consuming (numerical) task. Here, we first provide a simple perturbative argument to understand the generality of the synchronisation condition. Then, we observe that the study of Q-clouds is a generic tool to establish the existence of BHs with synchronised hair bifurcating (globally or locally) from a given bald BH without having to solve the fully non-linear coupled system of Einstein-matter equations. As examples, we apply this tool to establish the existence of synchronised hair around D = 6 Myers-Perry BHs, D = 5 black rings and D = 4 Kerr-AdS BHs, where D is the spacetime dimension. The black rings case provides an example of BHs with synchronised hair beyond spherical horizon topology, further establishing the generality of the mechanism.
Planetary rings and astrophysical discs
NASA Astrophysics Data System (ADS)
Latter, Henrik
2016-05-01
Disks are ubiquitous in astrophysics and participate in some of its most important processes. Of special interest is their role in star, planet and moon formation, the growth of supermassive black holes, and the launching of jets. Although astrophysical disks can be up to ten orders of magnitude larger than planetary rings and differ hugely in composition, all disks share to some extent the same basic dynamics and many physical phenomena. This review explores these areas of overlap. Topics covered include disk formation, accretion, collisions, instabilities, and satellite-disk interactions.
Main-chain metallopolymers at the static-dynamic boundary based on nickelocene
NASA Astrophysics Data System (ADS)
Musgrave, Rebecca A.; Russell, Andrew D.; Hayward, Dominic W.; Whittell, George R.; Lawrence, Paul G.; Gates, Paul J.; Green, Jennifer C.; Manners, Ian
2017-08-01
Interactions between metal ions and ligands in metal-containing polymers involve two bonding extremes: persistent covalent bonding, in which the polymers are essentially static in nature, or labile coordination bonding, which leads to dynamic supramolecular materials. Main-chain polymetallocenes based on ferrocene and cobaltocene fall into the former category because of the presence of strong metal-cyclopentadienyl bonds. Herein, we describe a main-chain polynickelocene—formed by ring-opening polymerization of a moderately strained [3]nickelocenophane monomer—that can be switched between static and dynamic states because of the relatively weak nickel-cyclopentadienyl ligand interactions. This is illustrated by the observation that, at a low concentration or at an elevated temperature in a coordinating or polar solvent, depolymerization of the polynickelocene occurs. A study of this dynamic polymer-monomer equilibrium by 1H NMR spectroscopy allowed the determination of the associated thermodynamic parameters. Microrheology data, however, indicated that under similar conditions the polynickelocene is considered to be static on the shorter rheological timescale.
Statistical Entropy of Vaidya-de Sitter Black Hole to All Orders in Planck Length
NASA Astrophysics Data System (ADS)
Sun, HangBin; He, Feng; Huang, Hai
2012-06-01
Considering corrections to all orders in Planck length on the quantum state density from generalized uncertainty principle, we calculate the statistical entropy of scalar field near event horizon and cosmological horizon of Vaidya-de Sitter black hole without any artificial cutoff. It is shown that the entropy is linear sum of event horizon area and cosmological horizon area and there are similar proportional parameters related to changing rate of the horizon position. This is different from the static and stationary cases.
Dyonic AdS black holes in maximal gauged supergravity
NASA Astrophysics Data System (ADS)
Chow, David D. K.; Compère, Geoffrey
2014-03-01
We present two new classes of dyonic anti-de Sitter black hole solutions of four-dimensional maximal N =8, SO(8) gauged supergravity. They are (1) static black holes of N=2, U(1)4 gauged supergravity with four electric and four magnetic charges, with spherical, planar or hyperbolic horizons; and (2) rotating black holes of N =2, U(1)2 gauged supergravity with two electric and two magnetic charges. We study their thermodynamics, and point out that the formulation of a consistent thermodynamics for dyonic anti-de Sitter black holes is dependent on the existence of boundary conditions for the gauge fields. We identify several distinct classes of boundary conditions for gauge fields in U(1)4 supergravity. We study a general family of metrics containing the rotating solutions, and find Killing-Yano tensors with torsion in two conformal frames, which underlie separability.
Hawking Radiation of the Charged Particle Via Tunneling from the Reissner-Nordström Black Hole
NASA Astrophysics Data System (ADS)
Pu, Jin; Han, Yan
2017-08-01
Since Parikh and Wilczek proposed a semiclassical tunneling method to investigate the Hawking radiation of static and spherically symmetric black holes, the method has been extensively developed to study various black holes. However, in almost all of the subsequent papers, there exists a important shortcoming that the geodesic equation of the massive particle is defined inconsistently with that of the massless particle. In this paper, we propose a new idea to reinvestigate the tunneling radiation from the event horizon of the Reissner-Nordström black hole. In our treatment, by starting from the Lagrangian analysis on the action, we redefine the geodesic equation of the massive and massless particle via tunneling from the event horizon of the Reissner-Nordström black hole, which overcomes the shortcoming mentioned above. The highlight of our work is a new and important development for the Parikh-Wilczek's semiclassical tunneling method.
Black hole solutions in d = 5 Chern-Simons gravity
NASA Astrophysics Data System (ADS)
Brihaye, Yves; Radu, Eugen
2013-11-01
The five dimensional Einstein-Gauss-Bonnet gravity with a negative cosmological constant becomes, for a special value of the Gauss-Bonnet coupling constant, a Chern-Simons (CS) theory of gravity. In this work we discuss the properties of several different types of black object solutions of this model. Special attention is paid to the case of spinning black holes with equal-magnitude angular momenta which posses a regular horizon of spherical topology. Closed form solutions are obtained in the small angular momentum limit. Nonperturbative solutions are constructed by solving numerically the equations of the model. Apart from that, new exact solutions describing static squashed black holes and black strings are also discussed. The action and global charges of all configurations studied in this work are obtained by using the quasilocal formalism with boundary counterterms generalized for the case of a d = 5 CS theory.
Black hole thermodynamics and heat engines in conformal gravity
NASA Astrophysics Data System (ADS)
Xu, Hao; Sun, Yuan; Zhao, Liu
The extended phase-space thermodynamics and heat engines for static spherically symmetric black hole solutions of four-dimensional conformal gravity are studied in detail. It is argued that the equation of states (EOS) for such black holes is always branched, any continuous thermodynamical process cannot drive the system from one branch of the EOS into another branch. Meanwhile, the thermodynamical volume is bounded from above, making the black holes always super-entropic in one branch and may also be super-entropic in another branch in certain range of the temperature. The Carnot and Stirling heat engines associated to such black holes are shown to be distinct from each other. For rectangular heat engines, the efficiency always approaches zero when the rectangle becomes extremely narrow, and given the highest and lowest working temperatures fixed, there is always a maximum for the efficiency of such engines.
Brown-York quasilocal energy in Lanczos-Lovelock gravity and black hole horizons
NASA Astrophysics Data System (ADS)
Chakraborty, Sumanta; Dadhich, Naresh
2015-12-01
A standard candidate for quasilocal energy in general relativity is the Brown-York energy, which is essentially a two dimensional surface integral of the extrinsic curvature on the two-boundary of a spacelike hypersurface referenced to flat spacetime. Several years back one of us had conjectured that the black hole horizon is defined by equipartition of gravitational and non-gravitational energy. By employing the above definition of quasilocal Brown-York energy, we have verified the equipartition conjecture for static charged and charged axi-symmetric black holes in general relativity. We have further generalized the Brown-York formalism to all orders in Lanczos-Lovelock theories of gravity and have verified the conjecture for pure Lovelock charged black hole in all even d = 2 m + 2 dimensions, where m is the degree of Lovelock action. It turns out that the equipartition conjecture works only for pure Lovelock, and not for Einstein-Lovelock black holes.
Interior of a charged distorted black hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdolrahimi, Shohreh; Frolov, Valeri P.; Shoom, Andrey A.
We study the interior of a charged, nonrotating distorted black hole. We consider static and axisymmetric black holes, and focus on a special case when an electrically charged distorted solution is obtained by the Harrison-Ernst transformation from an uncharged one. We demonstrate that the Cauchy horizon of such a black hole remains regular, provided the distortion is regular at the event horizon. The shape and the inner geometry of both the outer and inner (Cauchy) horizons are studied. We demonstrate that there exists a duality between the properties of the horizons. Proper time of a free fall of a testmore » particle moving in the interior of the distorted black hole along the symmetry axis is calculated. We also study the property of the curvature in the inner domain between the horizons. Simple relations between the 4D curvature invariants and the Gaussian curvature of the outer and inner horizon surfaces are found.« less
Black hole hair formation in shift-symmetric generalised scalar-tensor gravity
NASA Astrophysics Data System (ADS)
Benkel, Robert; Sotiriou, Thomas P.; Witek, Helvi
2017-03-01
A linear coupling between a scalar field and the Gauss-Bonnet invariant is the only known interaction term between a scalar and the metric that: respects shift symmetry; does not lead to higher order equations; inevitably introduces black hole hair in asymptotically flat, 4-dimensional spacetimes. Here we focus on the simplest theory that includes such a term and we explore the dynamical formation of scalar hair. In particular, we work in the decoupling limit that neglects the backreaction of the scalar onto the metric and evolve the scalar configuration numerically in the background of a Schwarzschild black hole and a collapsing dust star described by the Oppenheimer-Snyder solution. For all types of initial data that we consider, the scalar relaxes at late times to the known, static, analytic configuration that is associated with a hairy, spherically symmetric black hole. This suggests that the corresponding black hole solutions are indeed endpoints of collapse.
Black holes in an expanding universe.
Gibbons, Gary W; Maeda, Kei-ichi
2010-04-02
An exact solution representing black holes in an expanding universe is found. The black holes are maximally charged and the universe is expanding with arbitrary equation of state (P = w rho with -1 < or = for all w < or = 1). It is an exact solution of the Einstein-scalar-Maxwell system, in which we have two Maxwell-type U(1) fields coupled to the scalar field. The potential of the scalar field is an exponential. We find a regular horizon, which depends on one parameter [the ratio of the energy density of U(1) fields to that of the scalar field]. The horizon is static because of the balance on the horizon between gravitational attractive force and U(1) repulsive force acting on the scalar field. We also calculate the black hole temperature.
Covalent functionalized black phosphorus quantum dots
NASA Astrophysics Data System (ADS)
Scotognella, Francesco; Kriegel, Ilka; Sassolini, Simone
2018-01-01
Black phosphorus (BP) nanostructures enable a new strategy to tune the electronic and optical properties of this atomically thin material. In this paper we show, via density functional theory calculations, the possibility to modify the optical properties of BP quantum dots via covalent functionalization. The quantum dot selected in this study has chemical formula P24H12 and has been covalent functionalized with one or more benzene rings or anthracene. The effect of functionalization is highlighted in the absorption spectra, where a red shift of the absorption is noticeable. The shift can be ascribed to an electron delocalization in the black phosphorus/organic molecule nanostructure.
Growth rate and age distribution of deep-sea black corals in the Gulf of Mexico
Prouty, N.G.; Roark, E.B.; Buster, N.A.; Ross, Steve W.
2011-01-01
Black corals (order Antipatharia) are important long-lived, habitat-forming, sessile, benthic suspension feeders that are found in all oceans and are usually found in water depths greater than 30 m. Deep-water black corals are some of the slowest-growing, longest-lived deep-sea corals known. Previous age dating of a limited number of black coral samples in the Gulf of Mexico focused on extrapolated ages and growth rates based on skeletal 210Pb dating. Our results greatly expand the age and growth rate data of black corals from the Gulf of Mexico. Radiocarbon analysis of the oldest Leiopathes sp. specimen from the upper De Soto Slope at 300 m water depth indicates that these animals have been growing continuously for at least the last 2 millennia, with growth rates ranging from 8 to 22 µm yr–1. Visual growth ring counts based on scanning electron microscopy images were in good agreement with the 14C-derived ages, suggestive of annual ring formation. The presence of bomb-derived 14C in the outermost samples confirms sinking particulate organic matter as the dominant carbon source and suggests a link between the deep-sea and surface ocean. There was a high degree of reproducibility found between multiple discs cut from the base of each specimen, as well as within duplicate subsamples. Robust 14C-derived chronologies and known surface ocean 14C reservoir age constraints in the Gulf of Mexico provided reliable calendar ages with future application to the development of proxy records.
Measures for improving the zeppelin airships for long distance transportation
NASA Technical Reports Server (NTRS)
Duerr, L. F.
1980-01-01
Factors to be considered in the construction of dirigibles include the design and weight of support structures, static and aerodynamic loads on the main ring, the annealing of support materials, and the dynamic gas pressure. Adaptations made for using helium as the lifting gas, and a method for extracting ballast are described.
A Void Growth Failure Criterion Applied to Dynamically and Statically Loaded Thin Rings.
1980-06-01
the physical evidences, several other investigators (Berg, 1969, Nagpal , et al., 1972) working on the continuum aspect of failure, considered plastic...by the Growth of Holes", J. of Applied Mechanics, Vol. 35, 1968, p. 363. 23.) Nagpal , V., Mcclintock, F. A., Berg, C. A., and Subudhi, M., "Traction
Nakata, Satoshi; Morishima, Sayaka; Ichino, Takatoshi; Kitahata, Hiroyuki
2006-12-21
The photosensitive Belousov-Zhabotinsky (BZ) reaction was investigated on a circular ring, which was drawn using computer software and then projected on a film soaked with BZ solution using a liquid-crystal projector. Under the initial conditions, a chemical wave propagated with a constant velocity on the black ring under a bright background. When the background was rapidly changed to dark, coexistence of the oscillation on part of the ring and propagation of the chemical wave on the other part was observed. These experimental results are discussed in relation to the nature of the photosensitive BZ reaction and theoretically reproduced based on a reaction-diffusion system using the modified Oregonator model.
The Dynamics of a Viscous Gas Ring around a Kerr Black Hole
NASA Astrophysics Data System (ADS)
Riffert, H.
2000-01-01
The dynamics of a rotationally symmetric viscous gas ring around a Kerr black hole is calculated in the thin-disk approximation. An evolution equation for the surface density Σ(t,r) is derived, which is the relativistic extension of a classical equation obtained by R. Lüst. A singular point appears at the radius of the last stable circular orbit r=rc. The nature of this point is investigated, and it turns out that the solution is always bounded at rc, and no boundary condition can be obtained at this radius. A unique solution of an initial value problem requires a matching condition at rc which follows from the flow structure between rc and the horizon. In the model presented here, the density in this domain is zero, and the resulting boundary condition leads to a vanishing shear stress at r=rc, which is the condition used in the standard stationary thin-disk model of Novikov & Thorne. Numerical solutions of the evolution equation are presented for two different angular momenta of the black hole. The time evolution of the resulting accretion rate depends strongly on this angular momentum.
Directional bias of illusory stream caused by relative motion adaptation.
Tomimatsu, Erika; Ito, Hiroyuki
2016-07-01
Enigma is an op-art painting that elicits an illusion of rotational streaming motion. In the present study, we tested whether adaptation to various motion configurations that included relative motion components could be reflected in the directional bias of the illusory stream. First, participants viewed the center of a rotating Enigma stimulus for adaptation. There was no physical motion on the ring area. During the adaptation period, the illusory stream on the ring was mainly seen in the direction opposite to that of the physical rotation. After the physical rotation stopped, the illusory stream on the ring was mainly seen in the same direction as that of the preceding physical rotation. Moreover, adapting to strong relative motion induced a strong bias in the illusory motion direction in the subsequently presented static Enigma stimulus. The results suggest that relative motion detectors corresponding to the ring area may produce the illusory stream of Enigma. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Georgia tech catalog of gravitational waveforms
NASA Astrophysics Data System (ADS)
Jani, Karan; Healy, James; Clark, James A.; London, Lionel; Laguna, Pablo; Shoemaker, Deirdre
2016-10-01
This paper introduces a catalog of gravitational waveforms from the bank of simulations by the numerical relativity effort at Georgia Tech. Currently, the catalog consists of 452 distinct waveforms from more than 600 binary black hole simulations: 128 of the waveforms are from binaries with black hole spins aligned with the orbital angular momentum, and 324 are from precessing binary black hole systems. The waveforms from binaries with non-spinning black holes have mass-ratios q = m 1/m 2 ≤ 15, and those with precessing, spinning black holes have q ≤ 8. The waveforms expand a moderate number of orbits in the late inspiral, the burst during coalescence, and the ring-down of the final black hole. Examples of waveforms in the catalog matched against the widely used approximate models are presented. In addition, predictions of the mass and spin of the final black hole by phenomenological fits are tested against the results from the simulation bank. The role of the catalog in interpreting the GW150914 event and future massive binary black-hole search in LIGO is discussed. The Georgia Tech catalog is publicly available at einstein.gatech.edu/catalog.
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Poster Version This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end. The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light. The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.Multi-scale analysis and characterization of the ITER pre-compression rings
NASA Astrophysics Data System (ADS)
Foussat, A.; Park, B.; Rajainmaki, H.
2014-01-01
The toroidal field (TF) system of ITER Tokamak composed of 18 "D" shaped Toroidal Field (TF) coils during an operating scenario experiences out-of-plane forces caused by the interaction between the 68kA operating TF current and the poloidal magnetic fields. In order to keep the induced static and cyclic stress range in the intercoil shear keys between coils cases within the ITER allowable limits [1], centripetal preload is introduced by means of S2 fiber-glass/epoxy composite pre-compression rings (PCRs). Those PCRs consist in two sets of three rings, each 5 m in diameter and 337 × 288 mm in cross-section, and are installed at the top and bottom regions to apply a total resultant preload of 70 MN per TF coil equivalent to about 400 MPa hoop stress. Recent developments of composites in the aerospace industry have accelerated the use of advanced composites as primary structural materials. The PCRs represent one of the most challenging composite applications of large dimensions and highly stressed structures operating at 4 K over a long term life. Efficient design of those pre-compression composite structures requires a detailed understanding of both the failure behavior of the structure and the fracture behavior of the material. Due to the inherent difficulties to carry out real scale testing campaign, there is a need to develop simulation tools to predict the multiple complex failure mechanisms in pre-compression rings. A framework contract was placed by ITER Organization with SENER Ingenieria y Sistemas SA to develop multi-scale models representative of the composite structure of the Pre-compression rings based on experimental material data. The predictive modeling based on ABAQUS FEM provides the opportunity both to understand better how PCR composites behave in operating conditions and to support the development of materials by the supplier with enhanced performance to withstand the machine design lifetime of 30,000 cycles. The multi-scale stress analysis has revealed a complete picture of the stress levels within the fiber and the matrix regarding the static and fatigue performance of the rings structure including the presence of a delamination defect of critical size. The analysis results of the composite material demonstrate that the rings performance objectives under all loading and strength conditions are met.
Energy-dependent topological anti-de Sitter black holes in Gauss-Bonnet Born-Infeld gravity
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Behnamifard, H.; Bahrami-Asl, B.
2018-03-01
Employing higher-curvature corrections to Einstein-Maxwell gravity has garnered a great deal of attention motivated by the high-energy regime in the quantum nature of black hole physics. In addition, one may employ gravity's rainbow to encode quantum gravity effects into black hole solutions. In this paper, we regard an energy-dependent static spacetime with various topologies and study its black hole solutions in the context of Gauss-Bonnet Born-Infeld (GB-BI) gravity. We study the thermodynamic properties and examine the first law of thermodynamics. Using a suitable local transformation, we endow the Ricci-flat black hole solutions with a global rotation and study the effects of rotation on thermodynamic quantities. We also investigate thermal stability in a canonical ensemble by calculating the heat capacity. We obtain the effects of various parameters on the horizon radius of stable black holes. Finally, we discuss a second-order phase transition in the extended phase space thermodynamics and investigate the critical behavior.
The fall of the black hole firewall: natural nonmaximal entanglement for the Page curve
NASA Astrophysics Data System (ADS)
Hotta, Masahiro; Sugita, Ayumu
2015-12-01
The black hole firewall conjecture is based on the Page curve hypothesis, which claims that entanglement between a black hole and its Hawking radiation is almost maximum. Adopting canonical typicality for nondegenerate systems with nonvanishing Hamiltonians, we show the entanglement becomes nonmaximal, and energetic singularities (firewalls) do not emerge for general systems. An evaporating old black hole must evolve in Gibbs states with exponentially small error probability after the Page time as long as the states are typical. This means that the ordinarily used microcanonical states are far from typical. The heat capacity computed from the Gibbs states should be nonnegative in general. However, the black hole heat capacity is actually negative due to the gravitational instability. Consequently the states are not typical until the last burst. This requires inevitable modification of the Page curve, which is based on the typicality argument. For static thermal pure states of a large AdS black hole and its Hawking radiation, the entanglement entropy equals the thermal entropy of the smaller system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Incardona, John P., E-mail: john.incardona@noaa.gov; Linbo, Tiffany L.; Scholz, Nathaniel L.
Petroleum-derived compounds, including polycyclic aromatic hydrocarbons (PAHs), commonly occur as complex mixtures in the environment. Recent studies using the zebrafish experimental model have shown that PAHs are toxic to the embryonic cardiovascular system, and that the severity and nature of this developmental cardiotoxicity varies by individual PAH. In the present study we characterize the toxicity of the relatively higher molecular weight 5-ring PAHs benzo[a]pyrene (BaP), benzo[e]pyrene (BeP), and benzo[k]fluoranthene (BkF). While all three compounds target the cardiovascular system, the underlying role of the ligand-activated aryl hydrocarbon receptor (AHR2) and the tissue-specific induction of the cytochrome p450 metabolic pathway (CYP1A) weremore » distinct for each. BaP exposure (40 {mu}M) produced AHR2-dependent bradycardia, pericardial edema, and myocardial CYP1A immunofluorescence. By contrast, BkF exposure (4-40 {mu}M) caused more severe pericardial edema, looping defects, and erythrocyte regurgitation through the atrioventricular valve that were AHR2-independent (i.e., absent myocardial or endocardial CYP1A induction). Lastly, exposure to BeP (40 {mu}M) yielded a low level of CYP1A+ signal in the vascular endothelium of the head and trunk, without evident toxic effects on cardiac function or morphogenesis. Combined with earlier work on 3- and 4-ring PAHs, our findings provide a more complete picture of how individual PAHs may drive the cardiotoxicity of mixtures in which they predominate. This will improve toxic injury assessments and risk assessments for wild fish populations that spawn in habitats altered by overlapping petroleum-related human impacts such as oil spills, urban stormwater runoff, or sediments contaminated by legacy industrial activities. -- Highlights: Black-Right-Pointing-Pointer PAH compounds with 5 rings in different arrangements caused differential tissue-specific patterns of CYP1A induction in zebrafish embryos. Black-Right-Pointing-Pointer These compounds produced differential cardiac developmental toxicity that did not strictly correlate with associated CYP1A induction. Black-Right-Pointing-Pointer Cardiotoxicity of benzo(a)pyrene was partially dependent on the AHR2 isoform, while benzo(k)fluoranthene cardiotoxicity was not. Black-Right-Pointing-Pointer Individual PAH compounds have distinct toxicokinetic pathways in fish embryos, and act through different toxic mechanisms.« less
TU-H-BRA-05: A System Design for Integration of An Interior MRI and a Linear Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, W; Henry Ford Hospital, Detroit, MI; Wang, G
Purpose: MRI is a highly desirable modality to guide radiation therapy but it is difficult to combine a conventional MRI scanner directly with a linear accelerator (linac). An interior MRI (iMRI) concept has been proposed to acquire MRI images within a small field of view only covering targets and immediate surrounding tissues. The objective of this project is to design an interior MRI system to work with a linac using a magnet to provide a field around 0.2T in a cube of 20cm per side, and perform image reconstruction with a slightly inhomogeneous static magnetic fields. Methods: All the resultsmore » are simulated using a commercially available software package, FARADY. In our design, a ring structure holds the iMRI system and also imbeds a linac treatment head. The ring is synchronized to the linac gantry rotation. Half of the ring is made of steel and becomes a magnetic flux return path (yoke) so that a strong magnetic field will be limited inside the iron circuit and fringe fields will be very weak. In order to increase the static magnetic field homogeneity, special steel magnet boots or tips were simulated. Three curved boots were designed based on two-dimensional curves: arc, parabola and hyperbola. Results: Different boot surfaces modify magnetic field distributions differently. With the same pair of neodymium-iron-boron (NdFeB) magnets, the magnetic induction at the centers are 0.217T, 0.201T, 0.204T, and 0.212T for flat, arc, parabola and hyperbola boots, respectively. The hyperbola boots lead to the most homogeneous results, the static magnetic field deviations are within 0.5% in a cube of 20cm, and can be further improved using shimming techniques. Conclusion: This study supports the concept of an iMRI design. Successful development of iMRI will provide crucial information for tumor delineation in radiation therapy.« less
End Point of the Ultraspinning Instability and Violation of Cosmic Censorship.
Figueras, Pau; Kunesch, Markus; Lehner, Luis; Tunyasuvunakool, Saran
2017-04-14
We determine the end point of the axisymmetric ultraspinning instability of asymptotically flat Myers-Perry black holes in D=6 spacetime dimensions. In the nonlinear regime, this instability gives rise to a sequence of concentric rings connected by segments of black membrane on the rotation plane. The latter become thinner over time, resulting in the formation of a naked singularity in finite asymptotic time and hence a violation of the weak cosmic censorship conjecture in asymptotically flat higher-dimensional spaces.
End Point of the Ultraspinning Instability and Violation of Cosmic Censorship
NASA Astrophysics Data System (ADS)
Figueras, Pau; Kunesch, Markus; Lehner, Luis; Tunyasuvunakool, Saran
2017-04-01
We determine the end point of the axisymmetric ultraspinning instability of asymptotically flat Myers-Perry black holes in D =6 spacetime dimensions. In the nonlinear regime, this instability gives rise to a sequence of concentric rings connected by segments of black membrane on the rotation plane. The latter become thinner over time, resulting in the formation of a naked singularity in finite asymptotic time and hence a violation of the weak cosmic censorship conjecture in asymptotically flat higher-dimensional spaces.
Slow crack growth in spinel in water
NASA Technical Reports Server (NTRS)
Schwantes, S.; Elber, W.
1983-01-01
Magnesium aluminate spinel was tested in a water environment at room temperature to establish its slow crack-growth behavior. Ring specimens with artificial flaws on the outside surface were loaded hydraulically on the inside surface. The time to failure was measured. Various precracking techniques were evaluated and multiple precracks were used to minimize the scatter in the static fatigue tests. Statistical analysis techniques were developed to determine the strength and crack velocities for a single flaw. Slow crack-growth rupture was observed at stress intensities as low as 70 percent of K sub c. A strengthening effect was observed in specimens that had survived long-time static fatigue tests.
A new concept of wormholes and the Multiverse
NASA Astrophysics Data System (ADS)
Novikov, I. D.
2018-03-01
We review a new concept of wormholes. We classify the wormholes into three categories: static, space-like, and time-like, and discuss the properties of each category. The relation between wormholes and black holes is examined. The astrophysical properties of wormholes are investigated.
A no-hair theorem for black holes in f(R) gravity
NASA Astrophysics Data System (ADS)
Cañate, Pedro
2018-01-01
In this work we present a no-hair theorem which discards the existence of four-dimensional asymptotically flat, static and spherically symmetric or stationary axisymmetric, non-trivial black holes in the frame of f(R) gravity under metric formalism. Here we show that our no-hair theorem also can discard asymptotic de Sitter stationary and axisymmetric non-trivial black holes. The novelty is that this no-hair theorem is built without resorting to known mapping between f(R) gravity and scalar–tensor theory. Thus, an advantage will be that our no-hair theorem applies as well to metric f(R) models that cannot be mapped to scalar–tensor theory.
Global structure of static spherically symmetric solutions surrounded by quintessence
NASA Astrophysics Data System (ADS)
Cruz, Miguel; Ganguly, Apratim; Gannouji, Radouane; Leon, Genly; Saridakis, Emmanuel N.
2017-06-01
We investigate all static spherically symmetric solutions in the context of general relativity surrounded by a minimally-coupled quintessence field, using dynamical system analysis. Applying the 1 + 1 + 2 formalism and introducing suitable normalized variables involving the Gaussian curvature, we were able to reformulate the field equations as first order differential equations. In the case of a massless canonical scalar field we recovered all known black hole results, such as the Fisher solution, and we found that apart from the Schwarzschild solution all other solutions are naked singularities. Additionally, we identified the symmetric phase space which corresponds to the white hole part of the solution and in the case of a phantom field, we were able to extract the conditions for the existence of wormholes and define all possible classes of solutions such as cold black holes, singular spacetimes and wormholes such as the Ellis wormhole, for example. For an exponential potential, we found that the black hole solution which is asymptotically flat is unique and it is the Schwarzschild spacetime, while all other solutions are naked singularities. Furthermore, we found solutions connecting to a white hole through a maximum radius, and not a minimum radius (throat) such as wormhole solutions, therefore violating the flare-out condition. Finally, we have found a necessary and sufficient condition on the form of the potential to have an asymptotically AdS spacetime along with a necessary condition for the existence of asymptotically flat black holes.
NASA Astrophysics Data System (ADS)
Gennaretti, Fabio; Naulier, Maud; Arseneault, Dominique; Savard, Martine; Bégin, Christian; Boucher, Etienne; Bégin, Yves; Guiot, Joël
2016-04-01
Northeastern North America was historically underrepresented in the network of climate proxies used for climate reconstructions over the last two millennia. Indeed, in North America most high-resolution climate proxies are long tree-ring chronologies but, in Northeastern North America, these chronologies are highly challenging due to short tree longevity, high frequency and severity of wildfires and remoteness of many areas. Here, we will present the efforts accomplished during the last decade by our team in developing millennial-long tree-ring chronologies in the northern Quebec taiga. We sampled black spruce [Picea mariana (Mill.) B.S.P] subfossil tree remains naturally fallen in the littoral zone of six lakes to build six site-specific ring-width chronologies as well as two chronologies of stable isotope ratios (δ18O and δ13C in tree-ring cellulose). These chronologies, which are now included in the PAGES 2K network, were independently used to reconstruct summer temperature variations showing a well-expressed Medieval Climate Anomaly and the impact of volcanic and solar forcings at regional scale. We will also discuss non-climatic influences on these chronologies (i.e. wildfires and sampling height inconsistency), as well as the ongoing effort to extend the reconstructions in time to cover the last 2500 years. Finally, a new European funded project called MAIDEN-SPRUCE will be introduced. Within MAIDEN-SPRUCE, we will use a data-model approach to improve our understanding of the links between forests and climate over the last millennium. More specifically, we will adapt the process-based ecophysiological model MAIDENiso to investigate factors influencing the growth and underlying biogeochemical processes of black spruce. One of our objectives is to provide the first multi-proxy (ring widths and δ18O and δ13C in tree-ring cellulose) regional climate reconstruction in Eastern North America over the last millennium taking into account mechanistic rules, including nonlinear or threshold relationships.
Thermodynamic properties of asymptotically Reissner–Nordström black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendi, S.H., E-mail: hendi@shirazu.ac.ir
2014-07-15
Motivated by possible relation between Born–Infeld type nonlinear electrodynamics and an effective low-energy action of open string theory, asymptotically Reissner–Nordström black holes whose electric field is described by a nonlinear electrodynamics (NLED) are studied. We take into account a four dimensional topological static black hole ansatz and solve the field equations, exactly, in terms of the NLED as a matter field. The main goal of this paper is investigation of thermodynamic properties of the obtained black holes. Moreover, we calculate the heat capacity and find that the nonlinearity affects the minimum size of stable black holes. We also use Legendre-invariantmore » metric proposed by Quevedo to obtain scalar curvature divergences. We find that the singularities of the Ricci scalar in Geometrothermodynamics (GTD) method take place at the Davies points. -- Highlights: •We examine the thermodynamical properties of black holes in Einstein gravity with nonlinear electrodynamics. •We investigate thermodynamic stability and discuss about the size of stable black holes. •We obtain analytical solutions of higher dimensional theory.« less
Nonspherically symmetric black string perturbations in the large dimension limit
NASA Astrophysics Data System (ADS)
Sadhu, Amruta; Suneeta, Vardarajan
2016-06-01
We consider nonspherically symmetric perturbations of the uncharged black string/flat black brane in the large dimension (D) limit of general relativity. We express the perturbations in a simplified form using variables introduced by Ishibashi and Kodama. We apply the large D limit to the equations and show that this leads to decoupling of the equations in the near-horizon and asymptotic regions. It also enables use of matched asymptotic expansions to obtain approximate analytical solutions and to analyze stability of the black string/brane. For a large class of nonspherically symmetric perturbations, we prove that there are no instabilities in the large D limit. For the rest, we provide additional matching arguments that indicate that the black string/brane is stable. In the static limit, we show that for all nonspherically symmetric perturbations, there is no instability. This is proof that the Gross-Perry-Yaffe mode for semiclassical black hole perturbations is the unique unstable mode even in the large D limit. This work is also a direct analytical indication that the only instability of the black string is the Gregory-Laflamme instability.
Extremal black holes, Stueckelberg scalars and phase transitions
NASA Astrophysics Data System (ADS)
Marrani, Alessio; Miskovic, Olivera; Leon, Paula Quezada
2018-02-01
We calculate the entropy of a static extremal black hole in 4D gravity, non-linearly coupled to a massive Stueckelberg scalar. We find that the scalar field does not allow the black hole to be magnetically charged. We also show that the system can exhibit a phase transition due to electric charge variations. For spherical and hyperbolic horizons, the critical point exists only in presence of a cosmological constant, and if the scalar is massive and non-linearly coupled to electromagnetic field. On one side of the critical point, two extremal solutions coexist: Reissner-Nordström (A)dS black hole and the charged hairy (A)dS black hole, while on the other side of the critical point the black hole does not have hair. A near-critical analysis reveals that the hairy black hole has larger entropy, thus giving rise to a zero temperature phase transition. This is characterized by a discontinuous second derivative of the entropy with respect to the electric charge at the critical point. The results obtained here are analytical and based on the entropy function formalism and the second law of thermodynamics.
NASA Astrophysics Data System (ADS)
John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.
2016-04-01
We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.
Formation of strained ring-shaped islands around square notches.
Colin, Jérôme
2012-06-06
The location and morphology of a two-dimensional island has been studied theoretically as a function of the misfit stress in the neighbourhood of a square notch present on the free surface of an epitaxially stressed film deposited on a substrate. From a static energy calculation, it has been shown that the notches can drive the motion of the islands towards the notches. It was then found that, depending on the side length and depth of the notch, self-organized formation at constant volume of a two-dimensional ring-shaped island can be favoured along the periphery of the pre-existing notch with respect to the notch shrinking.
The Magnetic Rayleigh-Taylor Instability in Astrophysical Discs
NASA Technical Reports Server (NTRS)
Contopoulos, I.; Kazanas, D.; Papadopoulos, D. B.
2016-01-01
This is our first study of the magnetic Rayleigh-Taylor instability at the inner edge of an astrophysical disc around a central back hole. We derive the equations governing small-amplitude oscillations in general relativistic ideal magnetodydrodynamics and obtain a criterion for the onset of the instability. We suggest that static disc configurations where magnetic field is held by the disc material are unstable around a Schwarzschild black hole. On the other hand, we find that such configurations are stabilized by the space-time rotation around a Kerr black hole. We obtain a crude estimate of the maximum amount of poloidal magnetic flux that can be accumulated around the centre, and suggest that it is proportional to the black hole spin. Finally, we discuss the astrophysical implications of our result for the theoretical and observational estimations of the black hole jet power.
Mass quantization of the Schwarzschild black hole
NASA Astrophysics Data System (ADS)
Vaz, Cenalo; Witten, Louis
1999-07-01
We examine the Wheeler-DeWitt equation for a static, eternal Schwarzschild black hole in Kuchař-Brown variables and obtain its energy eigenstates. Consistent solutions vanish in the exterior of the Kruskal manifold and are nonvanishing only in the interior. The system is reminiscent of a particle in a box. States of definite parity avoid the singular geometry by vanishing at the origin. These definite parity states admit a discrete energy spectrum, depending on one quantum number which determines the Arnowitt-Deser-Misner mass of the black hole according to a relation conjectured long ago by Bekenstein M~nMp. If attention is restricted only to these quantized energy states, a black hole is described not only by its mass but also by its parity. States of indefinite parity do not admit a quantized mass spectrum.
NASA Astrophysics Data System (ADS)
Bambi, Cosimo; Modesto, Leonardo; Wang, Yixu
2017-01-01
We derive and study an approximate static vacuum solution generated by a point-like source in a higher derivative gravitational theory with a pair of complex conjugate ghosts. The gravitational theory is local and characterized by a high derivative operator compatible with Lee-Wick unitarity. In particular, the tree-level two-point function only shows a pair of complex conjugate poles besides the massless spin two graviton. We show that singularity-free black holes exist when the mass of the source M exceeds a critical value Mcrit. For M >Mcrit the spacetime structure is characterized by an outer event horizon and an inner Cauchy horizon, while for M =Mcrit we have an extremal black hole with vanishing Hawking temperature. The evaporation process leads to a remnant that approaches the zero-temperature extremal black hole state in an infinite amount of time.
Viscoelastic analysis of seals for extended service life
NASA Technical Reports Server (NTRS)
Bower, Mark V.
1993-01-01
The space station is being developed for a service life of up to thirty years. As a consequence, the design requirements for the seals to be used are unprecedented. Full scale testing to assure the selected seals can satisfy the design requirements are not feasible. As an alternative, a sub-scale test program (2) has been developed by MSFC to calibrate the analysis tools to be used to certify the proposed design. This research has been conducted in support of the MSFC Integrated Seal Test Program. The ultimate objective of this research is to correlate analysis and test results to qualify the analytical tools which in turn, are to be used to qualify the flight hardware. Seals are simple devices, in wide spread use. The most common type of seal is the O-ring. O-ring seals are typically rings of rubber with a circular cross section. The rings are placed between the surfaces to be sealed, usually in a groove of some design. The particular design may differ based on a number of different factors. This research is focused on O-rings that are staticly compressed by perpendicular clamping forces, commonly referred to as face seals. In this type of seal the O-ring is clamped between the sealing surfaces by loads perpendicular to the circular cross section.
Thermodynamics of Sultana-Dyer black hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majhi, Bibhas Ranjan, E-mail: bibhas.majhi@mail.huji.ac.il
The thermodynamical entities on the dynamical horizon are not naturally defined like the usual static cases. Here I find the temperature, Smarr formula and the first law of thermodynamics for the Sultana-Dyer metric which is related to the Schwarzschild spacetime by a time dependent conformal factor. To find the temperature (T), the chiral anomaly expressions for the two dimensional spacetime are used. This shows an application of the anomaly method to study Hawking effect for a dynamical situation. Moreover, the analysis singles out one expression for temperature among two existing expressions in the literature. Interestingly, the present form satisfies themore » first law of thermodynamics. Also, it relates the Misner-Sharp energy (Ē) and the horizon entropy ( S-bar ) by an algebraic expression Ē = 2 S-bar T which is the general form of the Smarr formula. This fact is similar to the usual static black hole cases in Einstein's gravity where the energy is identified as the Komar conserved quantity.« less
Maximum likelihood methods for investigating reporting rates of rings on hunter-shot birds
Conroy, M.J.; Morgan, B.J.T.; North, P.M.
1985-01-01
It is well known that hunters do not report 100% of the rings that they find on shot birds. Reward studies can be used to estimate what this reporting rate is, by comparison of recoveries of rings offering a monetary reward, to ordinary rings. A reward study of American Black Ducks (Anas rubripes) is used to illustrate the design, and to motivate the development of statistical models for estimation and for testing hypotheses of temporal and geographic variation in reporting rates. The method involves indexing the data (recoveries) and parameters (reporting, harvest, and solicitation rates) by geographic and temporal strata. Estimates are obtained under unconstrained (e.g., allowing temporal variability in reporting rates) and constrained (e.g., constant reporting rates) models, and hypotheses are tested by likelihood ratio. A FORTRAN program, available from the author, is used to perform the computations.
Astrophysical and Cosmological Consequences of the Dynamical Localization of Gravity
NASA Astrophysics Data System (ADS)
Germani, Cristiano
2003-11-01
In this thesis I review cosmological and astrophysical exact models for Randall-Sundrum-type braneworlds and their physical implications. I present new insights and show their analogies with quantum theories via the holographic idea. In astrophysics I study the two fundamental models of a spherically symmetric static star and spherically symmetric collapsing objects. I show how matching for the pressure of a static star encodes braneworld effects. In addition I study the problem of the vacuum exterior conjecturing a uniqueness theorem. Furthermore I show that a collapsing dust cloud in the braneworld has a non-static exterior, in contrast to the General Relativistic case. This non-static behaviour is linked to the presence of a "surplus potential energy" that must be released, producing a non-zero flux of energy. Via holography this can be connected with the Hawking process, giving an indirect measure of the brane tension. In cosmology I investigate the generalization of the Randall-Sundrum-type model obtained by introducing the Gauss-Bonnet combination into the action. I elucidate the junction conditions necessary to study the brane model and obtain the cosmological dynamics, showing that, even in the thin shell limit for the brane, the Gauss-Bonnet term implies a non-trivial internal structure for the matter and geometry distributions. Independently of the gravitational theory used, I show how to derive the modified Friedman equation and how it is related to the black hole solution of the theory. Via holography I also show how to interpret quantum mechanically the mass of this black hole from a four-dimensional perspective in the simplest Randall-Sundrum-type scenario.
Turning Point Instabilities for Relativistic Stars and Black Holes
NASA Astrophysics Data System (ADS)
Schiffrin, Joshua; Wald, Robert
2014-03-01
In the light of recent results relating dynamic and thermodynamic stability of relativistic stars and black holes, we re-examine the relationship between ``turning points''--i.e., extrema of thermodynamic variables along a one-parameter family of solutions--and instabilities. We give a proof of Sorkin's general result--showing the existence of a thermodynamic instability on one side of a turning point--that does not rely on heuristic arguments involving infinite dimensional manifold structure. We use the turning point results to prove the existence of a dynamic instability of black rings in 5 spacetime dimensions in the region where cJ > 0 , in agreement with a result of Figueras, Murata, and Reall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbons, Gary W.; Volkov, Mikhail S., E-mail: gwg1@cam.ac.uk, E-mail: volkov@lmpt.univ-tours.fr
We study solutions obtained via applying dualities and complexifications to the vacuum Weyl metrics generated by massive rods and by point masses. Rescaling them and extending to complex parameter values yields axially symmetric vacuum solutions containing singularities along circles that can be viewed as singular matter sources. These solutions have wormhole topology with several asymptotic regions interconnected by throats and their sources can be viewed as thin rings of negative tension encircling the throats. For a particular value of the ring tension the geometry becomes exactly flat although the topology remains non-trivial, so that the rings literally produce holes inmore » flat space. To create a single ring wormhole of one metre radius one needs a negative energy equivalent to the mass of Jupiter. Further duality transformations dress the rings with the scalar field, either conventional or phantom. This gives rise to large classes of static, axially symmetric solutions, presumably including all previously known solutions for a gravity-coupled massless scalar field, as for example the spherically symmetric Bronnikov-Ellis wormholes with phantom scalar. The multi-wormholes contain infinite struts everywhere at the symmetry axes, apart from solutions with locally flat geometry.« less
Accretion onto a charged Kiselev black hole
NASA Astrophysics Data System (ADS)
Abbas, G.; Ditta, A.
2018-04-01
Accretion of matter onto a compact is one of the interesting astrophysical processes. Here, we study the accretion of matter onto a charged Kiselev black hole. The problem of static and spherically symmetric accretion of a polytropic fluid is explored for the analytic solution of equations of motion. We have investigated the necessary conditions for existence of the critical flow points and the mass accretion rate. Finally, we discuss the polytropic gas accretion in detail. It has been found that in the accretion process the quintessence and charge parameters play a dominant role.
Do massive compact objects without event horizon exist in infinite derivative gravity?
NASA Astrophysics Data System (ADS)
Koshelev, Alexey S.; Mazumdar, Anupam
2017-10-01
Einstein's general theory of relativity is plagued by cosmological and black-hole type singularities Recently, it has been shown that infinite derivative, ghost free, gravity can yield nonsingular cosmological and mini-black hole solutions. In particular, the theory possesses a mass-gap determined by the scale of new physics. This paper provides a plausible argument, not a no-go theorem, based on the Area-law of gravitational entropy that within infinite derivative, ghost free, gravity nonsingular compact objects in the static limit need not have horizons.
Physics from geometry: Non-Kahler compactifications, black rings anddS/CFT
NASA Astrophysics Data System (ADS)
Cyrier, Michelle
The spectrum that arises in four dimensions from compactification of ten dimensional string theory onto six dimensional manifolds is determined entirely by the geometry of the compactification manifold. The massless spectrum for compactifications on Calabi-Yau threefolds, which are Kahler and have complex structure, is well understood. In chapter 2 of this thesis, We study the compactification of heterotic string theory on manifolds that are non-Kahler. Such manifolds arise as a solution for compactifications of heterotic string theory with nonzero H-flux. We begin the study of the massless spectrum arising from compactification using this construction by counting zero modes of the linearized equations of motion for the gaugino in the supergravity approximation. We rephrase the question in terms of a cohomology problem and show that for a trivial gauge bundle, this cohomology reduces to the Dolbeault cohomology of the 3-fold, which we then compute. Another check of string theory is to study the entropy of black holes made in string theory. In Chapter 3, We review the microstate counting of four dimensional black holes made from M theory. We then describe a new solution in five dimensions, the supersymmetric black ring, and describe its microscopic entropy using a similar counting. These agree with the semi-classical Bekenstein-Hawking entropy for these black holes. Finally, one powerful tool for quantum gravity is the holographic duality of string theory in an Anti de Sitter background and a theory living on its conformal boundary. Strominger conjectured a similar duality between quantum gravity in a de Sitter background and the corresponding theory on its boundary. In chapter 4 we examine issues with different representations of the conformal field theory on the boundary for a massive quantum field theory living in the bulk and try to write down a sensible CFT.
Ozone exposure and stomatal sluggishness in different plant physiognomic classes
E. Paoletti; N.E. Grulke
2010-01-01
Gas exchange responses to static and variable light were tested in three species: snap bean (Phaseolus vulgaris, two cultivars), California black oak (Quercus kelloggii), and blue oak (Q. douglasii). The effects of 1-month (snap beans) and 2-month (oaks) O3 (ozone) exposure (70&...
Black holes, anti de Sitter space, and topological strings
NASA Astrophysics Data System (ADS)
Yin, Xi
This thesis is devoted to the study of black holes in string theory, their connection to two and three dimensional anti de-Sitter space, and topological strings. We start by proposing a relation between supersymmetric black holes in four and five dimensions, as well as connections between multi-centered black holes in four dimensions and black rings in five dimensions. This connection is then applied to counting supersymmetric dyonic black holes in four dimensional string compactifications with 16 and 32 supersymmetries, respectively. We then turn to the near horizon attractor geometry AdS 2 x S2 x CY 3, and study the classical supersymmetric D-branes in this background. We also find supersymmetric black hole solutions in supergravity in AdS2 x S2, although the solutions have regions of closed timelike curves. Finally we consider the M-theory attractor geometry AdS3 x S2 x CY3, and compute the elliptic genus of the dual (0, 4) CFT by counting wrapped M2-brane states in the bulk in a dilute gas approximation. This leads to a derivation of the conjectured relation between black hole partition function and topological string amplitudes.
Model-based restoration using light vein for range-gated imaging systems.
Wang, Canjin; Sun, Tao; Wang, Tingfeng; Wang, Rui; Guo, Jin; Tian, Yuzhen
2016-09-10
The images captured by an airborne range-gated imaging system are degraded by many factors, such as light scattering, noise, defocus of the optical system, atmospheric disturbances, platform vibrations, and so on. The characteristics of low illumination, few details, and high noise make the state-of-the-art restoration method fail. In this paper, we present a restoration method especially for range-gated imaging systems. The degradation process is divided into two parts: the static part and the dynamic part. For the static part, we establish the physical model of the imaging system according to the laser transmission theory, and estimate the static point spread function (PSF). For the dynamic part, a so-called light vein feature extraction method is presented to estimate the fuzzy parameter of the atmospheric disturbance and platform movement, which make contributions to the dynamic PSF. Finally, combined with the static and dynamic PSF, an iterative updating framework is used to restore the image. Compared with the state-of-the-art methods, the proposed method can effectively suppress ringing artifacts and achieve better performance in a range-gated imaging system.
2017-09-14
SCI2017_0007: Artist illustration of the thick ring of dust that can obscure the energetic processes that occur near the supermassive black hole of an active galactic nuclei. The SOFIA studies suggest that the dust distribution is about 30 percent smaller than previously thought. Credit: NASA/SOFIA/Lynette Cook
77 FR 34059 - Endangered Species; Receipt of Applications for Permit
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-08
... leopard (Uncia uncia) African wild dog (Lycaon pictus) Cheetah (Acinonyx jubatus) Applicant: M. Knudsen... radiata) salmon-crested cockatoo (Cacatua moluccensis) ring-tailed lemur (Lemur catta) black-and-white... (Spheniscus demersus) Andean condor (Vultur gryphus) White-naped crane (Grus vipio) Salmon-crested cockatoo...
Lux in obscuro II: photon orbits of extremal AdS black holes revisited
NASA Astrophysics Data System (ADS)
Tang, Zi-Yu; Ong, Yen Chin; Wang, Bin
2017-12-01
A large class of spherically symmetric static extremal black hole spacetimes possesses a stable null photon sphere on their horizons. For the extremal Kerr-Newman family, the photon sphere only really coincides with the horizon in the sense clarified by Doran. The condition under which a photon orbit is stable on an asymptotically flat extremal Kerr-Newman black hole horizon has recently been clarified; it is found that a sufficiently large angular momentum destabilizes the photon orbit, whereas an electrical charge tends to stabilize it. We investigated the effect of a negative cosmological constant on this observation, and found the same behavior in the case of extremal asymptotically Kerr-Newman-AdS black holes in (3+1) -dimensions. In (2+1) -dimensions, in the presence of an electrical charge, the angular momentum never becomes large enough to destabilize the photon orbit. We comment on the instabilities of black hole spacetimes with a stable photon orbit.
Tilted Thick-Disk Accretion onto a Kerr Black Hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fragile, P C; Anninos, P
2003-12-12
We present the first results from fully general relativistic numerical studies of thick-disk accretion onto a rapidly-rotating (Kerr) black hole with a spin axis that is tilted (not aligned) with the angular momentum vector of the disk. We initialize the problem with the solution for an aligned, constant angular momentum, accreting thick disk around a black hole with spin a/M = J/M{sup 2} = +0.9 (prograde disk). The black hole is then instantaneously tilted, through a change in the metric, by an angle {beta}{sub 0}. In this Letter we report results with {beta}{sub 0} = 0, 15, and 30{sup o}.more » The disk is allowed to respond to the Lense-Thirring precession of the tilted black hole. We find that the disk settles into a quasi-static, twisted, warped configuration with Lense-Thirring precession dominating out to a radius analogous to the Bardeen-Petterson transition in tilted Keplerian disks.« less
Hawking radiation from dilatonic black holes via anomalies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang Qingquan; Cai Xu; Wu Shuangqing
2007-03-15
Recently, Hawking radiation from a Schwarzschild-type black hole via a gravitational anomaly at the horizon has been derived by Robinson and Wilczek. Their result shows that, in order to demand general coordinate covariance at the quantum level to hold in the effective theory, the flux of the energy-momentum tensor required to cancel the gravitational anomaly at the horizon of the black hole is exactly equal to that of (1+1)-dimensional blackbody radiation at the Hawking temperature. In this paper, we attempt to apply the analysis to derive Hawking radiation from the event horizons of static, spherically symmetric dilatonic black holes withmore » arbitrary coupling constant {alpha}, and that from the rotating Kaluza-Klein ({alpha}={radical}(3)) as well as the Kerr-Sen ({alpha}=1) black holes via an anomalous point of view. Our results support Robinson and Wilczek's opinion. In addition, the properties of the obtained physical quantities near the extreme limit are qualitatively discussed.« less
NASA Astrophysics Data System (ADS)
Coppi, Bruno
2012-10-01
A clear theoretical framework to describe how magnetic fields are generated and amplified is provided by the magneto-gravitational modes that involve both differential rotation and gravity and for which other factors such as temperature gradients can contribute to their excitation. These modes are shown to be important for the evolution of plasma disks surrounding black holes.footnotetextB. Coppi, Phys. Plasmas 18, 032901 (2011) Non-linear and axi-symmetric plasmas and associated field configurations are found under stationary conditions that do not involve the presence of a pre-existing ``seed'' magnetic field unlike other configurations found previously.footnotetextIbid. The relevant magnetic energy density is of the order of the gravitationally confined plasma pressure. The solitary plasma rings that characterize these configurations are localized radially over regions with vanishing differential rotation and can be envisioned as the saturated state of magneto-gravitational modes. The ``source'' of these configurations is the combination of the gravitational force and of the plasma density gradient orthogonal to it.
Exact Solutions in Three-Dimensional Gravity
NASA Astrophysics Data System (ADS)
García-Díaz, Alberto A.
2017-09-01
Preface; 1. Introduction; 2. Point particles; 3. Dust solutions; 4. AdS cyclic symmetric stationary solutions; 5. Perfect fluid static stars; 6. Static perfect fluid stars with Λ; 7. Hydrodynamic equilibrium; 8. Stationary perfect fluid with Λ; 9. Friedmann–Robertson–Walker cosmologies; 10. Dilaton-inflaton FRW cosmologies; 11. Einstein–Maxwell solutions; 12. Nonlinear electrodynamics black hole; 13. Dilaton minimally coupled to gravity; 14. Dilaton non-minimally coupled to gravity; 15. Low energy 2+1 string gravity; 16. Topologically massive gravity; 17. Bianchi type spacetimes in TMG; 18. Petrov type N wave metrics; 19. Kundt spacetimes in TMG; 20. Cotton tensor in Riemannian spacetimes; References; Index.
User document for computer programs for ring-stiffened shells of revolution
NASA Technical Reports Server (NTRS)
Cohen, G. A.
1973-01-01
A user manual and related program documentation is presented for six compatible computer programs for structural analysis of axisymmetric shell structures. The programs apply to a common structural model but analyze different modes of structural response. In particular, they are: (1) Linear static response under asymmetric loads; (2) Buckling of linear states under asymmetric loads; (3) Nonlinear static response under axisymmetric loads; (4) Buckling nonlinear states under axisymmetric (5) Imperfection sensitivity of buckling modes under axisymmetric loads; and (6) Vibrations about nonlinear states under axisymmetric loads. These programs treat branched shells of revolution with an arbitrary arrangement of a large number of open branches but with at most one closed branch.
Stress Analysis of Columns and Beam Columns by the Photoelastic Method
NASA Technical Reports Server (NTRS)
Ruffner, B F
1946-01-01
Principles of similarity and other factors in the design of models for photoelastic testing are discussed. Some approximate theoretical equations, useful in the analysis of results obtained from photoelastic tests are derived. Examples of the use of photoelastic techniques and the analysis of results as applied to uniform and tapered beam columns, circular rings, and statically indeterminate frames, are given. It is concluded that this method is an effective tool for the analysis of structures in which column action is present, particularly in tapered beam columns, and in statically indeterminate structures in which the distribution of loads in the structures is influenced by bending moments due to axial loads in one or more members.
Kuijpers, D I M; Hillen, F; Frank, J A
2006-08-01
A 24-year-old female working in the Department of Pathology of a University Hospital developed an acute peri-ocular eczema clearly being related to her daily work at the microscope. Patch testing revealed delayed type hypersensitivity against the black rubber mix, N-isopropyl-N'-phenyl paraphenylenediamine, N-cyclohexyl-N'-phenyl paraphenylenediamine and the rubber ring situated on the ocular of the respective microscope. This is the first report, to our knowledge, on peri-orbital allergic contact eczema because of sensitization with rubber components of a microscope.
Bopp-Podolsky black holes and the no-hair theorem
NASA Astrophysics Data System (ADS)
Cuzinatto, R. R.; de Melo, C. A. M.; Medeiros, L. G.; Pimentel, B. M.; Pompeia, P. J.
2018-01-01
Bopp-Podolsky electrodynamics is generalized to curved space-times. The equations of motion are written for the case of static spherically symmetric black holes and their exterior solutions are analyzed using Bekenstein's method. It is shown that the solutions split up into two parts, namely a non-homogeneous (asymptotically massless) regime and a homogeneous (asymptotically massive) sector which is null outside the event horizon. In addition, in the simplest approach to Bopp-Podolsky black holes, the non-homogeneous solutions are found to be Maxwell's solutions leading to a Reissner-Nordström black hole. It is also demonstrated that the only exterior solution consistent with the weak and null energy conditions is the Maxwell one. Thus, in the light of the energy conditions, it is concluded that only Maxwell modes propagate outside the horizon and, therefore, the no-hair theorem is satisfied in the case of Bopp-Podolsky fields in spherically symmetric space-times.
Statistical mechanics of gravitons in a box and the black hole entropy
NASA Astrophysics Data System (ADS)
Viaggiu, Stefano
2017-05-01
This paper is devoted to the study of the statistical mechanics of trapped gravitons obtained by 'trapping' a spherical gravitational wave in a box. As a consequence, a discrete spectrum dependent on the Legendre index ℓ similar to the harmonic oscillator one is obtained and a statistical study is performed. The mean energy 〈 E 〉 results as a sum of two discrete Planck distributions with different dependent frequencies. As an important application, we derive the semiclassical Bekenstein-Hawking entropy formula for a static Schwarzschild black hole by only requiring that the black hole internal energy U is provided by its ADM rest energy, without invoking particular quantum gravity theories. This seriously suggests that the interior of a black hole can be composed of trapped gravitons at a thermodynamical temperature proportional by a factor ≃ 2 to the horizon temperature Th.
Black-hole evaporation and ultrashort distances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobson, T.
1991-09-15
The role played by ultrahigh frequencies of ultrashort distances in the usual derivations of the Hawking effect is discussed and criticized. The question would a blackhole radiate if there were a Planck scale cutoff in the rest frame of the hole '' is posed. Guidance is sought from Unruh's fluid-flow analogue of black-hole radiation, by taking into account the atomic nature of the fluid. Two arguments for black-hole radiation are given which assume a Planck length cutoff. One involves the response of static accelerated detectors outside the horizon, and the other involves conservation of the expectation value of the stressmore » tensor. Neither argument is conclusive, but they do strongly suggest that, in spite of reasonable doubt about the usual derivations of black-hole radiation, a safe'' derivation which avoids our ignorance of ultrashort-distance physics can likely be formulated. Remaining open questions are discussed.« less
On the on-shell: the action of AdS4 black holes
NASA Astrophysics Data System (ADS)
Halmagyi, Nick; Lal, Shailesh
2018-03-01
We compute the on-shell action of static, BPS black holes in AdS4 from N=2 gauged supergravity coupled to vector multiplets and show that for a certain class it is equal to minus the entropy of the black hole. Holographic renormalization is used to demonstrate that with Neumann boundary conditions on the scalar fields, the divergent and finite contributions from the asymptotic boundary vanish. The entropy arises from the extrinsic curvature on Σ g × S 1 evaluated at the horizon, where Σ g may have any genus g ≥ 0. This provides a clarification of the equivalence between the partition function of the twisted ABJM theory on Σ g × S 1 and the entropy of the dual black hole solutions. It also demonstrates that the complete entropy resides on the AdS2 × Σ g horizon geometry, implying the absence of hair for these gravity solutions.
Tubasum, Sumera; Camacho, Rafael; Meyer, Matthias; Yadav, Dheerendra; Cogdell, Richard J; Pullerits, Tõnu; Scheblykin, Ivan G
2013-12-07
Two-dimensional polarization fluorescence imaging of single light harvesting complexes 2 (LH2) of Rps. acidophila was carried out to investigate the polarization properties of excitation and fluorescence emission simultaneously, at room temperature. In two separate experiments we excited LH2 with a spectrally narrow laser line matched to the absorption bands of the two chromophore rings, B800 and B850, thereby indirectly and directly triggering fluorescence of the B850 exciton state. A correlation analysis of the polarization modulation depths in excitation and emission for a large number of single complexes was performed. Our results show, in comparison to B800, that the B850 ring is a more isotropic absorber due to the excitonic nature of its excited states. At the same time, we observed a strong tendency for LH2 to emit with dipolar character, from which preferential localization of the emissive exciton, stable for minutes, is inferred. We argue that the observed effects can consistently be explained by static energetic disorder and/or deformation of the complex, with possible involvement of exciton self-trapping.
NASA Astrophysics Data System (ADS)
Chróścielewski, Jacek; Schmidt, Rüdiger; Eremeyev, Victor A.
2018-05-01
This paper addresses modeling and finite element analysis of the transient large-amplitude vibration response of thin rod-type structures (e.g., plane curved beams, arches, ring shells) and its control by integrated piezoelectric layers. A geometrically nonlinear finite beam element for the analysis of piezolaminated structures is developed that is based on the Bernoulli hypothesis and the assumptions of small strains and finite rotations of the normal. The finite element model can be applied to static, stability, and transient analysis of smart structures consisting of a master structure and integrated piezoelectric actuator layers or patches attached to the upper and lower surfaces. Two problems are studied extensively: (i) FE analyses of a clamped semicircular ring shell that has been used as a benchmark problem for linear vibration control in several recent papers are critically reviewed and extended to account for the effects of structural nonlinearity and (ii) a smart circular arch subjected to a hydrostatic pressure load is investigated statically and dynamically in order to study the shift of bifurcation and limit points, eigenfrequencies, and eigenvectors, as well as vibration control for loading conditions which may lead to dynamic loss of stability.
An innovative seismic bracing system based on a superelastic shape memory alloy ring
NASA Astrophysics Data System (ADS)
Gao, Nan; Jeon, Jong-Su; Hodgson, Darel E.; DesRoches, Reginald
2016-05-01
Shape memory alloys (SMAs) have great potential in seismic applications because of their remarkable superelasticity. Seismic bracing systems based on SMAs can mitigate the damage caused by earthquakes. The current study investigates a bracing system based on an SMA ring which is capable of both re-centering and energy dissipation. This lateral force resisting system is a cross-braced system consisting of an SMA ring and four tension-only cable assemblies, which can be applied to both new construction and seismic retrofit. The performance of this bracing system is examined through a quasi-static cyclic loading test and finite element (FE) analysis. This paper describes the experimental design in detail, discusses the experimental results, compares the performance with other bracing systems based on SMAs, and presents an Abaqus FE model calibrated on the basis of experimental results to simulate the superelastic behavior of the SMA ring. The experimental results indicate that the seismic performance of this system is promising in terms of damping and re-centering. The FE model can be used in the simulation of building structures using the proposed bracing system.
Development of Gas-Lubricated Pistons for Heavy Duty Diesel Engine Technology Program
NASA Technical Reports Server (NTRS)
Shapiro, W.
1984-01-01
Static testing of a segmented, gas-lubricated, piston-ring was accomplished. The ring utilizes high-pressure gas generated during the diesel cycle to energize a hydrostatic gas film between the piston and cylinder liner. The configuration was deficient in overall performance, because all segments of a ring set failed to form a fluid-film simultaneously, when exposed to internal preload. The difficulty was traced to the moment balance required to prevent the segments from overturning and contacting the cylinder walls. Some individual sectors formed a film and performed well in every respect including load capability to 6,000 N. These results produce optimism as to the ultimate feasibility of hydrostatic, gas-lubricated piston rings. In addition to test results, the principles of operation, and theoretical developments are presented. Breathable liner concepts are suggested for future consideration. In these configurations, solid hydrostatic pistons are coupled with flexible liners that elastically deform to form a gas-film under hydrostatic pressurization. Breathable liners afford the mechanical simplicity required for mass produced engines, and initial examination indicates satisfactory operation.
An Exact Solution of Einstein-Maxwell Gravity Coupled to a Scalar Field
NASA Technical Reports Server (NTRS)
Turyshev, S. G.
1995-01-01
The general solution to low-energy string theory representing static spherically symmetric solution of the Einstein-Maxwell gravity with a massless scalar field has been found. Some of the partial cases appear to coincide with known solutions to black holes, naked singularities, and gravity and electromagnetic fields.
Quasinormal modes of Reissner-Nordstrom black holes
NASA Technical Reports Server (NTRS)
Leaver, Edward W.
1990-01-01
A matrix-eigenvalue algorithm is presented for accurately computing the quasi-normal frequencies and modes of charged static blackholes. The method is then refined through the introduction of a continued-fraction step. The approach should generalize to a variety of nonseparable wave equations, including the Kerr-Newman case of charged rotating blackholes.
CARBON MONOXIDE FLUXES OF DIFFERENT SOIL LAYERS IN UPLAND CANADIAN BOREAL FORESTS
Dark or low-light carbon monoxide fluxes at upland Canadian boreal forest sites were measured on-site with static chambers and with a laboratory incubation technique using cores from different depths at the same sites. Three different upland black spruce sites, burned in 1987,199...
Compact and mobile high resolution PET brain imager
Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA
2011-02-08
A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.
Light-Ring Stability for Ultracompact Objects.
Cunha, Pedro V P; Berti, Emanuele; Herdeiro, Carlos A R
2017-12-22
We prove the following theorem: axisymmetric, stationary solutions of the Einstein field equations formed from classical gravitational collapse of matter obeying the null energy condition, that are everywhere smooth and ultracompact (i.e., they have a light ring) must have at least two light rings, and one of them is stable. It has been argued that stable light rings generally lead to nonlinear spacetime instabilities. Our result implies that smooth, physically and dynamically reasonable ultracompact objects are not viable as observational alternatives to black holes whenever these instabilities occur on astrophysically short time scales. The proof of the theorem has two parts: (i) We show that light rings always come in pairs, one being a saddle point and the other a local extremum of an effective potential. This result follows from a topological argument based on the Brouwer degree of a continuous map, with no assumptions on the spacetime dynamics, and, hence, it is applicable to any metric gravity theory where photons follow null geodesics. (ii) Assuming Einstein's equations, we show that the extremum is a local minimum of the potential (i.e., a stable light ring) if the energy-momentum tensor satisfies the null energy condition.
Light-Ring Stability for Ultracompact Objects
NASA Astrophysics Data System (ADS)
Cunha, Pedro V. P.; Berti, Emanuele; Herdeiro, Carlos A. R.
2017-12-01
We prove the following theorem: axisymmetric, stationary solutions of the Einstein field equations formed from classical gravitational collapse of matter obeying the null energy condition, that are everywhere smooth and ultracompact (i.e., they have a light ring) must have at least two light rings, and one of them is stable. It has been argued that stable light rings generally lead to nonlinear spacetime instabilities. Our result implies that smooth, physically and dynamically reasonable ultracompact objects are not viable as observational alternatives to black holes whenever these instabilities occur on astrophysically short time scales. The proof of the theorem has two parts: (i) We show that light rings always come in pairs, one being a saddle point and the other a local extremum of an effective potential. This result follows from a topological argument based on the Brouwer degree of a continuous map, with no assumptions on the spacetime dynamics, and, hence, it is applicable to any metric gravity theory where photons follow null geodesics. (ii) Assuming Einstein's equations, we show that the extremum is a local minimum of the potential (i.e., a stable light ring) if the energy-momentum tensor satisfies the null energy condition.
Hirz, Manuela; Herden, Christiane
2016-07-01
The diagnosis of malignant melanoma can be difficult because these tumors can be amelanotic and may contain diverse variants and divergent differentiations, of which the signet-ring cell subtype is very rare and has only been described in humans, dogs, cats, and a hamster. We describe herein histopathologic and immunohistochemical approaches taken to diagnose a case of signet-ring cell malignant melanoma with myofibroblastic differentiation in a cat. A tumor within the abdominal skin of a 2-year-old cat was composed of signet-ring cells and irregularly interwoven streams of spindle cells. Both neoplastic cell types were periodic-acid-Schiff, Fontana, and Sudan black B negative. Signet-ring cells strongly expressed vimentin and S100 protein. Spindle cells strongly expressed vimentin and smooth muscle actin; some cells expressed S100, moderately neuron-specific enolase, and others variably actin and desmin. A few round cells expressed melan A, and a few plump spindle cells expressed melan A and PNL2, confirming the diagnosis of amelanotic signet-ring cell malignant melanoma with myofibroblastic differentiation in a cat. Differential diagnoses were excluded, including signet-ring cell forms of adenocarcinomas, lymphomas, liposarcomas, leiomyosarcomas, squamous cell carcinomas, basal cell carcinomas, and adnexal tumors. © 2016 The Author(s).
Relationship between antigravity control and postural control in young children.
Sellers, J S
1988-04-01
The purposes of this study were 1) to determine the relationship between antigravity control (supine flexion and prone extension) and postural control (static and dynamic balance), 2) to determine the quality of antigravity and postural control, and 3) to determine whether sex and ethnic group differences correlate with differences in antigravity control and postural control in young children. I tested 107 black, Hispanic, and Caucasian children in a Head Start program, with a mean age of 61 months. The study results showed significant relationships between antigravity control and postural control. Subjects' supine flexion performance was significantly related to the quantity and quality of their static and dynamic balance performance, whereas prone extension performance was related only to the quality of dynamic balance performance. Quality scale measurements (r = .90) indicated that the children in this study had not yet developed full antigravity or postural control. The study results revealed differences between sexes in the quality of static balance and prone extension performance and ethnic differences in static balance, dynamic balance, and prone extension performance.
Turning point instabilities for relativistic stars and black holes
NASA Astrophysics Data System (ADS)
Schiffrin, Joshua S.; Wald, Robert M.
2014-02-01
In the light of recent results relating dynamic and thermodynamic stability of relativistic stars and black holes, we re-examine the relationship between ‘turning points’—i.e., extrema of thermodynamic variables along a 1-parameter family of solutions—and instabilities. We give a proof of Sorkin’s general result—showing the existence of a thermodynamic instability on one side of a turning point—that does not rely on heuristic arguments involving infinite-dimensional manifold structure. We use the turning point results to prove the existence of a dynamic instability of black rings in five spacetime dimensions in the region where cJ > 0, in agreement with a result of Figueras, Murata and Reall. Communicated by H Reall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppi, B., E-mail: coppi@mit.edu
The radiation emission from Shining Black Holes is most frequently observed to have nonthermal features. It is therefore appropriate to consider relevant collective processes in plasmas surrounding black holes that contain high energy particles with nonthermal distributions in momentum space. A fluid description with significant temperature anisotropies is the simplest relevant approach. These anisotropies are shown to have a critical influence on: (a) the existence and characteristics of stationary plasma and field ring configurations, (b) the excitation of “thermo-gravitational modes” driven by temperature anisotropies and gradients that involve gravity and rotation, (c) the generation of magnetic fields over macroscopic scalemore » distances, and (d) the transport of angular momentum.« less
Challenging the paradigm of singularity excision in gravitational collapse.
Baiotti, Luca; Rezzolla, Luciano
2006-10-06
A paradigm deeply rooted in modern numerical relativity calculations prescribes the removal of those regions of the computational domain where a physical singularity may develop. We here challenge this paradigm by performing three-dimensional simulations of the collapse of uniformly rotating stars to black holes without excision. We show that this choice, combined with suitable gauge conditions and the use of minute numerical dissipation, improves dramatically the long-term stability of the evolutions. In turn, this allows for the calculation of the waveforms well beyond what was previously possible, providing information on the black-hole ringing and setting a new mark on the present knowledge of the gravitational-wave emission from the stellar collapse to a rotating black hole.
Post-Kerr black hole spectroscopy
NASA Astrophysics Data System (ADS)
Glampedakis, Kostas; Pappas, George; Silva, Hector O.; Berti, Emanuele
2017-09-01
One of the central goals of the newborn field of gravitational wave astronomy is to test gravity in the highly nonlinear, strong field regime characterizing the spacetime of black holes. In particular, "black hole spectroscopy" (the observation and identification of black hole quasinormal mode frequencies in the gravitational wave signal) is expected to become one of the main tools for probing the structure and dynamics of Kerr black holes. In this paper we take a significant step toward that goal by constructing a "post-Kerr" quasinormal mode formalism. The formalism incorporates a parametrized but general perturbative deviation from the Kerr metric and exploits the well-established connection between the properties of the spacetime's circular null geodesics and the fundamental quasinormal mode to provide approximate, eikonal limit formulas for the modes' complex frequencies. The resulting algebraic toolkit can be used in waveform templates for ringing black holes with the purpose of measuring deviations from the Kerr metric. As a first illustrative application of our framework, we consider the Johannsen-Psaltis deformed Kerr metric and compute the resulting deviation in the quasinormal mode frequency relative to the known Kerr result.
NASA Astrophysics Data System (ADS)
Bardon, Tiphaine; May, Robert K.; Jackson, J. Bianca; Beentjes, Gabriëlle; de Bruin, Gerrit; Taday, Philip F.; Strlič, Matija
2017-04-01
This study aims to objectively inform curators when terahertz time-domain (TD) imaging set in reflection mode is likely to give well-contrasted images of inscriptions in a complex archival document and is a useful non-invasive alternative to current digitisation processes. To this end, the dispersive refractive indices and absorption coefficients from various archival materials are assessed and their influence on contrast in terahertz images from historical documents is explored. Sepia ink and inks produced with bistre or verdigris mixed with a solution of Arabic gum or rabbit skin glue are unlikely to lead to well-contrasted images. However, dispersions of bone black, ivory black, iron gall ink, malachite, lapis lazuli, minium and vermilion are likely to lead to well-contrasted images. Inscriptions written with lamp black, carbon black and graphite give the best imaging results. The characteristic spectral signatures from iron gall ink, minium and vermilion pellets between 5 and 100 cm-1 relate to a ringing effect at late collection times in TD waveforms transmitted through these pellets. The same ringing effect can be probed in waveforms reflected from iron gall, minium and vermilion ink deposits at the surface of a document. Since TD waveforms collected for each scanning pixel can be Fourier-transformed into spectral information, terahertz TD imaging in reflection mode can serve as a hyperspectral imaging tool. However, chemical recognition and mapping of the ink is currently limited by the fact that the morphology of the document influences more the terahertz spectral response of the document than the resonant behaviour of the ink.
Updating movement estimates for American black ducks (Anas rubripes)
Robinson, Orin J.; McGowan, Conor P.; Devers, Patrick K.
2016-01-01
Understanding migratory connectivity for species of concern is of great importance if we are to implement management aimed at conserving them. New methods are improving our understanding of migration; however, banding (ringing) data is by far the most widely available and accessible movement data for researchers. Here, we use band recovery data for American black ducks (Anas rubripes) from 1951–2011 and analyze their movement among seven management regions using a hierarchical Bayesian framework. We showed that black ducks generally exhibit flyway fidelity, and that many black ducks, regardless of breeding region, stopover or overwinter on the Atlantic coast of the United States. We also show that a non-trivial portion of the continental black duck population either does not move at all or moves to the north during the fall migration (they typically move to the south). The results of this analysis will be used in a projection modeling context to evaluate how habitat or harvest management actions in one region would propagate throughout the continental population of black ducks. This analysis may provide a guide for future research and help inform management efforts for black ducks as well as other migratory species.
Static beam-based alignment for the Ring-To-Main-Linac of the Compact Linear Collider
NASA Astrophysics Data System (ADS)
Han, Y.; Latina, A.; Ma, L.; Schulte, D.
2017-06-01
The Compact Linear Collider (CLIC) is a future multi-TeV collider for the post-Large Hadron Collider era. It features high-gradient acceleration and ultra-low emittance to achieve its ambitious goals of high collision energy and peak luminosity. Beam-based alignment (BBA) techniques are mandatory for CLIC to preserve the ultra-low emittances from the damping rings to the interaction point. In this paper, a detailed study of BBA techniques has been carried out for the entire 27 km long ``Ring-To-Main-Linac'' (RTML) section of the CLIC, to correct realistic static errors such as element position offsets, angle, magnetic strength and dynamic magnetic centre shifts. The correction strategy is proved to be very effective and leads to a relaxation of the pre-alignment tolerances for the component installation in the tunnel. This is the first time such a large scale and complex lattice has been corrected to match the design budgets. The techniques proposed could be applied to similarly sized facilities, such as the International Linear Collider, where a similar RTML section is used, or free-electron lasers, which, being equipped with linacs and bunch compressors, present challenges similar to those of the CLIC RTML. Moreover, a new technique is investigated for the emittance tuning procedure: the direct measurement of the interactions between the beams and a set of a few consecutive laser wires. The speed of this technique can be faster comparing to the traditional techniques based on emittance reconstructed from beam size measurements at several positions.
Comparison of load distribution for implant overdenture attachments.
Porter, Joseph A; Petropoulos, Vicki C; Brunski, John B
2002-01-01
The aim of this study was to compare the force and moment distributions that develop on different implant overdenture attachments when vertical compressive forces are applied to an implant-retained overdenture. The following attachments were examined: Nobel Biocare bar and clip (NBC), Nobel Biocare standard ball (NSB), Nobel Biocare 2.25-mm-diameter ball (NB2), Zest Anchor Advanced Generation (ZAAG), Sterngold ERA white (SEW), Sterngold ERA orange (SEO), Compliant Keeper System with titanium shims (CK-Ti), Compliant Keeper System with black nitrile 2SR90 sleeve rings (CK-70), and Compliant Keeper System with clear silicone 2SR90 sleeve rings (CK-90). The attachments were tested using custom strain-gauged abutments and 2 Brånemark System implants placed in a test model. Each attachment type had one part embedded in a denture-like housing and the other part (the abutment) screwed into the implants. Compressive static loads of 100 N were applied (1) bilaterally, over the distal midline (DM); (2) unilaterally, over the right implant (RI); (3) unilaterally, over the left implant (LI); and (4) between implants in the mid-anterior region (MA). Both the force and bending moment on each implant were recorded for each loading location and attachment type. Results were analyzed using 2-way analysis of variance and the Duncan multiple-range test. Both loading location and attachment type were statistically significant factors (P < .05). In general, the force and moment on an implant were greater when the load was applied directly over the implant or at MA. While not significant at every loading location, the largest implant forces tended to occur with ZAAG attachments; the smallest were found with the SEW, the SEO, the NSB, the CK-70, and the CK-90. Typically, higher moments existed for NBC and ZAAG, while lower moments existed for SEW, SEO, NSB, CK-90, and CK-70. For different loading locations, significant differences were found among the different overdenture attachment systems.
Hairy black hole solutions in U(1) gauge-invariant scalar-vector-tensor theories
NASA Astrophysics Data System (ADS)
Heisenberg, Lavinia; Tsujikawa, Shinji
2018-05-01
In U (1) gauge-invariant scalar-vector-tensor theories with second-order equations of motion, we study the properties of black holes (BH) on a static and spherically symmetric background. In shift-symmetric theories invariant under the shift of scalar ϕ → ϕ + c, we show the existence of new hairy BH solutions where a cubic-order scalar-vector interaction gives rise to a scalar hair manifesting itself around the event horizon. In the presence of a quartic-order interaction besides the cubic coupling, there are also regular BH solutions endowed with scalar and vector hairs.
Diffusion for holographic lattices
NASA Astrophysics Data System (ADS)
Donos, Aristomenis; Gauntlett, Jerome P.; Ziogas, Vaios
2018-03-01
We consider black hole spacetimes that are holographically dual to strongly coupled field theories in which spatial translations are broken explicitly. We discuss how the quasinormal modes associated with diffusion of heat and charge can be systematically constructed in a long wavelength perturbative expansion. We show that the dispersion relation for these modes is given in terms of the thermoelectric DC conductivity and static susceptibilities of the dual field theory and thus we derive a generalised Einstein relation from Einstein's equations. A corollary of our results is that thermodynamic instabilities imply specific types of dynamical instabilities of the associated black hole solutions.
Measuring spacetime: from the big bang to black holes.
Tegmark, Max
2002-05-24
Space is not a boring static stage on which events unfold over time, but a dynamic entity with curvature, fluctuations, and a rich life of its own. Spectacular measurements of the cosmic microwave background, gravitational lensing, type Ia supernovae, large-scale structure, spectra of the Lyman alpha forest, stellar dynamics, and x-ray binaries are probing the properties of spacetime over 22 orders of magnitude in scale. Current measurements are consistent with an infinite flat everlasting universe containing about 30% cold dark matter, 65% dark energy, and at least two distinct populations of black holes.
4. VIEW OF TURBINE PIT AT UNIT 3 SHOWING SERVOMOTOR ...
4. VIEW OF TURBINE PIT AT UNIT 3 SHOWING SERVO-MOTOR HEADS (BACKGROUND AT CENTER) WITH PISTON RODS BOLTED TO TURBINE GATE OPERATION RING (CENTER AT LEFT AND CENTER AT RIGHT). VIEW TO THE NORTH-NORTHWEST. - Black Eagle Hydroelectric Facility, Powerhouse, Great Falls, Cascade County, MT
Residual Stress Measurements After Proof and Flight: ETP-0403
NASA Technical Reports Server (NTRS)
Webster, Ronald L..
1997-01-01
The intent of this testing was to evaluate the residual stresses that occur in and around the attachment details of a case stiffener segment that has been subjected to flight/recovery followed by proof loading. Not measured in this test were stresses relieved at joint disassembly due to out-of-round and interference effects, and those released by cutting the specimens out of the case segment. The test article was lightweight case stiffener segment 1U50715, S/N L023 which was flown in the forward stiffener position on flight SRM 14A and in the aft position on flight SRM24A. Both of these flights were flown with the 3 stiffener ring configuration. Stiffener L023 had a stiffener ring installed only on the aft stub in its first flight, and it had both rings installed on its second flight. No significant post flight damage was found on either flight. Finally, the segment was used on the DM-8 static test motor in the forward position. No stiffener rings were installed. It had only one proof pressurization prior to assignment to its first use, and it was cleaned and proof tested after each flight. Thus, the segment had seen 3 proof tests, two flight pressurizations, and two low intensity water impacts prior to manufacturing for use on DM-8. On DM-8 it received one static firing pressurization in the horizontal configuration. Residual stresses at the surface and in depth were evaluated by both the x-ray diffraction and neutron beam diffraction methods. The x-ray diffraction evaluations were conducted by Technology for Energy Corporation (TEC) at their facilities in Knoxville, TN. The neutron beam evaluations were done by Atomic Energy of Canada Limited (AECL) at the Chalk River Nuclear Laboratories in Ontario. The results showed general agreement with relatively high compressive residual stresses on the surface and moderate to low subsurface tensile residual stresses.
Active Black Holes: Relevant Plasma Structures, Regimes and Processes Involving All Phase Space*
NASA Astrophysics Data System (ADS)
Coppi, B.
2010-11-01
The presented theory is motivated by the growing body of experimental information on the characteristics, connected with relevant spectral, time and space resolutions, of the radiation emission from objects considered as rotating black holes. In the immediate surroundings of these objects three plasma regions [1] are identified: an innermost Buffer Region, an intermediate Three-regime Region and a Structured Peripheral Region. In the last region a Composite Disk Structure that is a sequence of plasma rings corresponding to closed magnetic surfaces is considered to be present and to allow intermittent accretion flows along the relevant separatrices. The non-linear ``Master Equation'' describing this structure is derived and solved in appropriate asymptotic limits. The rings structure, depending on microscopic plasma characteristics: i) can be excluded from forming in the intermediate region allowing the onset of a spiral structure with which High Frequency Quasi Periodic Oscillations are associated; ii) may be allowed to propagate to the outer edge of the Buffer Region where successive rings with opposite currents are ejected vertically (in opposite directions) and originate the observed jets; iii) is dissipated well before the Buffer Region. *Sponsored in part by the U.S. D.O.E. [1] B. Coppi, Plasmas in the Laboratory and in the Universe, Eds. G. Bertin et al. (Publ. American Institute of Physics, New York, 2010).
Double-black-hole solutions of the Einstein-Maxwell-dilaton theory in five dimensions
NASA Astrophysics Data System (ADS)
Stelea, Cristian
2018-01-01
We describe a solution-generating technique that maps a static charged solution of the Einstein-Maxwell theory in four (or five) dimensions to a five-dimensional solution of the Einstein-Maxwell-Dilaton theory. As examples of this technique first we show how to construct the dilatonic version of the Reissner-Nordström solution in five dimensions and then we consider the more general case of the double black hole solutions and describe some of their properties. We found that in the general case the value of the conical singularities in between the black holes is affected by the dilaton's coupling constant to the gauge field and only in the particular case when all charges are proportional to the masses this dependence cancels out.
Brane-world black hole solutions via a confining potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydari-Fard, M.; Sepangi, H. R.; Razmi, H.
2007-09-15
Using a confining potential, we consider spherically symmetric vacuum (static black hole) solutions in a brane-world scenario. Working with a constant curvature bulk, two interesting cases/solutions are studied. A Schwarzschild-de Sitter black hole solution similar to the standard solution in the presence of a cosmological constant is obtained which confirms the idea that an extra term in the field equations on the brane can play the role of a positive cosmological constant and may be used to account for the accelerated expansion of the universe. The other solution is one in which we can have a proper potential to explainmore » the galaxy rotation curves without assuming the existence of dark matter and without working with new modified theories (modified Newtonian dynamics)« less
Bespoke analogue space-times: meta-material mimics
NASA Astrophysics Data System (ADS)
Schuster, Sebastian; Visser, Matt
2018-06-01
Modern meta-materials allow one to construct electromagnetic media with almost arbitrary bespoke permittivity, permeability, and magneto-electric tensors. If (and only if) the permittivity, permeability, and magneto-electric tensors satisfy certain stringent compatibility conditions, can the meta-material be fully described (at the wave optics level) in terms of an effective Lorentzian metric—an analogue spacetime. We shall consider some of the standard black-hole spacetimes of primary interest in general relativity, in various coordinate systems, and determine the equivalent meta-material susceptibility tensors in a laboratory setting. In static black hole spacetimes (Schwarzschild and the like) certain eigenvalues of the susceptibility tensors will be seen to diverge on the horizon. In stationary black hole spacetimes (Kerr and the like) certain eigenvalues of the susceptibility tensors will be seen to diverge on the ergo-surface.
The shadow of a collapsing dark star
NASA Astrophysics Data System (ADS)
Schneider, Stefanie; Perlick, Volker
2018-06-01
The shadow of a black hole is usually calculated, either analytically or numerically, on the assumption that the black hole is eternal, i.e., that it has existed for all time. Here we ask the question of how this shadow comes about in the course of time when a black hole is formed by gravitational collapse. To that end we consider a star that is spherically symmetric, dark and non-transparent and we assume that it begins, at some instant of time, to collapse in free fall like a ball of dust. We analytically calculate the dependence on time of the angular radius of the shadow, first for a static observer who is watching the collapse from a certain distance and then for an observer who is falling towards the centre following the collapsing star.
Denkova, Pavletta; Vassilev, Nikolay; Van Lokeren, Luk; Willem, Rudolph
2008-04-01
The static and dynamic stereochemistry of dimesityl-2,4,6-trimethoxyphenylmethane in solution was investigated by lineshape analysis of 1D NMR spectra and cross-peak amplitude processing in 2D EXSY spectra, recorded at variable temperatures. Previous studies on this propeller-shaped chiral compound show that the stereomer threshold interconversion is associated with helicity reversal and occurs through [1,2]- and [1,3]-two ring flips of one mesityl and the 2,4,6-trimethoxyphenyl rings. In the present study, the experimental rate constants of the [1,2]- and [1,3]-two ring flips, which are identical, were determined at various temperatures by combining quantitative 2D EXSY spectra processing and complete lineshape analysis (CLSA) of 1D NMR spectra. The latter were subjected to reference deconvolution and linear prediction in order to eliminate the lineshape distortions due to magnetic field inhomogeneity. The activation parameters of these ring flips were determined by an Eyring equation analysis of the temperature dependence of the rate constant. The experimentally determined activation enthalpy and entropy for the two-ring flips, and those obtained from theoretical ab initio calculations at different levels of theory and basis sets, were found to be in good agreement. Copyright (c) 2008 John Wiley & Sons, Ltd.
1393 Ring Bus at JPL: Description and Status
NASA Technical Reports Server (NTRS)
Wysocky, Terry R.
2007-01-01
Completed Ring Bus IC V&V Phase - Ring Bus Test Plan Completed for SIM Project - Applicable to Other Projects Implemented a Avionics Bus Based upon the IEEE 1393 Standard - Excellent Starting Point for a General Purpose High-Speed Spacecraft Bus - Designed to Meet SIM Requirements for - Real-time deterministic, distributed systems. - Control system requirements - Fault detection and recovery Other JPL Projects Considering Implementation F'light Software Ring Bus Driver Module Began in 2006, Continues Participating in Standard Revision. Search for Earth-like planets orbiting nearby stars and measure the masses and orbits of the planets it finds. Survey 2000 nearby stars for planetary systems to learn whether our Solar System is unusual, or typical. Make a new catalog of star position 100 times more accurate than current measurements. Learn how our galaxy formed and will evolve by studying the dynamics of its stars. Critically test models of exactly how stars shine, including exotic objects like black holes, neutron stars and white dwarfs.
The Status of Native Speaker Intuitions in a Polylectal Grammar.
ERIC Educational Resources Information Center
Debose, Charles E.
A study of one speaker's intuitions about and performance in Black English is presented with relation to Saussure's "langue-parole" dichotomy. Native speakers of a language have intuitions about the static synchronic entities although the data of their speaking is variable and panchronic. These entities are in a diglossic relationship to each…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadoni, Mariano; Serra, Matteo; Mignemi, Salvatore
We propose a general method for solving exactly the static field equations of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field. Our method starts from an ansatz for the scalar field profile, and determines, together with the metric functions, the corresponding form of the scalar self-interaction potential. Using this method we prove a new no-hair theorem about the existence of hairy black-hole and black-brane solutions and derive broad classes of static solutions with radial symmetry of the theory, which may play an important role in applications of the AdS/CFT correspondence to condensed matter and strongly coupled QFTs. Thesemore » solutions include: (1) four- or generic (d+2)-dimensional solutions with planar, spherical or hyperbolic horizon topology; (2) solutions with anti-de Sitter, domain wall and Lifshitz asymptotics; (3) solutions interpolating between an anti-de Sitter spacetime in the asymptotic region and a domain wall or conformal Lifshitz spacetime in the near-horizon region.« less
Development of Advanced Seals for Industrial Turbine Applications
NASA Astrophysics Data System (ADS)
Chupp, Raymond E.; Aksit, Mahmut F.; Ghasripoor, Farshad; Turnquist, Norman A.; Dinc, Saim; Mortzheim, Jason; Demiroglu, Mehmet
2002-10-01
A critical area being addressed to improve industrial turbine performance is reducing the parasitic leakage flows through the various static and dynamic seals. Implementation of advanced seals into General Electric (GE) industrial turbines has progressed well over the last few years with significant operating performance gains achieved. Advanced static seals have been placed in gas turbine hot gas-path junctions and steam turbine packing ring segment end gaps. Brush seals have significantly decreased labyrinth seal leakages in gas turbine compressors and turbine interstages, steam turbine interstage and end packings, industrial compressor shaft seals, and generator seals. Abradable seals are being developed for blade-tip locations in various turbine locations. This presentation summarizes the status of advanced seal development for industrial turbines at GE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anno, Toshiro; Sakamoto, Naoya, E-mail: sakan@me.kawasaki-m.ac.jp; Sato, Masaaki
Highlights: Black-Right-Pointing-Pointer Nesprin-1 knockdown decreases widths of nuclei in ECs under static condition. Black-Right-Pointing-Pointer Nuclear strain caused by stretching is increased by nesprin-1 knockdown in ECs. Black-Right-Pointing-Pointer We model mechanical interactions of F-actin with the nucleus in stretched cells. Black-Right-Pointing-Pointer F-actin bound to nesprin-1 may cause sustainable force transmission to the nucleus. -- Abstract: The linker of nucleus and cytoskeleton (LINC) complex, including nesprin-1, has been suggested to be crucial for many biological processes. Previous studies have shown that mutations in nesprin-1 cause abnormal cellular functions and diseases, possibly because of insufficient force transmission to the nucleus through actin filamentsmore » (F-actin) bound to nesprin-1. However, little is known regarding the mechanical interaction between the nucleus and F-actin through nesprin-1. In this study, we examined nuclear deformation behavior in nesprin-1 knocked-down endothelial cells (ECs) subjected to uniaxial stretching by evaluating nuclear strain from lateral cross-sectional images. The widths of nuclei in nesprin-1 knocked-down ECs were smaller than those in wild-type cells. In addition, nuclear strain in nesprin-1 knocked-down cells, which is considered to be compressed by the actin cortical layer, increased compared with that in wild-type cells under stretching condition. These results indicate that nesprin-1 knockdown releases the nucleus from the tension of F-actin bound to the nucleus, thereby increasing allowance for deformation before stretching, and that F-actin bound to the nucleus through nesprin-1 causes sustainable force transmission to the nucleus.« less
NASA Astrophysics Data System (ADS)
Balakin, Alexander B.; Lemos, José P. S.; Zayats, Alexei E.
2016-04-01
Alternative theories of gravity and their solutions are of considerable importance since, at some fundamental level, the world can reveal new features. Indeed, it is suspected that the gravitational field might be nonminimally coupled to the other fields at scales not yet probed, bringing into the forefront nonminimally coupled theories. In this mode, we consider a nonminimal Einstein-Yang-Mills theory with a cosmological constant. Imposing spherical symmetry and staticity for the spacetime and a magnetic Wu-Yang ansatz for the Yang-Mills field, we find expressions for the solutions of the theory. Further imposing constraints on the nonminimal parameters, we find a family of exact solutions of the theory depending on five parameters—two nonminimal parameters, the cosmological constant, the magnetic charge, and the mass. These solutions represent magnetic monopoles and black holes in magnetic monopoles with de Sitter, Minkowskian, and anti-de Sitter asymptotics, depending on the sign and value of the cosmological constant Λ . We classify completely the family of solutions with respect to the number and the type of horizons and show that the spacetime solutions can have, at most, four horizons. For particular sets of the parameters, these horizons can become double, triple, and quadruple. For instance, for a positive cosmological constant Λ , there is a critical Λc for which the solution admits a quadruple horizon, evocative of the Λc that appears for a given energy density in both the Einstein static and Eddington-Lemaître dynamical universes. As an example of our classification, we analyze solutions in the Drummond-Hathrell nonminimal theory that describe nonminimal black holes. Another application is with a set of regular black holes previously treated.
One parameter binary black hole inverse problem using a sparse training set
NASA Astrophysics Data System (ADS)
Carrillo, M.; Gracia-Linares, M.; González, J. A.; Guzmán, F. S.
In this paper, we use Artificial Neural Networks (ANNs) to estimate the mass ratio q in a binary black hole collision out of the gravitational wave (GW) strain. We assume the strain is a time series (TS) that contains a part of the orbital phase and the ring-down of the final black hole. We apply the method to the strain itself in the time domain and also in the frequency domain. We present the accuracy in the prediction of the ANNs trained with various values of signal-to-noise ratio (SNR). The core of our results is that the estimate of the mass ratio is obtained with a small sample of training signals and resulting in predictions with errors of the order of 1% for our best ANN configurations.
NASA Astrophysics Data System (ADS)
Dehghani, M.
2018-02-01
Making use of the suitable transformation relations, the action of three-dimensional Einstein-Maxwell-dilaton gravity theory has been obtained from that of scalar-tensor modified gravity theory coupled to the Maxwell's electrodynamics as the matter field. Two new classes of the static three-dimensional charged dilatonic black holes, as the exact solutions to the coupled scalar, electromagnetic and gravitational field equations, have been obtained in the Einstein frame. Also, it has been found that the scalar potential can be written in the form of a generalized Liouville-type potential. The conserved black hole charge and masses as well as the black entropy, temperature, and electric potential have been calculated from the geometrical and thermodynamical approaches, separately. Through comparison of the results arisen from these two alternative approaches, the validity of the thermodynamical first law has been proved for both of the new black hole solutions in the Einstein frame. Making use of the canonical ensemble method, a black hole stability or phase transition analysis has been performed. Regarding the black hole heat capacity, with the black hole charge as a constant, the points of type-1 and type-2 phase transitions have been determined. Also, the ranges of the black hole horizon radius at which the Einstein black holes are thermally stable have been obtained for both of the new black hole solutions. Then making use of the inverse transformation relations, two new classes of the string black hole solutions have been obtained from their Einstein counterpart. The thermodynamics and thermal stability of the new string black hole solutions have been investigated. It has been found that thermodynamic properties of the new charged black holes are identical in the Einstein and Jordan frames.
Iriyama, Aya; Yanagi, Yasuo
2012-03-01
To investigate the association between fundus autofluorescence (FAF) and retinal structure and function in retinitis pigmentosa (RP). For image acquisition, HRA2 (Heidelberg Engineering) and 3D-OCT1000 (Topcon Corp.) were used. Based on FAF examination, 88 eyes of 44 RP patients were categorized into three types. The area within the hyperautofluorescent ring and the area of preserved retinal autofluorescence with FAF was calculated. The association between the pattern of FAF and the residual area of the junction between the inner and outer segments of the photoreceptors (IS/OS line), and the relationship between the area within hyperautofluorescent ring, the area of preserved retinal autofluorescence and the mean deviation (MD) of static perimetry were assessed. Twenty-four eyes were with preserved retinal autofluorescence without hyperautofluorescent ring, 54 eyes were with hyperautofluorescent ring and ten eyes were with abnormal foveal autofluorescence both in the fovea and the periphery of the 30° scan. In the first type, the IS/OS line was clearly detected. In the second type, the residual area of the partially distinct IS/OS line corresponded with the area within hyperautofluorescent ring with significant correlation between the area within hyperautofluorescent ring and the MD (R(2) = 0.705, p < 0.001); however, there was no correlation between the area of preserved retinal autofluorescence and the MD, or between the area of preserved retinal autofluorescence and the area within hyperautofluorescent ring. In the third type, the IS/OS line was completely absent. The residual IS/OS line can be found in the area inside the hyperautofluorescent ring and correlates with residual visual function.
Rotating hairy black holes in arbitrary dimensions
NASA Astrophysics Data System (ADS)
Erices, Cristián; Martínez, Cristián
2018-01-01
A class of exact rotating black hole solutions of gravity nonminimally coupled to a self-interacting scalar field in arbitrary dimensions is presented. These spacetimes are asymptotically locally anti-de Sitter manifolds and have a Ricci-flat event horizon hiding a curvature singularity at the origin. The scalar field is real and regular everywhere, and its effective mass, coming from the nonminimal coupling with the scalar curvature, saturates the Breitenlohner-Freedman bound for the corresponding spacetime dimension. The rotating black hole is obtained by applying an improper coordinate transformation to the static one. Although both spacetimes are locally equivalent, they are globally different, as it is confirmed by the nonvanishing angular momentum of the rotating black hole. It is found that the mass is bounded from below by the angular momentum, in agreement with the existence of an event horizon. The thermodynamical analysis is carried out in the grand canonical ensemble. The first law is satisfied, and a Smarr formula is exhibited. The thermodynamical local stability of the rotating hairy black holes is established from their Gibbs free energy. However, the global stability analysis establishes that the vacuum spacetime is always preferred over the hairy black hole. Thus, the hairy black hole is likely to decay into the vacuum one for any temperature.
All-optical gain-clamped wideband serial EDFA with ring-shaped laser
NASA Astrophysics Data System (ADS)
Lu, Yung-Hsin; Chi, Sien
2004-01-01
We experimentally investigate the static and dynamic properties of all-optical gain-clamped wideband (1530-1600 nm) serial erbium-doped fiber amplifier with a single ring-shaped laser, which consists of a circulator and a fiber Bragg grating at the output end. The lasing light passing through the second stage is intentionally blocked at the output end by a C/L-band wavelength division multiplexer owning the huge insertion loss, and thus, the copropagating ring-laser light is formed by the first stage. This design can simultaneously clamp the gains of 1547 and 1584 nm probes near 14 dB and shows the same dynamic range of input power up to -4 dBm for conventional band and long-wavelength band. Furthermore, the transient responses of 1551 and 1596 nm surviving channels exhibit small power excursions (<0.54 dB) as the total saturating tone with -2 dBm is modulated on and off at 270 Hz.
"Let Freedom Ring!" Black Women's Spirituality Shaping Prophetic Christian Education
ERIC Educational Resources Information Center
Smith, Yolanda Y.
2012-01-01
The author believes that a deep sense of spirituality together with effective Christian education can be a powerful resource for equipping individuals and communities to play an active role in transforming their lives as well as oppressive systems that have impacted their communities. In her discussion of spirituality, womanist ethicist Emilie…
History of Chandra X-Ray Observatory
2002-07-31
This is a photo taken by NASA's Chandra X-ray Observatory that reveals the remains of an explosion in the form of two enormous arcs of multimillion-degree gas in the galaxy Centaurus A that appear to be part of a ring 25,000 light years in diameter. The size and location of the ring suggest that it could have been an explosion that occurred about 10 million years ago. A composite image made with radio (red and green), optical (yellow-orange), and X-ray data (blue) presents a sturning tableau of a turbulent galaxy. A broad band of dust and cold gas is bisected at an angle by opposing jets of high-energy particles blasting away from the supermassive black hole in the nucleus. Lying in a plane perpendicular to the jets are the two large arcs of x-ray emitting multi-million degree gas. This discovery can help astronomers better understand the cause and effect of violent outbursts from the vicinity of supermassive black holes of active galaxies. The Chandra program is managed by the Marshall Space Flight Center in Huntsville, Alabama.
NASA Technical Reports Server (NTRS)
Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K.
2002-01-01
We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL Electronic Nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings (with no hydrogens). The Dreiding 2.21 force field is used for the polymer and solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4- vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic (ammonia) and organic (methanol, toluene, hydrazine) compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites.
Molecular modeling of polymer composite-analyte interactions in electronic nose sensors
NASA Technical Reports Server (NTRS)
Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K. S.
2003-01-01
We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL electronic nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereoisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings with no hydrogens. The Dreiding 2.21 force field is used for the polymer, solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4-vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic and organic compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites. c2003 Elsevier Science B.V. All rights reserved.
Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd 2Ti 2O 7
Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; ...
2015-11-10
In this research, the structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd 2Ti 2O 7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region ismore » predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. From these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.« less
Girardin, Martin P; Hogg, Edward H; Bernier, Pierre Y; Kurz, Werner A; Guo, Xiao Jing; Cyr, Guillaume
2016-02-01
An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2 ], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree-ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree-ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations. © 2015 Her Majesty the Queen in Right of Canada. Reproduced with the permission of the Minister of Natural Resources Canada.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teichmann, Katharina; Marioara, Calin D.; Andersen, Sigmund J.
The interaction mechanisms between dislocations and semi-coherent, needle-shaped {beta} Prime precipitates in Al-Mg-Si alloys have been studied by High Resolution Transmission Electron Microscopy (HRTEM). Dislocation loops appearing as broad contrast rings around the precipitate cross-sections were identified in the Al matrix. A size dependency of the interaction mechanism was observed; the precipitates were sheared when the longest dimension of their cross-section was shorter than approximately 15 nm, and looped otherwise. A more narrow ring located between the Al matrix and bulk {beta} Prime indicates the presence of a transition interface layer. Together with the bulk {beta} Prime structure, this wasmore » further investigated by High Angle Annular Dark Field Scanning TEM (HAADF-STEM). In the bulk {beta} Prime a higher intensity could be correlated with a third of the Si-columns, as predicted from the published structure. The transition layer incorporates Si columns in the same arrangement as in bulk {beta} Prime , although it is structurally distinct from it. The Z-contrast information and arrangement of these Si-columns demonstrate that they are an extension of the Si-network known to structurally connect all the precipitate phases in the Al-Mg-Si(-Cu) system. The width of the interface layer was estimated to about 1 nm. - Highlights: Black-Right-Pointing-Pointer {beta} Prime is found to be looped at sizes larger than 15 nm (cross section diameter). Black-Right-Pointing-Pointer {beta} Prime is found to be sheared at sizes smaller than 15 nm (cross section diameter). Black-Right-Pointing-Pointer The recently determined crystal structure of {beta} Prime is confirmed by HAADF-STEM. Black-Right-Pointing-Pointer Between {beta} Prime and the Al-matrix a transition layer of about 1 nm is existent. Black-Right-Pointing-Pointer The {beta} Prime /matrix layer is structurally distinct from bulk {beta} Prime and the aluminium matrix.« less
In vitro metabolism study of a black market product containing SARM LGD-4033.
Geldof, Lore; Pozo, Oscar J; Lootens, Leen; Morthier, Wouter; Van Eenoo, Peter; Deventer, Koen
2017-02-01
Anabolic agents are often used by athletes to enhance their performance. However, use of steroids leads to considerable side effects. Non-steroidal selective androgen receptor modulators (SARMs) are a novel class of substances that have not been approved so far but seem to have a more favourable anabolic/androgenic ratio than steroids and produce fewer side effects. Therefore the use of SARMs has been prohibited since 2008 by the World Anti-Doping Agency (WADA). Several of these SARMs have been detected on the black market. Metabolism studies are essential to identify the best urinary markers to ensure effective control of emerging substances by doping control laboratories. As black market products often contain non-pharmaceutical-grade substances, alternatives for human excretion studies are needed to elucidate the metabolism. A black market product labelled to contain the SARM LGD-4033 was purchased over the Internet. Purity verification of the black market product led to the detection of LGD-4033, without other contaminants. Human liver microsomes and S9 liver fractions were used to perform phase I and phase II (glucuronidation) metabolism studies. The samples of the in vitro metabolism studies were analyzed by gas chromatography-(tandem) mass spectrometry (GC-MS(/MS)), liquid chromatography-high resolution-tandem mass spectrometry (LC-(HR)MS/MS). LC-HRMS product ion scans allowed to identify typical fragment ions for the parent compound and to further determine metabolite structures. In total five metabolites were detected, all modified in the pyrrolidine ring of LGD-4033. The metabolic modifications ranged from hydroxylation combined with keto-formation (M1) or cleavage of the pyrrolidine ring (M2), hydroxylation and methylation (M3/M4) and dihydroxylation (M5). The parent compound and M2 were also detected as glucuronide-conjugates. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Weak Localization of Light in a Disordered Microcavity
NASA Astrophysics Data System (ADS)
Gurioli, M.; Bogani, F.; Cavigli, L.; Gibbs, H.; Khitrova, G.; Wiersma, D. S.
2005-05-01
We report the observation of weak localization of light in a semiconductor microcavity. The intrinsic disorder in a microcavity leads to multiple scattering and hence to static speckle. We show that averaging over realizations of the disorder reveals a coherent backscattering cone that has a coherent enhancement factor ≥2, as required by reciprocity. The coherent backscattering cone is observed along a ring-shaped pattern due to confinement by the microcavity.
Electronic Properties of Cyclacenes from TAO-DFT
Wu, Chun-Shian; Lee, Pei-Yin; Chai, Jeng-Da
2016-01-01
Owing to the presence of strong static correlation effects, accurate prediction of the electronic properties (e.g., the singlet-triplet energy gaps, vertical ionization potentials, vertical electron affinities, fundamental gaps, symmetrized von Neumann entropy, active orbital occupation numbers, and real-space representation of active orbitals) of cyclacenes with n fused benzene rings (n = 4–100) has posed a great challenge to traditional electronic structure methods. To meet the challenge, we study these properties using our newly developed thermally-assisted-occupation density functional theory (TAO-DFT), a very efficient method for the study of large systems with strong static correlation effects. Besides, to examine the role of cyclic topology, the electronic properties of cyclacenes are also compared with those of acenes. Similar to acenes, the ground states of cyclacenes are singlets for all the cases studied. In contrast to acenes, the electronic properties of cyclacenes, however, exhibit oscillatory behavior (for n ≤ 30) in the approach to the corresponding properties of acenes with increasing number of benzene rings. On the basis of the calculated orbitals and their occupation numbers, the larger cyclacenes are shown to exhibit increasing polyradical character in their ground states, with the active orbitals being mainly localized at the peripheral carbon atoms. PMID:27853249
NASA Astrophysics Data System (ADS)
Waldrop, L.; Cucho-Padin, G.; Ilie, R.
2017-12-01
Charge exchange collisions between ring current ions and hydrogen (H) atoms in the outer exosphere serve to dissipate magnetospheric energy, particularly during the slow recovery phase of geomagnetic storms, through the generation of energetic neutral atoms (ENAs) which escape the system. As a result, knowledge of the spatial distribution and temporal variability of exospheric H density is critical for reliable interpretation of ENA flux measurements as well as for accurate modeling of the ring current. Although numerous theoretical, numerical, and empirical H distributions have been used for such analyses, their reliance on ad hoc or unphysical assumptions, together with their inherently static formulations, is a source of significant uncertainty. Our recent development of a robust tomographic technique for the model-independent estimation of global exospheric H density from optical remote sensing data overcomes the limitations of past analysis and enables an unprecedented investigation of global exospheric and ring current dynamics. Here, we present sample results of our 3D, time-dependent reconstructions of exospheric structure, derived from measurements of resonantly scattered solar Lyman-alpha (121.6 nm) photons acquired by the Lyman-alpha detectors (LADs) onboard NASA's Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission. We use the Hot Electron and Ion Drift Integrator (HEIDI) kinetic model of the ring current to investigate the charge exchange interactions between the resulting H density distribution and ring current ions and generate synthetic images of ENA flux for comparison with those measured by TWINS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz
We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends onmore » the dimensionless spin of the rotating attractor.« less
NASA Astrophysics Data System (ADS)
Gennaretti, Fabio; Huard, David; Naulier, Maud; Savard, Martine; Bégin, Christian; Arseneault, Dominique; Guiot, Joel
2017-12-01
Northeastern North America has very few millennium-long, high-resolution climate proxy records. However, very recently, a new tree-ring dataset suitable for temperature reconstructions over the last millennium was developed in the northern Quebec taiga. This dataset is composed of one δ18O and six ring width chronologies. Until now, these chronologies have only been used in independent temperature reconstructions (from δ18O or ring width) showing some differences. Here, we added to the dataset a δ13C chronology and developed a significantly improved millennium-long multiproxy reconstruction (997-2006 CE) accounting for uncertainties with a Bayesian approach that evaluates the likelihood of each proxy model. We also undertook a methodological sensitivity analysis to assess the different responses of each proxy to abrupt forcings such as strong volcanic eruptions. Ring width showed a larger response to single eruptions and a larger cumulative impact of multiple eruptions during active volcanic periods, δ18O showed intermediate responses, and δ13C was mostly insensitive to volcanic eruptions. We conclude that all reconstructions based on a single proxy can be misleading because of the possible reduced or amplified responses to specific forcing agents.
NASA Astrophysics Data System (ADS)
Stuchlík, Zdeněk; Charbulák, Daniel; Schee, Jan
2018-03-01
We construct the light escape cones of isotropic spot sources of radiation residing in special classes of reference frames in the Kerr-de Sitter (KdS) black hole spacetimes, namely in the fundamental class of `non-geodesic' locally non-rotating reference frames (LNRFs), and two classes of `geodesic' frames, the radial geodesic frames (RGFs), both falling and escaping, and the frames related to the circular geodesic orbits (CGFs). We compare the cones constructed in a given position for the LNRFs, RGFs, and CGFs. We have shown that the photons locally counter-rotating relative to LNRFs with positive impact parameter and negative covariant energy are confined to the ergosphere region. Finally, we demonstrate that the light escaping cones govern the shadows of black holes located in front of a radiating screen, as seen by the observers in the considered frames. For shadows related to distant static observers the LNRFs are relevant.
Diffusion constant of slowly rotating black three-brane
NASA Astrophysics Data System (ADS)
Amoozad, Z.; Sadeghi, J.
2018-01-01
In this paper, we take the slowly rotating black three-brane background and perturb it by introducing a vector gauge field. We find the components of the gauge field through Maxwell equations and Bianchi identities. Using currents and some ansatz we find Fick's first law at long wavelength regime. An interesting result for this non-trivial supergravity background is that the diffusion constant on the stretched horizon which emerges from Fick's first law is a complex constant. The pure imaginary part of the diffusion constant appears because the black three-brane has angular momentum. By taking the static limit of the corresponding black brane the well known diffusion constant will be recovered. On the other hand, from the point of view of the Fick's second law, we have the dispersion relation ω = - iDq2 and we found a damping of hydrodynamical flow in the holographically dual theory. Existence of imaginary term in the diffusion constant introduces an oscillating propagation of the gauge field in the dual field theory.
Horndeski theories confront the Gravity Probe B experiment
NASA Astrophysics Data System (ADS)
Mukherjee, Sajal; Chakraborty, Sumanta
2018-06-01
In this work we have investigated various properties of a spinning gyroscope in the context of Horndeski theories. In particular, we have focused on two specific situations—(a) when the gyroscope follows a geodesic trajectory and (b) when it is endowed with an acceleration. In both these cases, besides developing the basic formalism, we have also applied the same to understand the motion of a spinning gyroscope in various static and spherically symmetric spacetimes pertaining to Horndeski theories. Starting with the Schwarzschild de Sitter spacetime as a warm up exercise, we have presented our results for two charged Galileon black holes as well as for a black hole in scalar coupled Einstein-Gauss-Bonnet gravity. In all these cases we have shown that the spinning gyroscope can be used to distinguish black holes from naked singularities. Moreover, using the numerical estimation of the geodetic precession from the Gravity Probe B experiment, we have constrained the gauge/scalar charge of the black holes in these Horndeski theories. Implications are also discussed.
Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes
NASA Astrophysics Data System (ADS)
Stuchlík, Z.; Slaný, P.; Hledík, S.
2000-11-01
The hydrodynamical structure of perfect fluid orbiting Schwarzschild-de Sitter black holes is investigated for configurations with uniform distribution of angular momentum density. It is shown that in the black-hole backgrounds admitting the existence of stable circular geodesics, closed equipotential surfaces with a cusp, allowing the existence of toroidal accretion disks, can exist. Two surfaces with a cusp exist for the angular momentum density smaller than the one corresponding to marginally bound circular geodesics; the equipotential surface corresponding to the marginally bound circular orbit has just two cusps. The outer cusp is located nearby the static radius where the gravitational attraction is compensated by the cosmological repulsion. Therefore, due to the presence of a repulsive cosmological constant, the outflow from thick accretion disks can be driven by the same mechanism as the accretion onto the black hole. Moreover, properties of open equipotential surfaces in vicinity of the axis of rotation suggest a strong collimation effects of the repulsive cosmological constant acting on jets produced by the accretion disks.
Building cosmological frozen stars
NASA Astrophysics Data System (ADS)
Kastor, David; Traschen, Jennie
2017-02-01
Janis-Newman-Winicour (JNW) solutions generalize Schwarzschild to include a massless scalar field. While they share the familiar infinite redshift feature of Schwarzschild, they suffer from the presence of naked singularities. Cosmological versions of JNW spacetimes were discovered some years ago, in the most general case, by Fonarev. Fonarev solutions are also plagued by naked singularities, but have the virtue, unlike e.g. Schwarzschild-deSitter, of being dynamical. Given that exact dynamical cosmological black hole solutions are scarce, Fonarev solutions merit further study. We show how Fonarev solutions can be obtained via generalized dimensional reduction from simpler static vacuum solutions. These results may lead towards constructions of actual dynamical cosmological black holes. In particular, we note that cosmological versions of extremal charged dilaton black holes are known. JNW spacetimes represent a different limiting case of the family of charged dilaton black holes, which have been important in the context of string theory, and better understanding their cosmological versions of JNW spacetimes thus provides a second data point towards finding cosmological versions of the entire family.
Tidal coupling of a Schwarzschild black hole and circularly orbiting moon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang Hua; Lovelace, Geoffrey
2005-12-15
We describe the possibility of using the laser interferometer space antenna (LISA) 's gravitational-wave observations to study, with high precision, the response of a massive central body (e.g. a black hole or a soliton star) to the tidal gravitational pull of an orbiting, compact, small-mass object (a white dwarf, neutron star, or small-mass black hole). Motivated by this LISA application, we use first-order perturbation theory to study tidal coupling for a special, idealized case: a Schwarzschild black hole of mass M, tidally perturbed by a 'moon' with mass {mu}<
Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.
Walker, Xanthe J; Mack, Michelle C; Johnstone, Jill F
2015-08-01
Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature-induced drought stress. However, variations in tree growth alone do not reveal the physiological mechanisms behind recent changes in tree growth. Examining stable carbon isotope composition of tree rings in addition to tree growth can provide a secondary line of evidence for physiological drought stress. In this study, we examined patterns of black spruce growth and carbon isotopic composition in tree rings in response to climate warming and drying in the boreal forest of interior Alaska. We examined trees at three nested scales: landscape, toposequence, and a subsample of trees within the toposequence. At each scale, we studied the potential effects of differences in microclimate and moisture availability by sampling on northern and southern aspects. We found that black spruce radial growth responded negatively to monthly metrics of temperature at all examined scales, and we examined ∆(13)C responses on a subsample of trees as representative of the wider region. The negative ∆(13)C responses to temperature reveal that black spruce trees are experiencing moisture stress on both northern and southern aspects. Contrary to our expectations, ∆(13)C from trees on the northern aspect exhibited the strongest drought signal. Our results highlight the prominence of drought stress in the boreal forest of interior Alaska. We conclude that if temperatures continue to warm, we can expect drought-induced productivity declines across large regions of the boreal forest, even for trees located in cool and moist landscape positions. © 2015 John Wiley & Sons Ltd.
Astrophysical black holes in screened modified gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Anne-Christine; Jha, Rahul; Muir, Jessica
2014-08-01
Chameleon, environmentally dependent dilaton, and symmetron gravity are three models of modified gravity in which the effects of the additional scalar degree of freedom are screened in dense environments. They have been extensively studied in laboratory, cosmological, and astrophysical contexts. In this paper, we present a preliminary investigation into whether additional constraints can be provided by studying these scalar fields around black holes. By looking at the properties of a static, spherically symmetric black hole, we find that the presence of a non-uniform matter distribution induces a non-constant scalar profile in chameleon and dilaton, but not necessarily symmetron gravity. Anmore » order of magnitude estimate shows that the effects of these profiles on in-falling test particles will be sub-leading compared to gravitational waves and hence observationally challenging to detect.« less
NASA Astrophysics Data System (ADS)
Johnson, Clifford V.
2014-10-01
It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.
2012-01-01
Background To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs) based on colour-pattern analysis of the nymphalid butterfly Junonia almana. Results In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. Conclusions In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to butterfly eyespots, delineates a theoretical basis for the induction model, and proposes a mathematically simple mode of long-range signalling that may reflect developmental mechanisms associated with butterfly eyespots. PMID:22409965
Otaki, Joji M
2012-03-13
To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs) based on colour-pattern analysis of the nymphalid butterfly Junonia almana. In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to butterfly eyespots, delineates a theoretical basis for the induction model, and proposes a mathematically simple mode of long-range signalling that may reflect developmental mechanisms associated with butterfly eyespots.
Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics.
Hu, Guohua; Albrow-Owen, Tom; Jin, Xinxin; Ali, Ayaz; Hu, Yuwei; Howe, Richard C T; Shehzad, Khurram; Yang, Zongyin; Zhu, Xuekun; Woodward, Robert I; Wu, Tien-Chun; Jussila, Henri; Wu, Jiang-Bin; Peng, Peng; Tan, Ping-Heng; Sun, Zhipei; Kelleher, Edmund J R; Zhang, Meng; Xu, Yang; Hasan, Tawfique
2017-08-17
Black phosphorus is a two-dimensional material of great interest, in part because of its high carrier mobility and thickness dependent direct bandgap. However, its instability under ambient conditions limits material deposition options for device fabrication. Here we show a black phosphorus ink that can be reliably inkjet printed, enabling scalable development of optoelectronic and photonic devices. Our binder-free ink suppresses coffee ring formation through induced recirculating Marangoni flow, and supports excellent consistency (< 2% variation) and spatial uniformity (< 3.4% variation), without substrate pre-treatment. Due to rapid ink drying (< 10 s at < 60 °C), printing causes minimal oxidation. Following encapsulation, the printed black phosphorus is stable against long-term (> 30 days) oxidation. We demonstrate printed black phosphorus as a passive switch for ultrafast lasers, stable against intense irradiation, and as a visible to near-infrared photodetector with high responsivities. Our work highlights the promise of this material as a functional ink platform for printed devices.Atomically thin black phosphorus shows promise for optoelectronics and photonics, yet its instability under environmental conditions and the lack of well-established large-area synthesis protocols hinder its applications. Here, the authors demonstrate a stable black phosphorus ink suitable for printed ultrafast lasers and photodetectors.
A no-short scalar hair theorem for rotating Kerr black holes
NASA Astrophysics Data System (ADS)
Hod, Shahar
2016-06-01
If a black hole has hair, how short can this hair be? A partial answer to this intriguing question was recently provided by the ‘no-short hair’ theorem which asserts that the external fields of a spherically symmetric electrically neutral hairy black-hole configuration must extend beyond the null circular geodesic which characterizes the corresponding black-hole spacetime. One naturally wonders whether the no-short hair inequality {r}{hair}\\gt {r}{null} is a generic property of all electrically neutral hairy black-hole spacetimes. In this paper we provide evidence that the answer to this interesting question may be positive. In particular, we prove that the recently discovered cloudy Kerr black-hole spacetimes—non-spherically symmetric non-static black holes which support linearized massive scalar fields in their exterior regions—also respect this no-short hair lower bound. Specifically, we analytically derive the lower bound {r}{field}/{r}+\\gt {r}+/{r}- on the effective lengths of the external bound-state massive scalar clouds (here {r}{field} is the peak location of the stationary bound-state scalar fields and r ± are the horizon radii of the black hole). Remarkably, this lower bound is universal in the sense that it is independent of the physical parameters (proper mass and angular harmonic indices) of the exterior scalar fields. Our results suggest that the lower bound {r}{hair}\\gt {r}{null} may be a general property of asymptotically flat electrically neutral hairy black-hole configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Monroy, J.A., E-mail: antosan@gmail.com; Quimbay, C.J., E-mail: cjquimbayh@unal.edu.co; Centro Internacional de Fisica, Bogota D.C.
In the context of a semiclassical approach where vectorial gauge fields can be considered as classical fields, we obtain exact static solutions of the SU(N) Yang-Mills equations in an (n+1)-dimensional curved space-time, for the cases n=1,2,3. As an application of the results obtained for the case n=3, we consider the solutions for the anti-de Sitter and Schwarzschild metrics. We show that these solutions have a confining behavior and can be considered as a first step in the study of the corrections of the spectra of quarkonia in a curved background. Since the solutions that we find in this work aremore » valid also for the group U(1), the case n=2 is a description of the (2+1) electrodynamics in the presence of a point charge. For this case, the solution has a confining behavior and can be considered as an application of the planar electrodynamics in a curved space-time. Finally we find that the solution for the case n=1 is invariant under a parity transformation and has the form of a linear confining solution. - Highlights: Black-Right-Pointing-Pointer We study exact static confining solutions of the SU(N) Yang-Mills equations in an (n+1)-dimensional curved space-time. Black-Right-Pointing-Pointer The solutions found are a first step in the study of the corrections on the spectra of quarkonia in a curved background. Black-Right-Pointing-Pointer A expression for the confinement potential in low dimensionality is found.« less
Black hole attractors and gauge theories
NASA Astrophysics Data System (ADS)
Huang, Lisa Li Fang
2007-12-01
This thesis is devoted to the study of supersymmetric black holes that arise from string compactifications. We begin by studying the R 2 corrections to the entropy of two solutions of five dimensional supergravity, the supersymmetric black ring and the spinning black hole. Using Wald's formula we compute the R2 corrections to the entropy of the black ring and BMPV black hole. We study N D4-branes wrapping a 4 cycle and M DO-branes on the quintic. For N D4-branes, we resolve the naive mismatch between the moduli space of the Higgs branch of the gauge theory and the moduli of a degree N hypersurface which the D4-brane wraps. The degree N surface must admit a holomorphic divisor and is a determinantal variety. Adding a single DO brane to probe the deformed geometry, we recover the determinant equation from F and D flatness condition which was previously discovered from a classical geometry approach. We next generalize the qunitic story for Calabi-Yau manifolds arising from complete intersections in toric varieties. We recover the moduli space of N D4-branes in terms of the moduli space of a U( N) x U(N) gauge theory with bi-fundamentals com ing from a D6 - D6 system. We also recast the tachyon condensation of the D6 - D6 system in the language of open string gauged linear sigma model. We obtain the determinant equation from F-term constraints arising from a boundary coupling. We set out to understand the Ooguri-Strominger-Vafa conjecture directly in the D4-DO black hole attractor geometry. We show that the lift to the euclidean IIA attractor geometry gives a complexified M-theory geometry whose asymptotic boundary is a torus. Employing AdS3/CFT 2 duality, we argue that the string partition function computes the elliptic genus of the Maldacena-Strominger-Witten conformal field theory. We evaluate the IIA partition function using the Green-Schwarz formalism and show that it gives ZtopZ top, coming from instantons and anti-instantons respectively. Finally, we determine the spectrum of free, large N, SU( N) Yang Mills theory on S3 by decomposing its thermal partition function into characters of the irreducible representations of the conformal group SO(4, 2).
Voyager 2 plasma wave observations at saturn.
Scarf, F L; Gurnett, D A; Kurth, W S; Poynter, R L
1982-01-29
The first inbound Voyager 2 crossing of Saturn's bow shock [at 31.7 Saturn radii (RS), near local noon] and the last outbound crossing (at 87.4 RS, near local dawn) had similar plasma wave signatures. However, many other aspects of the plasma wave measurements differed considerably during the inbound and outbound passes, suggesting the presence of effects associated with significant north-south or noon-dawn asymmetries, or temporal variations. Within Saturn's magnetosphere, the plasma wave instrument detected electron plasma oscillations, upper hybrid resonance emissions, half-gyrofrequency harmonics, hiss and chorus, narrowband electromagnetic emissions and broadband Saturn radio noise, and noise bursts with characteristics of static. At the ring plane crossing, the plasma wave instrument also detected a large number of intense impulses that we interpret in terms of ring particle impacts on Voyager 2.
Species-Specific Transmission of Novel Picornaviruses in Lemurs
Lim, Efrem S.; Deem, Sharon L.; Porton, Ingrid J.; Cao, Song
2015-01-01
ABSTRACT The roles of host genetics versus exposure and contact frequency in driving cross-species transmission remain the subject of debate. Here, we used a multitaxon lemur collection at the Saint Louis Zoo in the United States as a model to gain insight into viral transmission in a setting of high interspecies contact. Lemurs are a diverse and understudied group of primates that are highly endangered. The speciation of lemurs, which are endemic to the island of Madagascar, occurred in geographic isolation apart from that of continental African primates. Although evidence of endogenized viruses in lemur genomes exists, no exogenous viruses of lemurs have been described to date. Here we identified two novel picornaviruses in fecal specimens of ring-tailed lemurs (Lemur catta) and black-and-white ruffed lemurs (Varecia variegata). We found that the viruses were transmitted in a species-specific manner (lesavirus 1 was detected only in ring-tailed lemurs, while lesavirus 2 was detected only in black-and-white ruffed lemurs). Longitudinal sampling over a 1-year interval demonstrated ongoing infection in the collection. This was supported by evidence of viral clearance in some animals and new infections in previously uninfected animals, including a set of newly born triplets that acquired the infection. While the two virus strains were found to be cocirculating in a mixed-species exhibit of ring-tailed lemurs, black-and-white ruffed lemurs, and black lemurs, there was no evidence of cross-species transmission. This suggests that despite high-intensity contact, host species barriers can prevent cross-species transmissions of these viruses. IMPORTANCE Up to 75% of emerging infectious diseases in humans today are the result of zoonotic transmission. However, a challenge in understanding transmission dynamics has been the limited models of cross-species transmission. Zoos provide a unique opportunity to explore parameters defining viral transmission. We demonstrated that ongoing virus transmission in a mixed lemur species exhibit was species specific. This suggests that despite high contact intensity, host species barriers contribute to protection from cross-species transmission of these viruses. While the combinations of species might differ, most zoological parks worldwide commonly feature mixed-species exhibits. Collectively, this report demonstrates a widely applicable approach toward understanding infectious disease transmission. PMID:25631076
Graves, Gabrielle S; Adam, Murtaza K; Stepien, Kimberly E; Han, Dennis P
2014-08-01
To evaluate sensitivity, specificity and reproducibility of colour difference plot analysis (CDPA) of 103 hexagon multifocal electroretinogram (mfERG) in detecting established hydroxychloroquine (HCQ) retinal toxicity. Twenty-three patients taking HCQ were divided into those with and without retinal toxicity and were compared with a control group without retinal disease and not taking HCQ. CDPA with two masked examiners was performed using age-corrected mfERG responses in the central ring (Rc ; 0-5.5 degrees from fixation) and paracentral ring (Rp ; 5.5-11 degrees from fixation). An abnormal ring was defined as containing any hexagons with a difference in two or more standard deviations from normal (colour blue or black). Categorical analysis (ring involvement or not) showed Rc had 83% sensitivity and 93% specificity. Rp had 89% sensitivity and 82% specificity. Requiring abnormal hexagons in both Rc and Rp yielded sensitivity and specificity of 83% and 95%, respectively. If required in only one ring, they were 89% and 80%, respectively. In this population, there was complete agreement in identifying toxicity when comparing CDPA using Rp with ring ratio analysis using R5/R4 P1 ring responses (89% sensitivity and 95% specificity). Continuous analysis of CDPA with receiver operating characteristic analysis showed optimized detection (83% sensitivity and 96% specificity) when ≥4 abnormal hexagons were present anywhere within the Rp ring outline. Intergrader agreement and reproducibility were good. Colour difference plot analysis had sensitivity and specificity that approached that of ring ratio analysis of R5/R4 P₁ responses. Ease of implementation and reproducibility are notable advantages of CDPA. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Brown, Tyson H.; O'Rand, Angela M.; Adkins, Daniel E.
2012-01-01
Racial-ethnic disparities in static levels of health are well documented. Less is known about racial-ethnic differences in age trajectories of health. The few studies on this topic have examined only single health outcomes and focused on black-white disparities. This study extends prior research by using a life course perspective, panel data from…
Linear perturbations of black holes: stability, quasi-normal modes and tails
NASA Astrophysics Data System (ADS)
Zhidenko, Alexander
2009-03-01
Black holes have their proper oscillations, which are called the quasi-normal modes. The proper oscillations of astrophysical black holes can be observed in the nearest future with the help of gravitational wave detectors. Quasi-normal modes are also very important in the context of testing of the stability of black objects, the anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence and in higher dimensional theories, such as the brane-world scenarios and string theory. This dissertation reviews a number of works, which provide a thorough study of the quasi-normal spectrum of a wide class of black holes in four and higher dimensions for fields of various spin and gravitational perturbations. We have studied numerically the dependance of the quasi-normal modes on a number of factors, such as the presence of the cosmological constant, the Gauss-Bonnet parameter or the aether in the space-time, the dependance of the spectrum on parameters of the black hole and fields under consideration. By the analysis of the quasi-normal spectrum, we have studied the stability of higher dimensional Reissner-Nordstrom-de Sitter black holes, Kaluza-Klein black holes with squashed horizons, Gauss-Bonnet black holes and black strings. Special attention is paid to the evolution of massive fields in the background of various black holes. We have considered their quasi-normal ringing and the late-time tails. In addition, we present two new numerical techniques: a generalisation of the Nollert improvement of the Frobenius method for higher dimensional problems and a qualitatively new method, which allows to calculate quasi-normal frequencies for black holes, which metrics are not known analytically.
The structure and stability of orbits in Hoag-like ring systems
NASA Astrophysics Data System (ADS)
Bannikova, Elena Yu
2018-05-01
Ring galaxies are amazing objects exemplified by the famous case of Hoag's Object. Here the mass of the central galaxy may be comparable to the mass of the ring, making it a difficult case to model mechanically. In a previous paper, it was shown that the outer potential of a torus (ring) can be represented with good accuracy by the potential of a massive circle with the same mass. This approach allows us to simplify the problem of the particle motion in the gravitational field of a torus associated with a central mass by replacing the torus with a massive circle. In such a system, there is a circle of unstable equilibrium that we call `Lagrangian circle' (LC). Stable circular orbits exist only in some region limited by the last possible circular orbit related to the disappearance of the extrema of the effective potential. We call this orbit `the outermost stable circular orbit' (OSCO) by analogy with the innermost stable circular orbit (ISCO) in the relativistic case of a black hole. Under these conditions, there is a region between OSCO and LC where the circular motion is not possible due to the competition between the gravitational forces by the central mass and the ring. As a result, a gap in the matter distribution can form in Hoag-like system with massive rings.
The interaction of Dirac particles with a Hawking charged radiating black hole
NASA Astrophysics Data System (ADS)
Kubik, Erik
2007-08-01
The interaction of spin 1/2 fields with a charged, evaporating black hole (EBH) is investigated. Using the Vaidya metric to model the Hawking evaporating black hole, the wave equation for a massless spinor field is obtained. The resulting field equation is solved utilizing techniques developed by Brill and Wheeler. Unlike previous efforts, a charged, evaporating black hole has never been used as a background to investigate spin 1/2 quantum field propagation, e.g., Brill and Wheeler considered massless spin 1/2 interactions in a static, Schwarzschild background. Using the WKB approximation, the wave equation is solved for the case of an EBH with constant luminosity. Analysis of the effective potential at different stages of evaporation is made including the dependence on the parameters of the system such as the total angular momentum, energy of the incident field, and luminosity of the evaporating black hole. Utilizing techniques of Mukhopad-hey, the transmission and reflection coefficients for the massless spinors are computed and compared to Schwarzschild result for both the high energy and hard scattering cases. The effect of the time dependence of the space-time metric has an important effect on the behavior of quantum fields over the lifetime of the evaporating black hole and may provide a signature for the detection of such objects.
Speed of gravitational waves and black hole hair
NASA Astrophysics Data System (ADS)
Tattersall, Oliver J.; Ferreira, Pedro G.; Lagos, Macarena
2018-04-01
The recent detection of GRB 170817A and GW170817 constrains the speed of gravity waves cT to be that of light, which severely restricts the landscape of modified gravity theories that impact the cosmological evolution of the Universe. In this work, we investigate the presence of black hole hair in the remaining viable cosmological theories of modified gravity that respect the constraint cT=1 . We focus mainly on scalar-tensor theories of gravity, analyzing static, asymptotically flat black holes in Horndeski, Beyond Horndeski, Einstein-scalar-Gauss-Bonnet, and Chern-Simons theories. We find that in all of the cases considered here, theories that are cosmologically relevant and respect cT=1 do not allow for hair, or have negligible hair. We further comment on vector-tensor theories including Einstein-Yang-Mills, Einstein-Aether, and generalized Proca theories, as well as bimetric theories.
α '-corrected black holes in String Theory
NASA Astrophysics Data System (ADS)
Cano, Pablo A.; Meessen, Patrick; Ortín, Tomás; Ramírez, Pedro F.
2018-05-01
We consider the well-known solution of the Heterotic Superstring effective action to zeroth order in α ' that describes the intersection of a fundamental string with momentum and a solitonic 5-brane and which gives a 3-charge, static, extremal, supersymmetric black hole in 5 dimensions upon dimensional reduction on T5. We compute explicitly the first-order in α ' corrections to this solution, including SU(2) Yang-Mills fields which can be used to cancel some of these corrections and we study the main properties of this α '-corrected solution: supersymmetry, values of the near-horizon and asymptotic charges, behavior under α '-corrected T-duality, value of the entropy (using Wald formula directly in 10 dimensions), existence of small black holes etc. The value obtained for the entropy agrees, within the limits of approximation, with that obtained by microscopic methods. The α ' corrections coming from Wald's formula prove crucial for this result.
Kerr–anti-de Sitter/de Sitter black hole in perfect fluid dark matter background
NASA Astrophysics Data System (ADS)
Xu, Zhaoyi; Hou, Xian; Wang, Jiancheng
2018-06-01
We obtain the Kerr–anti-de-sitter (Kerr–AdS) and Kerr–de-sitter (Kerr–dS) black hole (BH) solutions to the Einstein field equation in the perfect fluid dark matter background using the Newman–Janis method and Mathematica package. We discuss in detail the black hole properties and obtain the following main results: (i) From the horizon equation g rr = 0, we derive the relation between the perfect fluid dark matter parameter α and the cosmological constant Λ when the cosmological horizon exists. For , we find that α is in the range for and for . For positive cosmological constant Λ (Kerr–AdS BH), decreases if , and increases if . For negative cosmological constant (Kerr–dS BH), increases if and decreases if ; (ii) An ergosphere exists between the event horizon and the outer static limit surface. The size of the ergosphere evolves oppositely for and , while decreasing with the increasing . When there is sufficient dark matter around the black hole, the black hole spacetime changes remarkably; (iii) The singularity of these black holes is the same as that of rotational black holes. In addition, we study the geodesic motion using the Hamilton–Jacobi formalism and find that when α is in the above ranges for , stable orbits exist. Furthermore, the rotational velocity of the black hole in the equatorial plane has different behaviour for different α and the black hole spin a. It is asymptotically flat and independent of α if while is asymptotically flat only when α is close to zero if . We anticipate that Kerr–Ads/dS black holes could exist in the universe and our future work will focus on the observational effects of the perfect fluid dark matter on these black holes.
Noncommutative geometry inspired Einstein–Gauss–Bonnet black holes
NASA Astrophysics Data System (ADS)
Ghosh, Sushant G.
2018-04-01
Low energy limits of a string theory suggests that the gravity action should include quadratic and higher-order curvature terms, in the form of dimensionally continued Gauss–Bonnet densities. Einstein–Gauss–Bonnet is a natural extension of the general relativity to higher dimensions in which the first and second-order terms correspond, respectively, to general relativity and Einstein–Gauss–Bonnet gravity. We obtain five-dimensional (5D) black hole solutions, inspired by a noncommutative geometry, with a static spherically symmetric, Gaussian mass distribution as a source both in the general relativity and Einstein–Gauss–Bonnet gravity cases, and we also analyzes their thermodynamical properties. Owing the noncommutative corrected black hole, the thermodynamic quantities have also been modified, and phase transition is shown to be achievable. The phase transitions for the thermodynamic stability, in both the theories, are characterized by a discontinuity in the specific heat at r_+=rC , with the stable (unstable) branch for r < (>) rC . The metric of the noncommutative inspired black holes smoothly goes over to the Boulware–Deser solution at large distance. The paper has been appended with a calculation of black hole mass using holographic renormalization.
NASA Astrophysics Data System (ADS)
Mišković, Olivera; Olea, Rodrigo
2011-01-01
Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miskovic, Olivera; Olea, Rodrigo; Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso
2011-01-15
Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, itmore » extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.« less
Orbital Perturbations Due to Massive Rings
NASA Astrophysics Data System (ADS)
Iorio, L.
2012-06-01
We analytically work out the long-term orbital perturbations induced by a homogeneous circular ring of radius R r and mass m r on the motion of a test particle in the cases (I): r > R r and (II): r < R r. In order to extend the validity of our analysis to the orbital configurations of, e.g., some proposed spacecraft-based mission for fundamental physics like LISA and ASTROD, of possible annuli around the supermassive black hole in Sgr A* coming from tidal disruptions of incoming gas clouds, and to the effect of artificial space debris belts around the Earth, we do not restrict ourselves to the case in which the ring and the orbit of the perturbed particle lie just in the same plane. From the corrections Updeltadot\\varpi^{(meas)} to the standard secular perihelion precessions, recently determined by a team of astronomers for some planets of the Solar System, we infer upper bounds on m r for various putative and known annular matter distributions of natural origin (close circumsolar ring with R r = 0.02 - 0.13 au, dust ring with R r = 1 au, minor asteroids, Trans-Neptunian Objects). We find m_r≤ 1.4× 10^{-4} m_{oplus} (circumsolar ring with R r = 0.02 au), m_r≤ 2.6× 10^{-6} m_{oplus} (circumsolar ring with R r = 0.13 au), m_r≤ 8.8× 10^{-7} m_{oplus} (ring with R r = 1 au), m_r≤ 7.3× 10^{-12} M_{odot} (asteroidal ring with R r = 2.80 au), m_r≤ 1.1× 10^{-11} M_{odot} (asteroidal ring with R r = 3.14 au), m_r≤ 2.0× 10^{-8} M_{odot} (TNOs ring with R r = 43 au). In principle, our analysis is valid both for baryonic and non-baryonic Dark Matter distributions.
Mafalda, Ana Cardeira; da Câmara, Rodrigo Bettencourt; Strzelec, Patrick; Schiavon, Nick; Mirão, José; Candeias, António; Carvalho, Maria Luísa; Manso, Marta
2015-02-01
The artwork "Smoke Rings: Two Concentric Tunnels, Non-Communicating" by Bruce Nauman represents a case study of corrosion of a black patina-coated Al-alloy contemporary artwork. The main concern over this artwork was the widespread presence of white spots on its surface. Alloy substrate, patina, and white spots were characterized by means of energy-dispersive X-ray fluorescence and scanning electron microscopy with energy-dispersive spectroscopy. Alloy substrate was identified as an aluminum alloy 6,000 series Al-Si-Mg. Patina's identified composition confirmed the documentation provided by the atelier. Concerning the white spots, zircon particles were found on patina surface as external elements.
MNASA as a Test for Carbon Fiber Thermal Barrier Development
NASA Technical Reports Server (NTRS)
Bauer, Paul; McCool, Alex (Technical Monitor)
2001-01-01
A carbon fiber rope thermal barrier is being evaluated as a replacement for the conventional room temperature vulcanizing (RTV) thermal barrier that is currently used to protect o-rings in Reusable Solid Rocket Motor (RSRM) nozzle joints. Performance requirements include its ability to cool any incoming, hot propellant gases that fill and pressurize the nozzle joints, filter slag and particulates, and to perform adequately in various joint assembly conditions as well as dynamic flight motion. Modified National Aeronautics and Space Administration (MNASA) motors, with their inherent and unique ability to replicate select RSRM internal environment features, were an integral step in the development path leading to full scale RSRM static test demonstration of the carbon fiber rope (CFR) joint concept. These 1/4 scale RSRM motors serve to bridge the gap between the other classes of subscale test motors (extremely small and moderate duration, or small scale and short duration) and the critical asset RSRM static test motors. A series of MNASA tests have been used to demonstrate carbon fiber rope performance and have provided rationale for implementation into a full-scale static motor and flight qualification.
Mass inflation and chaotic behaviour inside hairy black holes
NASA Astrophysics Data System (ADS)
Breitenlohner, Peter; Lavrelashvili, George; Maison, Dieter
1998-07-01
We analyze the interior geometry of static, spherically symmetric black holes of the Einstein-Yang-Mills-Higgs theory. Generically the solutions exhibit a behaviour that may be described as ``mass inflation'', although with a remarkable difference between the cases with and without a Higgs field. Without Higgs field the YM field induces a kind of cyclic behaviour leading to repeated cycles of mass inflation - taking the form of violent explosions - interrupted by quiescent periods and subsequent approaches to an almost Cauchy horizon. With the Higgs field no such cycles occur in the asymptotic behaviour. In addition there are non-generic families with a Schwarzschild and a Reissner-Nordstrøm type singularity at r=0, respectively.
Black hole solutions in mimetic Born-Infeld gravity
NASA Astrophysics Data System (ADS)
Chen, Che-Yu; Bouhmadi-López, Mariam; Chen, Pisin
2018-01-01
The vacuum, static, and spherically symmetric solutions in the mimetic Born-Infeld gravity are studied. The mimetic Born-Infeld gravity is a reformulation of the Eddington-inspired-Born-Infeld (EiBI) model under the mimetic approach. Due to the mimetic field, the theory contains non-trivial vacuum solutions different from those in Einstein gravity. We find that with the existence of the mimetic field, the spacelike singularity inside a Schwarzschild black hole could be altered to a lightlike singularity, even though the curvature invariants still diverge at the singularity. Furthermore, in this case, the maximal proper time for a timelike radially-infalling observer to reach the singularity is found to be infinite.
Black hole solutions in mimetic Born-Infeld gravity.
Chen, Che-Yu; Bouhmadi-López, Mariam; Chen, Pisin
2018-01-01
The vacuum, static, and spherically symmetric solutions in the mimetic Born-Infeld gravity are studied. The mimetic Born-Infeld gravity is a reformulation of the Eddington-inspired-Born-Infeld (EiBI) model under the mimetic approach. Due to the mimetic field, the theory contains non-trivial vacuum solutions different from those in Einstein gravity. We find that with the existence of the mimetic field, the spacelike singularity inside a Schwarzschild black hole could be altered to a lightlike singularity, even though the curvature invariants still diverge at the singularity. Furthermore, in this case, the maximal proper time for a timelike radially-infalling observer to reach the singularity is found to be infinite.
Black hole solutions in mimetic Born-Infeld gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Che-Yu; Bouhmadi-López, Mariam; Chen, Pisin
The vacuum, static, and spherically symmetric solutions in the mimetic Born-Infeld gravity are studied. The mimetic Born-Infeld gravity is a reformulation of the Eddington-inspired-Born-Infeld (EiBI) model under the mimetic approach. Due to the mimetic field, the theory contains non-trivial vacuum solutions different from those in Einstein gravity. Here, we find that with the existence of the mimetic field, the spacelike singularity inside a Schwarzschild black hole could be altered to a lightlike singularity, even though the curvature invariants still diverge at the singularity. Furthermore, in this case, the maximal proper time for a timelike radially-infalling observer to reach the singularitymore » is found to be infinite.« less
Black hole solutions in mimetic Born-Infeld gravity
Chen, Che-Yu; Bouhmadi-López, Mariam; Chen, Pisin
2018-01-23
The vacuum, static, and spherically symmetric solutions in the mimetic Born-Infeld gravity are studied. The mimetic Born-Infeld gravity is a reformulation of the Eddington-inspired-Born-Infeld (EiBI) model under the mimetic approach. Due to the mimetic field, the theory contains non-trivial vacuum solutions different from those in Einstein gravity. Here, we find that with the existence of the mimetic field, the spacelike singularity inside a Schwarzschild black hole could be altered to a lightlike singularity, even though the curvature invariants still diverge at the singularity. Furthermore, in this case, the maximal proper time for a timelike radially-infalling observer to reach the singularitymore » is found to be infinite.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeWalle, D.R.; Swistock, B.R.; Sharpe, W.E.
Studies were conducted at five Appalchian sites to determine if chemical element concentrations in sapwood tree rings from six tree species varied with soil and soil leachate acidity. The most recent 5-yr-growth increment was extracted from 10 tree boles of each species at each site and analyzed for chemical content using plasma emission spectroscopy. Sapwood tree rings generally showed higher concentrations of Mn and lower concentrations of Sr at sites with lower soil pH. Differences in tree-ring concentrations for Ca and Mn among sites were also found in soil water samples at these sites. Significant differences in soil leachate Almore » between sites were not duplicated in tree rings. Sapwood tree-ring chemistry in red oak (Quercus rubra L.), black cherry (Prunus serotina Ehrh.), eastern white pine (pinus strobus L.) and eastern hemlock (Tsuga canadensis (L.) Carr.) was generally responsive to differences in soil chemistry between sites. Chestnut oak (Quercus prinus L.) and pignut hickory (Carya glabra (Mill.) Sweet) were the least responsive species tested. Overall, results show that several common tree species and selected elements are potentially useful for studying historic soil acidification trends at these study sites.« less
Observation of Gravitational Waves from a Binary Black Hole Merger
NASA Technical Reports Server (NTRS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, Jordan B.;
2016-01-01
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10(exp -21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ring down of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 Sigma. The source lies at a luminosity distance of 410(+160/-180) Mpc corresponding to a redshift z = 0.09(+0.03/-0.04). In the source frame, the initial black hole masses are 36(+5/-4) Mass compared to the sun, and 29(+4/-4) Mass compared to the sun, and the final black hole mass is 62(+4/-4) Mass compared to the sun, with 3.0(+0.5/-0.5)sq c radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
Horizon structure of rotating Einstein-Born-Infeld black holes and shadow
NASA Astrophysics Data System (ADS)
Atamurotov, Farruh; Ghosh, Sushant G.; Ahmedov, Bobomurat
2016-05-01
We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to infinity (β → ∞). We find that for a given β , mass M, and charge Q, there exist a critical spinning parameter aE and rHE, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and aE decreases and rHE increases with increase of the Born-Infeld parameter β , while a
NASA Technical Reports Server (NTRS)
Kim, Jae-Woo; Sauti, Godfrey; Cano, Roberto J.; Wincheski, Russell A.; Ratcliffe, James G.; Czabaj, Michael; Siochi, Emilie J.
2015-01-01
Carbon nanotubes (CNTs) are one-dimensional nanomaterials with outstanding electrical and thermal conductivities and mechanical properties. This combination of properties offers routes to enable lightweight structural aerospace components. Recent advances in the manufacturing of CNTs have made bulk forms such as yarns, tapes and sheets available in commercial quantities to permit the evaluation of these materials for aerospace use, where the superior tensile properties of CNT composites can be exploited in tension dominated applications such as composite overwrapped pressure vessels (COPVs). To investigate their utility in this application, aluminum rings were overwrapped with thermoset/CNT yarn composite and their mechanical properties measured. CNT composite overwrap characteristics such as processing method, CNT/resin ratio, and applied tension during CNT yarn winding were varied to determine their effects on the mechanical performance of the CNT composite overwrapped Al rings (CCOARs). Mechanical properties of the CCOARs were measured under static and cyclic loads at room, elevated, and cryogenic temperatures to evaluate their mechanical performance relative to bare Al rings. At room temperature, the breaking load of CCOARs with a 10.8% additional weight due to the CNT yarn/thermoset overwrap increased by over 200% compared to the bare Al ring. The quality of the wound CNT composites was also investigated using x-ray computed tomography.
James H Speer; Henry D Grission-Mayer; Kenneth H Orivs; Cathryn H: Greenberg
2009-01-01
The climatic response of trees that occupy closed canopy forests in the eastern United States (US) is important to understanding the possible trajectory these forests may lake in response to a warming climate. Our study examined tree rings of 664 trees from five oak species (white (Querclus alba L), black (Quercus "velutina Lam...
NASA Astrophysics Data System (ADS)
Leclaire, Sarah; White, Joël; Arnoux, Emilie; Faivre, Bruno; Vetter, Nathanaël; Hatch, Scott A.; Danchin, Étienne
2011-09-01
Carotenoid pigments are important for immunity and as antioxidants, and carotenoid-based colors are believed to provide honest signals of individual quality. Other colorless but more efficient antioxidants such as vitamins A and E may protect carotenoids from bleaching. Carotenoid-based colors have thus recently been suggested to reflect the concentration of such colorless antioxidants, but this has rarely been tested. Furthermore, although evidence is accruing for multiple genetic criteria for mate choice, carotenoid-based colors have rarely been shown to reflect both phenotypic and genetic quality. In this study, we investigated whether gape, tongue, eye-ring, and bill coloration of chick-rearing black-legged kittiwakes Rissa tridactyla reflected circulating levels of carotenoids and vitamins A and E. We further investigated whether integument coloration reflected phenotypic (body condition and fledging success) and genetic quality (heterozygosity). We found that the coloration of fleshy integuments was correlated with carotenoid and vitamin A levels and fledging success but only in males. Furthermore, the coloration of tongue and eye-ring was correlated with heterozygosity in both males and females. Integument colors might therefore be reliable signals of individual quality used by birds to adjust their parental care during the chick-rearing period.
Shadows of Kerr Black Holes with Scalar Hair.
Cunha, Pedro V P; Herdeiro, Carlos A R; Radu, Eugen; Rúnarsson, Helgi F
2015-11-20
Using backwards ray tracing, we study the shadows of Kerr black holes with scalar hair (KBHSH). KBHSH interpolate continuously between Kerr BHs and boson stars (BSs), so we start by investigating the lensing of light due to BSs. Moving from the weak to the strong gravity region, BSs-which by themselves have no shadows-are classified, according to the lensing produced, as (i) noncompact, which yield not multiple images, (ii) compact, which produce an increasing number of Einstein rings and multiple images of the whole celestial sphere, and (iii) ultracompact, which possess light rings, yielding an infinite number of images with (we conjecture) a self-similar structure. The shadows of KBHSH, for Kerr-like horizons and noncompact BS-like hair, are analogous to, but distinguishable from, those of comparable Kerr BHs. But for non-Kerr-like horizons and ultracompact BS-like hair, the shadows of KBHSH are drastically different: novel shapes arise, sizes are considerably smaller, and multiple shadows of a single BH become possible. Thus, KBHSH provide quantitatively and qualitatively new templates for ongoing (and future) very large baseline interferometry observations of BH shadows, such as those of the Event Horizon Telescope.
Köse, Nesibe; Akkemik, Unal; Güner, H Tuncay; Dalfes, H Nüzhet; Grissino-Mayer, Henri D; Ozeren, M Sinan; Kındap, Tayfun
2013-09-01
We developed a high quality reconstruction of May-June precipitation for the interior region of southwestern Turkey using regional tree-ring data calibrated with meteorological data from Burdur. In this study, three new climate sensitive black pine chronologies were built. In addition to new chronologies, four previously published black pine chronologies were used for the reconstruction. Two separate reconstructions were developed. The first reconstruction used all site chronologies over the common interval AD 1813-2004. The second reconstruction used four of the chronologies with a common interval AD 1692-2004. R² values of the reconstructions were 0.64 and 0.51 with RE values of 0.63 and 0.51, respectively. During the period AD 1692-1938, 41 dry and 48 wet events were found. Very dry years occurred in AD 1725, 1814, 1851, 1887, 1916, and 1923, while very wet years occurred in AD 1736, 1780, 1788, 1803, and 1892. The longest dry period was 16 years long between 1860 and 1875. We then explored relationships between the reconstructed rainfall patterns and major volcanic eruptions, and discovered that wetter than normal years occurred during or immediately after the years with the largest volcanic eruptions.
Isolation and characterization of formacell Lignins from oil empty fruits bunches
NASA Astrophysics Data System (ADS)
Hidayati, S.; Zuidar, A. S.; Satyajaya, W.; Murhadi; Retnowati, D.
2018-04-01
Lignin is the largest component in black liquor, it is about 46% of solids total and can be isolated by precipitation using acid and base method. The purpose of this study was to get the best NaOH concentration to produce lignin with yield, solids total content, metoxyle lignins content, weights equivalent of lignin in the black liquor by pulping formacell process from oil empty fruits bunches. This study was done with isolation lignin process in black liquor used by NaOH concentration were 5%, 10%, 15%, 20%, 25%, and 30% from volume black liquor and then precipitationed for 10 hours. The result of this research showed the isolation of lignin with NaOH concentration 30% get the pH 5,42%, yield of lignin was 5,67%, solids black liquor total was 65,11%, levels of metoxyle lignin 14,61%, and equivalent weights of lignin was 1787,23. The result of FT-IR identifications of isolates lignin in NaOH concentration 25 and 30% showed a pattern infiltration spektro IR that almost a part that have the same infiltration at the wave numbers that showed lignin had one of the rings lignin was guaiasil, it was building blocks of non wood lignin.
Accurate Waveforms for Non-spinning Binary Black Holes using the Effective-one-body Approach
NASA Technical Reports Server (NTRS)
Buonanno, Alessandra; Pan, Yi; Baker, John G.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; vanMeter, James R.
2007-01-01
Using numerical relativity as guidance and the natural flexibility of the effective-one-body (EOB) model, we extend the latter so that it can successfully match the numerical relativity waveforms of non-spinning binary black holes during the last stages of inspiral, merger and ringdown. Here, by successfully, we mean with phase differences < or approx. 8% of a gravitational-wave cycle accumulated until the end of the ringdown phase. We obtain this result by simply adding a 4 post-Newtonian order correction in the EOB radial potential and determining the (constant) coefficient by imposing high-matching performances with numerical waveforms of mass ratios m1/m2 = 1,2/3,1/2 and = 1/4, m1 and m2 being the individual black-hole masses. The final black-hole mass and spin predicted by the numerical simulations are used to determine the ringdown frequency and decay time of three quasi-normal-mode damped sinusoids that are attached to the EOB inspiral-(plunge) waveform at the light-ring. The accurate EOB waveforms may be employed for coherent searches of gravitational waves emitted by non-spinning coalescing binary black holes with ground-based laser-interferometer detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomizawa, Shinya
We show a uniqueness theorem for Kaluza-Klein black holes in the bosonic sector of five-dimensional minimal supergravity. More precisely, under the assumptions of the existence of two commuting axial isometries and a nondegenerate connected event horizon of the cross-section topology S{sup 3}, or lens space, we prove that a stationary charged rotating Kaluza-Klein black hole in five-dimensional minimal supergravity is uniquely characterized by its mass, two independent angular momenta, electric charge, magnetic flux, and nut charge, provided that there exists neither a nut nor a bolt (a bubble) in the domain of outer communication. We also show that under themore » assumptions of the same symmetry, same asymptotics, and the horizon cross section of S{sup 1}xS{sup 2}, a black ring within the same theory--if it exists--is uniquely determined by its dipole charge and rod intervals besides the charges and magnetic flux.« less
Wiggly tails: A gravitational wave signature of massive fields around black holes
NASA Astrophysics Data System (ADS)
Degollado, Juan Carlos; Herdeiro, Carlos A. R.
2014-09-01
Massive fields can exist in long-lived configurations around black holes. We examine how the gravitational wave signal of a perturbed black hole is affected by such "dirtiness" within linear theory. As a concrete example, we consider the gravitational radiation emitted by the infall of a massive scalar field into a Schwarzschild black hole. Whereas part of the scalar field is absorbed/scattered by the black hole and triggers gravitational wave emission, another part lingers in long-lived quasibound states. Solving numerically the Teukolsky master equation for gravitational perturbations coupled to the massive Klein-Gordon equation, we find a characteristic gravitational wave signal, composed by a quasinormal ringing followed by a late time tail. In contrast to "clean" black holes, however, the late time tail contains small amplitude wiggles with the frequency of the dominating quasibound state. Additionally, an observer dependent beating pattern may also be seen. These features were already observed in fully nonlinear studies; our analysis shows they are present at linear level, and, since it reduces to a 1+1 dimensional numerical problem, allows for cleaner numerical data. Moreover, we discuss the power law of the tail and that it only becomes universal sufficiently far away from the dirty black hole. The wiggly tails, by constrast, are a generic feature that may be used as a smoking gun for the presence of massive fields around black holes, either as a linear cloud or as fully nonlinear hair.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jadav, Mudra; Patel, Rajesh, E-mail: rjp@mkbhavuni.edu.in, E-mail: rpat7@yahoo.co
Here we present a technique using magnetic nanofluid to induce bidispersed suspension of nonmagnetic particles to assemble into colloidal chain, triangle, rectangle, ring-flower configurations. By changing the amplitude and direction of the magnetic field, we could tune the structure of nonmagnetic particles in magnetic nanofluid. The structures are assembled using magneto static interactions between effectively nonmagnetic particles dispersed in magnetizable magnetic nanofluid. The assembly of complex structures out of simple colloidal building blocks is of practical interest in photonic crystals and DNA biosensors.
Unmanned Evaluation of Mares Abyss 22 Navy Open Circuit Scuba Regulator for Cold Water Diving
2011-05-05
regulator is shown above the water. Note the blue mouthpiece adaptor, white oral static pressure pick-up ring , and gray routing block attached for...e.g., an inflation whip or a second-stage octopus ), submersible pressure gage, or gas-integrated computer were connected to the first stage. As...adaptor (shown in blue ) inward into the second-stage assembly, Figure 9 indicates typical 9 internal second-stage icing experienced during Phase
NASA Technical Reports Server (NTRS)
Braddock, W. F.; Streby, G. D.
1977-01-01
The results of a pressure test of a .00548 scale 146 inch Space Shuttle Solid Rocket Booster (SRB) with and without protuberances, conducted in a 14 x 14 inch trisonic wind tunnel are presented. Static pressure distributions for the SRB at reentry attitudes and flight conditions were obtained. Local longitudinal and ring pressure distributions are presented in tabulated form. Integration of the pressure data was performed. The test was conducted at Mach numbers of 0.40 to 4.45 over an angle of attack range from 60 to 185 degrees. Roll angles of 0, 45, 90 and 315 degrees were investigated. Reynolds numbers per foot varied for selected Mach numbers.
NASA Astrophysics Data System (ADS)
Brynjolfsson, Ari
2009-10-01
Plasma redshift is derived theoretically from conventional axioms of physics by using more accurate methods than those conventionally used; see: arXiv:astro-ph/0401420. It explains the solar redshifts, the intrinsic redshifts of stars, galaxies, and quasars. It explains the cosmological redshift, the cosmic microwave background, the X-ray back ground. It explains the magnitude-redshift relation for SNe Ia, and the surface brightness-redshift relation for galaxies as measured by Sandage and Lubin. The Universe is quasi-static, and can renew itself forever. There is no need for Big Bang, Inflation, Cosmic Time Dilation, Dark Energy, Dark Matter, and Black Holes. Redshifts of solar Fraunhofer lines (when evaluated in light of plasma redshift) show clearly that photons are weightless. thus contradicting the general believe that photons have weight; see: arXiv:astro-ph/0408312. This presentation helps explain why the super-massive black hole candidate (SMBHC) at the Galactic center is an engine for converting old star matter to primordial matter, and why we have star forming region around the SMBHCs.
Quasinormal modes of black holes in Horndeski gravity
NASA Astrophysics Data System (ADS)
Tattersall, Oliver J.; Ferreira, Pedro G.
2018-05-01
We study the perturbations to general relativistic black holes (i.e., those without scalar hair) in Horndeski scalar-tensor gravity. First, we derive the equations of odd and even parity perturbations of both the metric and scalar field in the case of a Schwarzschild black hole, and show that the gravitational waves emitted from such a system contain a mixture of quasinormal mode frequencies from the usual general relativistic spectrum and those from the new scalar field spectrum, with the new scalar spectrum characterized by just two free parameters. We then specialize to the subfamily of Horndeski theories in which gravitational waves propagate at the speed of light c on cosmological backgrounds; the scalar quasinormal mode spectrum of such theories is characterized by just a single parameter μ acting as an effective mass of the scalar field. Analytical expressions for the quasinormal mode frequencies of the scalar spectrum in this subfamily of theories are provided for both static and slowly rotating black holes. In both regimes comparisons to quasinormal modes calculated numerically show good agreement with those calculated analytically in this work.
Stability of Gauss-Bonnet black holes in anti-de Sitter space-time against scalar field condensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brihaye, Yves; Hartmann, Betti
We study the stability of static, hyperbolic Gauss-Bonnet black holes in (4+1)-dimensional anti-de Sitter (AdS) space-time against the formation of scalar hair. Close to extremality the black holes possess a near-horizon topology of AdS{sub 2}xH{sup 3} such that within a certain range of the scalar field mass one would expect that they become unstable to the condensation of an uncharged scalar field. We confirm this numerically and observe that there exists a family of hairy black hole solutions labeled by the number of nodes of the scalar field function. We construct explicit examples of solutions with a scalar field thatmore » possesses zero nodes, one node, and two nodes, respectively, and show that the solutions with nodes persist in the limit of Einstein gravity, i.e. for vanishing Gauss-Bonnet coupling. We observe that the interval of the mass for which scalar field condensation appears decreases with increasing Gauss-Bonnet coupling and/or with increasing node number.« less
Stationary holographic plasma quenches and numerical methods for non-killing horizons.
Figueras, Pau; Wiseman, Toby
2013-04-26
We explore use of the harmonic Einstein equations to numerically find stationary black holes where the problem is posed on an ingoing slice that extends into the interior of the black hole. Requiring no boundary conditions at the horizon beyond smoothness of the metric, this method may be applied for horizons that are not Killing. As a nontrivial illustration we find black holes which, via AdS-CFT, describe a time-independent CFT plasma flowing through a static spacetime which asymptotes to Minkowski in the flow's past and future, with a varying spatial geometry in between. These are the first nonperturbative examples of stationary black holes which do not have Killing horizons. When the CFT spacetime slowly varies, the CFT stress tensor derived from gravity is well described by viscous hydrodynamics. For fast variation it is not, and the solutions are stationary analogs of dynamical quenches, with the plasma being suddenly driven out of equilibrium. We find evidence these flows become unstable for sufficiently strong quenches, and speculate the instability may be turbulent.
Kerr black holes with scalar hair.
Herdeiro, Carlos A R; Radu, Eugen
2014-06-06
We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^{2}>1, a quadrupole moment larger than J^{2}/M, and a larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other) models with more general self-interactions.
Ammonia removal via microbial fuel cell (MFC) dynamic reactor
NASA Astrophysics Data System (ADS)
Alabiad, I.; Ali, U. F. M.; Zakarya, I. A.; Ibrahim, N.; Radzi, R. W.; Zulkurnai, N. Z.; Azmi, N. H.
2017-06-01
Landfill leachate is generally known as high-strength wastewater that is difficult to handle and contains dissolved extracts and suspended matter. Microbial fuel cells (MFCs) were designed to treat landfill leachate while continuously producing power (voltage output). Three different anodes were tested in MFC reactors: carbon black, activated carbon, and zinc electrodes. Movements in the MFC reactor during treatment were also a key factor for testing. Results showed a difference in ammonia levels in the three anodes used. The study compared the efficiency of static and dynamic modes of MFC in removing ammonia. Continual leachate movement in the reactor could increase the rate of removal of the ammonia components. The setup provided a viable condition for maximum removal because the reactor movement caused the sludge to disintegrate, which allowed ammonia to separate easily from the parent leachate. Ammonia removal also resulted from the transfer of ammonium through the membrane or from ammonia loss. Constant exchange of ionic content benefited the MFC performance by increasing power production and decreasing internal electrode material resistance. This paper presents the results of the analyses of leachate treatment from the solid waste landfill located in Padang Siding Landfill, Perlis. The performance of ammonia removal was enhanced using different types of electrodes. In both modes, activated carbon performed better than black carbon and zinc. The respective percentages of ammonia removal for activated carbon of dynamic over static were 96.6%, 66.6%, and 92.8% for activated carbon, zinc, and black carbon. The results provide further information on the possibility of using MFCs in landfill leachate treatment systems.
Gravitational quasi-normal modes of static R 2 Anti-de Sitter black holes
NASA Astrophysics Data System (ADS)
Ma, Hong; Li, Jin
2017-06-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11205254, 11178018, 11375279, and 11605015), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 106112016CDJXY300002 and CDJRC10300003), the Chinese State Scholarship Fund, FAPESP (Grant No. 2012/08934-0), and the Natural Science Foundation Project of CQ CSTC (Grant No. 2011BB0052).
Yeh, Chia-Nan; Chai, Jeng-Da
2016-01-01
We investigate the role of Kekulé and non-Kekulé structures in the radical character of alternant polycyclic aromatic hydrocarbons (PAHs) using thermally-assisted-occupation density functional theory (TAO-DFT), an efficient electronic structure method for the study of large ground-state systems with strong static correlation effects. Our results reveal that the studies of Kekulé and non-Kekulé structures qualitatively describe the radical character of alternant PAHs, which could be useful when electronic structure calculations are infeasible due to the expensive computational cost. In addition, our results support previous findings on the increase in radical character with increasing system size. For alternant PAHs with the same number of aromatic rings, the geometrical arrangements of aromatic rings are responsible for their radical character. PMID:27457289
Space-time crystals of trapped ions.
Li, Tongcang; Gong, Zhe-Xuan; Yin, Zhang-Qi; Quan, H T; Yin, Xiaobo; Zhang, Peng; Duan, L-M; Zhang, Xiang
2012-10-19
Spontaneous symmetry breaking can lead to the formation of time crystals, as well as spatial crystals. Here we propose a space-time crystal of trapped ions and a method to realize it experimentally by confining ions in a ring-shaped trapping potential with a static magnetic field. The ions spontaneously form a spatial ring crystal due to Coulomb repulsion. This ion crystal can rotate persistently at the lowest quantum energy state in magnetic fields with fractional fluxes. The persistent rotation of trapped ions produces the temporal order, leading to the formation of a space-time crystal. We show that these space-time crystals are robust for direct experimental observation. We also study the effects of finite temperatures on the persistent rotation. The proposed space-time crystals of trapped ions provide a new dimension for exploring many-body physics and emerging properties of matter.
Propagation of short stress pulses in discrete strongly nonlinear tunable metamaterials.
Xu, Yichao; Nesterenko, Vitali F
2014-08-28
The propagation of short pulses with wavelength comparable to the size of a unit cell has been studied in a one-dimensional discrete metamaterial composed of steel discs alternating with toroidal nitrile O-rings under different levels of precompression using experiments, numerical simulations and theoretical analysis. This strongly nonlinear metamaterial is more tunable than granular chains composed of linear elastic spherical particles and has better potential for attenuation of dynamic loads. A double power-law relationship for compressed O-rings was found to describe adequately their quasi-static and dynamic behaviour with significantly different elastic moduli. It is demonstrated that the double power-law metamaterial investigated allows a dramatic increase in sound speed and acoustic impedance of three to four times using a moderate force. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Pérez-Torralba, Marta; Ángeles García, M; López, Concepción; Torralba, M Carmen; Rosario Torres, M; Alkorta, Ibon; Elguero, José
2013-01-01
Summary Two novel tetrafluorinated 1,5-benzodiazepinones were synthesized and their X-ray structures determined. 6,7,8,9-Tetrafluoro-4-methyl-1,3-dihydro-2H-1,5-benzodiazepin-2-one crystallizes in the monoclinic P21/c space group and 6,7,8,9-tetrafluoro-1,4-dimethyl-1,3-dihydro-2H-1,5-benzodiazepin-2-one in the triclinic P−1 space group. Density functional theory studies at the B3LYP/6-311++G(d,p) level were carried out on these compounds and on four non-fluorinated derivatives, allowing to calculate geometries, tautomeric energies and ring-inversion barriers, that were compared with the experimental results obtained by static and dynamic NMR in solution and in solid state. PMID:24204428
Electrostatic Evaluation: SCAPE Suit Materials
NASA Technical Reports Server (NTRS)
Buhler, Charles; Calle, Carlos
2005-01-01
The surface resistivity tests are performed per the requirements of the ESD Association Standard Test Method ESD STM11.11*. These measurements are taken using a PRS-801 resistance system with an Electro Tech System (ETS) PRF-911 concentric ring resistance probe. The tests require a five pound weight on top of cylindrical electrodes and were conducted at both ambient and low humidity conditions. In order for materials to "pass" resistivity tests the surface of the materials must either be conductive or statically dissipative otherwise the materials "fail" ESD. Volume resistivity tests are also conducted to measure conductivity through the material as opposed to conductivity along the surface. These tests are conducted using the same PRS-801 resistance system with the Electro Tech System PRF-911 concentric ring resistance probe but are performed in accordance with ESD Association Standard Test Method ESD STM11.l2**.
Surgical anatomy and morphologic variations of umbilical structures.
Fathi, Amir H; Soltanian, Hooman; Saber, Alan A
2012-05-01
The umbilicus is the main access route to the abdominal cavity in laparoscopic surgeries. However, its anatomical configuration is rarely studied in the surgical and anatomical literature. With introduction of laparoendoscopic single-site surgery and considering the significant number of primary and postoperative umbilical hernias, we felt the necessity to comprehensively study the umbilical structures and analyze their protective function against hernias. Twenty-four embalmed cadavers were studied in the anatomy laboratory of Case Western Reserve University. Round hepatic, median and medial ligaments, umbilical ring, umbilical and umbilicovesicular fasciae, and pattern of attachment to the ring were dissected and measured. Mean age was 82.1 years, ranging between 56 and 96 years, with a male-to-female ratio of 1.4:1. Ninety-two per cent was white and 8 per cent black adults. According to shape and attachment pattern of ligaments, umbilical ring is classified into five types. Hernia incidence was 25 per cent. All hernia cases lacked the umbilical fascia and the round hepatic ligament was not attached to the inferior border of the ring. The umbilical ring and its morphologic relation with adjacent ligaments are described and classified into five types. In contrary to sparse existing literature, we propose that umbilical fascia is continuation and condensation of umbilicovesicular rather than transversalis fascia. It was absent in cadavers forming conjoined median and medial ligaments with a single insertion site to the ring. Round ligament insertion to the inferior border of the ring provides another protective factor. These two protective measures were absent in all the observed umbilical hernias.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-06-01
When a passing star is torn apart by a supermassive black hole, it emits a flare of X-ray, ultraviolet, and optical light. What can we learn from the infrared echo of a violent disruption like this one?Stellar DestructionOptical (black triangles) and infrared (blue circles and red squares) observations of F010042237. Day 0 marks the day the optical emission peaked. The infrared emission rises steadily through the end of the data. [Dou et al. 2017]Tidal disruption events occur when a star passes within the tidal radius of a supermassive black hole. After tidal forces pull the star apart, much of the stellar matter falls onto the black hole, radiating briefly in X-ray, ultraviolet and optical as it accretes. This signature rise and gradual fall of emission has allowed us to detect dozens of tidal disruption events thus far.One of the recently discovered candidate events is a little puzzling. Not only does the candidate in ultraluminous infrared galaxy F010042237 have an unusual host most disruptions occur in galaxies that are no longer star-forming, in contrast to this one but its optical light curve also shows an unusually long decay time.Now mid-infrared observations of this event have beenpresented by a team of scientists led by Liming Dou (Guangzhou University and Department of Education, Guangdong Province, China), revealing why this disruption is behaving unusually.Schematic of a convex dusty ring (red bows) that absorbs UV photons and re-emits in the infrared. It simultaneously scatters UV and optical photons into our line of sight. The dashed lines illustrate the delays at lags of 60 days, 1, 2, 3, 4, and 5 years. [Adapted from Dou et al. 2017]A Dusty Solution?The optical flare from F010042237s nucleus peaked in 2010, so Dou and collaborators obtained archival mid-infrared data from the WISE and NEOWISE missions from 2010 to 2016. The data show that the galaxy is quiescent in mid-infrared in 2010 but in data from three years later, the infrared emission has significantly increased, and it continues to brighten steadily through the end of the data.Whats going on? The supermassive black hole in the nucleus of F010042237 is likely shrouded by dust! The optical and ultraviolet radiation from the disruption is absorbed by the dust surrounding the black hole. This light is then reemitted as infrared radiation which we see as a delayed echo of the flare, since the light had to travel out to the surrounding dust before being reemitted and traveling to us.Modeling EchoesA fit of the data (points) to light curves (dashed lines) generated by one of the authors dust ring models. [Adapted from Dou et al. 2017]Dou and collaborators show that the observations of F010042237 can be explained if the black hole is surrounded by a thick torus of at least 7 solar masses worth of dust, with a radius of at least 3 light-years. Such a large dust mass so close to the supermassive black hole implies that these dust grains cant have been newly formed so they must have already been there from the dusty torus of the galactic nucleus.The authors point out that this dusty ring solves one of the mysteries of this disruption candidate: because the dust also scatters some of the optical light, this explains why the optical light curve didnt decay as quickly as wed expect.Conveniently, the authors model of this event can be easily tested: it predicts a sharp decrease in the mid-infrared flux in the near future. Continued monitoring of F010042237 in mid-infrared channels should therefore soon be able to confirm our picture of this event. If were correct, these observations provide us with an excellent opportunity to learn about the environments around supermassive black holes.CitationLiming Dou et al 2017 ApJL 841 L8. doi:10.3847/2041-8213/aa7130
2015-09-14
The night sides of Saturn and Tethys are dark places indeed. We know that shadows are darker areas than sunlit areas, and in space, with no air to scatter the light, shadows can appear almost totally black. Tethys (660 miles or 1,062 kilometers across) is just barely seen in the lower left quadrant of this image below the ring plane and has been brightened by a factor of three to increase its visibility. The wavy outline of Saturn's polar hexagon is visible at top center. This view looks toward the sunlit side of the rings from about 10 degrees above the ring plane. The image was taken with the Cassini spacecraft wide-angle camera on Jan. 15, 2015 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers. The view was obtained at a distance of approximately 1.5 million miles (2.4 million kilometers) from Saturn. Image scale is 88 miles (141 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18333
2017-07-10
The light of a new day on Saturn illuminates the planet's wavy cloud patterns and the smooth arcs of the vast rings. The light has traveled around 80 minutes since it left the sun's surface by the time it reaches Saturn. The illumination it provides is feeble; Earth gets 100 times the intensity since it's roughly ten times closer to the sun. Yet compared to the deep blackness of space, everything at Saturn still shines bright in the sunlight, be it direct or reflected. This view looks toward the sunlit side of the rings from about 10 degrees above the ring plane. The image was taken with the Cassini spacecraft wide-angle camera on Feb. 25, 2017 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 939 nanometers. The view was obtained at a distance of approximately 762,000 miles (1.23 million kilometers) from Saturn. Image scale is 45 miles (73 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21336
NASA Astrophysics Data System (ADS)
Huttner, S. H.; Danilishin, S. L.; Barr, B. W.; Bell, A. S.; Gräf, C.; Hennig, J. S.; Hild, S.; Houston, E. A.; Leavey, S. S.; Pascucci, D.; Sorazu, B.; Spencer, A. P.; Steinlechner, S.; Wright, J. L.; Zhang, T.; Strain, K. A.
2017-01-01
Speedmeters are known to be quantum non-demolition devices and, by potentially providing sensitivity beyond the standard quantum limit, become interesting for third generation gravitational wave detectors. Here we introduce a new configuration, the sloshing-Sagnac interferometer, and compare it to the more established ring-Sagnac interferometer. The sloshing-Sagnac interferometer is designed to provide improved quantum noise limited sensitivity and lower coating thermal noise than standard position meter interferometers employed in current gravitational wave detectors. We compare the quantum noise limited sensitivity of the ring-Sagnac and the sloshing-Sagnac interferometers, in the frequency range, from 5 Hz to 100 Hz, where they provide the greatest potential benefit. We evaluate the improvement in terms of the unweighted noise reduction below the standard quantum limit, and by finding the range up to which binary black hole inspirals may be observed. The sloshing-Sagnac was found to give approximately similar or better sensitivity than the ring-Sagnac in all cases. We also show that by eliminating the requirement for maximally-reflecting cavity end mirrors with correspondingly-thick multi-layer coatings, coating noise can be reduced by a factor of approximately 2.2 compared to conventional interferometers.
Computationally Designed Oligomers for High Contrast Black Electrochromic Polymers
2017-05-05
SUBJECT TERMS electrochromics, DFf, TDDFT, organic electronics , oligomer, organic polymers 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER... electron -withdrawing behaviors. Another finding was that the same dication was produced regardless of the color or peak morphology of the neutral 5...radical cation states present in the chromophore upon oxidation. The two-ring electron rich dioxythiophene portions of the chromophore (EAc) and/or the
NASA Astrophysics Data System (ADS)
Marassi, S.; Schneider, R.; Corvino, G.; Ferrari, V.; Portegies Zwart, S.
2011-12-01
We compute the gravitational wave background (GWB) generated by a cosmological population of black hole-black hole (BH-BH) binaries using hybrid waveforms recently produced by numerical simulations of (BH-BH) coalescence, which include the inspiral, merger, and ring-down contributions. A large sample of binary systems is simulated using the population synthesis code SeBa, and we extract fundamental statistical information on (BH-BH) physical parameters (primary and secondary BH masses, orbital separations and eccentricities, formation, and merger time scales). We then derive the binary birth and merger rates using the theoretical cosmic star formation history obtained from a numerical study which reproduces the available observational data at redshifts z<8. We evaluate the contributions of the inspiral, merger, and ring-down signals to the GWB, and discuss how these depend on the parameters which critically affect the number of coalescing (BH-BH) systems. We find that Advanced LIGO/Virgo have a chance to detect the GWB signal from the inspiral phase with a (S/N)=10 only for the most optimistic model, which predicts the highest local merger rate of 0.85Mpc-3Myr-1. Third generation detectors, such as the Einstein Telescope (ET), could reveal the GWB from the inspiral phase predicted by any of the considered models. In addition, ET could sample the merger phase of the evolution at least for models which predict local merger rates between [0.053-0.85]Mpc-3Myr-1, which are more than a factor 2 lower than the upper limit inferred from the analysis of the LIGO S5 run [J. Abadie , Phys. Rev. DPRVDAQ1550-7998 83, 122005 (2011)10.1103/PhysRevD.83.122005]. The frequency dependence and amplitude of the GWB generated during the coalescence is very sensitive to the adopted core mass threshold for BH formation. This opens up the possibility to better understand the final stages of the evolution of massive stellar binaries using observational constraints on the associated gravitational wave emission.
Ferroelectric nanostructure having switchable multi-stable vortex states
Naumov, Ivan I [Fayetteville, AR; Bellaiche, Laurent M [Fayetteville, AR; Prosandeev, Sergey A [Fayetteville, AR; Ponomareva, Inna V [Fayetteville, AR; Kornev, Igor A [Fayetteville, AR
2009-09-22
A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.
The Shock and Vibration Digest. Volume 18, Number 1
1986-01-01
polyurethanes reduced the loss factor and emphasized the correlation between molecular storage modulus by increasing the length of the structure and...one tempera- static deformations. He gave storage and loss ture/frequency range is difficult with copoly- moduli for a carbon black filled and an...has been described (18). The shear loss author states that the frequency dependence of and storage moduli of a void-filled polyurethane the elastomers
NASA Astrophysics Data System (ADS)
Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.
2017-10-01
Using a thin shell, the first law of thermodynamics, and a unified approach, we study the thermodymanics and find the entropy of a (2 +1 )-dimensional extremal rotating Bañados-Teitelbom-Zanelli (BTZ) black hole. The shell in (2 +1 ) dimensions, i.e., a ring, is taken to be circularly symmetric and rotating, with the inner region being a ground state of the anti-de Sitter spacetime and the outer region being the rotating BTZ spacetime. The extremal BTZ rotating black hole can be obtained in three different ways depending on the way the shell approaches its own gravitational or horizon radius. These ways are explicitly worked out. The resulting three cases give that the BTZ black hole entropy is either the Bekenstein-Hawking entropy, S =A/+ 4 G , or an arbitrary function of A+, S =S (A+) , where A+=2 π r+ is the area, i.e., the perimeter, of the event horizon in (2 +1 ) dimensions. We speculate that the entropy of an extremal black hole should obey 0 ≤S (A+)≤A/+ 4 G . We also show that the contributions from the various thermodynamic quantities, namely, the mass, the circular velocity, and the temperature, for the entropy in all three cases are distinct. This study complements the previous studies in thin shell thermodynamics and entropy for BTZ black holes. It also corroborates the results found for a (3 +1 )-dimensional extremal electrically charged Reissner-Nordström black hole.
NASA Astrophysics Data System (ADS)
Lucas, William Evan
2015-06-01
The centre of the Milky Way, commonly referred to as the Galactic Centre, is roughly that region within 500 pc of the central black hole, Sagittarius A*. Within the innermost parsec around the supermassive black hole Sagittarius A* are more than a hundred massive young stars whose orbits align to form one or possibly two discs. At about 100 pc is a ring containing more than ten million solar masses of molecular gas which could be the origin of some of the most massive star clusters in the Galaxy. I have performed a number of numerical simulations to help us understand how it is that these structures may have been formed. I firstly describe and test an improvement to the smoothed particle hydrodynamics code I used. This improves conservation of energy and momentum in certain situations such as in strong shocks from supernovae, which were to be included in a later chapter. The discs of massive stars around Sagittarius A* are believed to have been born there within fragmenting gaseous discs. This is problematic, as the formation of two stellar discs would require two gaseous counterparts. A method is described of forming multiple discs around a black hole from a single cloud's infall and subsequent tidal destruction. This is due to its prolate shape providing a naturally large distribution in the direction of the angular momentum vectors within the cloud. The resulting discs may then go on to form stars. Energetically, it would appear that a sequence of supernovae could potentially cause a giant molecular cloud to fall inwards towards the central black hole from an originally large orbit around the Galactic Centre. I simulate the impact on a giant molecular cloud of supernovae originating from a massive stellar cluster located a parsec away. Ultimately, the supernovae are found to have little effect. Finally, I simulate the formation of the dense ring of clouds observed in the Central Molecular Zone at a distance of about 100 pc from Sgr A*. Infalling gas is shown to be subject to such extreme tidal forces that a single cloud of gas is extended to form a long stream. The ribbon grows to the point that it self-intersects and forms a ring-like structure. Its complexity depends on the orbit of the original cloud. The position-velocity data is compared with observations, and similarities are noted.
NASA Astrophysics Data System (ADS)
George, K.; Joseph, P.; Mondal, C.; Devaraj, A.; Subramaniam, A.; Stalin, C. S.; Côté, P.; Ghosh, S. K.; Hutchings, J. B.; Mohan, R.; Postma, J.; Sankarasubramanian, K.; Sreekumar, P.; Tandon, S. N.
2018-05-01
Context. Some post-merger galaxies are known to undergo a starburst phase that quickly depletes the gas reservoir and turns it into a red-sequence galaxy, though the details are still unclear. Aims: Here we explore the pattern of recent star formation in the central region of the post-merger galaxy NGC 7252 using high-resolution ultraviolet (UV) images from the UVIT on ASTROSAT. Methods: The UVIT images with 1.2 and 1.4 arcsec resolution in the FUV and NUV are used to construct a FUV-NUV colour map of the central region. Results: The FUV-NUV pixel colour map for this canonical post-merger galaxy reveals a blue circumnuclear ring of diameter 10'' (3.2 kpc) with bluer patches located over the ring. Based on a comparison to single stellar population models, we show that the ring is comprised of stellar populations with ages ≲300 Myr, with embedded star-forming clumps of younger age (≲150Myr). Conclusions: The suppressed star formation in the central region, along with the recent finding of a large amount of ionised gas, leads us to speculate that this ring may be connected to past feedback from a central super-massive black hole that has ionised the hydrogen gas in the central 4'' 1.3 kpc.
NASA Astrophysics Data System (ADS)
Meng, Rui; Cheong, Kang Hao; Bao, Wei; Wong, Kelvin Kian Loong; Wang, Lu; Xie, Neng-gang
2018-06-01
This article attempts to evaluate the safety and economic performance of an arch dam under the action of static loads. The geometric description of a crown cantilever section and the horizontal arch ring is presented. A three-objective optimization model of arch dam shape is established based on the arch dam volume, maximum principal tensile stress and total strain energy. The evolutionary game method is then applied to obtain the optimal solution. In the evolutionary game technique, a novel and more efficient exploration method of the game players' strategy space, named the 'sorting partition method under the threshold limit', is presented, with the game profit functions constructed according to both competitive and cooperative behaviour. By way of example, three optimization goals have all shown improvements over the initial solutions. In particular, the evolutionary game method has potentially faster convergence. This demonstrates the preliminary proof of principle of the evolutionary game method.
High strain rate properties of off-axis composite laminates, part 2
NASA Technical Reports Server (NTRS)
Daniel, I. M.
1991-01-01
Unidirectional off-axis graphite/epoxy and graphite/S-glass/epoxy laminates were characterized in uniaxial tension at strain rates ranging from quasi-static to over 500 s(sup -1). Laminate ring specimens were loaded by internal pressure with the tensile stress at 22.5, 30, and 45 degrees relative to the fiber direction. Results were presented in the form of stress-strain curves to failure. Properties determined included moduli, Poisson's ratios, strength, and ultimate strain. In all three laminates of both materials the modulus and strength increase sharply with strain rate, reaching values roughly 100, 150, and 200 percent higher than corresponding static values for the 22.5(sub 8), 30(sub 8), and 45(sub 8) degree laminates, respectively. In the case of ultimate strain no definite trends could be established, but the maximum deviation from the average of any value for any strain rate was less than 18 percent.
Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures.
Jiang, Liyong; Yin, Tingting; Dong, Zhaogang; Liao, Mingyi; Tan, Shawn J; Goh, Xiao Ming; Allioux, David; Hu, Hailong; Li, Xiangyin; Yang, Joel K W; Shen, Zexiang
2015-10-27
Dark-field microscopy is a widely used tool for measuring the optical resonance of plasmonic nanostructures. However, current numerical methods for simulating the dark-field scattering spectra were carried out with plane wave illumination either at normal incidence or at an oblique angle from one direction. In actual experiments, light is focused onto the sample through an annular ring within a range of glancing angles. In this paper, we present a theoretical model capable of accurately simulating the dark-field light source with an annular ring. Simulations correctly reproduce a counterintuitive blue shift in the scattering spectra from gold nanodisks with a diameter beyond 140 nm. We believe that our proposed simulation method can be potentially applied as a general tool capable of simulating the dark-field scattering spectra of plasmonic nanostructures as well as other dielectric nanostructures with sizes beyond the quasi-static limit.
Higher-order Skyrme hair of black holes
NASA Astrophysics Data System (ADS)
Gudnason, Sven Bjarke; Nitta, Muneto
2018-05-01
Higher-order derivative terms are considered as replacement for the Skyrme term in an Einstein-Skyrme-like model in order to pinpoint which properties are necessary for a black hole to possess stable static scalar hair. We find two new models able to support stable black hole hair in the limit of the Skyrme term being turned off. They contain 8 and 12 derivatives, respectively, and are roughly the Skyrme-term squared and the so-called BPS-Skyrme-term squared. In the twelfth-order model we find that the lower branches, which are normally unstable, become stable in the limit where the Skyrme term is turned off. We check this claim with a linear stability analysis. Finally, we find for a certain range of the gravitational coupling and horizon radius, that the twelfth-order model contains 4 solutions as opposed to 2. More surprisingly, the lowest part of the would-be unstable branch turns out to be the stable one of the 4 solutions.
Ultrarelativistic boost of a black hole in the magnetic universe of Levi-Civita-Bertotti-Robinson
NASA Astrophysics Data System (ADS)
Ortaggio, Marcello; Astorino, Marco
2018-05-01
We consider an exact Einstein-Maxwell solution constructed by Alekseev and Garcia, which describes a Schwarzschild black hole immersed in the magnetic universe of Levi-Civita, Bertotti, and Robinson (LCBR). After reviewing the basic properties of this spacetime, we study the ultrarelativistic limit in which the black hole is boosted to the speed of light, while sending its mass to 0. This results in a nonexpanding impulsive wave traveling in the LCBR universe. The wave front is a 2-sphere carrying two null point particles at its poles—a remnant of the structure of the original static spacetime. It is also shown that the obtained line element belongs to the Kundt class of spacetimes, and the relation with the known family of exact gravitational waves of finite duration propagating in the LCBR background is clarified. In the limit of a vanishing electromagnetic field, one point particle is pushed away to infinity and the single-particle Aichelburg-Sexl p p -wave propagating in Minkowski space is recovered.
Images and Spectra of Time Dependent Two Component Advective Flow in Presence of Outflows
NASA Astrophysics Data System (ADS)
Chatterjee, Arka; Chakrabarti, Sandip K.; Ghosh, Himadri; Garain, Sudip K.
2018-05-01
Two Component Advective Flow (TCAF) successfully explains the spectral and temporal properties of outbursting or persistent sources. Images of static TCAF with Compton cloud or CENtrifugal pressure supported Boundary Layer (CENBOL) due to gravitational bending of photons have been studied before. In this paper, we study time dependent images of advective flows around a Schwarzschild black hole which include cooling effects due to Comptonization of soft photons from a Keplerian disks well as the self-consistently produced jets and outflows. We show the overall image of the disk-jet system after convolving with a typical beamwidth. A long exposure image with time dependent system need not show the black hole horizon conspicuously, unless one is looking at a soft state with no jet or the system along the jet axis. Assuming these disk-jet configurations are relevant to radio emitting systems also, our results would be useful to look for event horizons in high accretion rate Supermassive Black Holes in Seyfert galaxies, RL Quasars.
Optimisation of pressurised liquid extraction of antioxidants from black bamboo leaves.
Shang, Ya Fang; Kim, Sang Min; Um, Byung-Hun
2014-07-01
To develop an efficient green extraction approach for recovering bioactive compounds from natural plants, the potential of using pressurised liquid extraction (PLE) was examined on black bamboo (Phyllostachys nigra) leaves, with ethanol/water as solvents. The superheated PLE process showed a higher recovery of most constituents and antioxidative activity, compared to reflux extraction, with a significantly improved recovery of the total phenolic (TP) and flavonoid (TF) content and DPPH radical scavenging ability. For a broad range of ethanol aqueous solutions and temperatures, 50% EtOH and 200°C (static time: 25min) gave the best performance, in terms of the TP and TF (75% EtOH) content yield and DPPH scavenging ability (25% EtOH). Under the optimised extraction conditions, eight main antioxidative compounds were isolated and identified with HPLC-ABTS(+) assay guidance and assessed for radical scavenging activity. The superheated extraction process for black bamboo leaves enhanced the antioxidant properties by increasing the extraction of the phenolic components. Copyright © 2013 Elsevier Ltd. All rights reserved.
Asano, Natsuki; Kitamura, Shinichi; Terao, Ken
2013-08-15
Small-angle X-ray scattering and static and dynamic light scattering measurements were made for cyclic amylose tris(phenylcarbamate) (cATPC) of which weight-average molar mass M(w) ranges from 1.3 × 10(4) to 1.5 × 10(5) to determine their z-average mean square radius of gyration z, particle scattering function P(q), hydrodynamic radius R(H), and second virial coefficient A2 in methyl acetate (MEA), ethyl acetate (EA), and 4-methyl-2-pentanone (MIBK). The obtained z, P(q), and R(H) data were analyzed in terms of the wormlike ring to estimate the helix pitch per residue h and the Kuhn segment length λ(-1) (the stiffness parameter, twice the persistence length). Both h and λ(-1) for cATPC in MEA, EA, and MIBK are smaller than those for linear amylose tris(phenylcarbamate) (ATPC) in the corresponding solvent and the discrepancy becomes more significant with increasing the molar volume of the solvent. This indicates that not every rigid ring has the same local helical structure and chain stiffness as that for the linear polymer in the M(w) range investigated while infinitely long ring chains should have the same local conformation. This conformational difference also affects A2. In actuality, negative A2 was observed for cATPC in MIBK at the Θ temperature of linear ATPC whereas intermolecular topological interaction of ring polymers increases A2.
Leclaire, S.; White, J.; Arnoux, E.; Faivre, B.; Vetter, N.; Hatch, Shyla A.; Danchin, E.
2011-01-01
Carotenoid pigments are important for immunity and as antioxidants, and carotenoid-based colors are believed to provide honest signals of individual quality. Other colorless but more efficient antioxidants such as vitamins A and E may protect carotenoids from bleaching. Carotenoid-based colors have thus recently been suggested to reflect the concentration of such colorless antioxidants, but this has rarely been tested. Furthermore, although evidence is accruing for multiple genetic criteria for mate choice, carotenoid-based colors have rarely been shown to reflect both phenotypic and genetic quality. In this study, we investigated whether gape, tongue, eye-ring, and bill coloration of chick-rearing black-legged kittiwakes Rissa tridactyla reflected circulating levels of carotenoids and vitamins A and E. We further investigated whether integument coloration reflected phenotypic (body condition and fledging success) and genetic quality (heterozygosity). We found that the coloration of fleshy integuments was correlated with carotenoid and vitamin A levels and fledging success but only in males. Furthermore, the coloration of tongue and eye-ring was correlated with heterozygosity in both males and females. Integument colors might therefore be reliable signals of individual quality used by birds to adjust their parental care during the chick-rearing period. ?? Springer-Verlag 2011.
A numerical approach to finding general stationary vacuum black holes
NASA Astrophysics Data System (ADS)
Adam, Alexander; Kitchen, Sam; Wiseman, Toby
2012-08-01
The Harmonic Einstein equation is the vacuum Einstein equation supplemented by a gauge fixing term which we take to be that of DeTurck. For static black holes analytically continued to Riemannian manifolds without boundary at the horizon, this equation has previously been shown to be elliptic, and Ricci flow and Newton’s method provide good numerical algorithms to solve it. Here we extend these techniques to the arbitrary cohomogeneity stationary case which must be treated in Lorentzian signature. For stationary spacetimes with globally timelike Killing vector the Harmonic Einstein equation is elliptic. In the presence of horizons and ergo-regions it is less obviously so. Motivated by the Rigidity theorem we study a class of stationary black hole spacetimes which is general enough to include many interesting higher dimensional solutions. We argue the Harmonic Einstein equation consistently truncates to this class of spacetimes giving an elliptic problem. The Killing horizons and axes of rotational symmetry are boundaries for this problem and we determine boundary conditions there. As a simple example we numerically construct 4D rotating black holes in a cavity using Anderson’s boundary conditions. We demonstrate both Newton’s method and Ricci flow to find these Lorentzian solutions.
First storage of ion beams in the Double Electrostatic Ion-Ring Experiment: DESIREE.
Schmidt, H T; Thomas, R D; Gatchell, M; Rosén, S; Reinhed, P; Löfgren, P; Brännholm, L; Blom, M; Björkhage, M; Bäckström, E; Alexander, J D; Leontein, S; Hanstorp, D; Zettergren, H; Liljeby, L; Källberg, A; Simonsson, A; Hellberg, F; Mannervik, S; Larsson, M; Geppert, W D; Rensfelt, K G; Danared, H; Paál, A; Masuda, M; Halldén, P; Andler, G; Stockett, M H; Chen, T; Källersjö, G; Weimer, J; Hansen, K; Hartman, H; Cederquist, H
2013-05-01
We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2 (-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.
Methanol clusters (CH3OH)n, n = 3-6 in external electric fields: density functional theory approach.
Rai, Dhurba; Kulkarni, Anant D; Gejji, Shridhar P; Pathak, Rajeev K
2011-07-14
Structural evolution of cyclic and branched-cyclic methanol clusters containing three to six molecules, under the influence of externally applied uniform static electric field is studied within the density functional theory. Akin to the situation for water clusters, the electric field is seen to stretch the intermolecular hydrogen bonds, and eventually break the H-bonded network at certain characteristic threshold field values of field strength in the range 0.009-0.016 a.u., yielding linear or branched structures with a lower energy. These structural transitions are characterized by an abrupt increase in the electric dipole moment riding over its otherwise steady nonlinear increase with the applied field. The field tends to rupture the H-bonded structure; consequently, the number of hydrogen bonds decreases with increasing field strength. Vibrational spectra analyzed for fields applied perpendicular to the cyclic ring structures bring out the shifts in the OH ring vibrations (blueshift) and the CO stretch vibrations (redshift). For a given field strength, the blueshifts increase with the number of molecules in the ring and are found to be generally larger than those in the corresponding water cluster counterparts.
Killing approximation for vacuum and thermal stress-energy tensor in static space-times
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, V.P.; Zel'nikov, A.I.
1987-05-15
The problem of the vacuum polarization of conformal massless fields in static space-times is considered. A tensor T/sub ..mu..//sub ..nu../ constructed from the curvature, the Killing vector, and their covariant derivatives is proposed which can be used to approximate the average value of the stress-energy tensor /sup ren/ in such spaces. It is shown that if (i) its trace T /sub epsilon//sup epsilon/ coincides with the trace anomaly /sup ren/, (ii) it satisfies the conservation law T/sup ..mu..//sup epsilon/ /sub ;//sub epsilon/ = 0, and (iii) it has the correct behavior under the scale transformations, then it is uniquely definedmore » up to a few arbitrary constants. These constants must be chosen to satisfy the boundary conditions. In the case of a static black hole in a vacuum these conditions single out the unique tensor T/sub ..mu..//sub ..nu../ which provides a good approximation for /sup ren/ in the Hartle-Hawking vacuum. The relation between this approach and the Page-Brown-Ottewill approach is discussed.« less
Integrability in conformally coupled gravity: Taub-NUT spacetimes and rotating black holes
NASA Astrophysics Data System (ADS)
Bardoux, Yannis; Caldarelli, Marco M.; Charmousis, Christos
2014-05-01
We consider four dimensional stationary and axially symmetric spacetimes for conformally coupled scalar-tensor theories. We show that, in analogy to the Lewis-Papapetrou problem in General Relativity (GR), the theory at hand can be recast in an analogous integrable form. We give the relevant rod formalism, introduced by Weyl for vacuum GR, explicitly giving the rod structure of the black hole of Bocharova et al. and Bekenstein (BBMB), in complete analogy to the Schwarzschild solution. The additional scalar field is shown to play the role of an extra Weyl potential. We then employ the Ernst method as a concrete solution generating example to obtain the Taub-NUT version of the BBMB hairy black hole. The solution is easily extended to include a cosmological constant. We show that the anti-de Sitter hyperbolic version of this solution is free of closed timelike curves that plague usual Taub-NUT metrics, and thus consists of a rotating, asymptotically locally anti-de Sitter black hole. This stationary solution has no curvature singularities whatsoever in the conformal frame, and the NUT charge is shown here to regularize the central curvature singularity of the corresponding static black hole. Given our findings we discuss the anti-de Sitter hyperbolic version of Taub-NUT in four dimensions, and show that the curvature singularity of the NUT-less solution is now replaced by a neighbouring chronological singularity screened by horizons. We argue that the properties of this rotating black hole are very similar to those of the rotating BTZ black hole in three dimensions.
Proto-jet configurations in RADs orbiting a Kerr SMBH: symmetries and limiting surfaces
NASA Astrophysics Data System (ADS)
Pugliese, D.; Stuchlík, Z.
2018-05-01
Ringed accretion disks (RADs) are agglomerations of perfect-fluid tori orbiting around a single central attractor that could arise during complex matter inflows in active galactic nuclei. We focus our analysis to axi-symmetric accretion tori orbiting in the equatorial plane of a supermassive Kerr black hole; equilibrium configurations, possible instabilities, and evolutionary sequences of RADs were discussed in our previous works. In the present work we discuss special instabilities related to open equipotential surfaces governing the material funnels emerging at various regions of the RADs, being located between two or more individual toroidal configurations of the agglomerate. These open structures could be associated to proto-jets. Boundary limiting surfaces are highlighted, connecting the emergency of the jet-like instabilities with the black hole dimensionless spin. These instabilities are observationally significant for active galactic nuclei, being related to outflows of matter in jets emerging from more than one torus of RADs orbiting around supermassive black holes.
A molecular Einstein ring: imaging a starburst disk surrounding a quasi-stellar object.
Carilli, C L; Lewis, G F; Djorgovski, S G; Mahabal, A; Cox, P; Bertoldi, F; Omont, A
2003-05-02
Images of the molecular CO 2-1 line emission and the radio continuum emission from the redshift 4.12 gravitationally lensed quasi-stellar object (QSO) PSS J2322+1944 reveal an Einstein ring with a diameter of 1.5". These observations are modeled as a star-forming disk surrounding the QSO nucleus with a radius of 2 kiloparsecs. The implied massive star formation rate is 900 solar masses per year. At this rate, a substantial fraction of the stars in a large elliptical galaxy could form on a dynamical time scale of 108 years. The observation of active star formation in the host galaxy of a high-redshift QSO supports the hypothesis of coeval formation of supermassive black holes and stars in spheroidal galaxies.
Helium-Cooled Black Shroud for Subscale Cryogenic Testing
NASA Technical Reports Server (NTRS)
Tuttle, James; Jackson, Michael; DiPirro, Michael; Francis, John
2011-01-01
This shroud provides a deep-space simulating environment for testing scaled-down models of passively cooling systems for spaceflight optics and instruments. It is used inside a liquid-nitrogen- cooled vacuum chamber, and it is cooled by liquid helium to 5 K. It has an inside geometry of approximately 1.6 m diameter by 0.45 m tall. The inside surfaces of its top and sidewalls have a thermal absorptivity greater than 0.96. The bottom wall has a large central opening that is easily customized to allow a specific test item to extend through it. This enables testing of scale models of realistic passive cooling configurations that feature a very large temperature drop between the deepspace-facing cooled side and the Sun/Earth-facing warm side. This shroud has an innovative thermal closeout of the bottom wall, so that a test sample can have a hot (room temperature) side outside of the shroud, and a cold side inside the shroud. The combination of this closeout and the very black walls keeps radiated heat from the sample s warm end from entering the shroud, reflecting off the walls and heating the sample s cold end. The shroud includes 12 vertical rectangular sheet-copper side panels that are oriented in a circular pattern. Using tabs bent off from their edges, these side panels are bolted to each other and to a steel support ring on which they rest. The removable shroud top is a large copper sheet that rests on, and is bolted to, the support ring when the shroud is closed. The support ring stands on four fiberglass tube legs, which isolate it thermally from the vacuum chamber bottom. The insides of the cooper top and side panels are completely covered with 25- mm-thick aluminum honeycomb panels. This honeycomb is painted black before it is epoxied to the copper surfaces. A spiral-shaped copper tube, clamped at many different locations to the outside of the top copper plate, serves as part of the liquid helium cooling loop. Another copper tube, plumbed in a series to the top plate s tube, is clamped to the sidewall tabs where they are bolted to the support ring. Flowing liquid helium through these tubes cools the entire shroud to 5 K. The entire shroud is wrapped loosely in a layer of double-aluminized Kapton. The support ring s inner diameter is the largest possible hole through which the test item can extend into the shroud. Twelve custom-sized trapezoidal copper sheets extend inward from the support ring to within a few millimeters of the test item. Attached to the inner edge of each of these sheets is a custom-shaped strip of Kapton, which is aluminum- coated on the warm-facing (outer) side, and has thin Dacron netting attached to its cold-facing side. This Kapton rests against the test item, but the Dacron keeps it from making significant thermal contact. The result is a non-contact, radiatively reflective thermal closeout with essentially no gap through which radiation can pass. In this way, the part of the test item outside the shroud can be heated to relatively high temperatures without any radiative heat leaking to the inside.
Kramer, Michael R.; Valderrama, Amy L.; Casper, Michele L.
2015-01-01
Against the backdrop of late 20th century declines in heart disease mortality in the United States, race-specific rates diverged because of slower declines among blacks compared with whites. To characterize the temporal dynamics of emerging black-white racial disparities in heart disease mortality, we decomposed race-sex–specific trends in an age-period-cohort (APC) analysis of US mortality data for all diseases of the heart among adults aged ≥35 years from 1973 to 2010. The black-white gap was largest among adults aged 35–59 years (rate ratios ranged from 1.2 to 2.7 for men and from 2.3 to 4.0 for women) and widened with successive birth cohorts, particularly for men. APC model estimates suggested strong independent trends across generations (“cohort effects”) but only modest period changes. Among men, cohort-specific black-white racial differences emerged in the 1920–1960 birth cohorts. The apparent strength of the cohort trends raises questions about life-course inequalities in the social and health environments experienced by blacks and whites which could have affected their biomedical and behavioral risk factors for heart disease. The APC results suggest that the genesis of racial disparities is neither static nor restricted to a single time scale such as age or period, and they support the importance of equity in life-course exposures for reducing racial disparities in heart disease. PMID:26199382
Black hole perturbations in vector-tensor theories: the odd-mode analysis
NASA Astrophysics Data System (ADS)
Kase, Ryotaro; Minamitsuji, Masato; Tsujikawa, Shinji; Zhang, Ying-li
2018-02-01
In generalized Proca theories with vector-field derivative couplings, a bunch of hairy black hole solutions have been derived on a static and spherically symmetric background. In this paper, we formulate the odd-parity black hole perturbations in generalized Proca theories by expanding the corresponding action up to second order and investigate whether or not black holes with vector hair suffer ghost or Laplacian instabilities. We show that the models with cubic couplings G3(X), where X=‑AμAμ/2 with a vector field Aμ, do not provide any additional stability condition as in General Relativity. On the other hand, the exact charged stealth Schwarzschild solution with a nonvanishing longitudinal vector component A1, which originates from the coupling to the Einstein tensor GμνAμ Aν equivalent to the quartic coupling G4(X) containing a linear function of X, is unstable in the vicinity of the event horizon. The same instability problem also persists for hairy black holes arising from general quartic power-law couplings G4(X) ⊃ β4 Xn with the nonvanishing A1, while the other branch with A1=0 can be consistent with conditions for the absence of ghost and Laplacian instabilities. We also discuss the case of other exact and numerical black hole solutions associated with intrinsic vector-field derivative couplings and show that there exists a wide range of parameter spaces in which the solutions suffer neither ghost nor Laplacian instabilities against odd-parity perturbations.
Factorization and resummation: A new paradigm to improve gravitational wave amplitudes
NASA Astrophysics Data System (ADS)
Nagar, Alessandro; Shah, Abhay
2016-11-01
We introduce a new resummed analytical form of the post-Newtonian (PN), factorized, multipolar amplitude corrections fℓm of the effective-one-body (EOB) gravitational waveform of spinning, nonprecessing, circularized, coalescing black hole binaries (BBHs). This stems from the following two-step paradigm: (i) the factorization of the orbital (spin-independent) terms in fℓm; (ii) the resummation of the residual spin (or orbital) factors. We find that resumming the residual spin factor by taking its inverse resummed (iResum) is an efficient way to obtain amplitudes that are more accurate in the strong-field, fast-velocity regime. The performance of the method is illustrated on the ℓ=2 and m =(1 ,2 ) waveform multipoles, both for a test mass orbiting around a Kerr black hole and for comparable-mass BBHs. In the first case, the iResum fℓm's are much closer to the corresponding "exact" functions (obtained by numerically solving the Teukolsky equation) up to the light ring than the nonresummed ones, especially when the black-hole spin is nearly extremal. The iResum paradigm is also more efficient than including higher post-Newtonian terms (up to 20PN order): the resummed 5PN information yields per se a rather good numerical or analytical agreement at the last stable orbit and a well-controlled behavior up to the light ring. For comparable mass binaries (including the highest PN-order information available, 3.5PN), comparing EOB with numerical relativity (NR) data shows that the EOB/NR fractional disagreement at merger, without NR calibration of the EOB waveform, is generically reduced by iResum, from 40% of the usual approach to just a few percent. This suggests that EOBNR waveform models for coalescing BBHs may be improved by using iResum amplitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Hua-Gang; Ji, Min; Ji, Shou-Hua
2013-02-15
Two new copper(I)-thioarsenates(III), CsCu{sub 2}AsS{sub 3}(1) and KCu{sub 4}AsS{sub 4}(2), have been synthesized solvothermally in the presence of copper powder. Compound 1 is built up of trigonal AsS{sub 3} pyramid, tetrahedral CuAsS{sub 3} and CuS{sub 3} moieties forming 4-membered, 5-membered and 6-membered rings. The fusion of these rings produces layered anions [Cu{sub 2}AsS{sub 3}]{sup -}, and cesium cations are located between metal-sulfide layers. The structure of 2 consists of infinite [Cu{sub 2}S{sub 2}]{sup 2-} chain and layered [Cu{sub 6}As{sub 2}S{sub 6}] linked to form a three-dimensional anionic framework, [Cu{sub 4}AsS{sub 4}]{sup -}, and containing channels in which the potassium cationsmore » reside. - Graphical abstract: Qne layered CsCu{sub 2}AsS{sub 3} and one framework KCu{sub 4}AsS{sub 4} possessing noncondensed [AsS{sub 3}]{sup 3-} unit have been synthesized solvothermally. The optical band gaps of the two compounds are 2.3 and 1.8 eV, respectively. Highlights: Black-Right-Pointing-Pointer We obtained two new copper(I)-thioarsenate(III), CsCu{sub 2}AsS{sub 3} and KCu{sub 4}AsS{sub 4}. Black-Right-Pointing-Pointer Both compounds possess noncondensed [AsS{sub 3}]{sup 3-} unit and represent new structure types. Black-Right-Pointing-Pointer The optical band gaps of the two compounds are 2.3 eV and 1.8 eV, respectively.« less
Simple technologies for on-farm composting of cattle slurry solid fraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brito, L.M., E-mail: miguelbrito@esa.ipvc.pt; Mourao, I.; Coutinho, J., E-mail: j_coutin@utad.pt
2012-07-15
Highlights: Black-Right-Pointing-Pointer Simple management techniques were examined for composting slurry solid fraction. Black-Right-Pointing-Pointer Composting slurry solids was effective without bulking agents, turning or rewetting. Black-Right-Pointing-Pointer Maximum rates of organic matter destruction were observed in short piles. Black-Right-Pointing-Pointer Thermophilic temperatures in tall piles maximised sanitation and moisture reduction. Black-Right-Pointing-Pointer The simple compost management approach maximised N retention and agronomic value. - Abstract: Composting technologies and control systems have reached an advanced stage of development, but these are too complex and expensive for most agricultural practitioners for treating livestock slurries. The development of simple, but robust and cost-effective techniques for composting animalmore » slurries is therefore required to realise the potential benefits of waste sanitation and soil improvement associated with composted livestock manures. Cattle slurry solid fraction (SF) was collected at the rates of 4 m{sup 3} h{sup -1} and 1 m{sup 3} h{sup -1} and composted in tall (1.7 m) and short (1.2 m) static piles, to evaluate the physicochemical characteristics and nutrient dynamics of SF during composting without addition of bulking agent materials, and without turning or water addition. Highest maximum temperatures (62-64 Degree-Sign C) were measured in tall piles compared to short piles (52 Degree-Sign C). However, maximum rates of organic matter (OM) destruction were observed at mesophilic temperature ranges in short piles, compared to tall piles, whereas thermophilic temperatures in tall piles maximised sanitation and enhanced moisture reduction. Final OM losses were within the range of 520-660 g kg{sup -1} dry solids and the net loss of OM significantly (P < 0.001) increased nutrient concentrations during the composting period. An advanced degree of stabilization of the SF was indicated by low final pile temperatures and C/N ratio, low concentrations of NH{sub 4}{sup +} and increased concentrations of NO{sub 3}{sup -} in SF composts. The results indicated that minimum intervention composting of SF in static piles over 168 days can produce agronomically effective organic soil amendments containing significant amounts of OM (772-856 g kg{sup -1}) and plant nutrients. The implications of a minimal intervention management approach to composting SF on compost pathogen reduction are discussed and possible measures to improve sanitation are suggested.« less
New Horizons in Thermodynamics
NASA Astrophysics Data System (ADS)
Hayward, Geoffrey Gordon
1991-02-01
This thesis collects five papers which treat the theory of horizon thermodynamics and its applications to cosmology. In the first paper I consider general, spherically symmetric spacetimes with cosmological and black hole horizons. I find that a state of thermal equilibrium may exist in classical manifolds with two horizons so long as a matter distribution is present. I calculate the Euclidean action for non-classical manifolds with and without boundary and relate it to the grand canonical weighting factor. I find that the mean thermal energy of the cosmological horizon is negative. In the second paper I derive the first law of thermodynamics for bounded, static, spherically symmetric spacetimes which include a matter distribution and either a black hole or cosmological horizon. I calculate heat capacities associated with matter/horizon systems and find that they may be positive or negative depending on the matter configuration. I discuss the case in which the cosmological constant is allowed to vary and conclude that the Hawking/Coleman mechanisms for explaining the low value of the cosmological constant are not well formulated. In the third paper, co-authored by Jorma Louko, we analyze variational principles for non-smooth metrics. These principles give insight to the problem of constructing minisuperspace path integrals in horizon statistical mechanics and quantum cosmology. We demonstrate that smoothness conditions can be derived from the variational principle as equations of motion. We suggest a new prescription for minisuperspace path integrals on the manifold | D times S^2. In the fourth paper, I examine the contribution of the horizon energy density to black hole temperature. I show the existence of positive heat capacity solutions in the small mass regime. In the fifth paper, co-authored by Diego Pavon we investigate the role of primordial black holes in the very early universe under SU(3) times SU(2) times U (1), SU(5), and their supersymmetric counterparts. Three of the four theories predict a phase in which black holes and radiation are of comparable energy density. The fourth theory, SU(5), predicts a radiation dominated model from the Planck era onward. In the concluding general discussion I show how generalized laws of thermodynamics can be related to variations of the classical gravitational action. These laws apply even for non-static, non-spherically symmetric spacetimes.
NASA Astrophysics Data System (ADS)
Beardmore, A. P.; Willingale, R.; Kuulkers, E.; Altamirano, D.; Motta, S. E.; Osborne, J. P.; Page, K. L.; Sivakoff, G. R.
2016-10-01
On 2015 June 15, the black hole X-ray binary V404 Cygni went into outburst, exhibiting extreme X-ray variability which culminated in a final flare on June 26. Over the following days, the Swift-X-ray Telescope detected a series of bright rings, comprising five main components that expanded and faded with time, caused by X-rays scattered from the otherwise unobservable dust layers in the interstellar medium in the direction of the source. Simple geometrical modelling of the rings' angular evolution reveals that they have a common temporal origin, coincident with the final, brightest flare seen by INTEGRAL's JEM X-1, which reached a 3-10 keV flux of ˜25 Crab. The high quality of the data allows the dust properties and density distribution along the line of sight to the source to be estimated. Using the Rayleigh-Gans approximation for the dust scattering cross-section and a power-law distribution of grain sizes a, ∝ a-q, the average dust emission is well modelled by q = 3.90^{+0.09}_{-0.08} and maximum grain size of a_+ = 0.147^{+0.024}_{-0.004} { μ m}, though significant variations in q are seen between the rings. The recovered dust density distribution shows five peaks associated with the dense sheets responsible for the rings at distances ranging from 1.19 to 2.13 kpc, with thicknesses of ˜40-80 pc and a maximum density occurring at the location of the nearest sheet. We find a dust column density of Ndust ≈ (2.0-2.5) × 1011 cm-2, consistent with the optical extinction to the source. Comparison of the inner rings' azimuthal X-ray evolution with archival Wide-field Infrared Survey Explorer mid-IR data suggests that the second most distant ring follows the general IR emission trend, which increases in brightness towards the Galactic north side of the source.
2013-12-23
Winter is approaching in the southern hemisphere of Saturn and with this cold season has come the familiar blue hue that was present in the northern winter hemisphere at the start of NASA's Cassini mission. The changing blue hue that we have learned marks winter at Saturn is likely due to reduction of ultraviolet sunlight and the haze it produces, making the atmosphere clearer and increasing the opportunity for Rayleigh scattering (scattering by molecules and smaller particles) and methane absorption: both processes make the atmosphere blue. The small black dot seen to the right and up from image center, within the ring shadows of the A and F rings, is the shadow of the moon, Prometheus. For an image showing winter in the northern hemisphere see PIA08166. This view looks toward the unilluminated side of the rings from about 44 degrees below the ring plane. Images taken using red, green and blue spectral filters were combined to create this natural color view. The images were taken with the Cassini spacecraft wide-angle camera on July 29, 2013. This view was acquired at a distance of approximately 1.003 million miles (1.615 million kilometers) from Saturn. Image scale is 58 miles (93 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA17176
Panyushkina, Irina P.; Leavitt, Steven W.; Thompson, Todd A.; Schneider, Allan F.; Lange, Todd
2008-01-01
Until now, availability of wood from the Younger Dryas abrupt cooling event (YDE) in N. America ca. 12.9 to 11.6 ka has been insufficient to develop high-resolution chronologies for refining our understanding of YDE conditions. Here we present a multi-proxy tree-ring chronology (ring widths, “events” evidenced by microanatomy and macro features, stable isotopes) from a buried black spruce forest in the Great Lakes area (Liverpool East site), spanning 116 yr at ca. 12,000 cal yr BP. During this largely cold and wet period, the proxies convey a coherent and precise forest history including frost events, tilting, drowning and burial in estuarine sands as the Laurentide Ice Sheet deteriorated. In the middle of the period, a short mild interval appears to have launched the final and largest episode of tree recruitment. Ultimately the tops of the trees were sheared off after death, perhaps by wind-driven ice floes, culminating an interval of rising water and sediment deposition around the base of the trees. Although relative influences of the continental ice sheet and local effects from ancestral Lake Michigan are indeterminate, the tree-ring proxies provide important insight into environment and ecology of a N. American YDE boreal forest stand.
NASA Astrophysics Data System (ADS)
Erhard, Jannis; Bleiziffer, Patrick; Görling, Andreas
2016-09-01
A power series approximation for the correlation kernel of time-dependent density-functional theory is presented. Using this approximation in the adiabatic-connection fluctuation-dissipation (ACFD) theorem leads to a new family of Kohn-Sham methods. The new methods yield reaction energies and barriers of unprecedented accuracy and enable a treatment of static (strong) correlation with an accuracy of high-level multireference configuration interaction methods but are single-reference methods allowing for a black-box-like handling of static correlation. The new methods exhibit a better scaling of the computational effort with the system size than rivaling wave-function-based electronic structure methods. Moreover, the new methods do not suffer from the problem of singularities in response functions plaguing previous ACFD methods and therefore are applicable to any type of electronic system.
How to Detect Inclined Water Maser Disks (and Possibly Measure Black Hole Masses)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Jeremy, E-mail: jdarling@colorado.edu
We describe a method for identifying inclined water maser disks orbiting massive black holes and for potentially using them to measure black hole masses. Owing to the geometry of maser amplification pathways, the minority of water maser disks are observable: only those viewed nearly edge-on have been identified, suggesting that an order of magnitude additional maser disks exist. We suggest that inward-propagating masers are gravitationally deflected by the central black hole, thereby scattering water maser emission out of the disk plane and enabling detection. The signature of an inclined water maser disk would be narrow masers near the systemic velocitymore » that appear to emit from the black hole position, as identified by the radio continuum core. To explore this possibility, we present high-resolution (0.″07–0.″17) Very Large Array line and continuum observations of 13 galaxies with narrow water maser emission and show that three are good inclined-disk candidates (five remain ambiguous). For the best case, CGCG 120−039, we show that the maser and continuum emission are coincident to within 3.5 ± 1.4 pc (6.7 ± 2.7 mas). Subsequent very long baseline interferometric maps can confirm candidate inclined disks and have the potential to show maser rings or arcs that provide a direct measurement of black hole mass, although the mass precision will rely on knowledge of the size of the maser disk.« less
On the He-McKellar-Wilkens phase of an electric dipole
NASA Astrophysics Data System (ADS)
Rai, Yam P.; Rai, Dhurba
2017-08-01
The He-McKellar-Wilkens (HMW) phase of an electric dipole moving in a static magnetic field is derived by explicitly considering the interaction between the currents associated with the moving dipole and the magnetic vector potential. Conditions for the observation of the HMW phase in different field configurations are investigated. A practical setup is proposed that provides essentially a radial magnetic field with inverse radial dependence for the observation of the HMW phase with magnetic field alone. Possible magnetic field control of exciton current in an open ring setup is discussed.
Pattern formation in a monolayer of magnetic spheres
NASA Astrophysics Data System (ADS)
Stambaugh, Justin; Lathrop, Daniel P.; Ott, Edward; Losert, Wolfgang
2003-08-01
Pattern formation is investigated for a vertically vibrated monolayer of magnetic spheres. The spheres of diameter D encase cylindrical magnetic cores of length l. For large D/l, we find that the particles form a hexagonal-close-packed pattern in which the particles’ dipole vectors assume a macroscopic circulating vortical pattern. For smaller D/l, the particles form concentric rings. The static configurational magnetic energy (which depends on D/l) appears to be a determining factor in pattern selection even though the experimental system is driven and dissipative.
Reflective optical imaging systems with balanced distortion
Hudyma, Russell M.
2001-01-01
Optical systems compatible with extreme ultraviolet radiation comprising four reflective elements for projecting a mask image onto a substrate are described. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical systems are particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput, and allows higher semiconductor device density. The inventive optical systems are characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.
Black branes and black strings in the astrophysical and cosmological context
NASA Astrophysics Data System (ADS)
Akarsu, Özgür; Chopovsky, Alexey; Zhuk, Alexander
2018-03-01
We consider Kaluza-Klein models where internal spaces are compact flat or curved Einstein spaces. This background is perturbed by a compact gravitating body with the dust-like equation of state (EoS) in the external/our space and an arbitrary EoS parameter Ω in the internal space. Without imposing any restrictions on the form of the perturbed metric and the distribution of the perturbed energy densities, we perform the general analysis of the Einstein and conservation equations in the weak-field limit. All conclusions follow from this analysis. For example, we demonstrate that the perturbed model is static and perturbed metric preserves the block-diagonal form. In a particular case Ω = - 1 / 2, the found solution corresponds to the weak-field limit of the black strings/branes. The black strings/branes are compact gravitating objects which have the topology (four-dimensional Schwarzschild spacetime) × (d-dimensional internal space) with d ≥ 1. We present the arguments in favour of these objects. First, they satisfy the gravitational tests for the parameterized post-Newtonian parameter γ at the same level of accuracy as General Relativity. Second, they are preferable from the thermodynamical point of view. Third, averaging over the Universe, they do not destroy the stabilization of the internal space. These are the astrophysical and cosmological aspects of the black strings/branes.
1982-12-01
SAythya americana Redhead Aythya valisineria Canvasback Aix sponsa Wood Duck Aythya collaris Ring-necked Ducks Aythya affinis Lesser Scaup Lophodytes...Chickadee Vireo olivaceus Red-eyed Vireo Vireo gilvus Warbling Vireo Empidonax Tinimus Least Flycatcher Contopus virens Eastern Wood Pewee Contopus...sordidulus Western Wood Pewee Myiarchus crinitus Great Crested Flycatcher Catharus fuscescens Veery Sejurus aurocapillus Ovenbird Mniotilta varia Black-and
2015-05-28
Tidal disruption event Every galaxy has a black hole at its center. Usually they are quiet, without gas accretions, like the one in our Milky Way. But if a star creeps too close to the black hole, the gravitational tides can rip away the star’s gaseous matter. Like water spinning around a drain, the gas swirls into a disk around the black hole at such speeds that it heats to millions of degrees. As an inner ring of gas spins into the black hole, gas particles shoot outward from the black hole’s polar regions. Like bullets shot from a rifle, they zoom through the jets at velocities close to the speed of light. Astronomers using NASA’s Hubble Space Telescope observed correlations between supermassive black holes and an event similar to tidal disruption, pictured above in the Centaurus A galaxy. Certain galaxies have shining centers, illuminated by heated gas circling around a supermassive black hole. Matter escapes where it can, forming two jets of plasma moving near the speed of light. To learn more about the relationship between galaxies and the black holes at their cores, go to NASA’s Hubble Space Telescope: www.nasa.gov/mission_pages/hubble/main/ -------------------------------- Original caption: A team of astronomers using the Hubble Space Telescope found an unambiguous link between the presence of supermassive black holes that power high-speed, radio-signal-emitting jets and the merger history of their host galaxies. Almost all galaxies with the jets were found to be merging with another galaxy, or to have done so recently. Credit: NASA/ESA/STScI NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's Hubble Space Telescope has provided images of Saturn in many colors, from black-and-white, to orange, to blue, green, and red. But in this picture, image processing specialists have worked to provide a crisp, extremely accurate view of Saturn, which highlights the planet's pastel colors. Bands of subtle color - yellows, browns, grays - distinguish differences in the clouds over Saturn, the second largest planet in the solar system. Saturn's high-altitude clouds are made of colorless ammonia ice. Above these clouds is a layer of haze or smog, produced when ultraviolet light from the sun shines on methane gas. The smog contributes to the planet's subtle color variations. One of Saturn's moons, Enceladus, is seen casting a shadow on the giant planet as it passes just above the ring system. The flattened disk swirling around Saturn is the planet's most recognizable feature, and this image displays it in sharp detail. This is the planet's ring system, consisting mostly of chunks of water ice. Although it appears as if the disk is composed of only a few rings, it actually consists of tens of thousands of thin 'ringlets.' This picture also shows the two classic divisions in the ring system. The narrow Encke Gap is nearest to the disk's outer edge; the Cassini division, is the wide gap near the center. Scientists study Saturn and its ring system to gain insight into the birth of our solar system. Credit: Hubble Heritage Team (AURA/STScI/NASA)
Transient Pressure Test Article (TPTA) 1.1 and 1.1A, volume 1
NASA Technical Reports Server (NTRS)
Rebells, Clarence A.
1988-01-01
This final test report presents the results obtained during the static hot firing and cold-gas high Q tests of the first Transient Pressure Test Article (TPTA) 1.1. The TPTA consisted of field test joints A and B, which were the original RSRM J-insulation configuration, with a metal capture feature. It also consisted of a flight configuration nozzle-to-case test joint (Joint D) with shorter vent slots. Fluorocarbon O-rings were used in all the test joints. The purpose of the TPTA tests is to evaluate and characterize the RSMR field and nozzle-to-case joints under the influence of ignition and strut loads during liftoff anf high Q. All objectives of the cold-gas high Q (TPTA 1.1A) test were met and all measurements were close to predicted values. During the static hot-firing test (TPTA 1.1), the motor was inadvertently plugged by the quench injector plug, making it a more severe test, although no strut loads were applied. The motor was depressurized after approximately 11 min using an auxiliary system, and no anomalies were noted. In the static hot-firing test, pressure was incident on the insulation and the test joint gaps were within the predicted range. During the static hot-firing test, no strut loads were applied because the loading system malfunctioned. For this test, all measurements were within range of similar tests performed without strut loads.
Leventhal, J.S.
1981-01-01
Gas Chromatographic analysis of volatile products formed by stepwise pyrolysis of black shales can be used to characterize the kerogen by relating it to separated, identified precursors such as land-derived vitrinite and marine-source Tasmanites. Analysis of a Tasmanites sample shows exclusively n-alkane and -alkene pyrolysis products, whereas a vitrinite sample shows a predominance of one- and two-ring substituted aromatics. For core samples from northern Tennessee and for a suite of outcrop samples from eastern Kentucky, the organic matter type and the U content (<10-120ppm) show variations that are related to precursor organic materials. The samples that show a high vitrinite component in their pyrolysis products are also those samples with high contents of U. ?? 1981.
Unrewarded Object Combinations in Captive Parrots
Auersperg, Alice Marie Isabel; Oswald, Natalie; Domanegg, Markus; Gajdon, Gyula Koppany; Bugnyar, Thomas
2015-01-01
In primates, complex object combinations during play are often regarded as precursors of functional behavior. Here we investigate combinatory behaviors during unrewarded object manipulation in seven parrot species, including kea, African grey parrots and Goffin cockatoos, three species previously used as model species for technical problem solving. We further examine a habitually tool using species, the black palm cockatoo. Moreover, we incorporate three neotropical species, the yellow- and the black-billed Amazon and the burrowing parakeet. Paralleling previous studies on primates and corvids, free object-object combinations and complex object-substrate combinations such as inserting objects into tubes/holes or stacking rings onto poles prevailed in the species previously linked to advanced physical cognition and tool use. In addition, free object-object combinations were intrinsically structured in Goffin cockatoos and in kea. PMID:25984564
Black Plane Solutions and Localized Gravitational Energy
Roberts, Jennifer
2015-01-01
We explore the issue of gravitational energy localization for static plane-symmetric solutions of the Einstein-Maxwell equations in 3+1 dimensions with asymptotic anti-de Sitter behavior. We apply three different energy-momentum complexes, the Einstein, Landau-Lifshitz, and Møller prescriptions, to the metric representing this category of solutions and determine the energy distribution for each. We find that the three prescriptions offer identical energy distributions, suggesting their utility for this type of model. PMID:27347499
Monitoring hypoxia: approaches to addressing a complex phenomenon in the Black Sea
NASA Astrophysics Data System (ADS)
Friedrich, Jana; Janssen, Felix; He, Yunchang; Holtappels, Moritz; Konovalov, Sergey; Prien, Ralf; Rehder, Gregor; Stanev, Emil
2014-05-01
In this contribution we present an overview of results and share experiences from monitoring and assessing various hypoxia phenomena in the Black Sea. The focus is on approaches and technologies for monitoring of, e.g., mesoscale seasonal patterns in water column oxygenation, multi-decadal trends in oxycline boundary shifts, fast oxygen fluctuations at the pelagic redoxcline and the sediment-water interface, and seasonal changes in bottom-water oxygen. The various temporal scales (from hours to decades) and spatial patterns (from local to basin-scale) in water column oxygenation were addressed using state-of-the-art technologies, e.g., a free-falling pump CTD, a profiling instrumentation platform, ARGO floats equipped with oxygen optodes, static moorings equipped with oxygen optodes, and long-term monitoring programs based on standard CTD casts. Examples from four study sites in the Black Sea and one in the Baltic Sea are presented. Oxygen sensor equipped ARGO type profiling floats proved to be powerful tools to resolve seasonal changes in water column oxygenation and emphasize the importance of mesoscale processes for oxygen distribution in the Black Sea basin. Existing multi-decadal time-series monitoring data based on standard CTD measurements revealed the imprint of climate change and eutrophication on long-term oxygen distributions in the central Black Sea and hence, highlight the importance of maintaining long-term commitments to oxygen monitoring programs. Monitoring data from the last 90 years reflect the rising of the upper boundary of the suboxic zone in the 1970s and 1980s due to eutrophication, and again in the 1990s and 2000s due to NAO forcing, while eutrophication relaxed. Such long time series data allow separating out the effects that climatic forcing and eutrophication exert on oxygen depletion i.e., in the Black Sea. A free-falling pump-CTD provided high-resolution profiles of oxygen and reduced compounds in the Bosporus outflow to the Black Sea, and proved highly suitable to resolve oxygen intrusions into highly stratified systems and hence, to identify and localize processes in complex redoxclines. We also present an example of novel technology applied in the Baltic Sea, which would be highly suitable for the Black Sea. The time series recordings of the profiling instrumentation platform GODESS in the Gotland Basin allowed a thorough characterization of oscillating redoxclines as temporally dynamic, three-dimensional systems. Stand-alone static moorings equipped with optical oxygen sensors, current meters, and turbidity sensors allowed to resolve fast oxygen fluctuations at the sediment-water interface due to, e.g., internal waves and Ekman pumping on the Crimean shelf and identified the formation of seasonal (summer) hypoxia as an highly dynamic process on the north-western Black Sea shelf. This comprehensive study within the EU-FP7 project HYPOX ("In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and land-locked water bodies", www.hypox.net) was able to address many aspects of hypoxia, e.g., in the Black Sea, and revealed the vital need for dedicated oxygen monitoring programs to adequately address the risk of hypoxia formation and ecosystem response. The challenge in any kind of monitoring is to choose the appropriate approach and technology that is suited to resolve the temporal and spatial scales on which the phenomenon occurs.
Superresolving Black Hole Images with Full-Closure Sparse Modeling
NASA Astrophysics Data System (ADS)
Crowley, Chelsea; Akiyama, Kazunori; Fish, Vincent
2018-01-01
It is believed that almost all galaxies have black holes at their centers. Imaging a black hole is a primary objective to answer scientific questions relating to relativistic accretion and jet formation. The Event Horizon Telescope (EHT) is set to capture images of two nearby black holes, Sagittarius A* at the center of the Milky Way galaxy roughly 26,000 light years away and the other M87 which is in Virgo A, a large elliptical galaxy that is 50 million light years away. Sparse imaging techniques have shown great promise for reconstructing high-fidelity superresolved images of black holes from simulated data. Previous work has included the effects of atmospheric phase errors and thermal noise, but not systematic amplitude errors that arise due to miscalibration. We explore a full-closure imaging technique with sparse modeling that uses closure amplitudes and closure phases to improve the imaging process. This new technique can successfully handle data with systematic amplitude errors. Applying our technique to synthetic EHT data of M87, we find that full-closure sparse modeling can reconstruct images better than traditional methods and recover key structural information on the source, such as the shape and size of the predicted photon ring. These results suggest that our new approach will provide superior imaging performance for data from the EHT and other interferometric arrays.
Simulation and 'TWINS Observations of the 22 July 2009 Storm
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Buzulukova, Natalia Y.; Chen, Sheng-Hsien; Valek, Phil; Goldstein, Jerry; McComas, David
2010-01-01
TWINS is the first mission to perform stereo imaging of the Earth's ring current. The magnetic storm on 22 July 2009 is the largest storm observed since TWINS began routine stereo imaging in June 2008. On 22 July 2009, the Dst dropped to nearly -80nT at 7:00 and 10:00 UT. During the main phase and at the peak of the storm, TWINS 1 and 2 were near apogee and moving from pre-dawn to post-dawn local time. The energetic neutral atom (ENA) imagers on the 2 spacecraft captured the storm intensification and the formation of the partial ring current. The peak of the ENA emissions was seen in the midnight-to-dawn local-time sector. The development of this storm has been simulated using the Comprehensive Ring Current Model (CRCM) to understand and interpret the observed signatures. We perform CRCM runs with constant and time-varying magnetic field. The model calculations are validated by comparing the simulated ENA and ion flux intensities with TWINS ENA images and in-situ ion data from THEMIS satellites. Simulation with static magnetic field produces a strong shielding electric field that skews the ion drift trajectories toward dawn. The model's corresponding peak ENA emissions are always eastward than those in the observed TWINS images. On the other hand, simulation with a dynamic magnetic field gives better spatial agreements with both ENA and insitu particle data, suggesting that temporal variations of the geomagnetic field exert a significant influence upon global ring current ion dynamics.
Reusable Solid Rocket Motor - V(RSRMV)Nozzle Forward Nose Ring Thermo-Structural Modeling
NASA Technical Reports Server (NTRS)
Clayton, J. Louie
2012-01-01
During the developmental static fire program for NASAs Reusable Solid Rocket Motor-V (RSRMV), an anomalous erosion condition appeared on the nozzle Carbon Cloth Phenolic nose ring that had not been observed in the space shuttle RSRM program. There were regions of augmented erosion located on the bottom of the forward nose ring (FNR) that measured nine tenths of an inch deeper than the surrounding material. Estimates of heating conditions for the RSRMV nozzle based on limited char and erosion data indicate that the total heat loading into the FNR, for the new five segment motor, is about 40-50% higher than the baseline shuttle RSRM nozzle FNR. Fault tree analysis of the augmented erosion condition has lead to a focus on a thermomechanical response of the material that is outside the existing experience base of shuttle CCP materials for this application. This paper provides a sensitivity study of the CCP material thermo-structural response subject to the design constraints and heating conditions unique to the RSRMV Forward Nose Ring application. Modeling techniques are based on 1-D thermal and porous media calculations where in-depth interlaminar loading conditions are calculated and compared to known capabilities at elevated temperatures. Parameters such as heat rate, in-depth pressures and temperature, degree of char, associated with initiation of the mechanical removal process are quantified and compared to a baseline thermo-chemical material removal mode. Conclusions regarding postulated material loss mechanisms are offered.
[right] - DUST RING AROUND STAR OFFERS NEW CLUES INTO PLANET FORMATION
NASA Technical Reports Server (NTRS)
2002-01-01
A NASA Hubble Space Telescope false-color near infrared image of a novel type of structure seen in space - a dust ring around a star. Superficially resembling Saturn's rings -- but on a vastly larger scale -- the 'hula-hoop' around the star called HR 4796A offers new clues into the possible presence of young planets. The near-infrared light reflecting off the dust ring is about 1,000 times fainter than the illuminating central star. Astronomers used a coronagraphic camera on Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS), specifically designed to enable observations of very faint and low surface brightness objects in the close proximity to bright stars. Even with the coronagraph, the glare from HR 4796A overwhelms the much-fainter ring at distances less than about 4 billion miles (inside the blacked-out circle, centered on the star). Hubble's crisp view was able to resolve the ring, seen at lower resolution at longer wavelengths, in ground-based thermal infrared images, as a disk with some degree of central clearing. The ring has an angular radius of 1.05 arc seconds, equivalent to the apparent size of a dime seen more than 4 miles away. Unlike the extensive disks of dust seen around other young stars, the HR 4796A dust ring, 6.5 billion miles from the star, is tightly confined within a relatively narrow zone less than 17 Astronomical Units wide. An Astronomical Unit is the distance from the Earth to the Sun). For comparison, the ring width is approximately equal to the distance separating the orbits of Mars and Uranus in our own Solar System. All dust rings, whether around stars or planets, can only stay intact by some mechanism confining the dust, likely the gravitational tug of unseen planets. The image was taken on March 15, 1998, centered at a near infrared wavelength of 1.1 microns. The false-color corresponds to the ring's brightness (yellow is bright, purple is faint). The ring, which is undoubtedly circular, appears elliptical since it is inclined to our line-of-sight. Thus, the apparent spacing of the ring-particles, which act as reflectors of starlight, is greatest at the ansae of the projected ellipse giving rise to the brightening in these regions. This image is being released today at the 193rd Meeting of the American Astronomical Society in Austin, Texas. Credit: Brad Smith (University of Hawaii), Glenn Schneider (University of Arizona), and NASA
Boen, Courtney
2016-12-01
Research links Black-White health disparities to racial differences in socioeconomic status (SES), but understanding of the role of SES in racial health gaps has been restricted by reliance on static measures of health and socioeconomic well-being that mask the dynamic quality of these processes and ignore the racialized nature of the SES-health connection. Utilizing twenty-three years of longitudinal data from the Panel Study of Income Dynamics (1984-2007), this study uses multilevel growth curve models to examine how multiple dimensions of socioeconomic well-being-including long-term economic history and differential returns to SES-contribute to the life course patterning of Black-White health disparities across two critical markers of well-being: body mass index (N = 9057) and self-rated health (N = 11,329). Findings indicate that long-term SES exerts a significant influence on both body mass index and self-rated health, net of point-in-time measures, and that Black-White health gaps are smallest in models that adjust for both long-term and current SES. I also find that Blacks and Whites receive differential health returns to increases in SES, which suggests that other factors-such as neighborhood segregation and exposure racial discrimination-may restrict Blacks from converting increases in SES into health improvements in the same way as Whites. Together, these processes contribute to the life course patterning of Black-White health gaps and raise concerns about previous misestimation of the role of SES in racial health disparities. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Angers, V. A.; Bergeron, Y.; Drapeau, P.
2013-12-01
Dendrochronological crossdating of dead trees is commonly used to reconstruct mortality patterns over time. This method assumes that the year of formation of the last growth ring corresponds to the year of the death of the tree. Trees experiencing important stress, such as defoliation, drought or senescence, may rely on very few resources to allocate to growth and may favour other vital physiological functions over growth. Even if the tree is still living, growth may thus be reduced or even supressed during a stressful event. When a tree dies following this event and that there is a lag between year of last ring production and year of actual death, crossdating underestimates the actual year of death. As ring formation is not uniform across the bole, growth may occur only in some parts of the tree and may be detectable only if multiple bole samples are analysed. In this study, we wanted to investigate how the growth patterns of dying trees influence estimation of year of death when crossdating. Our research questions were the following 1) Is there a difference (hereafter referred as 'lag') between the last year of growth ring formation in disc samples collected at different heights in dead trees? 2) If so, what is the range of magnitude of these lags? and 3) Is this magnitude range influenced by the causes of death? Sampled sites were located in northwestern Quebec (Canada), over an area overlapping the eastern mixedwood and coniferous boreal forests. Four tree species were examined: Trembling aspen (Populus tremuloides Michx.), balsam fir (Abies balsamea (L.) Mill.), jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana (Mill.) BSP). Trees that died following fire, self-thinning, defoliation and senescence were sampled. Two to three discs were collected on each dead tree (snags and logs) at different heights. Dendrochronological analyses were conducted to determine year of last growth ring production by crossdating. The more severe the disturbance, the narrower the lag between years of last ring production among samples collected in a given tree. In fire-induced death, lag was whether absent or very narrow, usually no more than one year. In defoliation-induced death, most lags were under two years. In competition-induced death, the vast majority of lags were shorter than 5 years. In old, senescent black spruce trees, lags were considerably longer as compared to other causes of death, exceeding 10 years in numerous cases. Based on these results, we suggest that investigators should consider collecting samples at different heights along the stem when reconstructing fine patterns of senescence-induced mortality using crossdating in order to avoid as much as possible bias due to variable growth in dying trees.
Rached, Rodrigo Nunes; de Souza, Evelise Machado; Dyer, Scott R; Ferracane, Jack Liborio
2011-11-01
Fractures of overdentures occur in the denture base through the abutments. The purpose of this study was to evaluate the effect of reinforcements and the space available for their placement on the dynamic and static loading capacity of a simulated implant-supported overdenture model. Rhomboidal (6 × 6 × 25 mm) test specimens (n=8), made with an acrylic resin and containing 2 metal O-ring capsules, were reinforced with braided stainless steel bar (BS), stainless steel mesh (SM), unidirectional E-glass fiber (GF), E-glass mesh (GM), woven polyethylene braids (PE), or polyaramid fibers (PA). Two distinct spaces for reinforcement placement were investigated: a 2.5 mm and a 1 mm space. Control groups consisted of nonreinforced specimens. Specimens were thermocycled (5°C and 55°C, 5,000 cycles) and then subjected to a 100,000 cyclic load regime. Unbroken specimens were then loaded until failure. The number of failures under fatigue (f) and static load (s) were compared with the Chi-Square test, while static load means were compared with the Kruskal-Wallis test (α=.05). The number of failures (f:s) of GF (0:16), PE (0:16), and PA (0:16) differed significantly from the control group (8:8) and SM (4:12) (P=.037 and P=.025, respectively). For the 2.5 mm space group, these same reinforcements also exhibited higher static load means than the control (P=.016, P=.003, and P=.003, respectively); under static load, no significant differences were detected between the reinforced groups and the control for the 1.0 mm space group (P=1.0). E-glass fibers, woven polyethylene braids, and polyaramid fibers withstood the fatigue regime and increased the flexural strength of the implant-supported overdenture model. The spaces available for reinforcement did not affect the dynamic strength or the static loading capacity of the implant-supported overdenture model. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
The force synergy of human digits in static and dynamic cylindrical grasps.
Kuo, Li-Chieh; Chen, Shih-Wei; Lin, Chien-Ju; Lin, Wei-Jr; Lin, Sheng-Che; Su, Fong-Chin
2013-01-01
This study explores the force synergy of human digits in both static and dynamic cylindrical grasping conditions. The patterns of digit force distribution, error compensation, and the relationships among digit forces are examined to quantify the synergetic patterns and coordination of multi-finger movements. This study recruited 24 healthy participants to perform cylindrical grasps using a glass simulator under normal grasping and one-finger restricted conditions. Parameters such as the grasping force, patterns of digit force distribution, and the force coefficient of variation are determined. Correlation coefficients and principal component analysis (PCA) are used to estimate the synergy strength under the dynamic grasping condition. Specific distribution patterns of digit forces are identified for various conditions. The compensation of adjacent fingers for the force in the normal direction of an absent finger agrees with the principle of error compensation. For digit forces in anti-gravity directions, the distribution patterns vary significantly by participant. The forces exerted by the thumb are closely related to those exerted by other fingers under all conditions. The index-middle and middle-ring finger pairs demonstrate a significant relationship. The PCA results show that the normal forces of digits are highly coordinated. This study reveals that normal force synergy exists under both static and dynamic cylindrical grasping conditions.
The Force Synergy of Human Digits in Static and Dynamic Cylindrical Grasps
Kuo, Li-Chieh; Chen, Shih-Wei; Lin, Chien-Ju; Lin, Wei-Jr; Lin, Sheng-Che; Su, Fong-Chin
2013-01-01
This study explores the force synergy of human digits in both static and dynamic cylindrical grasping conditions. The patterns of digit force distribution, error compensation, and the relationships among digit forces are examined to quantify the synergetic patterns and coordination of multi-finger movements. This study recruited 24 healthy participants to perform cylindrical grasps using a glass simulator under normal grasping and one-finger restricted conditions. Parameters such as the grasping force, patterns of digit force distribution, and the force coefficient of variation are determined. Correlation coefficients and principal component analysis (PCA) are used to estimate the synergy strength under the dynamic grasping condition. Specific distribution patterns of digit forces are identified for various conditions. The compensation of adjacent fingers for the force in the normal direction of an absent finger agrees with the principle of error compensation. For digit forces in anti-gravity directions, the distribution patterns vary significantly by participant. The forces exerted by the thumb are closely related to those exerted by other fingers under all conditions. The index-middle and middle-ring finger pairs demonstrate a significant relationship. The PCA results show that the normal forces of digits are highly coordinated. This study reveals that normal force synergy exists under both static and dynamic cylindrical grasping conditions. PMID:23544151
Four-dimensional black holes in Einsteinian cubic gravity
NASA Astrophysics Data System (ADS)
Bueno, Pablo; Cano, Pablo A.
2016-12-01
We construct static and spherically symmetric generalizations of the Schwarzschild- and Reissner-Nordström-(anti-)de Sitter [RN-(A)dS] black-hole solutions in four-dimensional Einsteinian cubic gravity (ECG). The solutions are characterized by a single function which satisfies a nonlinear second-order differential equation. Interestingly, we are able to compute independently the Hawking temperature T , the Wald entropy S and the Abbott-Deser mass M of the solutions analytically as functions of the horizon radius and the ECG coupling constant λ . Using these we show that the first law of black-hole mechanics is exactly satisfied. Some of the solutions have positive specific heat, which makes them thermodynamically stable, even in the uncharged and asymptotically flat case. Further, we claim that, up to cubic order in curvature, ECG is the most general four-dimensional theory of gravity which allows for nontrivial generalizations of Schwarzschild- and RN-(A)dS characterized by a single function which reduce to the usual Einstein gravity solutions when the corresponding higher-order couplings are set to zero.
Naked shell singularities on the brane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seahra, Sanjeev S.
By utilizing nonstandard slicings of 5-dimensional Schwarzschild and Schwarzschild-AdS manifolds based on isotropic coordinates, we generate static and spherically-symmetric braneworld spacetimes containing shell-like naked null singularities. For planar slicings, we find that the brane-matter sourcing the solution is a perfect fluid with an exotic equation of state and a pressure singularity where the brane crosses the bulk horizon. From a relativistic point of view, such a singularity is required to maintain matter infinitesimally above the surface of a black hole. From the point of view of the AdS/CFT conjecture, the singular horizon can be seen as one possible quantum correctionmore » to a classical black hole geometry. Various generalizations of planar slicings are also considered for a Ricci-flat bulk, and we find that singular horizons and exotic matter distributions are common features.« less
Hasiów-Jaroszewska, Beata; Minicka, Julia; Zarzyńska-Nowak, Aleksandra; Budzyńska, Daria; Elena, Santiago F
2018-05-02
Tomato black ring virus (TBRV) is the only member of the Nepovirus genus that is known to form defective RNA particles (D RNAs) during replication. Here, de novo generation of D RNAs was observed during prolonged passages of TBRV isolates originated from Solanum lycopersicum and Lactuca sativa in Chenopodium quinoa plants. D RNAs of about 500 nt derived by a single deletion in the RNA1 molecule and contained a portion of the 5' untranslated region and viral replicase, and almost the entire 3' non-coding region. Short regions of sequence complementarity were found at the 5' and 3' junction borders, which can facilitate formation of the D RNAs. Moreover, in this study we analyzed the effects of D RNAs on TBRV replication and symptoms development of infected plants. C. quinoa, S. lycopersicum, Nicotiana tabacum, and L. sativa were infected with the original TBRV isolates (TBRV-D RNA) and those containing additional D RNA particles (TBRV + D RNA). The viral accumulation in particular hosts was measured up to 28 days post inoculation by RT-qPCR. Statistical analyses revealed that D RNAs interfere with TBRV replication and thus should be referred to as defective interfering particles. The magnitude of the interference effect depends on the interplay between TBRV isolate and host species. Copyright © 2018 Elsevier B.V. All rights reserved.
2004-02-01
KENNEDY SPACE CENTER, FLA. - Roses and other flowers ring the base of the Astronaut Memorial Mirror at the KSC Visitor Complex following a memorial service held for the crew of Columbia on the anniversary of the tragic accident that took their lives Feb. 1, 2003. The public was invited to the service and encouraged to place the flowers on the fence. The service included comments by Center Director Jim Kennedy, Deputy Director Woodrow Whitlow Jr., Executive Director of Florida Space Authority Winston Scott, and Dr. Stephen Feldman, president of the Astronaut Memorial Foundation. The black granite mirror honors astronauts, whose names are carved in the surface, who have given their lives for space exploration.
NASA Technical Reports Server (NTRS)
Sarma, Garimella R.; Barranger, John P.
1992-01-01
The analysis and prototype results of a dual-amplifier circuit for measuring blade-tip clearance in turbine engines are presented. The capacitance between the blade tip and mounted capacitance electrode within a guard ring of a probe forms one of the feedback elements of an operational amplifier (op amp). The differential equation governing the circuit taking into consideration the nonideal features of the op amp was formulated and solved for two types of inputs (ramp and dc) that are of interest for the application. Under certain time-dependent constraints, it is shown that (1) with a ramp input the circuit has an output voltage proportional to the static tip clearance capacitance, and (2) with a dc input, the output is proportional to the derivative of the clearance capacitance, and subsequent integration recovers the dynamic capacitance. The technique accommodates long cable lengths and environmentally induced changes in cable and probe parameters. System implementation for both static and dynamic measurements having the same high sensitivity is also presented.
NASA Astrophysics Data System (ADS)
Sarma, Garimella R.; Barranger, John P.
1992-10-01
The analysis and prototype results of a dual-amplifier circuit for measuring blade-tip clearance in turbine engines are presented. The capacitance between the blade tip and mounted capacitance electrode within a guard ring of a probe forms one of the feedback elements of an operational amplifier (op amp). The differential equation governing the circuit taking into consideration the nonideal features of the op amp was formulated and solved for two types of inputs (ramp and dc) that are of interest for the application. Under certain time-dependent constraints, it is shown that (1) with a ramp input the circuit has an output voltage proportional to the static tip clearance capacitance, and (2) with a dc input, the output is proportional to the derivative of the clearance capacitance, and subsequent integration recovers the dynamic capacitance. The technique accommodates long cable lengths and environmentally induced changes in cable and probe parameters. System implementation for both static and dynamic measurements having the same high sensitivity is also presented.
High Temperature Composite Analyzer (HITCAN) demonstration manual, version 1.0
NASA Technical Reports Server (NTRS)
Singhal, S. N; Lackney, J. J.; Murthy, P. L. N.
1993-01-01
This manual comprises a variety of demonstration cases for the HITCAN (HIgh Temperature Composite ANalyzer) code. HITCAN is a general purpose computer program for predicting nonlinear global structural and local stress-strain response of arbitrarily oriented, multilayered high temperature metal matrix composite structures. HITCAN is written in FORTRAN 77 computer language and has been configured and executed on the NASA Lewis Research Center CRAY XMP and YMP computers. Detailed description of all program variables and terms used in this manual may be found in the User's Manual. The demonstration includes various cases to illustrate the features and analysis capabilities of the HITCAN computer code. These cases include: (1) static analysis, (2) nonlinear quasi-static (incremental) analysis, (3) modal analysis, (4) buckling analysis, (5) fiber degradation effects, (6) fabrication-induced stresses for a variety of structures; namely, beam, plate, ring, shell, and built-up structures. A brief discussion of each demonstration case with the associated input data file is provided. Sample results taken from the actual computer output are also included.
Excess growing-season water limits lowland black spruce productivity
NASA Astrophysics Data System (ADS)
Dymond, S.; Kolka, R. K.; Bolstad, P. V.; Gill, K.; Curzon, M.; D'Amato, A. W.
2015-12-01
The annual growth of many tree species is limited by water availability, with growth increasing as water becomes less scarce. In lowland bogs of northern Minnesota, however, black spruce (Picea mariana) is often exposed to excess water via high water table elevations. These trees grow in thick deposits of organic mucky peat and often have shallow rooting systems to avoid the complete submersion of roots in water. While it is generally believed that black spruce decrease growth rates with rising water table elevations, this hypothesis has not been tested in situ. We used a unique, 50-year record of daily bog water table elevations at the Marcell Experimental Forest (MEF) in northern Minnesota to investigate the relationship between climate and black spruce productivity. Nine 1/20th ha circular plots were established in five different bogs and tree height, diameter-at-breast-height (DBH), and crown class were recorded. Additionally, two perpendicular cores were collected on all trees greater than 10 cm diameter-at-breast-height. Tree cores were sanded, mounted, cross-dated, and de-trended according to standard dendrochronological procedures. Ring width measurements were correlated with precipitation, temperature, and water table elevation using package BootRes in R to determine the climatic variables most associated with stand level productivity. Across the different plots, we found that early growing season water table elevation (May and June) was negatively correlated with both individual and stand-level black spruce growth (p < 0.01), while growth was positively correlated with March temperatures (p < 0.01). No significant relationships existed between black spruce growth and monthly precipitation. If summer water table elevations in these peatland ecosystems rise as is anticipated with more extreme precipitation events due to climate change, we could see an overall decrease in the stand level productivity of black spruce.
Static solutions with nontrivial boundaries for the Einstein-Gauss-Bonnet theory in vacuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dotti, Gustavo; Instituto de Fisica Enrique Gaviola, CONICET, Cordoba; Oliva, Julio
2010-07-15
The classification of a certain class of static solutions for the Einstein-Gauss-Bonnet theory in vacuum is performed in d{>=}5 dimensions. The class of metrics under consideration is such that the spacelike section is a warped product of the real line and an arbitrary base manifold. It is shown that for a generic value of the Gauss-Bonnet coupling, the base manifold must be necessarily Einstein, with an additional restriction on its Weyl tensor for d>5. The boundary admits a wider class of geometries only in the special case when the Gauss-Bonnet coupling is such that the theory admits a unique maximallymore » symmetric solution. The additional freedom in the boundary metric enlarges the class of allowed geometries in the bulk, which are classified within three main branches, containing new black holes and wormholes in vacuum.« less
The Gross–Pitaevskii equations of a static and spherically symmetric condensate of gravitons
NASA Astrophysics Data System (ADS)
Cunillera, Francesc; Germani, Cristiano
2018-05-01
In this paper we consider the Dvali and Gómez assumption that the end state of a gravitational collapse is a Bose–Einstein condensate of gravitons. We then construct the two Gross–Pitaevskii equations for a static and spherically symmetric configuration of the condensate. These two equations correspond to the constrained minimisation of the gravitational Hamiltonian with respect to the redshift and the Newtonian potential, per given number of gravitons. We find that the effective geometry of the condensate is the one of a gravastar (a de Sitter star) with a sub-Planckian cosmological constant, for masses larger than the Planck scale. Thus, a condensate corresponding to a semiclassical black hole, is always quantum and weakly coupled. Finally, we obtain that the boundary of our gravastar, although it is not the location of a horizon, corresponds to the Schwarzschild radius.
Maximally slicing a black hole.
NASA Technical Reports Server (NTRS)
Estabrook, F.; Wahlquist, H.; Christensen, S.; Dewitt, B.; Smarr, L.; Tsiang, E.
1973-01-01
Analytic and computer-derived solutions are presented of the problem of slicing the Schwarzschild geometry into asymptotically flat, asymptotically static, maximal spacelike hypersurfaces. The sequence of hypersurfaces advances forward in time in both halves (u greater than or equal to 0, u less than or equal to 0) of the Kruskal diagram, tending asymptotically to the hypersurface r = 3/2 M and avoiding the singularity at r = 0. Maximality is therefore a potentially useful condition to impose in obtaining computer solutions of Einstein's equations.
Revisiting the analogue of the Jebsen-Birkhoff theorem in Brans-Dicke gravity
NASA Astrophysics Data System (ADS)
Faraoni, Valerio; Hammad, Fayçal; Cardini, Adriana M.; Gobeil, Thomas
2018-04-01
We report the explicit form of the general static, spherically symmetric, and asymptotically flat solution of vacuum Brans-Dicke gravity in the Jordan frame, assuming that the Brans-Dicke scalar field has no singularities or zeros (except possibly for a central singularity). This general solution is conformal to the Fisher-Wyman geometry of Einstein theory and its nature depends on a scalar charge parameter. Apart from the Schwarzschild black hole, only wormhole throats and central naked singularities are possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, B.; Urazuka, Y.; Chen, H.
2014-05-07
We report on numerical analysis on self-oscillation of standing spin wave excited in a nanostructured active ring resonator, consists of a ferromagnetic nanowire with perpendicular anisotropy. The confined resonant modes are along the nanowire length. A positive feedback with proportional-integral-derivative gain control was adopted in the active ring. Stable excitation of the 1st order standing spin wave has been demonstrated with micromagnetic simulations, taking into account the thermal effect with a random field model. The stationary standing spin wave with a pre-determined set variable of precession amplitude was attained within 20 ns by optimizing the proportional-integral-derivative gain control parameters. The resultmore » indicates that a monochromatic oscillation frequency f{sub osc} is extracted from the initial thermal fluctuation state and selectively amplified with the positive feedback loop. The obtained f{sub osc} value of 5.22 GHz practically agrees with the theoretical prediction from dispersion relation of the magneto static forward volume wave. It was also confirmed that the f{sub osc} change due to the temperature rise can be compensated with an external perpendicular bias field H{sub b}. The observed quick compensation time with an order of nano second suggests the fast operation speed in the practical device application.« less
A high performance sensor for triaxial cutting force measurement in turning.
Zhao, You; Zhao, Yulong; Liang, Songbo; Zhou, Guanwu
2015-04-03
This paper presents a high performance triaxial cutting force sensor with excellent accuracy, favorable natural frequency and acceptable cross-interference for high speed turning process. Octagonal ring is selected as sensitive element of the designed sensor, which is drawn inspiration from ring theory. A novel structure of two mutual-perpendicular octagonal rings is proposed and three Wheatstone full bridge circuits are specially organized in order to obtain triaxial cutting force components and restrain cross-interference. Firstly, the newly developed sensor is tested in static calibration; test results indicate that the sensor possesses outstanding accuracy in the range of 0.38%-0.83%. Secondly, impacting modal tests are conducted to identify the natural frequencies of the sensor in triaxial directions (i.e., 1147 Hz, 1122 Hz and 2035 Hz), which implies that the devised sensor can be used for cutting force measurement in a high speed lathe when the spindle speed does not exceed 17,205 rev/min in continuous cutting condition. Finally, an application of the sensor in turning process is operated to show its performance for real-time cutting force measurement; the measured cutting forces demonstrate a good accordance with the variation of cutting parameters. Thus, the developed sensor possesses perfect properties and it gains great potential for real-time cutting force measurement in turning.
A High Performance Sensor for Triaxial Cutting Force Measurement in Turning
Zhao, You; Zhao, Yulong; Liang, Songbo; Zhou, Guanwu
2015-01-01
This paper presents a high performance triaxial cutting force sensor with excellent accuracy, favorable natural frequency and acceptable cross-interference for high speed turning process. Octagonal ring is selected as sensitive element of the designed sensor, which is drawn inspiration from ring theory. A novel structure of two mutual-perpendicular octagonal rings is proposed and three Wheatstone full bridge circuits are specially organized in order to obtain triaxial cutting force components and restrain cross-interference. Firstly, the newly developed sensor is tested in static calibration; test results indicate that the sensor possesses outstanding accuracy in the range of 0.38%–0.83%. Secondly, impacting modal tests are conducted to identify the natural frequencies of the sensor in triaxial directions (i.e., 1147 Hz, 1122 Hz and 2035 Hz), which implies that the devised sensor can be used for cutting force measurement in a high speed lathe when the spindle speed does not exceed 17,205 rev/min in continuous cutting condition. Finally, an application of the sensor in turning process is operated to show its performance for real-time cutting force measurement; the measured cutting forces demonstrate a good accordance with the variation of cutting parameters. Thus, the developed sensor possesses perfect properties and it gains great potential for real-time cutting force measurement in turning. PMID:25855035
Pavanello, Fabio; Zeng, Xiaoge; Wade, Mark T; Popović, Miloš A
2016-11-28
We propose ring modulators based on interdigitated p-n junctions that exploit standing rather than traveling-wave resonant modes to improve modulation efficiency, insertion loss and speed. Matching the longitudinal nodes and antinodes of a standing-wave mode with high (contacts) and low (depletion regions) carrier density regions, respectively, simultaneously lowers loss and increases sensitivity significantly. This approach permits further to relax optical constraints on contacts placement and can lead to lower device capacitance. Such structures are well-matched to fabrication in advanced microelectronics CMOS processes. Device architectures that exploit this concept are presented along with their benefits and drawbacks. A temporal coupled mode theory model is used to investigate the static and dynamic response. We show that modulation efficiencies or loss Q factors up to 2 times higher than in previous traveling-wave geometries can be achieved leading to much larger extinction ratios. Finally, we discuss more complex doping geometries that can improve carrier dynamics for higher modulation speeds in this context.
Shi, Shuyun; Zhang, Yuping; Chen, Xiaoqin; Peng, Mijun
2011-10-12
The effects of 1:1 flavonoid-Cu(2+) complexes of four flavonoids with different C-ring substituents, quercetin (QU), luteolin (LU), taxifolin (TA), and (+)-catechin (CA), on bovine serum albumin (BSA) were investigated and compared with corresponding free flavonoids by spectroscopic analysis in an attempt to characterize the chemical association taking place. The results indicated that all of the quenching mechanisms were based on static quenching combined with nonradiative energy transfer. Cu(2+) chelation changed the binding constants for BSA depending on the structures of flavonoids and the detected concentrations. The reduced hydroxyl groups, increased steric hindrance, and hydrophilicity of Cu(2+) chelation may be the main reasons for the reduced binding constants, whereas the formation of stable flavonoid-Cu(2+) complexes and synergistic action could increase the binding constants. The changed trends of critical energy transfer distance (R(0)) for Cu(2+) chelation were contrary to those of binding constants.
Demonstration of versatile whispering-gallery micro-lasers for remote refractive index sensing.
Wan, Lei; Chandrahalim, Hengky; Zhou, Jian; Li, Zhaohui; Chen, Cong; Cho, Sangha; Zhang, Hui; Mei, Ting; Tian, Huiping; Oki, Yuji; Nishimura, Naoya; Fan, Xudong; Guo, L Jay
2018-03-05
We developed chip-scale remote refractive index sensors based on Rhodamine 6G (R6G)-doped polymer micro-ring lasers. The chemical, temperature, and mechanical sturdiness of the fused-silica host guaranteed a flexible deployment of dye-doped polymers for refractive index sensing. The introduction of the dye as gain medium demonstrated the feasibility of remote sensing based on the free-space optics measurement setup. Compared to the R6G-doped TZ-001, the lasing behavior of R6G-doped SU-8 polymer micro-ring laser under an aqueous environment had a narrower spectrum linewidth, producing the minimum detectable refractive index change of 4 × 10 -4 RIU. The maximum bulk refractive index sensitivity (BRIS) of 75 nm/RIU was obtained for SU-8 laser-based refractive index sensors. The economical, rapid, and simple realization of polymeric micro-scale whispering-gallery-mode (WGM) laser-based refractive index sensors will further expand pathways of static and dynamic remote environmental, chemical, biological, and bio-chemical sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, D.; Fertitta, E.; Paulus, B.
Due to the importance of both static and dynamical correlation in the bond formation, low-dimensional beryllium systems constitute interesting case studies to test correlation methods. Aiming to describe the whole dissociation curve of extended Be systems we chose to apply the method of increments (MoI) in its multireference (MR) formalism. To gain insight into the main characteristics of the wave function, we started by focusing on the description of small Be chains using standard quantum chemical methods. In a next step we applied the MoI to larger beryllium systems, starting from the Be{sub 6} ring. The complete active space formalismmore » was employed and the results were used as reference for local MR calculations of the whole dissociation curve. Although this is a well-established approach for systems with limited multireference character, its application regarding the description of whole dissociation curves requires further testing. Subsequent to the discussion of the role of the basis set, the method was finally applied to larger rings and extrapolated to an infinite chain.« less
Natural product-like virtual libraries: recursive atom-based enumeration.
Yu, Melvin J
2011-03-28
A new molecular enumerator is described that allows chemically and architecturally diverse sets of natural product-like and drug-like structures to be generated from a core structure as simple as a single carbon atom or as complex as a polycyclic ring system. Integrated with a rudimentary machine-learning algorithm, the enumerator has the ability to assemble biased virtual libraries enriched in compounds predicted to meet target criteria. The ability to dynamically generate relatively small focused libraries in a recursive manner could reduce the computational time and infrastructure necessary to construct and manage extremely large static libraries. Depending on enumeration conditions, natural product-like structures can be produced with a wide range of heterocyclic and alicyclic ring assemblies. Because natural products represent a proven source of validated structures for identifying and designing new drug candidates, mimicking the structural and topological diversity found in nature with a dynamic set of virtual natural product-like compounds may facilitate the creation of new ideas for novel, biologically relevant lead structures in areas of uncharted chemical space.