Guy, Alison; McGrogan, Damian; Inston, Nicholas; Ready, Andrew
2015-04-01
The logistics of deceased-donor renal transplants are largely affected by cold ischemia time. However, to attain successful outcomes, other issues must be considered. Extending cold ischemia time to accommodate these issues would be valuable. We investigated the role of hypothermic machine perfusion to extend cold ischaemia time. Deceased-donor kidneys were allocated to a storage method, depending on predicted time to operation. Kidneys to be transplanted from 8:00 AM to 8:00 PM in the transplant room remained in static cold storage. If predicted operating time was out of hours, the kidney was transferred to hypothermic machine perfusion and transplanted at the earliest opportunity on the dedicated transplant list. There were 74 kidneys transplanted from hypothermic machine perfusion and 101 kidneys from static cold storage. Median cold ischemia time was 23.85 hours in the hypothermic machine perfusion group, compared with 13 hours in the static cold storage group (P ≤ .0001). There were 20 kidneys (27%) from hypothermic machine perfusion that had delayed graft function, compared with 47 kidneys (47%) in the static cold storage group (P = .012). There were no other significant differences in graft or postoperative complications. This study demonstrated that improved early graft outcomes can be achieved following longer cold ischemia time by using hypothermic machine perfusion rather than static cold storage. This effect is likely multifactorial including the inherent effects of hypothermic machine perfusion, improved recipient preparation, and possibly better perioperative conditions.
Rosenfeldt, Franklin; Ou, Ruchong; Salamonsen, Robert; Marasco, Silvana; Zimmet, Adam; Byrne, Joshua; Cosic, Filip; Saxena, Pankaj; Esmore, Donald
2016-11-01
Donation after circulatory death (DCD) represents a potential new source of hearts to increase the donor pool. We showed previously that DCD hearts in Greyhound dogs could be resuscitated and preserved by continuous cold crystalloid perfusion but not by cold static storage and could demonstrate excellent contractile and metabolic function on an in vitro system. In the current study, we demonstrate that resuscitated DCD hearts are transplantable. Donor Greyhound dogs (n = 12) were divided into perfusion (n = 8) and cold static storage (n = 4) groups. General anesthesia was induced and ventilation ceased for 30 minutes to achieve circulatory death. Donor cardiectomy was performed, and for 4 hours the heart was preserved by controlled reperfusion, followed by continuous cold perfusion with an oxygenated crystalloid perfusate or by static cold storage, after which orthotopic heart transplantation was performed. Recovery was assessed over 4 hours by hemodynamic monitoring. During cold perfusion, hearts showed continuous oxygen consumption and low lactate levels, indicating aerobic metabolism. The 8 dogs in the perfusion group were weaned off bypass, and 4 hours after bypass produced cardiac output of 4.73 ± 0.51 liters/min, left ventricular power of 7.63 ± 1.32 J/s, right ventricular power of 1.40 ± 0.43 J/s, and left ventricular fractional area shortening of 39.1% ± 5.2%, all comparable to pre-transplant values. In the cold storage group, 3 of 4 animals could not be weaned from cardiopulmonary bypass, and the fourth exhibited low-level function. Cold crystalloid perfusion, but not cold static storage, can resuscitate and preserve the DCD donor heart in a canine model of heart transplantation, thus rendering it transplantable. Controlled reperfusion and cold crystalloid perfusion have potential for clinical application in DCD transplantation. Copyright © 2016. Published by Elsevier Inc.
Reddy, Mettu S; Carter, Noel; Cunningham, Anne; Shaw, James; Talbot, David
2014-06-01
Success of clinical pancreatic islet transplantation depends on the mass of viable islets transplanted and the proportion of transplanted islets that survive early ischaemia reperfusion injury. Novel pancreas preservation techniques to improve islet preservation and viability can increase the utilization of donation after cardiac death donor pancreases for islet transplantation. Rat pancreases were retrieved after 30 min of warm ischaemia and preserved by static cold storage, hypothermic machine perfusion or retrograde portal venous oxygen persufflation for 6 h. They underwent collagenase digestion and density gradient separation to isolate islets. The yield, viability, morphology were compared. In vitro function of isolated islets was compared using glucose stimulated insulin secretion test. Portal venous oxygen persufflation improved the islet yield, viability and morphology as compared to static cold storage. The percentage of pancreases with good in vitro function (stimulation index > 1.0) was also higher after oxygen persufflation as compared to static cold storage. Retrograde portal venous oxygen persufflation of donation after cardiac death donor rat pancreases has the potential to improve islet yield. © 2014 Steunstichting ESOT.
Emerging concepts in liver graft preservation
Bejaoui, Mohamed; Pantazi, Eirini; Folch-Puy, Emma; Baptista, Pedro M; García-Gil, Agustín; Adam, René; Roselló-Catafau, Joan
2015-01-01
The urgent need to expand the donor pool in order to attend to the growing demand for liver transplantation has obliged physicians to consider the use of suboptimal liver grafts and also to redefine the preservation strategies. This review examines the different methods of liver graft preservation, focusing on the latest advances in both static cold storage and machine perfusion (MP). The new strategies for static cold storage are mainly designed to increase the fatty liver graft preservation via the supplementation of commercial organ preservation solutions with additives. In this paper we stress the importance of carrying out effective graft washout after static cold preservation, and present a detailed discussion of the future perspectives for dynamic graft preservation using MP at different temperatures (hypothermia at 4 °C, normothermia at 37 °C and subnormothermia at 20 °C-25 °C). Finally, we highlight some emerging applications of regenerative medicine in liver graft preservation. In conclusion, this review discusses the “state of the art” and future perspectives in static and dynamic liver graft preservation in order to improve graft viability. PMID:25593455
Normothermic ex-situ liver preservation: the new gold standard.
Laing, Richard W; Mergental, Hynek; Mirza, Darius F
2017-06-01
Normothermic machine perfusion of the liver (NMP-L) is a novel technology recently introduced into the practice of liver transplantation. This review recapitulates benefits of normothermic perfusion over conventional static cold storage and summarizes recent publications in this area. The first clinical trials have demonstrated both safety and feasibility of NMP-L. They have shown that machine perfusion can entirely replace cold storage or be commenced following a period of cold ischaemia. The technology currently allows transplant teams to extend the period of organ preservation for up to 24 h. Results from the first randomized control trial comparing NMP-L with static cold storage will be available soon. One major advantage of NMP-L technology over other parallel technologies is the potential to assess liver function during NMP-L. Several case series have suggested parameters usable for liver viability testing during NMP-L including bile production and clearance of lactic acidosis. NMP-L allows viability testing of high-risk livers. It has shown the potential to increase utilization of donor organs and improve transplant procedure logistics. NMP-L is likely to become an important technology that will improve organ preservation as well as have the potential to improve utilization of extended criteria donor livers.
Zumrutdal, Emin; Karateke, Faruk; Eser, Pınar Eylem; Turan, Umit; Ozyazici, Sefa; Sozutek, Alper; Gulkaya, Mustafa; Kunt, Mevlut
2016-12-01
We aimed to determine the biochemical and histopathologic effects of direct oxygen supply to the preservation fluid of static cold storage system with a simple method on rat livers. Sixteen rats were randomly divided into 2 groups: the control group, which contained Ringer's lactate as preservation fluid; and the oxygen group, which contained oxygen and Ringer's lactate for preservation. Each liver was placed in a bag containing 50 mL Ringer's lactate and placed in ice-filled storage containers. One hundred percent oxygen supplies were given via a simple, inexpensive system created in our laboratory, to the livers in oxygen group. We obtained samples for histopathologic evaluation in the 12th hour. In addition, 3 mL of preservation fluid was subjected to biochemical analysis at 0, sixth, and twelfth hours. Aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and pH levels were measured from the preservation fluid. In oxygen-supplemented group, the acceleration speed of increase in alanine aminotransferase and lactate dehydrogenase levels at sixth hour and lactate dehydrogenase, alanine aminotransferase, and lactate dehydrogenase levels at 12th hour were statistically significantly reduced. In histopathologic examination, all parameters except ballooning were statistically significantly better in the oxygen-supplemented group. This simple system for oxygenation of liver tissues during static cold storage was shown to be effective with good results in biochemical and histopathologic assessments. Because this is a simple, inexpensive, and easily available method, larger studies are warranted to evaluate its effects (especially in humans).
Tedesco-Silva, Helio; Mello Offerni, Juliano Chrystian; Ayres Carneiro, Vanessa; Ivani de Paula, Mayara; Neto, Elias David; Brambate Carvalhinho Lemos, Francine; Requião Moura, Lúcio Roberto; Pacheco E Silva Filho, Alvaro; de Morais Cunha, Mirian de Fátima; Francisco da Silva, Erica; Miorin, Luiz Antonio; Demetrio, Daniela Priscila; Luconi, Paulo Sérgio; da Silva Luconi, Waldere Tania; Bobbio, Savina Adriana; Kuschnaroff, Liz Milstein; Noronha, Irene Lourdes; Braga, Sibele Lessa; Barsante, Renata Cristina; Mendes Moreira, João Cezar; Fernandes-Charpiot, Ida Maria Maximina; Abbud-Filho, Mario; Modelli de Andrade, Luis Gustavo; Dalsoglio Garcia, Paula; Tanajura Santamaria Saber, Luciana; Fernandes Laurindo, Alan; Chocair, Pedro Renato; Cuvello Neto, Américo Lourenço; Zanocco, Juliana Aparecida; Duboc de Almeida Soares Filho, Antonio Jose; Ferreira Aguiar, Wilson; Medina Pestana, Jose
2017-05-01
This study compared the use of static cold storage versus continuous hypothermic machine perfusion in a cohort of kidney transplant recipients at high risk for delayed graft function (DGF). In this national, multicenter, and controlled trial, 80 pairs of kidneys recovered from brain-dead deceased donors were randomized to cold storage or machine perfusion, transplanted, and followed up for 12 months. The primary endpoint was the incidence of DGF. Secondary endpoints included the duration of DGF, hospital stay, primary nonfunction, estimated glomerular filtration rate, acute rejection, and allograft and patient survivals. Mean cold ischemia time was high but not different between the 2 groups (25.6 ± 6.6 hours vs 25.05 ± 6.3 hours, 0.937). The incidence of DGF was lower in the machine perfusion compared with cold storage group (61% vs. 45%, P = 0.031). Machine perfusion was independently associated with a reduced risk of DGF (odds ratio, 0.49; 95% confidence interval, 0.26-0.95). Mean estimated glomerular filtration rate tended to be higher at day 28 (40.6 ± 19.9 mL/min per 1.73 m 2 vs 49.0 ± 26.9 mL/min per 1.73 m 2 ; P = 0.262) and 1 year (48.3 ± 19.8 mL/min per 1.73 m 2 vs 54.4 ± 28.6 mL/min per 1.73 m 2 ; P = 0.201) in the machine perfusion group. No differences in the incidence of acute rejection, primary nonfunction (0% vs 2.5%), graft loss (7.5% vs 10%), or death (8.8% vs 6.3%) were observed. In this cohort of recipients of deceased donor kidneys with high mean cold ischemia time and high incidence of DGF, the use of continuous machine perfusion was associated with a reduced risk of DGF compared with the traditional cold storage preservation method.
Matos, Ana Cristina C; Requiao Moura, Lúcio Roberto; Borrelli, Milton; Nogueira, Mario; Clarizia, Gabriela; Ongaro, Paula; Durão, Marcelino Souza; Pacheco-Silva, Alvaro
2018-01-01
Delayed graft function (DGF) is very high in our center (70%-80%), and we usually receive a kidney for transplant after more than 22 hours of static cold ischemia time (CIT). Also, there is an inadequate care of the donors, contributing to a high rate of DGF. We decided to test whether machine perfusion (MP) after a CIT improved the outcome of our transplant patients. We analyzed the incidence of DGF, its duration, and the length of hospital stay (LOS) in patients who received a kidney preserved with MP after a CIT (hybrid perfusion-HP). We included 54 deceased donors kidneys preserved with HP transplanted from Feb/13 to Jul/14, and compared them to 101 kidney transplants preserved by static cold storage (CS) from Nov/08 to May/12. The median pumping time was 11 hours. DGF incidence was 61.1% vs 79.2% (P = .02), median DGF duration was 5 vs 11 days (P < .001), and median LOS was 13 vs 18 days (P < .011), for the HP compared to CS group. The observed reduction of DGF with machine perfusion did not occur in donors over 50 years old. In the multivariate analysis, risk factors for DGF, adjusted for CIT, were donor age (OR, 1.04; P = .005) and the absence of use of MP (OR, 1.54; P = .051). In conclusion, the use of HP contributed to faster recovery of renal function and to a shorter length of hospital stay. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Effect of a commercial housing system on egg quality during extended storage.
Jones, D R; Karcher, D M; Abdo, Z
2014-05-01
Egg producers in the United States are utilizing a variety of commercial egg production systems to provide consumer choice and meet legislative requirements. Consumer egg grades in the United States were developed for conventional cage production, and it is unclear what effect alternative production systems might have on egg quality during retail and consumer home storage. The current study was undertaken to determine what changes in egg quality characteristics occur during extended cold storage for commercially produced conventional cage, enriched colony cage, and cage-free aviary eggs. During 12 wk of cold storage, egg weight, albumen height, Haugh unit, static compression shell strength, vitelline membrane strength and deformation, yolk index, shell dynamic stiffness, and whole egg total solids were monitored. Overall, aviary and enriched eggs were significantly (P < 0.05) heavier than conventional cage. Albumen height and Haugh unit (P < 0.05) were significantly greater for conventional cage than enriched eggs. Static compression shell strength was greatest (P < 0.05) for enriched eggs compared with aviary. No overall housing system effects for yolk measurements, shell dynamic stiffness, or whole egg total solids were observed. Albumen height, Haugh unit, and yolk quality measurements were all greatest at 0 and lowest at 12 wk of storage (P < 0.05). The rate of quality change among the housing systems for each measured attribute at 4, 6, and 12 wk was determined. Other than differences in the change of egg weight at 4 wk, no significant differences in the rate of quality decline were found among the housing systems. The results of the current study indicate that current US egg quality standards should effectively define quality for commercially produced conventional cage, enriched colony cage, and cage-free aviary eggs.
Development and Evaluation of Heartbeat: A Machine Perfusion Heart Preservation System.
Li, Yongnan; Zeng, Qingdong; Liu, Gang; Du, Junzhe; Gao, Bingren; Wang, Wei; Zheng, Zhe; Hu, Shengshou; Ji, Bingyang
2017-11-01
Static cold storage is accompanied with a partial safe ischemic interval for donor hearts. In this current study, a machine perfusion system was built to provide a better preservation for the donor heart and assessment for myocardial function. Chinese mini-swine (weight 30-35 kg, n = 16) were randomly divided into HTK, Celsior, and Heartbeat groups. All donor hearts were respectively preserved for 8 hours under static cold storage or machine perfusion. The perfusion solution is aimed to maintain its homeostasis based on monitoring the Heartbeat group. The ultrastructure of myocardium suggests better myocardial protection in the Heartbeat group compared with HTK or Celsior-preserved hearts. The myocardial and coronary artery structural and functional integrity was evaluated by immunofluorescence and Western blots in the Heartbeat. In the Heartbeat group, donor hearts maintained a high adenosine triphosphate level. Bcl-2 and Beclin-1 protein demonstrates high expression in the Celsior group. The Heartbeat system can be used to preserve donor hearts, and it could guarantee the myocardial and endothelial function of hearts during machine perfusion. Translating Heartbeat into clinical practice, it is such as to impact on donor heart preservation for cardiac transplantation. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Rudd, Donna M; Dobson, Geoffrey P
2011-12-01
Most cardiac preservation solutions provide safe cold ischemic storage times for 4 to 5 hours. Our aim was to investigate the effects of 8 hours of cold static storage (4°C) using 2 normokalemic, polarizing adenosine-lidocaine (Adenocaine; Hibernation Therapeutics Global Ltd, Kilquade, Ireland) solutions and to compare their functional recovery with hearts preserved in gold standard histidine-tryptophan-ketoglutarate (Custodiol-HTK; Essential Pharma, Newtown, Pa) and Celsior (Genzyme, Cambridge, Mass) solutions. Male Sprague-Dawley rats (350-450 g) were randomly assigned to 1 of 4 groups (n = 8): (1) adenosine-lidocaine cardioplegia with low Ca(2+)/high Mg(2+); (2) 2× adenosine-lidocaine cardioplegia, low Ca(2+)/high Mg(2+), melatonin, and insulin (2× adenosine, lidocaine, melatonin, and insulin); (3) histidine-tryptophan-ketoglutarate solution; or (4) Celsior. Hearts were perfused in working mode, arrested (37°C), removed, stored for 8 hours at 4°C, reattached in Langendorff mode and rewarmed for 5 minutes (37°C), and switched to working mode for 60 minutes. Myocardial oxygen consumption, effluent lactates, and troponin T levels were measured. Hearts preserved for 8 hours in adenosine-lidocaine and 2× adenosine, lidocaine, melatonin, and insulin returned 50% and 76% of aortic flow and 70% and 86% of coronary flow, respectively, at 60 minutes of reperfusion. In contrast, Custodiol-HTK and Celsior hearts returned 2% and 17% of aortic flow and 11% and 48% of coronary flow, respectively, at 60 minutes of reperfusion. Hearts preserved in adenosine-lidocaine and 2× adenosine, lidocaine, melatonin, and insulin returned 90% and 100% of developed pressures and 101% and 104% of heart rate, respectively. Hearts preserved in histidine-tryptophan-ketoglutarate failed to increase systolic pressure greater than 14 mm Hg (11% baseline) and diastolic pressure greater than 10 mm Hg (17% baseline), and recovered only 16% of heart rate. Hearts preserved in Celsior developed 70% of baseline systolic pressures and 86% recovery of heart rate. At 5 minutes of rewarming after cold storage, the myocardial oxygen consumption for hearts preserved in adenosine-lidocaine, 2× adenosine, lidocaine, melatonin, and insulin, Custodiol-HTK, and Celsior was 23.0 ± 5, 20 ± 4, 15 ± 1, and 10 ± 2 μmol O(2)/min/g dry wt, respectively, with corresponding lactate outputs of 1.8 ± 0.8, 1.5 ± 0.7, 2.6 ± 0.7, and 3.2 ± 1.4 μmol lactate/min/g dry weight. Troponin T was not detected in the coronary effluent of adenosine-lidocaine or 2× adenosine, lidocaine, melatonin, and insulin hearts, whereas Custodiol-HTK and Celsior hearts had troponin T levels of 0.08 and 0.24 μg/mL, respectively. We report a 78% return of cardiac output, 90% to 100% return of developed pressures, and 101% to 104% return of heart rate after 8 hours of cold static storage using normokalemic, adenosine, lidocaine, melatonin, and insulin preservation solution in the isolated rat heart compared with 55% cardiac output with polarizing adenosine-lidocaine cardioplegia alone, 4% cardiac output with Custodiol-HTK, and 25% cardiac output in Celsior preservation solutions. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Rudd, Donna M; Dobson, Geoffrey P
2009-01-01
Currently, the safe human heart preservation time is limited to around 4 to 5 hours of cold ischemic storage. Longer arrest times can lead to donor heart damage, early graft dysfunction, and chronic rejection. The aim of this study was to examine a new nondepolarizing, normokalemic preservation solution with adenosine and lidocaine for as long as 6 hours of arrest at cold and warmer storage temperatures. Isolated perfused rat hearts (n = 87) were switched from working to Langendorff (nonworking) mode and arrested at 37 degrees C with 200-micromol/L adenosine and 500-micromol/L lidocaine in Krebs-Henseleit buffer (10-mmol/L glucose, pH 7.7, 37 degrees C) or with Celsior (Sangstat Medical Corp, Fremont, CA). Hearts were removed and placed in static storage at 4 degrees C for 2 and 6 hours or remained on the apparatus and were intermittently flushed at 37 degrees C every 20 minutes for 2 minutes at 68 mm Hg (average arrest temperature 28 degrees -30 degrees C) for 2 and 6 hours. We further investigated the effect of the warmer adenosine-lidocaine solution supplemented with 1- or 5-mmol/L pyruvate. Adenosine-lidocaine solution arrested hearts in 16 +/- 2 seconds (n = 32), whereas Celsior did so in 39 +/- 4 seconds (n = 23). After 2 hours of cold static storage, there were no functional differences between the adenosine-lidocaine and Celsior groups, with approximately 70% return of cardiac output. In contrast, after 6 hours of 4 degrees C storage, adenosine-lidocaine hearts had significantly higher functional recoveries (68% +/- 5% cardiac output) than Celsior hearts (47% +/- 14% cardiac output) during 60 minutes of reperfusion. In addition, Celsior hearts took 5 minutes longer to reanimate and showed early reperfusion arrhythmias. At warmer temperatures after 2 hours of arrest, adenosine-lidocaine and Celsior hearts were not significantly different, despite a 43% higher cardiac output in adenosine-lidocaine hearts (80% +/- 3% vs 56% +/- 12%). After 6 hours, adenosine-lidocaine hearts had recovered 55% +/- 3% of prearrest cardiac output, which increased significantly to 75% +/- 4% with addition of 1-mmol/L pyruvate. Adenosine-lidocaine with 1-mmol/L pyruvate hearts spontaneously recovered 106% heart rate, 93% to 105% developed pressures, 70% aortic flow, and 81% coronary flow. Coronary vascular resistance increased 1.7- to 1.9-fold during the 6-hour arrest. In contrast, Celsior hearts did not have return of aortic or coronary flow after 6 hours in these warmer conditions. A new nondepolarizing, normokalemic adenosine-lidocaine arrest solution in Krebs-Henseleit buffer with 10-mmol/L glucose was versatile at both 4 degrees C and 28 degrees C to 30 degrees C relative to Celsior, and the addition of 1-mmol/L pyruvate significantly improved cardiac output at warmer arrest temperatures. This new arrest paradigm may be useful in the harvest, storage, and implantation of donor hearts.
Cold chain status at immunisation centres in Ethiopia.
Berhane, Y; Demissie, M
2000-09-01
Child immunisation is among the most cost-effective ways of preventing premature child deaths, and the potency of vaccines, crucial for vaccine efficacy, is dependent on effective management of the cold chain at all levels of vaccine handling. To assess the status of the cold chain at peripheral vaccine stores in Ethiopia. Institution based cross-sectional survey in two rural and one urban administrative areas were included in the study. Sixty seven health institutions providing static vaccination services were included in the study but cold chain system was assessed fully in only sixty four. Data were collected by interviewing health workers and by directly observing the cold chain equipment and records using structured forms. Conditions of the cold chain system were described based on 64 of the 67 centres visited, three were excluded because of non-functioning cold chain. Complete temperature record was observed in 37 (57.8%) of the centres. Thermometer was not available in four (6.3%) and thermometer reading was found to be outside the optimal range in another seven (10.9%) centres. Vaccine storage in the refrigerator was not proper in 47 (73.4%) centres. Majority of the centres had neither trained personnel nor budget for maintenance of the cold chain. There is a real danger of vaccines losing their potency at these centres even if they were potent on arrival. Relevant training for those handling the cold chain, improving the maintenance conditions of refrigerators and introduction of cold chain monitoring devises are recommended.
Evaporative cooling enhanced cold storage system
Carr, Peter
1991-01-01
The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.
Evaporative cooling enhanced cold storage system
Carr, P.
1991-10-15
The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.
Unsteady Heat Transfer Behavior of Reinforced Concrete Wall of Cold Storage
NASA Astrophysics Data System (ADS)
Nomura, Tomohiro; Murakami, Yuji; Uchikawa, Motoyuki
The authors had already clarified that the heat transfer behaviors between internal and external insulated reinforced concrete wall of cold storage are different each others when inside and outside temperature of wall is flactuating. From that conclusion, we must consider the application method of wall insulation of cold storages in actual design. The theme of the paper is to get the analyzing method and unsteady heat transfer characteristics of concrete walls of cold storage during daily variation of outside temperature of walls, and to give the basis for efficient design and cost optimization of insulate wall of cold storage. The difference of unsteady heat transfer characteristics between internal and external insulate wall, when outside temperature of the wall follewed daily varation, was clarified in experiment and in situ measurement of practical cold storage. The analyzing method with two dimentional unsteady FEM was introduced. Using this method, it is possible to obtain the time variation of heat flux, which is important basic factor for practical design of cold storage, through the wall.
Single bi-temperature thermal storage tank for application in solar thermal plant
Litwin, Robert Zachary; Wait, David; Lancet, Robert T.
2017-05-23
Thermocline storage tanks for solar power systems are disclosed. A thermocline region is provided between hot and cold storage regions of a fluid within the storage tank cavity. One example storage tank includes spaced apart baffles fixed relative to the tank and arranged within the thermocline region to substantially physically separate the cavity into hot and cold storage regions. In another example, a flexible baffle separated the hot and cold storage regions and deflects as the thermocline region shifts to accommodate changing hot and cold volumes. In yet another example, a controller is configured to move a baffle within the thermocline region in response to flow rates from hot and cold pumps, which are used to pump the fluid.
NASA Astrophysics Data System (ADS)
Panda, Maheswar
2018-05-01
In this manuscript, the dielectric behavior of a variety of ferroelectric polymer dielectrics (FPD), which may bethe materials for future electrostatic energy storage application shave been discussed. The variety of polymer dielectrics, comprising of ferroelectric polymer[polyvinylidene fluoride (PVDF)]/non-polarpolymer [low density polyethylene (LDPE)] and different sizes of metal particles (Ni, quasicrystal of Al-Cu-Fe) as filler, were prepared through different process conditions (cold press/hot press) and are investigated experimentally. Very high values of effective dielectric constants (ɛeff) with low loss tangent (Tan δ) were observed forall the prepared FPD at their respective percolation thresholds (fc). The enhancement of ɛeff and Tan δ at the insulator to metal transition (IMT) is explained through the boundary layer capacitor effect and the percolation theory respectively. The non-universal fc/critical exponents across the IMT have been explained through percolation theory andis attributed to the fillerparticle size& shape, interaction between the components, method of their preparation, adhesiveness, connectivity and homogeneity, etc. of the samples. Recent results on developed FPD with high ɛeff and low Tan δ prepared through cold press have proven themselves to be the better candidates for low frequency and static dielectric applications.
Pless-Petig, Gesine; Singer, Bernhard B; Rauen, Ursula
2012-01-01
Primary hepatocytes are of great importance for basic research as well as cell transplantation. However, their stability, especially in suspension, is very low. This feature severely compromises storage and shipment. Based on previous studies with adherent cells, we here assessed cold storage injury in rat hepatocyte suspensions and aimed to find a cold storage solution that preserves viability, attachment ability and functionality of these cells. Rat hepatocyte suspensions were stored in cell culture medium, organ preservation solutions and modified TiProtec solutions at 4°C for one week. Viability and cell volume were determined by flow cytometry. Thereafter, cells were seeded and density and metabolic capacity (reductive metabolism, forskolin-induced glucose release, urea production) of adherent cells were assessed. Cold storage injury in hepatocyte suspensions became evident as cell death occurring during cold storage or rewarming or as loss of attachment ability. Cell death during cold storage was not dependent on cell swelling and was almost completely inhibited in the presence of glycine and L-alanine. Cell attachment could be greatly improved by use of chloride-poor solutions and addition of iron chelators. Using a chloride-poor, potassium-rich storage solution containing glycine, alanine and iron chelators, cultures with 75% of the density of control cultures and with practically normal cell metabolism could be obtained after one week of cold storage. In the solution presented here, cold storage injury of hepatocyte suspensions, differing from that of adherent hepatocytes, was effectively inhibited. The components which acted on the different injurious processes were identified.
Maximising platelet availability by delaying cold storage.
Wood, B; Johnson, L; Hyland, R A; Marks, D C
2018-04-06
Cold-stored platelets may be an alternative to conventional room temperature (RT) storage. However, cold-stored platelets are cleared more rapidly from circulation, reducing their suitability for prophylactic transfusion. To minimise wastage, it may be beneficial to store platelets conventionally until near expiry (4 days) for prophylactic use, transferring them to refrigerated storage to facilitate an extended shelf life, reserving the platelets for the treatment of acute bleeding. Two ABO-matched buffy-coat-derived platelets (30% plasma/70% SSP+) were pooled and split to produce matched pairs (n = 8 pairs). One unit was stored at 2-6°C without agitation (day 1 postcollection; cold); the second unit was stored at 20-24°C with constant agitation until day 4 then stored at 2-6°C thereafter (delayed-cold). All units were tested for in vitro quality periodically over 21 days. During storage, cold and delayed-cold platelets maintained a similar platelet count. While pH and HSR were significantly higher in delayed-cold platelets, other metabolic markers, including lactate production and glucose consumption, did not differ significantly. Furthermore, surface expression of phosphatidylserine and CD62P, release of soluble CD62P and microparticles were not significantly different, suggesting similar activation profiles. Aggregation responses of delayed-cold platelets followed the same trend as cold platelets once transferred to cold storage, gradually declining over the storage period. The metabolic and activation profile of delayed-cold platelets was similar to cold-stored platelets. These data suggest that transferring platelets to refrigerated storage when near expiry may be a viable option for maximising platelet inventories. © 2018 International Society of Blood Transfusion.
Sample storage-induced changes in the quantity and quality of soil labile organic carbon
Sun, Shou-Qin; Cai, Hui-Ying; Chang, Scott X.; Bhatti, Jagtar S.
2015-01-01
Effects of sample storage methods on the quantity and quality of labile soil organic carbon are not fully understood even though their effects on basic soil properties have been extensively studied. We studied the effects of air-drying and frozen storage on cold and hot water soluble organic carbon (WSOC). Cold- and hot-WSOC in air-dried and frozen-stored soils were linearly correlated with those in fresh soils, indicating that storage proportionally altered the extractability of soil organic carbon. Air-drying but not frozen storage increased the concentrations of cold-WSOC and carbohydrate in cold-WSOC, while both increased polyphenol concentrations. In contrast, only polyphenol concentration in hot-WSOC was increased by air-drying and frozen storage, suggesting that hot-WSOC was less affected by sample storage. The biodegradability of cold- but not hot-WSOC was increased by air-drying, while both air-drying and frozen storage increased humification index and changed specific UV absorbance of both cold- and hot-WSOC, indicating shifts in the quality of soil WSOC. Our results suggest that storage methods affect the quantity and quality of WSOC but not comparisons between samples, frozen storage is better than air-drying if samples have to be stored, and storage should be avoided whenever possible when studying the quantity and quality of both cold- and hot-WSOC. PMID:26617054
1. Cold Storage Warehouse, east facade. Northeast corner of the ...
1. Cold Storage Warehouse, east facade. Northeast corner of the north facade of the Ice Plant is visible on the left. Far left, the Creamery. - Curtis Wharf, Cold Storage Warehouse, O & Second Streets, Anacortes, Skagit County, WA
Utilization of the organ care system as ex-vivo lung perfusion after cold storage transportation.
Mohite, P N; Maunz, O; Popov, A-F; Zych, B; Patil, N P; Simon, A R
2015-11-01
The Organ Care System (OCS) allows perfusion and ventilation of the donor lungs under physiological conditions. Ongoing trials to compare preservation with OCS Lung with standard cold storage do not include donor lungs with suboptimal gas exchange and donor lungs treated with OCS following cold storage transportation. We present a case of a 48-yr-old man who received such lungs after cold storage transportation treated with ex-vivo lung perfusion utilizing OCS. © The Author(s) 2015.
Artificial Permafrost and the Application to the Low Temperature Storage for Foodstuffs
NASA Astrophysics Data System (ADS)
Ryokai, Kimitoshi; Fukuda, Masami
In the cold regions like Hokkaido and Tohoku Districts, they have been advocating snow-overcoming, advantages of snow and effective utilization of cold climate. In fact, they have been positively trying to make use of snow and coldness as water resources, energy sources, structural materials and so on. One of energy utilization is for low temperature storage of foods. Since the potatoes have properties of adapting themselves to cold temperature when they are stored under cold environment, they have the tendency of growing in their sugar contents. As the results, all those foods which are stored under these cold environments will be the products of higher additional value. Here we will introduce the present situation of low temperature storage of foods by artificial permafrost, not only as the construction materials for cold storage house itself but also utilizing its own cold temperature.
40 CFR 75.64 - Quarterly reports.
Code of Federal Regulations, 2013 CFR
2013-07-01
... placed in long-term cold storage (as defined in § 72.2 of this chapter), quarterly reports are not... the unit). For units placed into long-term cold storage during a reporting quarter, the exemption from... long-term cold storage. For any provisionally-certified monitoring system, § 75.20(a)(3) shall apply...
40 CFR 75.64 - Quarterly reports.
Code of Federal Regulations, 2012 CFR
2012-07-01
... placed in long-term cold storage (as defined in § 72.2 of this chapter), quarterly reports are not... the unit). For units placed into long-term cold storage during a reporting quarter, the exemption from... long-term cold storage. For any provisionally-certified monitoring system, § 75.20(a)(3) shall apply...
40 CFR 75.64 - Quarterly reports.
Code of Federal Regulations, 2011 CFR
2011-07-01
... placed in long-term cold storage (as defined in § 72.2 of this chapter), quarterly reports are not... the unit). For units placed into long-term cold storage during a reporting quarter, the exemption from... long-term cold storage. For any provisionally-certified monitoring system, § 75.20(a)(3) shall apply...
40 CFR 75.64 - Quarterly reports.
Code of Federal Regulations, 2014 CFR
2014-07-01
... placed in long-term cold storage (as defined in § 72.2 of this chapter), quarterly reports are not... the unit). For units placed into long-term cold storage during a reporting quarter, the exemption from... long-term cold storage. For any provisionally-certified monitoring system, § 75.20(a)(3) shall apply...
Human thermal responses during leg-only exercise in cold water.
Golden, F S; Tipton, M J
1987-10-01
1. Exercise during immersion in cold water has been reported by several authors to accelerate the rate of fall of core temperature when compared with rates seen during static immersion. The nature of the exercise performed, however, has always been whole-body in nature. 2. In the present investigation fifteen subjects performed leg exercise throughout a 40 min head-out immersion in water at 15 degrees C. The responses obtained were compared with those seen when the subjects performed an identical static immersion. 3. Aural and rectal temperatures were found to fall by greater amounts during static immersion. 4. It is concluded that 'the type of exercise performed' should be included in the list of factors which affect core temperature during cold water immersion.
NASA Astrophysics Data System (ADS)
Rasta, IM; Susila, IDM; Subagia, IWA
2018-01-01
The application of refrigeration technology to postharvest fishery products is an very important. Moreover, Indonesia is a tropical region with relatively high temperatures. Fish storage age can be prolonged with a decrease in temperature. Frozen fish can even be stored for several months. Fish freezing means preparing fish for storage in low-temperature cold storage. The working fluid used in cold storage to cool low-temperature chambers and throw heat into high-temperature environments is refrigerant. So far refrigerant used in cold storage is Hydrochloroflourocarbons (HCFC) that is R-22. Chlor is a gas that causes ODP (Ozone Depleting Potential), while Flour is a gas that causes GWP (Global Warming Potential). Government policy began in 2015 to implement Hydrochloroflourocarbons Phase-Out Management Plan. Hydrocarbon (HC) is an alternative substitute for R-22. HC-22 (propane ≥ 99.5%) has several advantages, among others: environmentally friendly, indicated by a zero ODP value, and GWP = 3 (negligible), thermophysical property and good heat transfer characteristics, vapor phase density Which is low, and good solubility with mineral lubricants. The use of HC-22 in cold storage is less than R-22. From the analysis results obtained, cold storage system using HC-22 has better performance and energy consumption is more efficient than the R-22.
Byers, David A.; Henrikson, L. Suzann; Breslawski, Ryan P.
2016-06-04
Previous archaeological research in southern Idaho has suggested that climate change over the past 8000 years was not dramatic enough to alter long-term subsistence practices in the region. However, recent isotopic analyses of bison remains from cold storage caves on the Snake River Plain contest this hypothesis. Our results, when examined against an archaeoclimate model, suggest that cold storage episodes coincided with drier, warmer phases that likely reduced forage and water, and thus limited the availability of bison on the open steppe. Within this context we build a risk model to illustrate how environment might have motivated cold storage behaviors.more » Caching bison in cold lava tubes would have mitigated both intra-annual and inter-annual food shortages under these conditions. This analysis also suggests that skeletal fat, more than meat, may have influenced the selection, transport and storage of bison carcass parts. We deciphered when and how cold storage caves which was used to provide a more comprehensive understanding of foraging behaviors in a broad range of hunting-gathering economies.« less
A Lithium Bromide Absorption Chiller with Cold Storage
2011-01-15
Research ABSTRACT A LiBr -based absorption chiller can use waste heat or solar energy to produce useful space cooling for small buildings...high wa- ter consumption for heat rejection to the ambient. To alleviate these issues, a novel LiBr - based absorption chiller with cold storage is...proposed in this study. The cold storage includes tanks for storing liquid water and LiBr solution, associated piping, and control devices. The cold
7 CFR 1436.4 - Application for loans.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...
7 CFR 1436.4 - Application for loans.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...
7 CFR 1436.4 - Application for loans.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...
7 CFR 1436.4 - Application for loans.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...
7 CFR 1436.4 - Application for loans.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...
Val, Jesús; Fernández, Victoria; López, Paola; Peiró, Jose María; Blanco, Alvaro
2010-02-01
The effect of subjecting 'Golden Reinders' apples to a low O(2) pre-treatment (LOT; 1-2% O(2)) was evaluated as a strategy to decrease the rate of bitter pit (BP) incidence after standard cold storage (ST). Immediately after harvest, apples were stored for 10 days at 20 degrees C under low O(2). Thereafter, apples were cold-stored (0-4 degrees C) for 4 months and changes were monitored in terms of BP incidence, fruit quality traits and mineral element concentrations. After 4 months cold storage, LOT apples presented a 2.6-fold decrease in the rate of BP incidence (14%) versus the values obtained for standard cold-stored fruits (37% BP incidence). LOT increased flesh firmness, total soluble solids and titratable acidity as compared to the quality traits determined for cold-stored fruits. Lower cortex Ca and Mg concentrations as compared to ST apples were determined in association with LOT, 2 months after cold storage. Application of a LOT prior to cold storage may be a promising strategy to reduce the incidence of BP and preserve fruit quality, which should be further investigated.
Paloyo, Siegfredo; Sageshima, Junichiro; Gaynor, Jeffrey J; Chen, Linda; Ciancio, Gaetano; Burke, George W
2016-10-01
Kidney grafts are often preserved initially in static cold storage (CS) and subsequently on hypothermic machine perfusion (MP). However, the impact of CS/MP time on transplant outcome remains unclear. We evaluated the effect of prolonged CS/MP time in a single-center retrospective cohort of 59 donation after circulatory death (DCD) and 177 matched donation after brain death (DBD) kidney-alone transplant recipients. With mean overall CS/MP times of 6.0 h/30.0 h, overall incidence of delayed graft function (DGF) was higher in DCD transplants (30.5%) than DBD transplants (7.3%, P < 0.0001). In logistic regression, DCD recipient (P < 0.0001), longer CS time (P = 0.0002), male recipient (P = 0.02), and longer MP time (P = 0.08) were associated with higher DGF incidence. In evaluating the joint effects of donor type (DBD vs. DCD), CS time (<6 vs. ≥6 h), and MP time (<36 vs. ≥36 h) on DGF incidence, one clearly sees an unfavorable effect of MP time ≥36 h (P = 0.003) across each donor type and CS time stratum, whereas the unfavorable effect of CS time ≥6 h (P = 0.01) is primarily seen among DCD recipients. Prolonged cold ischemia time had no unfavorable effect on renal function or graft survival at 12mo post-transplant. Long CS/MP time detrimentally affects early DCD/DBD kidney transplant outcome when grafts were mainly preserved by MP; prolonged CS time before MP has a particularly negative impact in DCD kidney transplantation. © 2016 Steunstichting ESOT.
Dutkowski, Philipp; Polak, Wojciech G; Muiesan, Paolo; Schlegel, Andrea; Verhoeven, Cornelia J; Scalera, Irene; DeOliveira, Michelle L; Kron, Philipp; Clavien, Pierre-Alain
2015-11-01
Exposure of donor liver grafts to prolonged periods of warm ischemia before procurement causes injuries including intrahepatic cholangiopathy, which may lead to graft loss. Due to unavoidable prolonged ischemic time before procurement in donation after cardiac death (DCD) donation in 1 participating center, each liver graft of this center was pretreated with the new machine perfusion "Hypothermic Oxygenated PErfusion" (HOPE) in an attempt to improve graft quality before implantation. HOPE-treated DCD livers (n = 25) were matched and compared with normally preserved (static cold preservation) DCD liver grafts (n = 50) from 2 well-established European programs. Criteria for matching included duration of warm ischemia and key confounders summarized in the balance of risk score. In a second step, perfused and unperfused DCD livers were compared with liver grafts from standard brain dead donors (n = 50), also matched to the balance of risk score, serving as baseline controls. HOPE treatment of DCD livers significantly decreased graft injury compared with matched cold-stored DCD livers regarding peak alanine-aminotransferase (1239 vs 2065 U/L, P = 0.02), intrahepatic cholangiopathy (0% vs 22%, P = 0.015), biliary complications (20% vs 46%, P = 0.042), and 1-year graft survival (90% vs 69%, P = 0.035). No graft failure due to intrahepatic cholangiopathy or nonfunction occurred in HOPE-treated livers, whereas 18% of unperfused DCD livers needed retransplantation. In addition, HOPE-perfused DCD livers achieved similar results as control donation after brain death livers in all investigated endpoints. HOPE seems to offer important benefits in preserving higher-risk DCD liver grafts.
Johnson, Lacey; Tan, Shereen; Wood, Ben; Davis, April; Marks, Denese C
2016-07-01
Alternatives to room temperature storage of platelets (PLTs) may be beneficial to extend the limited shelf life and support transfusion logistics in rural and military areas. The aim of this study was to assess the morphologic, metabolic, and functional aspects of PLTs stored at room temperature or in refrigerated conditions or cryopreserved. A three-arm pool-and-split study was carried out using buffy coat-derived PLTs stored in 30% plasma/70% SSP+. The three matched treatment arms were room temperature stored (20-24°C), cold-stored (2-6°C), and cryopreserved (-80°C with dimethyl sulfoxide). Liquid-stored PLTs were tested over a 21-day period, while cryopreserved PLTs were examined immediately after thawing and after 6 and 24 hours of storage at room temperature. Cold-stored and cryopreserved PLTs underwent a significant shape change, although the cryopreserved PLTs appeared to recover from this during subsequent storage. Glycolytic metabolism was reduced in cold-stored PLTs, but accelerated in cryopreserved PLTs, while oxidative phosphorylation was negatively affected by both storage conditions. PLT aggregation was potentiated by cold storage and diminished by cryopreservation in comparison to room temperature-stored PLTs. Cold storage and cryopreservation resulted in faster clot formation (R-time; thromboelastography), which was associated with an increase in microparticles. Cold storage and cryopreservation of PLTs led to morphologic and metabolic changes. However, storage under these conditions appears to maintain or even enhance certain aspects of in vitro PLT function. © 2016 AABB.
Ultrasonic monitoring of Iberian fat crystallization during cold storage
NASA Astrophysics Data System (ADS)
Corona, E.; García-Pérez, J. V.; Santacatalina, J. V.; Peña, R.; Benedito, J.
2012-12-01
The aim of this work was to evaluate the use of ultrasonic measurements to characterize the crystallization process and to assess the textural changes of Iberian fat and Iberian ham during cold storage. The ultrasonic velocity was measured in two types of Iberian fats (Montanera and Cebo) during cold storage (0, 2, 5, 7 and 10 °C) and in vacuum packaged Iberian ham stored at 6°C for 120 days. The fatty acid profile, thermal behaviour and textural properties of fat were determined. The ultrasonic velocity and textural measurements showed a two step increase during cold storage, which was related with the separate crystallization of two fractions of triglycerides. It was observed that the harder the fat, the higher the ultrasonic velocity. Likewise, Cebo fat resulted harder than Montanera due to a higher content of saturated triglycerides. The ultrasonic velocity in Iberian ham showed an average increase of 55 m/s after 120 days of cold storage due to fat crystallization. Thus, non-destructive ultrasonic technique could be a reliable method to follow the crystallization of fats and to monitor the changes in the textural properties of Iberian ham during cold storage.
Pless-Petig, Gesine; Walter, Björn; Bienholz, Anja
2018-01-01
Isolated primary hepatocytes, which are widely used for pharmacological and clinical purposes, usually undergo certain periods of cold storage in suspension during processing. While adherent hepatocytes were shown previously to suffer iron-dependent cell death during cold (4 °C) storage and early rewarming, we previously found little iron-dependent hepatocyte death in suspension but severely decreased attachment ability unless iron chelators were added. Here, we focus on the role of mitochondrial impairment in this nonattachment of hepatocyte suspensions. Rat hepatocyte suspensions were stored in a chloride-poor, glycine-containing cold storage solution with and without iron chelators at 4 °C. After 1 wk of cold storage in the basic cold storage solution, cell viability in suspension was unchanged, while cell attachment was decreased by >80%. In the stored cells, a loss of mitochondrial membrane potential (MMP), a decrease in adenosine triphosphate (ATP) content (2 ± 2 nmol/106 cells after cold storage, 5 ± 3 nmol/106 cells after rewarming vs. control 29 ± 6 nmol/106 cells), and a decrease in oxygen consumption (101 ± 59 pmol sec−1 per 106 cells after rewarming vs. control 232 ± 83 pmol sec−1 per 106 cells) were observed. Addition of iron chelators to the cold storage solution increased cell attachment to 53% ± 20% and protected against loss of MMP, and cells were able to partially regenerate ATP during rewarming (15 ± 10 nmol/106 cells). Increased attachment could also be achieved by addition of the inhibitor combination of mitochondrial permeability transition, trifluoperazine + fructose. Attached hepatocytes displayed normal MMP and mitochondrial morphology. Additional experiments with freshly isolated hepatocytes confirmed that impaired energy production—as elicited by an inhibitor of the respiratory chain, antimycin A—can decrease cell attachment without decreasing viability. Taken together, these results suggest that mitochondrial impairment with subsequent energy deficiency is a key factor for the lack of attachment of cold-stored hepatocyte suspensions. PMID:29390882
Pless-Petig, Gesine; Walter, Björn; Bienholz, Anja; Rauen, Ursula
2017-12-01
Isolated primary hepatocytes, which are widely used for pharmacological and clinical purposes, usually undergo certain periods of cold storage in suspension during processing. While adherent hepatocytes were shown previously to suffer iron-dependent cell death during cold (4 °C) storage and early rewarming, we previously found little iron-dependent hepatocyte death in suspension but severely decreased attachment ability unless iron chelators were added. Here, we focus on the role of mitochondrial impairment in this nonattachment of hepatocyte suspensions. Rat hepatocyte suspensions were stored in a chloride-poor, glycine-containing cold storage solution with and without iron chelators at 4 °C. After 1 wk of cold storage in the basic cold storage solution, cell viability in suspension was unchanged, while cell attachment was decreased by >80%. In the stored cells, a loss of mitochondrial membrane potential (MMP), a decrease in adenosine triphosphate (ATP) content (2 ± 2 nmol/10 6 cells after cold storage, 5 ± 3 nmol/10 6 cells after rewarming vs. control 29 ± 6 nmol/10 6 cells), and a decrease in oxygen consumption (101 ± 59 pmol sec -1 per 10 6 cells after rewarming vs. control 232 ± 83 pmol sec -1 per 10 6 cells) were observed. Addition of iron chelators to the cold storage solution increased cell attachment to 53% ± 20% and protected against loss of MMP, and cells were able to partially regenerate ATP during rewarming (15 ± 10 nmol/10 6 cells). Increased attachment could also be achieved by addition of the inhibitor combination of mitochondrial permeability transition, trifluoperazine + fructose. Attached hepatocytes displayed normal MMP and mitochondrial morphology. Additional experiments with freshly isolated hepatocytes confirmed that impaired energy production-as elicited by an inhibitor of the respiratory chain, antimycin A-can decrease cell attachment without decreasing viability. Taken together, these results suggest that mitochondrial impairment with subsequent energy deficiency is a key factor for the lack of attachment of cold-stored hepatocyte suspensions.
Nikolaev, N. I.; Liu, Y.; Hussein, H.; Williams, D. J.
2012-01-01
In the current study, the mechanical and hypothermic damage induced by vibration and cold storage on human mesenchymal stem cells (hMSCs) stored at 2–8°C was quantified by measuring the total cell number and cell viability after exposure to vibration at 50 Hz (peak acceleration 140 m s−2 and peak displacement 1.4 mm), 25 Hz (peak acceleration 140 m s−2, peak displacement 5.7 mm), 10 Hz (peak acceleration 20 m s−2, peak displacement 5.1 mm) and cold storage for several durations. To quantify the viability of the cells, in addition to the trypan blue exclusion method, the combination of annexin V-FITC and propidium iodide was applied to understand the mode of cell death. Cell granularity and a panel of cell surface markers for stemness, including CD29, CD44, CD105 and CD166, were also evaluated for each condition. It was found that hMSCs were sensitive to vibration at 25 Hz, with moderate effects at 50 Hz and no effects at 10 Hz. Vibration at 25 Hz also increased CD29 and CD44 expression. The study further showed that cold storage alone caused a decrease in cell viability, especially after 48 h, and also increased CD29 and CD44 and attenuated CD105 expressions. Cell death would most likely be the consequence of membrane rupture, owing to necrosis induced by cold storage. The sensitivity of cells to different vibrations within the mechanical system is due to a combined effect of displacement and acceleration, and hMSCs with a longer cold storage duration were more susceptible to vibration damage, indicating a coupling between the effects of vibration and cold storage. PMID:22628214
Possibility of the market expansion of large capacity optical cold archive
NASA Astrophysics Data System (ADS)
Matsumoto, Ikuo; Sakata, Emiko
2017-08-01
The field, IoT and Big data, which is activated by the revolution of ICT, has caused rapid increase of distribution data of various business application. As a result, data with low access frequency has been rapidly increasing into a huge scale that human has never experienced before. This data with low access frequency is called "cold data", and the storage for cold data is called "cold storage". In this situation, the specifications of storage including access frequency, response speed and cost is determined by the application's request.
NASA Astrophysics Data System (ADS)
Inaba, Hideo; Morita, Shin-Ichi
This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byers, David A.; Henrikson, L. Suzann; Breslawski, Ryan P.
Previous archaeological research in southern Idaho has suggested that climate change over the past 8000 years was not dramatic enough to alter long-term subsistence practices in the region. However, recent isotopic analyses of bison remains from cold storage caves on the Snake River Plain contest this hypothesis. Our results, when examined against an archaeoclimate model, suggest that cold storage episodes coincided with drier, warmer phases that likely reduced forage and water, and thus limited the availability of bison on the open steppe. Within this context we build a risk model to illustrate how environment might have motivated cold storage behaviors.more » Caching bison in cold lava tubes would have mitigated both intra-annual and inter-annual food shortages under these conditions. This analysis also suggests that skeletal fat, more than meat, may have influenced the selection, transport and storage of bison carcass parts. We deciphered when and how cold storage caves which was used to provide a more comprehensive understanding of foraging behaviors in a broad range of hunting-gathering economies.« less
Yang, Ying; Zhu, Zai-Biao; Guo, Qiao-Sheng; Miao, Yuan-Yuan; Ma, Hong-Liang; Yang, Xiao-Hua
2015-01-01
The effect of low temperature storage on dormancy breaking, sprouting and growth after planting of Tulipa edulis was studied. The results showed that starch content and activity of amylases significantly decreased during 10 weeks of cold storage, soluble protein content raised at first then decreased, and the peak appeared at the 6th week. However, total soluble sugar content which in- creased slowly at first than rose sharply and reducing sugar content increased during the storage duration. The bulbs with cold storage treatment rooted in the 6th week, which was about 2 weeks earlier than room temperature storage, but there were less new roots in the late period of storage. After stored at a low temperature, bud lengths were longer than that with room temperature treatment. Cold storage treatment could promote earlier emergence, shorten germination time, prolong growth period and improve the yield of bulb, but rarely affect the emergence rate. It was not beneficial to flowering and fruiting. The results indicated that 6-8 weeks of cold storage was deemed to be the key period of dormancy breaking preliminary.
MitoQ blunts mitochondrial and renal damage during cold preservation of porcine kidneys.
Parajuli, Nirmala; Campbell, Lia H; Marine, Akira; Brockbank, Kelvin G M; Macmillan-Crow, Lee Ann
2012-01-01
Cold preservation has greatly facilitated the use of cadaveric kidneys for transplantation but damage occurs during the preservation episode. It is well established that oxidant production increases during cold renal preservation and mitochondria are a key target for injury. Our laboratory has demonstrated that cold storage of renal cells and rat kidneys leads to increased mitochondrial superoxide levels and mitochondrial electron transport chain damage, and that addition of Mitoquinone (MitoQ) to the preservation solutions blunted this injury. In order to better translate animal studies, the inclusion of large animal models is necessary to develop safe preclinical protocols. Therefore, we tested the hypothesis that addition of MitoQ to cold storage solution preserves mitochondrial function by decreasing oxidative stress, leading to less renal tubular damage during cold preservation of porcine kidneys employing a standard criteria donor model. Results showed that cold storage significantly induced oxidative stress (nitrotyrosine), renal tubular damage, and cell death. Using High Resolution Respirometry and fresh porcine kidney biopsies to assess mitochondrial function we showed that MitoQ significantly improved complex II/III respiration of the electron transport chain following 24 hours of cold storage. In addition, MitoQ blunted oxidative stress, renal tubular damage, and cell death after 48 hours. These results suggested that MitoQ decreased oxidative stress, tubular damage and cell death by improving mitochondrial function during cold storage. Therefore this compound should be considered as an integral part of organ preservation solution prior to transplantation.
MitoQ Blunts Mitochondrial and Renal Damage during Cold Preservation of Porcine Kidneys
Parajuli, Nirmala; Campbell, Lia H.; Marine, Akira; Brockbank, Kelvin G. M.; MacMillan-Crow, Lee Ann
2012-01-01
Cold preservation has greatly facilitated the use of cadaveric kidneys for transplantation but damage occurs during the preservation episode. It is well established that oxidant production increases during cold renal preservation and mitochondria are a key target for injury. Our laboratory has demonstrated that cold storage of renal cells and rat kidneys leads to increased mitochondrial superoxide levels and mitochondrial electron transport chain damage, and that addition of Mitoquinone (MitoQ) to the preservation solutions blunted this injury. In order to better translate animal studies, the inclusion of large animal models is necessary to develop safe preclinical protocols. Therefore, we tested the hypothesis that addition of MitoQ to cold storage solution preserves mitochondrial function by decreasing oxidative stress, leading to less renal tubular damage during cold preservation of porcine kidneys employing a standard criteria donor model. Results showed that cold storage significantly induced oxidative stress (nitrotyrosine), renal tubular damage, and cell death. Using High Resolution Respirometry and fresh porcine kidney biopsies to assess mitochondrial function we showed that MitoQ significantly improved complex II/III respiration of the electron transport chain following 24 hours of cold storage. In addition, MitoQ blunted oxidative stress, renal tubular damage, and cell death after 48 hours. These results suggested that MitoQ decreased oxidative stress, tubular damage and cell death by improving mitochondrial function during cold storage. Therefore this compound should be considered as an integral part of organ preservation solution prior to transplantation. PMID:23139796
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Andresen
2000-11-08
Stress corrosion crack growth studies have been performed on annealed and cold worked Titanium Grade 7 and Alloy 22 in 110 C, aerated, concentrated, high pH salt environments characteristic of concentrated ground water. Following a very careful transition from fatigue precracking conditions to SCC conditions, the long term behavior under very stable conditions was monitored using reversing dc potential drop. Titanium Grade 7 exhibited continuous crack growth under both near-static and complete static loading conditions. Alloy 22 exhibited similar growth rates, but was less prone to maintain stable crack growth as conditions approached fully static loading.
Ultrasonic characterization of pork fat crystallization during cold storage.
Corona, Edith; García-Pérez, José V; Santacatalina, Juan V; Ventanas, Sonia; Benedito, José
2014-05-01
In this work, the feasibility of using ultrasonic velocity measurements for characterizing and differentiating the crystallization pattern in 2 pork backfats (Montanera and Cebo Iberian fats) during cold storage (0 °C, 2 °C, 5 °C, 7 °C, and 10 °C) was evaluated. The fatty acid profile, thermal behavior, and textural properties (hardness) of fat were also determined. Both fats became harder during cold storage (average hardness increase for both fats, 11.5 N, 8 N, and 1.8 N at 0, °C 2 °C, and 5 °C , respectively), showing a 2-step pattern related with the separate crystallization of the different existing triacylglycerols, which was well described using a modified Avrami equation (explained variance > 99%). Due to a greater content of saturated triacylglycerols, Cebo fat (45.1%) was harder than Montanera (41.8%). The ultrasonic velocity followed a similar 2-step pattern to hardness during cold storage, being found an average increase for both fats of 184, 161, and 150 m/s at 0 °C 2 °C, and 5 °C, respectively. Thus, ultrasonic measurements were useful both to characterize the textural changes taking place during cold storage and to differentiate between fats with different composition. The cold storage of dry-cured meat products during their distribution and retail sale exert an important effect on their textural properties and consumers' acceptance due to the crystallization of the fat fraction, which is greatly influenced by the type of fat. In this work, a nondestructive ultrasonic technique was used to identify the textural changes provoked by the crystallization during cold storage, and to differentiate between fats, which could be used for quality control purposes. © 2014 Institute of Food Technologists®
Hunt, G J; Tabachnick, W J
1995-09-01
The effects of cold storage (5 degrees C) on the hatching rates of laboratory-reared Culicoides variipennis sonorensis eggs were examined. Mortality increased with storage time. Average maximum embryo survivorship for 4 trials was 55.0 +/- 4.2 (+/- SEM) days. Alternating daily cycles of high and then low mean hatching rates occurred and possibly were due to location differences in temperature within the temperature-controlled rearing system. During cold storage at 5 degrees C, C. v. sonorensis eggs may be kept for ca. 28 days with an anticipated hatching rate of about 50%.
Effect of cooking and cold storage on biologically active antibiotic residues in meat.
O'Brien, J. J.; Campbell, N.; Conaghan, T.
1981-01-01
An investigation was undertaken to see if cooking or cold storage would destroy or decrease the level of biologically active antibiotic in tissues from animals given therapeutic doses of antibiotic on three occasions prior to slaughter. The effects of cooking and cold storage on the biological activity of the residues of ampicillin, chloramphenicol, oxytetracycline, streptomycin and sulphadimidine were varied; in some instances the effects were minimal, in others nil. PMID:7310129
Storch, Tatiane Timm; Finatto, Taciane; Pegoraro, Camila; Dal Cero, Joceani; Laurens, François; Rombaldi, Cesar Valmor; Quecini, Vera; Girardi, César Luís
2015-09-01
Fruit texture changes impair the quality of apples submitted to long term storage, especially under cold. The changes are due to cell wall modifications during ripening and senescence and are associated to ethylene. We have investigated the activity of α-l-arabinofuranosidase, a glycosyl hydrolase acting on the side chains of pectin in the cell wall and middle lamella. The transcription of arabinofuranosidase coding sequences 1 and 3 was investigated in plant organs and in response to ethylene, employing hormone application and 1-methylcyclopropene. The transcription of arabinofuranosidase genes is not restricted to fruits, although upregulated by ripening and ethylene. Transcripts of the genes were detected under cold storage up to 180 days. Similarly, arabinofuranosidase activity increased with rising levels of ethylene and under cold storage. Levels of arabinofuranosidase3 transcripts were higher than those of arabinofuranosidase1, suggesting that the first is an important contributor to enzyme activity and texture changes during cold storage. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cold-Chain Adaptability During Introduction of Inactivated Polio Vaccine in Bangladesh, 2015.
Billah, Mallick M; Zaman, K; Estivariz, Concepcion F; Snider, Cynthia J; Anand, Abhijeet; Hampton, Lee M; Bari, Tajul I A; Russell, Kevin L; Chai, Shua J
2017-07-01
Introduction of inactivated polio vaccine creates challenges in maintaining the cold chain for vaccine storage and distribution. We evaluated the cold chain in 23 health facilities and 36 outreach vaccination sessions in 8 districts and cities of Bangladesh, using purposive sampling during August-October 2015. We interviewed immunization and cold-chain staff, assessed equipment, and recorded temperatures during vaccine storage and transportation. All health facilities had functioning refrigerators, and 96% had freezers. Temperature monitors were observed in all refrigerators and freezers but in only 14 of 66 vaccine transporters (21%). Recorders detected temperatures >8°C for >60 minutes in 5 of 23 refrigerators (22%), 3 of 6 cold boxes (50%) transporting vaccines from national to subnational depots, and 8 of 48 vaccine carriers (17%) used in outreach vaccination sites. Temperatures <2°C were detected in 4 of 19 cold boxes (21%) transporting vaccine from subnational depots to health facilities and 14 of 48 vaccine carriers (29%). Bangladesh has substantial cold-chain storage and transportation capacity after inactivated polio vaccine introduction, but temperature fluctuations during vaccine transport could cause vaccine potency loss that could go undetected. Bangladesh and other countries should strive to ensure consistent and sufficient cold-chain storage and monitor the cold chain during vaccine transportation at all levels. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Forouzan, Farzane; Jalali, Mohammad Amin; Ziaaddini, Mahdi; Hashemi Rad, Hamid
2018-05-28
Psix saccharicola (Mani) (Hymenoptera: Platygastridae) is a solitary egg parasitoid of the pistachio green stink bug, Acrosternum arabicum (Wagner) (Hemiptera: Pentatomidae), which is one of the most important pests of pistachio in Iran. Augmentation of P. saccharicola field populations using mass-reared individuals may provide an alternative to conventional pesticide use for pistachio green stink bug control. Cold storage is an important component of mass-rearing protocols for optimum timing of host egg parasitization and potentially extended storage of P. saccharicola pupae prior to adult emergence. The impact of cold storage on A. arabicum eggs for various time intervals at 4.0°C was investigated. Results indicated that host eggs stored at 4.0°C for up to 60 d could be exploited by P. sacchricola, whereas no offspring were produced when eggs were stored for 120 d. The emergence rates of the F1 and F2 generations declined with increased host egg storage time. Both sex ratio and survival rate of the F2 generation decreased as the refrigeration time of host eggs increased. The impact of cold storage on P. saccharicola pupae was evaluated. Reared pupae of P. saccharicola were held for 1 wk at three temperatures and compared with a control (27 ± 1°C). Psix saccharicola pupae were tolerant to cold storage at 8 and 12°C. Cold storage adversely affected mean adult emergence at 4°C, which decreased following low temperature exposure. Furthermore, mean percentage survivorship was unaffected by storage at low temperatures in the F1 generation, but was reduced at 4°C. The sex ratio of the F1 generation became more male-biased when held at lower storage temperatures. The highest female proportion was observed at 12°C.
Correia, Cláudia; Koshkin, Alexey; Carido, Madalena; Espinha, Nuno; Šarić, Tomo; Lima, Pedro A.; Alves, Paula M.
2016-01-01
To fully explore the potential of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), efficient methods for storage and shipment of these cells are required. Here, we evaluated the feasibility to cold store monolayers and aggregates of functional CMs obtained from different PSC lines using a fully defined clinical-compatible preservation formulation and investigated the time frame that hPSC-CMs could be subjected to hypothermic storage. We showed that two-dimensional (2D) monolayers of hPSC-CMs can be efficiently stored at 4°C for 3 days without compromising cell viability. However, cell viability decreased when the cold storage interval was extended to 7 days. We demonstrated that hPSC-CMs are more resistant to prolonged hypothermic storage-induced cell injury in three-dimensional aggregates than in 2D monolayers, showing high cell recoveries (>70%) after 7 days of storage. Importantly, hPSC-CMs maintained their typical (ultra)structure, gene and protein expression profile, electrophysiological profiles, and drug responsiveness. Significance The applicability of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) in the clinic/industry is highly dependent on the development of efficient methods for worldwide shipment of these cells. This study established effective clinically compatible strategies for cold (4°C) storage of hPSC-CMs cultured as two-dimensional (2D) monolayers and three-dimensional (3D) aggregates. Cell recovery of 2D monolayers of hPSC-CMs was found to be dependent on the time of storage, and 3D cell aggregates were more resistant to prolonged cold storage than 2D monolayers. Of note, it was demonstrated that 7 days of cold storage did not affect hPSC-CM ultrastructure, phenotype, or function. This study provides important insights into the cold preservation of PSC-CMs that could be valuable in improving global commercial distribution of hPSC-CMs. PMID:27025693
Correia, Cláudia; Koshkin, Alexey; Carido, Madalena; Espinha, Nuno; Šarić, Tomo; Lima, Pedro A; Serra, Margarida; Alves, Paula M
2016-05-01
To fully explore the potential of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), efficient methods for storage and shipment of these cells are required. Here, we evaluated the feasibility to cold store monolayers and aggregates of functional CMs obtained from different PSC lines using a fully defined clinical-compatible preservation formulation and investigated the time frame that hPSC-CMs could be subjected to hypothermic storage. We showed that two-dimensional (2D) monolayers of hPSC-CMs can be efficiently stored at 4°C for 3 days without compromising cell viability. However, cell viability decreased when the cold storage interval was extended to 7 days. We demonstrated that hPSC-CMs are more resistant to prolonged hypothermic storage-induced cell injury in three-dimensional aggregates than in 2D monolayers, showing high cell recoveries (>70%) after 7 days of storage. Importantly, hPSC-CMs maintained their typical (ultra)structure, gene and protein expression profile, electrophysiological profiles, and drug responsiveness. The applicability of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) in the clinic/industry is highly dependent on the development of efficient methods for worldwide shipment of these cells. This study established effective clinically compatible strategies for cold (4°C) storage of hPSC-CMs cultured as two-dimensional (2D) monolayers and three-dimensional (3D) aggregates. Cell recovery of 2D monolayers of hPSC-CMs was found to be dependent on the time of storage, and 3D cell aggregates were more resistant to prolonged cold storage than 2D monolayers. Of note, it was demonstrated that 7 days of cold storage did not affect hPSC-CM ultrastructure, phenotype, or function. This study provides important insights into the cold preservation of PSC-CMs that could be valuable in improving global commercial distribution of hPSC-CMs. ©AlphaMed Press.
INTERIOR OF COLD STORAGE ROOM, SHOWING MOVABLE HANGING RACKS. ...
INTERIOR OF COLD STORAGE ROOM, SHOWING MOVABLE HANGING RACKS. - Naval Air Station Barbers Point, Aircraft Storehouse, Between Midway & Card Streets at Enterprise Avenue intersection, Ewa, Honolulu County, HI
Gschwendtner, Silvia; Alatossava, Tapani; Kublik, Susanne; Fuka, Mirna Mrkonjić; Schloter, Michael; Munsch-Alatossava, Patricia
2016-01-01
The quality and safety of raw milk still remains a worldwide challenge. Culture-dependent methods indicated that the continuous N2 gas-flushing of raw milk reduced the bacterial growth during cold storage by up to four orders of magnitude, compared to cold storage alone. This study investigated the influence of N2 gas-flushing on bacterial diversity in bovine raw-milk samples, that were either cold stored at 6°C or additionally flushed with pure N2 for up to one week. Next-generation sequencing (NGS) of the V1-V2 hypervariable regions of 16S rRNA genes, derived from amplified cDNA, which was obtained from RNA directly isolated from raw-milk samples, was performed. The reads, which were clustered into 2448 operational taxonomic units (OTUs), were phylogenetically classified. Our data revealed a drastic reduction in the diversity of OTUs in raw milk during cold storage at 6°C at 97% similarity level; but, the N2-flushing treatment alleviated this reduction and substantially limited the loss of bacterial diversity during the same cold-storage period. Compared to cold-stored milk, the initial raw-milk samples contained less Proteobacteria (mainly Pseudomonadaceae, Moraxellaceae and Enterobacteriaceae) but more Firmicutes (mainly Ruminococcaceaea, Lachnospiraceae and Oscillospiraceaea) and Bacteroidetes (mainly Bacteroidales). Significant differences between cold-stored and additionally N2-flushed milk were mainly related to higher levels of Pseudomononadaceae (including the genera Pseudomonas and Acinetobacter) in cold-stored milk samples; furthermore, rare taxa were better preserved by the N2 gas flushing compared to the cold storage alone. No major changes in bacterial composition with time were found regarding the distribution of the major 9 OTUs, that dominated the Pseudomonas genus in N2-flushed or non-flushed milk samples, other than an intriguing predominance of bacteria related to P. veronii. Overall, this study established that neither bacteria causing milk spoilage nor any well-known human pathogen or anaerobe benefited from the N2 gas flushing even though the N2-flushed and non-flushed cold-stored milk differed in bacterial counts by up to 104-fold.
Kublik, Susanne; Fuka, Mirna Mrkonjić; Schloter, Michael; Munsch-Alatossava, Patricia
2016-01-01
The quality and safety of raw milk still remains a worldwide challenge. Culture-dependent methods indicated that the continuous N2 gas-flushing of raw milk reduced the bacterial growth during cold storage by up to four orders of magnitude, compared to cold storage alone. This study investigated the influence of N2 gas-flushing on bacterial diversity in bovine raw-milk samples, that were either cold stored at 6°C or additionally flushed with pure N2 for up to one week. Next-generation sequencing (NGS) of the V1-V2 hypervariable regions of 16S rRNA genes, derived from amplified cDNA, which was obtained from RNA directly isolated from raw-milk samples, was performed. The reads, which were clustered into 2448 operational taxonomic units (OTUs), were phylogenetically classified. Our data revealed a drastic reduction in the diversity of OTUs in raw milk during cold storage at 6°C at 97% similarity level; but, the N2-flushing treatment alleviated this reduction and substantially limited the loss of bacterial diversity during the same cold-storage period. Compared to cold-stored milk, the initial raw-milk samples contained less Proteobacteria (mainly Pseudomonadaceae, Moraxellaceae and Enterobacteriaceae) but more Firmicutes (mainly Ruminococcaceaea, Lachnospiraceae and Oscillospiraceaea) and Bacteroidetes (mainly Bacteroidales). Significant differences between cold-stored and additionally N2-flushed milk were mainly related to higher levels of Pseudomononadaceae (including the genera Pseudomonas and Acinetobacter) in cold-stored milk samples; furthermore, rare taxa were better preserved by the N2 gas flushing compared to the cold storage alone. No major changes in bacterial composition with time were found regarding the distribution of the major 9 OTUs, that dominated the Pseudomonas genus in N2-flushed or non-flushed milk samples, other than an intriguing predominance of bacteria related to P. veronii. Overall, this study established that neither bacteria causing milk spoilage nor any well-known human pathogen or anaerobe benefited from the N2 gas flushing even though the N2-flushed and non-flushed cold-stored milk differed in bacterial counts by up to 104-fold. PMID:26730711
Nieto, Alejandra; Roehl, Holger; Adler, Michael; Mohl, Silke
2018-05-31
Frozen-state storage and cold-chain transport are key operations in the development and commercialization of biopharmaceuticals. Nowadays, a few marketed drug products are stored (and/or) shipped under frozen conditions to ensure sufficient stability, particularly for live viral vaccines. When these products are stored in glass vials with stoppers, the elastomer of the stopper needs to be flexible enough to seal the vial at the target's lowest temperature to ensure container closure integrity and hence both sterility and safety of the drug product. The container closure integrity assessment in the frozen state (e.g., -20°C, -80°C) should include: Container Closure Integrity (CCI) of the Container Closure System (CCS) itself, impact of processing, e.g. capping process on CCI and impact of shipment and movement on CCI in the frozen state. The objective of this work was an evaluation of the impact of processing and shipment on CCI of a CCS in the frozen state. The impact on other quality attributes was not investigated. In this light, the ThermCCI method was applied to evaluate the impact of shipping stress and variable capping force on CCI of frozen vials and to evaluate the temperature limits of rubber stoppers. In conclusion, retaining CCI during cold storage is mostly a function of vial-stopper combination and temperatures below -40°C may pose a risk to the CCI of a frozen drug product. Variable capping force may have an influence on the CCI of a frozen drug product if not appropriately assessed. Regarding the impact of shipment on the CCI of glass vials, no indication was given either at room temperature, -20°C or -75°C when compared to static storage at such temperatures. Copyright © 2018, Parenteral Drug Association.
Burger, Patrick; Korsten, Herbert; De Korte, Dirk; Rombout, Eva; Van Bruggen, Robin; Verhoeven, Arthur J
2010-11-01
Current additive solutions (ASs) for red blood cells (RBCs) do not maintain constant 2,3-diphosphoglycerate (DPG) and adenosine triphosphate (ATP) levels during cold storage. We have previously shown that with a new AS called phosphate-adenine-glucose-guanosine-gluconate-mannitol (PAGGGM), both 2,3-DPG and ATP could be maintained throughout storage for 35 days. In this study, the mechanism underlying the effect of PAGGGM on RBC storage was studied in more detail. By using double-erythrocytapheresis units (leukoreduced), a direct comparison could be made between the current AS saline-adenine-glucose-mannitol (SAGM) and the experimental solution PAGGGM. During cold storage, several in vitro characteristics were analyzed. In agreement with our previous findings with single RBCs, PAGGGM maintained 2,3-DPG and ATP levels for 35 days of cold storage. Furthermore, glucose consumption and lactate production were higher in PAGGGM units during the first 21 days of cold storage. Fructose-1,6-diphophate and dihydroxyacetone phosphate levels were also increased during the first 21 days of storage in PAGGGM units. These results indicate that it is likely that phosphofructokinase (PFK) activity is enhanced in PAGGGM units relative to SAGM units. After 21 days, PFK activity also decreases in PAGGGM units, but sufficient metabolic reserve in these units prevents depletion of 2,3-DPG and ATP. © 2010 American Association of Blood Banks.
Lauxmann, Martin A.; Brun, Bianca; Borsani, Julia; Bustamante, Claudia A.; Budde, Claudio O.; Lara, María V.; Drincovich, María F.
2012-01-01
Cold storage is extensively used to slow the rapid deterioration of peach (Prunus persica L. Batsch) fruit after harvest. However, peach fruit subjected to long periods of cold storage develop chilling injury (CI) symptoms. Post-harvest heat treatment (HT) of peach fruit prior to cold storage is effective in reducing some CI symptoms, maintaining fruit quality, preventing softening and controlling post-harvest diseases. To identify the molecular changes induced by HT, which may be associated to CI protection, the differential transcriptome of peach fruit subjected to HT was characterized by the differential display technique. A total of 127 differentially expressed unigenes (DEUs), with a presence-absence pattern, were identified comparing peach fruit ripening at 20°C with those exposed to a 39°C-HT for 3 days. The 127 DEUs were divided into four expression profile clusters, among which the heat-induced (47%) and heat-repressed (36%) groups resulted the most represented, including genes with unknown function, or involved in protein modification, transcription or RNA metabolism. Considering the CI-protection induced by HT, 23-heat-responsive genes were selected and analyzed during and after short-term cold storage of peach fruit. More than 90% of the genes selected resulted modified by cold, from which nearly 60% followed the same and nearly 40% opposite response to heat and cold. Moreover, by using available Arabidopsis microarray data, it was found that nearly 70% of the peach-heat responsive genes also respond to cold in Arabidopsis, either following the same trend or showing an opposite response. Overall, the high number of common responsive genes to heat and cold identified in the present work indicates that HT of peach fruit after harvest induces a cold response involving complex cellular processes; identifying genes that are involved in the better preparation of peach fruit for cold-storage and unraveling the basis for the CI protection induced by HT. PMID:23236430
Gitz, Eelo; Koekman, Cornelis A; van den Heuvel, Dave J.; Deckmyn, Hans; Akkerman, Jan W.; Gerritsen, Hans C.; Urbanus, Rolf T.
2012-01-01
Background Storing platelets for transfusion at room temperature increases the risk of microbial infection and decreases platelet functionality, leading to out-date discard rates of up to 20%. Cold storage may be a better alternative, but this treatment leads to rapid platelet clearance after transfusion, initiated by changes in glycoprotein Ibα, the receptor for von Willebrand factor. Design and Methods: We examined the change in glycoprotein Ibα distribution using Förster resonance energy transfer by time-gated fluorescence lifetime imaging microscopy. Results Cold storage induced deglycosylation of glycoprotein Ibα ectodomain, exposing N-acetyl-Dglucosamine residues, which sequestered with GM1 gangliosides in lipid rafts. Raft-associated glycoprotein Ibα formed clusters upon binding of 14-3-3ζ adaptor proteins to its cytoplasmic tail, a process accompanied by mitochondrial injury and phosphatidyl serine exposure. Cold storage left glycoprotein Ibα surface expression unchanged and although glycoprotein V decreased, the fall did not affect glycoprotein Ibα clustering. Prevention of glycoprotein Ibα clustering by blockade of deglycosylation and 14-3-3ζ translocation increased the survival of cold-stored platelets to above the levels of platelets stored at room temperature without compromising hemostatic functions. Conclusions We conclude that glycoprotein Ibα translocates to lipid rafts upon cold-induced deglycosylation and forms clusters by associating with 14-3-3ζ. Interference with these steps provides a means to enable cold storage of platelet concentrates in the near future. PMID:22733027
Rašković, Brankica; Popović, Milica; Ostojić, Sanja; Anđelković, Boban; Tešević, Vele; Polović, Natalija
2015-01-01
Papain is a cysteine protease with wide substrate specificity and many applications. Despite its widespread applications, cold stability of papain has never been studied. Here, we used differential spectroscopy to monitor thermal denaturation process. Papain was the most stabile from 45 °C to 60 °C with ΔG°321 of 13.9±0.3 kJ/mol and Tm value of 84±1 °C. After cold storage, papain lost parts of its native secondary structures elements which gave an increase of 40% of intermolecular β-sheet content (band maximum detected at frequency of 1621 cm(-1) in Fourier transform infrared (FT-IR) spectrum) indicating the presence of secondary structures necessary for aggregation. The presence of protein aggregates after cold storage was also proven by analytical size exclusion chromatography. After six freeze-thaw cycles around 75% of starting enzyme activity of papain was lost due to cold denaturation and aggregation of unfolded protein. Autoproteolysis of papain did not cause significant loss of the protein activity. Upon the cold storage, papain underwent structural rearrangements and aggregation that correspond to other cold denatured proteins, rather than autoproteolysis which could have the commercial importance for the growing polypeptide based industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Continuous ozone concentrations during cold storage to control postharvest gray mold in grapes, 2011
USDA-ARS?s Scientific Manuscript database
Gray mold, caused by B. cinerea, causes severe losses since it spreads easily among berries during cold storage. Currently, it is controlled by fumigation with SO2 or SO2 emitting sheets within boxes. Alternative methods, such as storage in ozone atmospheres, are needed because SO2 is banned in orga...
Külen, Oktay; Stushnoff, Cecil; Holm, David G
2013-08-15
Twelve Colorado-grown specialty potato clones were evaluated for total phenolic content, antioxidant activity and ascorbic acid content at harvest and after 2, 4, 6 and 7 months cold storage at 4 °C. Potato clones were categorized as pigmented ('CO97226-2R/R', 'CO99364-3R/R', 'CO97215-2P/P', 'CO97216-3P/P', 'CO97227-2P/P', 'CO97222-1R/R', 'Purple Majesty', 'Mountain Rose' and 'All Blue'), yellow ('Yukon Gold') and white fleshed ('Russet Nugget', 'Russet Burbank'). Folin-Ciocalteu reagent was used to estimate total phenolic content, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS(•+) ) and 2,2-diphenyl-1-picrylhydrazyl (DPPH(•) ) radical scavenging assays were used to estimate antioxidant capacity. Pigmented potato genotypes had significantly higher total phenolic content and antioxidant activity at all data points than yellow- and white-fleshed cultivars. Vitamin C content was higher in 'Yukon Gold' than in the other clones. The highest level of vitamin C in all clones was at harvest and after 2 months in cold storage. Vitamin C content in all potato clones dropped rapidly with longer intervals of cold storage. Although total phenolic content and antioxidant activity fluctuated during cold storage, after 7 months of cold storage their levels were slightly higher than at harvest. Total phenolic content was better correlated with Trolox equivalent antioxidant capacity (TEAC)/ABTS(•+) than the TEAC/DPPH(•) radical scavenging assay. Pigmented potato clones had significantly higher total phenolic content and antioxidant activity, while the yellow-fleshed potato cultivar 'Yukon Gold' had significantly higher vitamin C content. Vitamin C content decreased in all potato clones during cold storage, while total phenolics increased in pigmented clones. © 2013 Society of Chemical Industry.
Morales-Sillero, Ana; Pérez, Ana G; Casanova, Laura; García, José M
2017-12-15
The suitability of the cold storage (2°C) of fruit to maintain the quality of 'Manzanilla de Sevilla' and 'Manzanilla Cacereña' intended for virgin olive oil extraction was investigated. This temperature was effective in keeping the best commercial category of oil quality in both manually harvested olives and in mechanically harvested 'Manzanilla Cacereña' fruits for 11days. Mechanical harvesting induced significant decreases in oxidative stability and in the main phenolic compounds contents in the oils during cold storage and, only initially, in the total volatiles, regardless of the cultivar considered. However, the contents of volatile esters, associated to fruity flavor, were always higher in the oils from mechanically harvested fruits. 'Manzanilla de Sevilla' oils exhibited higher total volatiles during fruit cold storage, regardless of the harvesting system used. Copyright © 2017 Elsevier Ltd. All rights reserved.
Guidelines for maintaining and managing the vaccine cold chain.
2003-10-24
In February 2002, the Advisory Committee on Immunization Practices (ACIP) and American Academy of Family Physicians (AAFP) released their revised General Recommendations on Immunization, which included recommendations on the storage and handling of immunobiologics. Because of increased concern over the potential for errors with the vaccine cold chain (i.e., maintaining proper vaccine temperatures during storage and handling to preserve potency), this notice advises vaccine providers of the importance of proper cold chain management practices. This report describes proper storage units and storage temperatures, outlines appropriate temperature-monitoring practices, and recommends steps for evaluating a temperature-monitoring program. The success of efforts against vaccine-preventable diseases is attributable in part to proper storage and handling of vaccines. Exposure of vaccines to temperatures outside the recommended ranges can affect potency adversely, thereby reducing protection from vaccine-preventable diseases. Good practices to maintain proper vaccine storage and handling can ensure that the full benefit of immunization is realized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berlin, G.
Humidity plays a major role in health, comfort, and production. This article is a brief overview of the technologies available and a detailed explanation of how to calculate humidification loads. The problems caused by dry air vary from one building to another and from one area to another. But basically, there are three major problem types: static electricity, poor moisture stability, health and comfort problems. In today's business offices, static electricity can disrupt operations and increase operating costs. In printing facilities, low humidity causes poor ink registration. Also, sheets of paper stick together and jam machines, wasting time and paper.more » In computer rooms and data processing areas, dry air leads to static electric discharges that cause circuit board failure, dust buildup on heads, and storage tape breakage. Moisture stability impacts industrial processes and the materials they use. In many cases, product and material deterioration is directly related to moisture fluctuations and lack of humidity control. Books, antiques, paper, wood and wood products, and fruits and vegetables are a few items that can be ruined by low or changing humidity. The health impact of low humidity shows up in dry nasal and thread membranes, dry and itchy skin, and irritated eyes. For employees, this means greater susceptibility to colds and other viral infections. The results is higher absenteeism when humidity is low, which translates into lost productivity and profits.« less
All Charged Up!--Experimenting with Static Electricity
ERIC Educational Resources Information Center
Roman, Harry T.
2011-01-01
Build-up of static electricity happens readily when the air is cold and dry and is a common part of life. There are lots of ways to make students aware of static electricity--and many things one can teach them about its applications in today's industry. In this article, the author describes examples and experiments that will bring static…
Cold storage to overcome dormancy affects the carbon balance of azalea.
Christiaens, A; De Keyser, E; Lootens, P; Pauwels, E; Roldan-Ruiz, I; De Riek, J; Gobin, B; Van Labeke, M-C
2014-01-01
Flower bud dormancy in azalea (Rhododendron simsii) is broken by artificial cold treatment and this will have its consequences on carbon reserves and photosynthesis. The effect of cold storage at 7 °C on carbohydrate and starch content in leaves and flower buds of an early ('Nordlicht') and semi-early ('M. Marie) flowering cultivar was quantified. Carbon loss due to respiration was lowest for 'M. Marie'. Photosynthetic measurements on 'Nordlicht' showed that photosynthesis 3 days after cold treatment (plants ready to flower) was improved compared to before cold treatment (plants with dormant flower buds).
Khalid, Samina; Malik, Aman U; Khan, Ahmad S; Shahid, Muhammad; Shafique, Muhammad
2016-03-15
Bioactive compounds (ascorbic acid, total phenolics and total antioxidants) are important constituents of citrus fruit juice; however, information with regard to their concentrations and changes in relation to tree age and storage conditions is limited. 'Kinnow' (Citrus nobilis Lour × Citrus deliciosa Tenora) mandarin juice from fruit of three tree ages (6, 18 and 35 years old) and fruit sizes (large, medium and small) were examined for their bioactive compounds during 7 days under ambient storage conditions (20 ± 2 °C and 60-65% relative humidity (RH)) and during 60 days under cold storage (4 ± 1 °C and 75-80% RH) conditions. Under ambient conditions, a reduction in total phenolic concentrations (TPC) and in total antioxidant activity (TAA) was found for the juice from all tree ages and fruit sizes. Overall, fruit from 18-year-old trees had higher mean TPC (95.86 µg mL(-1) ) and TAA (93.68 mg L(-1) ), as compared to 6 and 35-year-old trees. Likewise, in cold storage, TAA decreased in all fruit size groups from 18 and 35-year-old trees. In all tree age and fruit size groups, TPC decreased initially during 15 days of cold storage and then increased gradually with increase in storage duration. Ascorbic acid concentrations showed an increasing trend in all fruit size groups from 35-year-old trees. Overall, during cold storage, fruit from 18-year-old trees maintained higher mean ascorbic acid (33.05 mg 100 mL(-1) ) concentrations, whereas fruit from 6-year-old trees had higher TAA (153.1 mg L(-1) ) and TPC (115.1 µg mL(-1) ). Large-sized fruit had higher ascorbic acid (32.08 mg 100 mL(-1) ) concentrations and TAA (157.5 mg L(-1) ). Fruit from 18-year-old trees maintained higher TPC and TAA under ambient storage conditions, whereas fruit from 6-year-old trees maintained higher TPC and TAA during cold storage. Small-sized fruit had higher TPC after ambient temperature storage, whereas large fruit size showed higher ascorbic acid concentrations and TAA after cold storage. © 2015 Society of Chemical Industry.
Ye, M; Neetoo, H; Chen, H
2011-10-01
Listeria monocytogenes is a major safety concern for ready-to-eat foods. The overall objective of this study was to investigate whether prior frozen storage could enhance the efficacy of edible coatings against L. monocytogenes on cold-smoked salmon during subsequent refrigerated storage. A formulation consisting of sodium lactate (SL, 1·2-2·4%) and sodium diacetate (SD, 0·125-0·25%) or 2·5% Opti.Form (a commercial formulation of SL and SD) was incorporated into each of five edible coatings: alginate, κ-carrageenan, pectin, gelatin and starch. The coatings were applied onto the surface of cold-smoked salmon slices inoculated with L. monocytogenes at a level of 500 CFU cm⁻². In the first phase, the slices were first frozen at -18°C for 6 days and stored at 22°C for 6 days. Alginate, gelatin and starch appeared to be the most effective carriers. In the second phase, cold-smoked salmon slices were inoculated with L. monocytogenes, coated with alginate, gelatin or starch with or without the antimicrobials and stored frozen at -18°C for 12 months. Every 2 months, samples were removed from the freezer and kept at 4°C for 30 days. Prior frozen storage at -18°C substantially enhanced the antilisterial efficacy of the edible coatings with or without antimicrobials during the subsequent refrigerated storage. Plain coatings with ≥ 2 months frozen storage and antimicrobial edible coatings represent an effective intervention to inhibit the growth of L. monocytogenes on cold-smoked salmon. This study demonstrates the effectiveness of the conjunct application of frozen storage and edible coatings to control the growth of L. monocytogenes to enhance the microbiological safety of cold-smoked salmon. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.
van der Wal, Dianne E.; Gitz, Eelo; Du, Vivian X.; Lo, Kimberly S.L.; Koekman, Cornelis A.; Versteeg, Sabine; Akkerman, Jan Willem N.
2012-01-01
Background Cold storage of platelets reduces bacterial growth and preserves their hemostatic properties better than current procedures do. However, storage at 0°C induces [14-3-3ζ-glycoprotein Ibα] association, 14-3-3ζ release from phospho-Bad, Bad activation and apoptosis. Design and Methods We investigated whether arachidonic acid, which also binds 14-3-3ζ, contributes to coldinduced apoptosis. Results Cold storage activated P38-mitogen-activated protein kinase and released arachidonic acid, which accumulated due to cold inactivation of cyclooxygenase-1/thromboxane synthase. Accumulated arachidonic acid released 14-3-3ζ from phospho-Bad and decreased the mitochondrial membrane potential, which are steps in the induction of apoptosis. Addition of arachidonic acid did the same and its depletion made platelets resistant to cold-induced apoptosis. Incubation with biotin-arachidonic acid revealed formation of an [arachidonic acid-14-3-3ζ-glycoprotein Ibα] complex. Indomethacin promoted complex formation by accumulating arachidonic acid and released 14-3-3ζ from cyclo-oxygenase-1. Arachidonic acid depletion prevented the cold-induced reduction of platelet survival in mice. Conclusions We conclude that cold storage induced apoptosis through an [arachidonic acid-14-3-3ζ-glycoprotein Ibα] complex, which released 14-3-3ζ from Bad in an arachidonic acid-dependent manner. Although arachidonic acid depletion reduced agonist-induced thromboxane A2 formation and aggregation, arachidonic acid repletion restored these functions, opening ways to reduce apoptosis during storage without compromising hemostatic functions post-transfusion. PMID:22371179
Under EPA Settlement, Chicopee, Mass. Cold Storage Warehouse Company Improves Public Protections
A Chicopee, Mass., company that operates a cold storage warehouse is spending more than half a million dollars, primarily on public safety enhancements, to resolve claims it violated the federal Clean Air Act's chemical release prevention requirements...
Yun, Ze; Qu, Hongxia; Wang, Hui; Zhu, Feng; Zhang, Zhengke; Duan, Xuewu; Yang, Bao; Cheng, Yunjiang; Jiang, Yueming
2016-01-14
Litchi is a non-climacteric subtropical fruit of high commercial value. The shelf life of litchi fruit under ambient conditions (AC) is approximately 4-6 days. Post-harvest cold storage prolongs the life of litchi fruit for up to 30 days with few changes in pericarp browning and total soluble solids. However, the shelf life of litchi fruits at ambient temperatures after pre-cold storage (PCS) is only 1-2 days. To better understand the mechanisms involved in the rapid fruit senescence induced by pre-cold storage, a transcriptome of litchi pericarp was constructed to assemble the reference genes, followed by comparative transcriptomic and metabolomic analyses. Results suggested that the senescence of harvested litchi fruit was likely to be an oxidative process initiated by ABA, including oxidation of lipids, polyphenols and anthocyanins. After cold storage, PCS fruit exhibited energy deficiency, and respiratory burst was elicited through aerobic and anaerobic respiration, which was regulated specifically by an up-regulated calcium signal, G-protein-coupled receptor signalling pathway and small GTPase-mediated signal transduction. The respiratory burst was largely associated with increased production of reactive oxygen species, up-regulated peroxidase activity and initiation of the lipoxygenase pathway, which were closely related to the accelerated senescence of PCS fruit.
Yun, Ze; Qu, Hongxia; Wang, Hui; Zhu, Feng; Zhang, Zhengke; Duan, Xuewu; Yang, Bao; Cheng, Yunjiang; Jiang, Yueming
2016-01-01
Litchi is a non-climacteric subtropical fruit of high commercial value. The shelf life of litchi fruit under ambient conditions (AC) is approximately 4–6 days. Post-harvest cold storage prolongs the life of litchi fruit for up to 30 days with few changes in pericarp browning and total soluble solids. However, the shelf life of litchi fruits at ambient temperatures after pre-cold storage (PCS) is only 1–2 days. To better understand the mechanisms involved in the rapid fruit senescence induced by pre-cold storage, a transcriptome of litchi pericarp was constructed to assemble the reference genes, followed by comparative transcriptomic and metabolomic analyses. Results suggested that the senescence of harvested litchi fruit was likely to be an oxidative process initiated by ABA, including oxidation of lipids, polyphenols and anthocyanins. After cold storage, PCS fruit exhibited energy deficiency, and respiratory burst was elicited through aerobic and anaerobic respiration, which was regulated specifically by an up-regulated calcium signal, G-protein-coupled receptor signalling pathway and small GTPase-mediated signal transduction. The respiratory burst was largely associated with increased production of reactive oxygen species, up-regulated peroxidase activity and initiation of the lipoxygenase pathway, which were closely related to the accelerated senescence of PCS fruit. PMID:26763309
Günther, Catrin S; Marsh, Ken B; Winz, Robert A; Harker, Roger F; Wohlers, Mark W; White, Anne; Goddard, Matthew R
2015-02-15
Fruit esters are regarded as key volatiles for fruit aroma. In this study, the effects of cold storage on volatile ester levels of 'Hort16A' (Actinidia chinensis Planch. var chinensis) kiwifruit were examined and the changes in aroma perception investigated. Cold storage (1.5°C) for two or four months of fruit matched for firmness and soluble solids concentration resulted in a significant reduction in aroma-related esters such as methyl/ethyl propanoate, methyl/ethyl butanoate and methyl/ethyl hexanoate. Levels of these esters, however, were restored by ethylene treatment (100ppm, 24h) before ripening. A sensory panel found that "tropical" and "fruit candy" aroma was stronger and "green" odour notes less intensively perceived in kiwifruit which were ethylene-treated after cold storage compared to untreated fruit. The key findings presented in this study may lead to further work on the ethylene pathway, and innovative storage and marketing solutions for current and novel fruit cultivars. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibunnisa; Mathur, P.B.; Bano, Z.
1971-11-01
Effect of cobalt-60 gamma rays at a dose-rate of 6 krad on the storage behavior of garlic bulbs packaged individually and in lots of eight in perforated polyethylene bags of 200 gauge was investigated at room temperature (75 to 90 deg F) and cold temperature (32 to 35 deg F) under relative humidity 85 to 90%. Irradiation was immediately followed by an increase in the rate of respiration in the garlic bulbs followed by a decrease in the rate of respiration towards the later part of the storage period. At room temperature, sprouting was inhibited to a considerable extent, whilemore » in cold storage after a storage period of 9 months sprouting was completely prevented. The percentage sprouting was more in large size garlic bulbs than in small sized ones. For extension of storage life, packaging singly in polyethylene bags, selection of small sized garlic bulbs, storage at 32 to 35 deg F and irradiation with 6 krad of cobalt 60 gamma rays are recommended. (INIS)« less
Sivankalyani, Velu; Maoz, Itay; Feygenberg, Oleg; Maurer, Dalia; Alkan, Noam
2017-01-25
Mango-fruit storage period and shelf life are prolonged by cold storage. However, chilling temperature induces physiological and molecular changes, compromising fruit quality. In our previous transcriptomic study of mango fruit, cold storage at suboptimal temperature (5 °C) activated the α-linolenic acid metabolic pathway. To evaluate changes in fruit quality during chilling, we analyzed mango "Keitt" fruit peel volatiles. GC-MS analysis revealed significant modulations in fruit volatiles during storage at suboptimal temperature. Fewer changes were seen in response to the time of storage. The mango volatiles related to aroma, such as δ-3-carene, (Z)-β-ocimene, and terpinolene, were downregulated during the storage at suboptimal temperature. In contrast, C 6 and C 9 aldehydes and alcohols-α-linolenic acid derivatives 1-hexanal, (Z)-3-hexenal, (Z)-3-hexenol, (E)-2-hexenal, and nonanal-were elevated during suboptimal-temperature storage, before chilling-injury symptoms appeared. Detection of those molecules before chilling symptoms could lead to a new agro-technology to avoid chilling injuries and maintain fruit quality during cold storage at the lowest possible temperature.
Brizzolara, Stefano; Hertog, Maarten; Tosetti, Roberta; Nicolai, Bart; Tonutti, Pietro
2018-01-01
Refrigerated storage is widely applied in order to maintain peach quality but it can also induce chilling injuries (CIs) such as flesh browning and bleeding, and mealiness. Peach fruit from three cultivars (‘Red Haven’, RH, ‘Regina di Londa’, RL, and ‘Flaminia’, FL) were stored for 4 weeks under low temperatures (0.5 and 5.5°C). GC-MS was employed to study changes in both metabolome and volatilome induced by cold storage in the mesocarp. CIs were assessed both at the end of each week of storage and after subsequent shelf-life (SL) at 20°C. Flesh browning and mealiness appeared to be more related to 5.5°C storage, while flesh bleeding revealed high incidence following 0.5°C storage. Compared to RL and FL, RH showed a marked lower incidence of CIs. Multivariate statistical analyses indicate that RH peaches indeed differ from RL and FL in particular when considering data from samples collected at the end of the cold storage. Common and divergent responses have been identified in terms of metabolic responses to the applied low temperatures. In all three cultivars raffinose, glucose-6P, fucose, xylose, sorbitol, GABA, epicatechin, catechin, and putrescine markedly increased during cold storage, while citramalic, glucuronic, mucic and shikimic acids decreased. Among volatile organic compounds (VOCs), aldehydes and alcohols generally accumulated more under low temperature conditions while esters and lactones evolved during subsequent SL. The main cultivar differences developed after cold storage during SL although some common responses (e.g., an increased production of ethyl acetate) were observed. The lower levels of flesh browning and bleeding displayed by RH peaches were related to compounds with antioxidant activity, or acting as osmotic protectants and membrane stabilizer. Indeed, RH showed higher levels of amino acids and urea, together with a marked increase in putrescine, sorbitol, maltitol, myoinositol and sucrose detected during storage and SL. PMID:29892309
Brizzolara, Stefano; Hertog, Maarten; Tosetti, Roberta; Nicolai, Bart; Tonutti, Pietro
2018-01-01
Refrigerated storage is widely applied in order to maintain peach quality but it can also induce chilling injuries (CIs) such as flesh browning and bleeding, and mealiness. Peach fruit from three cultivars ('Red Haven', RH, 'Regina di Londa', RL, and 'Flaminia', FL) were stored for 4 weeks under low temperatures (0.5 and 5.5°C). GC-MS was employed to study changes in both metabolome and volatilome induced by cold storage in the mesocarp. CIs were assessed both at the end of each week of storage and after subsequent shelf-life (SL) at 20°C. Flesh browning and mealiness appeared to be more related to 5.5°C storage, while flesh bleeding revealed high incidence following 0.5°C storage. Compared to RL and FL, RH showed a marked lower incidence of CIs. Multivariate statistical analyses indicate that RH peaches indeed differ from RL and FL in particular when considering data from samples collected at the end of the cold storage. Common and divergent responses have been identified in terms of metabolic responses to the applied low temperatures. In all three cultivars raffinose, glucose-6P, fucose, xylose, sorbitol, GABA, epicatechin, catechin, and putrescine markedly increased during cold storage, while citramalic, glucuronic, mucic and shikimic acids decreased. Among volatile organic compounds (VOCs), aldehydes and alcohols generally accumulated more under low temperature conditions while esters and lactones evolved during subsequent SL. The main cultivar differences developed after cold storage during SL although some common responses (e.g., an increased production of ethyl acetate) were observed. The lower levels of flesh browning and bleeding displayed by RH peaches were related to compounds with antioxidant activity, or acting as osmotic protectants and membrane stabilizer. Indeed, RH showed higher levels of amino acids and urea, together with a marked increase in putrescine, sorbitol, maltitol, myoinositol and sucrose detected during storage and SL.
Su, Song; Liu, Jiang; He, Kai; Zhang, Mengyu; Feng, Chunhong; Peng, Fangyi; Li, Bo; Xia, Xianming
2016-04-01
Hepatic injury provoked by cold storage is a major problem affecting liver transplantation, as exposure to cold induces apoptosis in hepatic tissues. Long noncoding RNAs (lncRNAs) are increasingly understood to regulate apoptosis, but the contribution of lncRNAs to cold-induced liver injury remains unknown. Using RNA-seq, we determined the differential lncRNA expression profile in mouse livers after cold storage and found that expression of the lncRNA TUG1 was significantly down-regulated. Overexpression of TUG1 attenuated cold-induced apoptosis in mouse hepatocytes and liver sinusoidal endothelial cells LSECs, in part by blocking mitochondrial apoptosis and endoplasmic reticulum (ER) stress pathways. Moreover, TUG1 attenuated apoptosis, inflammation, and oxidative stress in vivo in livers subjected to cold storage. Overexpression of TUG1 also improved hepatocyte function and prolonged hepatic graft survival rates in mice. These results suggest that the lncRNA TUG1 exerts a protective effect against cold-induced liver damage by inhibiting apoptosis in mice, and suggests a potential role for TUG1 as a target for the prevention of cold-induced liver damage in liver transplantation. RNA-seq data are available from GEO using accession number GSE76609. © 2016 Federation of European Biochemical Societies.
VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST ...
VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST TOWER VIEW INCLUDES STRUCTURAL DYNAMICS TEST STAND COLD CALIBRATION TEST STAND AND COMPONENTS TEST LAB. - Marshall Space Flight Center, East Test Area, Dodd Road, Huntsville, Madison County, AL
Pons, Clara; Martí, Cristina; Forment, Javier; Crisosto, Carlos H.; Dandekar, Abhaya M.; Granell, Antonio
2014-01-01
Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better cope with chilling injury. PMID:24598973
Pons, Clara; Martí, Cristina; Forment, Javier; Crisosto, Carlos H; Dandekar, Abhaya M; Granell, Antonio
2014-01-01
Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better cope with chilling injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ossler, Frederik; Santodonato, Louis J.; Bilheux, Hassina Z.
Here, we report results from experiments where we characterize the surface properties of soot particles interacting with high-pressure methane. We also found considerable differences in behavior of the soot material between static and dynamic pressure conditions that can be explained by multiscale correlations in the dynamics, from the micro to macro of the porous fractal-like carbon matrix. The measurements were possible utilizing cold neutron imaging of methane mixed with combustion generated carbon (soot) inside steel cells. The studies were performed under static and dynamic pressure conditions in the range 10-90 bar, and are of interest for applications of energy storagemore » of hydrogenous fuels. The very high cross sections for neutrons compared to hard X-ray photons, enabled us to find considerable amounts of native hydrogen in the soot and to see and quantify the presence of hydrogen atoms in the carbon soot matrix under different pressure conditions. Our work lays the base for more detailed in-situ investigations on the interaction of porous carbon materials with hydrogen in practical environments for hydrogen and methane storage.« less
Ossler, Frederik; Santodonato, Louis J.; Bilheux, Hassina Z.
2017-02-12
Here, we report results from experiments where we characterize the surface properties of soot particles interacting with high-pressure methane. We also found considerable differences in behavior of the soot material between static and dynamic pressure conditions that can be explained by multiscale correlations in the dynamics, from the micro to macro of the porous fractal-like carbon matrix. The measurements were possible utilizing cold neutron imaging of methane mixed with combustion generated carbon (soot) inside steel cells. The studies were performed under static and dynamic pressure conditions in the range 10-90 bar, and are of interest for applications of energy storagemore » of hydrogenous fuels. The very high cross sections for neutrons compared to hard X-ray photons, enabled us to find considerable amounts of native hydrogen in the soot and to see and quantify the presence of hydrogen atoms in the carbon soot matrix under different pressure conditions. Our work lays the base for more detailed in-situ investigations on the interaction of porous carbon materials with hydrogen in practical environments for hydrogen and methane storage.« less
Improved biochemical preservation of heart slices during cold storage.
Bull, D A; Reid, B B; Connors, R C; Albanil, A; Stringham, J C; Karwande, S V
2000-01-01
Development of myocardial preservation solutions requires the use of whole organ models which are animal and labor intensive. These models rely on physiologic rather than biochemical endpoints, making accurate comparison of the relative efficacy of individual solution components difficult. We hypothesized that myocardial slices could be used to assess preservation of biochemical function during cold storage. Whole rat hearts were precision cut into slices with a thickness of 200 microm and preserved at 4 degrees C in one of the following solutions: Columbia University (CU), University of Wisconsin (UW), D5 0.2% normal saline with 20 meq/l KCL (QNS), normal saline (NS), or a novel cardiac preservation solution (NPS) developed using this model. Myocardial biochemical function was assessed by ATP content (etamoles ATP/mg wet weight) and capacity for protein synthesis (counts per minute (cpm)/mg protein) immediately following slicing (0 hours), and at 6, 12, 18, and 24 hours of cold storage. Six slices were assayed at each time point for each solution. The data were analyzed using analysis of variance and are presented as the mean +/- standard deviation. ATP content was higher in the heart slices stored in the NPS compared to all other solutions at 6, 12, 18 and 24 hours of cold storage (p < 0.05). Capacity for protein synthesis was higher in the heart slices stored in the NPS compared to all other solutions at 6, 12, and 18 hours of cold storage (p < 0.05). CONCLUSIONS This myocardial slice model allows the rapid and efficient screening of cardiac preservation solutions and their components using quantifiable biochemical endpoints. Using this model, we have developed a novel preservation solution which improves the biochemical function of myocardial slices during cold storage.
Lado, Joanna; Rodrigo, María Jesús; Zacarías, Lorenzo
2015-10-01
Grapefruits are among the citrus species more sensitive to cold and develop chilling injury symptoms during prolonged postharvest storage at temperatures lower than 8 ℃-10 ℃. The plant hormone ethylene has been described either to protect or potentiate chilling injury development in citrus whereas little is known about transcriptional regulation of ethylene biosynthesis, perception and response during cold storage and how the hormone is regulating its own perception and signaling cascade. Then, the objective of the present study was to explore the transcriptional changes in the expression of ethylene biosynthesis, receptors and response genes during cold storage of the white Marsh and the red Star Ruby grapefruits. The effect of the ethylene action inhibitor, 1-MCP, was evaluated to investigate the involvement of ethylene in the regulation of the genes of its own biosynthesis and perception pathway. Ethylene production was very low at the harvest time in fruits of both varieties and experienced only minor changes during storage. By contrast, inhibition of ethylene perception by 1-MCP markedly induced ethylene production, and this increase was highly stimulated during shelf-life at 20 ℃, as well as transcription of ACS and ACO. These results support the auto-inhibitory regulation of ethylene in grapefruits, which acts mainly at the transcriptional level of ACS and ACO genes. Moreover, ethylene receptor1 and ethylene receptor3 were induced by cold while no clear role of ethylene was observed in the induction of ethylene receptors. However, ethylene appears to be implicated in the transcriptional regulation of ERFs both under cold storage and shelf-life. © The Author(s) 2014.
2017-03-15
iss050e057428 (03/15/2017) --- NASA astronaut Shane Kimbrough removes a storage locker in the Minus Eighty-degree Laboratory Freezer for ISS (MELFI) to store samples from an experiment. MELFI is a cold storage unit that maintains experiment samples at ultra-cold temperatures throughout a mission.
A.T. Drooz; J.D. Solomon
1984-01-01
After being retained in cold storage at -10°C over a 24-month period, some Clostera inclusa (Hubner) eggs were still able to be successfully parasitized by Ooencyrtus ennomophagus Yoshimoto, an egg parasite. An equation was developed for predicting parasite yield over time from cold-stored eggs. Predicted parasitism was 25 percent or better for up...
Wang, Bin; Shen, Fei; Zhu, Shijiang
2018-01-01
Harvested fruits are still living organs and respond to environmental stimuli. Low temperature storage is effective in extending life of harvested fruit, but it may also cause chilling injury. Cold acclimation has been shown to induce chilling tolerance in plants, but what proteomic changes caused by cold acclimation are related to defense against chilling stress remains largely unclear. Here, 3 d of pre-storage cold acclimation (PsCA) at 10°C reduced chilling injury and secondary disease severity in cucumber stored at 5°C by 51 and 94%, respectively, compared with the control which was directly stored at 5°C. Proteomic analysis of cucumber peel identified 21 significant differentially-accumulated proteins (SDAPs) right after PsCA treatment and 23 after the following cold storage (PsCA+CS). These proteins are mainly related to stress response and defense (SRD), energy metabolism, protein metabolism, signal transduction, primary metabolism, and transcription. The SRD proteins, which made up 37% of the 21 and 47% of the 23, respectively, represented the largest class of SDAPs, and all but one protein were up-regulated, suggesting accumulation of proteins involved in defense response is central feature of proteomic profile changes brought about by PsCA. In fruit just after PsCA treatment, the identified SDAPs are related to responses to various stresses, including chilling, salt stress, dehydration, fungi, bacteria, insects, and DNA damage. However, after prolonged cold storage, the targeted proteins in acclimated fruit were narrowed down in scope to those involved in defense against chilling and pathogens. The change patterns at the transcription level of the majority of the up-regulated differentially-accumulated proteins were highly consistent with those at protein level. Taken all, the results suggest that the short-time cold acclimation initiated comprehensive defense responses in cucumber fruit at first, while the long term storage thereafter altered the responses more specifically to chilling. These findings add to the understanding of plants' molecular responses to cold acclimation. PMID:29403505
Wang, Bin; Shen, Fei; Zhu, Shijiang
2017-01-01
Harvested fruits are still living organs and respond to environmental stimuli. Low temperature storage is effective in extending life of harvested fruit, but it may also cause chilling injury. Cold acclimation has been shown to induce chilling tolerance in plants, but what proteomic changes caused by cold acclimation are related to defense against chilling stress remains largely unclear. Here, 3 d of pre-storage cold acclimation (PsCA) at 10°C reduced chilling injury and secondary disease severity in cucumber stored at 5°C by 51 and 94%, respectively, compared with the control which was directly stored at 5°C. Proteomic analysis of cucumber peel identified 21 significant differentially-accumulated proteins (SDAPs) right after PsCA treatment and 23 after the following cold storage (PsCA+CS). These proteins are mainly related to stress response and defense (SRD), energy metabolism, protein metabolism, signal transduction, primary metabolism, and transcription. The SRD proteins, which made up 37% of the 21 and 47% of the 23, respectively, represented the largest class of SDAPs, and all but one protein were up-regulated, suggesting accumulation of proteins involved in defense response is central feature of proteomic profile changes brought about by PsCA. In fruit just after PsCA treatment, the identified SDAPs are related to responses to various stresses, including chilling, salt stress, dehydration, fungi, bacteria, insects, and DNA damage. However, after prolonged cold storage, the targeted proteins in acclimated fruit were narrowed down in scope to those involved in defense against chilling and pathogens. The change patterns at the transcription level of the majority of the up-regulated differentially-accumulated proteins were highly consistent with those at protein level. Taken all, the results suggest that the short-time cold acclimation initiated comprehensive defense responses in cucumber fruit at first, while the long term storage thereafter altered the responses more specifically to chilling. These findings add to the understanding of plants' molecular responses to cold acclimation.
Perez, Rogério Renato; Goldenberg, Alberto; Netto, Alcides Augusto Salzedas; Gonzalez, Adriano Miziara
2014-03-01
To compare the efficacy of different types of solutions (Belzer or Euro-Collins) for the preservation of rat pancreas during cold ischemia. Thirty Wistar rats were divided into three groups according to the perfusion or storage solution: Group E (perfusion and storage in Euro-Collins solution); Group B (perfusion and storage in Belzer solution) and Group BE (Perfusion in Belzer solution and storage in Euro-Collins solution). After perfusion, the pancreas was excised and stored at 4˚C for 18 hours. Amylase was measured at 6, 12 and 18h, and histological analysis of the pancreas was performed after 18h of cold storage. Amylase was elevated and comparable in Groups E and BE after 12 and 18 hours of ischemia (p<0.05). In the exocrine pancreas, histological differences in the amount of necrosis (p=0.049), lymphocytic infiltrate (p<0.001) and neutrophilic infiltrate (p=0.004) were observed, with more favorable features present in Group B. In the endocrine pancreas, Group B showed less edema (p<0.001), but other parameters were similar among all groups. The Euro-Collins solution is inferior to the Belzer solution for the preservation of rat pancreas during cold ischemia.
NASA Technical Reports Server (NTRS)
Edwards, Lawrence G.
1994-01-01
Subcritical cryogens such as liquid hydrogen (LH2) and liquid oxygen (LO2) are required for space based transportation propellant, reactant, and life support systems. Future long-duration space missions will require on-orbit systems capable of long-term cryogen storage and efficient fluid transfer capabilities. COLD-SAT, which stands for cryogenic orbiting liquid depot-storage acquisition and transfer, is a free-flying liquid hydrogen management flight experiment. Experiments to determine optimum methods of fluid storage and transfer will be performed on the COLD-SAT mission. The success of the mission is directly related to the type and accuracy of measurements made. The instrumentation and measurement techniques used are therefore critical to the success of the mission. This paper presents the results of the COLD-SAT experiment subsystem instrumentation and wire harness design effort. Candidate transducers capable of fulfilling the COLD-SAT experiment measurement requirements are identified. Signal conditioning techniques, data acquisition requirements, and measurement uncertainty analysis are presented. Electrical harnessing materials and wiring techniques for the instrumentation designed to minimize heat conduction to the cryogenic tanks and provide optimum measurement accuracy are listed.
INTERIOR OF WESTERN SECTION, SHOWING WALL OF COLD STORAGE ROOM ...
INTERIOR OF WESTERN SECTION, SHOWING WALL OF COLD STORAGE ROOM (IN BAYS 32 TO 34) AND ROLLING DOORS AT WEST END, VIEW FACING SOUTH-SOUTHWEST. - Naval Air Station Barbers Point, Aircraft Storehouse, Between Midway & Card Streets at Enterprise Avenue intersection, Ewa, Honolulu County, HI
Duan, Zhen-Hua; Liu, Hua-Zhong; Luo, Ping; Gu, Yi-Peng; Li, Yan-Qun
2018-03-14
Preservative effect of melanin-free extract of Sepia esculenta ink (MFESI) on Sparus latus fillet has been verified in our previous work. This study aims to further approach the mechanism of MFESI for extending the shelf-life of fish fillet during cold storage. Tilapia fillets were treated with different dosage of MFESI (0, 15, 25 and 35 mg/ml) and packed with preservative film for succedent cold-storage at 4 °C for scheduled time. Contents of total volatile basic nitrogen and sulfydryl and carbanyl groups were measured for evaluating protein oxidation. Malondialdehyde contents were measured for estimating lipid peroxidation and loss of water was used to determine water-holding capacity of fillet. The data indicated that MFESI not only possessed certain degree of antioxidant capacity in vitro, also lengthened shelf-life of tilapia fillet in cold-storage condition. Apart from 15 mg/ml, both 25 and 35 mg/ml of MFESI obviously prevented lipid and protein from oxidation and reduced loss of water from tilapia fillets, and the latter was more effective than the former. MFESI can repress lipid peroxidation and protein oxidation and reduce water loss, maintain the tilapia fillets quality and, thus, it could be an effective and natural preservative for extending the shelf-life of tilapia fillets during cold storage.
Gapper, Nigel E; Hertog, Maarten L A T M; Lee, Jinwook; Buchanan, David A; Leisso, Rachel S; Fei, Zhangjun; Qu, Guiqin; Giovannoni, James J; Johnston, Jason W; Schaffer, Robert J; Nicolaï, Bart M; Mattheis, James P; Watkins, Christopher B; Rudell, David R
2017-04-21
Superficial scald is a physiological disorder of apple fruit characterized by sunken, necrotic lesions appearing after prolonged cold storage, although initial injury occurs much earlier in the storage period. To determine the degree to which the transition to cell death is an active process and specific metabolism involved, untargeted metabolic and transcriptomic profiling was used to follow metabolism of peel tissue over 180 d of cold storage. The metabolome and transcriptome of peel destined to develop scald began to diverge from peel where scald was controlled using antioxidant (diphenylamine; DPA) or rendered insensitive to ethylene using 1-methylcyclopropene (1-MCP) beginning between 30 and 60 days of storage. Overall metabolic and transcriptomic shifts, representing multiple pathways and processes, occurred alongside α-farnesene oxidation and, later, methanol production alongside symptom development. Results indicate this form of peel necrosis is a product of an active metabolic transition involving multiple pathways triggered by chilling temperatures at cold storage inception rather than physical injury. Among multiple other pathways, enhanced methanol and methyl ester levels alongside upregulated pectin methylesterases are unique to peel that is developing scald symptoms similar to injury resulting from mechanical stress and herbivory in other plants.
Only adding stationary storage to vaccine supply chains may create and worsen transport bottlenecks.
Haidari, Leila A; Connor, Diana L; Wateska, Angela R; Brown, Shawn T; Mueller, Leslie E; Norman, Bryan A; Schmitz, Michelle M; Paul, Proma; Rajgopal, Jayant; Welling, Joel S; Leonard, Jim; Claypool, Erin G; Weng, Yu-Ting; Chen, Sheng-I; Lee, Bruce Y
2013-01-01
Although vaccine supply chains in many countries require additional stationary storage and transport capacity to meet current and future needs, international donors tend to donate stationary storage devices far more often than transport equipment. To investigate the impact of only adding stationary storage equipment on the capacity requirements of transport devices and vehicles, we used HERMES (Highly Extensible Resource for Modeling Supply Chains) to construct a discrete event simulation model of the Niger vaccine supply chain. We measured the transport capacity requirement for each mode of transport used in the Niger vaccine cold chain, both before and after adding cold rooms and refrigerators to relieve all stationary storage constraints in the system. With the addition of necessary stationary storage, the average transport capacity requirement increased from 88% to 144% for cold trucks, from 101% to 197% for pickup trucks, and from 366% to 420% for vaccine carriers. Therefore, adding stationary storage alone may worsen or create new transport bottlenecks as more vaccines flow through the system, preventing many vaccines from reaching their target populations. Dynamic modeling can reveal such relationships between stationary storage capacity and transport constraints.
Only Adding Stationary Storage to Vaccine Supply Chains May Create and Worsen Transport Bottlenecks
Haidari, Leila A.; Connor, Diana L.; Wateska, Angela R.; Brown, Shawn T.; Mueller, Leslie E.; Norman, Bryan A.; Schmitz, Michelle M.; Paul, Proma; Rajgopal, Jayant; Welling, Joel S.; Leonard, Jim; Claypool, Erin G.; Weng, Yu-Ting; Chen, Sheng-I; Lee, Bruce Y.
2015-01-01
Although vaccine supply chains in many countries require additional stationary storage and transport capacity to meet current and future needs, international donors tend to donate stationary storage devices far more often than transport equipment. To investigate the impact of only adding stationary storage equipment on the capacity requirements of transport devices and vehicles, we used HERMES (Highly Extensible Resource for Modeling Supply Chains) to construct a discrete event simulation model of the Niger vaccine supply chain. We measured the transport capacity requirement for each mode of transport used in the Niger vaccine cold chain, both before and after adding cold rooms and refrigerators to relieve all stationary storage constraints in the system. With the addition of necessary stationary storage, the average transport capacity requirement increased from 88% to 144% for cold trucks, from 101% to 197% for pickup trucks, and from 366% to 420% for vaccine carriers. Therefore, adding stationary storage alone may worsen or create new transport bottlenecks as more vaccines flow through the system, preventing many vaccines from reaching their target populations. Dynamic modeling can reveal such relationships between stationary storage capacity and transport constraints. PMID:23903398
NASA Technical Reports Server (NTRS)
Bailey, William J.; Weiner, Stephen P.; Beekman, Douglas H.; Dennis, Mark F.; Martin, Timothy A.
1990-01-01
The Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT) is an experimental spacecraft launched from an expendable launch vehicle which is designed to investigate the systems and technologies required for efficient, effective, and reliable management of cryogenic fluid in the reduced gravity space environment. The COLD-SAT program will provide the necessary data base and provide low-g proving of fluid and thermal models of cryogenic storage, transfer, and resupply concepts and processes. A conceptual approach was developed and an overview of the results of the 24 month COLD-SAT Phase A feasibility is described which includes: (1) a definition of the technology needs and the accompanying experimental 3 month baseline mission; (2) a description of the experiment subsystem, major features and rationale for satisfaction of primary and secondary experiment requirements using liquid hydrogen as the test fluid; and (3) a presentation of the conceptual design of the COLD-SAT spacecraft subsystems which support the on-orbit experiment with emphasis on areas of greatest challenge.
Up-regulation of genes in diphenylamine- and 1-methylcyclopropene-treated apples during cold storage
USDA-ARS?s Scientific Manuscript database
Cold storage reduces the rate of quality loss and extends availability of fresh apples in the marketplace, but several cultivars develop various postharvest browning disorders of the peel or flesh tissue such as superficial scald and external carbon dioxide injury. Postharvest 1-methylcyclopropene...
US vaccine refrigeration guidelines: loose links in the cold chain.
McColloster, Patrick J
2011-05-01
This commentary compares Centers for Disease Control (CDC) guidelines for vaccine storage with international cold chain standards. Problems related to the use of domestic refrigerators in clinical settings are discussed. Optimal vaccine refrigerator design characteristics are summarized. The adoption of World Health Organization storage recommendations is advised.
Transcriptome Dynamics in Mango Fruit Peel Reveals Mechanisms of Chilling Stress
Sivankalyani, Velu; Sela, Noa; Feygenberg, Oleg; Zemach, Hanita; Maurer, Dalia; Alkan, Noam
2016-01-01
Cold storage is considered the most effective method for prolonging fresh produce storage. However, subtropical fruit is sensitive to cold. Symptoms of chilling injury (CI) in mango include red and black spots that start from discolored lenticels and develop into pitting. The response of ‘Keitt’ mango fruit to chilling stress was monitored by transcriptomic, physiological, and microscopic analyses. Transcriptomic changes in the mango fruit peel were evaluated during optimal (12°C) and suboptimal (5°C) cold storage. Two days of chilling stress upregulated genes involved in the plant stress response, including those encoding transmembrane receptors, calcium-mediated signal transduction, NADPH oxidase, MAP kinases, and WRKYs, which can lead to cell death. Indeed, cell death was observed around the discolored lenticels after 19 days of cold storage at 5°C. Localized cell death and cuticular opening in the lumen of discolored lenticels were correlated with increased general decay during shelf-life storage, possibly due to fungal penetration. We also observed increased phenolics accumulation around the discolored lenticels, which was correlated with the biosynthesis of phenylpropanoids that were probably transported from the resin ducts. Increased lipid peroxidation was observed during CI by both the biochemical malondialdehyde method and a new non-destructive luminescent technology, correlated to upregulation of the α-linolenic acid oxidation pathway. Genes involved in sugar metabolism were also induced, possibly to maintain osmotic balance. This analysis provides an in-depth characterization of mango fruit response to chilling stress and could lead to the development of new tools, treatments and strategies to prolong cold storage of subtropical fruit. PMID:27812364
Pless-Petig, Gesine; Metzenmacher, Martin; Türk, Tobias R; Rauen, Ursula
2012-10-10
In modern biotechnology, there is a need for pausing cell lines by cold storage to adapt large-scale cell cultures to the variable demand for their products. We compared various cell culture media/solutions for cold storage of Vero-B4 kidney cells, a cell line widely used in biotechnology. Cold storage in RPMI 1640 medium, a recommended cell culture medium for Vero-B4 cells, surprisingly, strongly enhanced cold-induced cell injury in these cells in comparison to cold storage in Krebs-Henseleit buffer or other cell culture media (DMEM, L-15 and M199). Manufacturer, batch, medium supplements and the most likely components with concentrations outside the range of the other media/solutions (vitamin B12, inositol, biotin, p-aminobenzoic acid) did not cause this aggravation of cold-induced injury in RPMI 1640. However, a modified Krebs-Henseleit buffer with a low calcium concentration (0.42 mM), a high concentration of inorganic phosphate (5.6 mM), and glucose (11.1 mM; i.e. concentrations as in RPMI 1640) evoked a cell injury and loss of metabolic function corresponding to that observed in RPMI 1640. Deferoxamine improved cell survival and preserved metabolic function in modified Krebs-Henseleit buffer as well as in RPMI 1640. Similar Ca2+ and phosphate concentrations did not increase cold-induced cell injury in the kidney cell line LLC-PK1, porcine aortic endothelial cells or rat hepatocytes. However, more extreme conditions (Ca2+ was nominally absent and phosphate concentration raised to 25 mM as in the organ preservation solution University of Wisconsin solution) also increased cold-induced injury in rat hepatocytes and porcine aortic endothelial cells. These data suggest that the combination of low calcium and high phosphate concentrations in the presence of glucose enhances cold-induced, iron-dependent injury drastically in Vero-B4 cells, and that a tendency for this pathomechanism also exists in other cell types.
NASA Astrophysics Data System (ADS)
Satiti, D.; Rusdiansyah, A.
2018-04-01
Problems that need more attention in the agri-food supply chain are loss and waste as consequences from improper quality control and excessive inventories. The use of cold storage is still being one of favourite technologies in controlling product quality by majority of retailers. We considerate the temperature of cold storage in determining the inventory and pricing strategies based on identified product quality. This study aims to minimize the agri-food waste, utility of cold storage facilities and maximize retailer’s profit through determining the refrigerated display-space allocation and markdown policy based on identified food shelf life. The proposed model evaluated with several different scenarios to find out the right strategy.
3. Photocopy of photograph (Original print, Phillip McCracken, courtesy of ...
3. Photocopy of photograph (Original print, Phillip McCracken, courtesy of Bill Mitchell.) Photographer unknown, 1924. Cold Storage Warehouse on the left, north and west facades. On the right, north facade of the Hay and Grain Warehouse. - Curtis Wharf, Cold Storage Warehouse, O & Second Streets, Anacortes, Skagit County, WA
USDA-ARS?s Scientific Manuscript database
Superficial scald is a physiological disorder of apple fruit characterized by sunken, necrotic lesions appearing after prolonged cold storage, although initial injury occurs much earlier in the storage period. To determine the degree to which the transition to cell death is an active process and sp...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-20
... outside the home. Household freezers offer storage space only at freezing temperatures. Products with both... systems, including cold storage cases, designed to chill food or keep it at a cold temperature for... Administration NOAEL--no observable adverse effect level NPRM--notice of proposed rulemaking NTTAA--National...
Nguyen, Chau T T; Kim, Jeongyun; Yoo, Kil Sun; Lim, Sooyeon; Lee, Eun Jin
2014-12-17
Ultraviolet (UV)-A, -B, and -C were radiated to full-ripe blueberries (cv. 'Duke'), and their effects on fruit qualities and phytonutrients during subsequent cold storage were investigated. The blueberries were exposed to each UV light at 6 kJ/m(2) and then stored at 0 °C for 28 days. Weight loss and decay of the fruits after UV treatment were significantly decreased during the cold storage. The total phenolics and antioxidant activities of blueberries after UV-B and -C treatments were always higher than those of the control and UV-A treatment. Individual anthocyanins were markedly increased during the 3 h after the UV-B and -C treatments. The correlation matrix between total phenolics, anthocyanins, and antioxidant activity measured by the 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) assay indicated a significantly close correlation with the individual anthocyanin contents. It was confirmed that the prestorage treatments of UV-B and -C increased the storability and phytochemical accumulation of the full-ripe 'Duke' blueberries during cold storage.
Jin, Sang-Keun; Ha, So-Ra; Choi, Jung-Seok
2015-12-01
This study was performed to investigate the effect of extract from heart wood of Caesalpinia sappan on the physico-chemical properties and to find the appropriate addition level in the emulsion-type pork sausage during cold storage. The pH of treatments with C. sappan extract was significantly lower than control and T1 during cold storage periods (P<0.05). Also, the reduction of moisture content, and the increase of cooking loss significantly occurred by the addition of 0.2% C. sappan extract. Also, the texture properties and sensory of sausages containing C. sappan extract were decreased compared to control. Inclusion of the C. sappan extract in sausages resulted in lower lightness and higher yellowness, chroma and hue values. However, the antioxidant, antimicrobial activity, and volatile basic nitrogen in the emulsion-type pork sausages with C. sappan extract showed increased quality characteristics during cold storage. In conclusion, the proper addition level of C. sappan extract was 0.1% on the processing of emulsion-type pork sausage. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Utaka, Yoshio; Saito, Akio; Nakata, Naoki
The objectives of this report are to propose a new method of the high performance cold energy storage using ice as a phase change material and to clarify the heat transfer characteristics of the apparatus of ice cold energy storage based on the proposed principle. A working medium vapor layer a water layer and a working medium liquid layer stratified in this order from the top were kept in an enclosure composed of a condenser, an evaporator and a condensate receiver-and-return tube. The direct contact heat transfers between water or ice and a working medium in an enclosure were applied for realizing the high performance cold energy storage and release. In the storage and release processes, water changes the phase between the liquid and the solid, and the working medium cnanges between the vapor and the liquid with a natural circulation. Experimental apparatus was manufactured and R12 and R114 were selected as working media in the thermal energy storage enclosure. It was confirmed by the measurements that the efficient formation and melting of ice were achieved. Then, th e heat transfer characteristics were clarified for the effects of the initial water height, the initial height of woking medium liquid layer and the inlet coolant temperature.
Habibi, Fariborz; Ramezanian, Asghar
2017-07-15
The effects of putrescine (Put) treatment on anthocyanin concentrations and other bioactive compounds of two blood orange ('Moro' and 'Tarocco') cultivars during cold storage have been investigated. Put at 0, 1 and 2mM were applied to fruit by vacuum infiltration at 26.665kPa for 8min and then stored at 5°C, and 90% RH for 60days, plus a simulated shelf life of 2days at 20°C. Put treatment maintained higher fruit firmness and reduced weight loss during storage. Anthocyanin, total phenolic content (TPC), ascorbic acid content, and antioxidant activity were also higher in treated fruit than the control during storage. pH and titratable acidity (TA) were highest in treated fruit, while soluble solids concentration (SSC) and SSC/TA ratios were highest in untreated fruit. Overall, the quality of blood oranges maintained by Put treatment during cold storage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hu, Hao; Yan, Fujie; Wilson, Charles; Shen, Qing; Zheng, Xiaodong
2015-12-01
Cold-adapted yeasts were isolated from soil samples collected in Tibet and evaluated as potential biocontrol agents against blue mold (Penicillium expansum) of pear fruit in cold storage. YC1, an isolate identified as Rhodotorula mucilaginosa, was found to exhibit the greatest biocontrol activity among the different isolates that were screened. A washed cell suspension of YC1 exhibited the best biocontrol activity among three different preparations that were used in the current study. A concentration of 10(8) cells/ml reduced the incidence of decay to 35 %, compared to the control where decay incidence was 100 %. A higher intracellular level of trehalose and a higher proportion of polyunsaturated acids present in YC1, was associated with increased the tolerance of this strain to low temperatures, relative to the other strains that were evaluated. The increased tolerance to low temperature allowed the YC1 strain of yeast to more effectively compete for nutrients and space in wounded pear fruit that had been inoculated with spores of P. expansum and placed in cold storage. The present study demonstrated the ability to select cold-adapted yeasts from cold climates and use them as biocontrol agents of postharvest diseases of fruit placed in cold storage.
Federico, Baruzzi; Pinto, Loris; Quintieri, Laura; Carito, Antonia; Calabrese, Nicola; Caputo, Leonardo
2015-12-23
The microbial content of plant tissues has been reported to cause the spoilage of ca. 30% of chlorine-disinfected fresh vegetables during cold storage. The aim of this work was to evaluate the efficacy of antimicrobial peptides in controlling microbial vegetable spoilage under cold storage conditions. A total of 48 bacterial isolates were collected from ready-to-eat (RTE) vegetables and identified as belonging to Acinetobacter calcoaceticus, Aeromonas media, Pseudomonas cichorii, Pseudomonas fluorescens, Pseudomonas jessenii, Pseudomonas koreensis, Pseudomonas putida, Pseudomonas simiae and Pseudomonas viridiflava species. Reddish or brownish pigmentation was found when Pseudomonas strains were inoculated in wounds on leaves of Iceberg and Trocadero lettuce and escarole chicory throughout cold storage. Bovine lactoferrin (BLF) and its hydrolysates (LFHs) produced by pepsin, papain and rennin, were assayed in vitro against four Pseudomonas spp. strains selected for their heavy spoiling ability. As the pepsin-LFH showed the strongest antimicrobial effect, subsequent experiments were carried out using the peptide lactoferricin B (LfcinB), well known to be responsible for its antimicrobial activity. LfcinB significantly reduced (P ≤ 0.05) spoilage by a mean of 36% caused by three out of four inoculated spoiler pseudomonads on RTE lettuce leaves after six days of cold storage. The reduction in the extent of spoilage was unrelated to viable cell density in the inoculated wounds. This is the first paper providing direct evidence regarding the application of an antimicrobial peptide to control microbial spoilage affecting RTE leafy vegetables during cold storage.
Development of a Compact and Efficient Ice Thermal Energy Storage Vessel
NASA Astrophysics Data System (ADS)
Sasaguchi, Kengo; Ishikawa, Masatoshi; Muta, Kenji; Yoshino, Kiyotaka; Hayashi, Hiroko; Baba, Yoshiyuki
In the present study, the authors propose the use of a low concentration aqueous solution as phase change material for static-type ice-storage-vessels, instead of pure water commonly used today. If an aqueous solution with low concentration is used, even when a large amount of solution (aqueous ethylene glycol in this study) is solidified and bridging of ice developed around cold tubes occurs, the pressure increase could be prevented by the existence of a continuous liquid phase in the solid-liquid two-phase layer (mushy layer) which opens to an air gap at the top of a vessel. Therefore, one can continue to solidify an aqueous solution after bridging, achieving a high ice packing factor (IPF). First, experiments using small-scale test cells have been conducted to confirm the present idea, and then we have performed experiments using a large vessel with an early practical size. It was seen that a large pressure increase is prevented for the initial concentration of the solution C0 of 1.0%, and IPF obtained using the solution is much greater than 0.65 using pure water for which the solidification must be stopped before the bridging.
7 CFR 305.6 - Cold treatment requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... must be treated after arrival only in cold storage warehouses approved by the Administrator and located... ensure the security and integrity of cold treatment data. The devices must be able to record the date...
Poston, Robert S; Gu, Junyan; Prastein, Deyanira; Gage, Fred; Hoffman, John W; Kwon, Michael; Azimzadeh, Agnes; Pierson, Richard N; Griffith, Bartley P
2004-10-01
By minimizing tissue ischemia, continuous perfusion (CP) during organ transport may increase the safety of "marginal donors." My colleagues and I investigated whether an analysis of donor heart viability predicts recovery of grafts challenged with a 24-hour preservation interval. Dog hearts underwent cold static storage (CS) for 8 hours (n = 8) or 24 hours (n = 2) or CP for 24 hours with cold asanguinous, oxygenated solution (n = 8). Myocardial systolic and diastolic function and oxygen and lactate consumption were assessed at base line, during CP, and after Langendorff blood reperfusion. Base line endothelial function was evaluated by the percentage transcoronary change ([coronary sinus - aorta]/aorta) in myeloperoxidase and by platelet function and coronary flow reserve after 20 seconds of coronary artery occlusion. During CP, the endothelium was assessed by transcoronary protein release and coronary resistance. Edema was assessed by weight gain and histology. Base line systolic and metabolic functions showed no relation to post-Langendorff function. Compared with CS, CP resulted in a greater recovery in systolic function (87% +/- 35% vs 65% +/- 15% of baseline; p = 0.05) and a shorter interval required for lactate consumption to exceed production (7.0 +/- 6.8 minutes vs 15.0 +/- 8.9 minutes; p = 0.06). Endothelial function was heterogeneous: coronary flow reserve, 2.7 +/- 0.7; percentage change in myeloperoxidase, -8.4% +/- 6.8%; and change in platelet function, 4.3% +/- 3.5%, as determined by thromboelastography angle at base line. Protein release during CP for 24 hours was 8.3 +/- 7.1 g. Two factors predicted more than 75% systolic pressure generation recovery: use of CP and normal endothelial function (p = 0.05; Fisher's exact test). However, CP led to edema according to histology, weight gain (72 +/- 29 g), and impaired diastolic function versus CS (end-diastolic pressure-volume relationship, 1.4 +/- 0.4 mm Hg/mL vs 0.8 +/- 0.3 mm Hg/mL; p = 0.08). Better systolic function despite 16 hours' more preservation than cold storage corroborates the idea that CP supports aerobic metabolism at physiologically important levels. Viability analysis focused on endothelial function and identified organs that were able to tolerate this 24-hour preservation interval.
Ardehali, Abbas; Esmailian, Fardad; Deng, Mario; Soltesz, Edward; Hsich, Eileen; Naka, Yoshifumi; Mancini, Donna; Camacho, Margarita; Zucker, Mark; Leprince, Pascal; Padera, Robert; Kobashigawa, Jon
2015-06-27
The Organ Care System is the only clinical platform for ex-vivo perfusion of human donor hearts. The system preserves the donor heart in a warm beating state during transport from the donor hospital to the recipient hospital. We aimed to assess the clinical outcomes of the Organ Care System compared with standard cold storage of human donor hearts for transplantation. We did this prospective, open-label, multicentre, randomised non-inferiority trial at ten heart-transplant centres in the USA and Europe. Eligible heart-transplant candidates (aged >18 years) were randomly assigned (1:1) to receive donor hearts preserved with either the Organ Care System or standard cold storage. Participants, investigators, and medical staff were not masked to group assignment. The primary endpoint was 30 day patient and graft survival, with a 10% non-inferiority margin. We did analyses in the intention-to-treat, as-treated, and per-protocol populations. This trial is registered with ClinicalTrials.gov, number NCT00855712. Between June 29, 2010, and Sept 16, 2013, we randomly assigned 130 patients to the Organ Care System group (n=67) or the standard cold storage group (n=63). 30 day patient and graft survival rates were 94% (n=63) in the Organ Care System group and 97% (n=61) in the standard cold storage group (difference 2·8%, one-sided 95% upper confidence bound 8·8; p=0·45). Eight (13%) patients in the Organ Care System group and nine (14%) patients in the standard cold storage group had cardiac-related serious adverse events. Heart transplantation using donor hearts adequately preserved with the Organ Care System or with standard cold storage yield similar short-term clinical outcomes. The metabolic assessment capability of the Organ Care System needs further study. TransMedics. Copyright © 2015 Elsevier Ltd. All rights reserved.
Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato
USDA-ARS?s Scientific Manuscript database
Storing potato (Solanum tuberosum) tubers at cold temperatures prevents sprouting and minimizes losses due to disease. Unfortunately, cold storage triggers an accumulation of reducing sugars, a phenomenon referred to as cold-induced sweetening (CIS). High-temperature processing of potato tubers wit...
Does machine perfusion decrease ischemia reperfusion injury?
Bon, D; Delpech, P-O; Chatauret, N; Hauet, T; Badet, L; Barrou, B
2014-06-01
In 1990's, use of machine perfusion for organ preservation has been abandoned because of improvement of preservation solutions, efficient without perfusion, easy to use and cheaper. Since the last 15 years, a renewed interest for machine perfusion emerged based on studies performed on preclinical model and seems to make consensus in case of expanded criteria donors or deceased after cardiac death donations. We present relevant studies highlighted the efficiency of preservation with hypothermic machine perfusion compared to static cold storage. Machines for organ preservation being in constant evolution, we also summarized recent developments included direct oxygenation of the perfusat. Machine perfusion technology also enables organ reconditioning during the last hours of preservation through a short period of perfusion on hypothermia, subnormothermia or normothermia. We present significant or low advantages for machine perfusion against ischemia reperfusion injuries regarding at least one primary parameter: risk of DFG, organ function or graft survival. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Improving vaccination cold chain in the general practice setting.
Page, Sue L; Earnest, Arul; Birden, Hudson; Deaker, Rachelle; Clark, Chris
2008-10-01
This study compared temperature control in different types of vaccine storing refrigerators in general practice and tested knowledge of general practice staff in vaccine storage requirements. Temperature data loggers were set to serially record the temperature within vaccine refrigerators in 28 general practices, recording at 12 minute intervals over a period of 10 days on each occasion. A survey of vaccine storage knowledge and records of divisions of general practice immunisation contacts were also obtained. There was a significant relationship between type of refrigerator and optimal temperature, with the odds ratio for bar style refrigerator being 0.005 (95% CI: 0.001-0.044) compared to the purpose built vaccine refrigerators. Score on a survey of vaccine storage was also positively associated with optimal storage temperature. General practices that invest in purpose built vaccine refrigerators will achieve standards of vaccine cold chain maintenance significantly more reliably than can be achieved through regular cold chain monitoring and practice supports.
Roasting pumpkin seeds and changes in the composition and oxidative stability of cold-pressed oils.
Raczyk, Marianna; Siger, Aleksander; Radziejewska-Kubzdela, Elżbieta; Ratusz, Katarzyna; Rudzińska, Magdalena
2017-01-01
Pumpkin seed oil is valuable oil for its distinctive taste and aroma, as well as supposed health- promoting properties. The aim of this study was to investigate how roasting pumpkin seeds influences the physicochemical properties of cold-pressed oils. The fatty acid composition, content of phytosterols, carotenoids and tocopherols, oxidative stability and colour were determined in oils after cold pressing and storage for 3 months using GC-FID, GCxGC-ToFMS, HPLC, Rancimat and spectrophotometric methods. The results of this study indicate that the seed-roasting and storage process have no effect on the fatty acid composition of pumpkin seed oils, but does affect phytosterols and tocopherols. The carotenoid content decreased after storage. The colour of the roasted oil was darker and changed significantly during storage. Pumpkin oil obtained from roasted seeds shows better physicochemical properties and oxidative stability than oil from unroasted seeds.
Alkaline static feed electrolyzer based oxygen generation system
NASA Technical Reports Server (NTRS)
Noble, L. D.; Kovach, A. J.; Fortunato, F. A.; Schubert, F. H.; Grigger, D. J.
1988-01-01
In preparation for the future deployment of the Space Station, an R and D program was established to demonstrate integrated operation of an alkaline Water Electrolysis System and a fuel cell as an energy storage device. The program's scope was revised when the Space Station Control Board changed the energy storage baseline for the Space Station. The new scope was aimed at the development of an alkaline Static Feed Electrolyzer for use in an Environmental Control/Life Support System as an oxygen generation system. As a result, the program was divided into two phases. The phase 1 effort was directed at the development of the Static Feed Electrolyzer for application in a Regenerative Fuel Cell System. During this phase, the program emphasized incorporation of the Regenerative Fuel Cell System design requirements into the Static Feed Electrolyzer electrochemical module design and the mechanical components design. The mechanical components included a Pressure Control Assembly, a Water Supply Assembly and a Thermal Control Assembly. These designs were completed through manufacturing drawing during Phase 1. The Phase 2 effort was directed at advancing the Alkaline Static Feed Electrolyzer database for an oxygen generation system. This development was aimed at extending the Static Feed Electrolyzer database in areas which may be encountered from initial fabrication through transportation, storage, launch and eventual Space Station startup. During this Phase, the Program emphasized three major areas: materials evaluation, electrochemical module scaling and performance repeatability and Static Feed Electrolyzer operational definition and characterization.
USDA-ARS?s Scientific Manuscript database
Accumulation of high levels of reducing sugars during cold storage (4-6°C) known as cold-induced sweetening (CIS) is a major post-harvest disorder and is one of the most significant concerns for the potato processing industry. The biochemical process of reducing sugar accumulation during cold stora...
Pain modulation during drives through cold and hot virtual environments.
Mühlberger, Andreas; Wieser, Matthias J; Kenntner-Mabiala, Ramona; Pauli, Paul; Wiederhold, Brenda K
2007-08-01
Evidence exists that virtual worlds reduce pain perception by providing distraction. However, there is no experimental study to show that the type of world used in virtual reality (VR) distraction influences pain perception. Therefore, we investigated whether pain triggered by heat or cold stimuli is modulated by "warm "or "cold " virtual environments and whether virtual worlds reduce pain perception more than does static picture presentation. We expected that cold worlds would reduce pain perception from heat stimuli, while warm environments would reduce pain perception from cold stimuli. Additionally, both virtual worlds should reduce pain perception in general. Heat and cold pain stimuli thresholds were assessed outside VR in 48 volunteers in a balanced crossover design. Participants completed three 4-minute assessment periods: virtual "walks " through (1) a winter and (2) an autumn landscape and static exposure to (3) a neutral landscape. During each period, five heat stimuli or three cold stimuli were delivered via a thermode on the participant's arm, and affective and sensory pain perceptions were rated. Then the thermode was changed to the other arm, and the procedure was repeated with the opposite pain stimuli (heat or cold). We found that both warm and cold virtual environments reduced pain intensity and unpleasantness for heat and cold pain stimuli when compared to the control condition. Since participants wore a head-mounted display (HMD) in both the control condition and VR, we concluded that the distracting value of virtual environments is not explained solely by excluding perception of the real world. Although VR reduced pain unpleasantness, we found no difference in efficacy between the types of virtual world used for each pain stimulus.
Application of Cold Storage for Raja Sere Banana (Musa acuminata colla)
NASA Astrophysics Data System (ADS)
Crismas, S. R. S.; Purwanto, Y. A.; Sutrisno
2018-05-01
Raja Sere is one of the indigenous banana cultivars in Indonesia. This cultivar has a yellow color when ripen, small size and sweet taste. Traditionally, the growers market this banana cultivar to the market without any treatment to delay the ripening process. Banana fruits are commonly being harvested at the condition of hard green mature. At this condition of hard green mature, banana fruits can be stored for a long-term period. The objective of this study was to examine the effect of cold storage on the quality of raja sere banana that stored at 13°C. Banana fruits cultivar Raja Sere were harvested from local farmer field at the condition of hard green mature (about 14 weeks age after the flower bloom). Fifteen bunches of banana were stored in cold storage with a temperature of 13°C for 0, 3, 6, 9, and 12 days, respectively. For the control, room temperature storage (28°C) was used. At a storage period, samples of banana fruits ripened in the ripening chamber by injecting 100 ppm of ethylene gas at 25°C for 24 hours. The quality parameters namely respiration rate, hardness, total soluble solids (TSS), change in color, and weight loss were measured. For those banana fruits stored at room temperature, the shelf-life of banana was only reached up to 6 days. For those banana fruits stored in cold storage, the condition of banana fruits was reached up to 12 days. After cold storage and ripening, the third day measurement was the optimal time for bananas to be consumed which indicated by the yellow color (lightness value = 68.51, a* = 4.74 and value b* = 62.63), TSS 24.30 °Brix and hardness 0.48 kgf, weight loss about 7.53-16.45% and CO2 respiration rate of 100.37 mLCO2 / kg.hr.
Genetic and epigenetic stability of cryopreserved and cold-stored hops (Humulus lupulus L.).
Peredo, Elena L; Arroyo-García, Rosa; Reed, Barbara M; Revilla, M Angeles
2008-12-01
Conventional cold storage and cryopreservation methods for hops (Humulus lupulus L.) are available but, to our knowledge, the genetic and epigenetic stability of the recovered plants have not been tested. This study analyzed 51 accessions of hop using the molecular techniques, Random Amplified DNA Polymorphism (RAPD) and Amplified Fragment Length Polymorphism (AFLP), revealing no genetic variation among greenhouse-grown controls and cold stored or cryopreserved plants. Epigenetic stability was evaluated using Methylation Sensitive Amplified Polymorphism (MSAP). Over 36% of the loci were polymorphic when the cold and cryo-treated plants were compared to greenhouse plants. The main changes were demethylation events and they were common to the cryopreserved and cold stored plants indicating the possible effect of the in vitro establishment process, an essential step in both protocols. Protocol-specific methylation patterns were also detected indicating that both methods produced epigenetic changes in plants following cold storage and cryopreservation.
7 CFR 1170.10 - Storage reporting specifications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REPORTING § 1170.10 Storage reporting specifications. (a) Cold Storage Report: (1) Reporting universe: All...) Dairy Products Report: (1) Reporting universe: All manufacturing plants. (2) Products required to be...
7 CFR 1170.10 - Storage reporting specifications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REPORTING § 1170.10 Storage reporting specifications. (a) Cold Storage Report: (1) Reporting universe: All...) Dairy Products Report: (1) Reporting universe: All manufacturing plants. (2) Products required to be...
7 CFR 1170.10 - Storage reporting specifications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REPORTING § 1170.10 Storage reporting specifications. (a) Cold Storage Report: (1) Reporting universe: All...) Dairy Products Report: (1) Reporting universe: All manufacturing plants. (2) Products required to be...
7 CFR 1170.10 - Storage reporting specifications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REPORTING § 1170.10 Storage reporting specifications. (a) Cold Storage Report: (1) Reporting universe: All...) Dairy Products Report: (1) Reporting universe: All manufacturing plants. (2) Products required to be...
7 CFR 1170.10 - Storage reporting specifications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REPORTING § 1170.10 Storage reporting specifications. (a) Cold Storage Report: (1) Reporting universe: All...) Dairy Products Report: (1) Reporting universe: All manufacturing plants. (2) Products required to be...
Changes in carbohydrate content in zucchini fruit (Cucurbita pepo L.) under low temperature stress.
Palma, Francisco; Carvajal, Fátima; Lluch, Carmen; Jamilena, Manuel; Garrido, Dolores
2014-03-01
The postharvest handling of zucchini fruit includes low-temperature storage, making cold stress unavoidable. We have investigated the changes of soluble carbohydrates under this stress and its relation with weight loss and chilling injury in zucchini fruit during postharvest storage at 4 °C and 20 °C for up to 14 days. Two varieties with different degrees of chilling tolerance were compared: Natura, the more tolerant variety, and Sinatra, the variety that suffered more severe chilling-injury symptoms and weight loss. In both varieties, total soluble carbohydrates, reducing soluble carbohydrates and polyols content was generally higher during storage at 4 °C than at 20 °C, thus these parameters are related to the physiological response of zucchini fruit to cold stress. However, the raffinose content increased in Natura and Sinatra fruits during storage at 4 °C and 20 °C, although at 20 °C the increase in raffinose was more remarkable than at 4 °C in both varieties, so that the role of raffinose could be more likely related to dehydration than to chilling susceptibility of zucchini fruit. Glucose, fructose, pinitol, and acid invertase activity registered opposite trends in both varieties against chilling, increasing in Natura and decreasing in Sinatra. The increase in acid invertase activity in Natura fruit during cold storage could contribute in part to the increase of these reducing sugars, whose metabolism could be involved in the adaptation to postharvest cold storage. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Graft reconditioning with nitric oxide gas in rat liver transplantation from cardiac death donors.
Kageyama, Shoichi; Yagi, Shintaro; Tanaka, Hirokazu; Saito, Shunichi; Nagai, Kazuyuki; Hata, Koichiro; Fujimoto, Yasuhiro; Ogura, Yasuhiro; Tolba, Rene; Shinji, Uemoto
2014-03-27
Liver transplant outcomes using grafts donated after cardiac death (DCD) remain poor. We investigated the effects of ex vivo reconditioning of DCD grafts with venous systemic oxygen persufflation using nitric oxide gas (VSOP-NO) in rat liver transplants. Orthotopic liver transplants were performed in Lewis rats, using DCD grafts prepared using static cold storage alone (group-control) or reconditioning using VSOP-NO during cold storage (group-VSOP-NO). Experiment I: In a 30-min warm ischemia model, graft damage and hepatic expression of inflammatory cytokines, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and endothelin-1 (ET-1) were examined, and histologic analysis was performed 2, 6, 24, and 72 hr after transplantation. Experiment II: In a 60-min warm ischemia model, grafts were evaluated 2 hr after transplantation (6 rats/group), and survival was assessed (7 rats/group). Experiment I: Group-VSOP-NO had lower alanine aminotransferase (ALT) (P<0.001), hyaluronic acid (P<0.05), and malondialdehyde (MDA) (P<0.001), hepatic interleukin-6 expression (IL-6) (P<0.05), and hepatic tumor necrosis factor-alpha (TNF-α) expression (P<0.001). Hepatic eNOS expression (P<0.001) was upregulated, whereas hepatic iNOS (P<0.01) and ET-1 (P<0.001) expressions were downregulated. The damage of hepatocyte and sinusoidal endothelial cells (SECs) were lower in group-VSOP-NO.Experiment II: VSOP-NO decreased ET-1 and 8-hydroxy-2'deoxyguanosine (8-OHdG) expression and improved survival after transplantation by 71.4% (P<0.01). These results suggest that VSOP-NO effectively reconditions warm ischemia-damaged grafts, presumably by decreasing ET-1 upregulation and oxidative damage.
Lobb, I; Jiang, J; Lian, D; Liu, W; Haig, A; Saha, M N; Torregrossa, R; Wood, M E; Whiteman, M; Sener, A
2017-02-01
Ischemia-reperfusion injury is unavoidably caused by loss and subsequent restoration of blood flow during organ procurement, and prolonged ischemia-reperfusion injury IRI results in increased rates of delayed graft function and early graft loss. The endogenously produced gasotransmitter, hydrogen sulfide (H 2 S), is a novel molecule that mitigates hypoxic tissue injury. The current study investigates the protective mitochondrial effects of H 2 S during in vivo cold storage and subsequent renal transplantation (RTx) and in vitro cold hypoxic renal injury. Donor allografts from Brown Norway rats treated with University of Wisconsin (UW) solution + H 2 S (150 μM NaSH) during prolonged (24-h) cold (4°C) storage exhibited significantly (p < 0.05) decreased acute necrotic/apoptotic injury and significantly (p < 0.05) improved function and recipient Lewis rat survival compared to UW solution alone. Treatment of rat kidney epithelial cells (NRK-52E) with the mitochondrial-targeted H 2 S donor, AP39, during in vitro cold hypoxic injury improved the protective capacity of H 2 S >1000-fold compared to similar levels of the nonspecific H 2 S donor, GYY4137 and also improved syngraft function and survival following prolonged cold storage compared to UW solution. H 2 S treatment mitigates cold IRI-associated renal injury via mitochondrial actions and could represent a novel therapeutic strategy to minimize the detrimental clinical outcomes of prolonged cold IRI during RTx. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.
Faure, Alice; Bruzzese, Laurie; Steinberg, Jean-Guillaume; Jammes, Yves; Torrents, Julia; Berdah, Stephane V; Garnier, Emmanuelle; Legris, Tristan; Loundou, Anderson; Chalopin, Matthieu; Magalon, Guy; Guieu, Regis; Fenouillet, Emmanuel; Lechevallier, Eric
2016-02-04
In kidney transplantation, the conditions of organ preservation following removal influence function recovery. Current static preservation procedures are generally based on immersion in a cold-storage solution used under atmospheric air (approximately 78 kPa N2, 21 kPa O2, 1 kPa Ar). Research on static cold-preservation solutions has stalled, and modifying the gas composition of the storage medium for improving preservation was considered. Organoprotective strategies successfully used noble gases and we addressed here the effects of argon and xenon on graft preservation in an established preclinical pig model of autotransplantation. The preservation solution Celsior saturated with pure argon (Argon-Celsior) or xenon (Xenon-Celsior) at atmospheric pressure was tested versus Celsior saturated with atmospheric air (Air-Celsior). The left kidney was removed, and Air-Celsior (n = 8 pigs), Argon-Celsior (n = 8) or Xenon-Celsior (n = 6) was used at 4 °C to flush and store the transplant for 30 h, a duration that induced ischemic injury in our model when Air-Celsior was used. Heterotopic autotransplantation and contralateral nephrectomy were performed. Animals were followed for 21 days. The use of Argon-Celsior vs. Air-Celsior: (1) improved function recovery as monitored via creatinine clearance, the fraction of excreted sodium and tubulopathy duration; (2) enabled diuresis recovery 2-3 days earlier; (3) improved survival (7/8 vs. 3/8 pigs survived at postoperative day-21); (4) decreased tubular necrosis, interstitial fibrosis, apoptosis and inflammation, and preserved tissue structures as observed after the natural death/euthanasia; (5) stimulated plasma antioxidant defences during the days following transplantation as shown by monitoring the "reduced ascorbic acid/thiobarbituric acid reactive substances" ratio and Hsp27 expression; (6) limited the inflammatory response as shown by expression of TNF-alpha, IL1-beta and IL6 as observed after the natural death/euthanasia. Conversely, Xenon-Celsior was detrimental, no animal surviving by day-8 in a context where functional recovery, renal tissue properties and the antioxidant and inflammation responses were significantly altered. Thus, the positive effects of argon were not attributable to the noble gases as a group. The saturation of Celsior with argon improved early functional recovery, graft quality and survival. Manipulating the gas composition of a preservation medium constitutes therefore a promising approach to improve preservation.
Gonçalves, Gilma Auxiliadora Santos; Resende, Nathane Silva; Carvalho, Elisângela Elena Nunes; Resende, Jaime Vilela de; Vilas Boas, Eduardo Valério de Barros
2017-09-01
This study evaluated the stability of strawberry pulp subjected to three factors, pasteurisation (pasteurised and unpasteurised), freezing method (static air and forced air) and storage time (0, 2, 4 and 6 months). Pasteurisation favoured vitamin C retention during storage but enhanced the total loss of phenolics without affecting anthocyanin levels. Freezing by forced air was more effective in retaining phenolics during the first 4 months of storage, although the freezing method did not affect the anthocyanin levels. Processing and storage reduced the levels of individual phenolics. Freezing by forced air was more effective than static air in retaining antioxidant activity of the pulp. Polyphenol oxidase and peroxidase enzyme levels were relatively stable and independent of pasteurisation, freezing and storage time. Even after 6 months of frozen storage, strawberry pulp is a significant source of nutrients and bioactive compounds and retains high antioxidant capacity independent of pasteurisation and freezing method.
Kitamura, Tomomi; Bouakhasith, Viraneth; Phounphenghack, Kongxay; Pathammavong, Chansay; Xeuatvongsa, Anonh; Norizuki, Masataro; Okabayashi, Hironori; Mori, Yoshio; Machida, Munehito; Hachiya, Masahiko
2018-04-27
All childhood vaccines, except the oral polio vaccine, should be kept at 2-8 °C, since the vaccine potency can be damaged by heat or freezing temperature. A temperature monitoring study conducted in 2008-2009 reported challenges in cold chain management from the provincial level downwards. The present cross-sectional pilot study aimed to assess the current status of the cold chain in two provinces (Saravan and Xayabouly) of Lao People's Democratic Republic between March-April 2016. Two types of temperature data loggers recorded the temperatures and the proportions of time exposed to < 0 or > 8 °C were calculated. The temperature remained within the appropriate range in the central and provincial storages. However, the vaccines were frequently exposed to > 8 °C in Saravan and < 0 °C in Xayabouly in the district storage. Vaccines were exposed to > 8 °C during the transportation in Saravan and to both > 8 and < 0 °C in Xayabouly. Thus, challenges in managing the cold chain in the district storage and during transportation remain, despite improvements at the provincial storage. A detailed up-to-date nationwide analysis of the current situation of the cold chain is warranted to identify the most appropriate intervention to tackle the remaining challenges.
Quality of Golden papaya stored under controlled atmosphere conditions.
Martins, Derliane Ribeiro; de Resende, Eder Dutra
2013-10-01
This work evaluated physicochemical parameters of Golden papaya stored under refrigeration in controlled atmospheres. The fruits were kept at 13 in chambers containing either 3 or 6% O2 combined with 6%, 10% or 15% CO2. Moreover, a normal atmosphere was produced with 20.8% O2 and 0.03% CO2 with ethylene scrubbing, and a control treatment was used with ambient conditions. Evaluations were performed at the following times: before storage, after 30 days of storage in controlled atmosphere, and after removal from controlled atmosphere and storage for 7 days in the cold room. At the lower O2 levels and higher CO2 levels, the ripening rate was decreased. The drop in pulp acidity was avoided after 30 days of storage at 3% O2, but the fruits reached normal acidity after removal from controlled atmosphere and storage for 7 days in the cold room. The reducing sugars remained at a higher concentration after 30 days under 3% O2 and 15% CO2 even 7 days after removal from controlled atmosphere and storage in the cold room. This atmosphere also preserved the content of ascorbic acid at a higher level.
USDA-ARS?s Scientific Manuscript database
Lamoka is a white-skinned, white-fleshed potato cultivar variety notable for excellent chip color from cold storage, good yield, and resistance to both common scab and race Ro1 of the golden potato cyst nematode (Globodera rostochiensis). It was selected from a cross made at Cornell University in 1...
Socquet-Juglard, Didier; Bennett, Alexandra A; Manns, David C; Mansfield, Anna Katharine; Robbins, Rebecca J; Collins, Thomas M; Griffiths, Phillip D
2016-02-24
The effects of growth temperatures on anthocyanin content and profile were tested on juvenile cabbage and kale plants. The effects of cold storage time were evaluated on both juvenile and mature plants. The anthocyanin content in juvenile plants ranged from 3.82 mg of cyanidin-3,5-diglucoside equivalent (Cy equiv)/g of dry matter (dm) at 25 °C to 10.00 mg of Cy equiv/g of dm at 16 °C, with up to 76% diacylated anthocyanins. Cold storage of juvenile plants decreased the total amount of anthocyanins but increased the diacylated anthocyanin content by 3-5%. In mature plants, cold storage reduced the total anthocyanin content from 22 to 12.23 mg/g after 5 weeks of storage in red cabbage, while the total anthocyanin content increased after 2 weeks of storage from 2.34 to 3.66 mg of Cy equiv/g of dm in kale without having any effect on acylation in either morphotype. The results obtained in this study will be useful for optimizing anthocyanin production.
Chu, Wenjing; Gao, Haiyan; Chen, Hangjun; Wu, Weijie; Fang, Xiangjun
2018-03-21
Cuticular wax plays an important role for the quality of blueberry fruits. In this study, the cuticular wax composition of two blueberry cultivars, 'Legacy' ( Vaccinium corymbosum) and 'Brightwell' ( Vaccinium ashei), was examined during fruit ripening and postharvest cold storage. The results showed that wax was gradually deposited on the epidermis of blueberry fruits and the content of major wax compounds, except that for diketones, increased significantly during fruit ripening. The total wax content was 2-fold greater in 'Brightwell' blueberries than that in 'Legacy' blueberries during fruit ripening. The total wax content of both cultivars decreased during 30 days of storage at 4 °C, and the variation of cuticular wax composition was cultivar-dependent. The content of diketones decreased significantly in 'Legacy' blueberries, while the content of triterpenoids and aliphatic compounds showed different fold changes in 'Brightwell' blueberries after 30 days of storage at 4 °C. Overall, our study provided a quantitative and qualitative overview of cuticular wax compounds of blueberry fruits during ripening and postharvest cold storage.
Method and apparatus for operating an improved thermocline storage unit
Copeland, R.J.
1982-09-30
A method and apparatus for operating a thermocline storage unit in which an insulated barrier member is provided substantially at the interface region between the hot and cold liquids in the storage tank. The barrier member physically and thermally separates the hot and cold liquids substantially preventing any diffusing or mixing between them and substantially preventing any heat transfer there between. The barrier member follows the rise and fall of the interface region between the liquids as the tank is charged and discharged. Two methods of maintaining it in the interface region are disclosed. With the structure and operation of the present invention and in particular the significant reduction in diffusing or mixing between the hot and cold liquids as well as the significant reduction in the thermal heat transfer between them, the performance of the storage tank is improved. More specifically, the stability of the interface region or thermocline is enhanced and the thickness of the thermocline is reduced producing a corresponding increase in the steepness of the temperature gradient across the thermocline and a more efficiently operating thermocline storage unit.
Method and apparatus for operating an improved thermocline storage unit
Copeland, Robert J.
1985-01-01
A method and apparatus for operating a thermocline storage unit in which an insulated barrier member is provided substantially at the interface region between the hot and cold liquids in the storage tank. The barrier member physically and thermally separates the hot and cold liquids substantially preventing any diffusing or mixing between them and substantially preventing any heat transfer therebetween. The barrier member follows the rise and fall of the interface region between the liquids as the tank is charged and discharged. Two methods of maintaining it in the interface region are disclosed. With the structure and operation of the present invention and in particular the significant reduction in diffusing or mixing between the hot and cold liquids as well as the significant reduction in the thermal heat transfer between them, the performance of the storage tank is improved. More specifically, the stability of the interface region or thermocline is enhanced and the thickness of the thermocline is reduced producing a corresponding increase in the steepness of the temperature gradient across the thermocline and a more efficiently operating thermocline storage unit.
Bond, M; Pitt, M; Akoh, J; Moxham, T; Hoyle, M; Anderson, R
2009-08-01
To review the evidence for the effectiveness and cost-effectiveness of storing kidneys from deceased donors prior to transplantation, using cold static storage solutions or pulsatile hypothermic machine perfusion. Electronic databases were searched in January 2008 and updated in May 2008 for systematic reviews and/or meta-analyses, randomised controlled trials (RCTs), other study designs and ongoing research. Sources included: Cochrane Library, MEDLINE, EMBASE, CINAHL, ISI Web of Knowledge, DARE, NRR, ReFeR, Current Controlled Trials, and (NHS) HTA. Bibliographies of articles were searched for further relevant studies, and the Food and Drugs Administration (FDA) and European Regulatory Agency Medical Device Safety Service websites were searched. Only English language papers were sought. The perfusion machines identified were the LifePort Kidney Transporter (Organ Recovery Systems) and the RM3 Renal Preservation System (Waters Medical Systems). The cold storage solutions reviewed were: University of Wisconsin, ViaSpan; Marshall's hypertonic citrate, Soltran; and Genzyme, Celsior. Each intervention was compared with the others as data permitted. The population was recipients of kidneys from deceased donors. The main outcomes were measures of graft survival, patient survival, delayed graft function (DGF), primary non-function (PNF), discard rates of non-viable kidneys, health-related quality of life and cost-effectiveness. Where data permitted the results of studies were pooled using meta-analysis. A Markov (state transition) model was developed to simulate the main post-transplantation outcomes of kidney graft recipients. Eleven studies were included: three full journal published RCTs, two ongoing RCTs [European Machine Preservation Trial (MPT) and UK Pulsatile Perfusion in Asystolic donor Renal Transplantation (PPART) study], one cohort study, three full journal published retrospective record reviews and two retrospective record reviews published as posters or abstracts only. For LifePort versus ViaSpan, no significant differences were found for DGF, PNF, acute rejection, duration of DGF, creatinine clearance or toxicity, patient survival or graft survival at 6 months, but graft survival was better at 12 months post transplant with machine perfusion (LifePort = 98%, ViaSpan = 94%, p < 0.03). For LifePort versus RM3, all outcomes favoured RM3, although the results may be unreliable. For ViaSpan versus Soltran, there were no significant differences in graft survival for cold ischaemic times up to 36 hours. For ViaSpan versus Celsior, no significant differences were found on any outcome measure. In terms of cost-effectiveness, data from the MPT suggested that machine preservation was cheaper and generated more quality-adjusted life-years (QALYs), while the PPART study data suggested that cold storage was preferable on both counts. The less reliable deterministic outputs of the cohort study suggested that LifePort would be cheaper and would generate more QALYs than Soltran. Sensitivity analyses found that changes to the differential kidney storage costs between comparators have a very low impact on overall net benefit estimates; where differences in effectiveness exist, dialysis costs are important in determining overall net benefit; DGF levels become important only when differences in graft survival are apparent between patients experiencing immediate graft function (IGF) versus DGF; relative impact of differential changes to graft survival for patients experiencing IGF as opposed to DGF depends on the relative proportion of patients experiencing each of these two outcomes. The conclusions drawn for the comparison of machine perfusion with cold storage depend on which trial data are used in the model. Owing to the lack of good research evidence that either ViaSpan or Soltran is better than the other, the cheaper, Soltran, may be preferable. In the absence of a cost-utility analysis, the results of our meta-analysis of the RCTs comparing ViaSpan with Celsior indicate that these cold storage solutions are equivalent. Further RCTs of comparators of interest to allow for appropriate analysis of subgroups and to determine whether either of the two machines under consideration produces better outcomes may be useful. In addition, research is required to: establish the strength and reliability of the presumed causal association between DGF and graft, and patient survival; investigate the utility impacts of renal replacement therapy; determine what the additional cost, survival and QALY impacts are of decreased or increased non-viable kidneys when discarded pre transplantation; and identify a reliable measure for predicting kidney viability from machine perfusion.
Coherent and dynamic beam splitting based on light storage in cold atoms
Park, Kwang-Kyoon; Zhao, Tian-Ming; Lee, Jong-Chan; Chough, Young-Tak; Kim, Yoon-Ho
2016-01-01
We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses. With further improvements, the active beam splitter demonstrated in this work might have applications in photonic photonic quantum information and in all-optical information processing. PMID:27677457
Storage and sterilization techniques: the specific role of the cold chain.
Guinebault, A
1986-01-01
Focus in this discussion is on reasons for the cold chain, management of vaccine supplies (regional storage, peripheral centers, and the clinic), the facilities and their use, monitoring the cold chain, and training participants in the cold chain. To remain active, vaccines must be maintained continuously within a specific temperature range from the moment they are produced until they are injected. This is the meaning of the cold chain. If the cold chain is broken at any point, the vaccines must be destroyed for they will have lost their effectiveness. To function properly, a cold chain requires the combined presence of efficient, reliable equipment, and of qualified, vigilant personnel at all levels. The cold chain is composed of the following elements: a national storage center, near an international airport, with a 1-year supply of vaccines for the entire target population; regional storage centers with a 3-month supply of vaccines for the entire population of the region; peripheral immunization centers scattered throughout the region, managing a supply for about 1 month; clinics, which either perform vaccinations on the spot and/or supply mobile teams, depending on the strategy; and mobile teams, with portable cold boxes, with an autonomy of several days. The main problems occur at the local levels, and more specifically with respect to transportation and the fuel and power supplies, as well as cold packs. At the central level, the 1-year supply of vaccines generally is stored in cold rooms. Personnel in charge of central strorage also are responsible for transportation to and from these cold rooms. Once the space required for storing vaccines is determined, the facilities required at each level may be evaluated. The information essential to the choice must be considered in each case. The main criteria involved are outlined. There are many devices for monitoring the function of the cold chain: indicators, which accompany the vaccines from the central depot to the peripheral centers show any excesses in temperature and their duration; and devices such as thermometers show the present temperature, independently of the "history" of the vaccine. Some devices are available for checking individual elements of the cold chain from time to time. The World Health Organization (WHO) has developed a training strategy aimed at people on all levels: international consultants and decisionmakers involved in programming the Expanded Program on Immunization; technicians in charge of maintenance; and medical personnel.
Chen, Wenrong; Zhang, Zhenzhen; Shen, Yanwen; Duan, Xuewu; Jiang, Yuemin
2014-10-20
To understand the potential of application of tea polyphenols to the shelf life extension and quality maintenance of litchi (Litchi chinensis Sonn.) fruit, the fruits were dipped into a solution of 1% tea phenols for 5 min before cold storage at 4 °C. Changes in browning index, contents of anthocyanins and phenolic compounds, superoxide dismutase (SOD) and peroxidase (POD) activities, O2.- production rate and H2O2 content, levels of relative leakage rate and lipid peroxidation, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity were measured after 0, 10, 20 and 30 days of cold storage. The results showed that application of tea polyphenols markedly delayed pericarp browning, alleviated the decreases in contents of total soluble solids (TSS) and ascorbic acid, and maintained relatively high levels of total phenolics and anthocyanins of litchi fruit after 30 days of cold storage. Meanwhile, the treatment reduced the increases in relative leakage rate and lipid peroxidation content, delayed the increases in both O2.- production rate and H2O2 contents, and increased SOD activity but reduced POD activity throughout this storage period. These data indicated that the delayed pericarp browning of litchi fruit by the treatment with tea polyphenols could be due to enhanced antioxidant capability, reduced accumulations of reactive oxygen species and lipid peroxidation, and improved membrane integrity.
USDA-ARS?s Scientific Manuscript database
Partially-ripened avocados are often held in cold storage in an attempt to enable the consistent delivery of ripe fruit to food service or retail outlets, although the effect on the quality of such fruit is incompletely understood. ‘Hass’ avocados were ripened to near ripeness (13.3 - 17.8 N) at 20 ...
USDA-ARS?s Scientific Manuscript database
Mathematical models that predict behavior of human bacterial pathogens in food are valuable tools for assessing and managing this risk to public health. A study was undertaken to develop a model for predicting behavior of Salmonella 8,20:-:z6 in chicken meat during cold storage and to determine how...
Chen, Long; Tian, Yaoqi; Tong, Qunyi; Zhang, Zipei; Jin, Zhengyu
2017-01-01
The effects of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage were investigated by low field-nuclear magnetic resonance (LF-NMR), scanning electron microscope (SEM), and texture profile analysis (TPA). The addition of pullulan reduced the transversal relaxation time of rice starch gels during cold storage. The microstructure of rice starch gel with 0.5% pullulan was denser and more uniform compared with that of rice starch without pullulan in each period of storage time. With regard to textural properties, 0.01% pullulan addition did not significantly change the texture of rice starch gels, while 0.5% pullulan addition appeared to reduce the hardness and retain the springiness of rice starch gels (P⩽0.05). The restriction effects of pullulan on water mobility and starch retrogradation were hypothesized to be mainly responsible for the water retention, gel structure maintenance, and modification of the textural attributes of rice starch gels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Unsteady Stored Heat Behavior in Building Frame of Reinforced Concrete Structure Type Cold Storage
NASA Astrophysics Data System (ADS)
Nomura, Tomohiro; Murakami, Yuji; Uchikawa, Motoyuki
The time variation of temperature in the reinforced concrete frame with an internal insulation or with an external insulation and the unsteady stored heat behavior, which results from the thermal mass of the concrete frame, have been investigated. The experiments with the concrete models and the measurements of the heat flux through the practical cold storage were performed. The experimental results under the unsteady condition showed great difference of the stored heat behavior between the internal insulation type and the external type. In addition, it was shown that the external insulation frame was useful for heat storage. The simulation method with two dimentional unsteady FEM was introduced for easily analyzing the stored heat behavior problems of the practical cold storages, which had various specifications in design. The calculated results of the heat flux and temperature in the concrete frame agreed with the experiments approximately. From these results, the suggestions for the design of the insulation wall under the unsteady condition were given.
Sun, Lijun; Sun, Jiaojiao; Thavaraj, Pridhuvi; Yang, Xingbin; Guo, Yurong
2017-06-01
The aim of this study was to investigate the effects of young apple polyphenols (YAP) on the quality of grass cap surimi (GCS) during storage at 4°C. The addition of YAP into GCS was found to be effective in delaying lipid oxidation, soluble myofibrillar protein (SMP) degradation and changes of L ∗ , a ∗ and b ∗ values of GCS. Chlorogenic acid was screened to be the primary component showing preservative effects. YAP was shown to protect the functional properties of SMP during cold storage, retarding both the decrease in emulsifying activity and stability, and the increase in surface hydrophobicity of SMP. Additionally, the loss of gel strength and texture of GCS with YAP were significantly (P<0.05) lower than that of GCS without YAP during cold storage. Therefore, YAP may be developed as a natural antioxidant to maintain the quality and to extend the shelf life of freshwater fish surimi. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wiberley-Bradford, Amy E; Busse, James S; Jiang, Jiming; Bethke, Paul C
2014-11-16
Storing potato tubers at low temperatures minimizes sprouting and disease but can cause an accumulation of reducing sugars in a process called cold-induced sweetening. Tubers with increased amounts of reducing sugars produce dark-colored, bitter-tasting fried products with elevated amounts of acrylamide, a possible carcinogen. Vacuolar invertase (VInv), which converts sucrose produced by starch breakdown to glucose and fructose, is the key determinant of reducing sugar accumulation during cold-induced sweetening. In this study, wild-type tubers and tubers in which VInv expression was reduced by RNA interference were used to investigate time- and temperature-dependent changes in sugar contents, chip color, and expression of VInv and other genes involved in starch metabolism in tubers during long-term cold storage. VInv activities and tuber reducing sugar contents were much lower, and tuber sucrose contents were much higher, in transgenic than in wild-type tubers stored at 3-9°C for up to eight months. Large differences in VInv mRNA accumulation were not observed at later times in storage, especially at temperatures below 9°C, so differences in invertase activity were likely established early in the storage period and maintained by stability of the invertase protein. Sugar contents, chip color, and expression of several of the studied genes, including AGPase and GBSS, were affected by storage temperature in both wild-type and transgenic tubers. Though transcript accumulation for other sugar-metabolism genes was affected by storage temperature and duration, it was essentially unaffected by invertase silencing and altered sugar contents. Differences in stem- and bud-end sugar contents in wild-type and transgenic tubers suggested different compartmentalization of sucrose at the two ends of stored tubers. VInv silencing significantly reduced cold-induced sweetening in stored potato tubers, likely by means of differential VInv expression early in storage. Transgenic tubers retained sensitivity to storage temperature, and accumulated greater amounts of sucrose, glucose and fructose at 3°C than at 7-9°C. At each storage temperature, suppression of VInv expression and large differences in tuber sugar contents had no effect on expression of AGPase and GBSS, genes involved in starch metabolism, suggesting that transcription of these genes is not regulated by tuber sugar content.
Teklić, Tihana; Spoljarević, Marija; Stanisavljević, Aleksandar; Lisjak, Miroslav; Vinković, Tomislav; Parađiković, Nada; Andrić, Luka; Hancock, John T
2010-01-01
A method which is widely accepted for the analysis of free proline content in plant tissues is based on the use of 3% sulfosalicylic acid as an extractant, followed by spectrophotometric quantification of a proline-ninhydrin complex in toluene. However, sample preparation and storage may influence the proline actually measured. This may give misleading or difficult to compare data. To evaluate free proline levels fresh and frozen strawberry (Fragaria × ananassa Duch.) leaves and soybean [Glycine max (L.) Merr.] hypocotyl tissues were used. These were ground with or without liquid nitrogen and proline extracted with sulfosalicylic acid. A particular focus was the influence of plant sample cold storage duration (1, 4 and 12 weeks at -20°C) on tissue proline levels measured. The free proline content analyses, carried out in leaves of Fragaria × ananassa Duch. as well as in hypocotyls of Glycine max (L.) Merr., showed a significant influence of the sample preparation method and cold storage period. Long-term storage of up to 12 weeks at -20°C led to a significant increase in the measured proline in all samples analysed. The observed changes in proline content in plant tissue samples stored at -20°C indicate the likelihood of the over-estimation of the proline content if the proline analyses are delayed. Plant sample processing and cold storage duration seem to have an important influence on results of proline analyses. Therefore it is recommended that samples should be ground fresh and analysed immediately. Copyright © 2010 John Wiley & Sons, Ltd.
Barreto, Tainá A.; Andrade, Sonalle C. A.; Maciel, Janeeyre F.; Arcanjo, Narciza M. O.; Madruga, Marta S.; Meireles, Bruno; Cordeiro, Ângela M. T.; Souza, Evandro L.; Magnani, Marciane
2016-01-01
The efficacy of an edible chitosan coating (CHI; 4 mg/mL) and Origanum vulgare L. essential oil (OVEO; 1.25 μL/mL) for maintaining the quality of cherry tomato fruit during storage at room (25°C; 12 days) and cold (12°C; 24 days) temperatures was assessed. CHI and OVEO in combination showed in vitro fungicidal effects against R. stolonifer and Aspergillus niger. CHI-OVEO coating reduced the incidence of black mold and soft rot caused by these fungi in artificially contaminated cherry tomato fruit during storage at both temperatures. CHI-OVEO coating delayed the appearance of the first visible signs of black mold and soft rot in artificially contaminated cherry tomato fruit stored at room temperature by 6 days and by more than 9 days in those stored at cold temperature. At the end of storage at room and cold temperature fruit coated with CHI-OVEO showed higher firmness (>2 N/mm) and lower weight loss (>2%) compared to uncoated tomato fruit. CHI-OVEO coating delayed the decrease of lycopene, ascorbic citric acid, glucose and fructose during the storage time assessed at room or cold temperatures. The increase of catechin, myricetin, caffeic and syringic acids was higher (1–9 mg/g) in cherry tomato fruit coated with CHI-OVEO compared to uncoated fruit during the storage at both temperatures studied. CHI-OVEO coating is a feasible treatment for maintaining the storage quality of cherry tomato fruit. PMID:27877156
Aluja, M; Díaz-Fleischer, F; Arredondo, J; Valle-Mora, J; Rull, J
2010-12-01
Commercially ripe 'Hass' avocados, Persea americana Mill, artificially exposed to wild Anastrepha ludens (Loew) (Diptera: Tephritidae) females 24 h after harvest were placed in a cold storage facility to determine the effect of low temperature on larval survival and adult viability. Fruit were left for 3, 6, 9, and 12 d in a cold room at 5 degrees C followed by a 20-25-d period at ambient temperature to allow for larval development and pupation. Hass avocados and grapefruit, Citrus paradisi Macfadyen, maintained at ambient temperature served as controls. Overall, only 0.23% of the Hass avocados and 19.30% of the grapefruit were infested. The number of infested fruit increased with decreasing exposure time to cold. Puparia from cold-treated Hass avocados were significantly smaller than those stemming from cold-treated grapefruit. Hass avocados exposed for 12 d to 5 degrees C yielded no puparia, and those exposed for 6 and 9 d yielded 22 and two puparia, respectively, but no adults. Although Hass avocados exposed to cold temperature for 3 d yielded adults that reached sexual maturity (N = 16), females laid inviable eggs. Grapefruit exposed to cold for 12 d yielded normal-sized puparia (but no adults), whereas those exposed over 9 d yielded females able to lay viable eggs. We conclude that exposing fruit to cold storage after packing and during transport represents an effective risk-mitigating procedure in the highly improbable event that a gravid A. ludens female might lay eggs in a commercially ripe Hass avocado that had been left unprotected in a packinghouse.
NASA Astrophysics Data System (ADS)
Li, Shidong; Mo, Caisong; Wang, Junze; Zheng, Jingfu; Tian, Ruhong
2017-11-01
In this paper, a kind of cool storage clothes which can cool the human body in high temperature condition is put forward. super absorbent polymers was selected as a cold storage material, through at the normal and extreme environment simulation, the cold storage materials were prepared with different composition, and their performance was tested. Test results show that:under normal temperature conditions, the 1:50 concentration of super absorbent polymers continued to release the longest cooling time, compared with pure water, cooling time extended 43 minutes by about 30%; under the condition of 37°C, the 1:100 concentration of super absorbent polymers continued to release the longest cooling time, compared with pure water, cooling time extended 105 minutes by about 50%.
Fate of Listeria monocytogenes on Fresh Apples under Different Storage Temperatures.
Sheng, Lina; Edwards, Katheryn; Tsai, Hsieh-Chin; Hanrahan, Ines; Zhu, Mei-Jun
2017-01-01
Fresh apples are typically stored for up to 1 year commercially; different apple varieties require different storage temperatures to maintain their quality characteristics. There is sparse information available about Listeria monocytogenes survival on fresh apples under various storage temperatures. The objective of this study was to comprehensively evaluate the effect of storage temperature on apple fruit decay and L. monocytogenes survival. Unwaxed apple fruits of selected varieties (Fuji and Granny Smith) were dip inoculated in a three-strain L. monocytogenes cocktail to establish ∼3.5 and 6.0 Log 10 CFU/apple. Twenty-four hours post-inoculation, apples were subjected to 1, 4, 10, or 22°C storage for up to 3 months. Apples under the different storage treatments were sampled at 1-, 4-, 7- and 14-day for short-term storage under all four tested temperatures, and 2-, 4-, 8-, and 12-week for long-term storage at 1, 4, and 10°C. A set of uninoculated and unwaxed apples were simultaneously subjected to the previously mentioned storage temperatures and sampled biweekly for their total bacterial count (TPC) and yeasts/molds (Y/M) count. During the 2-week short-term storage, L. monocytogenes population on organic Granny Smith apples stored at 1, 4, or 10°C was reduced by 0.2-0.3 Log. When apples were stored at 22°C, there was a 0.5-1.2 Log 10 CFU/apple reduction 14-day post storage dependent on the initial inoculation level. During the 12-week cold storage under 1, 4, and 10°C, L. monocytogenes count on organic Granny Smith apples decreased by 0.5-1.5 Log 10 CFU/apple for both inoculation levels. L. monocytogenes had similar survival pattern on conventional Granny Smith and Fuji apples with 0.8-2.0 Log 10 CFU/apple reduction over a 3-month cold storage period. Interestingly, both TPC and Y/M count were stable regardless of apple variety or cultivation practice during the 12-week storage at all tested temperatures. In summary, while L. monocytogenes did not proliferate on apple surfaces during 12 weeks of refrigerated storage, only a limited reduction of L. monocytogenes was observed in this study. Therefore, the apple industry cannot rely on cold storage alone to control this pathogen. Additional interventions are needed to eradicate Listeria on fresh apples during long-term cold storage.
A Static Burst Test for Composite Flywheel Rotors
NASA Astrophysics Data System (ADS)
Hartl, Stefan; Schulz, Alexander; Sima, Harald; Koch, Thomas; Kaltenbacher, Manfred
2016-06-01
High efficient and safe flywheels are an interesting technology for decentralized energy storage. To ensure all safety aspects, a static test method for a controlled initiation of a burst event for composite flywheel rotors is presented with nearly the same stress distribution as in the dynamic case, rotating with maximum speed. In addition to failure prediction using different maximum stress criteria and a safety factor, a set of tensile and compressive tests is carried out to identify the parameters of the used carbon fiber reinforced plastics (CFRP) material. The static finite element (FE) simulation results of the flywheel static burst test (FSBT) compare well to the quasistatic FE-simulation results of the flywheel rotor using inertia loads. Furthermore, it is demonstrated that the presented method is a very good controllable and observable possibility to test a high speed flywheel energy storage system (FESS) rotor in a static way. Thereby, a much more expensive and dangerous dynamic spin up test with possible uncertainties can be substituted.
Mannose and fructose metabolism in red blood cells during cold storage in SAGM.
Rolfsson, Óttar; Johannsson, Freyr; Magnusdottir, Manuela; Paglia, Giuseppe; Sigurjonsson, Ólafur E; Bordbar, Aarash; Palsson, Sirus; Brynjólfsson, Sigurður; Guðmundsson, Sveinn; Palsson, Bernhard
2017-11-01
Alternate sugar metabolism during red blood cell (RBC) storage is not well understood. Here we report fructose and mannose metabolism in RBCs during cold storage in SAGM and the impact that these monosaccharides have on metabolic biomarkers of RBC storage lesion. RBCs were stored in SAGM containing uniformly labeled 13 C-fructose or 13 C-mannose at 9 or 18 mmol/L concentration for 25 days. RBCs and media were sampled at 14 time points during storage and analyzed using ultraperformance liquid chromatography-mass spectrometry. Blood banking quality assurance measurements were performed. Red blood cells incorporated fructose and mannose during cold storage in the presence of glucose. Mannose was metabolized in preference to glucose via glycolysis. Fructose lowered adenosine triphosphate (ATP) levels and contributed little to ATP maintenance when added to SAGM. Both monosaccharides form the advanced glycation end product glycerate. Mannose activates enzymes in the RBC that take part in glycan synthesis. Fructose or mannose addition to RBC SAGM concentrates may not offset the shift in metabolism of RBCs that occurs after 10 days of storage. Fructose and mannose metabolism at 4°C in SAGM reflects their metabolism at physiologic temperature. Glycerate excretion is a measure of protein deglycosylation activity in stored RBCs. No cytoprotective effect was observed upon the addition of either fructose or mannose to SAGM. © 2017 AABB.
Effectiveness of water immersion on postmatch recovery in elite professional footballers.
Elias, George P; Wyckelsma, Victoria L; Varley, Matthew C; McKenna, Michael J; Aughey, Robert J
2013-05-01
The efficacy of a single exposure to 14 min of contrast water therapy (CWT) or cold-water immersion (COLD) on recovery postmatch in elite professional footballers was investigated. Twenty-four elite footballers participated in a match followed by 1 of 3 recovery interventions. Recovery was monitored for 48 h postmatch. Repeat-sprint ability (6 × 20-m), static and countermovement jump performance, perceived soreness, and fatigue were measured prematch and immediately, 24 h, and 48 h after the match. Soreness and fatigue were also measured 1 h postmatch. Postmatch, players were randomly assigned to complete passive recovery (PAS; n = 8), COLD (n = 8), or CWT (n = 8). Immediately postmatch, all groups exhibited similar psychometric and performance decrements, which persisted for 48 h only in the PAS group. Repeat-sprinting performance remained slower at 24 and 48 h for PAS (3.9% and 2.0%) and CWT (1.6% and 0.9%) but was restored by COLD (0.2% and 0.0%). Soreness after 48 h was most effectively attenuated by COLD (ES 0.59 ± 0.10) but remained elevated for CWT (ES 2.39 ± 0.29) and PAS (ES 4.01 ± 0.97). Similarly, COLD more successfully reduced fatigue after 48 h (ES 1.02 ± 0.72) than did CWT (ES 1.22 ± 0.38) and PAS (ES 1.91 ± 0.67). Declines in static and countermovement jump were ameliorated best by COLD. An elite professional football match results in prolonged physical and psychometric deficits for 48 h. COLD was more successful at restoring physical performance and psychometric measures than CWT, with PAS being the poorest.
Fungicides improve field performance of stored loblolly and longleaf pine seedlings
John C. Brissette
1996-01-01
Seedlings of loblolly and longleaf pine lifted in December, January, and February were treated with either benomyl or ridomil before cold storage. Along with an untreated control, they were planted after cold storage of less than 1 wk, 3 wk, and 6 wk. Survival was measured in mid-June after planting, and after 1 and 4 yr in the field. Total height was measured after 4...
Managing ‘Bartlett’ pear fruit ripening with 1-methylcyclopropene reapplication during cold storage
USDA-ARS?s Scientific Manuscript database
Repeated low-dose 1-MCP-applications were evaluated during cold storage of ‘Bartlett’ pear fruit to overcome long-term ripening inhibition of a high dose 1-MCP treatment at harvest. Fruit were exposed to 1-MCP at 0, 0.42, 4.2 or 42 umol m-3 at harvest in year one, and to 0, 0.42 or 42 umol m-3 in y...
NASA Astrophysics Data System (ADS)
Li, Yipeng; Liu, Quanzhen; Meng, He; Sun, Lifu; Zhang, Yunpeng
2013-03-01
At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 1011 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m-3, which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.
Human Milk Adrenomedullin Is Unstable During Cold Storage at 4°C.
Peila, Chiara; Coscia, Alessandra; Bertino, Enrico; Li Volti, Giovanni; Galvano, Fabio; Barbagallo, Ignazio; Gazzolo, Diego
2017-11-01
Under some circumstances human milk (HM) extraction and refrigerated storage may be necessary. Depending on the length and on the type of cold storage, milk may lose some important properties, but current advices on safe HM storage are discordant. Moreover until now no data in literature were present on the effect of prolonged cold storage on biologically active components of the HM such as adrenomedullin (AM). This important peptide is involved in response to hypoxia and inflammation, associated with neovascularization, in several tissues. The aim is to evaluate: (a) the presence of AM in preterm and term HM and (b) the concentration of AM in refrigerated milk at 4°C at 24-hour intervals, up to 96 hours of storage. The experiment was repeated four times. Immediately after collection, each HM sample deriving from each mother was divided into two parts as follows: "Pool" line and "Single Mother" line. One part (Pool line) was pooled and then divided into five aliquots. The other part (Single Mother line) was divided into five aliquots. From each line, one aliquot was analyzed within 3 hours, while the others were stored in the refrigerator for 24, 48, 72, and 96 hours, respectively, and then analyzed. AM levels were determined using a specific ELISA test. AM was detectable in all samples. Its concentration was significantly higher in preterm milk with respect to term milk (p < 0.05). Significant differences were observed during the cold storage: the AM levels decreased steadily during the storage and the remaining concentration at 96 hours is ∼2%. This study provides evidences regarding the presence of AM in HM, regardless of the gestational age. In particular, the refrigeration of fresh HM in controlled conditions significantly affected its bioactivity and nutritional quality related with AM, already at 24 hours.
Aquifer Thermal Energy Storage for Seasonal Thermal Energy Balance
NASA Astrophysics Data System (ADS)
Rostampour, Vahab; Bloemendal, Martin; Keviczky, Tamas
2017-04-01
Aquifer Thermal Energy Storage (ATES) systems allow storing large quantities of thermal energy in subsurface aquifers enabling significant energy savings and greenhouse gas reductions. This is achieved by injection and extraction of water into and from saturated underground aquifers, simultaneously. An ATES system consists of two wells and operates in a seasonal mode. One well is used for the storage of cold water, the other one for the storage of heat. In warm seasons, cold water is extracted from the cold well to provide cooling to a building. The temperature of the extracted cold water increases as it passes through the building climate control systems and then gets simultaneously, injected back into the warm well. This procedure is reversed during cold seasons where the flow direction is reversed such that the warmer water is extracted from the warm well to provide heating to a building. From the perspective of building climate comfort systems, an ATES system is considered as a seasonal storage system that can be a heat source or sink, or as a storage for thermal energy. This leads to an interesting and challenging optimal control problem of the building climate comfort system that can be used to develop a seasonal-based energy management strategy. In [1] we develop a control-oriented model to predict thermal energy balance in a building climate control system integrated with ATES. Such a model however cannot cope with off-nominal but realistic situations such as when the wells are completely depleted, or the start-up phase of newly installed wells, etc., leading to direct usage of aquifer ambient temperature. Building upon our previous work in [1], we here extend the mathematical model for ATES system to handle the above mentioned more realistic situations. Using our improved models, one can more precisely predict system behavior and apply optimal control strategies to manage the building climate comfort along with energy savings and greenhouse gas reductions. [1] V. Rostampour and T. Keviczky, "Probabilistic Energy Management for Building Climate Comfort in Smart Thermal Grids with Seasonal Storage Systems," arXiv [math.OC], 10-Nov-2016.
Seasonal changes of DNA fragmentation and quality of raw and cold-stored stallion spermatozoa.
Wach-Gygax, L; Burger, D; Malama, E; Bollwein, H; Fleisch, A; Jeannerat, E; Thomas, S; Schuler, G; Janett, F
2017-09-01
In this study annual fluctuations of DNA fragmentation and quality of cold-stored equine sperm were evaluated. Ejaculates were collected weekly during one year from 15 stallions. Ejaculate volume, sperm concentration and total sperm count were determined and semen was then extended and cold-stored for 48 h. Sperm motility was evaluated by CASA before and after 24 as well as 48 h of cold storage. In addition, the percentages of sperm with intact plasma membrane and acrosome (PMAI %) and with low intracellular Ca 2+ level were determined in cold-stored semen (24 h, 48 h). SCSA™ was performed to assess mean DFI, SD of DFI and % DFI in raw frozen-thawed as well as in extended sperm after 24 and 48 h of storage. The month of semen collection affected (P < 0.05) all parameters evaluated in raw semen and all criteria except progressive motility as well as rapid cells in semen stored for 24 and 48 h, respectively. Ejaculate volume was higher and sperm concentration lower in summer compared to winter and motility lower in July than in any other month of the year (P < 0.05). In semen processed in April and stored for 24 h the percentage of rapid cells was improved compared to January and after 48 h of storage progressive motility (%) was higher in January and October than in July (P < 0.05). After 24 h of cold storage PMAI % was higher in October than in January and after 48 h values were higher in September compared to January and February as well as from April to July (P < 0.05). Regarding sperm with low intracellular Ca +2 level (%) after storage for 24 and 48 h, higher values were measured in winter and in October compared to April, June and July (P < 0.01). Seasonal changes in DNA fragmentation were most evident with respect to mean DFI. In raw frozen-thawed semen mean DFI was lower from August to November than in June and July (P < 0.001). Values were lower during winter compared to spring and early summer (P < 0.05) and lower in December than from April to September (P < 0.001). After 24 h of cold storage mean DFI was lower in September and October when compared to January, February, May, July and November (P < 0.05) and after 48 h storage mean DFI was reduced in spring and autumn compared to February, June and July (P < 0.05). In conclusion, a seasonal effect was evident on semen characteristics of raw and cold-stored sperm. Semen quality was impaired in midsummer when low sperm motility and viability were combined with an elevated DNA fragmentation and Ca 2+ level of sperm. Copyright © 2017. Published by Elsevier Inc.
Rabadán, Adrián; Álvarez-Ortí, Manuel; Pardo, José Emilio; Alvarruiz, Andrés
2018-09-01
Chemical composition and stability parameters of three cold-pressed nut oils (almond, walnut and pistachio) were monitored for up to 16 months of storage at 5 °C, 10 °C, 20 °C and room temperature. Freshly pressed pistachio oil had lower peroxide value than almond oil and higher induction period than almond and walnut oils, indicating a higher stability. The peroxide values increased faster at room temperature than at lower temperatures during the storage time, and the highest increase was for pistachio oil stored at room temperature exposed to daylight. The induction period decreased for all three nut oils during the storage time, regardless of the storage conditions. Pistachio oil remained the most stable oil at the end of the storage time, followed by almond oil. The percentage of polyunsaturated fatty acids decreased slightly throughout the storage. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of 1-methylcyclopropene treatment on green asparagus quality during cold storage
NASA Astrophysics Data System (ADS)
Zhang, Peng; Zhang, Min; Wang, Shaojin; Wu, Zhishuang
2012-10-01
Green asparagus was treated with 1-methylcyclopropene at three concentration levels at room temperature for 24 h after harvest to evaluate the postharvest quality during cold storage at 4°C. Comparing with the controls, the loss of vitamin C, decomposition of chlorophyll, and accumulation of the malonydiadehyde under treatments of 1-methylcyclopropene were reduced during storage. The enzyme activities in asparagus including peroxidase and phenylalanine ammonia lyase were inhibited by 1-methylcyclopropene treatments, while the activity of superoxide dismutase was enhanced. Based on non-significant difference of the treated samples with 6 ìl l-1, 1-methylcyclopropene treatments at 4 ìl l-1 could be selected to maintain postharvest quality of green asparagus and provide long storage life.
Liu, Yan-Hong; Jia, Dong; Yuan, Xiao-Fang; Wang, Yuan-Xin; Chi, Hsin; Ridsdill-Smith, Thomas James; Ma, Rui-Yan
2018-05-08
The alligator weed flea beetle, Agasicles hygrophila Selman & Vogt (Coleoptera: Chrysomelidae) has been used very successfully for the biological control of the widely-distributed invasive weed Alternanthera philoxeroides (Mart.) Griseb (Caryophyllales: Amaranthaceae). In order to extend the 'shelf life' of natural enemies released in biological control programs, cold storage has proven to be a valuable commercial procedure. To determine a suitable low temperature for storage of A. hygrophila, we conducted short-term cold storage treatments of eggs (4°C for 0.5, 1, 2, 5 d, and 7.5, 10, 15°C for 5 d and a control of 25°C; all eggs were returned to 25°C after the treatments). We evaluated the effects of these treatments on the subsequent fitness of the populations based on a demographic analysis using group-reared age-stage two-sex life tables. For 5 d storage, temperatures below 10°C had lethal effects, which were also observed at 4°C for 2 d storage. Storage at 4°C for 0.5 d did not affect the fitness of A. hygrophila, but it did not prolong the developmental time. Storage at 10°C for 5 d significantly decreased rates of population increase compared with 25°C. A. hygrophila stored at 15°C for 5 d had similar age-(stage) specific survival rates, rates of population increase, increased longevity and reproductive capability to the controls at 25°C. It is concluded that there were no significant fitness costs after 5 d storage at 15°C, which is therefore potentially a suitable storage temperature for A. hygrophila eggs.
NASA Technical Reports Server (NTRS)
Morehead, R. L.; Atwell, M. J.; Melcher, J. C.; Hurlbert, E. A.
2016-01-01
Hot-fire test demonstrations were successfully conducted using a cold helium pressurization system fully integrated into a liquid oxygen (LOX) / liquid methane (LCH4) propulsion system (Figure 1). Cold helium pressurant storage at near liquid nitrogen (LN2) temperatures (-275 F and colder) and used as a heated tank pressurant provides a substantial density advantage compared to ambient temperature storage. The increased storage density reduces helium pressurant tank size and mass, creating payload increases of 35% for small lunar-lander sized applications. This degree of mass reduction also enables pressure-fed propulsion systems for human-rated Mars ascent vehicle designs. Hot-fire test results from the highly-instrumented test bed will be used to demonstrate system performance and validate integrated models of the helium and propulsion systems. A pressurization performance metric will also be developed as a means to compare different active pressurization schemes.
de Korte, Dirk; Kleine, Mya; Korsten, Herbert G H; Verhoeven, Arthur J
2008-06-01
Current additive solutions (ASs) for red cells (RBCs) do not maintain a constant level of critical metabolites such as adenosine triphosphate (ATP) and 2,3-diphosphoglycerate acid (2,3-DPG) during cold storage. From the literature it is known that the intracellular pH is an important determinant of RBC metabolism. Therefore, a new, alkaline, AS was developed with the aim to allow cold storage of RBCs with stable product characteristics. Whole blood-derived RBCs (leukoreduced) were resuspended in experimental medium phosphate-adenine-guanosine-glucose-gluconate-mannitol (PAGGG-M; pH 8.2) with and without washing in the same medium. During cold storage several in vitro variables, such as intracellular pH, 2,3-DPG, ATP, and hemolysis, were analyzed. During cold storage, RBCs resuspended in PAGGG-M showed a constant ATP level (approx. 6 mumol/g Hb) and a very limited hemolysis (<0.2%). The 2,3-DPG content showed an increase until Day 21 (150% of initial level), followed by a slow decrease, with at Day 35 still 100 percent of the initial level. RBCs washed in PAGGG-M even showed a continuous increase of 2,3-DPG during 35 days, with a maximum level of 200 percent of the initial value. The effect of PAGGG-M appears to be related to long-lasting effects of the initial intracellular pH shortly after production. Resuspension of RBCs in our alkaline medium PAGGG-M resulted in a RBC unit of high quality during storage for up to at least 35 days, with 2,3-DPG levels of higher than 10 mumol per g Hb, hemolysis of less than 0.2 percent, and ATP levels of higher than 5 mumol per g Hb.
Bustamante, Claudia A.; Monti, Laura L.; Gabilondo, Julieta; Scossa, Federico; Valentini, Gabriel; Budde, Claudio O.; Lara, María V.; Fernie, Alisdair R.; Drincovich, María F.
2016-01-01
Reconfiguration of the metabolome is a key component involved in the acclimation to cold in plants; however, few studies have been devoted to the analysis of the overall metabolite changes after cold storage of fruits prior to consumption. Here, metabolite profiling of six peach varieties with differential susceptibility to develop mealiness, a chilling-injury (CI) symptom, was performed. According to metabolic content at harvest; after cold treatment; and after ripening, either following cold treatment or not; peach fruits clustered in distinct groups, depending on harvest-time, cold treatment, and ripening state. Both common and distinct metabolic responses among the six varieties were found; common changes including dramatic galactinol and raffinose rise; GABA, Asp, and Phe increase; and 2-oxo-glutarate and succinate decrease. Raffinose content after long cold treatment quantitatively correlated to the degree of mealiness resistance of the different peach varieties; and thus, raffinose emerges as a candidate biomarker of this CI disorder. Xylose increase after cold treatment was found only in the susceptible genotypes, indicating a particular cell wall reconfiguration of these varieties while being cold-stored. Overall, results indicate that peach fruit differential metabolic rearrangements due to cold treatment, rather than differential metabolic priming before cold, are better related with CI resistance. The plasticity of peach fruit metabolism renders it possible to induce a diverse metabolite array after cold, which is successful, in some genotypes, to avoid CI. PMID:27746802
Pintado, T; Ruiz-Capillas, C; Jiménez-Colmenero, F; Carmona, P; Herrero, A M
2015-10-15
This paper reports on the development of olive oil-in-water emulsion gels containing chia (Salvia hispanica L.) (flour or seed) and cold gelling agents (transglutaminase, alginate or gelatin). The technological and structural characteristics of these emulsion gels were evaluated. Both structural and technological changes in emulsion gels resulting from chilled storage were also determined. The color and texture of emulsion gels depend on both the cold gelling agents used and chilled storage. Lipid oxidation increased (p < 0.05) during storage in emulsion gels containing transglutaminase or alginate. Analyses of the half-bandwidth of the 2923 cm(-1) band and the area of the 3220 cm(-1) band suggest that the order/disorder of the oil lipid chain related to lipid interactions and droplet size in the emulsion gels could be decisive in determining their textural properties. The half-bandwidth of 2923 cm(-1) band and area of 3220 cm(-1) band did not show significant differences during chilled storage. Copyright © 2015 Elsevier Ltd. All rights reserved.
Persufflation (or gaseous oxygen perfusion) as a method of organ preservation.
Suszynski, Thomas M; Rizzari, Michael D; Scott, William E; Tempelman, Linda A; Taylor, Michael J; Papas, Klearchos K
2012-06-01
Improved preservation techniques have the potential to improve transplant outcomes by better maintaining donor organ quality and by making more organs available for allotransplantation. Persufflation, (PSF, gaseous oxygen perfusion) is potentially one such technique that has been studied for over a century in a variety of tissues, but has yet to gain wide acceptance for a number of reasons. A principal barrier is the perception that ex vivo PSF will cause in vivo embolization post-transplant. This review summarizes the extensive published work on heart, liver, kidney, small intestine and pancreas PSF, discusses the differences between anterograde and retrograde PSF, and between PSF and other conventional methods of organ preservation (static cold storage, hypothermic machine perfusion). Prospective implications of PSF within the broader field of organ transplantation, and in the specific application with pancreatic islet isolation and transplant are also discussed. Finally, key issues that need to be addressed before PSF becomes a more widely utilized preservation strategy are summarized and discussed. Copyright © 2012 Elsevier Inc. All rights reserved.
Persufflation (or Gaseous Oxygen Perfusion) as a Method of Organ Preservation
Suszynski, Thomas M.; Rizzari, Michael D.; Scott, William E.; Tempelman, Linda A.; Taylor, Michael J.; Papas, Klearchos K.
2012-01-01
Improved preservation techniques have the potential to improve transplant outcomes by better maintaining donor organ quality and by making more organs available for allotransplantation. Persufflation, (PSF, gaseous oxygen perfusion) is potentially one such technique that has been studied for over a century in a variety of tissues, but has yet to gain wide acceptance for a number of reasons. A principal barrier is the perception that ex vivo PSF will cause in vivo embolization post-transplant. This review summarizes the extensive published work on heart, liver, kidney, small intestine and pancreas PSF, discusses the differences between anterograde and retrograde PSF and between PSF and other conventional methods of organ preservation (static cold storage, hypothermic machine perfusion). Prospective implications of PSF within the broader field of organ transplantation, and in the specific application with pancreatic islet isolation and transplant are also discussed. Finally, key issues that need to be addressed before PSF becomes a more widely utilized preservation strategy are summarized and discussed. PMID:22301419
Survey of Postharvest Quality Characteristics During Long-Term Farmers Stock Storage
USDA-ARS?s Scientific Manuscript database
The length of time that peanuts remain in farmers stock storage is variable. With the record harvest of the 2012 peanut crop, some peanuts remained in farmers stock storage for up to 12 months before being shelled and placed in cold storage or shipped to the manufacturer. To investigate potential ...
USDA-ARS?s Scientific Manuscript database
‘Royal Gala’ apples [Malus domestica (Borkh.) Mansf.] can develop postharvest disorders such as flesh browning, senescent breakdown, peeling, cracking, or shriveling during and after cold storage. The objective of this study was to examine the effects of storage temperature and a range of 1-methylc...
76 FR 78641 - Southwestern Gas Storage Technical Conference; Notice of Public Conference
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-19
... Storage Technical Conference; Notice of Public Conference Take notice that on February 16, 2012 at 9 a.m... technical conference with interested parties to discuss issues related to natural gas storage development in... Cold Weather Event of February 1-5, 2011: Causes and Recommendations, ``[a]dditional gas storage...
Changes of the Components of Fresh Seaweed, Undaria pinnatifida, by Different Strage Conditions
NASA Astrophysics Data System (ADS)
Onodera, Munenaka; Yoshie-Stark, Yumiko; Suzuki, Takesh
This study was performed to keep the quality and to prolong the shelf life of fresh Undaria pinnatifida, by different storage conditions. Changes of the contents of chlorophyll a (Chl a) and its derivatives, β-carotene, pH, molecular weight of alginate and molecular weight distribution were determined during the storage of U. pinnatifida. The conditions of cold storage at -3 to 7°C with air or O2, storage in seawater, and storage in slurry ice made of seawater were tested. Chl a and β-carotene contents, and the pH of U. pinnatifida were decreased following the increment of storage days. Significant decrease of Chl a content and molecular weight of U. pinnatifida was detected under cold storage especially at 7°C. The storage by icing in slurry ice and by super chilling at -3°C inhibited the degradation of Chl a and β-carotene of U. pinnatifida. The content of pheophorbide a or pH were recognized as useful factors to evaluate the quality and freshness of U. pinnatifida.
Light storage in a cold atomic ensemble with a high optical depth
NASA Astrophysics Data System (ADS)
Park, Kwang-Kyoon; Chough, Young-Tak; Kim, Yoon-Ho
2017-06-01
A quantum memory with a high storage efficiency and a long coherence time is an essential element in quantum information applications. Here, we report our recent development of an optical quantum memory with a rubidium-87 cold atom ensemble. By increasing the optical depth of the medium, we have achieved a storage efficiency of 65% and a coherence time of 51 μs for a weak laser pulse. The result of a numerical analysis based on the Maxwell-Bloch equations agrees well with the experimental results. Our result paves the way toward an efficient optical quantum memory and may find applications in photonic quantum information processing.
Johnson, Lacey; Tan, Shereen; Jenkins, Emily; Wood, Ben; Marks, Denese C
2018-04-01
Alternatives to room temperature storage of platelets (PLTs) are of interest to support blood banking logistics. The aim of this study was to compare the presence of biologic response modifiers (BRMs) in PLT concentrates stored under conventional room temperature conditions with refrigerated or cryopreserved PLTs. A three-arm pool-and-split study was carried out using buffy coat-derived PLTs stored in 30% plasma/70% SSP+. The three matched treatment arms were as follows: room temperature (20-24°C), cold (2-6°C), and cryopreserved (-80°C with DMSO). Liquid-stored PLTs were tested over a 21-day period, while cryopreserved PLTs were tested immediately after thawing and reconstitution in 30% plasma/70% SSP+ and after storage at room temperature. Coagulation factor activity was comparable between room temperature and cold PLTs, with the exception of protein S, while cryopreserved PLTs had reduced Factor (F)V and FVIII activity. Cold-stored PLTs retained α-granule proteins better than room temperature or cryopreserved PLTs. Cryopreservation resulted in 10-fold higher microparticle generation than cold-stored PLTs, but both groups contained significantly more microparticles than those stored at room temperature. The supernatant from both cold and cryopreserved PLTs initiated faster clot formation and thrombin generation than room temperature PLTs. Cold storage and cryopreservation alter the composition of the soluble fraction of stored PLTs. These differences in coagulation proteins, cytokines, and microparticles likely influence both the hemostatic capacity of the components and the auxiliary functions. © 2017 AABB.
Thermal and metabolic responses of military divers during a 6-hour static dive in cold water.
Riera, Florence; Horr, Reed; Xu, Xiaojiang; Melin, Bruno; Regnard, Jacques; Bourdon, Lionel
2014-05-01
Human thermal responses during prolonged whole-body immersion in cold water are of interest for the military, especially French SEALS. This study aims at describing the thermo-physiological responses. There were 10 male military divers who were randomly assigned to a full immersion in neutral (34 degrees C), moderately cold (18 degrees C), and cold (10 degrees C) water wearing their operational protective devices (5.5 mm wetsuit with 3.0 mm thick underwear) for 6 h in a static position. Rectal temperature (T(re)) and 14 skin temperatures (T(sk)), blood analysis (stress biomarkers, metabolic substrates), and oxygen consumption (Vo2) were collected. At 34 degrees C, there were no significant modifications of the thermo-physiological responses over time. The most interesting result was that rates of rectal temperature decrease (0.15 +/- 0.02 degrees C x min(-1)) were the same between the two cold stress experimental conditions (at 18 degrees C and 10 degrees C). At the final experiment, rectal temperature was not significantly different between the two cold stress experimental conditions. Mean T(sk) decreased significantly during the first 3 h of immersion and then stabilized at a lower level at 10 degrees C (25.6 +/- 0.8 degrees C) than at 18 degrees C (29.3 +/- 0.9 degrees C). Other results demonstrate that the well-trained subjects developed effective physiological reactions. However, these reactions are consistently too low to counterbalance the heat losses induced by cold temperature conditions and long-duration immersion. This study shows that providing divers with thermal protection is efficient for a long-duration immersion from a medical point of view, but not from an operational one when skin extremities were taken into account.
Effects of ZnO nanoparticle-coated packaging film on pork meat quality during cold storage.
Suo, Biao; Li, Huarong; Wang, Yuexia; Li, Zhen; Pan, Zhili; Ai, Zhilu
2017-05-01
There has been limited research on the use of ZnO nanoparticle-coated film for the quality preservation of pork meat under low temperature. In the present study, ZnO nanoparticles were mixed with sodium carboxymethyl cellulose (CMC-Na) to form a nanocomposite film, to investigate the effect of ZnO nanoparticle-coated film on pork meat quality and the growth of bacteria during storage under low temperature. When ZnO nanoparticle-coated film was used as the packaging material for pork meat for 14 days of cold storage at 4 °C, the results demonstrated a significant effect on restricting the increases in total volatile basic nitrogen and pH levels, limiting the decreases of lightness (increased L* value) and redness (increased a* value), and maintaining the water-holding capacity compared to the control pork samples (P < 0.05). The present study also discovered that the ZnO nanoparticle-coated film restrained the increase in total plate count (TPC). When Staphylococcus aureus was used as the representative strain, scanning electron microscopy revealed that ZnO nanoparticles increased the occurrence of cell membrane rupture under cold conditions. ZnO nanoparticle-coated film helps retain the quality of pork meat during cold storage by increasing the occurrence of microorganism injury. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Pancreas preservation for pancreas and islet transplantation
Iwanaga, Yasuhiro; Sutherland, David E.R.; Harmon, James V.; Papas, Klearchos K.
2010-01-01
Purpose of review To summarize advances and limitations in pancreas procurement and preservation for pancreas and islet transplantation, and review advances in islet protection and preservation. Recent findings Pancreases procured after cardiac death, with in-situ regional organ cooling, have been successfully used for islet transplantation. Colloid-free Celsior and histidine-tryptophan-ketoglutarate preservation solutions are comparable to University of Wisconsin solution when used for cold storage before pancreas transplantation. Colloid-free preservation solutions are inferior to University of Wisconsin solution for pancreas preservation prior to islet isolation and transplantation. Clinical reports on pancreas and islet transplants suggest that the two-layer method may not offer significant benefits over cold storage with the University of Wisconsin solution: improved oxygenation may depend on the graft size; benefits in experimental models may not translate to human organs. Improvements in islet yield and quality occurred from pancreases treated with inhibitors of stress-induced apoptosis during procurement, storage, isolation or culture. Pancreas perfusion may be desirable before islet isolation and transplantation and may improve islet yields and quality. Methods for real-time, noninvasive assessment of pancreas quality during preservation have been implemented and objective islet potency assays have been developed and validated. These innovations should contribute to objective evaluation and establishment of improved pancreas preservation and islet isolation strategies. Summary Cold storage may be adequate for preservation before pancreas transplants, but insufficient when pancreases are processed for islets or when expanded donors are used. Supplementation of cold storage solutions with cytoprotective agents and perfusion may improve pancreas and islet transplant outcomes. PMID:18685343
Yield and cold storage of Trichoderma conidia is influenced by substrate pH and storage temperature.
Steyaert, Johanna M; Chomic, Anastasia; Nieto-Jacobo, Maria; Mendoza-Mendoza, Artemio; Hay, Amanda J; Braithwaite, Mark; Stewart, Alison
2017-05-01
In this study we examined the influence of the ambient pH during morphogenesis on conidial yield of Trichoderma sp. "atroviride B" LU132 and T. hamatum LU593 and storage at low temperatures. The ambient pH of the growth media had a dramatic influence on the level of Trichoderma conidiation and this was dependent on the strain and growth media. On malt-extract agar, LU593 yield decreased with increasing pH (3-6), whereas yield increased with increasing pH for LU132. During solid substrate production the reverse was true for LU132 whereby yield decreased with increasing pH. The germination potential of the conidia decreased significantly over time in cold storage and the rate of decline was a factor of the strain, pH during morphogenesis, growth media, and storage temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2009-10-01
cryostat and cooled at a temperature under 77K by a Stirling cryocooler , as represented on the following Figure 5 : Cryostat...Figure 5. Detector cryostat and cryocooler The read-out frequency of the detectors is adapted to the ground speed of the plane above...Cold shield Detector plane Cryocoole r Cryocoole r compresso r Fixed frame Roll frame Pitch frame Yaw frame SIELETERS: a Static Fourier
Cold sweetening diversity in Andean potato germplasm from Argentina.
Colman, Silvana L; Massa, Gabriela A; Carboni, Martín F; Feingold, Sergio E
2017-11-01
Cold-induced sweetening (CIS) is the accumulation of sucrose and reducing sugars in potato tubers at low temperatures. This process is central for the potato processing industry. During potato chip and French fry production, reducing sugars participate in the Maillard reaction to produce dark pigmented products not acceptable to consumers. Andean potatoes (Solanum tuberosum Group Andigena) constitute an enormous wealth of potato germplasm that can contribute to increase genetic diversity in breeding programs of many traits, including CIS. We analyzed reducing sugar content and chip quality in freshly harvested and cold-stored tubers from 48 native accessions. Andean accessions showed high variation in reducing sugar content and were classified in three types of CIS responses: type I, reducing sugar content before and after 4°C storage was lower than the value required by industry; type II, reducing sugar content before storage was acceptable, but after 4°C storage incremented up to non-acceptable levels; and type III, reducing sugar content was unacceptable before and after storage. Five Andean accessions presented acceptable reducing sugar content and good chip quality before and after 4°C storage in a consistent manner throughout several experiments. These features make them a useful source for improving the potato industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Energy Storage Criteria Handbook.
1982-10-01
Phase Change Material Heating System .......................... 311 14.3.1 Analysis of Storage Purpose ........................... 312 14.3.2 Choosing...329 Worksheet I: Cost Analysis of PCM System ...................... 330 14.4 Water Tank Cold Storage...Selecting Components ........................333 14.5.6 Economic Analysis .......................................334 Worksheet A: Cooling Load and Tank
Optical storage with electromagnetically induced transparency in cold atoms at a high optical depth
NASA Astrophysics Data System (ADS)
Zhang, Shanchao; Zhou, Shuyu; Liu, Chang; Chen, J. F.; Wen, Jianming; Loy, M. M. T.; Wong, G. K. L.; Du, Shengwang
2012-06-01
We report experimental demonstration of efficient optical storage with electromagnetically induced transparency (EIT) in a dense cold ^85Rb atomic ensemble trapped in a two-dimensional magneto-optical trap. By varying the optical depth (OD) from 0 to 140, we observe that the optimal storage efficiency for coherent optical pulses has a saturation value of 50% as OD > 50. Our result is consistent with that obtained from hot vapor cell experiments which suggest that a four-wave mixing nonlinear process degrades the EIT storage coherence and efficiency. We apply this EIT quantum memory for narrow-band single photons with controllable waveforms, and obtain an optimal storage efficiency of 49±3% for single-photon wave packets. This is the highest single-photon storage efficiency reported up to today and brings the EIT atomic quantum memory close to practical application because an efficiency of above 50% is necessary to operate the memory within non-cloning regime and beat the classical limit.
Munsch-Alatossava, Patricia; Jääskeläinen, Susanna; Alatossava, Tapani; Gauchi, Jean-Pierrre
2017-01-01
Antibiotic resistance has been noted to be a major and increasing human health issue. Cold storage of raw milk promotes the thriving of psychrotrophic/psychrotolerant bacteria, which are well known for their ability to produce enzymes that are frequently heat stable. However, these bacteria also carry antibiotic resistance (AR) features. In places, where no cold chain facilities are available and despite existing recommendations numerous adulterants, including antibiotics, are added to raw milk. Previously, N2 gas flushing showed real potential for hindering bacterial growth in raw milk at a storage temperature ranging from 6 to 25°C. Here, the ability of N2 gas (N) to tackle antibiotic- resistant bacteria was tested and compared to that of the activated lactoperoxidase system (HT) for three raw milk samples that were stored at 6°C for 7 days. To that end, the mesophiles and psychrotrophs that were resistant to gentamycin (G), ceftazidime (Ce), levofloxacin (L), and trimethoprim-sulfamethoxazole (TS) were enumerated. For the log10 ratio (which is defined as the bacterial counts from a certain condition divided by the counts on the corresponding control), classical Analyses of Variance (ANOVA) was performed, followed by a mean comparison with the Ryan-Einot-Gabriel-Welsch multiple range test (REGWQ). If the storage “time” factor was the major determinant of the recorded effects, cold storage alone or in combination with HT or with N promoted a sample-dependent response in consideration of the AR levels. The efficiency of N in limiting the increase in AR was highest for fresh raw milk and was judged to be equivalent to that of HT for one sample and superior to that of HT for the two other samples; moreover, compared to HT, N seemed to favor a more diverse community at 6°C that was less heavily loaded with antibiotic multi-resistance features. Our results imply that N2 gas flushing could strengthen cold storage of raw milk by tackling the bacterial spoilage potential while simultaneously hindering the increase of bacteria carrying antibiotic resistance/multi-resistance features. PMID:28469611
USDA-ARS?s Scientific Manuscript database
The risk of superficial scald incidence in ‘Granny Smith’ apple [Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.] fruit during cold or controlled atmosphere (CA) storage increases with increased storage duration and oxygen level during CA storage. The objective of this study was to invest...
Chen, Q Z; Sun, Y C; Chen, J; Kong, J; Gong, Y P; Mao, T
2015-11-01
This retrospective study was designed to compare functional and cosmetic outcomes of the reverse digital artery island flap and reverse dorsal homodigital island flap in fingertip repair. A total of 23 patients were followed for 24 to 30 months. The reverse digital artery island flap was used in 12 patients, and reverse dorsal homodigital island flap in another 11 patients. Flap sensibility was assessed using the Semmes-Weinstein monofilament test and static 2-point discrimination test. Patient satisfaction, active motion of the finger joints, complications and cold intolerance were evaluated. The static 2-point discrimination and Michigan Hand Outcomes Questionnaire (appearance) of the fingers treated with a reverse digital artery flap were significantly better than those with a reverse dorsal homodigital flap. The static 2-point discrimination of the skin-grafted donor sides after dorsal homodigital flap were poorer than that in the contralateral finger. No significant differences were found between the two flaps for pressure or touch sensibility, active ranges of digital motion, complications and cold intolerance. III. © The Author(s) 2015.
Is freezing in the vaccine cold chain an ongoing issue? A literature review.
Hanson, Celina M; George, Anupa M; Sawadogo, Adama; Schreiber, Benjamin
2017-04-19
Vaccine exposure to temperatures below recommended ranges in the cold chain may decrease vaccine potency of freeze-sensitive vaccines leading to a loss of vaccine investments and potentially places children at risk of contracting vaccine preventable illnesses. This literature review is an update to one previously published in 2007 (Matthias et al., 2007), analyzing the prevalence of vaccine exposure to temperatures below recommendations throughout various segments of the cold chain. Overall, 45 studies included in this review assess temperature monitoring, of which 29 specifically assess 'too cold' temperatures. The storage segments alone were evaluated in 41 articles, 15 articles examined the transport segment and 4 studied outreach sessions. The sample size of the studies varied, ranging from one to 103 shipments and from three to 440 storage units. Among reviewed articles, the percentage of vaccine exposure to temperatures below recommended ranges during storage was 33% in wealthier countries and 37.1% in lower income countries. Vaccine exposure to temperatures below recommended ranges occurred during shipments in 38% of studies from higher income countries and 19.3% in lower income countries. This review highlights continuing issues of vaccine exposure to temperatures below recommended ranges during various segments of the cold chain. Studies monitoring the number of events vaccines are exposed to 'too cold' temperatures as well as the duration of these events are needed. Many reviewed studies emphasize the lack of knowledge of health workers regarding freeze damage of vaccines and how this has an effect on temperature monitoring. It is important to address this issue by educating vaccinators and cold chain staff to improve temperature maintenance and supply chain management, which will facilitate the distribution of potent vaccines to children. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wilson, Colin J N; Morgan, Daniel J; Charlier, Bruce L A; Barker, Simon J
2017-12-22
Rubin et al (Reports, 16 June 2017, p. 1154) proposed that gradients in lithium abundance in zircons from a rhyolitic eruption in New Zealand reflected short-lived residence at magmatic temperatures interleaved with long-term "cold" (<650°C) storage. Important issues arise with the interpretation of these lithium gradients and consequent crystal thermal histories that raise concerns about the validity of this conclusion. Copyright © 2017, American Association for the Advancement of Science.
2012-06-01
AFRL facility was well suited for the Themis cold flow experiment. A test cell was selected that contained an insulated cryogenic oxygen tank that...could be used for the LN2 supply. Adjacent to the test cell is a cryogenic storage bunker that contained a helium supply tank with existing high...venturi to the fuel bunker tank was very low (less than 25 psi) while the helium pressure drop from the cryogenic storage bunker was almost 2000 psi
Gallinat, Anja; Efferz, Patrik; Paul, Andreas; Minor, Thomas
2014-11-01
In-house machine perfusion after cold storage (hypothermic reconditioning) has been proposed as convenient tool to improve kidney graft function. This study investigated the role of machine perfusion duration for early reperfusion parameters in porcine kidneys. Kidney function after cold preservation (4 °C, 18 h) and subsequent reconditioning by one or 4 h of pulsatile, nonoxygenated hypothermic machine perfusion (HMP) was studied in an isolated kidney perfusion model in pigs (n = 6, respectively) and compared with simply cold-stored grafts (CS). Compared with CS alone, one or 4 h of subsequent HMP similarly and significantly improved renal flow and kidney function (clearance and sodium reabsorption) upon warm reperfusion, along with reduced perfusate concentrations of endothelin-1 and increased vascular release of nitric oxide. Molecular effects of HMP comprised a significant (vs CS) mRNA increase in the endothelial transcription factor KLF2 and lower expression of endothelin that were observed already at the end of one-hour HMP after CS. Reconditioning of cold-stored kidneys is possible, even if clinical logistics only permit one hour of therapy, while limited extension of the overall storage time by in-house machine perfusion might also allow for postponing of transplantation from night to early day work. © 2014 Steunstichting ESOT.
Optimization of Domestic-Size Renewable Energy System Designs Suitable for Cold Climate Regions
NASA Astrophysics Data System (ADS)
Akpan, Itoro Etim; Sasaki, Masafumi; Endoh, Noboru
Five different kinds of domestic-size renewable energy system configurations for very cold climate regions were investigated. From detailed numerical modeling and system simulations, it was found that the consumption of fuel oil for the auxiliary boiler in residential-type households can almost be eliminated with a renewable energy system that incorporates photovoltaic panel arrays for electricity generation and two storage tanks: a well-insulated electric water storage tank that services the hot water loads, and a compact boiler/geothermal heat pump tank for room heating during very cold seasons. A reduction of Greenhouse Gas Emissions (GHG) of about 28% was achieved for this system compared to an equivalent conventional system. The near elimination of the use of fuel oil in this system makes it very promising for very cold climate regions in terms of energy savings because the running cost is not so dependent on the unstable nature of global oil prices.
An Investigation of Transonic Flow Fields Surrounding Hot and Cold Sonic Jets
NASA Technical Reports Server (NTRS)
Lee, George
1961-01-01
An investigation at free-stream Mach numbers of 0.90 t o 1.10 was made to determine (1) the jet boundaries and the flow fields around hot and cold jets, and (2) whether a cold-gas jet could adequately simulate the boundary and flow field of hot-gas jet. Schlieren photographs and static-pressure surveys were taken in the vacinity of a sonic jet which was operated over a range of jet pressure ratios of 1 to 6, specific heat ratios at the nozzle exit of 1.29 and 1.40, and jet temperatures up to 2600 R.
Modelling the effects of Prairie wetlands on streamflow
NASA Astrophysics Data System (ADS)
Shook, K.; Pomeroy, J. W.
2015-12-01
Recent research has demonstrated that the contributing areas of Prairie streams dominated by depressional (wetland) storage demonstrate hysteresis with respect to catchment water storage. As such contributing fractions can vary over time from a very small percentage of catchment area to the entire catchment during floods. However, catchments display complex memories of past storage states and their contributing fractions cannot be modelled accurately by any single-valued function. The Cold Regions Hydrological Modelling platform, CRHM, which is capable of modelling all of the hydrological processes of cold regions using a hydrological response unit discretization of the catchment, was used to further investigate dynamical contributing area response to hydrological processes. Contributing fraction in CRHM is also controlled by the episodic nature of runoff generation in this cold, sub-humid environment where runoff is dominated by snowmelt over frozen soils, snowdrifts define the contributing fraction in late spring, unfrozen soils have high water holding capacity and baseflow from sub-surface flow does not exist. CRHM was improved by adding a conceptual model of individual Prairie depression fill and spill runoff generation that displays hysteresis in the storage - contributing fraction relationship and memory of storage state. The contributing area estimated by CRHM shows strong sensitivity to hydrological inputs, storage and the threshold runoff rate chosen. The response of the contributing area to inputs from various runoff generating processes from snowmelt to rain-on-snow to rainfall with differing degrees of spatial variation was investigated as was the importance of the memory of storage states on streamflow generation. The importance of selecting hydrologically and ecologically meaningful runoff thresholds in estimating contributing area is emphasized.
Fortpied, Juliette; Wauters, Florence; Rochart, Christelle; Hermand, Philippe; Hoet, Bernard; Moniotte, Nicolas; Vojtek, Ivo
2018-01-01
ABSTRACT Accidental exposure of a vaccine containing an aluminum-salt adjuvant to temperatures below 0°C in the cold chain can lead to freeze damage. Our study evaluated the potential for freeze damage in a licensed aluminum-salt-containing protein-D-conjugated pneumococcal vaccine (PHiD-CV; Synflorix, GSK) in conditions that included static storage, single subzero-temperature excursions, and simulated air-freight transportation. Several parameters were assessed including freezing at subzero temperatures, aluminum-salt-particle size, antigen integrity and immunogenicity in the mouse. The suitability of the WHO's shake test for identifying freeze-damaged vaccines was also assessed. During subzero-temperature excursions, the mean temperatures at which PHiD-CV froze (−16.7°C to −18.1°C) appeared unaffected by the type of vaccine container (two-dose or four-dose vial, or single-dose syringe), vaccine batch, rotational agitation, or the rate of temperature decline (−0.5 to −10°C/hour). At constant subzero temperature and in simulated air-freight transportation, the freezing of PHiD-CV appeared to be promoted by vibration. At −5°C, no PHiD-CV sample froze in static storage (>1 month), whereas when subjected to vibration, a minority of samples froze (7/21, 33%) within 18 hours. At −8°C with vibration, nearly all (5/6, 83%) samples froze. In these vibration regimes, the shake test identified most samples that froze (10/12, 93%) except two in the −5°C regime. Nevertheless, PHiD-CV-antigen integrity appeared unaffected by freezing up to −20°C or by vibration. And although aluminum-salt-particle size was increased only by freezing at −20°C, PHiD-CV immunogenicity appeared only marginally affected by freezing at −20°C. Therefore, our study supports the use of the shake test to exclude freeze-damaged PHiD-CV in the field. PMID:29337646
Hepatitis B vaccine freezing in the Indonesian cold chain: evidence and solutions.
Nelson, Carib M; Wibisono, Hariadi; Purwanto, Hary; Mansyur, Isa; Moniaga, Vanda; Widjaya, Anton
2004-02-01
To document and characterize freezing temperatures in the Indonesian vaccine cold chain and to evaluate the feasibility of changes designed to reduce the occurrence of freezing. Data loggers were used to measure temperatures of shipments of hepatitis B vaccine from manufacturer to point of use. Baseline conditions and three intervention phases were monitored. During each of the intervention phases, vaccines were removed progressively from the standard 2-8 degrees C cold chain. Freezing temperatures were recorded in 75% of baseline shipments. The highest rates of freezing occurred during transport from province to district, storage in district-level ice-lined refrigerators, and storage in refrigerators in health centres. Interventions reduced freezing, without excessive heat exposure. Inadvertent freezing of freeze-sensitive vaccines is widespread in Indonesia. Simple strategies exist to reduce freezing - for example, selective transport and storage of vaccines at ambient temperatures. The use of vaccine vial monitors reduces the risk associated with heat-damaged vaccines in these scenarios. Policy changes that allow limited storage of freeze-sensitive vaccines at temperatures >2-8 degrees C would enable flexible vaccine distribution strategies that could reduce vaccine freezing, reduce costs, and increase capacity.
Prolonged cold storage of red blood cells by oxygen removal and additive usage
Bitensky, M.W.; Yoshida, Tatsuro
1998-08-04
Prolonged cold storage of red blood cells by oxygen removal and additive usage. A cost-effective, 4 C storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. The improved in vivo survival and the preservation of adenosine triphosphate levels, along with reduction in hemolysis and membrane vesicle production of red blood cells stored at 4 C for prolonged periods of time, is achieved by reducing the oxygen level therein at the time of storage; in particular, by flushing the cells with an inert gas, and storing them in an aqueous solution which includes adenine, dextrose, mannitol, citrate ion, and dihydrogen phosphate ion, but no sodium chloride, in an oxygen-permeable container which is located in an oxygen-free environment containing oxygen-scavenging materials. 8 figs.
Prolonged cold storage of red blood cells by oxygen removal and additive usage
Bitensky, Mark W.; Yoshida, Tatsuro
1998-01-01
Prolonged cold storage of red blood cells by oxygen removal and additive usage. A cost-effective, 4.degree. C. storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. The improved in vivo survival and the preservation of adenosine triphosphate levels, along with reduction in hemolysis and membrane vesicle production of red blood cells stored at 4.degree. C. for prolonged periods of time, is achieved by reducing the oxygen level therein at the time of storage; in particular, by flushing the cells with an inert gas, and storing them in an aqueous solution which includes adenine, dextrose, mannitol, citrate ion, and dihydrogen phosphate ion, but no sodium chloride, in an oxygen-permeable container which is located in an oxygen-free environment containing oxygen-scavenging materials.
TRPM8-Dependent Dynamic Response in a Mathematical Model of Cold Thermoreceptor
Olivares, Erick; Salgado, Simón; Maidana, Jean Paul; Herrera, Gaspar; Campos, Matías; Madrid, Rodolfo; Orio, Patricio
2015-01-01
Cold-sensitive nerve terminals (CSNTs) encode steady temperatures with regular, rhythmic temperature-dependent firing patterns that range from irregular tonic firing to regular bursting (static response). During abrupt temperature changes, CSNTs show a dynamic response, transiently increasing their firing frequency as temperature decreases and silencing when the temperature increases (dynamic response). To date, mathematical models that simulate the static response are based on two depolarizing/repolarizing pairs of membrane ionic conductance (slow and fast kinetics). However, these models fail to reproduce the dynamic response of CSNTs to rapid changes in temperature and notoriously they lack a specific cold-activated conductance such as the TRPM8 channel. We developed a model that includes TRPM8 as a temperature-dependent conductance with a calcium-dependent desensitization. We show by computer simulations that it appropriately reproduces the dynamic response of CSNTs from mouse cornea, while preserving their static response behavior. In this model, the TRPM8 conductance is essential to display a dynamic response. In agreement with experimental results, TRPM8 is also needed for the ongoing activity in the absence of stimulus (i.e. neutral skin temperature). Free parameters of the model were adjusted by an evolutionary optimization algorithm, allowing us to find different solutions. We present a family of possible parameters that reproduce the behavior of CSNTs under different temperature protocols. The detection of temperature gradients is associated to a homeostatic mechanism supported by the calcium-dependent desensitization. PMID:26426259
de Fraga, R S; Heinen, P E T; Kruel, C R P; Molin, S D; Mota, S M; Cerski, C T S; Gasperin, G; Souto, A A; de Oliveira, J R; Alvares-da-Silva, M R
2011-06-01
Fructose 1,6-biphosphate (FBP) has been shown to exert therapeutic effects in models of ischemia-reperfusion in organs other than the liver. This study compared FBP and University of Wisconsin (UW) solution during cold storage and reperfusion, among mitochondria of adult male Wistar rat livers. Adult male Wistar rats were assigned to two groups according to the preservation solution used; UW or FBP Aspartate transaminase (AST), alanine transferase (ALT); and lactic dehydrogenase (LDH) were measured in samples of the storage solution obtained at 2, 4 and 6 hours of preservation. After 6 hours of cold storage, we reperfused the liver, taking blood samples to measure AST, ALT, LDH, and throbarbituric acid reactive substances (TBARS). Hepatic fragments were processed for histologic analysis; for determinations of TBARS, catalase, and nitric oxide as well as for mitochondrial evaluation by infrared spectroscopy. During cold preservation, levels of AST and LDH in the storage solution were lower among the FBP group, but after reperfusion, serum levels of AST, ALT, and LDH were higher in this group, as was catalase activity. TBARS and nitric oxide were comparable between the groups. In the UW group there was a higher amide I/amide II ratio than in the FBP group, suggesting an abnormal protein structure of the mitochondrial membrane. No signs of preservation injury were observed in any liver biopsy, but sinusoidal congestion was present in livers preserved with FBP. FBP showed a protective effect for preservation during cold storage seeming to protect the mitochondrial membrane although it did not prevent reperfusion injury. Copyright © 2011 Elsevier Inc. All rights reserved.
Grangeon-Chapon, C; Robein-Dobremez, M-J; Pin, I; Trouiller, P; Allenet, B; Foroni, L
2015-09-01
Within the cystic fibrosis patients' home care, EMERAA network ("Together against Cystic fibrosis in Rhone-Alpes and Auvergne") organizes parenteral antibiotics cures at home prepared in elastomeric infusion devices by hospital pharmacies. However, patients and nurses found that the durations of infusion with these devices were often longer than the nominal duration of infusion indicated by their manufacturer. This study aimed to identify the potential different causes in relation to these discordances. Three hundred and ninety devices of two different manufacturers are tested in different experimental conditions: three antibiotics each at two different doses, duration of cold storage (three days or seven days) or immediate tests without cold storage, preparation and storage of the solution in the device (protocol Device) or transfer in the device just before measurement (protocol Pocket). All tests highlighted a longer flow duration for devices prepared according to the protocol Device versus the protocol Pocket (P=0.004). Flow duration is increased in the case of high doses of antibiotics with high viscosity such as piperacilline/tazobactam. The results of this in vitro study showed the impact of: (1) the time between the filling of the device and the flow of the solution; (2) cold storage of elastomeric infusion devices; (3) concentration of antibiotics and therefore the viscosity of the solution to infuse. It is therefore essential that health care teams are aware of factors, which may lead to longer infusion durations with these infusion devices. When the additional time for infusion remain acceptable, it should be necessary to inform the patient and to relativize these lengthening compared to many benefits that these devices provide for home care. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
[Managing the cold chain in healthcare facilities].
Royer, Mathilde; Breton Marchand, Justine; Pons, David
2017-11-01
The storage of temperature-sensitive healthcare products requires control of the cold chain. Healthcare facilities must have the appropriate equipment at their disposal and ensure the traceability and monitoring of temperatures. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Gu, Ruiting; Zhou, Yi; Song, Xiaoyue; Xu, Shaochun; Zhang, Xiaomei; Lin, Haiying; Xu, Shuai; Yue, Shidong; Zhu, Shuyu
2018-01-01
Seeds are important materials for the restoration of globally-threatened marine angiosperm (seagrass) populations. In this study, we investigated the differences between different Ruppia sinensis seed types and developed two feasible long-term R. sinensis seed storage methods. The ability of R. sinensis seeds to tolerate the short-term desiccation and extreme cold had been investigated. The tolerance of R. sinensis seeds to long-term exposure of high salinity, cold temperature, and desiccation had been considered as potential methods for long-term seed storage. Also, three morphological and nine physiological indices were measured and compared between two types of seeds: Shape L and Shape S. We found that: (1) wet storage at a salinity of 30-40 psu and 0°C were the optimal long-term storage conditions, and the proportion of viable seeds reached over 90% after a storage period of 11 months since the seeds were collected from the reproductive shoots; (2) dry condition was not the optimal choice for long-term storage of R. sinensis seeds; however, storing seeds in a dry condition at 5°C and 33 ± 10% relative humidity for 9 months had a relatively high percentage (74.44 ± 2.22%) of viable seeds, consequently desiccation exposure could also be an acceptable seed storage method; (3) R. sinensis seeds would lose vigor in the interaction of extreme cold (-27°C) and desiccation; (4) there were significant differences in seed weight, seed curvature, and endocarp thickness between the two types of seeds. These findings provided fundamental physiological information for R. sinensis seeds and supported the long-term storage of its seeds. Our results may also serve as useful reference for seed storage of other threatened seagrass species and facilitate their ex situ conservation and habitat restoration.
Tagaloa, Sherry; Zhang, Linda; Dare, Anna J.; MacDonald, Julia R.; Yeong, Mee-Ling; Bartlett, Adam S. J. R.; Phillips, Anthony R. J.
2014-01-01
Background Hepatic steatosis is a major risk factor for graft failure in liver transplantation. Hepatic steatosis shows a greater negative influence on graft function following prolonged cold ischaemia. As the impact of steatosis on hepatocyte metabolism during extended cold ischaemia is not well-described, we compared markers of metabolic capacity and mitochondrial function in steatotic and lean livers following clinically relevant durations of cold preservation. Methods Livers from 10-week old leptin-deficient obese (ob/ob, n = 9) and lean C57 mice (n = 9) were preserved in ice-cold University of Wisconsin solution. Liver mitochondrial function was then assessed using high resolution respirometry after 1.5, 3, 5, 8, 12, 16 and 24 hours of storage. Metabolic marker enzymes for anaerobiosis and mitochondrial mass were also measured in conjunction with non-bicarbonate tissue pH buffering capacity. Results Ob/ob and lean mice livers showed severe (>60%) macrovesicular and mild (<30%) microvesicular steatosis on Oil Red O staining, respectively. Ob/ob livers had lower baseline enzymatic complex I activity but similar adenosine triphosphate (ATP) levels compared to lean livers. During cold storage, the respiratory control ratio and complex I-fueled phosphorylation deteriorated approximately twice as fast in ob/ob livers compared to lean livers. Ob/ob livers also demonstrated decreased ATP production capacities at all time-points analyzed compared to lean livers. Ob/ob liver baseline lactate dehydrogenase activities and intrinsic non-bicarbonate buffering capacities were depressed by 60% and 40%, respectively compared to lean livers. Conclusions Steatotic livers have impaired baseline aerobic and anaerobic capacities compared to lean livers, and mitochondrial function indices decrease particularly from after 5 hours of cold preservation. These data provide a mechanistic basis for the clinical recommendation of shorter cold storage durations in steatotic donor livers. PMID:24956382
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenforde, T.S.
1992-05-01
Interest in the mechanisms of interaction and the biological effects of static magnetic fields has increased significantly during the past two decades as a result of the growing number of applications of these fields in research, industry and medicine. A major stimulus for research on the bioeffects of static magnetic fields has been the effort to develop new technologies for energy production and storage that utilize intense magnetic fields (e.g., thermonuclear fusion reactors and superconducting magnet energy storage devices). Interest in the possible biological interactions and health effects of static magnetic fields has also been increased as a result ofmore » recent developments in magnetic levitation as a mode of public transportation. In addition, the rapid emergence of magnetic resonance imaging as a new clinical diagnostic procedure has, in recent years, provided a strong rationale for defining the possible biological effects of magnetic fields with high flux densities. In this review, the principal interaction mechanisms of static magnetic fields will be described, and a summary will be given of the present state of knowledge of the biological, environmental, and human health effects of these fields.« less
21. Detail of typical refrigeration unit in the southwest corner ...
21. Detail of typical refrigeration unit in the southwest corner of the fruit and vegetable storage room - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX
Transcriptomic analysis of (group I) Clostridium botulinum ATCC 3502 cold shock response.
Dahlsten, Elias; Isokallio, Marita; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu
2014-01-01
Profound understanding of the mechanisms foodborne pathogenic bacteria utilize in adaptation to the environmental stress they encounter during food processing and storage is of paramount importance in design of control measures. Chill temperature is a central control measure applied in minimally processed foods; however, data on the mechanisms the foodborne pathogen Clostridium botulinum activates upon cold stress are scarce. Transcriptomic analysis on the C. botulinum ATCC 3502 strain upon temperature downshift from 37°C to 15°C was performed to identify the cold-responsive gene set of this organism. Significant up- or down-regulation of 16 and 11 genes, respectively, was observed 1 h after the cold shock. At 5 h after the temperature downshift, 199 and 210 genes were up- or down-regulated, respectively. Thus, the relatively small gene set affected initially indicated a targeted acute response to cold shock, whereas extensive metabolic remodeling appeared to take place after prolonged exposure to cold. Genes related to fatty acid biosynthesis, oxidative stress response, and iron uptake and storage were induced, in addition to mechanisms previously characterized as cold-tolerance related in bacteria. Furthermore, several uncharacterized DNA-binding transcriptional regulator-encoding genes were induced, suggesting involvement of novel regulatory mechanisms in the cold shock response of C. botulinum. The role of such regulators, CBO0477 and CBO0558A, in cold tolerance of C. botulinum ATCC 3502 was demonstrated by deteriorated growth of related mutants at 17°C.
Xie, Zeyi; Zhou, Zhilin; Li, Hongmin; Yu, Jingjing; Jiang, Jiaojiao; Tang, Zhonghou; Ma, Daifu; Zhang, Baohong; Han, Yonghua; Li, Zongyun
2018-05-21
Sweetpotato (Ipomoea batatas L.) is a globally important economic food crop. It belongs to Convolvulaceae family and origins in the tropics; however, sweetpotato is sensitive to cold stress during storage. In this study, we performed transcriptome sequencing to investigate the sweetpotato response to chilling stress during storage. A total of 110,110 unigenes were generated via high-throughput sequencing. Differentially expressed genes (DEGs) analysis showed that 18,681 genes were up-regulated and 21,983 genes were down-regulated in low temperature condition. Many DEGs were related to the cell membrane system, antioxidant enzymes, carbohydrate metabolism, and hormone metabolism, which are potentially associated with sweetpotato resistance to low temperature. The existence of DEGs suggests a molecular basis for the biochemical and physiological consequences of sweetpotato in low temperature storage conditions. Our analysis will provide a new target for enhancement of sweetpotato cold stress tolerance in postharvest storage through genetic manipulation. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Daitoku, Tadafumi; Utaka, Yoshio
In air-conditioning systems, it is desirable that the liquid-solid phase change temperature of a cool energy storage material is approximately 10 °C from the perspective of improving coefficient of performance (COP). Moreover, a thermal storage material that forms slurry can realize large heat capacity of working fluids. Since the solid that adheres to the heat transfer surface forms a thermal resistance layer and remarkably reduces the rate of cold storage, it is important to avoid the adhesion of a thick solid layer on the surface so as to realize efficient energy storage. Considering a harvest type cooling unit, the force required for removing the solid phase from the heat transfer surface was studied. Tetra-n-butylammonium Bromide (TBAB) clathrate hydrate was used as a cold storage material. The effect of the heat transfer surface properties on the scraping force for detachment of adhered solid of TBAB hydrate to the heat transfer surface was examined experimentally.
Genetic and biochemical bases of superficial scald storage disorder in apple and pear fruits
USDA-ARS?s Scientific Manuscript database
Superficial scald is a physiological storage disorder affecting apple and pear fruits. The disorder develops during cold storage and intensifies after removal to market temperatures. Scald symptoms result from necrosis of a few hypodermal cell layers and manifest as brown or black patches on the fru...
Monreal, M; De Ancos, B; Cano, M P
1999-01-01
In this work a study of critical storage temperatures on pigment degradation of green beans (Phaseolus vulgaris, cvs. Perona and Boby) was conducted. In this way, green beans kept better quality at 4 degrees C than either 8 or 12 degrees C, maintaining a bright green color and good texture. Nevertheless, temperatures of 4 degrees C induced chilling injury (CI) after eight days of storage, which became evident when the pods were transferred to 20 degrees C. Cold storage temperatures, 12, 8, and 4 degrees C, produced different changes on the green beans chlorophyll profile. Green beans of both cultivars, Perona and Boby, stored at 4 and 12 degrees C showed a continuous degradation of chlorophyll pigments during storage, while samples stored at 8 degrees C showed an increase of chlorophyll content at the first 15 days. Carotenoid pigments also suffered different changes during cold storage. Perona was the green beans cultivar which maintained the higher level of lutein, mainly when samples were stored at the most suitable temperature (8 degrees C).
Li, Shadan; Liu, Bin; Guan, Qiunong; Chafeeva, Irina; Brooks, Donald E; Nguan, Christopher YC; Kizhakkedathu, Jayachandran N; Du, Caigan
2017-01-01
Minimizing donor organ injury during cold preservation (including cold perfusion and storage) is the first step to prevent transplant failure. We recently reported the advantages of hyperbranched polyglycerol (HPG) as a novel substitute for hydroxyethyl starch in UW solution for both cold heart preservation and cold kidney perfusion. This study evaluated the functional recovery of the kidney at reperfusion after cold preservation with HPG solution. The impact of HPG solution compared to conventional UW and HTK solutions on tissue weight and cell survival at 4°C was examined using rat kidney tissues and cultured human umbilical vein endothelial cells (HUVECs), respectively. The kidney protection by HPG solution was tested in a rat model of cold kidney ischemia-reperfusion injury, and was evaluated by histology and kidney function. Here, we showed that preservation with HPG solution prevented cell death in cultured HUVECs and edema formation in kidney tissues at 4°C similar to UW solution, whereas HTK solution was less effective. In rat model of cold ischemia-reperfusion injury, the kidneys perfused and subsequently stored 1-hour with cold HPG solution showed less leukocyte infiltration, less tubular damage and better kidney function (lower levels of serum creatinine and blood urea nitrogen) at 48 h of reperfusion than those treated with UW or HTK solution. In conclusion, our data show the superiority of HPG solution to UW or HTK solution in the cold perfusion and storage of rat kidneys, suggesting that the HPG solution may be a promising candidate for improved donor kidney preservation prior to transplantation. PMID:28337272
Stabilizing the cold plasma-stimulated medium by regulating medium’s composition
NASA Astrophysics Data System (ADS)
Yan, Dayun; Nourmohammadi, Niki; Bian, Ka; Murad, Ferid; Sherman, Jonathan H.; Keidar, Michael
2016-05-01
Over past several years, the cold plasma-stimulated medium (PSM) has shown its remarkable anti-cancer capacity in par with the direct cold plasma irradiation on cancer cells or tumor tissues. Independent of the cold plasma device, PSM has noticeable advantage of being a flexible platform in cancer treatment. Currently, the largest disadvantage of PSM is its degradation during the storage over a wide temperature range. So far, to stabilize PSM, it must be remained frozen at -80 °C. In this study, we first reveal that the degradation of PSM is mainly due to the reaction between the reactive species and specific amino acids; mainly cysteine and methionine in medium. Based on this finding, both H2O2 in PSM and the anti-cancer capacity of PSM can be significantly stabilized during the storage at 8 °C and -25 °C for at least 3 days by using phosphate-buffered saline (PBS) and cysteine/methionine-free Dulbecco’s Modified Eagle Medium (DMEM). In addition, we demonstrate that adding a tyrosine derivative, 3-Nitro-L-tyrosine, into DMEM can mitigate the degradation of PSM at 8 °C during 3 days of storage. This study provides a solid foundation for the future anti-cancer application of PSM.
Smirnov, D V; Buianov, V V; Kolesnikov, N V; Minaev, V A; Demina, A M; Suprun, I P
2004-01-01
The paper deals with an objective evaluation of a qualitative storage of immunobiological drugs including all stages of "cold chain". The results of technological research and of designing related with constructing a system of indicators for monitoring the temperature regime to maintain the "cold chain" functioning are presented. The suggested devices are comparatively described.
Chapman, B; Scurrah, K J; Ross, T
2010-05-01
A survey of 12 Australian manufacturers indicated that mild-tasting acids and preservatives are used to partially replace acetic acid in cold-filled acid dressings and sauces. In contrast to traditional ambient temperature distribution practices, some manufacturers indicated that they supply the food service sector with cold-filled acid products prechilled for incorporation into ready-to-eat foods. The Comité des Industries des Mayonnaises et Sauces Condimentaires de la Communauté Economique Européenne (CIMSCEE) Code, a formulation guideline used by the industry to predict the safety of cold-filled acid formulations with respect to Salmonella enterica and Escherichia coli, does not extend to the use of acids and preservatives other than acetic acid nor does it consider the effects of chill distribution. We found insufficient data in the published literature to comprehensively model the response of S. enterica and E. coli to all of the predictor variables (i.e., pH, acetic acid, NaCl, sugars, other acids, preservatives, and storage temperature) of relevance for contemporary cold-filled acid products in Australia. In particular, we noted a lack of inactivation data for S. enterica at aqueous-phase NaCl concentrations of >3% (wt/wt). However, our simple models clearly identified pH and 1/absolute temperature of storage as the most important variables generally determining inactivation. To develop robust models to predict the effect of contemporary formulation and storage variables on product safety, additional empirical data are required. Until such models are available, our results support challenge testing of cold-filled acid products to ascertain their safety, as suggested by the CIMSCEE, but suggest consideration of challenging with both E. coli and S. enterica at incubation temperatures relevant to intended product distribution temperatures.
Cold flow testing of the Space Shuttle Main Engine high pressure fuel turbine model
NASA Technical Reports Server (NTRS)
Hudson, Susan T.; Gaddis, Stephen W.; Johnson, P. D.; Boynton, James L.
1991-01-01
In order to experimentally determine the performance of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) turbine, a 'cold' air flow turbine test program was established at NASA's Marshall Space Flight Center. As part of this test program, a baseline test of Rocketdyne's HPFTP turbine has been completed. The turbine performance and turbine diagnostics such as airfoil surface static pressure distributions, static pressure drops through the turbine, and exit swirl angles were investigated at the turbine design point, over its operating range, and at extreme off-design points. The data was compared to pretest predictions with good results. The test data has been used to improve meanline prediction codes and is now being used to validate various three-dimensional codes. The data will also be scaled to engine conditions and used to improve the SSME steady-state performance model.
Jin, Sang Keun; Choi, Jung Seok; Lee, Seung Jae; Lee, Seung Yun; Hur, Sun Jin
2016-10-31
The effects of thyme and rosemary on the quality characteristics of sausages during cold storage were investigated. Sausages were prepared with thyme and rosemary powder (1 and 2%) and stored for 6 weeks at 10℃. The pH was significantly decreased in sausages by addition of thyme and rosemary compared to that observed in the control before and after storage. At 4 weeks of storage, the residual nitrite content was decreased by thyme and rosemary compared to the control. Lightness (L*) and yellowness (b*) were increased during storage, whereas redness (a*) and whiteness (W) were decreased before and after storage by addition of thyme and rosemary. The amount of TPC and lactic acid bacteria was lower at the end of storage in sausage containing thyme and rosemary. The 2, 2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging capacity of sausages was increased by addition of thyme and rosemary compared to that in the control before and after storage. In particular, T2 (0.2% thyme addition) showed the highest DPPH radical scavenging capacity during storage. In a sensory evaluation, flavor and overall acceptability were lower in sausages containing thyme and rosemary than in the control. However, at the end of storage (6 wk), aroma, flavor and overall acceptability were not significantly different among the sausage samples.
Jin, Sang Keun; Choi, Jung Seok; Lee, Seung Jae
2016-01-01
The effects of thyme and rosemary on the quality characteristics of sausages during cold storage were investigated. Sausages were prepared with thyme and rosemary powder (1 and 2%) and stored for 6 weeks at 10℃. The pH was significantly decreased in sausages by addition of thyme and rosemary compared to that observed in the control before and after storage. At 4 weeks of storage, the residual nitrite content was decreased by thyme and rosemary compared to the control. Lightness (L*) and yellowness (b*) were increased during storage, whereas redness (a*) and whiteness (W) were decreased before and after storage by addition of thyme and rosemary. The amount of TPC and lactic acid bacteria was lower at the end of storage in sausage containing thyme and rosemary. The 2, 2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging capacity of sausages was increased by addition of thyme and rosemary compared to that in the control before and after storage. In particular, T2 (0.2% thyme addition) showed the highest DPPH radical scavenging capacity during storage. In a sensory evaluation, flavor and overall acceptability were lower in sausages containing thyme and rosemary than in the control. However, at the end of storage (6 wk), aroma, flavor and overall acceptability were not significantly different among the sausage samples. PMID:27857542
Review on cold-formed steel connections.
Lee, Yeong Huei; Tan, Cher Siang; Mohammad, Shahrin; Tahir, Mahmood Md; Shek, Poi Ngian
2014-01-01
The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed.
Review on Cold-Formed Steel Connections
Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian
2014-01-01
The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448
Hrydziuszko, Olga; Perera, M Thamara P R; Laing, Richard; Kirwan, Jennifer; Silva, Michael A; Richards, Douglas A; Murphy, Nick; Mirza, Darius F; Viant, Mark R
2016-01-01
Use of marginal liver grafts, especially those from donors after circulatory death (DCD), has been considered as a solution to organ shortage. Inferior outcomes have been attributed to donor warm ischaemic damage in these DCD organs. Here we sought to profile the metabolic mechanisms underpinning donor warm ischaemia. Non-targeted Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry metabolomics was applied to biopsies of liver grafts from donors after brain death (DBD; n = 27) and DCD (n = 10), both during static cold storage (T1) as well as post-reperfusion (T2). Furthermore 6 biopsies from DBD donors prior to the organ donation (T0) were also profiled. Considering DBD and DCD together, significant metabolic differences were discovered between T1 and T2 (688 peaks) that were primarily related to amino acid metabolism, meanwhile T0 biopsies grouped together with T2, denoting the distinctively different metabolic activity of the perfused state. Major metabolic differences were discovered between DCD and DBD during cold-phase (T1) primarily related to glucose, tryptophan and kynurenine metabolism, and in the post-reperfusion phase (T2) related to amino acid and glutathione metabolism. We propose tryptophan/kynurenine and S-adenosylmethionine as possible biomarkers for the previously established higher graft failure of DCD livers, and conclude that the associated pathways should be targeted in more exhaustive and quantitative investigations.
Laing, Richard; Kirwan, Jennifer; Silva, Michael A.; Richards, Douglas A.; Murphy, Nick; Mirza, Darius F.; Viant, Mark R.
2016-01-01
Use of marginal liver grafts, especially those from donors after circulatory death (DCD), has been considered as a solution to organ shortage. Inferior outcomes have been attributed to donor warm ischaemic damage in these DCD organs. Here we sought to profile the metabolic mechanisms underpinning donor warm ischaemia. Non-targeted Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry metabolomics was applied to biopsies of liver grafts from donors after brain death (DBD; n = 27) and DCD (n = 10), both during static cold storage (T1) as well as post-reperfusion (T2). Furthermore 6 biopsies from DBD donors prior to the organ donation (T0) were also profiled. Considering DBD and DCD together, significant metabolic differences were discovered between T1 and T2 (688 peaks) that were primarily related to amino acid metabolism, meanwhile T0 biopsies grouped together with T2, denoting the distinctively different metabolic activity of the perfused state. Major metabolic differences were discovered between DCD and DBD during cold-phase (T1) primarily related to glucose, tryptophan and kynurenine metabolism, and in the post-reperfusion phase (T2) related to amino acid and glutathione metabolism. We propose tryptophan/kynurenine and S-adenosylmethionine as possible biomarkers for the previously established higher graft failure of DCD livers, and conclude that the associated pathways should be targeted in more exhaustive and quantitative investigations. PMID:27835640
Improved biochemical preservation of lung slices during cold storage.
Bull, D A; Connors, R C; Reid, B B; Albanil, A; Stringham, J C; Karwande, S V
2000-05-15
Development of lung preservation solutions typically requires whole-organ models which are animal and labor intensive. These models rely on physiologic rather than biochemical endpoints, making accurate comparison of the relative efficacy of individual solution components difficult. We hypothesized that lung slices could be used to assess preservation of biochemical function during cold storage. Whole rat lungs were precision cut into slices with a thickness of 500 microm and preserved at 4 degrees C in the following solutions: University of Wisconsin (UW), Euro-Collins (EC), low-potassium-dextran (LPD), Kyoto (K), normal saline (NS), or a novel lung preservation solution (NPS) developed using this model. Lung biochemical function was assessed by ATP content (etamol ATP/mg wet wt) and capacity for protein synthesis (cpm/mg protein) immediately following slicing (0 h) and at 6, 12, 18, and 24 h of cold storage. Six slices were assayed at each time point for each solution. The data were analyzed using analysis of variance and are presented as means +/- SD. ATP content was significantly higher in the lung slices stored in NPS compared with all other solutions at each time point (P < 0.0001). Protein synthesis was significantly higher in the lung slices stored in NPS compared with all other solutions at 6, 12, and 18 h of preservation (P < 0.05). This lung slice model allows the rapid and efficient screening of lung preservation solutions and their components using quantifiable biochemical endpoints. Using this model, we have developed a novel solution that improves the biochemical preservation of lung slices during cold storage. Copyright 2000 Academic Press.
Santucci, Claudio; Tenori, Leonardo; Luchinat, Claudio
2015-09-01
The time-related changes of three agricultural products, coming from two distribution routes, have been followed using NMR fingerprinting to monitor metabolic variations occurring during several days of cold storage. An NMR profiling approach was employed to evaluate the variations in metabolic profile and metabolite content in three different agricultural products highly consumed in Italy (peaches, tomatoes and plums) coming from Tuscanian farms and how they change with time after collection. For each product, we followed the time-related changes during cold storage along three different collection periods. We monitored the variations in metabolic fingerprint and the trend of a set of metabolites, focusing our attention on nutritive and health-promoting metabolites (mainly, essential amino acids and antioxidants) as well as metabolites that contribute to the taste. Concurrently, for comparison, the time-dependent changes of the same kind of products coming from large-scale distribution have been also analyzed under the same conditions. In this second category, only slight variations in the metabolic fingerprint and metabolite levels were seen during cold storage. Unsupervised and supervised multivariate statistics was also employed to enlighten the differences between the three collections. In particular it seems that the metabolic fingerprint of large-scale distribution products is quite similar in the early, middle and late collection, while peaches and plums locally collected are markedly different among the three periods. The metabolic profiles of the agricultural products belonging to these two different distribution routes are intrinsically different, and they show different changes during the time of cold storage. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aghdam, Morteza Soleimani; Naderi, Roohangiz; Jannatizadeh, Abbasali; Babalar, Mesbah; Sarcheshmeh, Mohammad Ali Askari; Faradonbe, Mojtaba Zamani
2016-09-01
Anthurium flowers are susceptible to chilling injury, and the optimum storage temperature is 12.5-20 °C. The γ-aminobutyric acid (GABA) shunt pathway may alleviate chilling stress in horticultural commodities by providing energy (ATP), reducing molecules (NADH), and minimizing accumulation of reactive oxygen species (ROS). In this experiment, the impact of a preharvest spray treatment with 1 mM GABA and postharvest treatment of 5 mM GABA stem-end dipping on GABA shunt pathway activity of anthurium cut flowers (cv. Sirion) in response to cold storage (4 °C for 21 days) was investigated. GABA treatments resulted in lower glutamate decarboxylase (GAD) and higher GABA transaminase (GABA-T) activities in flowers during cold storage, which was associated with lower GABA content and coincided with higher ATP content. GABA treatments also enhanced accumulation of endogenous glycine betaine (GB) in flowers during cold storage, as well as higher spathe relative water content (RWC). These findings suggest that GABA treatments may alleviate chilling injury of anthurium cut flowers by enhancing GABA shunt pathway activity leading to provide sufficient ATP and promoting endogenous GB accumulation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Creep of experimental short fiber-reinforced composite resin.
Garoushi, Sufyan; Kaleem, Muhammad; Shinya, Akikazu; Vallittu, Pekka K; Satterthwaite, Julian D; Watts, David C; Lassila, Lippo V J
2012-01-01
The purpose of this study was to investigate the reinforcing effect of short E-glass fiber fillers oriented in different directions on composite resin under static and dynamic loading. Experimental short fiber-reinforced composite resin (FC) was prepared by mixing 22.5 wt% of short E-glass fibers, 22.5 wt% of resin, and 55 wt% of silane-treated silica fillers. Three groups of specimens (n=5) were tested: FC with isotropic fiber orientation, FC with anisotropic fiber orientation, and particulate-filled composite resin (PFC) as a control. Time-dependent creep and recovery were recorded. ANOVA revealed that after secondary curing in a vacuum oven and after storage in dry condition for 30 days, FC with isotropic fiber orientation (1.73%) exhibited significantly lower static creep value (p<0.05) than PFC (2.54%). For the different curing methods and storage conditions evaluated in this study, FC achieved acceptable static and dynamic creep values when compared to PFC.
Study of Cycling Air-Cooling System with a Cold Accumulator for Micro Gas-Turbine Installations
NASA Astrophysics Data System (ADS)
Ochkov, V. F.; Stepanova, T. A.; Katenev, G. M.; Tumanovskii, V. A.; Borisova, P. N.
2018-05-01
Using the cycling air-cooling systems of the CTIC type (Combustion Turbine Inlet Cooling) with a cold accumulator in a micro gas-turbine installation (micro-GTI) to preserve its capacity under the seasonal temperature rise of outside air is described. Water ice is used as the body-storage in the accumulators, and ice water (water at 0.5-1.0°C) is used as the body that cools air. The ice water circulates between the accumulator and the air-water heat exchanger. The cold accumulator model with renewable ice resources is considered. The model contains the heat-exchanging tube lattice-evaporator covered with ice. The lattice is cross-flowed with water. The criterion heat exchange equation that describes the process in the cold accumulator under consideration is presented. The calculations of duration of its active operation were performed. The dependence of cold accumulator service life on water circulation rate was evaluated. The adequacy of the design model was confirmed experimentally in the mock-up of the cold accumulator with a refrigerating machine periodically creating a 200 kg ice reserve in the reservoir-storage. The design model makes it possible to determine the weight of ice reserve of the discharged cold accumulator for cooling the cycle air in the operation of a C-30 type micro- GTI produced by the Capstone Company or micro-GTIs of other capacities. Recommendations for increasing the working capacity of cold accumulators of CTIC-systems of a micro-GTI were made.
Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage.
Ma, Ting; Pan, Zeng; Miao, Licheng; Chen, Chengcheng; Han, Mo; Shang, Zhenfeng; Chen, Jun
2018-03-12
Electrochemical energy storage with redox-flow batteries (RFBs) under subzero temperature is of great significance for the use of renewable energy in cold regions. However, RFBs are generally used above 10 °C. Herein we present non-aqueous organic RFBs based on 5,10,15,20-tetraphenylporphyrin (H 2 TPP) as a bipolar redox-active material (anode: [H 2 TPP] 2- /H 2 TPP, cathode: H 2 TPP/[H 2 TPP] 2+ ) and a Y-zeolite-poly(vinylidene fluoride) (Y-PVDF) ion-selective membrane with high ionic conductivity as a separator. The constructed RFBs exhibit a high volumetric capacity of 8.72 Ah L -1 with a high voltage of 2.83 V and excellent cycling stability (capacity retention exceeding 99.98 % per cycle) in the temperature range between 20 and -40 °C. Our study highlights principles for the design of RFBs that operate at low temperatures, thus offering a promising approach to electrochemical energy storage under cold-climate conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Herman, Derek J; Knowles, Lisa O; Knowles, N Richard
2017-03-01
Tolerance to heat stress for retention of low-temperature sweetening-resistant phenotype in potato is conferred by insensitivity of acid invertase activity to cold induction. Heat stress exacerbated cold sweetening (buildup of reducing sugars) of the LTS (low-temperature sweetening)-susceptible potato (Solanum tuberosum L.) cultivars, Ranger Russet and Russet Burbank, and completely abolished the resistance to cold sweetening in the LTS-resistant cultivars/clones, Sage Russet, GemStar Russet, POR06V12-3 and A02138-2. Payette Russet and EGA09702-2, however, demonstrated considerable tolerance to heat stress for retention of their LTS-resistant phenotype. Heat-primed Payette Russet and EGA09702-2 tubers accumulated fourfold more sucrose when subsequently stored at 4 °C, while reducing sugar concentrations also increased marginally but remained low relative to the non-heat-tolerant LTS-resistant clones, resulting in light-colored fries. By contrast, sucrose concentrations in heat-primed tubers of the non-heat-tolerant clones remained unchanged during LTS, but reducing sugars increased fivefold, resulting in darkening of processed fries. Acid invertase activity increased in the LTS-susceptible and non-heat-tolerant LTS-resistant cultivars/clones during cold storage. However, Payette Russet tubers maintained very low invertase activity regardless of heat stress and cold storage treatments, as was the case for Innate ® Russet Burbank (W8) tubers, where silenced invertase conferred robust tolerance to heat stress for retention of LTS-resistant phenotype. Importantly, heat-stressed tubers of Payette Russet, EGA09702-2 and Innate ® Russet Burbank (W8) demonstrated similar low reducing sugar and high sucrose-accumulating phenotypes when stored at 4 °C. Tolerance to heat stress for retention of LTS-resistant phenotype in Payette Russet and likely its maternal parent, EGA09702-2, is, therefore, conferred by the ability to maintain low invertase activity during cold storage of heat-stressed tubers.
Yang, Sheng-Ping; Xie, Jing; Qian, Yun-Fang
2017-05-01
This study was conducted to determine the initial and spoilage microbiota of Pacific white shrimp during ambient and cold storage using next-generation sequencing (NGS) and a culture-dependent method. The quality changes were also evaluated by sensory analysis and total volatile basic nitrogen (TVB-N) values. After 1 d of storage, the psychrotrophic bacteria were only 5.97 log CFU/g, accounting for 1.1% of the mesophilic bacteria counts (7.94 log CFU/g). The psychrotrophic bacteria counts exceeded the counts of mesophilic bacteria for shrimp stored at 4 °C after 6 d of storage, indicating that psychrotrophic bacteria became predominant. The NGS was used to identify the bacterial species in samples stored at 25 and 4 °C. The results showed that the dominant microorganisms were Vibrio at 25 °C, and Acinetobacter, Psychrobacter, and Shewanella at 4 °C. By the culture-dependent method based on 16S rRNA gene and VITEK®2 CompactA system, it showed that the dominant microorganisms were Proteus spp. at 25 °C, and Shewanella putrefaciens, Acinetobacter johnsonii, and Aeromonas sobria at 4 °C. In conclusion, differences in results of microbiota analyzed by culture dependent and independent approaches were observed. The combination of both methodologies may provide more comprehensive information about the dominant spoilage microbiota in Pacific white shrimp during ambient and cold storage. © 2017 Institute of Food Technologists®.
20. Detail of 8" square solid wood column at fruit ...
20. Detail of 8" square solid wood column at fruit and vegetable storage room; note ledger plates bolted to top of column - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX
Marketing potential of advanced breeding clones
USDA-ARS?s Scientific Manuscript database
The accumulation of reducing sugars during cold storage of potato tubers is a serious and costly problem for producers and processors. The degree to which cultivars accumulate reducing sugars during storage determines their processing and market potential. Cultivars or advanced breeding lines with...
Developing cold-chipping potato varieties by silencing the vacuolar invertase gene
USDA-ARS?s Scientific Manuscript database
Accumulation of reducing sugars during cold storage is a persistent and costly problem for the potato processing industry. High temperature processing of potato tubers with elevated amounts of reducing sugars results in potato chips, fries and other products that are unacceptable to consumers becaus...
Preliminary economic analysis of aquifer winter-chill storage at the John F. Kennedy airport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, E.C.; Thomas, J.F.
A conceptual design was formulated in conjuction with a cost analysis to determine the feasibility of retrofitting the present John F. Kennedy (JFK) airport air-conditioning system with an aquifer cold water storage system. It appears technically feasible to chill and store aquifer water at the airport site during the winter months for later air-conditioning use. However, the economic analysis shows that although a significant energy savings is realized, the money saved from reduced energy costs would not be enough to recover the necessary capital investment over a 20-year period. JFK airport may be a poor economic choice for an aquifermore » cold water storage demonstration site due to site specific problems, and other sites may provide economic incentive.« less
Megías, Zoraida; Martínez, Cecilia; Manzano, Susana; García, Alicia; Rebolloso-Fuentes, María Del Mar; Garrido, Dolores; Valenzuela, Juan Luis; Jamilena, Manuel
2015-01-01
We have studied the effect of individual shrink wrapping (ISW) on the postharvest performance of refrigerated fruit from two zucchini cultivars that differ in their sensitivity to cold storage: Sinatra (more sensitive) and Natura (more tolerant). The fruit was individually shrink wrapped before storing at 4°C for 0, 7 and 14 days. Quality parameters, ethylene and CO2 productions, ethylene gene expression, and oxidative stress metabolites were assessed in shrink wrapped and non-wrapped fruit after conditioning the fruit for 6 hours at 20°C. ISW decreased significantly the postharvest deterioration of chilled zucchini in both cultivars. Weight loss was reduced to less than 1%, pitting symptoms were completely absent in ISW fruit at 7 days, and were less than 25% those of control fruits at 14 days of cold storage, and firmness loss was significantly reduced in the cultivar Sinatra. These enhancements in quality of ISW fruit were associated with a significant reduction in cold-induced ethylene production, in the respiration rate, and in the level of oxidative stress metabolites such as hydrogen peroxide and malonyldialdehyde (MDA). A detailed expression analysis of ethylene biosynthesis, perception and signaling genes demonstrated a downregulation of CpACS1 and CpACO1 genes in response to ISW, two genes that are upregulated by cold storage. However, the expression patterns of six other ethylene biosynthesis genes (CpACS2 to CpACS7) and five ethylene signal transduction pathway genes (CpCTR1, CpETR1, CpERS1, CpEIN3.1 and CpEN3.2), suggest that they do not play a major role in response to cold storage and ISW packaging. In conclusion, ISW zucchini packaging resulted in improved tolerance to chilling concomitantly with a reduction in oxidative stress, respiration rate and ethylene production, as well as in the expression of ethylene biosynthesis genes, but not of those involved in ethylene perception and sensitivity.
Megías, Zoraida; Martínez, Cecilia; Manzano, Susana; García, Alicia; Rebolloso-Fuentes, María del Mar; Garrido, Dolores; Valenzuela, Juan Luis; Jamilena, Manuel
2015-01-01
We have studied the effect of individual shrink wrapping (ISW) on the postharvest performance of refrigerated fruit from two zucchini cultivars that differ in their sensitivity to cold storage: Sinatra (more sensitive) and Natura (more tolerant). The fruit was individually shrink wrapped before storing at 4°C for 0, 7 and 14 days. Quality parameters, ethylene and CO2 productions, ethylene gene expression, and oxidative stress metabolites were assessed in shrink wrapped and non-wrapped fruit after conditioning the fruit for 6 hours at 20°C. ISW decreased significantly the postharvest deterioration of chilled zucchini in both cultivars. Weight loss was reduced to less than 1%, pitting symptoms were completely absent in ISW fruit at 7 days, and were less than 25% those of control fruits at 14 days of cold storage, and firmness loss was significantly reduced in the cultivar Sinatra. These enhancements in quality of ISW fruit were associated with a significant reduction in cold-induced ethylene production, in the respiration rate, and in the level of oxidative stress metabolites such as hydrogen peroxide and malonyldialdehyde (MDA). A detailed expression analysis of ethylene biosynthesis, perception and signaling genes demonstrated a downregulation of CpACS1 and CpACO1 genes in response to ISW, two genes that are upregulated by cold storage. However, the expression patterns of six other ethylene biosynthesis genes (CpACS2 to CpACS7) and five ethylene signal transduction pathway genes (CpCTR1, CpETR1, CpERS1, CpEIN3.1 and CpEN3.2), suggest that they do not play a major role in response to cold storage and ISW packaging. In conclusion, ISW zucchini packaging resulted in improved tolerance to chilling concomitantly with a reduction in oxidative stress, respiration rate and ethylene production, as well as in the expression of ethylene biosynthesis genes, but not of those involved in ethylene perception and sensitivity. PMID:26177024
Ex-vivo machine perfusion for kidney preservation.
Hamar, Matyas; Selzner, Markus
2018-06-01
Machine perfusion is a novel strategy to decrease preservation injury, improve graft assessment, and increase organ acceptance for transplantation. This review summarizes the current advances in ex-vivo machine-based kidney preservation technologies over the last year. Ex-vivo perfusion technologies, such as hypothermic and normothermic machine perfusion and controlled oxygenated rewarming, have gained high interest in the field of organ preservation. Keeping kidney grafts functionally and metabolically active during the preservation period offers a unique chance for viability assessment, reconditioning, and organ repair. Normothermic ex-vivo kidney perfusion has been recently translated into clinical practice. Preclinical results suggest that prolonged warm perfusion appears superior than a brief end-ischemic reconditioning in terms of renal function and injury. An established standardized protocol for continuous warm perfusion is still not available for human grafts. Ex-vivo machine perfusion represents a superior organ preservation method over static cold storage. There is still an urgent need for the optimization of the perfusion fluid and machine technology and to identify the optimal indication in kidney transplantation. Recent research is focusing on graft assessment and therapeutic strategies.
Measurement of the Neutron Lifetime with Ultra-cold Neutrons Stored in a Magneto-gravitational Trap
NASA Astrophysics Data System (ADS)
Ezhov, V. F.; Andreev, A. Z.; Ban, G.; Bazarov, B. A.; Geltenbort, P.; Glushkov, A. G.; Knyazkov, V. A.; Kovrizhnykh, N. A.; Krygin, G. B.; Naviliat-Cuncic, O.; Ryabov, V. L.
2018-05-01
We report a measurement of the neutron lifetime using ultra-cold neutrons stored in a magneto-gravitational trap made of permanent magnets. Neutrons surviving in the trap after fixed storage times have been counted and the trap losses have continuously been monitored during storage by detecting neutrons leaking from the trap. The value of the neutron lifetime resulting from this measurement is τ n = (878.3 ± 1.6stat ± 1.0syst) s. A unique feature of this experiment is the monitoring of leaking neutrons providing a robust control of the main systematic loss.
Fuel handling system for a nuclear reactor
Saiveau, James G.; Kann, William J.; Burelbach, James P.
1986-01-01
A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.
Fuel handling system for a nuclear reactor
Saiveau, James G.; Kann, William J.; Burelbach, James P.
1986-12-02
A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.
Postharvest conservation of the tuberous roots of Pachyrhizus Ahipa (Wedd) Parodi.
Mussury, Rosilda M; Scalon, Silvana P Q; Silva, Magaiver A; Silva, Tatiane F; Gomes, Hellen; Gassi, Rosimeire
2013-01-01
This paper aimed to evaluate the effects of storage periods on the conservation of Pachyrhizus ahipa roots at different temperatures and packaging materials. The roots were harvested, washed, packed in PVC, plastic bags, without wrappings (control) and stored in polystyrene trays in refrigerators, or cold chambers, or at room temperature. Total titratable acidity (TTA), total soluble solids (TSS), pH, as well as their ash, lipid, total carbohydrate and protein (dry basis) contents were analyzed. The lowest loss of root fresh weight was observed in the cold chamber and plastic bags. The TTA remained higher among roots stored in the cold chamber and in PVC packaging. The lowest TSS contents were observed for roots stored in the cold chamber, and these did not vary among the packing materials. The average carbohydrate content percentage for all treatments was 84.9%. The percentage of lipids was highest in roots stored at room temperature while protein and ash contents were highest in roots under refrigeration. The best storage conditions for roots are plastic bags packaging in a cold chamber, with the roots retaining appropriate quality for commercialization for up to 30 days.
Preliminary investigation of thermal behaviour of PCM based latent heat thermal energy storage
NASA Astrophysics Data System (ADS)
Pop, Octavian G.; Fechete Tutunaru, Lucian; Bode, Florin; Balan, Mugur C.
2018-02-01
Solid-liquid phase change is used to accumulate and release cold in latent heat thermal energy storage (LHTES) in order to reduce energy consumption of air cooling system in buildings. The storing capacity of the LHTES depends greatly on the exterior air temperatures during the summer nights. One approach in intensifying heat transfer is by increasing the air's velocity. A LHTES was designed to be integrated in the air cooling system of a building located in Bucharest, during the month of July. This study presents a numerical investigation concerning the impact of air inlet temperatures and air velocity on the formation of solid PCM, on the cold storing capacity and energy consumption of the LHTES. The peak amount of accumulated cold is reached at different air velocities depending on air inlet temperature. For inlet temperatures of 14°C and 15°C, an increase of air velocity above 50% will not lead to higher amounts of cold being stored. For Bucharest during the hottest night of the year, a 100 % increase in air velocity will result in 5.02% more cold being stored, at an increase in electrical energy consumption of 25.30%, when compared to the reference values.
Cold chain management in meat storage, distribution and retail: A review
NASA Astrophysics Data System (ADS)
Nastasijević, I.; Lakićević, B.; Petrović, Z.
2017-09-01
Meat is a perishable product with a short shelf life and therefore short selling times. Therefore, cold chain management in meat supply is of utmost importance for the maintenance of quality and safety of meat/meat products. Raw meat/meat products are likely to support the growth of pathogenic microorganisms and/or spoilage bacteria, and should be kept at temperatures that do not result in a risk to health. The cold chain should not be interrupted at all times along the meat distribution chain. The complexity of global meat supply chain, with frequently long distribution chains associated with transportation of the product within one country, from one to another country and from one to another continent, makes the solutions for the chilling and freezing regimes, as well as monitoring of time-temperature profiles, very important for the overall success in delivery of product which will be accepted by consumer for its freshness and safety levels. From recently, there are several available options for control and management of the cold chain, such as chilled and frozen storage combinations, superchilling, ionizing radiation, biopreservation, high hydrostatic pressure (HHP), active packaging, wireless sensors, supported with the software-based cold chain database (CCD).
NASA Astrophysics Data System (ADS)
Lillo Gallardo, Patricio Andres
Canada has aggressive targets for introducing wind energy across the country, but also faces challenges in achieving these goals due to the harsh Canadian climate. One issue which has received little attention in other countries not experiencing these extremes is the behaviour of composite blades in winter conditions. The scope of the work presented is to analyze the static stresses and fatigue response in cold climates using finite element models of the blade. The work opens with a quantification of the extremes of cold experienced in candidate Canadian wind turbine deployment locations. The thesis then narrows its focus to a consideration of the stresses in the root of the composite blades, specifically two common blade-hub connection methods: embedded root carrots and T-bolts. Finite element models of the root are proposed to properly simulate boundary conditions, applied loading and thermal stresses for a 1.5 MW wind turbine. It is shown that the blade root is strongly affected by the thermal stresses caused by the mismatch and orthotrophy of the coefficients of thermal expansion of the blade root constituents. Fatigue analysis of a blade is then presented using temperature dependent material properties including estimated fatigue coefficients.It was found that the natural frequencies of a 1.5 MW wind turbine blade are not significantly altered at cold temperatures. Additionally, cold temperatures slightly increase stresses in the composite blade skin when the blade is loaded, due to an increase in stiffness. Cold temperatures also lead to higher cyclic flapwise bending moments acting on the blade. However, this increase was found not to affect the lifetime fatigue damage. Finally, it was found that the cold climate as seen in Canada improves the fatigue strength of the saturated composite materials used in the blade. The predicted fatigue damage of the triaxial fabric and the spar cap layers in cold climates was therefore predicted to be half that of the fatigue damage at room temperature. This is caused solely by the temperature dependence of the fatigue coefficient b which requires further experimental verification to validate the numerical results of the current study.
The effect of storage temperature and duration on northern red oak acorn viability and vigour
Thomas L. Noland; Andree E. Morneault; Daniel C. Dey; Dave Deugo
2013-01-01
Three separate collections of Ontario sources of northern red oak (Quercus rubra L.) acorns were made to determine the effects of long-term cold storage at +2°C, -1°C, and -2°C on their viability and vigour. We measured acorn moisture content, percent germination during storage, speed of germination and total germination...
USDA-ARS?s Scientific Manuscript database
Gray mold, caused by B. cinerea, causes severe losses since it spreads easily among berries during cold storage. Currently, it is controlled by fumigation with SO2 or SO2 emitting sheets within boxes. Alternative methods, such as storage in ozone atmospheres, are needed because SO2 is banned in orga...
USDA-ARS?s Scientific Manuscript database
‘Fuji’apple [Malus sylvestris var. domestica (Borkh.) Mansf.] volatile compound dynamics were characterized during cold storage in air or at low pO2 controlled atmosphere (CA) with up to 5 kPa CO2. Volatile compounds in storage chambers were adsorbed onto solid sorbent traps and analyzed by GC-MS....
Anthocyanin Concentration of “Assaria” Pomegranate Fruits During Different Cold Storage Conditions
Antunes, Dulce
2004-01-01
The concentration of anthocyanins in fruits of “Assaria” pomegranate, a sweet Portuguese cultivar typically grown in Algarve (south Portugal), was monitored during storage under different conditions. The fruits were exposed to cold storage (5°C) after the following treatments: spraying with wax; spraying with 1.5% CaCl2; spraying with wax and 1.5% CaCl2; covering boxes with 25 μc thickness low-density polyethylene film. Untreated fruits were used as a control. The anthocyanin levels were quantified by either comparison with an external standard of cyanidin 3-rutinoside (based on the peak area) or individual calculation from the peak areas based on standard curves of each anthocyanin type. The storage time as well as the fruit treatment prior to storage influenced total anthocyanin content. The highest levels were observed at the end of the first month of storage, except for the fruits treated with CaCl2, where the maximal values were achieved at the end of the second month. The anthocyanin quantification method influenced the final result. When total anthocyanin was calculated as a sum of individual pigments quantified based on standard curves of each anthocyanin type, lower values were obtained. PMID:15577199
Code of Federal Regulations, 2012 CFR
2012-01-01
..., dryers, processing plants, or cold storage facilities used for the storage and handling of any..., oats, wheat, barley, rice, raw or refined sugar, soybeans, sunflower seed, canola, rapeseed, safflower, flaxseed, mustard seed, crambe, sesame seed, other oilseeds as determined and announced by CCC, dry peas...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., dryers, processing plants, or cold storage facilities used for the storage and handling of any..., oats, wheat, barley, rice, raw or refined sugar, soybeans, sunflower seed, canola, rapeseed, safflower, flaxseed, mustard seed, crambe, sesame seed, other oilseeds as determined and announced by CCC, dry peas...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., dryers, processing plants, or cold storage facilities used for the storage and handling of any..., oats, wheat, barley, rice, raw or refined sugar, soybeans, sunflower seed, canola, rapeseed, safflower, flaxseed, mustard seed, crambe, sesame seed, other oilseeds as determined and announced by CCC, dry peas...
USDA-ARS?s Scientific Manuscript database
Storing potato tubers at low temperatures is highly advantageous in that it prevents sprouting, minimizes disease losses and increases the marketing window. Unfortunately, cold storage of existing cultivars causes an unacceptable accumulation of reducing sugars, a phenomenon referred to as cold-indu...
Transient Pressure Test Article (TPTA) 1.1 and 1.1A, volume 1
NASA Technical Reports Server (NTRS)
Rebells, Clarence A.
1988-01-01
This final test report presents the results obtained during the static hot firing and cold-gas high Q tests of the first Transient Pressure Test Article (TPTA) 1.1. The TPTA consisted of field test joints A and B, which were the original RSRM J-insulation configuration, with a metal capture feature. It also consisted of a flight configuration nozzle-to-case test joint (Joint D) with shorter vent slots. Fluorocarbon O-rings were used in all the test joints. The purpose of the TPTA tests is to evaluate and characterize the RSMR field and nozzle-to-case joints under the influence of ignition and strut loads during liftoff anf high Q. All objectives of the cold-gas high Q (TPTA 1.1A) test were met and all measurements were close to predicted values. During the static hot-firing test (TPTA 1.1), the motor was inadvertently plugged by the quench injector plug, making it a more severe test, although no strut loads were applied. The motor was depressurized after approximately 11 min using an auxiliary system, and no anomalies were noted. In the static hot-firing test, pressure was incident on the insulation and the test joint gaps were within the predicted range. During the static hot-firing test, no strut loads were applied because the loading system malfunctioned. For this test, all measurements were within range of similar tests performed without strut loads.
Mirdehghan, S H; Rahimi, S
2016-04-01
Pre-harvest foliar spraying of grapevines with putrescine (Put) and spermidine (Spd) (0, 1, 2mM) was evaluated for determining the fruit quality at harvest and improving postharvest characteristics of table grapes during cold storage. Fruit parameters in terms of firmness, fungal infection, weight loss, total phenol concentration, antioxidant activity, skin color, total anthocyanin concentration, total soluble solids (TSS) and titratable acidity (TA) were evaluated after 0, 25 and 55 days of storage at 1.5 ± 1 °C and 90 ± 5% R.H. Softening, fungal infection and weight loss increased during cold storage but the rate of changes significantly was delayed in Put- and Spd-treated fruits. Besides these, the application of Put and Spd maintained higher values of phenolics content, antioxidant activity and anthocyanins at the end of storage in compare to control. Furthermore, after 55 days of storage all treated fruits with Put and Spd showed lower changes in L(∗), TSS and TA and also higher value of chroma in berries. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pawlos, Małgorzata; Znamirowska, Agata; Szajnar, Katarzyna; Kalicka, Dorota
2016-01-01
In the process of enrichment of dairy products a priority element is the proper selection of compounds that are a mineral carrier. Calcium bisglycinate is better absorbed by the body than inorganic forms of calcium. Moreover, the lactic acid which is produced in kefir fermentation and the presence of lactose have also a positive effect on the improvement of absorption of calcium. The aim of the present study was to determine the influence of the applied dose of calcium in the form of calcium bisglycinate on the physicochemical and sensory properties and texture of kefirs during 21-day period of cold storage. Processed cow milk was enriched with 0, 5, 10, 15, 20, 25 and 30 mg of calcium (for 100 g of milk), repasteurized (72°C, 1 min), cooled down (26°C), inoculated with Commercial VITAL kefir culture (Danisco, Poland) and fermented for 16 hours (26°C). The assessment of the influence of addition of calcium bisglycinate on acidity, syneresis, texture and sensory characteristics (1-9 points) of kefirs was conducted at four fixed dates (after 1 day, 7 days, 14 days and 21 days of storage). During successive weeks of cold storage in all experimental groups there was observed a tendency to decrease general acidity. On the 1st and 7th days of cold storage reduced whey leakage was observed in kefirs enriched with 25 mg and 30 mg Ca/100 g of milk. With increasing doses of enrichment with calcium both the hardness, adhesiveness and gumminess of kefirs decreased. The applied doses of calcium did not cause changes in the sensory characteristics such as colour and consistency of the fermented beverages. Calcium bisglycinate may be used to enrich kefirs with calcium even with 30 mg of calcium in 100 g of milk without the modification of the product's parameters.
The Shock and Vibration Digest. Volume 18, Number 1
1986-01-01
polyurethanes reduced the loss factor and emphasized the correlation between molecular storage modulus by increasing the length of the structure and...one tempera- static deformations. He gave storage and loss ture/frequency range is difficult with copoly- moduli for a carbon black filled and an...has been described (18). The shear loss author states that the frequency dependence of and storage moduli of a void-filled polyurethane the elastomers
NASA Astrophysics Data System (ADS)
Bertoluzza, A.; Bottura, G.; Filippetti, P.; Tosi, M. R.; Vasina, M.; Pratella, G. C.; Folchi, A.; Gallerani, G.
1994-07-01
Vibrational spectroscopy (Raman, FT-IR-ATR) has been applied for the first time to the study of the mechanism of chilling stress and the monitoring of the best operative conditions for cold storage of fruit. In particular, this work deals with some results of the application of vibrational spectroscopy to the molecular characterization of lipidic extracts of fruits (apples and pears, pulp and peel) stored at low temperatures. The results have been obtained in a cooperative interdisciplinary research project performing experiments on fruits for one year cycles under different storage conditions of temperature (0°C, 8°C) and atmosphere (normal, controlled). The Raman spectra, useful for the evaluation of the transition temperature and the cooperative effect in the fruit membrane lipids, were masked by the strong resonance spectrum of carotenoids. The lipid unsaturation, the natural response to cold storage, was evaluated in the FT-IR-ATR spectra and expressed as the "total" unsaturation degree R = I{3012 cm -1}/{2858 cm -1}. The results on pulp and peel lipids have shown that the R value, higher in the pulps than peels, is dependent on the storage temperature and time. The increase in R is correlated with the higher fruit resistance to the chilling stress. Furthermore, the FT-IR spectra of the outer part of the fruits stored at 8°C show modifications of the carbonylic band at 1738 cm -1 (esteric group) such as the appearance of two other bands at 1715 and 1700 cm -1 increasing in intensity with storage time. These new components can be considered as molecular markers of the onset of a hydrolysis reaction and also of a partial peroxidation of the acylic unsaturated chains.
Metabolomics evaluation of early-storage red blood cell rejuvenation at 4°C and 37°C.
Gehrke, Sarah; Srinivasan, Amudan J; Culp-Hill, Rachel; Reisz, Julie A; Ansari, Andrea; Gray, Alan; Landrigan, Matthew; Welsby, Ian; D'Alessandro, Angelo
2018-04-24
Refrigerated red blood cell (RBC) storage results in the progressive accumulation of biochemical and morphological alterations collectively referred to as the storage lesion. Storage-induced metabolic alterations can be in part reversed by rejuvenation practices. However, rejuvenation requires an incubation step of RBCs for 1 hour at 37°C, limiting the practicality of providing "on-demand," rejuvenated RBCs. We tested the hypothesis that the addition of rejuvenation solution early in storage as an adjunct additive solution would prevent-in a time window consistent with the average age of units transfused to sickle cell recipients at Duke (15 days)-many of the adverse biochemical changes that can be reversed via standard rejuvenation, while obviating the incubation step. Metabolomics analyses were performed on cells and supernatants from AS-1 RBC units (n = 4), stored for 15 days. Units were split into pediatric bag aliquots and stored at 4°C. These were untreated controls, washed with or without rejuvenation, performed under either standard (37°C) or cold (4°C) conditions. All three treatments removed most metabolic storage by-products from RBC supernatants. However, only standard and cold rejuvenation provided significant metabolic benefits as judged by the reactivation of glycolysis and regeneration of adenosine triphosphate and 2,3-diphosphoglycerate. Improvements in energy metabolism also translated into increased capacity to restore the total glutathione pool and regenerate oxidized vitamin C in its reduced (ascorbate) form. Cold and standard rejuvenation of 15-day-old RBCs primes energy and redox metabolism of stored RBCs, while providing a logistic advantage for routine blood bank processing workflows. © 2018 AABB.
Hansen, Cristi V.; Lanning-Rush, Jennifer L.; Ziegler, Andrew C.
2013-01-01
Beginning in the 1940s, the Wichita well field was developed in the Equus Beds aquifer in southwestern Harvey County and northwestern Sedgwick County to supply water to the city of Wichita. The decline of water levels in the aquifer was noted soon after the development of the Wichita well field began. Development of irrigation wells began in the 1960s. City and agricultural withdrawals led to substantial water-level declines. Water-level declines enhanced movement of brines from past oil and gas activities near Burrton, Kansas and enhanced movement of natural saline water from the Arkansas River into the well field area. Large chloride concentrations may limit use or require the treatment of water from the well field for irrigation or public supply. In 1993, the city of Wichita adopted the Integrated Local Water Supply Program (ILWSP) to ensure an adequate water supply for the city through 2050 and as part of its effort to effectively manage the part of the Equus Beds aquifer it uses. ILWSP uses several strategies to do this including the Equus Beds Aquifer Storage and Recovery (ASR) project. The purpose of the ASR project is to store water in the aquifer for later recovery and to help protect the aquifer from encroachment of a known oilfield brine plume near Burrton and saline water from the Arkansas River. As part of Wichita’s ASR permits, Wichita is prohibited from artificially recharging water into the aquifer in a Basin Storage area (BSA) grid cell if water levels in that cell are above the January 1940 water levels or are less than 10 feet below land surface. The map previously used for this purpose did not provide an accurate representation of the shallow water table. The revised predevelopment water-level altitude map of the shallow part of the aquifer is presented in this report. The city of Wichita’s ASR permits specify that the January 1993 water-level altitudes will be used as a lower baseline for regulating the withdrawal of artificial rechage credits from the Equus Beds aquifer by the city of Wichita. The 1993 water levels correspond to the lowest recorded levels and largest storage declines since 1940. Revised and new water-level maps of shallow and deep layers were developed to better represent the general condition of the aquifer. Only static water levels were used to better represent the general condition of the aquifer and comply with Wichita’s ASR permits. To ensure adequate data density, the January 1993 period was expanded to October 1992 through February 1993. Static 1993 water levels from the deep aquifer layer of the Equus Beds aquifer possibly could be used as the lower baseline for regulatory purposes. Previously, maps of water-level changes used to estimate the storage-volume changes included a combination of static (unaffected by pumping or nearby pumping) and stressed (affected by pumping or nearby pumping) water levels from wells. Some of these wells were open to the shallow aquifer layer and some were open to the deep aquifer layer of the Equus Beds aquifer. In this report, only static water levels in the shallow aquifer layer were used to determine storage-volume changes. The effects on average water-level and storage-volume change from the use of mixed, stressed water levels and a specific yield of 0.20 were compared to the use of static water levels in the shallow aquifer and a specific yield of 0.15. This comparison indicates that the change in specific yield causes storage-volume changes to decrease about 25 percent, whereas the use of static water levels in the shallow aquifer layer causes an increase of less than 4 percent. Use of a specific yield of 0.15 will result in substantial decreases in the amount of storage-volume change compared to those reported previously that were calculated using a specific yield of 0.20. Based on these revised water-level maps and computations, the overall decline and change in storage from predevelopment to 1993 represented a loss in storage of about 6 percent (-202,000 acre-feet) of the overall storage volume within the newly defined study area.
Pain Anxiety and Its Association With Pain Congruence Trajectories During the Cold Pressor Task.
Clark, Shannon M; Cano, Annmarie; Goubert, Liesbet; Vlaeyen, Johan W S; Wurm, Lee H; Corley, Angelia M
2017-04-01
Incongruence of pain severity ratings among people experiencing pain and their observers has been linked to psychological distress. Previous studies have measured pain rating congruence through static self-report, involving a single rating of pain; however, this method does not capture changes in ratings over time. The present study examined the extent to which partners were congruent on multiple ratings of a participants' pain severity during the cold pressor task. Furthermore, 2 components of pain anxiety-pain catastrophizing and perceived threat-were examined as predictors of pain congruence. Undergraduate couples in a romantic relationship (N = 127 dyads) participated in this study. Both partners completed measures of pain catastrophizing and perceived threat before randomization to their cold pressor participant or observer roles. Participants and observers rated the participant's pain in writing several times over the course of the task. On average, observers rated participants' pain as less severe than participants' rated their own pain. In addition, congruence between partners increased over time because of observers' ratings becoming more similar to participant's ratings. Finally, pain catastrophizing and perceived threat independently and jointly influenced the degree to which partners similarly rated the participant's pain. This article presents a novel application of the cold pressor task to show that pain rating congruence among romantic partners changes over time. These findings indicate that pain congruence is not static and is subject to pain anxiety in both partners. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Double-image storage optimized by cross-phase modulation in a cold atomic system
NASA Astrophysics Data System (ADS)
Qiu, Tianhui; Xie, Min
2017-09-01
A tripod-type cold atomic system driven by double-probe fields and a coupling field is explored to store double images based on the electromagnetically induced transparency (EIT). During the storage time, an intensity-dependent signal field is applied further to extend the system with the fifth level involved, then the cross-phase modulation is introduced for coherently manipulating the stored images. Both analytical analysis and numerical simulation clearly demonstrate a tunable phase shift with low nonlinear absorption can be imprinted on the stored images, which effectively can improve the visibility of the reconstructed images. The phase shift and the energy retrieving rate of the probe fields are immune to the coupling intensity and the atomic optical density. The proposed scheme can easily be extended to the simultaneous storage of multiple images. This work may be exploited toward the end of EIT-based multiple-image storage devices for all-optical classical and quantum information processings.
Characterization of injury in isolated rat proximal tubules during cold incubation and rewarming.
Bienholz, Anja; Walter, Björn; Pless-Petig, Gesine; Guberina, Hana; Kribben, Andreas; Witzke, Oliver; Rauen, Ursula
2017-01-01
Organ shortage leads to an increased utilization of marginal organs which are particularly sensitive to storage-associated damage. Cold incubation and rewarming-induced injury is iron-dependent in many cell types. In addition, a chloride-dependent component of injury has been described. This work examines the injury induced by cold incubation and rewarming in isolated rat renal proximal tubules. The tissue storage solution TiProtec® and a chloride-poor modification, each with and without iron chelators, were used for cold incubation. Incubation was performed 4°C for up to 168 h, followed by rewarming in an extracellular buffer (3 h at 37°C). After 48, 120 and 168 h of cold incubation LDH release was lower in solutions containing iron chelators. After rewarming, injury increased especially after cold incubation in chelator-free solutions. Without addition of iron chelators LDH release showed a tendency to be higher in chloride-poor solutions. Following rewarming after 48 h of cold incubation lipid peroxidation was significantly decreased and metabolic activity was tendentially better in tubules incubated with iron chelators. Morphological alterations included mitochondrial swelling and fragmentation being partially reversible during rewarming. ATP content was better preserved in chloride-rich solutions. During rewarming, there was a further decline of ATP content in the so far best conditions and minor alterations under the other conditions, while oxygen consumption was not significantly different compared to non-stored control tubules. Results show an iron-dependent component of preservation injury during cold incubation and rewarming in rat proximal renal tubules and reveal a benefit of chloride for the maintenance of tubular energy state during cold incubation.
Characterization of injury in isolated rat proximal tubules during cold incubation and rewarming
Bienholz, Anja; Walter, Björn; Pless-Petig, Gesine; Guberina, Hana; Kribben, Andreas; Witzke, Oliver; Rauen, Ursula
2017-01-01
Organ shortage leads to an increased utilization of marginal organs which are particularly sensitive to storage-associated damage. Cold incubation and rewarming-induced injury is iron-dependent in many cell types. In addition, a chloride-dependent component of injury has been described. This work examines the injury induced by cold incubation and rewarming in isolated rat renal proximal tubules. The tissue storage solution TiProtec® and a chloride-poor modification, each with and without iron chelators, were used for cold incubation. Incubation was performed 4°C for up to 168 h, followed by rewarming in an extracellular buffer (3 h at 37°C). After 48, 120 and 168 h of cold incubation LDH release was lower in solutions containing iron chelators. After rewarming, injury increased especially after cold incubation in chelator-free solutions. Without addition of iron chelators LDH release showed a tendency to be higher in chloride-poor solutions. Following rewarming after 48 h of cold incubation lipid peroxidation was significantly decreased and metabolic activity was tendentially better in tubules incubated with iron chelators. Morphological alterations included mitochondrial swelling and fragmentation being partially reversible during rewarming. ATP content was better preserved in chloride-rich solutions. During rewarming, there was a further decline of ATP content in the so far best conditions and minor alterations under the other conditions, while oxygen consumption was not significantly different compared to non-stored control tubules. Results show an iron-dependent component of preservation injury during cold incubation and rewarming in rat proximal renal tubules and reveal a benefit of chloride for the maintenance of tubular energy state during cold incubation. PMID:28672023
Cai, Han; Yuan, Xiaozhuan; Pan, Jiaojiao; Li, Huan; Wu, Ziming; Wang, Yun
2014-10-15
Salicylic acid (SA) treatment has been widely used to maintain fruit quality during postharvest storage. To elucidate the molecular mechanism related to this treatment, the effect of SA treatment on fruit quality as well as protein expression profiles of grape berries (Vitis labruscana cv. Kyoho) during the subsequent cold storage was evaluated. As expected, SA treatment inhibited postharvest loss and chilling damage by reducing fruit softening and membrane damage and slowing weight loss. A gel-based proteomic approach was designed to screen for differentially expressed proteins in SA-treated and control grape berries. A total of 69 differentially accumulated proteins were successfully identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, which can be functionally classified into eight categories. Among these proteins, antioxidant enzymes including ascorbate peroxidase, oxidoreductase, and glutathione S-transferase were induced, and the abundances of several defense-related proteins, such as heat shock protein (HSP) and temperature-induced lipocalin, were up-regulated by SA treatment. In addition, proteins involved in carbohydrate catabolism and energy production were also induced by SA treatment. Interpretation of the data for differential accumulation of proteins revealed that the effect of SA on reducing postharvest losses and chilling damage of grape berries during cold storage may be due to activated defense responses and carbohydrate metabolism and higher levels of energy status.
Jin, Sang-Keun; Choi, Jung-Seok; Jeong, Jin-Yeon; Kim, Gap-Don
2016-09-01
Clove bud is a widely used spice in meat and meat products, and it contains high level of phenolic compounds. The effectiveness of the clove as a spice has not been fully studied at a general level of addition in the meat products. Therefore, in the present study, the antioxidant, antimicrobial, and nitrite scavenging abilities of clove bud powder (CBP) was assessed at spice level (0.1% and 0.2%) in emulsified pork sausage, during 6 weeks of cold storage. CBP had DPPH radical scavenging ability, but CBP addition at 0.1% and 0.2% did not decrease the TBARS value. An antimicrobial effect of CBP was also not observed during the cold storage. However, residual nitrite at storage weeks 4 and 6 was shown to be lower (P < 0.05). Addition of CBP decreased CIE L* and a* values, but it produced unacceptable sensory properties. Texture profile analysis was not affected by the addition of CBP in emulsified pork sausage (P > 0.05). The positive effect on nitrite scavenging could be expected by the addition of 0.2% CBP as a spice. However, antioxidant and antimicrobial abilities were not observed, as well as improvement in the quality of characteristics, in emulsified pork sausage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Induction of antioxidant flavonol biosynthesis in fresh-cut potatoes. Effect of domestic cooking.
Tudela, Juan A; Cantos, Emma; Espín, Juan C; Tomás-Barberán, Francisco A; Gil, María I
2002-10-09
The effect of fresh-cutting and subsequent cold storage on phenolic compounds from five long-term-stored potato cultivars (Agria, Cara, Liseta, Monalisa, and Spunta) was studied. Fresh-cutting induced the biosynthesis of three flavonols, which were identified by HPLC-DAD-ESIMS as quercetin 3-rutinoside, quercetin 3-diglucoside, and quercetin 3-glucosylrutinoside. The flavonols were detected after a lag period of 3 days of cold storage. The content ranged from 6 to 14 mg/100 g of fresh weight depending on the cultivar after 6 days of storage. Chlorogenic acid as the main caffeic acid derivative and the amino acids tyrosine and tryptophan were also quantified. The effect of cold storage under light or in dark was studied with new-season-harvested Monalisa potatoes. The flavonol induction was higher in fresh-cut potatoes stored under light than in the dark. However, caffeic acid derivatives were not affected. Domestic cooking such as boiling, microwaving, and frying provoked a partial loss of the flavonols, which were retained in the range of 4-16 mg per serving (213 g). Steam-cooking resulted in the highest retention of caffeic acid derivatives and aromatic amino acids compared with the other cooking methods studied. This means that due to the large amount of potatoes consumed in the Western diet, fresh-cut potatoes can be a significant source of health-promoting phenolics.
Jin, Si Hyung; Jeong, Heon-Ho; Lee, Byungjin; Lee, Sung Sik; Lee, Chang-Soo
2015-01-01
We present a programmable microfluidic static droplet array (SDA) device that can perform user-defined multistep combinatorial protocols. It combines the passive storage of aqueous droplets without any external control with integrated microvalves for discrete sample dispensing and dispersion-free unit operation. The addressable picoliter-volume reaction is systematically achieved by consecutively merging programmable sequences of reagent droplets. The SDA device is remarkably reusable and able to perform identical enzyme kinetic experiments at least 30 times via automated cross-contamination-free removal of droplets from individual hydrodynamic traps. Taking all these features together, this programmable and reusable universal SDA device will be a general microfluidic platform that can be reprogrammed for multiple applications.
Industrial-scale storage of CO2 in saline sedimentary basins will cause zones of elevated pressure, larger than the CO2 plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards al...
View looking north west showing the boom, top of the ...
View looking north west showing the boom, top of the center mast and boom angle reeving of the 175-ton derrick. Note in the background of the view, just above the center mast is the F-1 Static-Test Stand used for test firing the Saturn V engines and subsequent program's engine testing. Also in the background center is the Redstone Static Test Stand (center right) and it's cold calibration tower (center left). - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
Fugitive emission rates assessment of PM2.5 and PM10 from open storage piles in China
NASA Astrophysics Data System (ADS)
Cao, Yiqi; Liu, Tao; He, Jiao
2018-03-01
An assessment of the fugitive emission rates of PM2.5 and PM10 from an open static coal and mine storage piles. The experiment was conducted at a large union steel enterprises in the East China region to effectively control the fugitive particulate emissions pollution on daily work and extreme weather conditions. Wind tunnel experiments conducted on the surface of static storage piles, and it generated specific fugitive emission rates (SERs) at ground level of between ca.10-1 and ca.102 (mg/m2·s) for PM2.5 and between ca.101 and ca.103 (mg/m2·s) for PM10 under the u*(wind velocity) between ca.3.0 (m/s) and 10.0 (m/s). Research results show that SERs of different materials differ a lot. Material particulate that has lower surface moisture content generate higher SER and coal material generate higher SER than mine material. For material storage piles with good water infiltrating properties, aspersion is a very effective measure for control fugitive particulate emission.
Augmenting Transport versus Increasing Cold Storage to Improve Vaccine Supply Chains
Haidari, Leila A.; Connor, Diana L.; Wateska, Angela R.; Brown, Shawn T.; Mueller, Leslie E.; Norman, Bryan A.; Schmitz, Michelle M.; Paul, Proma; Rajgopal, Jayant; Welling, Joel S.; Leonard, Jim; Chen, Sheng-I; Lee, Bruce Y.
2013-01-01
Background When addressing the urgent task of improving vaccine supply chains, especially to accommodate the introduction of new vaccines, there is often a heavy emphasis on stationary storage. Currently, donations to vaccine supply chains occur largely in the form of storage equipment. Methods This study utilized a HERMES-generated detailed, dynamic, discrete event simulation model of the Niger vaccine supply chain to compare the impacts on vaccine availability of adding stationary cold storage versus transport capacity at different levels and to determine whether adding stationary storage capacity alone would be enough to relieve potential bottlenecks when pneumococcal and rotavirus vaccines are introduced by 2015. Results Relieving regional level storage bottlenecks increased vaccine availability (by 4%) more than relieving storage bottlenecks at the district (1% increase), central (no change), and clinic (no change) levels alone. Increasing transport frequency (or capacity) yielded far greater gains (e.g., 15% increase in vaccine availability when doubling transport frequency to the district level and 18% when tripling). In fact, relieving all stationary storage constraints could only increase vaccine availability by 11%, whereas doubling the transport frequency throughout the system led to a 26% increase and tripling the frequency led to a 30% increase. Increasing transport frequency also reduced the amount of stationary storage space needed in the supply chain. The supply chain required an additional 61,269L of storage to relieve constraints with the current transport frequency, 55,255L with transport frequency doubled, and 51,791L with transport frequency tripled. Conclusions When evaluating vaccine supply chains, it is important to understand the interplay between stationary storage and transport. The HERMES-generated dynamic simulation model showed how augmenting transport can result in greater gains than only augmenting stationary storage and can reduce stationary storage needs. PMID:23717590
Augmenting transport versus increasing cold storage to improve vaccine supply chains.
Haidari, Leila A; Connor, Diana L; Wateska, Angela R; Brown, Shawn T; Mueller, Leslie E; Norman, Bryan A; Schmitz, Michelle M; Paul, Proma; Rajgopal, Jayant; Welling, Joel S; Leonard, Jim; Chen, Sheng-I; Lee, Bruce Y
2013-01-01
When addressing the urgent task of improving vaccine supply chains, especially to accommodate the introduction of new vaccines, there is often a heavy emphasis on stationary storage. Currently, donations to vaccine supply chains occur largely in the form of storage equipment. This study utilized a HERMES-generated detailed, dynamic, discrete event simulation model of the Niger vaccine supply chain to compare the impacts on vaccine availability of adding stationary cold storage versus transport capacity at different levels and to determine whether adding stationary storage capacity alone would be enough to relieve potential bottlenecks when pneumococcal and rotavirus vaccines are introduced by 2015. Relieving regional level storage bottlenecks increased vaccine availability (by 4%) more than relieving storage bottlenecks at the district (1% increase), central (no change), and clinic (no change) levels alone. Increasing transport frequency (or capacity) yielded far greater gains (e.g., 15% increase in vaccine availability when doubling transport frequency to the district level and 18% when tripling). In fact, relieving all stationary storage constraints could only increase vaccine availability by 11%, whereas doubling the transport frequency throughout the system led to a 26% increase and tripling the frequency led to a 30% increase. Increasing transport frequency also reduced the amount of stationary storage space needed in the supply chain. The supply chain required an additional 61,269L of storage to relieve constraints with the current transport frequency, 55,255L with transport frequency doubled, and 51,791L with transport frequency tripled. When evaluating vaccine supply chains, it is important to understand the interplay between stationary storage and transport. The HERMES-generated dynamic simulation model showed how augmenting transport can result in greater gains than only augmenting stationary storage and can reduce stationary storage needs.
Nonlinear Slewing Spacecraft Control Based on Exergy, Power Flow, and Static and Dynamic Stability
NASA Astrophysics Data System (ADS)
Robinett, Rush D.; Wilson, David G.
2009-10-01
This paper presents a new nonlinear control methodology for slewing spacecraft, which provides both necessary and sufficient conditions for stability by identifying the stability boundaries, rigid body modes, and limit cycles. Conservative Hamiltonian system concepts, which are equivalent to static stability of airplanes, are used to find and deal with the static stability boundaries: rigid body modes. The application of exergy and entropy thermodynamic concepts to the work-rate principle provides a natural partitioning through the second law of thermodynamics of power flows into exergy generator, dissipator, and storage for Hamiltonian systems that is employed to find the dynamic stability boundaries: limit cycles. This partitioning process enables the control system designer to directly evaluate and enhance the stability and performance of the system by balancing the power flowing into versus the power dissipated within the system subject to the Hamiltonian surface (power storage). Relationships are developed between exergy, power flow, static and dynamic stability, and Lyapunov analysis. The methodology is demonstrated with two illustrative examples: (1) a nonlinear oscillator with sinusoidal damping and (2) a multi-input-multi-output three-axis slewing spacecraft that employs proportional-integral-derivative tracking control with numerical simulation results.
McAbee, Kathryn; Reinhardt, Keith; Germino, Matthew; Bosworth, Andrew
2017-01-01
Semi-arid rangelands are important carbon (C) pools at global scales. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, C storage in cold-desert ecosystems could increase with boosts in wintertime precipitation, in which climate models predict, due to increases in wintertime soil water storage that enhance summertime productivity. However, there are few long-term, manipulative field-based studies investigating how rangelands will respond to altered precipitation amount or timing. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over a single growing season in plots that had 200 mm of supplemental precipitation added in either winter or summer for the past 21 years, in shrub- and exotic-bunchgrass-dominated garden plots. At our cold-desert site (298 mm precipitation during the study year), we hypothesized that increased winter precipitation would stimulate the aboveground C uptake and storage relative to ambient conditions, especially in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in the aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, and moreso in shrub- compared to grass-dominated communities.
McAbee, Kathryn; Reinhardt, Keith; Germino, Matthew J; Bosworth, Andrew
2017-03-01
Semi-arid rangelands are important carbon (C) pools at global scales. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, C storage in cold-desert ecosystems could increase with boosts in wintertime precipitation, in which climate models predict, due to increases in wintertime soil water storage that enhance summertime productivity. However, there are few long-term, manipulative field-based studies investigating how rangelands will respond to altered precipitation amount or timing. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over a single growing season in plots that had 200 mm of supplemental precipitation added in either winter or summer for the past 21 years, in shrub- and exotic-bunchgrass-dominated garden plots. At our cold-desert site (298 mm precipitation during the study year), we hypothesized that increased winter precipitation would stimulate the aboveground C uptake and storage relative to ambient conditions, especially in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in the aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, and moreso in shrub- compared to grass-dominated communities.
Glorion, M; Polard, V; Favereau, F; Hauet, T; Zal, F; Fadel, E; Sage, E
2017-10-25
We describe the results of adding a new biological agent HEMO 2 life ® to a standard preservation solution for hypothermic static lung preservation aiming to improve early functional parameters after lung transplantation. HEMO 2 life ® is a natural oxygen carrier extracted from Arenicola marina with high oxygen affinity developed as an additive to standard organ preservation solutions. Standard preservation solution (Perfadex ® ) was compared with Perfadex ® associated with HEMO 2 life ® and with sham animals after 24 h of hypothermic preservation followed by lung transplantation. During five hours of lung reperfusion, functional parameters and biomarkers expression in serum and in bronchoalveolar lavage fluid (BALF) were measured. After five hours of reperfusion, HEMO 2 life ® group led to significant improvement in functional parameters: reduction of graft vascular resistance (p < .05) and increase in graft oxygenation ratio (p < .05). Several ischemia-reperfusion related biomarkers showed positive trends in the HEMO 2 life ® group: expression of HMG B1 in serum tended to be lower in comparison (2.1 ± 0.8 vs. 4.6 ± 1.5) with Perfadex ® group, TNF-α and IL-8 in BALF were significantly higher in the two experimental groups compared to control (p < .05). During cold ischemia, expression of HIF1α and histology remained unchanged and similar to control. Supplementation of the Perfadex ® solution by an innovative oxygen carrier HEMO 2 life ® during hypothermic static preservation improves early graft function after prolonged cold ischemia in lung transplantation.
Cold air drainage flows subsidize montane valley ecosystem productivity
Kimberly A. Novick; Andrew C. Oishi; Chelcy Ford Miniat
2016-01-01
In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro-climate...
Innovative cold tolerance test for conifer seedlings
Peter A. Balk; Peter Bronnum; Mike Perks; Eva Stattin; Lonneke H. M. van der Geest; Monique F. van Wordragen
2007-01-01
Forest tree nurseries rely on tight scheduling of operations to deliver vital seedlings to the planting site. Cold storage is required to: (1) prevent winter damage, especially in container seedlings; (2) to maintain planting stock in an inactive condition; and (3) to ensure plant supply for geographically distinct planting sites, a definite requirement for large-scale...
USDA-ARS?s Scientific Manuscript database
The presence of Listeria monocytogenes on the surfaces of equipment and workers' hands during different production stages, as well as on fish skin and meat during processing and storage of cold-smoked trout, was investigated. Listeria monocytogenes was recovered from 10 (6.06%) of a total 165 cotto...
Research of the cold shield in cryogenic liquid storage
NASA Astrophysics Data System (ADS)
Chen, L. B.; Zheng, J. P.; Wu, X. L.; Cui, C.; Zhou, Y.; Wang, J. J.
2017-12-01
To realize zero boil-off storage of cryogenic liquids, a cryocooler that can achieve a temperature below the boiling point temperature of the cryogenic liquid is generally needed. Taking into account that the efficiency of the cryocooler will be higher at a higher operating temperature, a novel thermal insulation system using a sandwich container filled with cryogenic liquid with a higher boiling point as a cold radiation shield between the cryogenic tank and the vacuum shield in room temperature is proposed to reduce the electricity power consumption. A two-stage cryocooler or two separate cryocoolers are adopted to condense the evaporated gas from the cold shield and the cryogenic tank. The calculation result of a 55 liter liquid hydrogen tank with a liquid nitrogen shield shows that only 14.4 W of electrical power is needed to make all the evaporated gas condensation while 121.7 W will be needed without the liquid nitrogen shield.
NASA Technical Reports Server (NTRS)
Rybak, S. C.; Willen, G. S.; Follett, W. H.; Hanna, G. J.; Cady, E. C.; Distefano, E.; Meserole, J. S.
1990-01-01
This feasibility study presents the conceptual design of a spacecraft for performing a series of cryogenic fluid management flight experiments. This spacecraft, the Cryogenic On-Orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite, will use liquid hydrogen as the test fluid, be launched on a Delta expendable launch vehicle, and conduct a series of experiments over a two to three month period. These experiments will investigate the physics of subcritical cryogens in the low gravity space environment to characterize their behavior and to correlate the data with analytical and numerical models of in-space cryogenic fluid management systems. Primary technologies addressed by COLD-SAT are: (1) pressure control; (2) chilldown; (3) no-vent fill; (4) liquid acquisition device fill; (5) pressurization; (6) low-g fill and drain; (7) liquid acquisition device expulsion; (8) line chilldown; (9) thermodynamic state control; and (10) fluid dumping.
46 CFR 525.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ship's tackle. (11) Heavy lift means the service of providing heavy lift cranes and equipment for lifting cargo. (12) Loading and unloading means the service of loading or unloading cargo between any... storage spaces, cold storage plants, cranes, grain elevators and/or bulk cargo loading and/or unloading...
46 CFR 525.1 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., warehouse or other terminal facilities in connection with a common carrier, or in connection with a common...; common carriers who perform port terminal services; and warehousemen who operate port terminal facilities... storage spaces, cold storage plants, cranes, grain elevators and/or bulk cargo loading and/or unloading...
Reeves, Lawrence E; Holderman, Chris J; Gillett-Kaufman, Jennifer L; Kawahara, Akito Y; Kaufman, Phillip E
2016-09-15
Determination of the interactions between hematophagous arthropods and their hosts is a necessary component to understanding the transmission dynamics of arthropod-vectored pathogens. Current molecular methods to identify hosts of blood-fed arthropods require the preservation of host DNA to serve as an amplification template. During transportation to the laboratory and storage prior to molecular analysis, genetic samples need to be protected from nucleases, and the degradation effects of hydrolysis, oxidation and radiation. Preservation of host DNA contained in field-collected blood-fed specimens has an additional caveat: suspension of the degradative effects of arthropod digestion on host DNA. Unless effective preservation methods are implemented promptly after blood-fed specimens are collected, host DNA will continue to degrade. Preservation methods vary in their efficacy, and need to be selected based on the logistical constraints of the research program. We compared four preservation methods (cold storage at -20 °C, desiccation, ethanol storage of intact mosquito specimens and crushed specimens on filter paper) for field storage of host DNA from blood-fed mosquitoes across a range of storage and post-feeding time periods. The efficacy of these techniques in maintaining host DNA integrity was evaluated using a polymerase chain reaction (PCR) to detect the presence of a sufficient concentration of intact host DNA templates for blood meal analysis. We applied a logistic regression model to assess the effects of preservation method, storage time and post-feeding time on the binomial response variable, amplification success. Preservation method, storage time and post-feeding time all significantly impacted PCR amplification success. Filter papers and, to a lesser extent, 95 % ethanol, were the most effective methods for the maintenance of host DNA templates. Amplification success of host DNA preserved in cold storage at -20 °C and desiccation was poor. Our data suggest that, of the methods tested, host DNA template integrity was most stable when blood meals were preserved using filter papers. Filter paper preservation is effective over short- and long-term storage, while ethanol preservation is only suitable for short-term storage. Cold storage at -20 °C, and desiccation of blood meal specimens, even for short time periods, should be avoided.
Bacterial membranes: the effects of chill storage and food processing. An overview.
Russell, Nicholas J
2002-11-15
The shelf life of food is extended by refrigeration because the metabolic processes of food-associated microorganisms are slowed by the lowered temperature. Nonetheless, cold-adapted psychrotrophic food-poisoning and food-spoilage bacteria remain a concern because they possess cold-adapted proteins and membrane lipids that facilitate growth at low temperatures. The use of membrane-disrupting novel preservation techniques, such as ultrasound, high hydrostatic pressure or pulsed electric field, offer the potential for an extension of shelf life. This review considers the interacting and potentially synergistic effects of chill storage or mild heat treatment on membrane properties, with the disruptive effects of membrane-targeted physical treatments.
Preliminary thermal design of the COLD-SAT spacecraft
NASA Technical Reports Server (NTRS)
Arif, Hugh
1991-01-01
The COLD-SAT free-flying spacecraft was to perform experiments with LH2 in the cryogenic fluid management technologies of storage, supply and transfer in reduced gravity. The Phase A preliminary design of the Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces and components of the bus subsystems is described. The TCS was composed of passive elements which were augmented with heaters. Trade studies to minimize the parasitic heat leakage into the cryogen storage tanks are described. Selection procedure for the thermally optimum on-orbit spacecraft attitude was defined. TRASYS-2 and SINDA'85 verification analysis was performed on the design and the results are presented.
Microwelding of various metallic materials under ultravacuum (AO 138-10)
NASA Technical Reports Server (NTRS)
Assie, Jean Pierre; Conde, Eric
1991-01-01
The first finding from the AO 138-10 is that cold welding never occurred, and that microwelds didn't even affect the reference (presumably microweld prone) pairs of metals consisting of gold, silver, and chromium. The scientific disappointment from these results must be tempered by the notion of a static AO 138-10 experiment, reflecting the passive character of the global Long Duration Exposure Facility (LDEF) flight. Thus far, it has been theorized that cold welding results from the peeling of the oxide layer, that is formed in an earth environment, by the space environment since such a layer no longer grows in space. In fact, such stripping of the oxide layer supposes relative motion of the contacting materials. In the absence of such motion, as in this experiment, oxidation will preserve its integrity and continue to prevent microwelding. More bewildering is that there was no microwelding of the reference pairs. Even though AO 138-10 failed scientific expectations, as did the LDEF structure with cold welding, the positive, functional aspect to keep in mind is the safe operation of single-shot (appendage releasing and/or latching) mechanisms, unhindered by microwelding in a space vacuum, as now demonstrated by the statically representative pairs of materials. Other aspects of the experiment are discussed.
Viscoelastic and biochemical properties of erythrocytes during storage with SAG-M at +4 degrees C.
Farges, E; Grebe, R; Baumann, M
2002-01-01
During storage at +4 degrees C, red blood cells undergo biochemical and physicochemical modifications, which alter their rheological characteristics especially the deformability. Even so until now not precisely defined deformability is undoubtedly a function of whole cell elasticity and viscosity. In a previous study we have investigated changes of elasticity of whole RBCs during a 6 weeks storage by quasi-static experiments using our Cell-Elastometer method. Since the changes in deformability we observed with that experimental approach have not been significant we extended the hard/software capabilities of this instrument to enable dynamic measurements also. We applied this modified hard-/software set-up to examine again changes in viscoelasticity of erythrocytes from concentrates during a six weeks storage at a blood bank. The cells were resuspended in CPD-SAG-M and stored at +4 degrees C. Quasi-static and dynamic experiments were performed on stored erythrocytes and showed for both significant changes in elasticity and viscoelasticity from the fourth week on. So it can be stated that due to our experimental results decrease in deformability of RBCs during storage occurs after a four weeks period of relative stability. To get further insight in changes of underlying or related biochemical properties according experiments have been performed in parallel. Especially the decrease in ATP showed a nearly parallel time course with a significant decrease after the 4th week. All other parameters especially the 2,3 DPG level showed a nearly linear de- or increase with time which are in accordance with the results of the additionally performed elongation experiments. Our quasi-static and dynamic deformability measurements have been proven to provide a simple and reliable tool to follow up erythrocyte senescence during storage where a pronounced change in mechanical properties may be used as an indicator for a change in bioviability. This has to be verified in further experiments.
Development of a single-phase thermosiphon for cold collection and storage of radiative cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dongliang; Martini, Christine Elizabeth; Jiang, Siyu
A single-phase thermosiphon is developed for cold collection and storage of radiative cooling. Compared to the conventional nocturnal radiative cooling systems that use an electric pump to drive the heat transfer fluid, the proposed single-phase thermosiphon uses the buoyancy force to drive heat transfer fluid. This solution does not require electricity, therefore improving the net gain of the radiative cooling system. A single-phase thermosiphon was built, which consists of a flat panel, a cold collection tank, a water return tube, and a water distribution tank. Considering that outdoor radiative cooling flux is constantly changing (i.e. uncontrollable), an indoor testing facilitymore » was developed to provide a controllable cooling flux (comparable to a radiative cooling flux of 100 W/m2) for the evaluation of thermosiphon performance. The testing apparatus is a chilled aluminum flat plate that has a controlled air gap separation relative to the flat panel surface of the thermosiphon to emulate radiative cooling. With an average of 105 W/m2 cooling flux, the 18 liters of water in the thermosiphon was cooled to an average temperature of 12.5 degrees C from an initial temperature of 22.2 degrees C in 2 h, with a cold collection efficiency of 96.8%. The results obtained have demonstrated the feasibility of using a single-phase thermosiphon for cold collection and storage of radiative cooling. Additionally, the effects of the thermosiphon operation conditions, such as tilt angle of the flat panel, initial water temperature, and cooling energy flux, on the performance have been experimentally investigated. Modular design of the single-phase thermosiphon gives flexibility for its scalability. A radiative cooling system with multiple thermosiphon modules is expected to play an important role in cooling buildings and power plant condensers.« less
Seasonal Thermal Energy Storage Program
NASA Technical Reports Server (NTRS)
Minor, J. E.
1980-01-01
The Seasonal Thermal Energy Storage (STES) Program designed to demonstrate the storage and retrieval of energy on a seasonal basis using heat or cold available from waste or other sources during a surplus period is described. Factors considered include reduction of peak period demand and electric utility load problems and establishment of favorable economics for district heating and cooling systems for commercialization of the technology. The initial thrust of the STES Program toward utilization of ground water systems (aquifers) for thermal energy storage is emphasized.
Challenges of Cold Conditioning and Static Testing the Ares Demonstration Motor (DM-2)
NASA Technical Reports Server (NTRS)
Quinn, Shyla; Davis, Larry C.
2011-01-01
The Ares first stage rocket is a "human-rated" motor capable of producing and sustaining 3.5 million pounds of thrust throughout it s two-minute burn period. A series of demonstration motors (DM) will be tested in different conditioned environments to confirm they meet all design specifications. The second demonstration motor (DM-2) was designated to be a "cold motor", this means the internal propellant mean bulk temperature (PMBT) was 40 +5\\-3 F. The motor was subjected to subfreezing temperatures for two months.
Cold-air performance of a tip turbine designed to drive a lift fan. 1: Baseline performance
NASA Technical Reports Server (NTRS)
Haas, J. E.; Kofskey, M. G.; Hotz, G. M.; Futral, S. M., Jr.
1976-01-01
Full admission baseline performance was obtained for a 0.4 linear scale of the LF460 lift fan turbine over a range of speeds and pressure ratios without leakage air. These cold-air tests covered a range of speeds from 40 to 140 percent of design equivalent speed and a range of scroll inlet to diffuser exit static pressure ratios from 2.0 to 4.2. Results are presented in terms of specific work, torque, mass flow, efficiency, and total pressure drop.
Yakum, Martin Ndinakie; Ateudjieu, Jerome; Walter, Ebile Akoh; Watcho, Pierre
2015-04-14
The cold chain must be monitored continuously in order to guarantee vaccines' quality. From field reports and previous studies, cold chain monitoring for expanded program on immunization (EPI) is still not satisfactory in Cameroon. This study was conducted to evaluate the availability and functioning of cold chain equipment as well as knowledge. It was a cross-sectional study involving a multistage sampling. 3urban and 5rural districts were selected randomly from the 19 health districts of the North West region. In each district all the health facilities taking part in the EPI were targeted. Data were collected using a questionnaire administered face to face to health personnel and with an observational grid to assess availability, functioning, and monitoring of cold chain equipment and power supply. The data were analyzed using the epi-info software. A total of 70 health facilities were contacted and 65(88.6%) of them included in the study. Fifty-three (81.5%) out of 65 health facilities had at least one functional vaccine refrigerator. The national guideline of EPI was not present in 21(33.9%) health facilities. Temperature chart was complete/correctly filled in 25(50.0%) of the 50(96.2%) facilities having it. About 14 (26.9%) of the health facilities record at least one abnormal temperature during the last 2 months following data collection. Seventeen (28.3%) personnel did not know the correct vaccine storage temperature. The availability of vaccine storage equipment for EPI is acceptable in the North West Region of Cameroon but the capacity of those in charge to properly monitor it in all health facilities is still limited. To ensure that vaccines administered in the North West Region are stored at the recommended temperature, all District Health Services should train and regularly supervise the health personnel in charge of cold chain monitoring.
Window Glasses: State and Prospects
NASA Astrophysics Data System (ADS)
Maiorov, V. A.
2018-04-01
Analysis and generalization of the results of investigations devoted to the improvement of optical properties have been carried out, and descriptions of a structure and a reaction mechanism of available and promising window glasses with solar radiation are presented. All devices are divided into groups with static constant and dynamic regulated spectral characteristics. The group of static glasses includes heat-protective and spectrally selective glasses with low-emissivity coatings and infrared filters with dispersed plasmonic nanoparticles. Electrochromic glasses, nanostructured dynamic infrared filters, and glasses with separated regulation of the transmission of visible-light and near-infrared radiation are dynamic devices. It is noted that the use of mesoporous films made of plasmonic nanoparticles open up especially wide possibilities. Their application allows one to realize a dynamic separated regulation of the transmission of visible light and nearinfrared radiation in which, under the gradual increase in the electric potential on the glass, mechanisms of plasmon and polaron reduction of solar radiation gradually change the glass' condition from light warm to light cold and then to dark cold consecutively.
NASA Astrophysics Data System (ADS)
Lambrinou, Konstantina; Charalampopoulou, Evangelia; Van der Donck, Tom; Delville, Rémi; Schryvers, Dominique
2017-07-01
This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (<10-8 mass%) static liquid lead-bismuth eutectic (LBE) for 253-3282 h at 500 °C. Corrosion was consistently more severe for the cold-drawn steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was non-uniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack.
USDA-ARS?s Scientific Manuscript database
Improved postharvest quality is an important goal for fresh-market raspberry breeding programs. To determine if warm or cold storage following harvest would better facilitate the breeding selection process for the assessment of postharvest decay and bleed, pesticide-free fruit from cultivars and bre...
Medium-term in vitro storage as a complementary germplasm preservation technique
USDA-ARS?s Scientific Manuscript database
A Germplasm preservation of vegetatively propagated crops may be accomplished using a range of old and new technologies. Field collections, potted plants, or some cases whole plants stored under cool to cold conditions are complemented by in vitro culture, in vitro storage, and cryopreservation. The...
Cold temperature delays wound healing in postharvest sugarbeet roots
USDA-ARS?s Scientific Manuscript database
Storage temperature affects the rate and extent of wound-healing in a number of root and tuber crops. The effect of storage temperature on wound-healing in sugarbeet (Beta vulgaris L.) roots, however, is largely unknown. Wound-healing of sugarbeet roots was investigated using surface-abraded roots s...
Potential long-term storage of the predatory mite Phytoseiulus persimilis
USDA-ARS?s Scientific Manuscript database
Increasing the ability to store mass-reared natural enemies during periods or seasons of low demand is a critical need of the biocontrol industry. We tested the hypothesis that cryoprotectant or carbohydrate molecules can enhance long-term cold storage of a predatory mite Phytoseiulus persimilis At...
Valdenegro, Mónika; Huidobro, Camila; Monsalve, Liliam; Bernales, Maricarmen; Fuentes, Lida; Simpson, Ricardo
2018-03-24
Pomegranate (Punica granatum) is a non-climacteric fruit susceptible to chilling injury (CI) at temperatures below 5 °C. To understand the influences of ethylene and modified atmosphere on CI physiological disorders of pomegranate, exogenous ethrel (0.5, 1 and 1.5 µg L -1 ) treatments, 1-methylcyclopropene (1-MCP) (1 µL L -1 ) exposure, packaging in a modified atmosphere (MAP) (XTend™ bags; StePac, São Paulo, Brazil), a MAP/1-MCP combination, and packaging in macro-perforated bags (MPB) were applied. The treated fruits were cold stored (2 ± 1 °C; 85% relative humidity) and sampled during 120 + 3 days at 20 °C. During cold storage, CI symptoms started at 20 days in MPB and at 60 days for all exogenous ethylene treatments, and were delayed to 120 days in MAP, 1-MCP and MAP/1-MCP treatments. MPB and ethylene treatments induced significant electrolyte leakage, oxidative damage, lipid peroxidation, ethylene and CO 2 production, and 1-aminocyclopropane-1-carboxylic acid oxidase activity, without any change in total soluble solids, titratable acidity or skin and aril colours. Conversely, MAP by itself, or in combination with 1-MCP application, effectively delayed CI symptoms. During long-term cold storage of this non-climacteric fruit, ethrel application induced endogenous ethylene biosynthesis, accelerating the appearance of CI symptoms in contrast to the observations made for MAP and 1-MCP treatments. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Mongibello, L.; Atrigna, M.; Bianco, N.; Di Somma, M.; Graditi, G.; Risi, N.
2017-01-01
Thermal energy storage systems (TESs) are of fundamental importance for many energetic systems, essentially because they permit a certain degree of decoupling between the heat or cold production and the use of the heat or cold produced. In the last years, many works have analysed the addition of a PCM inside a hot water storage tank, as it can allow a reduction of the size of the storage tank due to the possibility of storing thermal energy as latent heat, and as a consequence its cost and encumbrance. The present work focuses on experimental tests realized by means of an indoor facility in order to analyse the dynamic behaviour of a hot water storage tank including PCM modules during a charging phase. A commercial bio-based PCM has been used for the purpose, with a melting temperature of 58°C. The experimental results relative to the hot water tank including the PCM modules are presented in terms of temporal evolution of the axial temperature profile, heat transfer and stored energy, and are compared with the ones obtained by using only water as energy storage material. Interesting insights, relative to the estimation of the percentage of melted PCM at the end of the experimental test, are presented and discussed.
Facundo, Heliofabia Virginia De Vasconcelos; Gurak, Poliana Deyse; Mercadante, Adriana Zerlotti; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana
2015-03-01
Different storage conditions can induce changes in the colour and carotenoid profiles and levels in some fruits. The goal of this work was to evaluate the influence of low temperature storage on the colour and carotenoid synthesis in two banana cultivars: Prata and Nanicão. For this purpose, the carotenoids from the banana pulp were determined by HPLC-DAD-MS/MS, and the colour of the banana skin was determined by a colorimeter method. Ten carotenoids were identified, of which the major carotenoids were all-trans-lutein, all-trans-α-carotene and all-trans-β-carotene in both cultivars. The effect of the low temperatures was subjected to linear regression analysis. In cv. Prata, all-trans-α-carotene and all-trans-β-carotene were significantly affected by low temperature (p<0.01), with negative estimated values (β coefficients) indicating that during cold storage conditions, the concentrations of these carotenoids tended to decrease. In cv. Nanicão, no carotenoid was significantly affected by cold storage (p>0.05). The accumulation of carotenoids in this group may be because the metabolic pathways using these carotenoids were affected by storage at low temperatures. The colour of the fruits was not negatively affected by the low temperatures (p>0.05). Published by Elsevier Ltd.
Sanhueza, Dayan; Vizoso, Paula; Balic, Iván; Campos-Vargas, Reinaldo; Meneses, Claudio
2015-01-01
Cold storage (CS) can induce a physiological disorder known as chilling injury (CI) in nectarine fruits. The main symptom is mealiness that is perceived as non-juicy fruit by consumers. Postharvest treatments such as controlled atmosphere (CA; a high CO2 concentration and low O2) have been used under cold conditions to avoid this disorder. With the objective of exploring the mechanisms involved in the CA effect on mealiness prevention, we analyzed transcriptomic changes under six conditions of "Red Pearl" nectarines by RNA-Seq. Our analysis included just harvested nectarines, juicy non-stored fruits, fruits affected for CI after CS and fruits stored in a combination of CA plus CS without CI phenotype. Nectarines stored in cold conditions combined with CA treatment resulted in less mealiness; we obtained 21.6% of juice content compared with just CS fruits (7.7%; mealy flesh). RNA-Seq data analyses were carried out to study the gene expression for different conditions assayed. During ripening, we detected that nectarines exposed to CA treatment expressed a similar number of genes compared with fruits that were not exposed to cold conditions. Firm fruits have more differentially expressed genes than soft fruits, which suggest that most important changes occur during CS. On the other hand, gene ontology analysis revealed enrichment mainly in metabolic and cellular processes. Differentially expressed genes analysis showed that low O2 concentrations combined with cold conditions slows the metabolic processes more than just the cold storage, resulting mainly in the suppression of primary metabolism and cold stress response. This is a significant step toward unraveling the molecular mechanism that explains the effectiveness of CA as a tool to prevent CI development on fruits.
Sanhueza, Dayan; Vizoso, Paula; Balic, Iván; Campos-Vargas, Reinaldo; Meneses, Claudio
2015-01-01
Cold storage (CS) can induce a physiological disorder known as chilling injury (CI) in nectarine fruits. The main symptom is mealiness that is perceived as non-juicy fruit by consumers. Postharvest treatments such as controlled atmosphere (CA; a high CO2 concentration and low O2) have been used under cold conditions to avoid this disorder. With the objective of exploring the mechanisms involved in the CA effect on mealiness prevention, we analyzed transcriptomic changes under six conditions of “Red Pearl” nectarines by RNA-Seq. Our analysis included just harvested nectarines, juicy non-stored fruits, fruits affected for CI after CS and fruits stored in a combination of CA plus CS without CI phenotype. Nectarines stored in cold conditions combined with CA treatment resulted in less mealiness; we obtained 21.6% of juice content compared with just CS fruits (7.7%; mealy flesh). RNA-Seq data analyses were carried out to study the gene expression for different conditions assayed. During ripening, we detected that nectarines exposed to CA treatment expressed a similar number of genes compared with fruits that were not exposed to cold conditions. Firm fruits have more differentially expressed genes than soft fruits, which suggest that most important changes occur during CS. On the other hand, gene ontology analysis revealed enrichment mainly in metabolic and cellular processes. Differentially expressed genes analysis showed that low O2 concentrations combined with cold conditions slows the metabolic processes more than just the cold storage, resulting mainly in the suppression of primary metabolism and cold stress response. This is a significant step toward unraveling the molecular mechanism that explains the effectiveness of CA as a tool to prevent CI development on fruits. PMID:26483806
Crahay, Charlotte; Munaut, Françoise; Colpaert, Jan V; Huret, Stéphanie; Declerck, Stéphane
2017-08-01
Cryopreservation is considered the most reliable method for storage of filamentous fungi including ectomycorrhizal (ECM) fungi. A number of studies, however, have reported genetic changes in fungus cultures following cryopreservation. In the present study, the genetic stability of six ECM fungus isolates was analyzed using amplified fragment length polymorphism (AFLP). The isolates were preserved for 2 years either by cryopreservation (at -130 °C) or by storage at 4 °C with regular sub-cultivation. A third preservation treatment consisting of isolates maintained on Petri dishes at 22-23 °C for 2 years (i.e., without any sub-cultivation) was included and used as a control. The differences observed in AFLP patterns between the three preservation methods remained within the range of the total error generated by the AFLP procedure (6.85%). Therefore, cryopreservation at -130 °C and cold storage with regular sub-cultivation did not affect the genetic stability of the ECM fungus isolates, and both methods can be used for the routine storage of ECM fungus isolates over a period of 2 years.
Measuring Device for Air Speed in Macroporous Media and Its Application Inside Apple Storage Bins.
Geyer, Martin; Praeger, Ulrike; Truppel, Ingo; Scaar, Holger; Neuwald, Daniel A; Jedermann, Reiner; Gottschalk, Klaus
2018-02-13
In cold storage facilities of fruit and vegetables, airflow is necessary for heat removal. The design of storage facilities influences the air speed in the surrounding of the product. Therefore, knowledge about airflow next to the product is important to plan the layout of cold stores adapted to the requirements of the products. A new sensing device (ASL, Air speed logger) is developed for omnidirectional measurement of air speed between fruit or vegetables inside storage bins or in bulk. It consists of four interconnected plastic spheres with 80 mm diameter each, adapted to the size of apple fruit. In the free space between the spheres, silicon diodes are fixed for the airflow measurement based on a calorimetric principle. Battery and data logger are mounted inside the spheres. The device is calibrated in a wind tunnel in a measuring range of 0-1.3 m/s. Air speed measurements in fruit bulks on laboratory scale and in an industrial fruit store show air speeds in gaps between fruit with high stability at different airflow levels. Several devices can be placed between stored products for determination of the air speed distribution inside bulks or bin stacks in a storage room.
Leisso, Rachel; Buchanan, David; Lee, Jinwook; Mattheis, James; Rudell, David
2013-02-13
The transition from cold storage to ambient temperature alters apple quality through accelerated softening, flavor and color changes, and development of physiological peel disorders, such as superficial scald, in susceptible cultivars. To reveal global metabolism associated with this transition, the 'Granny Smith' peel metabolome was evaluated during storage of 6 months and shelf life periods. Treatment with the antioxidant diphenylamine (DPA) reduced scald, creating a metabolic contrast with untreated fruit, which developed superficial scald. Superficial scald symptoms developed on control fruit after 120 days of storage, and symptoms progressed following transition to ambient-temperature shelf life. The metabolic profile of control and DPA-treated fruit was divergent after 30 days of cold storage due to differing levels of α-farnesene oxidation products, methyl esters, phytosterols, and other compounds potentially associated with chloroplast integrity and oxidative stress response. Hierarchical cluster analysis revealed coregulation within the volatile synthesis pathway including control of the availability of methyl, propyl, ethyl, acetyl, and butyl alcohol and/or acid moieties for ester biosynthesis. Overall, the application of metabolomics techniques lends new insight into physiological processes leading to cell death and ripening processes that affect fruit flavor, appearance, and overall quality.
Saboo, Sugandha; Tumban, Ebenezer; Peabody, Julianne; Wafula, Denis; Peabody, David S.; Chackerian, Bryce; Muttil, Pavan
2016-01-01
Existing vaccines against human papillomavirus (HPV) require continuous cold-chain storage. Previously, we developed a bacteriophage virus-like particle (VLP) based vaccine for Human Papillomavirus (HPV) infection, which elicits broadly neutralizing antibodies against diverse HPV types. Here, we formulated these VLPs into a thermostable dry powder using a multi-component excipient system and by optimizing the spray drying parameters using a half-factorial design approach. Dry powder VLPs were stable after spray drying and after long-term storage at elevated temperatures. Immunization of mice with a single dose of reconstituted dry powder VLPs that were stored at 37°C for more than a year elicited high anti-L2 IgG antibody titers. Spray dried thermostable, broadly protective L2 bacteriophage VLPs vaccine could be accessible to remote regions of the world (where ~84% of cervical cancer patients reside) by eliminating the cold-chain requirement during transportation and storage. PMID:27019231
Assessment of radioisotope heaters for remote terrestrial applications
NASA Astrophysics Data System (ADS)
Uherka, Kenneth L.
This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold-region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaskan installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radio-isotopic heaters for freeze-up protection of water storage tanks and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications.
NASA Astrophysics Data System (ADS)
Bergmann, P.; Kashubin, A.; Ivandic, M.; Lueth, S.; Juhlin, C.
2013-12-01
Statics are time-shifts that occur in reflection seismic trace data and are generally considered to be mainly due to shallow velocity variations. Since the refraction static correction is most often based on first break picking and subsequent velocity model estimation, it is even today a labor-consuming and error-prone procedure. Time-lapse seismic also faces this issue in a temporal sense, since changes in statics, due to temporally variable near-surface conditions, are known to be first-order contributors to time-lapse noise. Considerable changes in the statics of repeated on-shore seismic surveys can occur due to precipitation-related changes in soil moisture and in the groundwater table, or may be due to man-made earthworks. Production-related or injection-related processes can cause considerable velocity changes, which leave time-shift imprints on time-lapse seismic data that can be very similar to that of near-surface velocity variations. In this context it is crucial to consider that refraction static corrections are in many cases of limited use, as they aim to enhance the stack coherency of the individual time-lapse data sets only. As an alternative, we propose a time-lapse difference (TLD) static correction that is focused on the accommodation of static changes between the time-lapse data sets. This TLD static correction decomposes the static differences that are determined from cross-correlations in a surface-consistent manner. It therefore does not require first break picking and inversion for velocities from repeat data sets. We tested the TLD static correction for a 4D case study from the Ketzin CO2 storage site, Germany. As a reference we used the results that were obtained from a recent processing in which refraction static corrections were performed individually on the time-lapse data sets. Although the TLD static corrections method is considerably less time-consuming, we found that it is providing a stack difference with enhanced S/N. This is particularly demonstrated for a 4D seismic signature that is proven to be due to injected CO2. This Ketzin case study shows further that the pattern of the TLD statics is highly consistent with patterns in the cumulative precipitation data. This observation confirms that near-surface velocity changes are due to changes in the soil-moisture saturation and that an efficient compensation for them can be achieved by the TLD static correction.
Paul G. Schaberg; Donald H. DeHayes; Gary J. Hawley; Paula F. Murakami; G. Richard Strimbeck; Steven G. McNulty
2002-01-01
We evaluated the influence of protracted low-level nitrogen (N) fertilization on foliar membrane-associated calcium (mCa), sugar and starch concentrations, membrane stability, winter cold tolerance, and freezing injury of red spruce (Picea rubens Sarg.) trees growing in six experimental plots on Mount Ascutney, Vermont. For 12 consecutive years...
Influence of packaging on the quality of cold-stored grapes packed into boxes for later repacking
USDA-ARS?s Scientific Manuscript database
A two-year study was conducted to examine various commercial practices associated with the cold storage of table grapes that are to be later re-packed for final shipment to provide information on the impact on fruit quality. Variables examined included the use of box types with vent areas ranging f...
Green, Barry G; Pope, Jennifer V
2003-02-01
In a previous study of the heat grill illusion, sensations of burning and stinging were sometimes reported when the skin was cooled by as little as 2 degrees C. Informal tests subsequently indicated that these nociceptive sensations were experienced if cooling occurred when the stimulating thermode rested on the skin, but not when the thermode was cooled and then touched to the skin. In experiment 1 subjects judged the intensity of thermal (cold/warm) and nociceptive (burning/stinging) sensations when the volar surface of the forearm was cooled to 25 degrees C (1) via a static thermode (Static condition), or (2) via a cold thermode touched to the skin (Dynamic condition). The total area of stimulation was varied from 2.6 to 10.4 cm(2) to determine if the occurrence of nociceptive sensations depended upon stimulus size. Burning/stinging was rated 10.3 times stronger in the Static condition than in the Dynamic condition, and this difference did not vary significantly with stimulus size. In experiment 2, thermal and nociceptive sensations were measured during cooling to just 31 degrees, 29 degrees or 27 degrees C, and data were obtained on the frequency at which different sensation qualities were experienced. Stinging was the most frequently reported nociceptive quality in the Static condition, and stinging and burning were both markedly reduced in the Dynamic condition. In experiment 3 we tested the possibility that dynamic contact might have inhibited burning and stinging not because of mechanical contact per se, but rather because dynamic contact caused higher rates of cooling. However, varying cooling rate over a tenfold range (-0.5 degrees to -5.0 degrees /s) had no appreciable effect on the frequency of stinging and burning. Overall, the data show that mild cooling can produce nociceptive sensations that are suppressed under conditions of dynamic mechanical contact. The latter observation suggests that cold is perceived differently during active contact with objects than during passive heat loss to the environment. Hypotheses about the physiological basis of the nociceptive sensations at mild temperatures and their possible role in the phenomena of paradoxical heat and synthetic heat are discussed.
Blood banking-induced alteration of red blood cell oxygen release ability
Li, Yaojin; Xiong, Yanlian; Wang, Ruofeng; Tang, Fuzhou; Wang, Xiang
2016-01-01
Background Current blood banking procedures may not fully preserve red blood cell (RBC) function during storage, contributing to the decrease of RBC oxygen release ability. This study was undertaken to evaluate the impact of routine cold storage on RBC oxygen release ability. Materials and methods RBC units were collected from healthy donors and each unit was split into two parts (whole blood and suspended RBC) to exclude possible donor variability. Oxygen dissociation measurements were performed on blood units stored at 4 °C during a 5-week period. 2,3-diphosphoglycerate levels and fluorescent micrographs of erythrocyte band 3 were also analysed. Results P50 and oxygen release capacity decreased rapidly during the first 3 weeks, and then did not change significantly. In contrast, the kinetic properties (PO2-t curve and T*50) of oxygen release changed slowly during the first 3 weeks of storage, but then decreased significantly in the last 2 weeks. 2,3-diphosphoglycerate decreased quickly during the first 3 weeks of storage to almost undetectable levels. Band 3 aggregated significantly during the last 2 weeks of storage. Discussion RBC oxygen release ability appears to be sensitive to routine cold storage. The thermodynamic characteristics of RBC oxygen release ability changed mainly in the first 3 weeks of storage, due to the decrease of 2,3-diphosphoglycerate, whereas the kinetic characteristics of RBC oxygen release ability decreased significantly at the end of storage, probably affected by alterations of band 3. PMID:26674824
Blood banking-induced alteration of red blood cell oxygen release ability.
Li, Yaojin; Xiong, Yanlian; Wang, Ruofeng; Tang, Fuzhou; Wang, Xiang
2016-05-01
Current blood banking procedures may not fully preserve red blood cell (RBC) function during storage, contributing to the decrease of RBC oxygen release ability. This study was undertaken to evaluate the impact of routine cold storage on RBC oxygen release ability. RBC units were collected from healthy donors and each unit was split into two parts (whole blood and suspended RBC) to exclude possible donor variability. Oxygen dissociation measurements were performed on blood units stored at 4 °C during a 5-week period. 2,3-diphosphoglycerate levels and fluorescent micrographs of erythrocyte band 3 were also analysed. P50 and oxygen release capacity decreased rapidly during the first 3 weeks, and then did not change significantly. In contrast, the kinetic properties (PO2-t curve and T*50) of oxygen release changed slowly during the first 3 weeks of storage, but then decreased significantly in the last 2 weeks. 2,3-diphosphoglycerate decreased quickly during the first 3 weeks of storage to almost undetectable levels. Band 3 aggregated significantly during the last 2 weeks of storage. RBC oxygen release ability appears to be sensitive to routine cold storage. The thermodynamic characteristics of RBC oxygen release ability changed mainly in the first 3 weeks of storage, due to the decrease of 2,3-diphosphoglycerate, whereas the kinetic characteristics of RBC oxygen release ability decreased significantly at the end of storage, probably affected by alterations of band 3.
CFD research on runaway transient of pumped storage power station caused by pumping power failure
NASA Astrophysics Data System (ADS)
Zhang, L. G.; Zhou, D. Q.
2013-12-01
To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.
NASA Technical Reports Server (NTRS)
Fu, Qi; Levine, Benjamin D.; Pawelczyk, James A.; Ertl, Andrew C.; Diedrich, Andre; Cox, James F.; Zuckerman, Julie H.; Ray, Chester A.; Smith, Michael L.; Iwase, Satoshi;
2002-01-01
Astronauts returning to Earth have reduced orthostatic tolerance and exercise capacity. Alterations in autonomic nervous system and neuromuscular function after spaceflight might contribute to this problem. In this study, we tested the hypothesis that exposure to microgravity impairs autonomic neural control of sympathetic outflow in response to peripheral afferent stimulation produced by handgrip and a cold pressor test in humans. We studied five astronauts approximately 72 and 23 days before, and on landing day after the 16 day Neurolab (STS-90) space shuttle mission, and four of the astronauts during flight (day 12 or 13). Heart rate, arterial pressure and peroneal muscle sympathetic nerve activity (MSNA) were recorded before and during static handgrip sustained to fatigue at 40 % of maximum voluntary contraction, followed by 2 min of circulatory arrest pre-, in- and post-flight. The cold pressor test was applied only before (five astronauts) and during flight (day 12 or 13, four astronauts). Mean (+/- S.E.M.) baseline heart rates and arterial pressures were similar among pre-, in- and post-flight measurements. At the same relative fatiguing force, the peak systolic pressure and mean arterial pressure during static handgrip were not different before, during and after spaceflight. The peak diastolic pressure tended to be higher post- than pre-flight (112 +/- 6 vs. 99 +/- 5 mmHg, P = 0.088). Contraction-induced rises in heart rate were similar pre-, in- and post-flight. MSNA was higher post-flight in all subjects before static handgrip (26 +/- 4 post- vs. 15 +/- 4 bursts min(-1) pre-flight, P = 0.017). Contraction-evoked peak MSNA responses were not different before, during, and after spaceflight (41 +/- 4, 38 +/- 5 and 46 +/- 6 bursts min(-1), all P > 0.05). MSNA during post-handgrip circulatory arrest was higher post- than pre- or in-flight (41 +/- 1 vs. 33 +/- 3 and 30 +/- 5 bursts min(-1), P = 0.038 and 0.036). Similarly, responses of MSNA and blood pressure to the cold pressor test were well maintained in-flight. We conclude that modulation of muscle sympathetic neural outflow by muscle metaboreceptors and skin nociceptors is preserved during short duration spaceflight.
Role of Melatonin in Cell-Wall Disassembly and Chilling Tolerance in Cold-Stored Peach Fruit.
Cao, Shifeng; Bian, Kun; Shi, Liyu; Chung, Hsiao-Hang; Chen, Wei; Yang, Zhenfeng
2018-06-06
Melatonin reportedly increases chilling tolerance in postharvest peach fruit during cold storage, but information on its effects on cell-wall disassembly in chilling-injured peaches is limited. In this study, we investigated the role of cell-wall depolymerization in chilling-tolerance induction in melatonin-treated peaches. Treatment with 100 μM melatonin alleviated chilling symptoms (mealiness) characterized by a decrease in fruit firmness and increase in juice extractability in treated peaches during storage. The loss of neutral sugars, such as arabinose and galactose, in both the 1,2-cyclohexylenedinitrilotetraacetic acid (CDTA)- and Na 2 CO 3 -soluble fractions was observed at 7 days in treated peaches, but the contents increased after 28 days of storage. Atomic-force-microscopy (AFM) analysis revealed that the polysaccharide widths in the CDTA- and Na 2 CO 3 -soluble fractions in the treated fruit were mainly distributed in a shorter range, as compared with those in the control fruit. In addition, the expression profiles of a series of cell-wall-related genes showed that melatonin treatment maintained the balance between transcripts of PpPME and PpPG, which accompany the up-regulation of several other genes involved in cell-wall disassembly. Taken together, our results suggested that the reduced mealiness by melatonin was probably associated with its positive regulation of numerous cell-wall-modifying enzymes and proteins; thus, the depolymerization of the cell-wall polysaccharides in the peaches treated with melatonin was maintained, and the treated fruit could soften gradually during cold storage.
Identifying the Dynamic Catchment Storage That Does Not Drive Runoff
NASA Astrophysics Data System (ADS)
Dralle, D.; Hahm, W. J.; Rempe, D.; Karst, N.; Thompson, S. E.; Dietrich, W. E.
2017-12-01
The central importance of subsurface water storage in hydrology has resulted in numerous attempts to develop hydrograph and mass balance based techniques to quantify catchment storage state or capacity. In spite of these efforts, relatively few studies have linked catchment scale storage metrics to Critical Zone (CZ) structure and the status of water in hillslopes. Elucidating these relationships would increase the interpretability of catchment storage metrics, and aid the development of hydrologic models. Here, we propose that catchment storage consists of a dynamic component that varies on seasonal timescales, and a static component with negligible time variation. Discharge is assumed to be explicitly sensitive to changes in some fraction of the dynamic storage, while the remaining dynamic storage varies without directly influencing flow. We use a coupled mass balance and storage-discharge function approach to partition dynamic storage between these driving and non-driving storage pools, and compare inferences with direct observations of saturated and unsaturated dynamic water storages at two field sites in Northern California. We find that most dynamic catchment water storage does not drive streamflow in both sites, even during the wettest times of year. Moreover, the physical character of non-driving dynamic storage depends strongly on catchment CZ structure. At a site with a deep profile of weathered rock, the dynamic storage that drives streamflow occurs as a seasonally perched groundwater table atop fresh bedrock, and that which does not drive streamflow resides as seasonally dynamic unsaturated water in shallow soils and deep, weathered rock. At a second site with a relatively thin weathered zone, water tables rapidly rise to intersect the ground surface with the first rains of the wet season, yet only a small fraction of this dynamic saturated zone storage drives streamflow. Our findings emphasize how CZ structure governs the overlap in time and space of three pools of subsurface water: (i) seasonally dynamic vs. static; (ii) unsaturated vs. saturated, and (iii) storage whose magnitude directly influences runoff vs. that which does not. These results highlight the importance of hillslope monitoring for physically interpreting methods of runoff-based hydrologic analysis.
Le Tallec, David; Doucet, Diane; Elouahabi, Abdelatif; Harvengt, Pol; Deschuyteneer, Michel; Deschamps, Marguerite
2009-07-01
Cervarix is a recombinant human papillomavirus (HPV)-16 and -18 L1 virus-like-particle (VLP) AS04-adjuvanted vaccine designed to protect against cervical intraepithelial neoplasia and cervical cancer caused by the HPV types 16 and 18. Assessment of the stability of the vaccine during long-term storage and after transient exposure to temperatures out of normal storage range is an integrated part of vaccine quality evaluation. This assessment was done with vaccine samples stored at 2-8 degrees C for up to 36 months, with or without simulated cold chain break (either one week at 37 degrees C, or two or four weeks at 25 degrees C). Among the stability-indicating parameters, antigenicity and immunogenicity were evaluated along with L1 antigen integrity and adsorption to aluminum. Differential scanning calorimetry (DSC) was used to investigate the structural stability of the VLPs before and after vaccine formulation and over time. Cervarix was stable at 2-8 degrees C for at least three years, and the occurrence of cold chain break had no impact, as shown by unchanged product characteristics during the full storage period. DSC analysis demonstrated that the structure of the HPV-16 and -18 L1 proteins and their corresponding VLPs was not affected throughout the manufacturing process. Moreover, the structure of aluminum-adsorbed HPV-16 and -18 L1 VLPs was robust over a 14-month test period. In conclusion, Cervarix was very stable upon long-term storage at 2-8 degrees C with or without transient exposure to higher temperatures (up to 37 degrees C). The observed robust structure of the L1 VLPs contributes to the excellent stability of Cervarix.
Astrochemistry in TSR and CSR Ion Storage Rings
NASA Astrophysics Data System (ADS)
Novotny, Oldrich
2017-04-01
Dissociative recombination (DR) of molecular ions plays a key role in controlling the charge density and composition of the cold interstellar medium (ISM). Experimental data on DR are required in order to understand the chemical network in the ISM and related processes such as star formation from molecular clouds. Needed data include not only total reaction cross sections, but also the chemical composition and excitation states of the neutral products. Utilizing the TSR storage ring in Heidelberg, Germany, we have carried out DR measurements for astrophysically important molecular ions. We use a merged electron-ion beams technique combined with event-by-event fragment counting and fragment imaging. The count rate of detected neutral DR products yields the absolute DR rate coefficient. Imaging the distribution of fragment distances provides information on the kinetic energy released including the states of both the initial molecule and the final products. Additional kinetic energy sensitivity of the employed detector allows for identification of fragmentation channels by fragment-mass combination within each dissociation event. Such combined information is essential for studies on DR of polyatomic ions with multi-channel breakup. The recently commissioned Cryogenic Storage Ring (CSR) in Heidelberg, Germany, extends the experimental capabilities of TSR by operation at cryogenic temperatures down to 6 K. At these conditions residual gas densities down to 100 cm-3 can be reached resulting in beam storage times of several hours. Long storage in the cold environment allows the ions to relax down to their rotational ground state, thus mimicking well the conditions in the cold ISM. A variety of astrophysically relevant reactions will be investigated at these conditions, such as DR, electron impact excitation, ion-neutral collisions, etc. We report our TSR results on DR of HCl+ and D2Cl+. We also present first results from the CSR commissioning experiments.
Growth medium alterations improve in vitro cold storage of pear germplasm.
Kovalchuk, I; Zhumagulova, Z; Turdiev, T; Reed, B M
2014-01-01
Development of new fruit cultivars is dependent on genetic resource collections such as those at the Pomological Garden of the Institute of Horticulture and Viticulture near Almaty, Kazakhstan. The pear germplasm collection of the Pomological Garden contains 615 cultivars and three species. In vitro cold storage of the collection would provide additional security to the field collection. This study was designed to improve medium-term in vitro storage of pear germplasm. Shoots of seven pear cultivars (Pyrus communis L.) were stored in plastic five-section bags at 4 degree C and a 10-h photoperiod (7 μmol/m2/s). Treatments included medium with four carbohydrate sources (3% sucrose, 2% or 3% mannitol, or 2% sucrose + 2% mannitol) with 0.5 mg/l BAP and 0.1 mg/l IBA or without plant growth regulators (PGRs) and at three Murashige and Skoog (MS) nitrogen concentrations (100%, 50% or 25%). Pear shoots remained viable for 9 to 15 months without repropagation on the control MS medium with 3% sucrose without PGRs. There were significant impacts of cultivar and treatment on the duration of cold storage. Shoots of 'Mramornaya' remained viable (rating of ≥ 2) for 27 months with PGRs and 2% sucrose + 2% mannitol compared to 12 months for the PGR + 3% sucrose treatment. Talgarskaya Krasaviza stored for 18 months on 2% sucrose + 2% mannitol while all other treatments lasted only 6 to 9 months. Treatments with 0.5 or 1 mg/l abscisic acid (ABA) with 3% sucrose increased storage duration as did reducing the concentration of nitrogen in the medium to 25% without PGRs and with 3% sucrose.
CONTEXTUAL AERIAL VIEW OF "COLD" NORTH HALF OF MTR COMPLEX. ...
CONTEXTUAL AERIAL VIEW OF "COLD" NORTH HALF OF MTR COMPLEX. CAMERA FACING EASTERLY. FOREGROUND CORNER CONTAINS OIL STORAGE TANKS. WATER TANKS AND WELL HOUSES ARE BEYOND THEM TO THE LEFT. LARGE LIGHT-COLORED BUILDING IN CENTER OF VIEW IS STEAM PLANT. DEMINERALIZER AND WATER STORAGE TANK ARE BEYOND. SIX-CELL COOLING TOWER AND ITS PUMP HOUSE ARE ABOVE IT IN VIEW. SERVICE BUILDINGS INCLUDING CANTEEN ARE ON NORTH SIDE OF ROAD. "EXCLUSION" AREA IS BEYOND ROAD. COMPARE LOCATION OF EXCLUSION-AREA GATE WITH PHOTO ID-33-G-202. INL NEGATIVE NO. 3608. Unknown Photographer, 10/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Nonclassical storage and retrieval of a multiphoton pulse in cold Rydberg atoms
NASA Astrophysics Data System (ADS)
Tian, Xue-Dong; Liu, Yi-Mou; Bao, Qian-Qian; Wu, Jin-Hui; Artoni, M.; La Rocca, G. C.
2018-04-01
We investigate the storage and retrieval of a multiphoton probe field in cold Rydberg atoms with an effective method based on the superatom model. This probe field is found greatly attenuated in light intensity and two-photon correlation yet suffering little temporal broadening as a result of the partial dipole blockade of Rydberg excitation. In particular, the output field energy exhibits an intriguing saturation effect against the input field energy accompanied by an inhomogeneous nonclassical antibunching feature as a manifestation of the dynamic cooperative optical nonlinearity. Our numerical results are qualitatively consistent with those in a recent experiment and could be extended to pursue quantum information applications of nonclassical light fields.
Studies on Superchilling of Fresh Skipjack
NASA Astrophysics Data System (ADS)
Matsuzaki, Yoh; Ogawa, Yutaka
The freshness and meat colour of fresh skipjack can be retained only 2 or 3 days by ordinary cold storage. This paper deals with a new method, "suprchilling", which was developed by the authers, i. e., immediately after catch live skipjacks were immersed and killed instantly in NaCl brine at -10°C to -15°C for 30 to 40 minuites and thereafter in refrigerated sea water the center of the skipjack muscle was rapidly cooled to -0.5°C within 40 minuites. Form the results of apperance, organoleptic ratings, pH value, K value, metmyoglobin %, salt concentration and microscopic observation, "superchilling" could prolong the shelflife of skipjack 3 days longer than ordinary cold storage.
A district survey of vaccine cold chain protection in general practitioners' surgeries.
Finn, L; Crook, S
1999-01-01
Failure to ensure that vaccines are kept within a prescribed temperature range at all times can reduce their potency and cause primary vaccine failure. A postal survey of 103 general practices in a health district to assess vaccine handling and storage yielded 75 responses (73%). Poor practice was identified in receipt and storage of vaccines, temperature monitoring and control, management of vaccines during immunisation sessions, and disposal of partly used vaccines. The data suggest that the vaccine cold chain is not maintained with the degree of care necessary for safe practice. National guidelines need to be implemented conscientiously by all those involved with immunisation programmes if the effectiveness of vaccines is to be guaranteed.
USDA-ARS?s Scientific Manuscript database
We examined the persistence of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica Thompson inoculated on freshly-harvested table grapes under standard cold storage with initial and weekly sulfur dioxide (SO2) fumigation. L. monocytogenes and S. enterica Thompson were much more...
Trigueros, Lorena; Wojdyło, Aneta; Sendra, Esther
2014-07-09
Pomegranate juice (PGJ) is rich in phenolics which are potent antioxidants but also prone to interact with proteins. A yogurt rich in PGJ (40%) made from arils was elaborated (PGY) to determine the antioxidant activity and to estimate the phenolics-proteins interaction during 28 days of cold storage. Juice, yogurts, and protein-free permeates were analyzed for phenolic composition. Yogurt fermentation modified the anthocyanin profile of the initial PGJ, especially the content in cyanidin-3-O-glucoside. During storage, individual anthocyanin content in PGY decreased but it did not modify yogurt color. The analysis of permeates revealed that the degree of phenol-protein interaction depends on the type of phenolic, ellagic acid and dephinidin-3,5-O-diglucoside being the least bound phenolic compounds. The presence of PGJ in yogurt enhanced radical scavenging performance, whereas all the observed ferric reducing power ability of PGY was strictly due to the PGJ present. The 84.73% of total anthocyanins remained bound to proteins at the first day of storage and 90.06% after 28 days of cold storage, revealing the high affinity of anthocyanins for milk proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.
This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year.
Empirical Profiling of Cold Hydrogen Plumes Formed from Venting Of LH2 Storage Vessels: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttner, William J; Rivkin, Carl H; Schmidt, Kara
Liquid hydrogen (LH2) storage is a viable approach to assuring sufficient hydrogen capacity at commercial fuelling stations. Presently, LH2 is produced at remote facilities and then transported to the end-use site by road vehicles (i.e., LH2 tanker trucks). Venting of hydrogen to depressurize the transport storage tank is a routine part of the LH2 delivery process. The behaviour of cold hydrogen plumes has not been well-characterized because empirical field data is essentially non-existent. The NFPA 2 Hydrogen Storage Safety Task Group, which consists of hydrogen producers, safety experts, and CFD modellers, has identified the lack of understanding of hydrogen dispersionmore » during LH2 venting of storage vessel as a critical gap for establishing safety distances at LH2 facilities, especially commercial hydrogen fuelling stations. To address this need, the NREL sensor laboratory, in collaboration with the NFPA 2 Safety Task Group developed the Cold Hydrogen Plume Analyzer to empirically characterize the hydrogen plume formed during LH2 storage tank venting. A prototype Analyzer was developed and field-deployed at an actual LH2 venting operation with critical findings that included: - H2 being detected as much as 2 m lower than the release point, which is not predicted by existing models - A small and inconsistent correlation between oxygen depletion and the hydrogen concentration - A negligible to non-existent correlation between in-situ temperature and the hydrogen concentration The Analyzer is currently being upgraded for enhanced metrological capabilities including improved real-time spatial and temporal profiling of the plume and tracking of prevailing weather conditions. Additional deployments are planned to monitor plume behaviour under different wind, humidity, and temperatures. This data will be shared with the NFPA 2 Safety Task Group and ultimately will be used support theoretical models and code requirements prescribed in NFPA 2.« less
Oscar, Thomas P
2014-05-01
A study was undertaken to investigate and model behavior of Salmonella on chicken meat during cold storage at constant temperatures. Chicken meat (white, dark, or skin) portions (0.75 cm(3)) were inoculated with a single strain of Salmonella Typhimurium DT104 (2.8 log) followed by storage for 0 to 8 d at -8, 0, 8, 12, 14, or 16 °C for model development and at -4, 4, 10, or 14 °C for model validation. A general regression neural network model was developed with commercial software. Performance of the model was considered acceptable when the proportion of residuals (observed--predicted) in an acceptable prediction zone (pAPZ) from -1 log (fail-safe) to 0.5 logs (fail-dangerous) was ≥ 0.7. Growth of Salmonella Typhimurium DT104 on chicken meat was observed at 12, 14, and 16 °C and was highest on dark meat, intermediate on skin, and lowest on white meat. At lower temperatures (-8 to 10 °C) Salmonella Typhimurium DT104 remained at initial levels throughout 8 d of storage except at 4 °C where there was a small (0.4 log) but significant decline. The model had acceptable performance (pAPZ = 0.929) for dependent data (n = 482) and acceptable performance (pAPZ = 0.923) for independent data (n = 235). Results indicated that it is important to include type of meat as an independent variable in the model and that the model provided valid predictions of the behavior of Salmonella Typhimurium DT104 on chicken skin, white, and dark meat during storage for 0 to 8 d at constant temperatures from -8 to 16 °C. A model for predicting behavior of Salmonella on chicken meat during cold storage was developed and validated. The model will help the chicken industry to better predict and manage this risk to public health. Journal of Food Science © 2014 Institute of Food Technologists® No claim to original US government works.
USDA-ARS?s Scientific Manuscript database
Cold-induced sweetening in potato tubers is a costly problem for food industry. To systematically identify the proteins associated with this process, we employed a comparative proteomics approach using isobaric, stable isotope coded labels to compare the proteomes of potato tubers after 0 and 5 mont...
USDA-ARS?s Scientific Manuscript database
The effects of dielectric barrier discharge atmospheric cold plasma (DACP) treatment on the inactivation of Escherichia coli O157:H7 and aerobic microorganisms in Romaine lettuce packaged in a conventional commercial plastic container were evaluated during storage at 4 degrees C for 7 days. Effects ...
Leroi, F; Joffraud, J J
2000-09-01
Simultaneous effect of salt and smoke on chemical indices of cold-smoked salmon and on its shelf life, estimated by sensory analysis, was investigated during vacuum-packed storage at 5 degrees C. Salting salmon immediately decreased the pH in the flesh, probably due to the increase of the ionic force, then pH remained constant during storage. Total volatile base nitrogen and trimethylamine productions were mainly inhibited by the salt concentration in the flesh, whereas phenol had no effect. A highly synergistic effect between the two factors was observed on the shelf life response. When a high level of salt (5% wt/wt) or phenol (1 mg 100 g(-1)) was added separately, shelf life did not exceed 1 week, whereas it could reach more than 10 weeks when salt and smoke were added simultaneously. Different combinations were examined for shelf life characteristics of the product. For instance, 2 and 3% (wt/wt) of salt with, respectively, 0.80 and 0.45 mg 100 g(-1) of phenol were sufficient for a 4-week shelf life, satisfying most of French cold-smoked salmon producers and consumers. Correlation between microbiological responses measured in a previous study and chemical and sensory data were also established.
RSRM TP-H1148 Main Grain Propellant Crack Initiation Evaluation
NASA Technical Reports Server (NTRS)
Earnest, Todd E.
2005-01-01
Pressurized TP-HI 148 propellant fracture toughness testing was performed to assess the potential for initiation of visually undetectable cracks in the RSRM forward segment transition region during motor ignition. Two separate test specimens were used in this evaluation. Testing was performed in cold-gas and hot-fire environments, and under both static and dynamic pressurization conditions. Analysis of test results demonstrates safety factors against initiation of visually undetectable cracks in excess of 8.0. The Reusable Solid Rocket Motor (RSRM) forward segment is cast with PBAN propellant (TP-HI 148) to form T an 1 1-point star configuration that transitions to a tapered center perforated bore (see Figure 1). The geometry of the transition region between the fin valleys and the bore causes a localized area of high strain during horizontal storage. Updated analyses using worst-case mechanical properties at 40 F and improved modeling techniques indicated a slight reduction in safety margins over previous predictions. Although there is no history of strain induced cracks or flaws in the transition region propellant, a proactive test effort was initiated to better understand the implications of the new analysis, primarily the resistance of TP-H1148 propellant to crack initiation' during RSRM ignition.
Influence of Cold Exposure on Ventilation, Respiratory Heat Loss, and Pulmonary Deposition/Clearance
1990-06-25
mechanism(s) by which cold stimulates a change in breathing pattern were investigated in male Holstein calves between the ages of 1 and 3 months. The...with a decrease of 6 breaths/min over a 10C fall in temperature. McLean et al. (69) observed a similar relationship in 3 to 12-year-old cows with a...Whitmore, B.A. Young and R. Weingardt. Body heat storage, metabolism and respiration of cows abruptly exposed and acclimatized to cold and 18°C
Monitoring adherence to cold chain storage of vaccines in 2014 in the Małopolska province
Wiercińska, Ewa; Orzeł-Nowak, Anita; Mrozowska, Barbara; Foremny, Jarosław
2017-01-01
The principles of „cold chain” have been developed for the safe transport and storage of vaccines because of their sensitivity to temperature and are guidelines for use in all countries. Available information on adherence to the principles of the “cold chain” by healthcare providers in Poland is insufficient. The aim of the study was to assess compliance with these rules in storing vaccines by vaccination centers implementing an immunization program in 2014 in the Malopolska province The study was conducted in 111 vaccination centers in 19 districts of Malopolska, which represents 12% of all vaccination centers in the Malopolska province in 2014. The selection of vaccination centers for the study was not random. During a routine inspection of vaccination centers, an employee of the District Sanitary-Epidemiological Station conducted a study using a specially-prepared questionnaire. Inspections in vaccination centers which qualified for the study were conducted from March to September 2015. Among the analyzed vaccinations centers 90% had a refrigerator or refrigerator-freezer, and 10% a pharmaceutical refrigerator. 3.6% of refrigerators were produced before 2000. A 24-hour recording of the temperature was conducted in 67.6% vaccination centers. 40.5% of vaccination centers had a 24-hour system of recording and notification when temperature parameters had been exceeded in refrigeration devices. 22.5% of vaccination centers had emergency power supply. 13.5% of vaccination centers a power failure occurred in refrigerators, including 40% of the vaccination centers which had a text message notification system.. Total cost of destroyed vaccines amounted to over 20 thousand zl. Correct storage conditions are needed for vaccines to maintain their full effectiveness, which is why it is necessary to intensify efforts to ensure compliance with the principles of the cold chain in the storage of vaccines by healthcare providers.
The COLD-SAT Experiment for Cryogenic Fluid Management Technology
NASA Technical Reports Server (NTRS)
Schuster, J. R.; Wachter, J. P.; Vento, D. M.
1990-01-01
Future national space transportation missions will depend on the use of cryogenic fluid management technology development needs for these missions. In-space testing will be conducted in order to show low gravity cryogenic fluid management concepts and to acquire a technical data base. Liquid H2 is the preferred test fluid due to its propellant use. The design of COLD-SAT (Cryogenic On-orbit Liquid Depot Storage, Acquisition, and Transfer Satellite), an Expendable Launch Vehicle (ELV) launched orbital spacecraft that will perform subcritical liquid H2 storage and transfer experiments under low gravity conditions is studied. An Atlas launch vehicle will place COLD-SAT into a circular orbit, and the 3-axis controlled spacecraft bus will provide electric power, experiment control, and data management, attitude control, and propulsive accelerations for the experiments. Low levels of acceleration will provide data on the effects that low gravity might have on the heat and mass transfer processes used. The experiment module will contain 3 liquid H2 tanks; fluid transfer, pressurization and venting equipment; and instrumentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulaganathan, Jaganathan, E-mail: jagan.ulaganathan@mail.utoronto.ca; Newman, Roger C., E-mail: roger.newman@utoronto.ca
2014-06-01
The dynamic strain rate ahead of a crack tip formed during stress corrosion cracking (SCC) under a static load is assumed to arise from the crack propagation. The strain surrounding the crack tip would be redistributed as the crack grows, thereby having the effect of dynamic strain. Recently, several studies have shown cold work to cause accelerated crack growth rates during SCC, and the slip-dissolution mechanism has been widely applied to account for this via a supposedly increased crack-tip strain rate in cold worked material. While these interpretations consider cold work as a homogeneous effect, dislocations are generated inhomogeneously withinmore » the microstructure during cold work. The presence of grain boundaries results in dislocation pile-ups that cause local strain concentrations. The local strains generated from cold working α-brass by tensile elongation were characterized using electron backscatter diffraction (EBSD). The role of these local strains in SCC was studied by measuring the strain distributions from the same regions of the sample before cold work, after cold work, and after SCC. Though, the cracks did not always initiate or propagate along boundaries with pre-existing local strains from the applied cold work, the local strains surrounding the cracked boundaries had contributions from both the crack propagation and the prior cold work. - Highlights: • Plastic strain localization has a complex relationship with SCC susceptibility. • Surface relief created by cold work creates its own granular strain localization. • Cold work promotes crack growth but several other factors are involved.« less
McKenzie, Marian J; Chen, Ronan K Y; Harris, John C; Ashworth, Matthew J; Brummell, David A
2013-01-01
Cold-induced sweetening (CIS) is a serious post-harvest problem for potato tubers, which need to be stored cold to prevent sprouting and pathogenesis in order to maintain supply throughout the year. During storage at cold temperatures (below 10 °C), many cultivars accumulate free reducing sugars derived from a breakdown of starch to sucrose that is ultimately cleaved by acid invertase to produce glucose and fructose. When affected tubers are processed by frying or roasting, these reducing sugars react with free asparagine by the Maillard reaction, resulting in unacceptably dark-coloured and bitter-tasting product and generating the probable carcinogen acrylamide as a by-product. We have previously identified a vacuolar invertase inhibitor (INH2) whose expression correlates both with low acid invertase activity and with resistance to CIS. Here we show that, during cold storage, overexpression of the INH2 vacuolar invertase inhibitor gene in CIS-susceptible potato tubers reduced acid invertase activity, the accumulation of reducing sugars and the generation of acrylamide in subsequent fry tests. Conversely, suppression of vacuolar invertase inhibitor expression in a CIS-resistant line increased susceptibility to CIS. The results show that post-translational regulation of acid invertase by the vacuolar invertase inhibitor is an important component of resistance to CIS. © 2012 Blackwell Publishing Ltd.
Handigund, Mallikarjun; Bae, Tae Won; Lee, Jaehyeon; Cho, Yong Gon
2016-02-01
Platelets play a vital role in hemostasis and thrombosis, and their demand and usage has multiplied many folds over the years. However, due to the short life span and storage constraints on platelets, it is allowed to store them for up to 7 days at room temperature (RT); thus, there is a need for an alternative storage strategy for extension of shelf life. Current investigation involves the addition of 50 mM N acetylcysteine (NAC) in refrigerated concentrates. Investigation results revealed that addition of NAC to refrigerated concentrates prevented platelet activation and reduced the sialidase activity upon rewarming as well as on prolonged storage. Refrigerated concentrates with 50 mM NAC expressed a 23.91 ± 6.23% of CD62P (P-Selectin) and 22.33 ± 3.42% of phosphotidylserine (PS), whereas RT-stored platelets showed a 46.87 ± 5.23% of CD62P and 25.9 ± 6.48% of phosphotidylserine (PS) after 5 days of storage. Further, key metabolic parameters such as glucose and lactate accumulation indicated reduced metabolic activity. Taken together, investigation and observations indicate that addition of NAC potentially protects refrigerated concentrates by preventing platelet activation, stabilizing sialidase activity, and further reducing the metabolic activity. Hence, we believe that NAC can be a good candidate for an additive solution to retain platelet characteristics during cold storage and may pave the way for extension of storage shelf life. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ghazy, Noureldin Abuelfadl; Suzuki, Takeshi; Amano, Hiroshi; Ohyama, Katsumi
2014-03-01
Humidity-controlled cold storage, in which the water vapour pressure is saturated, can prolong the survival of the predatory mites Neoseiulus californicus (McGregor) and Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). However, information on the optimum air temperature for long-term storage by this method is limited. The authors evaluated the survival of mated adult females of N. californicus and P. persimilis at 5.0, 7.5, 10.0 and 12.5 °C under saturated water vapour condition (vapour pressure deficit 0.0 kPa). N. californicus showed a longer survival time than P. persimilis at all the air temperatures. The longest mean survival time of N. californicus was 11 weeks at 7.5 °C, whereas that of P. persimilis was 8 weeks at 5.0 °C. After storage at 7.5 °C for 8 weeks, no negative effect on post-storage oviposition was observed in N. californicus, whereas the oviposition of P. persimilis stored at 5.0 °C for 8 weeks was significantly reduced. The interspecific variation in the response of these predators to low air temperature might be attributed to their natural habitat and energy requirements. These results may be useful for the long-term storage of these predators, which is required for cost-effective biological control. © 2013 Society of Chemical Industry.
Lee, Seung-Jae; Lee, Seung Yun; Kim, Gap-Don; Kim, Geun-Bae; Jin, Sang Keun; Hur, Sun Jin
2017-08-01
Active packaging refers to the mixing of additive agents into packaging materials with the purpose of maintaining or extending food product quality and shelf life. The aim of this study was to develop an easy and cheap active packaging for beef. Beef loin samples were divided into three packaging groups (C, ziplock bag packaging; T1, vacuum packaging; T2, active packaging) and stored at 4 °C for 21 days. The water-holding capacity was significantly (P < 0.05) higher in C and T2 than in T1 for up to 7 days of storage. The TBARS value was significantly (P < 0.05) lower in T1 and T2 after 7 days of storage. The counts of some microorganism were significantly (P < 0.05) lower in T1 and T2 after 7 days of storage; the total bacterial count and Escherichia coli count were lowest in T2 at the end of storage. These results indicate that active packaging using self-CO 2 -generation materials can extend the shelf life similarly to that observed with vacuum packaging, and that the active packaging method can improve the quality characteristics of beef during cold storage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Food safety hazards lurk in the kitchens of young adults.
Byrd-Bredbenner, Carol; Maurer, Jaclyn; Wheatley, Virginia; Cottone, Ellen; Clancy, Michele
2007-04-01
Food mishandling in home kitchens likely causes a significant amount of foodborne disease; however, little is known about the food safety hazards lurking in home kitchens. The purposes of this study were to audit the kitchens of young adults with education beyond high school to identify food safety problems and develop recommendations for education efforts. Researchers developed a criterion-referenced home kitchen observation instrument to assess compliance of home food storage and rotation practices (e.g., temperature), sanitation and chemical storage, and general kitchen condition (e.g., infestation) with recommended practices. The instrument contained seven scales: Kitchen Cleanliness (eight items), Appliance Cleanliness (three items), Cleaning Supplies Availability (eight items), Temperatures (Food Thermometer Access & Refrigerator/Freezer Temperatures) (five items), Cold Food Storage (seven items), Dry Food Storage (eight items), and Poisons Storage (two items). Descriptive statistics were conducted to describe the study population, as a whole, and by gender. A total of 154 young adults (mean age, 20.7+/- 1.3 SD) enrolled in a northeastern university participated. Participants scored 70% or higher on Poisons Storage, Dry Food Storage, Kitchen Cleanliness, and Cleaning Supplies Availability scales but less than 60% on the Appliance Cleanliness and Cold Food Storage scales. Performance was lowest on the Temperatures scale. Females scored significantly higher than males on the Kitchen Cleanliness and Cleaning Supply Availability scales. Average refrigerator and freezer temperatures were higher than recommendations. Food safety education targeted at this young adult population needs to evolve into focused messages pertaining to the key food safety violations in this population.
USDA-ARS?s Scientific Manuscript database
Regulation of sugar metabolism in cold-stored potato tubers has significant ramifications for potato chip and French fry producers and consumers. Though low-temperature storage reduces losses due to sprouting and disease, it induces accumulation of the reducing sugars glucose and fructose. These rea...
USDA-ARS?s Scientific Manuscript database
Regulation of sugar metabolism in cold-stored potato tubers has significant ramifications for potato chip and French fry producers and consumers. Though low-temperature storage reduces losses due to sprouting and disease, it induces accumulation of the reducing sugars glucose and fructose. These rea...
Application of low concentrations of ozone during the cold storage of table grapes
USDA-ARS?s Scientific Manuscript database
The control of postharvest decay of table grapes, caused by Botrytis cinerea and other pathogens, by ozone was evaluated in chambers and commercial storage facilities. Ozone at 0.100 µL/L or higher inhibited the spread of gray mold among stored grapes. Ozone diffusion into many types of commercial p...
Mandarin flavor and aroma volatile composition are strongly influenced by holding temperature
USDA-ARS?s Scientific Manuscript database
Mandarin flavor quality often declines during storage but the respective contributions to the flavor disorder of warm versus cold temperature portions of the storage regime were unknown. To determine this ‘W. Murcott’ mandarins were stored for either 6 weeks at a continuous 5 ºC or held at 20 ºC fo...
USDA-ARS?s Scientific Manuscript database
Postharvest management of apple fruit ripening using controlled atmosphere (CA) cold storage can be enhanced as CA oxygen concentration is decreased to close to the anaerobic compensation point (ACP). Monitoring fruit chlorophyll fluorescence is one technology available to assess fruit response to ...
Container Seedling Handling and Storage in the Southeastern States
Kasten R. Dumroese; James P. Barnett
2004-01-01
Most container seedlings grown in the southeastern US are outplanted during winter, although 10 to 20% are outplanted during summer. Longleaf pine accounts for more than 80% of all container seedlings produced. Very little information is published on cold hardiness and storage effects on container-grown southern pines and hardwoods. In general, growers attempt to...
Dynamic-Type Ice Thermal Storage Systems
NASA Astrophysics Data System (ADS)
Ohira, Akiyoshi
This paper deals with reviews for research and development of a dynamic-type ice thermal storage system. This system has three main features. First, the ice thermal storage tank and the ice generator are separate. Second, ice is transported to the tank from the ice generator by water or air. Third, the ice making and melting processes are operated at the same time. Outlet water temperature from the dynamic-type ice thermal storage tank remains low for a longer time. In this paper, dynamic-Type ice thermal storage systems are divided into three parts: the ice making part, the ice transport part, and the cold energy release part. Each part is reviewed separately.
Measuring Device for Air Speed in Macroporous Media and Its Application Inside Apple Storage Bins
Geyer, Martin; Praeger, Ulrike; Scaar, Holger; Neuwald, Daniel A.; Gottschalk, Klaus
2018-01-01
In cold storage facilities of fruit and vegetables, airflow is necessary for heat removal. The design of storage facilities influences the air speed in the surrounding of the product. Therefore, knowledge about airflow next to the product is important to plan the layout of cold stores adapted to the requirements of the products. A new sensing device (ASL, Air speed logger) is developed for omnidirectional measurement of air speed between fruit or vegetables inside storage bins or in bulk. It consists of four interconnected plastic spheres with 80 mm diameter each, adapted to the size of apple fruit. In the free space between the spheres, silicon diodes are fixed for the airflow measurement based on a calorimetric principle. Battery and data logger are mounted inside the spheres. The device is calibrated in a wind tunnel in a measuring range of 0–1.3 m/s. Air speed measurements in fruit bulks on laboratory scale and in an industrial fruit store show air speeds in gaps between fruit with high stability at different airflow levels. Several devices can be placed between stored products for determination of the air speed distribution inside bulks or bin stacks in a storage room. PMID:29438339
The cold chain and the expanded program on immunization in Chile: an evaluation exercise.
Carrasco, R; Dinstrans, R; Montaldo, I; Medina, E; Reyes, M; Vergara, I; Piwonka, A; Thomas, E R
1982-01-01
It was decided that a study of the cold chain should be conducted in Chile in an effort to identify situations that could be corrected and to improve the technical and administrative development of the program. Specifically, study objectives were as follows: to determine the degree to which the EPI standards for procurement, receipt, transfer, control, maintenance, and distribution of vaccines were being met; to assess the turnover, knowledge, and training of auxiliary vaccination personnel against the relevant standards established for vaccine and cold chain management; to determine the antigenic potency of measles vaccine samples available at the time visits were made to local clinics, regional health storage sites, and the central supply facility; and to test a written instrument designed for the express purpose of assessing achievement of the first 2 objectives cited. The study sought to provide a descriptive assessment of work being performed at the central, regional, and local levels in the Metropolitan Region. The operating units involved included the airport and main supply center at the central level; the 7 storage facilities of the Metropolitan Region's 78 local clinics providing maternal and child health care. 40 clinics, selected by lot, represented 51% of the region's 78 clinics and provided coverage for 49% of the population assigned to the region's health services. The units studied failed to satisfy half the investigated Expanded Program for Immunization (EPI) standards, i.e., the average achievement rating of the 3 levels combined (49.3%) fell short of half the desired 100%. The airport unit met very few of the EPI implementation standards, scoring only 20% in this area. Deficiencies were found in systems for shipping vaccine in cold boxes, for making cold rooms permanently available, and for providing adequate vaccine transportation. The central supply facility, responsible for the purchase, storage, distribution, and maintenance of an adequate vaccine stock, had an achievement score of only 41%. The regional level, represented by the 7 storage facilities studied, obtained a lower overall achievement score than the other 2 levels and appears to be a high-risk link in the cold chain. The local level, represented by the 40 clinics studied, attained the highest average achievement score of any level (57%). Yet, serious deficiencies also emerged at this level, particularly regarding implementation and control activities. These deficiencies were aggravated by the fact that vaccines undoubtedly encounter a larger number of potentially damaging contingencies at the local level than they do elsewhere. Suggestions are made for overcoming these difficulties.
NASA Technical Reports Server (NTRS)
Adams, Neil S.; Bollenbacher, Gary
1992-01-01
This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.
Rosa C. Goodman; Kent G. Apostol; Douglass F. Jacobs; Barrett C. Wilson; Emile S. Gardiner
2007-01-01
Water oak is often used in afforestation projects in the Lower Mississippi Alluvial Valley, but its field performance is often poor due to low survival rates and severe top dieback immediately after planting. The poor physiological quality of planting stock may be a contributing factor to this transplanting problem. In this study, cold storage was investigated to...
NASA Astrophysics Data System (ADS)
Jameson, S.
2015-12-01
Most scientists agree that greenhouse gases (GHG) such as carbon dioxide (CO2), Methane (CH4), and nitrous oxide (N2O) are major contributors to the global warming trend and climate change. One effort to mitigate anthropogenic sourced CO2 is through carbon capture and sequestration. Depleted oil and gas reservoirs due to their known trapping capability, in-place infrastructure, and proximity to carbon emission sources are good candidates for possible CO2 storage. The Vedder formation is one of three reservoirs identified in the San Joaquin Basin that meets standards for possible storage. An analysis of net fluid production data (produced minus injected) from discovery to the present is used to determine the reservoir volume available for CO2 storage. Data regarding reservoir pressure response to injection and production of fluids include final shut-in pressures from drill stem test, static bottom-hole pressure measurements from well completion histories, and idle well fluid level measurements for recent pressure data. Proprietary experimental pressure, volume and temperature data (PVT), gas oil ratios (GOR), well by well permeability, porosity, and oil gravity, and relative permeability and perforation intervals are used to create static and dynamic multiphase fluid flow models. All data collected was logged and entered into excel spreadsheets and mapping software to create subsurface structure, reservoir thickness and pressure maps, cross sections, production/injection charts on a well-by-well basis, and both static and dynamic flow models. This data is used to determine storage capacity and the amount of pressure variance within the field to determine how the reservoir will react to CO2 injection and to gain insight into the subsurface fluid movement of CO2. Results indicate a homogenous field with a storage capacity of approximately 26 Million Metric Tons of CO2. Analysis of production by stream and pressure change through time indicates a strong water drive. The connection to a large and active aquifer allows pressure changes to be spread over large areas. Flow modeling will help to determine the impact that the water influx will have on storage capacity and EOR production potential.
Applications of fidelity measures to complex quantum systems
2016-01-01
We revisit fidelity as a measure for the stability and the complexity of the quantum motion of single-and many-body systems. Within the context of cold atoms, we present an overview of applications of two fidelities, which we call static and dynamical fidelity, respectively. The static fidelity applies to quantum problems which can be diagonalized since it is defined via the eigenfunctions. In particular, we show that the static fidelity is a highly effective practical detector of avoided crossings characterizing the complexity of the systems and their evolutions. The dynamical fidelity is defined via the time-dependent wave functions. Focusing on the quantum kicked rotor system, we highlight a few practical applications of fidelity measurements in order to better understand the large variety of dynamical regimes of this paradigm of a low-dimensional system with mixed regular–chaotic phase space. PMID:27140967
NASA Technical Reports Server (NTRS)
Haviland, J. K.; Schroeder, J. C.
1978-01-01
As part of an overall study of the scaling laws for the fluctuating pressures induced on the wings and flaps of STOL aircraft by jet engine impingement, an experimental investigation was made of the near field fluctuating pressures behind a cold circular jet, both when it was free and when it was impinging on a flat plate. Miniature static pressure probes were developed for measurements in the free jet and on the flat plate which were connected by plastic tubing to 1/8 inch microphones and acted as pressure transducers. Using a digital correlator together with an FFT program on the CDC 6400 computer, spectral densities, relative amplitudes, phase lags, and coherences were also obtained for the signals from pairs of these probes, and were used to calibrate these probes directly against microphones. This system of instrumentation was employed to obtain single point rms and third octave surveys of the static pressures in the free jet and on the surface of the plate.
Independent cellular effects of cold ischemia and reperfusion: experimental molecular study.
Lledó-García, E; Humanes-Sánchez, B; Mojena-Sánchez, M; Rodrígez, J C J; Hernández-Fernández, C; Tejedor-Jorge, A; Fernández, A L
2013-04-01
There is less information available on cell cultures on the exclusive effects of either duration of cold ischemia (CI) or rewarming-reperfusion in the kidney subjected to initial warm ischemia (WI). Therefore, the goals of our work were: (1) to evaluate the consequences on tubular cellular viability of different durations of CI on a kidney after an initial period of WI, and (2) to analyze the additional effect on tubular cell viability of rewarming of the same kidney. Sixteen mini-pig were used. All the animals were performed a right nephrectomy after 45-minute occlusion of the vascular pedicle. The kidneys were then divided into 2 groups (phase 1): cold storage in university of wisconsin (UW) solution for 3 hours (group A, n = 8) at 4°C, or cold storage in UW for 12 hours (group B, n = 8) at 4°C. Four organs of group A and four organs of group B were autotrasplanted (AT) and reperfused for 1 hour (phase 2). Nephrectomy was finally done. Biopsies were taken from all groups to perform cultures of proximal tubule epithelium cells. The biopsies were subjected to studies of cellular morphological viability (contrast phase microscopy [CPM]) and quantitative (confluence cell [CC]) parameters. Phase of pure CI effects (phase 1): Both CC rate and CPM parameters were significantly lower in group B compared with group A, where cell activity reached almost normal results. Phase of CI + AT (phase 2): At produced additional harmful effects in cell cultures compared with those obtained in phase 1, more evident in group B cells. The presence of cold storage followed by rewarming-reperfusion induces independent and cumulative detrimental effects in viability of renal proximal tubule cells. CI periods ≤ 3 hours may ameliorate the injuries secondary to reperfusion in comparison with longer CI periods. Copyright © 2013 Elsevier Inc. All rights reserved.
Vernalizing cold is registered digitally at FLC.
Angel, Andrew; Song, Jie; Yang, Hongchun; Questa, Julia I; Dean, Caroline; Howard, Martin
2015-03-31
A fundamental property of many organisms is an ability to sense, evaluate, and respond to environmental signals. In some situations, generation of an appropriate response requires long-term information storage. A classic example is vernalization, where plants quantitatively sense long-term cold and epigenetically store this cold-exposure information to regulate flowering time. In Arabidopsis thaliana, stable epigenetic memory of cold is digital: following long-term cold exposure, cells respond autonomously in an all-or-nothing fashion, with the fraction of cells that stably silence the floral repressor flowering locus C (FLC) increasing with the cold exposure duration. However, during cold exposure itself it is unknown whether vernalizing cold is registered at FLC in individual cells in an all-or-nothing (digital) manner or is continuously varying (analog). Using mathematical modeling, we found that analog registration of cold temperature is problematic due to impaired analog-to-digital conversion into stable memory. This disadvantage is particularly acute when responding to short cold periods, but is absent when cold temperatures are registered digitally at FLC. We tested this prediction experimentally, exposing plants to short periods of cold interrupted with even shorter warm breaks. For FLC expression, we found that the system responds similarly to both interrupted and uninterrupted cold, arguing for a digital mechanism integrating long-term temperature exposure.
Vernalizing cold is registered digitally at FLC
Angel, Andrew; Song, Jie; Yang, Hongchun; Questa, Julia I.; Dean, Caroline; Howard, Martin
2015-01-01
A fundamental property of many organisms is an ability to sense, evaluate, and respond to environmental signals. In some situations, generation of an appropriate response requires long-term information storage. A classic example is vernalization, where plants quantitatively sense long-term cold and epigenetically store this cold-exposure information to regulate flowering time. In Arabidopsis thaliana, stable epigenetic memory of cold is digital: following long-term cold exposure, cells respond autonomously in an all-or-nothing fashion, with the fraction of cells that stably silence the floral repressor FLOWERING LOCUS C (FLC) increasing with the cold exposure duration. However, during cold exposure itself it is unknown whether vernalizing cold is registered at FLC in individual cells in an all-or-nothing (digital) manner or is continuously varying (analog). Using mathematical modeling, we found that analog registration of cold temperature is problematic due to impaired analog-to-digital conversion into stable memory. This disadvantage is particularly acute when responding to short cold periods, but is absent when cold temperatures are registered digitally at FLC. We tested this prediction experimentally, exposing plants to short periods of cold interrupted with even shorter warm breaks. For FLC expression, we found that the system responds similarly to both interrupted and uninterrupted cold, arguing for a digital mechanism integrating long-term temperature exposure. PMID:25775579
Kontou, S; Tsipi, D; Tzia, C
2004-11-01
The effect of storage at 5 degrees C and of thermal processing by cooking at 100 degrees C and sterilization at 121 degrees C for 15 min on maneb residues in tomato homogenates was investigated. Remaining maneb and its toxic metabolite ethylenethiourea (ETU) were measured after each treatment by headspace gas chromatography with flame-photometric detection and by high-performance liquid chromatography with photo-diode array detection, respectively. No significant loss of maneb was observed during cold storage for up to 6 weeks, taking into account analytical variability. Conversely, thermal treatment resulted in substantial degradation of maneb with extensive conversion to ETU. After cooking, only 26 +/- 1% (+/- SE, n = 8) of initial maneb residues remained in the samples, whilst the conversion to ETU was 28 +/- 1% (mol mol(-1)) (+/- SE, n = 4). Sterilization eliminated the residues of the parent compound giving rise to conversion to ETU up to 32 +/- 1% (mol mol(-1)) (+/- SE, n = 4).
Thermal stability, storage and release of proteins with tailored fit in silica
NASA Astrophysics Data System (ADS)
Chen, Yun-Chu; Smith, Tristan; Hicks, Robert H.; Doekhie, Aswin; Koumanov, Francoise; Wells, Stephen A.; Edler, Karen J.; van den Elsen, Jean; Holman, Geoffrey D.; Marchbank, Kevin J.; Sartbaeva, Asel
2017-04-01
Biological substances based on proteins, including vaccines, antibodies, and enzymes, typically degrade at room temperature over time due to denaturation, as proteins unfold with loss of secondary and tertiary structure. Their storage and distribution therefore relies on a “cold chain” of continuous refrigeration; this is costly and not always effective, as any break in the chain leads to rapid loss of effectiveness and potency. Efforts have been made to make vaccines thermally stable using treatments including freeze-drying (lyophilisation), biomineralisation, and encapsulation in sugar glass and organic polymers. Here for the first time we show that proteins can be enclosed in a deposited silica “cage”, rendering them stable against denaturing thermal treatment and long-term ambient-temperature storage, and subsequently released into solution with their structure and function intact. This “ensilication” method produces a storable solid protein-loaded material without the need for desiccation or freeze-drying. Ensilication offers the prospect of a solution to the “cold chain” problem for biological materials, in particular for vaccines.
Thermal stability, storage and release of proteins with tailored fit in silica.
Chen, Yun-Chu; Smith, Tristan; Hicks, Robert H; Doekhie, Aswin; Koumanov, Francoise; Wells, Stephen A; Edler, Karen J; van den Elsen, Jean; Holman, Geoffrey D; Marchbank, Kevin J; Sartbaeva, Asel
2017-04-24
Biological substances based on proteins, including vaccines, antibodies, and enzymes, typically degrade at room temperature over time due to denaturation, as proteins unfold with loss of secondary and tertiary structure. Their storage and distribution therefore relies on a "cold chain" of continuous refrigeration; this is costly and not always effective, as any break in the chain leads to rapid loss of effectiveness and potency. Efforts have been made to make vaccines thermally stable using treatments including freeze-drying (lyophilisation), biomineralisation, and encapsulation in sugar glass and organic polymers. Here for the first time we show that proteins can be enclosed in a deposited silica "cage", rendering them stable against denaturing thermal treatment and long-term ambient-temperature storage, and subsequently released into solution with their structure and function intact. This "ensilication" method produces a storable solid protein-loaded material without the need for desiccation or freeze-drying. Ensilication offers the prospect of a solution to the "cold chain" problem for biological materials, in particular for vaccines.
Kitamoto, D; Yanagishita, H; Endo, A; Nakaiwa, M; Nakane, T; Akiya, T
2001-01-01
Antiagglomeration effects of different surfactants on ice slurry formation were examined to improve the efficiency of an ice-water slurry system to be used for cold thermal storage. Among the chemical surfactants tested, a nonionic surfactant, poly(oxyethylene) sorbitan dioleate, was found to show a greater antiagglomeration effect on the slurry than anionic, cationic, or amphoteric surfactants. More interestingly, diacylmannosylerythritol, a glycolipid biosurfactant produced by a yeast strain of Candida antarctica, exhibited a remarkable effect on the slurry, attaining a high ice packing factor (35%) for 8 h at a biosurfactant concentration of 10 mg/L. These nonionic glycolipid surfactants are likely to effectively adsorb on the ice surface in a highly regulated manner to suppress the agglomeration or growth of the ice particles. This is the first report on the utilization of biosurfactant for thermal energy storage, which may significantly expand the commercial applications of the highly environmentally friendly slurry system.
Kim, Kyungmok; Ko, Joon Soo
2016-01-01
This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating. PMID:28773873
Kim, Kyungmok; Ko, Joon Soo
2016-09-03
This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating.
Pesis, Edna; Ibáñez, Ana M; Phu, My Lin; Mitcham, Elizabeth J; Ebeler, Susan E; Dandekar, Abhaya M
2009-04-08
The plant hormone ethylene regulates climacteric fruit ripening and plays a major role in the development of superficial scald in apple fruits during cold storage. The effect of cold storage at 0 degrees C on development of superficial scald and bitter pit (BP) in transgenic Greensleeves (GS) apples suppressed for ethylene biosynthesis was investigated. Four apple lines were used: untransformed GS; line 68G, suppressed for 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO); and lines 103Yand 130Y, suppressed for ACC synthase (ACS). Fruits from the transformed lines 68G, 103Y, and 130Y produced very little ethylene during 3 months of cold storage at 0 degrees C and after subsequent transfer to 20 degrees C, whereas untransformed fruits produced significant ethylene during cold storage, which increased dramatically at 20 degrees C. Respiration, expressed as CO(2) production, was similar in all four apple lines. After 2 months at 0 degrees C, all apple lines showed some BP symptoms, but lines 68G and 103Y were more affected than untransformed GS or line 130Y. Both transformed and untransformed apples produced alpha-farnesene, but concentrations were lower in yellow fruit than in green fruit in all lines but 68G. Line 68G produced the most alpha-farnesene after 2 months at 0 degrees C, including both (E,E) alpha-farnesene and (Z,E) alpha-farnesene. Concentrations of (E,E) alpha-farnesene were 100 times greater than those of (Z,E) alpha-farnesene in all lines. After 4 months at 0 degrees C plus 1 week at 20 degrees C, untransformed GS apples exhibited the most superficial scald, whereas fruits from lines 68G and 103Y were less affected and line 130Y had no scald. Superficial scald severity was higher in green fruit than in yellow fruit in all affected lines. These lines also exhibited significant production of 6-methyl-5-hepten-2-one (MHO), a major oxidation product of (E,E) alpha-farnesene. Line 130Y neither exhibited superficial scald nor produced MHO. It is shown here that even transgenic apples suppressed for ethylene biosynthesis genes can produce alpha-farnesene, which in turn can oxidize to free radicals and MHO, leading to scald development.
Integrating Sensor-Collected Intelligence
2008-11-01
collecting, processing, data storage and fusion, and the dissemination of information collected by Intelligence, Surveillance, and Reconnaissance (ISR...Grid – Bandwidth Expansion (GIG-BE) program) to provide the capability to transfer data from sensors to accessible storage and satellite and airborne...based ISR is much more fragile. There was a purposeful drawdown of these systems following the Cold War and modernization programs were planned to
Premature germination of forest tree seed during natural storage in duff
I. T. Haig
1932-01-01
For some years forest investigators in the Pacific Northwest have been aware of the considerable quantity of tree seed which accumulates in the duff of heavy virgin timber stands and apparently retains its vitality for a few years in a sort of natural cold-storage condition. The major portion of the luxuriant regeneration which frequently follows logging and forest...
The surface and deep structure of the waterfall illusion.
Wade, Nicholas J; Ziefle, Martina
2008-11-01
The surface structure of the waterfall illusion or motion aftereffect (MAE) is its phenomenal visibility. Its deep structure will be examined in the context of a model of space and motion perception. The MAE can be observed following protracted observation of a pattern that is translating, rotating, or expanding/contracting, a static pattern appears to move in the opposite direction. The phenomenon has long been known, and it continues to present novel properties. One of the novel features of MAEs is that they can provide an ideal visual assay for distinguishing local from global processes. Motion during adaptation can be induced in a static central grating by moving surround gratings; the MAE is observed in the static central grating but not in static surrounds. The adaptation phase is local and the test phase is global. That is, localised adaptation can be expressed in different ways depending on the structure of the test display. These aspects of MAEs can be exploited to determine a variety of local/global interactions. Six experiments on MAEs are reported. The results indicated that relational motion is required to induce an MAE; the region adapted extends beyond that stimulated; storage can be complete when the MAE is not seen during the storage period; interocular transfer (IOT) is around 30% of monocular MAEs with phase alternation; large field spiral patterns yield MAEs with characteristic monocular and binocular interactions.
Spinelli, Ana Cláudia N. F.; Sant'Ana, Anderson S.; Rodrigues-Junior, Salatir; Massaguer, Pilar R.
2009-01-01
The prevention of spoilage by Alicyclobacillus acidoterrestris is a current challenge for fruit juice and beverage industries worldwide due to the bacterium's acidothermophilic growth capability, heat resistance, and spoilage potential. This study examined the effect of storage temperature on A. acidoterrestris growth in hot-filled orange juice. The evolution of the A. acidoterrestris population was monitored under six different storage conditions after pasteurization (at 92°C for 10 s), maintenance at 85°C for 150 s, and cooling with water spray to 35°C in about 30 min and using two inoculum levels: <101 and 101 spores/ml. Final cooling and storage conditions were as follows: treatment 1, 30°C for the bottle cold point and storage at 35°C; treatment 2, 30°C for 48 h and storage at 35°C; treatment 3, 25°C for the bottle cold point and storage at 35°C; treatment 4, 25°C for 48 h and storage at 35°C; treatment 5, storage at 20°C (control); and treatment 6, filling and storage at 25°C. It was found that only in treatment 5 did the population remain inhibited during the 6 months of orange juice shelf life. By examining treatments 1 to 4, it was observed that A. acidoterrestris predicted growth parameters were significantly influenced (P < 0.05) either by inoculum level or cooling and storage conditions. The time required to reach a 104 CFU/ml population of A. acidoterrestris was considered to be an adequate parameter to indicate orange juice spoilage by A. acidoterrestris. Therefore, hot-filled orange juice should be stored at or below 20°C to avoid spoilage by this microorganism. This procedure can be considered a safe and inexpensive alternative to other treatments proposed earlier. PMID:19801469
An evaluation of cold chain system for vaccines in Bangalore.
Sudarshan, M K; Sundar, M; Girish, N; Narendra, S; Patel, N G
1994-01-01
The cold chain plays a major role in the universal immunization programme which helps in preventing against six major killer diseases in children. We collected 144 study samples randomly from different parts of Bangalore to know the training status of personnel, refrigeration facilities, storage, monitoring and potency of vaccines. It was observed that 6.6% of general practitioners were trained under Universal Immunization Programme, monitoring was not satisfactory, and two of the OPV samples from medical practitioners had an unsatisfactory titre dose. Comprehensive orientation/training on cold chain is essential for medical practitioners and other professionals.
Barrett C. Wilson; Douglass F. Jacobs
2005-01-01
Electrolyte leakage (EL) has successfully predicted cold hardiness of conifer seedlings in both research and commercial settings. EL has also been performed experimentally on European hardwood species. The objective of our study was to determine if further refinement and adjustment of EL methodology to account for the unique characteristics of hardwood seedlings (e.g...
Evaluation of Losses Of Cold Energy of Cryogen Products in The Transport Systems
NASA Astrophysics Data System (ADS)
Uglanov, Dmitry; Sarmin, Dmitry; Tsapkova, Alexandra; Burdina, Yana
2017-12-01
At present, there are problems of energy saving in various areas of human life and in power complexes of industrial plants. One possible solution to the problem of increasing energy efficiency is the use of liquefied natural gas and its cold energy. Pipelines for fuel or gas supply in cryogen supply systems have different length depending on the mutual position of storage and cryogen consumption devices relatively to a start construction. Cryogen supply and transport systems include a lot of fittings of different assortment. Reservoirs can be installed on different elevation points. To reduce heat inleak and decrease cold energy of cryogen product different kinds of thermal insulation are used. Cryogen pipelines provide required operation conditions of storage and gasifying systems. The aim of the thermal calculation of cryogen transport and supply systems is to define the value of cryogen heat. In this paper it is shown values of cryogen temperature rise due to heat inleaks at cryogen’s transfer along transport systems for ethane, methane, oxygen and nitrogen were calculated. Heat inleaks also due to hydraulic losses were calculated. Specific losses of cold energy of cryogen product for laminar and turbulent flow were calculated. Correspondences of temperature rise, critical pipeline’s length and Reynolds number were defined for nitrogen, argon, methane and oxygen.
Dare, Anna J; Logan, Angela; Prime, Tracy A; Rogatti, Sebastian; Goddard, Martin; Bolton, Eleanor M; Bradley, J Andrew; Pettigrew, Gavin J; Murphy, Michael P; Saeb-Parsy, Kourosh
2015-11-01
Free radical production and mitochondrial dysfunction during cardiac graft reperfusion is a major factor in post-transplant ischemia-reperfusion (IR) injury, an important underlying cause of primary graft dysfunction. We therefore assessed the efficacy of the mitochondria-targeted anti-oxidant MitoQ in reducing IR injury in a murine heterotopic cardiac transplant model. Hearts from C57BL/6 donor mice were flushed with storage solution alone, solution containing the anti-oxidant MitoQ, or solution containing the non-anti-oxidant decyltriphenylphosphonium control and exposed to short (30 minutes) or prolonged (4 hour) cold preservation before transplantation. Grafts were transplanted into C57BL/6 recipients and analyzed for mitochondrial reactive oxygen species production, oxidative damage, serum troponin, beating score, and inflammatory markers 120 minutes or 24 hours post-transplant. MitoQ was taken up by the heart during cold storage. Prolonged cold preservation of donor hearts before IR increased IR injury (troponin I, beating score) and mitochondrial reactive oxygen species, mitochondrial DNA damage, protein carbonyls, and pro-inflammatory cytokine release 24 hours after transplant. Administration of MitoQ to the donor heart in the storage solution protected against this IR injury by blocking graft oxidative damage and dampening the early pro-inflammatory response in the recipient. IR after heart transplantation results in mitochondrial oxidative damage that is potentiated by cold ischemia. Supplementing donor graft perfusion with the anti-oxidant MitoQ before transplantation should be studied further to reduce IR-related free radical production, the innate immune response to IR injury, and subsequent donor cardiac injury. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Dare, Anna J.; Logan, Angela; Prime, Tracy A.; Rogatti, Sebastian; Goddard, Martin; Bolton, Eleanor M.; Bradley, J. Andrew; Pettigrew, Gavin J.; Murphy, Michael P.; Saeb-Parsy, Kourosh
2015-01-01
Background Free radical production and mitochondrial dysfunction during cardiac graft reperfusion is a major factor in post-transplant ischemia-reperfusion (IR) injury, an important underlying cause of primary graft dysfunction. We therefore assessed the efficacy of the mitochondria-targeted anti-oxidant MitoQ in reducing IR injury in a murine heterotopic cardiac transplant model. Methods Hearts from C57BL/6 donor mice were flushed with storage solution alone, solution containing the anti-oxidant MitoQ, or solution containing the non–anti-oxidant decyltriphenylphosphonium control and exposed to short (30 minutes) or prolonged (4 hour) cold preservation before transplantation. Grafts were transplanted into C57BL/6 recipients and analyzed for mitochondrial reactive oxygen species production, oxidative damage, serum troponin, beating score, and inflammatory markers 120 minutes or 24 hours post-transplant. Results MitoQ was taken up by the heart during cold storage. Prolonged cold preservation of donor hearts before IR increased IR injury (troponin I, beating score) and mitochondrial reactive oxygen species, mitochondrial DNA damage, protein carbonyls, and pro-inflammatory cytokine release 24 hours after transplant. Administration of MitoQ to the donor heart in the storage solution protected against this IR injury by blocking graft oxidative damage and dampening the early pro-inflammatory response in the recipient. Conclusions IR after heart transplantation results in mitochondrial oxidative damage that is potentiated by cold ischemia. Supplementing donor graft perfusion with the anti-oxidant MitoQ before transplantation should be studied further to reduce IR-related free radical production, the innate immune response to IR injury, and subsequent donor cardiac injury. PMID:26140808
Pegoraro, Camila; Tadiello, Alice; Girardi, César L; Chaves, Fábio C; Quecini, Vera; de Oliveira, Antonio Costa; Trainotti, Livio; Rombaldi, Cesar Valmor
2015-11-18
Postharvest fruit conservation relies on low temperatures and manipulations of hormone metabolism to maintain sensory properties. Peaches are susceptible to chilling injuries, such as 'woolliness' that is caused by juice loss leading to a 'wooly' fruit texture. Application of gibberellic acid at the initial stages of pit hardening impairs woolliness incidence, however the mechanisms controlling the response remain unknown. We have employed genome wide transcriptional profiling to investigate the effects of gibberellic acid application and cold storage on harvested peaches. Approximately half of the investigated genes exhibited significant differential expression in response to the treatments. Cellular and developmental process gene ontologies were overrepresented among the differentially regulated genes, whereas sequences in cell death and immune response categories were underrepresented. Gene set enrichment demonstrated a predominant role of cold storage in repressing the transcription of genes associated to cell wall metabolism. In contrast, genes involved in hormone responses exhibited a more complex transcriptional response, indicating an extensive network of crosstalk between hormone signaling and low temperatures. Time course transcriptional analyses demonstrate the large contribution of gene expression regulation on the biochemical changes leading to woolliness in peach. Overall, our results provide insights on the mechanisms controlling the complex phenotypes associated to postharvest textural changes in peach and suggest that hormone mediated reprogramming previous to pit hardening affects the onset of chilling injuries.
Bandana; Sharma, Vineet; Singh, Brajesh; Raigond, Pinky; Kaushik, S K
2016-03-01
Invertase activity and processing attributes of three potato cultivars were studied to find the reason for deterioration of processing quality during their prolonged storage in commercial cold stores (4°C) as compared to elevated temperature storage (12 ± 0.5°C), with CIPC {Isopropyl-N-(3-Cholorophenyl) carbamate}. Lower storage temperature (4°C) tended to be more effective in increasing invertase activity of potato tubers than elevated temperature. Non-processing cultivar viz., Kufri Pukhraj resulted in accumulation of more invertase activity than relatively two processing cultivars. Kufri Chipsona-1 and Kufri Chipsona-3 at 12 ± 0.5°C possessed basal invertase activity ranging from 39.3 to 79.8 and 54.1 to 93.8 (pmoles hexose h⁻¹ g⁻¹ f.wt.) respectively, during two years. Total invertase activity at 4°C increased abruptly and remained high from 30 to 60 days of storage. The activity progressively reached 90.6 to 106.6 and 81.4 to 101.3 during both the years respectively, after 60 days of storage to that observed initially. Reducing sugar content increased from 23.3 to 105.7 and 389.0 to 1138.2 (mg 100g⁻¹ f.wt.) after 90 days of storage at 12 ± 0.5°C and 4°C, respectively. Studies concluded that basal and total invertase, were responsible for cold-induced sweetening and resulted in deterioration of processing quality of potatoes during storage at 4°C. Since this activity is low at 12 ± 0.5°C, the processing traits remained acceptable to industry and consumers.
do Nascimento, Cássio; dos Santos, Janine Navarro; Pedrazzi, Vinícius; Pita, Murillo Sucena; Monesi, Nadia; Ribeiro, Ricardo Faria; de Albuquerque, Rubens Ferreira
2014-01-01
Molecular diagnosis methods have been largely used in epidemiological or clinical studies to detect and quantify microbial species that may colonize the oral cavity in healthy or disease. The preservation of genetic material from samples remains the major challenge to ensure the feasibility of these methodologies. Long-term storage may compromise the final result. The aim of this study was to evaluate the effect of temperature and time storage on the microbial detection of oral samples by Checkerboard DNA-DNA hybridization. Saliva and supragingival biofilm were taken from 10 healthy subjects, aliquoted (n=364) and processed according to proposed protocols: immediate processing and processed after 2 or 4 weeks, and 6 or 12 months of storage at 4°C, -20°C and -80°C. Either total or individual microbial counts were recorded in lower values for samples processed after 12 months of storage, irrespective of temperatures tested. Samples stored up to 6 months at cold temperatures showed similar counts to those immediately processed. The microbial incidence was also significantly reduced in samples stored during 12 months in all temperatures. Temperature and time of oral samples storage have relevant impact in the detection and quantification of bacterial and fungal species by Checkerboard DNA-DNA hybridization method. Samples should be processed immediately after collection or up to 6 months if conserved at cold temperatures to avoid false-negative results. Copyright © 2013 Elsevier Ltd. All rights reserved.
Optimization of joint energy micro-grid with cold storage
NASA Astrophysics Data System (ADS)
Xu, Bin; Luo, Simin; Tian, Yan; Chen, Xianda; Xiong, Botao; Zhou, Bowen
2018-02-01
To accommodate distributed photovoltaic (PV) curtailment, to make full use of the joint energy micro-grid with cold storage, and to reduce the high operating costs, the economic dispatch of joint energy micro-grid load is particularly important. Considering the different prices during the peak and valley durations, an optimization model is established, which takes the minimum production costs and PV curtailment fluctuations as the objectives. Linear weighted sum method and genetic-taboo Particle Swarm Optimization (PSO) algorithm are used to solve the optimization model, to obtain optimal power supply output. Taking the garlic market in Henan as an example, the simulation results show that considering distributed PV and different prices in different time durations, the optimization strategies are able to reduce the operating costs and accommodate PV power efficiently.
A New Evaluation Method of Stored Heat Effect of Reinforced Concrete Wall of Cold Storage
NASA Astrophysics Data System (ADS)
Nomura, Tomohiro; Murakami, Yuji; Uchikawa, Motoyuki
Today it has become imperative to save energy by operating a refrigerator in a cold storage executed by external insulate reinforced concrete wall intermittently. The theme of the paper is to get the evaluation method to be capable of calculating, numerically, interval time for stopping the refrigerator, in applying reinforced concrete wall as source of stored heat. The experiments with the concrete models were performed in order to examine the time variation of internal temperature after refrigerator stopped. In addition, the simulation method with three dimensional unsteady FEM for personal-computer type was introduced for easily analyzing the internal temperature variation. Using this method, it is possible to obtain the time variation of internal temperature and to calculate the interval time for stopping the refrigerator.
The effect of refrigeration of bone marrow and peripheral blood on cytogenetic analysis.
Martin, P K; Rowley, J D
1986-07-01
Bone marrow samples from patients with various hematologic disorders were stored at 4 degrees C for up to 5 d before the establishment of a 24-h culture. We tested various factors, including storage time, colony stimulating factor, and methotrexate in an effort to improve metaphase and chromosome quality. Cytogenetic findings for various hematologic diseases were compared in a total of 201 cultures. Cold storage for up to 3 d did not seem to adversely affect the number of mitoses or the quality of chromosome banding when cells were cultured in a system that used both colony stimulating factor and methotrexate. In samples studied in parallel, clonal abnormalities were noted as frequently in cells stored in the cold as in those processed directly.
Analysis of Slab-column Shearwall Structure of 6000 Tons Cold Storage
NASA Astrophysics Data System (ADS)
He, Dongqing; Song, Pengwei; Jie, Pengyu
2018-05-01
Combining with the functional requirements, the site conditions and the 6000 tons load characteristics of cold storage, so determine its structure system for the slab-column-shear wall structure. The paper recommends the design of foundation, the settings of column cap, the arrangement of shear wall, the punching shear of floor slab and the analysis and calculation results of main structure. By addition shear wall in slab-column structure to increase the overall stiffness of structure and improve the seismic performance of structure. Take the detached form between the main structure and the external wall insulation, while set anchorage beam between in the main floor and the ring beam along the axis of the column grid to enhance the overall stability of the external wall insulation.
NASA Astrophysics Data System (ADS)
Afrin, Samia
The overall efficiency of a Concentrating Solar Power (CSP) plant depends on the effectiveness of Thermal Energy Storage (TES) system. A Single tank TES system has potential to provide effective solution. In a single tank TES system, a thermocline region, which produces the temperature gradient between hot and cold storage fluid by density difference, is used. Preservation of this thermocline region in the tank during charging and discharging cycles depends on the uniformity of the velocity profile at any horizontal plane. One of the major challenges for the single tank thermocline is actually maintaining the thermocline region in the tank, so that it does not spread out to occupy the entire tank. Since the thermocline is a horizontal surface, the hot and cold fluid must be introduce in such a way that it does not disturb the thermocline. If the fluid is introduced in a jet stream, it will disturb the thermocline and mix the hot and cold fluids into a homogeneous medium. So the objective of this thesis is to preserve the thermocline region by maximizing the uniformity of the velocity distribution. An ideal distributor will minimize the thermocline spreading and hence maximize the useable form of thermal energy storage in a single tank system. The performance of two different types of distributors: pipe flow distributor and honeycomb distributor, were checked. The effectiveness of the pipe flow distributor was checked by varying the dimension of the geometry i.e. number of holes, distance between the holes, position of the holes and number of distributor pipes. Thermal energy storage system from solar power relies on high temperature thermal storage units for continuous operation. The storage units should have facilitated with high thermal conductivity and heat capacity storage fluid. Hence it is necessary to find a better performing heat transfer fluid at higher operating temperature. Novel materials such as nanomaterial additives can become cost effective and can increase the operating range of the storage facilities to higher range of temperatures. In this work HitecRTM molten salt is considered as the heat transfer fluid (HTF). The operating temperature of this HTF is 300-500°C. So to increase the thermal properties of this HTF nanomaterial has been added. The effective thermal conductivity and specific heat capacity of the nanofluid were calculated and the thermal effect of this nanofluid was observed from the simulation result.
Hashimoto, Mikako; Orikasa, Yoshitake; Hayashi, Hidenori; Watanabe, Kentaro; Yoshida, Kiyohito; Okuyama, Hidetoshi
2015-07-01
Colwellia psychrerythraea strain 34H is an obligately psychrophilic bacterium that has been used as a model cold-adapted microorganism because of its psychrophilic growth profile, significant production of cold-active enzymes, and cryoprotectant extracellular polysaccharide substances. However, its fatty acid components, particularly trans unsaturated fatty acids and long-chain polyunsaturated fatty acids (LC-PUFAs), have not been fully investigated. In this study, we biochemically identified Δ9-trans hexadecenoic acid [16:1(9t)] and LC-PUFAs such as docosahexaenoic acid. These results are comparable with the fact that the strain 34H genome sequence includes pfa and cti genes that are responsible for the biosynthesis of LC-PUFAs and trans unsaturated fatty acids, respectively. Strain 34H cells grown under static conditions at 5 °C had higher levels of 16:1(9t) than those grown under shaken conditions, and this change was accompanied by an antiparallel decrease in the levels of Δ9-cis hexadecenoic acid [16:1(9c)], suggesting that the cis-to-trans isomerization reaction of 16:1(9c) is activated under static (microanaerobic) culture conditions, that is, the enzyme could be activated by the decreased dissolved oxygen concentration of cultures. On the other hand, the levels of LC-PUFAs were too low (less than 3% of the total), even for cells grown at 5 °C, to evaluate their cold-adaptive function in this bacterium. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-Healable and Cold-Resistant Supercapacitor Based on a Multifunctional Hydrogel Electrolyte.
Tao, Feng; Qin, Liming; Wang, Zhikui; Pan, Qinmin
2017-05-10
Excellent self-healability and cold resistance are attractive properties for a portable/wearable energy-storage device. However, achieving the features is fundamentally dependent on an intrinsically self-healable electrolyte with high ionic conduction at low temperature. Here we report such a hydrogel electrolyte comprising sodium alginate cross-linked by dynamic catechol-borate ester bonding. Since its dynamically cross-linked alginate network can tolerate high-content inorganic salts, the electrolyte possesses excellent healing efficiency/cyclability but also high ionic conduction at both room temperature and low temperature. A supercapacitor with the multifunctional hydrogel electrolyte completely restores its capacitive properties even after breaking/healing for 10 cycles without external stimulus. At a low temperature of -10 °C, the capacitor is even able to maintain at least 80% of its room-temperature capacitance. Our investigations offer a strategy to assemble self-healable and cold-resistant energy storage devices by using a multifunctional hydrogel electrolyte with rationally designed polymeric networks, which has potential application in portable/wearable electronics, intelligent apparel or flexible robot, and so on.
NASA Astrophysics Data System (ADS)
Drehmann, R.; Grund, T.; Lampke, T.; Wielage, B.; Wüstefeld, C.; Motylenko, M.; Rafaja, D.
2018-02-01
The present work summarizes the most important results of a research project dealing with the comprehensive investigation of the bonding mechanisms between cold-sprayed Al coatings and various poly- and monocrystalline ceramic substrates (Al2O3, AlN, Si3N4, SiC, MgF2). Due to their exceptional combination of properties, metallized ceramics are gaining more and more importance for a wide variety of applications, especially in electronic engineering. Cold spray provides a quick, flexible, and cost-effective one-step process to apply metallic coatings on ceramic surfaces. However, since most of the existing cold-spray-related publications focus on metallic substrates, only very little is known about the bonding mechanisms acting between cold-sprayed metals and ceramic substrates. In this paper, the essential factors influencing the bonding strength in such composites are identified. Besides mechanical tensile strength testing, a thorough analysis of the coatings and especially the metal/ceramic interfaces was conducted by means of HRTEM, FFT, STEM, EDX, EELS, GAXRD, and EBSD. The influence of substrate material, substrate temperature, and particle size is evaluated. The results suggest that, apart from mechanical interlocking, the adhesion of cold-sprayed metallic coatings on ceramics is based on a complex interplay of different mechanisms such as quasiadiabatic shearing, static recrystallization, and heteroepitaxial growth.
The dielectric spectroscopy of human red blood cells: the differentiation of old from fresh cells.
David, Marcelo; Levy, Evgeniya; Feldman, Yuri; Ben Ishai, Paul; Zelig, Orly; Yedgar, Saul; Barshtein, Gregory
2017-06-22
The objective of the study was to gauge the effect of storage lesions on the dielectric response of red blood cells (RBC), in particular those processes linked to deformations of the cellular membrane known as the β-dispersion. The dielectric response of RBC suspensions, exposed to blood-bank cold storage, was studied using time-domain dielectric spectroscopy (TDDS) in the frequency range of 500 kHz up to 1 GHz. The measured dielectric processes are characterized by their dielectric strength (Δε) and relaxation time (τ). Changes in the dielectric properties of the RBC suspensions due to storage-related lesions were evaluated. For a quantitative characterization of RBC lesions, we measured the deformability of fresh and stored RBC as expressed by their elongation ratio (ER), which was achieved under a shear stress of 3.0 Pa. The results show that the storage of RBC induced a statistically significant decrease of dielectric relaxation times. In addition, a sound correlation between the mean values of ER and the relaxation times was observed (Spearman's correlation coefficient ρ = 0.847). We draw the conclusion that those alterations in the relaxation time are induced by changes in the shape of the RBC that happen during cold-storage. The evolution of the β-dispersion of RBC opens new possibilities in the blood bank inventory management.
Thermal energy storage evaluation and life testing
NASA Astrophysics Data System (ADS)
Richter, R.
1983-01-01
Two thermal energy storage (TES) units which were built under a previous contract were tested with a Hi-Cap Vuilleumier cryogenic cooler in the facility of the Hughes Aircraft Corporation. The objective of the program was the evaluation of the behavior of the TES units as well as the determination of the temperature history of the three cold stages of the Vuilleumier cryogenic cooler during cyclic charging and discharging of the TES units. The test results have confirmed that thermal energy storage can provide the necessary thermal power to the hot cylinders of the Vuilleumier cryogenic cooler at the required operating temperatures. Thereby the continuous cooling capability of the cooler during an eclipse when no electrical power is available is being assured. The cold stage temperature amplitudes during a complete charge discharge cycle of the TES units were only about 10% of the amplitudes which were observed when the Hi-Cap Vuilleumier cryogenic cooler was operating without thermal energy storage backup in a simulated orbit of 54 minutes sun exposure and 18 minutes eclipse time. The themal conductivity of the molten thermal energy storage salt was apparently only a fraction of the thermal conductivity which had been assumed for the prediction of the upper heater temperatures. A redesign of the heater temperatures below 1480 degrees F which is now required for full charging of the TES units within 54 minutes with the present heater design.
Antosik, Adam; Czubak, Kamila; Gajek, Arkadiusz; Marczak, Agnieszka; Glowacki, Rafal; Borowczyk, Kamila; Zbikowska, Halina Malgorzata
2015-01-01
Background To investigate the extent of oxidative damage and changes in morphology of manually isolated red blood cells (RBCs) from whole blood, cold stored (up to 20 days) in polystyrene tubes and subjected to pre-storage irradiation (50 Gy) and to compare the properties of SAGM-preserved RBCs stored under experimental conditions (polystyrene tubes) with RBCs from standard blood bag storage. Methods The percentage of hemolysis as well as the extracellular activity of LDH, thiobarbituric acid-reactive substances, reduced glutathione (GSH), and total antioxidant capacity (TAC) were measured. Changes in the topology of RBC membrane, shape, and size were evaluated by flow cytometry and judged against microscopy images. Results Irradiation caused significant LDH release as well as increased hemolysis and lipid peroxidation, GSH depletion, and reduction of TAC. Prolonged storage of irradiated RBCs resulted in phosphatidylserine exposure on the cell surface. By day 20, approximately 60% of RBCs displayed non-discoid shape. We did not notice significant differences in percentage of altered cells and cell volume between RBCs exposed to irradiation and those not exposed. Conclusion Irradiation of RBC transfusion units with a dose of 50 Gy should be avoided. For research purposes such as studying the role of antioxidants, storage of small volumes of RBCs derived from the same donor would be more useful, cheaper, and blood-saving. PMID:26195927
Antosik, Adam; Czubak, Kamila; Gajek, Arkadiusz; Marczak, Agnieszka; Glowacki, Rafal; Borowczyk, Kamila; Zbikowska, Halina Malgorzata
2015-05-01
To investigate the extent of oxidative damage and changes in morphology of manually isolated red blood cells (RBCs) from whole blood, cold stored (up to 20 days) in polystyrene tubes and subjected to pre-storage irradiation (50 Gy) and to compare the properties of SAGM-preserved RBCs stored under experimental conditions (polystyrene tubes) with RBCs from standard blood bag storage. The percentage of hemolysis as well as the extracellular activity of LDH, thiobarbituric acid-reactive substances, reduced glutathione (GSH), and total antioxidant capacity (TAC) were measured. Changes in the topology of RBC membrane, shape, and size were evaluated by flow cytometry and judged against microscopy images. Irradiation caused significant LDH release as well as increased hemolysis and lipid peroxidation, GSH depletion, and reduction of TAC. Prolonged storage of irradiated RBCs resulted in phosphatidylserine exposure on the cell surface. By day 20, approximately 60% of RBCs displayed non-discoid shape. We did not notice significant differences in percentage of altered cells and cell volume between RBCs exposed to irradiation and those not exposed. Irradiation of RBC transfusion units with a dose of 50 Gy should be avoided. For research purposes such as studying the role of antioxidants, storage of small volumes of RBCs derived from the same donor would be more useful, cheaper, and blood-saving.
Influence of body heat content on hand function during prolonged cold exposures.
Flouris, A D; Cheung, S S; Fowles, J R; Kruisselbrink, L D; Westwood, D A; Carrillo, A E; Murphy, R J L
2006-09-01
We examined the influence of 1) prior increase [preheating (PHT)], 2) increase throughout [heating (HT)], and 3) no increase [control (Con)] of body heat content (H(b)) on neuromuscular function and manual dexterity of the hands during a 130-min exposure to -20 degrees C (coldEx). Ten volunteers randomly underwent three passive coldEx, incorporating a 10-min moderate-exercise period at the 65th min while wearing a liquid conditioning garment (LCG) and military arctic clothing. In PHT, 50 degrees C water was circulated in the LCG before coldEx until core temperature was increased by 0.5 degrees C. In HT, participants regulated the inlet LCG water temperature throughout coldEx to subjective comfort, while the LCG was not operating in Con. Thermal comfort, rectal temperature, mean skin temperature, mean finger temperature (T(fing)), change in H(b) (DeltaH(b)), rate of body heat storage, Purdue pegboard test, finger tapping, handgrip, maximum voluntary contraction, and evoked twitch force of the first dorsal interosseus muscle were recorded. Results demonstrated that, unlike in HT and PHT, thermal comfort, rectal temperature, mean skin temperature, twitch force, maximum voluntary contraction, and finger tapping declined significantly in Con. In contrast, T(fing) and Purdue pegboard test remained constant only in HT. Generalized estimating equations demonstrated that DeltaH(b) and T(fing) were associated over time with hand function, whereas no significant association was detected for rate of body heat storage. It is concluded that increasing H(b) not only throughout but also before a coldEx is effective in maintaining hand function. In addition, we found that the best indicator of hand function is DeltaH(b) followed by T(fing).
Acanthamoeba keratitis: the role of domestic tap water contamination in the United Kingdom.
Kilvington, Simon; Gray, Trevor; Dart, John; Morlet, Nigel; Beeching, John R; Frazer, David G; Matheson, Melville
2004-01-01
The incidence of acanthamoeba keratitis (AK) in the UK is some 15 times that in the United States and seven times that in Holland. To investigate reasons for this higher frequency, a study of the role of domestic tap water as a potential source of AK was undertaken. Tap outlets from the homes of 27 patients with culture-proven AK were sampled and cultured for free-living amoebae (FLA). For all Acanthamoeba isolates, mitochondrial DNA (mtDNA) restriction fragment length polymorphisms (RFLPs) and cytochrome oxidase (cox 1/2) sequence typing was performed to determine the similarity between corneal and tap water isolates. FLA, including Acanthamoeba, were isolated from 24 (89%) of 27 homes, and the presence within the homes varied significantly with tap water temperature and location: 19 (76%) of 25 bathroom sink cold taps sampled compared with 6 (24%) of 25 hot and 9 (47%) of 19 kitchen cold taps compared with 3 (16%) of 19 of hot kitchen taps. Acanthamoeba were isolated from 8 (30%) of 27 homes (five bathroom sink cold taps, one cloakroom cold tap, one bath, and one bedroom sink mixer [hot/cold] taps). In six cases, identical Acanthamoeba mtDNA profiles were found for the clinical and home tap water isolates. In keeping with UK plumbing practice, 24 of 27 homes had internal roof water storage tanks to supply domestic taps, but the mains fed the kitchen cold tap. Water storage tanks promote colonization of domestic water with FLA, including Acanthamoeba, and hence increase the risk of AK. This accounts for the significantly greater incidence of AK in the UK and supports advice to avoid using tap water in contact lens care routines.
Microwave Remote Sensing and the Cold Land Processes Field Experiment
NASA Technical Reports Server (NTRS)
Kim, Edward J.; Cline, Don; Davis, Bert; Hildebrand, Peter H. (Technical Monitor)
2001-01-01
The Cold Land Processes Field Experiment (CLPX) has been designed to advance our understanding of the terrestrial cryosphere. Developing a more complete understanding of fluxes, storage, and transformations of water and energy in cold land areas is a critical focus of the NASA Earth Science Enterprise Research Strategy, the NASA Global Water and Energy Cycle (GWEC) Initiative, the Global Energy and Water Cycle Experiment (GEWEX), and the GEWEX Americas Prediction Project (GAPP). The movement of water and energy through cold regions in turn plays a large role in ecological activity and biogeochemical cycles. Quantitative understanding of cold land processes over large areas will require synergistic advancements in 1) understanding how cold land processes, most comprehensively understood at local or hillslope scales, extend to larger scales, 2) improved representation of cold land processes in coupled and uncoupled land-surface models, and 3) a breakthrough in large-scale observation of hydrologic properties, including snow characteristics, soil moisture, the extent of frozen soils, and the transition between frozen and thawed soil conditions. The CLPX Plan has been developed through the efforts of over 60 interested scientists that have participated in the NASA Cold Land Processes Working Group (CLPWG). This group is charged with the task of assessing, planning and implementing the required background science, technology, and application infrastructure to support successful land surface hydrology remote sensing space missions. A major product of the experiment will be a comprehensive, legacy data set that will energize many aspects of cold land processes research. The CLPX will focus on developing the quantitative understanding, models, and measurements necessary to extend our local-scale understanding of water fluxes, storage, and transformations to regional and global scales. The experiment will particularly emphasize developing a strong synergism between process-oriented understanding, land surface models and microwave remote sensing. The experimental design is a multi-sensor, multi-scale (1-ha to 160,000 km ^ {2}) approach to providing the comprehensive data set necessary to address several experiment objectives. A description focusing on the microwave remote sensing components (ground, airborne, and spaceborne) of the experiment will be presented.
Rosburg, Valerie; Boylston, Terri; White, Pamela
2010-06-01
Probiotics must be consumed at a level of 10(7) CFU/mL for successful colonization of the gut. In yogurts containing beneficial cultures, the survival of probiotic strains can quickly decline below this critical concentration during cold storage. We hypothesized that beta-glucan would increase the viability of bifidobacteria strains in yogurt during cold storage. Yogurts were produced containing 0.44% beta-glucan (concentrated or freeze-dried) extracted from whole oat flour and/or 1.33% modified corn starch, and bifidobacteria (B. breve or B. longum) at a concentration of at least 10(9) CFU/mL. All yogurts were stored at 4 degrees C. Bifidobacteria and yogurt cultures, Streptococcus thermophilus and Lactobacillus delbureckii subsp. bulgaricus, were enumerated from undisturbed aliquots before fermentation, after fermentation, and once a week for 5 wk. S. thermophilus and L. bulgaricus maintained a concentration of at least 10(8) CFU/mL in yogurts containing concentrated or freeze-dried beta-glucan regardless of starch addition, and in the control with no added beta-glucan or starch. Similarly, the probiotic, Bifidobacterium breve, survived above a therapeutic level in all treatments. The addition of beta-glucan prolonged the survival of Bifidobacterium longum at a concentration of at least 10(7) CFU/mL by up to 2 wk on average beyond the control. Further, the inclusion of concentrated beta-glucan in yogurt improved survival of B. longum above 10(7) CFU/mL by 1 wk longer than did freeze-dried beta-glucan. Study results suggest that beta-glucan has a protective effect on bifidobacteria in yogurt when stressed by low-temperature storage.
26. Photocopy of photograph taken by W. Terry Averbeck, date ...
26. Photocopy of photograph taken by W. Terry Averbeck, date unknown. VIEW, LOOKING NORTHWEST, OF SECOND STREET BETWEEN SCOTT AND COURT STREETS, SHOWING PORTIONS OF THE ICE STORAGE BUILDING AND ORIGINAL SHIPPING AREA, NOW USED AS BAGGING/CRUSHING AREA (8x10' enlargement from 4x5' negative) - Champion Ice Manufacturing & Cold Storage Company, 40 East Second Street, Covington, Kenton County, KY
Min, Sea C; Roh, Si Hyeon; Boyd, Glenn; Sites, Joseph E; Uknalis, Joseph; Fan, Xuetong; Niemira, Brendan A
2017-01-01
The effects of dielectric barrier discharge atmospheric cold plasma (DACP) treatment on the inactivation of Escherichia coli O157:H7 and aerobic microorganisms in romaine lettuce packaged in a conventional commercial plastic container were evaluated during storage at 4°C for 7 days. Effects investigated included the color, carbon dioxide (CO 2 ) generation, weight loss, and surface morphology of the lettuce during storage. Romaine lettuce pieces, with or without inoculation with a cocktail of three strains of E. coli O157:H7 (~6 log CFU/g of lettuce), were packaged in a polyethylene terephthalate commercial clamshell container and treated at 34.8 kV at 1.1 kHz for 5 min by using a DACP treatment system equipped with a pin-type high-voltage electrode. Romaine lettuce samples were analyzed for inactivation of E. coli O157:H7, total mesophilic aerobes, and yeasts and molds, color, CO 2 generation, weight loss, and surface morphology during storage at 4°C for 7 days. The DACP treatment reduced the initial counts of E. coli O157:H7 and total aerobic microorganisms by ~1 log CFU/g, with negligible temperature change from 24.5 ± 1.4°C to 26.6 ± 1.7°C. The reductions in the numbers of E. coli O157:H7, total mesophilic aerobes, and yeasts and molds during storage were 0.8 to 1.5, 0.7 to 1.9, and 0.9 to 1.7 log CFU/g, respectively. DACP treatment, however, did not significantly affect the color, CO 2 generation, weight, and surface morphology of lettuce during storage (P > 0.05). Some mesophilic aerobic bacteria were sublethally injured by DACP treatment. The results from this study demonstrate the potential of applying DACP as a postpackaging treatment to decontaminate lettuce contained in conventional plastic packages without altering color and leaf respiration during posttreatment cold storage.
Seasonal thermal energy storage
NASA Astrophysics Data System (ADS)
Minor, J. E.
1980-03-01
The Seasonal Thermal Energy Storage (STES) Program demonstrates the economic storage and retrieval of thermal energy on a seasonal basis, using heat or cold available from waste or other sources during a surplus period to reduce peak period demand, reduce electric utilities peaking problems, and contribute to the establishment of favorable economics for district heating and cooling systems for commercialization of the technology. The STES Program utilizes ground water systems (aquifers) for thermal energy storage. The STES Program is divided into an Aquifer Thermal Energy Storage (ATES) Demonstration Task for demonstrating the commercialization potential of aquifer thermal energy storage technology using an integrated system approach to multiple demonstration projects and a parallel Technical Support Task designed to provide support to the overall STES Program, and to reduce technological and institutional barriers to the development of energy storage systems prior to significant investment in demonstration or commercial facilities.
A static model of a Sendzimir mill for use in shape control
NASA Astrophysics Data System (ADS)
Gunawardene, G. W. D. M.
The design of shape control systems is an area of current interest in the steel industry. Shape is defined as the internal stress distribution resulting from a transverse variation in the reduction of the strip thickness. The object of shape control is to adjust the mill so that the rolled strip is free from internal stresses. Both static and dynamic models of the mill are required for the control system design.The subject of this thesis is the static model of the Sendzimir cold rolling mill, which is a 1-2-3-4 type cluster mill. The static model derived enables shape profiles to be calculated for a given set of actuator positions, and is used to generate the steady state mill gains. The method of calculation of these shape profiles is discussed. The shape profiles obtained for different mill schedules are plotted against the distance across the strip. The corresponding mill gains are calculated and these relate the shape changes to the actuator changes. These mill gains are presented in the form of a square matrix, obtained by measuring shape at eight points across the strip.
Applications of ion beam technology
NASA Technical Reports Server (NTRS)
Gelerinter, E.; Spielberg, N.
1980-01-01
Wire adhesion in steel belted radial tires; carbon fibers and composite; cold welding, brazing, and fabrication; hydrogen production, separation, and storage; membrane use; catalysis; sputtering and texture; and ion beam implantation are discussed.
Lis, Karolina Anna; Binder, Sylvia; Li, Yangfang; Kehrenberg, Corinna; Zimmermann, Julia Louise; Ahlfeld, Birte
2018-01-01
The application of cold atmospheric pressure plasma (CAP) for decontamination of sliced ready-to-eat (RTE) meat products (in this case, rolled fillets of ham), inoculated with Salmonella (S.) Typhimurium and Listeria (L.) monocytogenes was investigated. Cold atmospheric plasma (CAP) is an ionised gas that includes highly reactive species and ozone, interacting with cell membranes and DNA of bacteria. The mode of action of CAPs includes penetration and disruption of the outer cell membrane or intracellular destruction of DNA located in the cytoplasm. Inoculated ham was treated for 10 and 20 min with CAP generated by a surface-micro-discharge-plasma source using cost-effective ambient air as working gas with different humidity levels of 45–50 and 90%. The chosen plasma modes had a peak-to-peak voltage of 6.4 or 10 kV and a frequency of 2 and 10 kHz. Under the tested conditions, the direct effectiveness of CAP on microbial inactivation was limited. Although all treated samples showed significant reductions in the microbial load subsequent to plasma treatment, the maximum inactivation of S. Typhimurium was 1.14 lg steps after 20 min of CAP-treatment (p<0.05), and L. monocytogenes was reduced by 1.02 lg steps (p<0.05) using high peak-to-peak voltage of 10 kV and a frequency of 2 kHz regardless of moisture content. However, effective inactivation was achieved by a combination of CAP-treatment and cold storage at 8°C ± 0.5°C for 7 and 14 days after packaging under sealed high nitrogen gas flush (70% N2, 30% CO2). Synergistic effects of CAP and cold storage for 14 days led to a clearer decrease in the microbial load of 1.84 lg steps for S. Typhimurium (p<0.05) and 2.55 lg steps for L. monocytogenes (p<0.05). In the case of L. monocytogenes, subsequent to CAP-treatment (10 kV, 2 kHz) and cold storage, microbial counts were predominantly below the detection limit. Measurement showed that after CAP-treatment, surface temperature of ham did not exceed the room temperature of 22°C ± 2°C. With the application of humidity levels of 45–50%, the colour distance ΔE increased in CAP treated samples due to a decrease in L* values. In conclusion, effectiveness of CAP-treatment was limited. However, the combination of CAP-treatment and cold storage of samples under modified-atmospheric-conditions up to 14 days could significantly reduce microorganisms on RTE ham. Further investigations are required to improve effectiveness of CAP-treatment. PMID:29795627
Lis, Karolina Anna; Boulaaba, Annika; Binder, Sylvia; Li, Yangfang; Kehrenberg, Corinna; Zimmermann, Julia Louise; Klein, Günter; Ahlfeld, Birte
2018-01-01
The application of cold atmospheric pressure plasma (CAP) for decontamination of sliced ready-to-eat (RTE) meat products (in this case, rolled fillets of ham), inoculated with Salmonella (S.) Typhimurium and Listeria (L.) monocytogenes was investigated. Cold atmospheric plasma (CAP) is an ionised gas that includes highly reactive species and ozone, interacting with cell membranes and DNA of bacteria. The mode of action of CAPs includes penetration and disruption of the outer cell membrane or intracellular destruction of DNA located in the cytoplasm. Inoculated ham was treated for 10 and 20 min with CAP generated by a surface-micro-discharge-plasma source using cost-effective ambient air as working gas with different humidity levels of 45-50 and 90%. The chosen plasma modes had a peak-to-peak voltage of 6.4 or 10 kV and a frequency of 2 and 10 kHz. Under the tested conditions, the direct effectiveness of CAP on microbial inactivation was limited. Although all treated samples showed significant reductions in the microbial load subsequent to plasma treatment, the maximum inactivation of S. Typhimurium was 1.14 lg steps after 20 min of CAP-treatment (p<0.05), and L. monocytogenes was reduced by 1.02 lg steps (p<0.05) using high peak-to-peak voltage of 10 kV and a frequency of 2 kHz regardless of moisture content. However, effective inactivation was achieved by a combination of CAP-treatment and cold storage at 8°C ± 0.5°C for 7 and 14 days after packaging under sealed high nitrogen gas flush (70% N2, 30% CO2). Synergistic effects of CAP and cold storage for 14 days led to a clearer decrease in the microbial load of 1.84 lg steps for S. Typhimurium (p<0.05) and 2.55 lg steps for L. monocytogenes (p<0.05). In the case of L. monocytogenes, subsequent to CAP-treatment (10 kV, 2 kHz) and cold storage, microbial counts were predominantly below the detection limit. Measurement showed that after CAP-treatment, surface temperature of ham did not exceed the room temperature of 22°C ± 2°C. With the application of humidity levels of 45-50%, the colour distance ΔE increased in CAP treated samples due to a decrease in L* values. In conclusion, effectiveness of CAP-treatment was limited. However, the combination of CAP-treatment and cold storage of samples under modified-atmospheric-conditions up to 14 days could significantly reduce microorganisms on RTE ham. Further investigations are required to improve effectiveness of CAP-treatment.
Cold air systems: Sleeping giant
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacCracken, C.D.
1994-04-01
This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that providedmore » inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.« less
A static investigation of several STOVL exhaust system concepts
NASA Technical Reports Server (NTRS)
Romine, B. M., Jr.; Meyer, B. E.; Re, R. J.
1989-01-01
A static cold flow scale model test was performed in order to determine the internal performance characteristics of various STOVL exhaust systems. All of the concepts considered included a vectorable cruise nozzle and a separate vectorable vertical thrust ventral nozzle mounted on the tailpipe. The two ventral nozzle configurations tested featured vectorable constant thickness cascade vanes for area control and improved performance during transition and vertical lift flight. The best transition performance was achieved using a butterfly door type ventral nozzle and a pitch vectoring 2DCD or axisymmetric cruise nozzle. The clamshell blocker type of ventral nozzle had reduced transition performance due to the choking of the tailpipe flow upstream of the cruise nozzle.
Hyperbranched Polyglycerol as a Colloid in Cold Organ Preservation Solutions
Gao, Sihai; Guan, Qiunong; Chafeeva, Irina; Brooks, Donald E.; Nguan, Christopher Y. C.; Kizhakkedathu, Jayachandran N.; Du, Caigan
2015-01-01
Hydroxyethyl starch (HES) is a common colloid in organ preservation solutions, such as in University of Wisconsin (UW) solution, for preventing graft interstitial edema and cell swelling during cold preservation of donor organs. However, HES has undesirable characteristics, such as high viscosity, causing kidney injury and aggregation of erythrocytes. Hyperbranched polyglycerol (HPG) is a branched compact polymer that has low intrinsic viscosity. This study investigated HPG (MW-0.5 to 119 kDa) as a potential alternative to HES for cold organ preservation. HPG was synthesized by ring-opening multibranching polymerization of glycidol. Both rat myocardiocytes and human endothelial cells were used as an in vitro model, and heart transplantation in mice as an in vivo model. Tissue damage or cell death was determined by both biochemical and histological analysis. HPG polymers were more compact with relatively low polydispersity index than HES in UW solution. Cold preservation of mouse hearts ex vivo in HPG solutions reduced organ damage in comparison to those in HES-based UW solution. Both size and concentration of HPGs contributed to the protection of the donor organs; 1 kDa HPG at 3 wt% solution was superior to HES-based UW solution and other HPGs. Heart transplants preserved with HPG solution (1 kDa, 3%) as compared with those with UW solution had a better functional recovery, less tissue injury and neutrophil infiltration in syngeneic recipients, and survived longer in allogeneic recipients. In cultured myocardiocytes or endothelial cells, significantly more cells survived after cold preservation with the HPG solution than those with the UW solution, which was positively correlated with the maintenance of intracellular adenosine triphosphate and cell membrane fluidity. In conclusion, HPG solution significantly enhanced the protection of hearts or cells during cold storage, suggesting that HPG is a promising colloid for the cold storage of donor organs and cells in transplantation. PMID:25706864
Hyperbranched polyglycerol as a colloid in cold organ preservation solutions.
Gao, Sihai; Guan, Qiunong; Chafeeva, Irina; Brooks, Donald E; Nguan, Christopher Y C; Kizhakkedathu, Jayachandran N; Du, Caigan
2015-01-01
Hydroxyethyl starch (HES) is a common colloid in organ preservation solutions, such as in University of Wisconsin (UW) solution, for preventing graft interstitial edema and cell swelling during cold preservation of donor organs. However, HES has undesirable characteristics, such as high viscosity, causing kidney injury and aggregation of erythrocytes. Hyperbranched polyglycerol (HPG) is a branched compact polymer that has low intrinsic viscosity. This study investigated HPG (MW-0.5 to 119 kDa) as a potential alternative to HES for cold organ preservation. HPG was synthesized by ring-opening multibranching polymerization of glycidol. Both rat myocardiocytes and human endothelial cells were used as an in vitro model, and heart transplantation in mice as an in vivo model. Tissue damage or cell death was determined by both biochemical and histological analysis. HPG polymers were more compact with relatively low polydispersity index than HES in UW solution. Cold preservation of mouse hearts ex vivo in HPG solutions reduced organ damage in comparison to those in HES-based UW solution. Both size and concentration of HPGs contributed to the protection of the donor organs; 1 kDa HPG at 3 wt% solution was superior to HES-based UW solution and other HPGs. Heart transplants preserved with HPG solution (1 kDa, 3%) as compared with those with UW solution had a better functional recovery, less tissue injury and neutrophil infiltration in syngeneic recipients, and survived longer in allogeneic recipients. In cultured myocardiocytes or endothelial cells, significantly more cells survived after cold preservation with the HPG solution than those with the UW solution, which was positively correlated with the maintenance of intracellular adenosine triphosphate and cell membrane fluidity. In conclusion, HPG solution significantly enhanced the protection of hearts or cells during cold storage, suggesting that HPG is a promising colloid for the cold storage of donor organs and cells in transplantation.
COLD-SAT feasibility study safety analysis
NASA Technical Reports Server (NTRS)
Mchenry, Steven T.; Yost, James M.
1991-01-01
The Cryogenic On-orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite presents some unique safety issues. The feasibility study conducted at NASA-Lewis desired a systems safety program that would be involved from the initial design in order to eliminate and/or control the inherent hazards. Because of this, a hazards analysis method was needed that: (1) identified issues that needed to be addressed for a feasibility assessment; and (2) identified all potential hazards that would need to be controlled and/or eliminated during the detailed design phases. The developed analysis method is presented as well as the results generated for the COLD-SAT system.
Effect of storage temperature on quality of light and full-fat ice cream.
Buyck, J R; Baer, R J; Choi, J
2011-05-01
Ice cream quality is dependent on many factors including storage temperature. Currently, the industry standard for ice cream storage is -28.9 °C. Ice cream production costs may be decreased by increasing the temperature of the storage freezer, thus lowering energy costs. The first objective of this research was to evaluate the effect of 4 storage temperatures on the quality of commercial vanilla-flavored light and full-fat ice cream. Storage temperatures used were -45.6, -26.1, and -23.3 °C for the 3 treatments and -28.9 °C as the control or industry standard. Ice crystal sizes were analyzed by a cold-stage microscope and image analysis at 1, 19.5, and 39 wk of storage. Ice crystal size did not differ among the storage temperatures of light and full-fat ice creams at 19.5 or 39 wk. An increase in ice crystal size was observed between 19.5 and 39 wk for all storage temperatures except -45.6 °C. Coldness intensity, iciness, creaminess, and storage/stale off-flavor of the light and full-fat ice creams were evaluated at 39 wk of storage. Sensory evaluation indicated no difference among the different storage temperatures for light and full-fat ice creams. In a second study, light and full-fat ice creams were heat shocked by storing at -28.9 °C for 35 wk and then alternating between -23.3 and -12.2 °C every 24h for 4 wk. Heat-shocked ice creams were analyzed at 2 and 4 wk of storage for ice crystal size and were evaluated by the sensory panel. A difference in ice crystal size was observed for light and full-fat ice creams during heat-shock storage; however, sensory results indicated no differences. In summary, storage of light or full-fat vanilla-flavored ice creams at the temperatures used within this research did not affect quality of the ice creams. Therefore, ice cream manufacturers could conserve energy by increasing the temperature of freezers from -28.9 to -26.1 °C. Because freezers will typically fluctuate from the set temperature, usage of -26.1 °C allows for a safety factor, even though storage at -23.3 °C did not affect ice cream quality. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Powell, W. R.
1978-01-01
In this article the Community Annual Energy Storage System ( CASES), a "thermal utility" plan for heating and cooling communities by storing summer heat and winter cold for use in the opposite season, is described. (MDR)
Zhao, Danying; Shen, Lin; Fan, Bei; Yu, Mengmeng; Zheng, Yang; Lv, Shengnan; Sheng, Jiping
2009-10-20
C-repeat/dehydration-responsive element binding factor (CBF) is a transcription factor regulating cold response in plants, of which little is known in fruits. We showed a double-peak expression pattern of Lycopersicon esculentum putative transcriptional activator CBF1 (LeCBF1) in mature green fruit. The peaks appeared at 2 and 16 h after subjection to cold storage (2 degrees C). The second peak was coincident with, and thus caused by a peak in endogenous ethylene production. We showed that LeCBF1 expression was regulated by exogenous ethylene and 1-methylcyclopropene, and was not expressed without cold induction. LeCBF1 expression was different in the five maturation stages of fruits, but expression peaked at 2 h at all stages.
The Impact of Implementing a Demand Forecasting System into a Low-Income Country’s Supply Chain
Mueller, Leslie E.; Haidari, Leila A.; Wateska, Angela R.; Phillips, Roslyn J.; Schmitz, Michelle M.; Connor, Diana L.; Norman, Bryan A.; Brown, Shawn T.; Welling, Joel S.; Lee, Bruce Y.
2016-01-01
OBJECTIVE To evaluate the potential impact and value of applications (e.g., ordering levels, storage capacity, transportation capacity, distribution frequency) of data from demand forecasting systems implemented in a lower-income country’s vaccine supply chain with different levels of population change to urban areas. MATERIALS AND METHODS Using our software, HERMES, we generated a detailed discrete event simulation model of Niger’s entire vaccine supply chain, including every refrigerator, freezer, transport, personnel, vaccine, cost, and location. We represented the introduction of a demand forecasting system to adjust vaccine ordering that could be implemented with increasing delivery frequencies and/or additions of cold chain equipment (storage and/or transportation) across the supply chain during varying degrees of population movement. RESULTS Implementing demand forecasting system with increased storage and transport frequency increased the number of successfully administered vaccine doses and lowered the logistics cost per dose up to 34%. Implementing demand forecasting system without storage/transport increases actually decreased vaccine availability in certain circumstances. DISCUSSION The potential maximum gains of a demand forecasting system may only be realized if the system is implemented to both augment the supply chain cold storage and transportation. Implementation may have some impact but, in certain circumstances, may hurt delivery. Therefore, implementation of demand forecasting systems with additional storage and transport may be the better approach. Significant decreases in the logistics cost per dose with more administered vaccines support investment in these forecasting systems. CONCLUSION Demand forecasting systems have the potential to greatly improve vaccine demand fulfillment, and decrease logistics cost/dose when implemented with storage and transportation increases direct vaccines. Simulation modeling can demonstrate the potential health and economic benefits of supply chain improvements. PMID:27219341
The impact of implementing a demand forecasting system into a low-income country's supply chain.
Mueller, Leslie E; Haidari, Leila A; Wateska, Angela R; Phillips, Roslyn J; Schmitz, Michelle M; Connor, Diana L; Norman, Bryan A; Brown, Shawn T; Welling, Joel S; Lee, Bruce Y
2016-07-12
To evaluate the potential impact and value of applications (e.g. adjusting ordering levels, storage capacity, transportation capacity, distribution frequency) of data from demand forecasting systems implemented in a lower-income country's vaccine supply chain with different levels of population change to urban areas. Using our software, HERMES, we generated a detailed discrete event simulation model of Niger's entire vaccine supply chain, including every refrigerator, freezer, transport, personnel, vaccine, cost, and location. We represented the introduction of a demand forecasting system to adjust vaccine ordering that could be implemented with increasing delivery frequencies and/or additions of cold chain equipment (storage and/or transportation) across the supply chain during varying degrees of population movement. Implementing demand forecasting system with increased storage and transport frequency increased the number of successfully administered vaccine doses and lowered the logistics cost per dose up to 34%. Implementing demand forecasting system without storage/transport increases actually decreased vaccine availability in certain circumstances. The potential maximum gains of a demand forecasting system may only be realized if the system is implemented to both augment the supply chain cold storage and transportation. Implementation may have some impact but, in certain circumstances, may hurt delivery. Therefore, implementation of demand forecasting systems with additional storage and transport may be the better approach. Significant decreases in the logistics cost per dose with more administered vaccines support investment in these forecasting systems. Demand forecasting systems have the potential to greatly improve vaccine demand fulfilment, and decrease logistics cost/dose when implemented with storage and transportation increases. Simulation modeling can demonstrate the potential health and economic benefits of supply chain improvements. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
de Szoeke, S. P.
2017-12-01
Averaged over the tropical marine boundary layer (BL), 130 W m-2 turbulent surface moist static energy (MSE) flux, 120 W m-2 of which is evaporation, is balanced by upward MSE flux at the BL top due to 1) incorporation of cold air by downdrafts from deep convective clouds, and 2) turbulent entrainment of dry air into the BL. Cold saturated downdraft air, and warm clear air entrained into the BL have distinct thermodynamic properties. This work observationally quantifies their respective MSE fluxes in the central Indian Ocean in 2011, under different convective conditions of the intraseasonal (40-90 day) Madden Julian oscillation (MJO). Under convectively suppressed conditions, entrainment and downdraft fluxes export equal shares (60 W m-2) of MSE from the BL. Downdraft fluxes are more variable, increasing for stronger convection. In the convectively active phase of the MJO, downdrafts export 90 W m-2 from the BL, compared to 40 W m-2 by entrainment. These processes that control the internal, latent (condensation), and MSE of the tropical marine atmospheric BL determine the parcel buoyancy and strength of tropical deep convection.
Yoshida, Mitsuru; Ono, Hiroshi; Chuda, Yoshihiro; Yada, Hiroshi; Ohnishi-Kameyama, Mayumi; Kobayashi, Hidetaka; Ohara-Takada, Akiko; Matsuura-Endo, Chie; Mori, Motoyuki; Hayashi, Nobuyuki; Yamaguchi, Yuichi
2005-01-01
Acrylamide concentrations in processed foods sold in Japanese markets were analyzed by LC-MS/MS and GC-MS methods. Most potato chips and whole potato-based fried snacks showed acrylamide concentration higher than 1000 microg/kg. The concentrations in non-whole potato based Japanese snacks, including rice crackers and candied sweet potatoes, were less tha. 350 microg/kg. Those in instant precooked noodles were less than 100 microg/kg with only one exception. The effect of storage condition of potato tubers on acrylamide concentration in potato chips after frying was also investigated. Sugar content in the tubers increased during cold storage, and the acrylamide concentration increased accordingly. The concentrations of asparagine and other amino acids, however, did not change during the cold storage. High correlations were observed between the acrylamide content in the chips and glucose and fructose contents in the tubers. This fact indicated that the limiting factor for acrylamide formation in potato chips is reducing sugar, not asparagine content in the tubers. Effects of roasting time and temperature on acrylamide concentration in roasted green tea are also described.
Economic assessment and optimal operation of CSP systems with TES in California electricity markets
NASA Astrophysics Data System (ADS)
Dowling, Alexander W.; Dyreson, Ana; Miller, Franklin; Zavala, Victor M.
2017-06-01
The economics and performance of concentrated power (CSP) systems with thermal energy storage (TES) inherently depend on operating policies and the surrounding weather conditions and electricity markets. We present an integrated economic assessment framework to quantify the maximum possible revenues from simultaneous energy and ancillary services sales by CSP systems. The framework includes both discrete start-up/shutdown restrictions and detailed physical models. Analysis of coinci-dental historical market and meteorological data reveals provision of ancillary services increases market revenue 18% to 37% relative to energy-only participation. Surprisingly, only 53% to 62% of these revenues are available through sole participation in the day-ahead market, indicating significant opportunities at faster timescales. Motivated by water-usage concerns and permitting requirements, we also describe a new nighttime radiative-enhanced dry-cooling system with cold-side storage that consumes no water and offers higher effciencies than traditional air-cooled designs. Operation of this new system is complicated by the cold-side storage and inherent coupling between the cooling system and power plant, further motivating integrated economic analysis.
USDA-ARS?s Scientific Manuscript database
The objectives of this study were to investigate the influence of heat (70oC for 5 min) and cold-storage (4oC up to 7 days) on the effectiveness of oregano and cinnamon essential oils and powdered olive and apple extracts against Salmonella Typhimurium DT104 in ground pork and to evaluate the activi...
Survival and growth of fresh and stored planting stock.
Robert H. Ruth
1953-01-01
Does planting stock that has been kept in storage survive and grow as well as freshly dug stock? This question is important because the ground at a forest nursery may still be frozen when spring planting time arrives in the warmer parts of the region. This means that seedlings for spring planting need to be dug in the fall, kept in cold storage over winter, and shipped...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-31
The Scope of Work called for the study of the economic feasibility of providing a cold thermal storage system at the central chiller plant serving the Fort Leonard Wood 600 Area in order to reduce electrical demand charges. In the Entry Interview, Mr. Doug Cage requested that the analysis include the potential for expansion of such a system to serve the 700 and 800 Areas as well. It was agreed that this would be done if the analysis indicated that a cold thermal storage system would be economically feasible for Area 600. The 600 Area study area is comprised ofmore » two different build types, mess halls and barracks. The mess halls are all essentially identical with the exception that site orientation varies by building. The same is true for the barracks buildings. A baseline case was calculated under the basis that the future chilled water plant for the area under analysis would be served by a centrifugal chiller. This was done because there is no existing baseline condition against which thermal storage systems may be compared. The existing chiller serves Area 600 plus a portion of Area 700. In addition, its age is such that it is reasonable to expect that it will be replaced in the near future.« less
Olsson, Marie E; Ekvall, Jimmy; Gustavsson, Karl-Erik; Nilsson, Jessica; Pillai, Deepa; Sjöholm, Ingegerd; Svensson, Ulla; Akesson, Björn; Nyman, Margareta G L
2004-05-05
Four cultivars of strawberries (Senga Sengana, BFr77111, Elsanta, and Honeoye) were studied for their content of antioxidants, total antioxidant capacity, and low molecular weight carbohydrates in relation to harvest year, ripening stage, and cold storage. For ascorbic acid, chlorogenic acid, ellagic acid, and total antioxidative capacity, measured in both water-soluble and water-insoluble extracts, there was a 2-5-fold variation among cultivars. Unripe berries contained lower concentrations of chlorogenic acid and p-coumaric acid and also quercetin and kaempferol compared with riper berries. During cold storage for up to 3 days, relatively few changes in the concentration of the different antioxidants occurred. The concentrations of several investigated parameters were interrelated, for example, for ascorbic acid and water-soluble antioxidant capacity and for ellagic acid and water-insoluble antioxidant capacity. The dominating sugars in strawberries were fructose and glucose, but considerable amounts of sucrose were also present, and their contents varied among cultivars, giving a predicted glycemic index of approximately 81. Verbascose, raffinose, and stachyose were found in only minor amounts. The study shows that the concentration of a number of bioactive compounds in strawberries varied according to cultivar, ripening stage, and storage. This information should make it possible to select strawberries with an optimal content of bioactive compounds.
Heinz, Marlen; Zak, Dominik
2018-03-01
This study aimed to evaluate the effects of freezing and cold storage at 4 °C on bulk dissolved organic carbon (DOC) and nitrogen (DON) concentration and SEC fractions determined with size exclusion chromatography (SEC), as well as on spectral properties of dissolved organic matter (DOM) analyzed with fluorescence spectroscopy. In order to account for differences in DOM composition and source we analyzed storage effects for three different sample types, including a lake water sample representing freshwater DOM, a leaf litter leachate of Phragmites australis representing a terrestrial, 'fresh' DOM source and peatland porewater samples. According to our findings one week of cold storage can bias DOC and DON determination. Overall, the determination of DOC and DON concentration with SEC analysis for all three sample types were little susceptible to alterations due to freezing. The findings derived for the sampling locations investigated here may not apply for other sampling locations and/or sample types. However, DOC size fractions and DON concentration of formerly frozen samples should be interpreted with caution when sample concentrations are high. Alteration of some optical properties (HIX and SUVA 254 ) due to freezing were evident, and therefore we recommend immediate analysis of samples for spectral analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Antioxidant Bioactive Compounds Changes in Fruit of Quince Genotypes Over Cold Storage.
Moradi, Samira; Koushesh Saba, Mahmoud; Mozafari, Ali Akbar; Abdollahi, Hamid
2016-07-01
Quince fruit has many benefits to human health and is excellent source of bioactive compounds. The fruit of 15 quince genotypes stored at 2 °C for 5 mo to study fruit quality changes during cold storage. Fruit were sampled monthly and stored at 20 °C for 24 h. Fruit ascorbic acid (AA), total phenol (TP), and total flavonoid (TF) concentrations, total antioxidant activity (TAA), flesh browning (FB) incidence, polyphenol oxidase (PPO), peroxidase (POX), and superoxide dismutase (SOD) activities were measured during storage. A high variation in bioactive compounds was observed across genotypes. The range of 26.8 to 44.4 mg/100 g FW for AA, 86.7% to 98.2% for TAA, 157.7 to 380.7 mg GAE 100(-1) g FW for TP, and 5.3 to 10.7 mg/100 g FW for TF were observed across genotypes at harvest time. The overall AA, TAA, TP, TF, and SOD decreased while PPO and POX increased during storage. FB was first observed after 4 mo and increased thereafter while the FB index was different across genotypes. Higher bioactive content may prevent or reduce FB index so that a negative correlation was found between FB and AA, TAA, TP, TF, and SOD. © 2016 Institute of Food Technologists®
Carbone, K; Giannini, B; Picchi, V; Lo Scalzo, R; Cecchini, F
2011-07-15
The aim of this research was to evaluate the influence of genotype, tissue type and cold storage on the bioactive compounds content and on the antiradical activity (AA) of different apple cultivars (Golden cl. B, Fuji cl. Kiku8, Braeburn cl. Hillwell). The content of analysed phyto-compounds depended on the clone, on the part of fruit, and to a minor extent, on the storage. For EC(50) data, the cultivar represented the main source of variation and the interaction with the type of tissue, was significant. The AA of apples, measured by means of the DPPH test, was highly correlated to the flavan-3-ols content, which represents a good predictor of the apple antiradical power. The new Braeburn's clone, the Hillwell, had the worst AA related to a minor phyto-chemical content. Also, its phenolic content was dramatically reduced after cold storage (flesh: -50%; peels: -20%; p<0.05). Obtained results underlined the key role of the genotype on the content of the nutraceutical power of apples, which is important to improve their quality and consumption benefits, suggesting to the breeders to pay more attention to the potential healthy compounds in the development of new hybrids. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cold Storage Reporting Improvement Act of 2011
Sen. Gillibrand, Kirsten E. [D-NY
2011-03-02
Senate - 03/02/2011 Read twice and referred to the Committee on Agriculture, Nutrition, and Forestry. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Scaman, Christine H; Jim, Vickie Jin Wai; Hartnett, Carol
2004-02-11
Gas chromatography was used to quantitate free galactose in Braeburn, Fuji, Red Delicious, and Spartan apples during cold storage, after thermal processing of apple slices and in juice produced using clarification and/or liquifaction enzymes. Spartan had significantly higher galactose levels as compared to Red Delicious apples, but changes in galactose in all varieties during 9 months of cold storage were insignificant. Blanching and canning decreased galactose levels, but doubling the thermal processing during canning increased the free galactose concentration detected in plant tissue. An enzymatic liquefaction aid used to prepare apple juice dramatically increased the free galactose content while a clarification aid caused only a slight increase due to its selective action on soluble pectin. These findings provide useful information for dietitians to base diet recommendations for galactosemic patients.
Single-photon-level quantum image memory based on cold atomic ensembles
Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can
2013-01-01
A quantum memory is a key component for quantum networks, which will enable the distribution of quantum information. Its successful development requires storage of single-photon light. Encoding photons with spatial shape through higher-dimensional states significantly increases their information-carrying capability and network capacity. However, constructing such quantum memories is challenging. Here we report the first experimental realization of a true single-photon-carrying orbital angular momentum stored via electromagnetically induced transparency in a cold atomic ensemble. Our experiments show that the non-classical pair correlation between trigger photon and retrieved photon is retained, and the spatial structure of input and retrieved photons exhibits strong similarity. More importantly, we demonstrate that single-photon coherence is preserved during storage. The ability to store spatial structure at the single-photon level opens the possibility for high-dimensional quantum memories. PMID:24084711
Aquifer thermal energy storage. International symposium: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-05-01
Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste ormore » by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.« less
Bardyn, M; Maye, S; Lesch, A; Delobel, J; Tissot, J-D; Cortés-Salazar, F; Tacchini, P; Lion, N; Girault, H H; Prudent, M
2017-10-01
Red blood cells (RBCs) suffer from lesions during cold storage, depending in part on their ability to counterbalance oxidative stress by activating their antioxidant defence. The aim of this study was to monitor the antioxidant power (AOP) in erythrocyte concentrates (ECs) during cold storage. Six ECs were prepared in saline-adenine-glucose-mannitol (SAGM) additive solution and followed during 43 days. The AOP was quantified electrochemically using disposable electrode strips and compared with results obtained from a colorimetric assay. Haematological data, data on haemolysis and the extracellular concentration of uric acid were also recorded. Additionally, a kinetic model was developed to extract quantitative kinetic data on the AOP behaviour. The AOP of total ECs and their extracellular samples attained a maximum after 1 week of storage prior to decaying and reaching a plateau, as shown by the electrochemical measurements. The observed trend was confirmed with a colorimetric assay. Uric acid had a major contribution to the extracellular AOP. Interestingly, the AOP and uric acid levels were linked to the sex of the donors. The marked increase in AOP during the first week of storage suggests that RBCs are impacted early by the modification of their environment. The AOP behaviour reflects the changes in metabolism activity following the adjustment of the extracellular uric acid level. Knowing the origin, interdonor variability and the effects of the AOP on the RBCs could be beneficial for the storage quality, which will have to be further studied. © 2017 International Society of Blood Transfusion.
Cho, Hyun M; Yoo, Byoungseung
2015-01-01
Cold beverages are commonly thickened with commercial gum-based food thickeners for consumption by patients with dysphagia. In this study, the rheological properties of a thickened water and five thickened beverages (orange juice, apple juice, grape juice, whole milk, and a sport drink) that were prepared with four commercial instant xanthan gum-based thickeners (coded A-D) were investigated at a 3% thickener concentration. All thickened samples showed high shear-thinning behavior with yield stress at the serving temperature of 8°C. The magnitudes of apparent viscosity (ηa,50), consistency index (K), storage modulus (G'), and loss modulus (G'') of the thickened beverages, except for water, with food thickener A were significantly higher compared with other thickeners (B, C, and D) (P<0.05). The largest increases in K values for thickened beverages were observed at 1-hour storage, and at longer times their K values, except for milk, remained approximately constant. Rheological parameters demonstrated statistically significant differences in flow and dynamic behaviors between the cold thickened beverages prepared with the xanthan gum-based food thickeners (P<0.05), indicating that their rheological properties are strongly influenced by the dispersing medium, the type of food thickener, and storage time. In particular, appropriately selecting a commercial food thickener for preparing thickened beverages seems to be of importance for managing dysphagia. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Jin, Sang-Keun; Choi, Jung-Seok; Moon, Sung-Sil; Jeong, Jin-Yeon
2014-01-01
The purpose of this study was to assess red beet as a natural colorant in emulsified pork sausage and to investigate the effect of red beet on quality characteristics of emulsified pork sausage during 20 d of cold storage. Red beet was prepared as a powder and a substitute with sodium nitrite at 0.5% and 1.0% levels in emulsified pork sausage. Red beet significantly increased the moisture content and pH (p<0.0001) and affected color traits. Lightness of emulsified pork sausage decreased by the addition of red beet powder (p<0.01), whereas lightness with red beet treatments slightly increased during 20 d of cold storage at 4℃ (p<0.05). Redness dramatically increased with red beet powder (p<0.0001). Color by sensory evaluation also showed a significant effect from red beet addition (p<0.05), whereas the other sensory properties such as flavor, tenderness, juiciness, and overall acceptability were not affected by the addition of red beet powder (p>0.05). Texture and 2-thiobabituric acid reactive substance were also not affected by red beet addition (p>0.05). Therefore, red beet could be a good natural colorant in emulsified pork sausage but it needs additional processing, such as betalain concentration and extraction as a juice, to be used as an antioxidant in meat products. PMID:26761285
Approximate similarity principle for a full-scale STOVL ejector
NASA Astrophysics Data System (ADS)
Barankiewicz, Wendy S.; Perusek, Gail P.; Ibrahim, Mounir B.
1994-03-01
Full-scale ejector experiments are expensive and difficult to implement at engine exhaust temperatures. For this reason the utility of using similarity principles, in particular the Munk and prim principle for isentropic flow, was explored. Static performance test data for a full-scale thrust augmenting ejector were analyzed for primary flow temperature up to 1560 R. At different primary temperatures, exit pressure contours were compared for similarity. A nondimensional flow parameter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments. Under the assumption that an appropriate similarity principle can be established, properly chosen performance parameters were found to be similar for both flow and cold flow model tests.
Miniature Internal Combustion Engine-Generator for High Energy Density Portable Power
2008-12-01
Operation on JP-8 from cold startup to steady operation has been demonstrated at the 300 W scale. Miniature engine/generators can be acoustically silenced...design that uses a spring for energy storage . MICE is a high Q system, operating at the resonant frequency of the spring-mass system with very low...development • Demonstrated 94% efficiency of 300 W linear alternator • Demonstrated full operation of MICE generator from cold startup to net power output
Psychrotrophic bacteria in milk: How much do we really know?
de Oliveira, Gislene B.; Favarin, Luciana; Luchese, Rosa H.; McIntosh, Douglas
2015-01-01
The occurrence of psychrotrophic bacteria in raw milk is studied worldwide due to the difficulties associated with controlling their growth during cold storage and the consequent negative effects upon fluid milk or dairy products. Among the psychrotrophic bacteria, the genus Pseudomonas (represented primarily by P. fluorescens) has been highlighted as the cause of numerous defects in dairy products. In light of its perceived predominance, this species has frequently been chosen as a model organism to assess the effects of psychrotrophic bacteria on milk or to evaluate the efficacy of control measures. However, recent findings derived from the application of molecular biological techniques have exposed a number of deficiencies in our knowledge of the biology of milk-associated psychrotrophs. Furthermore, it has been revealed that microbe to microbe communication plays a significant role in determining both the identities and the extent to which different groups of microbes develop during cold storage. The application of molecular identification methods has exposed errors in the classification of members of the genus Pseudomonas isolated from cold stored milk and has stimulated a reevaluation of the presumed status of P. fluorescens as the predominant milk-associated psychrotrophic species. This article presents a succinct review of data from studies on psychrotrophic bacteria in milk, some of which contest established theories in relation to the microbiology of cold stored raw milk, and poses the question: how much do we really know? PMID:26273245
Eradication of high viable loads of Listeria monocytogenes contaminating food-contact surfaces
de Candia, Silvia; Morea, Maria; Baruzzi, Federico
2015-01-01
This study demonstrates the efficacy of cold gaseous ozone treatments at low concentrations in the eradication of high Listeria monocytogenes viable cell loads from glass, polypropylene, stainless steel, and expanded polystyrene food-contact surfaces. Using a step by step approach, involving the selection of the most resistant strain-surface combinations, 11 Listeria sp. strains resulted inactivated by a continuous ozone flow at 1.07 mg m-3 after 24 or 48 h of cold incubation, depending on both strain and surface evaluated. Increasing the inoculum level to 9 log CFU coupon-1, the best inactivation rate was obtained after 48 h of treatment at 3.21 mg m-3 ozone concentration when cells were deposited onto stainless steel and expanded polystyrene coupons, resulted the most resistant food-contact surfaces in the previous assays. The addition of naturally contaminated meat extract to a high load of L. monocytogenes LMG 23775 cells, the most resistant strain out of the 11 assayed Listeria sp. strains, led to its complete inactivation after 4 days of treatment. To the best of our knowledge, this is the first report describing the survival of L. monocytogenes and the effect of ozone treatment under cold storage conditions on expanded polystyrene, a commonly used material in food packaging. The results of this study could be useful for reducing pathogen cross-contamination phenomena during cold food storage. PMID:26236306
Psychrotrophic bacteria in milk: How much do we really know?
de Oliveira, Gislene B; Favarin, Luciana; Luchese, Rosa H; McIntosh, Douglas
2015-06-01
The occurrence of psychrotrophic bacteria in raw milk is studied worldwide due to the difficulties associated with controlling their growth during cold storage and the consequent negative effects upon fluid milk or dairy products. Among the psychrotrophic bacteria, the genus Pseudomonas (represented primarily by P. fluorescens) has been highlighted as the cause of numerous defects in dairy products. In light of its perceived predominance, this species has frequently been chosen as a model organism to assess the effects of psychrotrophic bacteria on milk or to evaluate the efficacy of control measures. However, recent findings derived from the application of molecular biological techniques have exposed a number of deficiencies in our knowledge of the biology of milk-associated psychrotrophs. Furthermore, it has been revealed that microbe to microbe communication plays a significant role in determining both the identities and the extent to which different groups of microbes develop during cold storage. The application of molecular identification methods has exposed errors in the classification of members of the genus Pseudomonas isolated from cold stored milk and has stimulated a reevaluation of the presumed status of P. fluorescens as the predominant milk-associated psychrotrophic species. This article presents a succinct review of data from studies on psychrotrophic bacteria in milk, some of which contest established theories in relation to the microbiology of cold stored raw milk, and poses the question: how much do we really know?
Supercooling as a Viable Non-Freezing Cell Preservation Method of Rat Hepatocytes
Usta, O. Berk; Kim, Yeonhee; Ozer, Sinan; Bruinsma, Bote G.; Lee, Jungwoo; Demir, Esin; Berendsen, Tim A.; Puts, Catheleyne F.; Izamis, Maria-Louisa; Uygun, Korkut; Uygun, Basak E.; Yarmush, Martin L.
2013-01-01
Supercooling preservation holds the potential to drastically extend the preservation time of organs, tissues and engineered tissue products, and fragile cell types that do not lend themselves well to cryopreservation or vitrification. Here, we investigate the effects of supercooling preservation (SCP at -4oC) on primary rat hepatocytes stored in cryovials and compare its success (high viability and good functional characteristics) to that of static cold storage (CS at +4oC) and cryopreservation. We consider two prominent preservation solutions a) Hypothermosol (HTS-FRS) and b) University of Wisconsin solution (UW) and a range of preservation temperatures (-4 to -10 oC). We find that there exists an optimum temperature (-4oC) for SCP of rat hepatocytes which yields the highest viability; at this temperature HTS-FRS significantly outperforms UW solution in terms of viability and functional characteristics (secretions and enzymatic activity in suspension and plate culture). With the HTS-FRS solution we show that the cells can be stored for up to a week with high viability (~56%); moreover we also show that the preservation can be performed in large batches (50 million cells) with equal or better viability and no loss of functionality as compared to smaller batches (1.5 million cells) performed in cryovials. PMID:23874947
Waters, L; Cameron, M; Padula, M P; Marks, D C; Johnson, L
2018-05-01
Conventional storage of platelet concentrates limits their shelf life to between 5 and 7 days due to the risk of bacterial proliferation and the development of the platelet storage lesion. Cold storage and cryopreservation of platelets may facilitate extension of the shelf life to weeks and years, and may also provide the benefit of being more haemostatically effective than conventionally stored platelets. Further, treatment of platelet concentrates with pathogen inactivation systems reduces bacterial contamination and provides a safeguard against the risk of emerging and re-emerging pathogens. While each of these alternative storage techniques is gaining traction individually, little work has been done to examine the effect of combining treatments in an effort to further improve product safety and minimize wastage. This review aims to discuss the benefits of alternative storage techniques and how they may be combined to alleviate the problems associated with conventional platelet storage. © 2018 International Society of Blood Transfusion.
Safety engineering in handling fuels and lubricants in civil aviation
NASA Astrophysics Data System (ADS)
Protoereiskii, Aleksandr Stepanovich
The book is concerned with methods of improving working conditions, work hygiene, safety engineering, and fire and explosion prevention during the storage and handling of petroleum products at fuel and lubricant storage facilities. The discussion covers methods of protection against static and atmospheric discharges, lightning protection, safety engineering in fuel and lubricant laboratories, and methods of fire prevention and fire extinction. Attention is also given to methods for administering first aid in case of accidents and poisoning.
Vaccine storage in the community: a study in central Italy.
Grasso, M.; Ripabelli, G.; Sammarco, M. L.; Manfredi Selvaggi, T. M.; Quaranta, A.
1999-01-01
Maintaining the vaccine cold chain is an essential part of a successful immunization programme, but in developed countries faulty procedures may occur more commonly than is generally believed. A survey was conducted in a health district in central Italy to assess the methods of vaccine transportation and storage. Of 52 primary vaccination offices inspected, 39 (76.5%) had a refrigerator for vaccine storage but only 17 (33.3%) kept records of received and stored doses. None of the seven main offices selected for monitoring had a maximum and minimum thermometer and none monitored the internal temperature of the refrigerator. Moreover, other faulty procedures, such as the storage of food and laboratory specimens in vaccine refrigerators and the storage of vaccines on refrigerator door shelves, indicated that the knowledge and practice of vaccine storage and handling were often inadequate. PMID:10327715
Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm
Grippa, M.; Mognard, N.; Le, Toan T.; Josberger, E.G.
2004-01-01
One of the major challenges in determining snow depth (SD) from passive microwave measurements is to take into account the spatiotemporal variations of the snow grain size. Static algorithms based on a constant snow grain size cannot provide accurate estimates of snow pack thickness, particularly over large regions where the snow pack is subjected to big spatial temperature variations. A recent dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from the Special Sensor Microwave/Imager (SSM/I) over the Northern Great Plains (NGP) in the US. In this paper, we develop a combined dynamic and static algorithm to estimate snow depth from 13 years of SSM/I observations over Central Siberia. This region is characterised by extremely cold surface air temperatures and by the presence of permafrost that significantly affects the ground temperature. The dynamic algorithm is implemented to take into account these effects and it yields accurate snow depths early in the winter, when thin snowpacks combine with cold air temperatures to generate rapid crystal growth. However, it is not applicable later in the winter when the grain size growth slows. Combining the dynamic algorithm to a static algorithm, with a temporally constant but spatially varying coefficient, we obtain reasonable snow depth estimates throughout the entire snow season. Validation is carried out by comparing the satellite snow depth monthly averages to monthly climatological data. We show that the location of the snow depth maxima and minima is improved when applying the combined algorithm, since its dynamic portion explicitly incorporate the thermal gradient through the snowpack. The results obtained are presented and evaluated for five different vegetation zones of Central Siberia. Comparison with in situ measurements is also shown and discussed. ?? 2004 Elsevier Inc. All rights reserved.
MAVEN SupraThermal and Thermal Ion Compostion (STATIC) Instrument
NASA Astrophysics Data System (ADS)
McFadden, J. P.; Kortmann, O.; Curtis, D.; Dalton, G.; Johnson, G.; Abiad, R.; Sterling, R.; Hatch, K.; Berg, P.; Tiu, C.; Gordon, D.; Heavner, S.; Robinson, M.; Marckwordt, M.; Lin, R.; Jakosky, B.
2015-12-01
The MAVEN SupraThermal And Thermal Ion Compostion (STATIC) instrument is designed to measure the ion composition and distribution function of the cold Martian ionosphere, the heated suprathermal tail of this plasma in the upper ionosphere, and the pickup ions accelerated by solar wind electric fields. STATIC operates over an energy range of 0.1 eV up to 30 keV, with a base time resolution of 4 seconds. The instrument consists of a toroidal "top hat" electrostatic analyzer with a 360° × 90° field-of-view, combined with a time-of-flight (TOF) velocity analyzer with 22.5° resolution in the detection plane. The TOF combines a -15 kV acceleration voltage with ultra-thin carbon foils to resolve H+, He^{++}, He+, O+, O2+, and CO2+ ions. Secondary electrons from carbon foils are detected by microchannel plate detectors and binned into a variety of data products with varying energy, mass, angle, and time resolution. To prevent detector saturation when measuring cold ram ions at periapsis (˜10^{1 1} eV/cm2 s sr eV), while maintaining adequate sensitivity to resolve tenuous pickup ions at apoapsis (˜103 eV/cm2 s sr eV), the sensor includes both mechanical and electrostatic attenuators that increase the dynamic range by a factor of 103. This paper describes the instrument hardware, including several innovative improvements over previous TOF sensors, the ground calibrations of the sensor, the data products generated by the experiment, and some early measurements during cruise phase to Mars.
Wu, Yuelong; Chen, Lirong; Xu, Zhongxiao; Wang, Hai
2014-09-22
We report an experimental demonstration of storage of photonic polarization qubit (PPQ) protected by dynamical decoupling (DD). PPQ's states are stored as a superposition of two spin waves by electromagnetically-induced-transparency (EIT). Carr-Purcell-Meiboom-Gill (CPMG) DD sequences are applied to the spin-wave superposition to suppress its decoherence. Thus, the quantum process fidelity remains better than 0.8 for up to 800 μs storage time, which is 3.4-times longer than the corresponding storage time of ~180 μs without the CPMG sequences. This work is a key step towards the storage of single-photon polarization qubit protected by the CPMG sequences.
Song, Ah Young; Oh, Yoon Ah; Roh, Si Hyeon; Kim, Ji Hyeon; Min, Sea C
2016-01-01
The effects of cold plasma (CP) treatment on the physicochemical and biodegradable properties of polylactic acid (PLA) films were studied. The PLA films were exposed to CP for 40 min at 900 W and 667 Pa using oxygen as the plasma-forming gas. The tensile, optical, and dynamic mechanical thermal properties, surface morphology, printability, water contact angle, chemical structure, weight change, and biodegradability properties of the films were evaluated during storage for up to 56 d. The tensile and optical properties of the PLA films were not significantly affected by CP treatment (CPT; P > 0.05). The surface roughness and water contact angle of PLA films increased by CPT and further increased during storage for 56 d. The printability of the PLA films increased following CPT and remained stable throughout the storage period. CP-induced hydrophilicity was also sustained during the storage period. The PLA films lost 1.9% of their weight after CPT, but recovered 99.5% of this loss after 14 d in storage. Photodegradation, thermal, and microbial biodegradable properties of the films were significantly improved by CPT (P < 0.05). Accelerated biodegradation of CP-treated PLA sachets with and without cheese was observed in compost. These results demonstrate the potential of CPT for modifying the stiffness, water contact angle, and chemical structure of PLA films and improving the printability and biodegradability of the films for food packaging. © 2015 Institute of Food Technologists®
1. General oblique view of north and east sides, view ...
1. General oblique view of north and east sides, view to southwest, showing main loading docks - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX
25. INTERIOR VIEW TO THE SOUTHWEST OF ROOM 109, THE ...
25. INTERIOR VIEW TO THE SOUTHWEST OF ROOM 109, THE WARM AND COLD STORAGE ROOM. - Nevada Test Site, Pluto Facility, Disassembly Building, Area 26, Wahmonie Flats, Cane Spring Road, Mercury, Nye County, NV
14. Interior view of the first floor, facing southwest, and ...
14. Interior view of the first floor, facing southwest, and showing elements of the cold storage refrigeration system attached to the ceiling. - Armour & Company Building, 100 Harris Avenue, Providence, Providence County, RI
2. General oblique view of north loading dock showing loading ...
2. General oblique view of north loading dock showing loading docks with doors opening into refrigerated rooms - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX
Lee, Inkyu; Park, Jinwoo; Moon, Il
2017-12-01
This paper describes data of an integrated process, cryogenic energy storage system combined with liquefied natural gas (LNG) regasification process. The data in this paper is associated with the article entitled "Conceptual Design and Exergy Analysis of Combined Cryogenic Energy Storage and LNG Regasification Processes: Cold and Power Integration" (Lee et al., 2017) [1]. The data includes the sensitivity case study dataset of the air flow rate and the heat exchanging feasibility data by composite curves. The data is expected to be helpful to the cryogenic energy process development.
Management self assessment plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debban, B.L.
Duke Engineering and Services Hanford Inc., Spent Nuclear Fuel Project is responsible for the operation of fuel storage facilities. The SNF project mission includes the safe removal, processing and transportation of Spent Nuclear Fuel from 100 K Area fuel storage basins to a new Storage facility in the Hanford 200 East Area. Its mission is the modification of the 100 K area fuel storage facilities and the construction of two new facilities: the 100 K Area Cold Vacuum Drying Facility, and the 200 East Area Canister Storage Building. The management self assessment plan described in this document is scheduled tomore » begin in April of 1999 and be complete in May of 1999. The management self assessment plan describes line management preparations for declaring that line management is ready to commence operations.« less
Optimum Temperature for Storage of Fruit and Vegetables with Reference to Chilling Injury
NASA Astrophysics Data System (ADS)
Murata, Takao
Cold storage is an important technique for preserving fresh fruit and vegetables. Deterioration due to ripening, senescence and microbiological disease can be retarded by storage at optimum temperature being slightly above the freezing point of tissues of fruit and vegetables. However, some fruit and vegetables having their origins in tropical or subtropical regions of the world are subject to chilling injury during transportation, storage and wholesale distribution at low temperature above freezing point, because they are usually sensitive to low temperature in the range of 15&digC to 0°C. This review will focus on the recent informations regarding chilling injury of fruit and vegetables, and summarize the optimum temperature for transportation and storage of fruit and vegetables in relation to chilling injury.
Structure of aging Al-Li-Cu-Zr-Sc-Ag alloy after severe plastic deformation and long-term storage
NASA Astrophysics Data System (ADS)
Kaigorodova, L. I.; Rasposienko, D. Yu.; Pushin, V. G.; Pilyugin, V. P.; Smirnov, S. V.
2015-11-01
Structural and phase transformations in commercial aging aluminum-lithium Al-1.2 Li-3.2 Cu-0.09 Zr-0.11 Sc-0.4 Ag-0.3 Mg alloy have been studied after severe plastic deformation by high-pressure torsion (at a pressure of 4 GPa with 1, 5, and 10 revolutions of the anvil) and natural aging (roomtemperature storage) for 1 week and 2 years. It has been found that, in this case, the process of static recrystallization is achieved in the alloy, the degree of which increases with an increasing degree of deformation and time of storage.
Influence of chronic exposure to cold environment on thyroid gland function in rabbits.
Mustafa, S; Elgazzar, A
2014-07-01
Chronic exposure to cold can affect the thyroid gland. However, the effect on thyroid gland perfusion images and the ratio between thyroid hormones secretion were not addressed in any previous study. The present study investigates the effects of chronic cold exposure on thyroid gland function using radionuclide tracer and thyroid hormones secretion concentration. New Zealand white rabbits weighing approximately 1.8-2 kg were kept in a cold room (4°C) for 7 weeks. Thyroid scintigraphy was performed for cold exposed rabbits and a control rabbit group. Each rabbit was injected with 115 MBq (3.1 mCi) technetium-99m pertechnetate (99mTc pertechnetate). Studies were performed using Gamma camera equipped with a low energy, high resolution, pinhole collimator interfaced with a computer. Static images were acquired 20 min after administration of the radiotracer. Rabbits chronically exposed to cold had less body weights than control. Thyroid gland uptake is higher in rabbits chronically exposed to cold than controls using radionuclide perfusion study. The increase was proportional to the time period, so the increase after 7 weeks was greater than 5 weeks. There is also an increase in free triiodothyronine (FT3) and a decrease in free thyroxine (FT4) values. Our results indicate that thyroid gland uptake is higher in rabbits chronically exposed to cold than control and the increase was proportional to the duration. The decrease in rabbit body weights may be related to the increase in metabolism due to the increase of thyroid hormones. Chronic cold exposure also increased the conversion of T4 to T3, which is more potent in thermogenic effect. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Grise, K. M.; Thompson, D. W.; Birner, T.
2009-12-01
Static stability is a fundamental dynamical quantity that measures the vertical temperature stratification of the atmosphere. The long-term mean static stability field is characterized by the well-known transition from low values in the troposphere to high values in the stratosphere. However, the magnitude and structure of fine-scale static stability features near the tropopause are difficult to discern in temperature data with low vertical resolution. In this study, the authors apply over six years of high vertical resolution Global Positioning System radio occultation temperature profiles to document the long-term mean structure and variability of static stability in the global upper troposphere and lower stratosphere (UTLS). The results of this study demonstrate that a shallow but pronounced maximum in static stability exists just above the tropopause at all latitudes (i.e., the “tropopause inversion layer,” or TIL). This study also uncovers two novel aspects of static stability in the global UTLS. In the tropical lower stratosphere, the results reveal a unique vertically and horizontally varying static stability structure, with maxima located at ~17 km and ~19 km. The upper feature peaks during the NH cold season and has its largest magnitude between 10 and 15 degrees latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The results also demonstrate that the strength of the TIL is closely tied to stratospheric dynamic variability. The magnitude of the TIL is enhanced following sudden stratospheric warmings in the polar regions and the easterly phase of the quasi-biennial oscillation in the tropics.
NASA Astrophysics Data System (ADS)
Grise, Kevin M.; Thompson, David W. J.; Birner, Thomas
2010-05-01
Static stability is a fundamental dynamical quantity that measures the vertical temperature stratification of the atmosphere. The long-term mean static stability field is characterized by the well-known transition from low values in the troposphere to high values in the stratosphere. However, the magnitude and structure of fine-scale static stability features near the tropopause are difficult to discern in temperature data with low vertical resolution. In this study, the authors apply over six years of high vertical resolution Global Positioning System radio occultation temperature profiles to document the long-term mean structure and variability of static stability in the global upper troposphere and lower stratosphere (UTLS). The results of this study demonstrate that a shallow but pronounced maximum in static stability exists just above the tropopause at all latitudes (i.e., the "tropopause inversion layer," or TIL). This study also uncovers two novel aspects of static stability in the global UTLS. In the tropical lower stratosphere, the results reveal a unique vertically and horizontally varying static stability structure, with maxima located at ~17 km and ~19 km. The upper feature peaks during the NH cold season and has its largest magnitude between 10 and 15 degrees latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The results also demonstrate that the strength of the TIL is closely tied to stratospheric dynamic variability. The magnitude of the TIL is enhanced following sudden stratospheric warmings in the polar regions and the easterly phase of the quasi-biennial oscillation in the tropics.
Safety analysis report for packaging (onsite) multicanister overpack cask
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, W.S.
1997-07-14
This safety analysis report for packaging (SARP) documents the safety of shipments of irradiated fuel elements in the MUlticanister Overpack (MCO) and MCO Cask for a highway route controlled quantity, Type B fissile package. This SARP evaluates the package during transfers of (1) water-filled MCOs from the K Basins to the Cold Vacuum Drying Facility (CVDF) and (2) sealed and cold vacuum dried MCOs from the CVDF in the 100 K Area to the Canister Storage Building in the 200 East Area.
Physiological behavior of bean's seeds and grains during storage.
Cassol, Flávia D R; Fortes, Andréa M T; Mendonça, Lorena C; Buturi, Camila V; Marcon, Thaís R
2016-05-31
Beans are one of the most used foods to meet the energy needs of the Brazilian diet, requiring farmers to use high seed physiological potential. The aim was to evaluate the physiological quality of beans stored for 360 days. Analyses were performed at 0, 30, 90, 180, 270, and 360 days after receiving the seeds (S1 and S2) and grains (G1 and G2) of BRS Splendor. Tests of germination, accelerated aging, cold, speed of germination, average length of shoots, and root were performed. The experimental design was completely randomized split-plot in time and the means were compared through Tukey test at 5% probability. Seed germination was not affected in S2, while the drop in S1 and G1 was significant. The vigor of grains from field 1 declined from 91 to 50% and from 93% to 76% by accelerated aging and cold, respectively, after 360 days. The germination speed tests performed showed a decreased during the experiment. The grains from field 1 had lower physiological quality. The accelerated aging and cold tests, through the speed of germination parameter, showed decrease in the vigor of the Splendor BRS. The storage period influenced the physiological quality of the beans tested.
A thermostable messenger RNA based vaccine against rabies.
Stitz, Lothar; Vogel, Annette; Schnee, Margit; Voss, Daniel; Rauch, Susanne; Mutzke, Thorsten; Ketterer, Thomas; Kramps, Thomas; Petsch, Benjamin
2017-12-01
Although effective rabies virus vaccines have been existing for decades, each year, rabies virus infections still cause around 50.000 fatalities worldwide. Most of these cases occur in developing countries, where these vaccines are not available. The reasons for this are the prohibitive high costs of cell culture or egg grown rabies virus vaccines and the lack of a functional cold chain in many regions in which rabies virus is endemic. Here, we describe the excellent temperature resistance of a non-replicating mRNA based rabies virus vaccine encoding the rabies virus glycoprotein (RABV-G). Prolonged storage of the vaccine from -80°C to up to +70°C for several months did not impact the protective capacity of the mRNA vaccine. Efficacy after storage was demonstrated by the induction of rabies specific virus neutralizing antibodies and protection in mice against lethal rabies infection. Moreover, storing the vaccine at oscillating temperatures between +4° and +56°C for 20 cycles in order to simulate interruptions of the cold chain during vaccine transport, did not affect the vaccine's immunogenicity and protective characteristics, indicating that maintenance of a cold chain is not essential for this vaccine.
NASA Technical Reports Server (NTRS)
Whitesides, R. H.; Ghosh, A.; Jenkins, S. L.; Bacchus, D. L.
1989-01-01
A series of subscale cold flow tests was performed to quantify the gas flow characteristics at the aft end of the Space Shuttle Solid Rocket Motor. This information was used to support the analyses of the redesigned nozzle/case joint. A portion of the thermal loads at the joint are due to the circumferential velocities and pressure gradients caused primarily by the gimbaling of the submerged nose TVC nozzle. When the nozzle centerline is vectored with respect to the motor centerline, asymmetries are set up in the flow field under the submerged nozzle and immediately adjacent to the nozzle/case joint. Specific program objectives included: determination of the effects of nozzle gimbal angle and propellant geometry on the circumferential flow field; measurement of the static pressure and gas velocities in the vicinity of the nozzle/case joint; use of scaling laws to apply the subscale cold flow data to the full scale SRM; and generation of data for use in validation of 3-D computational fluid dynamic, CFD, models of the SRM flow field. These tests were conducted in the NASA Marshall Space Flight Center Airflow Facility with a 7.5 percent scale model of the aft segment of the SRM. Static and dynamic pressures were measured in the model to quantify the flow field. Oil flow data was also acquired to obtain qualitative visual descriptions of the flow field. Nozzle gimbal angles of 0, 3.5, and 7 deg were used with propellant grain configurations corresponding to motor burn times of 0, 9, 19, and 114 seconds. This experimental program was successful in generating velocity and pressure gradient data for the flow field around the submerged nose nozzle of the Space Shuttle SRM at various burn times and gimbal angles. The nature of the flow field adjacent to the nozzle/case joint was determined with oil droplet streaks, and the velocity and pressure gradients were quantified with pitot probes and wall static pressure measurements. The data was applied to the full scale SRM thru a scaling analysis and the results compared well with the 3-D computational fluid dynamics computer model.
A portable time of flight system for thermal and cold neutron applications
NASA Astrophysics Data System (ADS)
Benenson, R. E.; Chen-Mayer, H. H.; Sharov, V.
1996-08-01
A very small Fermi-type neutron chopper fashioned by cutting slots in a boron nitride cylinder was developed for use with a source of thermal and cold (subthermal velocity) neutrons. The original goal was to characterize spectra emerging from glass capillary fibers of less than 1 mm diameter, but other applications became apparent. For approximately 1 m flight paths, conventional nuclear electronics had to be adapted to the millisecond flight times. Both time-to-amplitude converter and multiscaling time-data storage methods were used. Data corrections for the particular geometry are reviewed and applied to the present geometry. Among examples of its potential use, the spectrum of a newly installed cold source was measured.
Monitoring temperatures in the vaccine cold chain in Bolivia.
Nelson, Carib; Froes, Paulo; Dyck, Anne Mie Van; Chavarría, Jeaneth; Boda, Enrique; Coca, Alberto; Crespo, Gladys; Lima, Heinz
2007-01-05
This study monitored vaccine cold chain temperatures during routine DTP-HB-Hib vaccine shipments from central stores to 11 communities in 3 provinces of Bolivia. In all 11 monitored shipments, vaccines were exposed to freezing temperatures at one or more points. In each of the shipments, temperatures below 0 degrees C were recorded for 2-50% of the monitoring period. Freezing occurred at almost every level of the cold chain distribution system, especially during district and health center storage and during transport to the province and district levels. Seven of the 11 shipments were exposed to temperatures above 8 degrees C, although none were exposed to excessive heat longer than 1.3% of the total monitoring period.
Storage rings for spin-polarized hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, D.; Lovelace, R.V.E.; Lee, D.
1989-11-01
A strong-focusing storage ring is proposed for the long-term magnetic confinement of a collisional gas of neutral spin-polarized hydrogen atoms in the Za{l arrow} and Zb{l arrow} hyperfine states. The trap uses the interaction of the magnetic moments of the gas atoms with a static magnetic field. Laser cooling and evaporative cooling can be utilized to enhance the confinement and to offset the influence of viscous heating. An important application of the trap is to the attainment of Bose--Einstein condensation.
Electrolysis Performance Improvement Concept Study (EPICS) flight experiment phase C/D
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Lee, M. G.
1995-01-01
The overall purpose of the Electrolysis Performance Improvement Concept Study flight experiment is to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer concept as well as investigate the effect of microgravity on water electrolysis performance. The scope of the experiment includes variations in microstructural characteristics of electrodes and current densities in a static feed electrolysis cell configuration. The results of the flight experiment will be used to improve efficiency of the static feed electrolysis process and other electrochemical regenerative life support processes by reducing power and expanding the operational range. Specific technologies that will benefit include water electrolysis for propulsion, energy storage, life support, extravehicular activity, in-space manufacturing and in-space science in addition to other electrochemical regenerative life support technologies such as electrochemical carbon dioxide and oxygen separation, electrochemical oxygen compression and water vapor electrolysis. The Electrolysis Performance Improvement Concept Study flight experiment design incorporates two primary hardware assemblies: the Mechanical/Electrochemical Assembly and the Control/Monitor Instrumentation. The Mechanical/Electrochemical Assembly contains three separate integrated electrolysis cells along with supporting pressure and temperature control components. The Control/Monitor Instrumentation controls the operation of the experiment via the Mechanical/Electrochemical Assembly components and provides for monitoring and control of critical parameters and storage of experimental data.
Nanoscopic Dynamic Mechanical Properties of Intertubular and Peritubular Dentin
Ryou, Heon; Romberg, Elaine; Pashley, David H.; Tay, Franklin R.; Arola, Dwayne
2011-01-01
An experimental evaluation of intertubular and peritubular dentin was performed using nanoindentation and Dynamic Mechanical Analysis (DMA). The objective of the investigation was to evaluate the differences in dynamic mechanical behavior of these two constituents and to assess if their response is frequency dependent. Specimens of hydrated coronal dentin were evaluated by DMA using single indents over a range in parametric conditions and using scanning probe microscopy. The complex (E*), storage (E’) and loss moduli (E”) of the intertubular and peritubular dentin were evaluated as a function of the dynamic loading frequency and static load in the fully hydrated condition. The mean complex E* (19.6 GPa) and storage E’ (19.2 GPa) moduli of the intertubular dentin were significantly lower than those quantities of peritubular dentin (E* = 31.1 GPa, p< 0.05; E’ = 30.3 GPa, p< 0.05). There was no significant influence of dynamic loading frequency on these measures. Though there was no significant difference in the loss modulus (E”) between the two materials (p> 0.05), both constituents exhibited a significant increase in E” with dynamic load frequency and reduction in the quasi-static component of indentation load. The largest difference in dynamic behavior of the two tissues was noted at small quasi-static indentation loads and the highest frequency. PMID:22340680
Heuberger, Adam L; Broeckling, Corey D; Lewis, Matthew R; Salazar, Lauren; Bouckaert, Peter; Prenni, Jessica E
2012-12-01
The effect of temperature on non-volatile compounds in beer has not been well characterised during storage. Here, a metabolomics approach was applied to characterise the effect of storage temperature on non-volatile metabolite variation after 16weeks of storage, using fresh beer as a control. The metabolite profile of room temperature stored (RT) and cold temperature stored (CT) beer differed significantly from fresh, with the most substantial variation observed between RT and fresh beer. Metabolites that changed during storage included prenylated flavonoids, purines, and peptides, and all showed reduced quantitative variation under the CT storage conditions. Corresponding sensory panel observations indicated significant beer oxidation after 12 and 16weeks of storage, with higher values reported for RT samples. These data support that temperature affected beer oxidation during short-term storage, and reveal 5-methylthioadenosine (5-MTA) as a candidate non-volatile metabolite marker for beer oxidation and staling. Copyright © 2012 Elsevier Ltd. All rights reserved.
Doughnut strikes sandwich: the geometry of hot medium in accreting black hole X-ray binaries
NASA Astrophysics Data System (ADS)
Poutanen, Juri; Veledina, Alexandra; Zdziarski, Andrzej A.
2018-06-01
We study the effects of the mutual interaction of hot plasma and cold medium in black hole binaries in their hard spectral state. We consider a number of different geometries. In contrast to previous theoretical studies, we use a modern energy-conserving code for reflection and reprocessing from cold media. We show that a static corona above an accretion disc extending to the innermost stable circular orbit produces spectra not compatible with those observed. They are either too soft or require a much higher disc ionization than that observed. This conclusion confirms a number of previous findings, but disproves a recent study claiming an agreement of that model with observations. We show that the cold disc has to be truncated in order to agree with the observed spectral hardness. However, a cold disc truncated at a large radius and replaced by a hot flow produces spectra which are too hard if the only source of seed photons for Comptonization is the accretion disc. Our favourable geometry is a truncated disc coexisting with a hot plasma either overlapping with the disc or containing some cold matter within it, also including seed photons arising from cyclo-synchrotron emission of hybrid electrons, i.e. containing both thermal and non-thermal parts.
Tensile Properties of Under-Matched Weld Joints for 950 MPa Steel.
NASA Astrophysics Data System (ADS)
Yamamoto, Kouji; Arakawa, Toshiaki; Akazawa, Nobuki; Yamamoto, Kousei; Matsuo, Hiroki; Nakagara, Kiyoyuki; Suita, Yoshikazu
In welding of 950 MPa-class high tensile strength steel, preheating is crucial in order to avoid cold cracks, which, however, eventually increases welding deformations. One way to decrease welding deformations is lowering preheating temperature by using under-matched weld metal. Toyota and others clarify that although breaking elongation can decrease due to plastic constraint effect under certain conditions, static tensile of under-matched weld joints is comparable to that of base metal. However, there has still been no report about joint static tensile of under-matched weld joints applied to 950 MPa-class high tensile strength steel. In this study, we aim to research tensile strength and fatigue strength of under-matched weld joints applied to 950 MPa-class high tensile steel.
Numerical analyses of a rocket engine turbine and comparison with air test data
NASA Technical Reports Server (NTRS)
Tran, Ken; Chan, Daniel C.; Hudson, Susan T.; Gaddis, Stephen W.
1992-01-01
The study presents cold air test data on the Space Shuttle Main Engine High Pressure Fuel Turbopump turbine recently collected at the NASA Marshall Space Flight Center. Overall performance data, static pressures on the first- and second-stage nozzles, and static pressures along with the gas path at the hub and tip are gathered and compared with various (1D, quasi-3D, and 3D viscous) analysis procedures. The results of each level of analysis are compared to test data to demonstrate the range of applicability for each step in the design process of a turbine. One-dimensional performance prediction, quasi-3D loading prediction, 3D wall pressure distribution prediction, and 3D viscous wall pressure distribution prediction are illustrated.
A passive cold storage device economic model to evaluate selected immunization location scenarios.
Norman, Bryan A; Nourollahi, Sevnaz; Chen, Sheng-I; Brown, Shawn T; Claypool, Erin G; Connor, Diana L; Schmitz, Michelle M; Rajgopal, Jayant; Wateska, Angela R; Lee, Bruce Y
2013-10-25
The challenge of keeping vaccines cold at health posts given the unreliability of power sources in many low- and middle-income countries and the expense and maintenance requirements of solar refrigerators has motivated the development of passive cold storage devices (PCDs), containers that keep vaccines cold without using an active energy source. With different PCDs under development, manufacturers, policymakers and funders need guidance on how varying different PCD characteristics may affect the devices' cost and utility. We developed an economic spreadsheet model representing the lowest two levels of a typical Expanded Program on Immunization (EPI) vaccine supply chain: a district store, the immunization locations that the district store serves, and the transport vehicles that operate between the district store and the immunization locations. The model compares the use of three vaccine storage device options [(1) portable PCDs, (2) stationary PCDs, or (3) solar refrigerators] and allows the user to vary different device (e.g., size and cost) and scenario characteristics (e.g., catchment area population size and vaccine schedule). For a sample set of select scenarios and equipment specification, we found the portable PCD to generally be better suited to populations of 5,000 or less. The stationary PCD replenished once per month can be a robust design especially with a 35L capacity and a cost of $2,500 or less. The solar device was generally a reasonable alternative for most of the scenarios explored if the cost was $2,100 or less (including installation). No one device type dominated over all explored circumstances. Therefore, the best device may vary from country-to-country and location-to-location within a country. This study introduces a quantitative model to help guide PCD development. Although our selected set of explored scenarios and device designs was not exhaustive, future explorations can further alter model input values to represent additional scenarios and device designs. Copyright © 2013 Elsevier Ltd. All rights reserved.
10. BUILDING: SECOND FLOOR (East Section), VIEW SOUTH: EAST, SOUTH ...
10. BUILDING: SECOND FLOOR (East Section), VIEW SOUTH: EAST, SOUTH AND WEST WALLS OF COLD STORAGE, ALSO SHOWING REMNANTS OF COOLING PIPES - Boston Beer Company, 225-249 West Second Street, South Boston, Suffolk County, MA
REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS
Large refrigeration systems are found in several applications including supermarkets, cold storage warehouses, and industrial processes. The sizes of these systems are a contributing factor to their problems of high refrigerant leak rates because of the thousands of connections, ...
Emergency Locator Transmitter (ELT) batteries guidance and recommendations
NASA Technical Reports Server (NTRS)
1984-01-01
Batteries for use with Emergency locator transmitters are discussed. Types of batteries, real-time activation considerations, encapsulation of cells in a battery pack, cold storage to extend shelf life, and general requirements are among the topics covered.
77 FR 27797 - Request for Certification of Compliance-Rural Industrialization Loan and Grant Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
... 4279-2) for the following: Applicant/Location: Samoa Cold Storage, Inc. Principal Product/Purpose: The... demolition of the interior of the existing facility, renovations and improvements, repairs and upgrades and...
Study of the effects of 1-MCP to blueberry under cold storage
NASA Astrophysics Data System (ADS)
Tao, Shenchen; Chu, Huailiang; Chen, Xiaomin; Yuan, Huwei; Qiu, Lingling; Zhao, Liang; Yan, Daoliang; Zheng, Bingsong
2017-04-01
Blueberry is one of the thinnest exocarp fruits in the world, which is difficult to keep fresh due to the special structure of its skin. 1-Methlcyclopropene (1-MCP) is able to combine with ethylene(ETH) receptor. In this study we investigated the effect of 1-MCP on rotting rate, weight loss ratio, soluble sugar content, titratable acid content, antioxidant enzyme activities and malondialdehyde (MDA) content in blueberry (Vaccinium corymbosun ‘O Neal’ and ‘North Road’) under cold storage. 1-MCP reduced the rotting rate, weight loss ratio and MDA content, while keeping high-leveled stability in antioxidant enzyme activities, soluble sugar content and titratable acid content. These results showed the role of 1-MCP in alleviating the negative effects of blueberry and suggested that 1-MCP could be used as a preservative for keeping thin exocarp fruit in fresh.
Dragišić Maksimović, Jelena; Poledica, Milena; Mutavdžić, Dragosav; Mojović, Miloš; Radivojević, Dragan; Milivojević, Jasminka
2015-03-01
Bioclimatic air ionisation system (BI) works by neutralising air pollutants and microorganisms by means of oxidation with "activated oxygen". We investigated the effects of storage on changes in weight loss, chemical and sensory fruit properties in eight cultivars of strawberries (Fragaria x ananassa Duch.). All cultivars were evaluated for their standard parameters of quality (soluble solids content, total acidity, vitamin C content, total antioxidant activity - TAC, total phenolic and anthocyanins content) at different store conditions: fresh fruits-control, cold stored (at 4 °C) fruits without controlled atmospheres and cold stored (at 4 °C) fruits in BI. The present study outlines that anthocyanins of the strawberries stored in BI were subjected to significant degradation. These strawberries have prolonged shelf-life accompanied by weight loss reduction, TAC increment, and sensory properties improvement in tested cultivars, retaining other nutritional fruit qualities.
NASA Astrophysics Data System (ADS)
Steiger, J.; Beck, B. R.; Gruber, L.; Church, D. A.; Holder, J. P.; Schneider, D.
1999-01-01
Storage rings and Penning traps are being used to study ions in their highest charge states. Both devices must have the capability for ion cooling in order to perform high precision measurements such as mass spectrometry and laser spectroscopy. This is accomplished in storage rings in a merged beam arrangement where a cold electron beam moves at the speed of the ions. In RETRAP, a Penning trap located at Lawrence Livermore National Laboratory, a sympathetic laser/ion cooling scheme has been implemented. In a first step, singly charged beryllium ions are cooled electronically by a tuned circuit and optically by a laser. Then hot, highly charged ions are merged into the cold Be plasma. By collisions, their kinetic energy is reduced to the temperature of the Be plasma. First experiments indicate that the highly charged ions form a strongly coupled plasma with a Coulomb coupling parameter exceeding 1000.
Carvajal, F; Rosales, R; Palma, F; Manzano, S; Cañizares, J; Jamilena, M; Garrido, D
2018-02-07
Zucchini fruit is susceptible to chilling injury (CI), but the response to low storage temperature is cultivar dependent. Previous reports about the response of zucchini fruit to chilling storage have been focused on the physiology and biochemistry of this process, with little information about the molecular mechanisms underlying it. In this work, we present a comprehensive analysis of transcriptomic changes that take place after cold storage in zucchini fruit of two commercial cultivars with contrasting response to chilling stress. RNA-Seq analysis was conducted in exocarp of fruit at harvest and after 14 days of storage at 4 and 20 °C. Differential expressed genes (DEGs) were obtained comparing fruit stored at 4 °C with their control at 20 °C, and then specific and common up and down-regulated DEGs of each cultivar were identified. Functional analysis of these DEGs identified similarities between the response of zucchini fruit to low temperature and other stresses, with an important number of GO terms related to biotic and abiotic stresses overrepresented in both cultivars. This study also revealed several molecular mechanisms that could be related to chilling tolerance, since they were up-regulated in cv. Natura (CI tolerant) or down-regulated in cv. Sinatra (CI sensitive). These mechanisms were mainly those related to carbohydrate and energy metabolism, transcription, signal transduction, and protein transport and degradation. Among DEGs belonging to these pathways, we selected candidate genes that could regulate or promote chilling tolerance in zucchini fruit including the transcription factors MYB76-like, ZAT10-like, DELLA protein GAIP, and AP2/ERF domain-containing protein. This study provides a broader understanding of the important mechanisms and processes related to coping with low temperature stress in zucchini fruit and allowed the identification of some candidate genes that may be involved in the acquisition of chilling tolerance in this crop. These genes will be the basis of future studies aimed to identify markers involved in cold tolerance and aid in zucchini breeding programs.
High brilliant thermal and cold moderator for the HBS neutron source project Jülich
NASA Astrophysics Data System (ADS)
Cronert, T.; Dabruck, J. P.; Doege, P. E.; Bessler, Y.; Klaus, M.; Hofmann, M.; Zakalek, P.; Rücker, U.; Lange, C.; Butzek, M.; Hansen, W.; Nabbi, R.; Brückel, T.
2016-09-01
The proposed High Brilliance Neutron Source (HBS), recognized within the Helmholtz Association of German Research Centres, will optimize the entire chain from particle source through particle accelerator, target, moderator, reflector, shielding, beam extraction, beam transport all the way to the detector, utilizing the nuclear Be(p,n) or Be(d,n) reaction in the lower MeV energy range. A D2O moderating reflector prototype (MRP) and a cold source were constructed and build according to MCNP parameter studies. The MRP was tested in a feasibility study at the TREFF instrument at MLZ (Garching). Cold beam extraction from the flux maximum within the moderator based on liquid para H2 and other cold moderators will be tested by energy spectroscopy via TOF-method. Different ratios of liquid ortho/para H2 will be fed to the cold moderator. The ratio will be controlled by feeding from reservoires of natural liquid H2 and a storage loop with an ortho/para converter and determined via online heat capacity measurement.
NASA Astrophysics Data System (ADS)
Hardy, Bruce L.
2010-03-01
Contrary to their cold-adapted image, Neanderthals inhabited Pleistocene Europe during a time of great climatic fluctuation with temperatures ranging from as warm as present-day during the last interglacial to as cold as those of the last glacial maximum. Cold-adapted Neanderthals are similarly most often associated with the exploitation of large mammals who are themselves cold-adapted (mammoth, bison, reindeer, etc.). Cold, high-latitude environments are typically seen as lacking in plants generally and in plant foods in particular. Plant foods are therefore usually ignored and Neanderthals are increasingly being viewed as top carnivores who derived the vast majority of their diet from meat. Support for this hypothesis comes largely from stable isotope analysis which tracks only the protein portion of the diet. Diets high in lean meat largely fulfill micronutrient needs but can pose a problem at the macronutrient level. Lean meat can compose no more than 35% of dietary energy before a protein ceiling is reached. Exceeding the protein ceiling can have detrimental physiological effects on the individual. Neanderthals would have needed energy from alternative sources, particularly when animals are fat-depleted and lean meat intake is high. Underground storage organs (USOs) of plants offer one such source, concentrating carbohydrates and energy. USOs could also provide an important seasonal energy source since they are at their maximum energy storage in late fall/winter. Although Paleolithic sites are increasingly yielding plant remains, their presence is rare and they are often given only passing mention in Neanderthal dietary reconstructions. The complexity and number of potential wild plant foods, however, defies easy discussion. Native European wild edible plants with starchy USOs would have been potentially available throughout the Neanderthal range, even during the coldest periods of the Late Pleistocene.
Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms.
Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica
2015-01-01
Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee's physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems.
Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms
Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica
2015-01-01
Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee’s physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems. PMID:25961447
Pumping Performance or RBCC Engine under Sea Level Static Condition
NASA Astrophysics Data System (ADS)
Kouchi, Toshinori; Tomioka, Sadatake; Kanda, Takeshi
Numerical simulations were conducted to predict the ejector pumping performance of a rocket-ramjet combined-cycle engine under a take-off condition. The numerical simulations revealed that the suction airflow was chocked at the exit of the engine throat when the ejector rocket was driven by cold N2 gas at the chamber pressure of 3MPa. When the ejector-driving gas was changed from cold N2 gas to hot combustion gas, the suction performance decreased remarkably. Mach contours in the engine revealed that the rocket plume constricted when the driving gas was the hot combustion gas. The change of the area of the stream tube area seemed to induce the pressure rise in the duct and decreasing in the pumping performance.
Plant-made oral vaccines against human infectious diseases—Are we there yet?
Chan, Hui-Ting; Daniell, Henry
2016-01-01
Summary Although the plant-made vaccine field started three decades ago with the promise of developing low-cost vaccines to prevent infectious disease outbreaks and epidemics around the globe, this goal has not yet been achieved. Plants offer several major advantages in vaccine generation, including low-cost production by eliminating expensive fermentation and purification systems, sterile delivery and cold storage/transportation. Most importantly, oral vaccination using plant-made antigens confers both mucosal (IgA) and systemic (IgG) immunity. Studies in the past 5 years have made significant progress in expressing vaccine antigens in edible leaves (especially lettuce), processing leaves or seeds through lyophilization and achieving antigen stability and efficacy after prolonged storage at ambient temperatures. Bioencapsulation of antigens in plant cells protects them from the digestive system; the fusion of antigens to transmucosal carriers enhances efficiency of their delivery to the immune system and facilitates successful development of plant vaccines as oral boosters. However, the lack of oral priming approaches diminishes these advantages because purified antigens, cold storage/transportation and limited shelf life are still major challenges for priming with adjuvants and for antigen delivery by injection. Yet another challenge is the risk of inducing tolerance without priming the host immune system. Therefore, mechanistic aspects of these two opposing processes (antibody production or suppression) are discussed in this review. In addition, we summarize recent progress made in oral delivery of vaccine antigens expressed in plant cells via the chloroplast or nuclear genomes and potential challenges in achieving immunity against infectious diseases using cold-chain-free vaccine delivery approaches. PMID:26387509
Murhekar, Manoj V; Dutta, Srihari; Kapoor, Ambujam Nair; Bitragunta, Sailaja; Dodum, Raja; Ghosh, Pramit; Swamy, Karumanagounder Kolanda; Mukhopadhyay, Kalyanranjan; Ningombam, Somorjit; Parmar, Kamlesh; Ravishankar, Devegowda; Singh, Balraj; Singh, Varsha; Sisodiya, Rajesh; Subramanian, Ramaratnam; Takum, Tana
2013-12-01
To estimate the proportion of time the vaccines in the cold-chain system in India are exposed to temperatures of < 0 or > 8 °C. In each of 10 states, the largest district and the one most distant from the state capital were selected for study. Four boxes, each containing an electronic temperature recorder and two vials of diphtheria, pertussis and tetanus vaccine, were placed in the state or regional vaccine store for each study state. Two of these boxes were then shipped - one per facility - towards the two most peripheral health facilities where vaccine was stored in each study district. The boxes were shipped, handled and stored as if they were routine vaccine supplies. In state, regional and district vaccine stores and peripheral health facilities, respectively, the temperatures in the boxes exceeded 8 °C for 14.3%, 13.2%, 8.3% and 14.7% of their combined storage times and fell below 0 °C for 1.5%, 0.2%, 0.6% and 10.5% of these times. The boxes also spent about 18% and 7% of their combined times in transit at < 0 and > 8 °C, respectively. In shake tests conducted at the end of the study, two thirds of the vaccine vials in the boxes showed evidence of freezing. While exposure to temperatures above 8 °C occurred at every level of vaccine storage, exposure to subzero temperatures was only frequent during vaccine storage at peripheral facilities and vaccine transportation. Systematic efforts are needed to improve temperature monitoring in the cold-chain system in India.
Junger, Henrik H; Schlitt, Hans J; Geissler, Edward K; Fichtner-Feigl, Stefan; Brunner, Stefan M
2017-11-01
This study aimed to elucidate the impact of epithelial regenerative responses and immune cell infiltration on biliary complications after liver transplantation. Bile duct (BD) damage after cold storage was quantified by a BD damage score and correlated with patient outcome in 41 patients. Bacterial infiltration was determined by fluorescence in situ hybridization (FISH). BD samples were analyzed by immunohistochemistry for E-cadherin, cytokeratin, CD56, CD14, CD4, CD8, and double-immunofluorescence for cytokine production and by messenger RNA (mRNA) microarray. Increased mRNA levels of adherens junctions (P < 0.01) were detected in damaged BDs from patients without complications compared with damaged BDs from patients with biliary complications. Immunohistochemistry showed increased expression of E-cadherin and cytokeratin in BDs without biliary complications (P = 0.03; P = 0.047). FISH analysis demonstrated translocation of bacteria in BDs. However, mRNA analysis suggested an enhanced immune response in BDs without biliary complications (P < 0.01). Regarding immune cell infiltration, CD4 + and CD8 + cells were significantly increased in patients without complications compared with those with complications (P = 0.02; P = 0.01). In conclusion, following BD damage during cold storage, we hypothesize that the functional regenerative capacity of biliary epithelium and enhanced local adaptive immune cell infiltration are crucial for BD recovery. Such molecular immunological BD analyses therefore could help to predict biliary complications in cases of "major" epithelial damage after cold storage.Liver Transplantation 23 1422-1432 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.
Mitchell, Tanecia; Rotaru, Dumitru; Saba, Hamida; Smith, Robin A. J.; Murphy, Michael P.
2011-01-01
The majority of kidneys used for transplantation are obtained from deceased donors. These kidneys must undergo cold preservation/storage before transplantation to preserve tissue quality and allow time for recipient selection and transport. However, cold storage (CS) can result in tissue injury, kidney discardment, or long-term renal dysfunction after transplantation. We have previously determined mitochondrial superoxide and other downstream oxidants to be important signaling molecules that contribute to CS plus rewarming (RW) injury of rat renal proximal tubular cells. Thus, this study's purpose was to determine whether adding mitoquinone (MitoQ), a mitochondria-targeted antioxidant, to University of Wisconsin (UW) preservation solution could offer protection against CS injury. CS was initiated by placing renal cells or isolated rat kidneys in UW solution alone (4 h at 4°C) or UW solution containing MitoQ or its control compound, decyltriphenylphosphonium bromide (DecylTPP) (1 μM in vitro; 100 μM ex vivo). Oxidant production, mitochondrial function, cell viability, and alterations in renal morphology were assessed after CS exposure. CS induced a 2- to 3-fold increase in mitochondrial superoxide generation and tyrosine nitration, partial inactivation of mitochondrial complexes, and a significant increase in cell death and/or renal damage. MitoQ treatment decreased oxidant production ∼2-fold, completely prevented mitochondrial dysfunction, and significantly improved cell viability and/or renal morphology, whereas DecylTPP treatment did not offer any protection. These findings implicate that MitoQ could potentially be of therapeutic use for reducing organ preservation damage and kidney discardment and/or possibly improving renal function after transplantation. PMID:21159749
Mitchell, Tanecia; Rotaru, Dumitru; Saba, Hamida; Smith, Robin A J; Murphy, Michael P; MacMillan-Crow, Lee Ann
2011-03-01
The majority of kidneys used for transplantation are obtained from deceased donors. These kidneys must undergo cold preservation/storage before transplantation to preserve tissue quality and allow time for recipient selection and transport. However, cold storage (CS) can result in tissue injury, kidney discardment, or long-term renal dysfunction after transplantation. We have previously determined mitochondrial superoxide and other downstream oxidants to be important signaling molecules that contribute to CS plus rewarming (RW) injury of rat renal proximal tubular cells. Thus, this study's purpose was to determine whether adding mitoquinone (MitoQ), a mitochondria-targeted antioxidant, to University of Wisconsin (UW) preservation solution could offer protection against CS injury. CS was initiated by placing renal cells or isolated rat kidneys in UW solution alone (4 h at 4°C) or UW solution containing MitoQ or its control compound, decyltriphenylphosphonium bromide (DecylTPP) (1 μM in vitro; 100 μM ex vivo). Oxidant production, mitochondrial function, cell viability, and alterations in renal morphology were assessed after CS exposure. CS induced a 2- to 3-fold increase in mitochondrial superoxide generation and tyrosine nitration, partial inactivation of mitochondrial complexes, and a significant increase in cell death and/or renal damage. MitoQ treatment decreased oxidant production ~2-fold, completely prevented mitochondrial dysfunction, and significantly improved cell viability and/or renal morphology, whereas DecylTPP treatment did not offer any protection. These findings implicate that MitoQ could potentially be of therapeutic use for reducing organ preservation damage and kidney discardment and/or possibly improving renal function after transplantation.
[Computerized temperature monitoring of the vaccine cold chain in a tropical climate, Chad].
Schlumberger, M; Mireux, F; Tchang, S G; Mboutbogol, D; Cheikh, D O; Hissein, A A; Youssouf, B O; Brahimi, M M; Gamatié, Y
2011-06-01
Because new EPI liquid vaccines are highly sensitive to freezing and overheating, close monitoring of the cold chain is mandatory. The new Testostore 171-1 electronic thermometer (Testo) provides more reliable monitoring of cold chain temperature than freezer indicators, vaccine vial monitors and color strips that only indicate if vaccines are out-of-date. The Testo thermometer uses a probe placed in refrigeration units to periodically measure and store temperature readings. Temperature curves are displayed via a USB connection on a laptop computer running special software (Comfort software light). Testo temperature data can easily be communicated to all management levels by e-mail. The first experience using the Testo system in Africa involved regional EPI supervision in Mondou, Logone Occidental, Chad. After a preliminary mission in Chad in 2006 showed the feasibility of using this method to manage the national cold chain at all levels, a nurse was appointed as EPI supervisor and given a refresher course in Chad's capital Ndjamena in March 2009. In April-May 2009, the supervisor was sent back to the Logone Occidental Region to monitor, by himself, refrigeration units making up the regional and district cold chain for vaccine storage in five health centers (rural and urban). Temperature curve readings were performed on site in the presence of the medical staff and results were compared to those recorded twice a day on conventional temperature charts using lamellar thermometers installed in refrigerators doors. Testo curves showed that liquid vaccine storage temperatures fell below freezing too frequently and that temperatures readings of door thermometers were often inaccurate. Testo readings also detected power outages in refrigeration units used in urban settings and flame extinctions in kerosene lamp refrigerators due to refrigerator breakdown or windy weather conditions before the rainy season. The main advantage of this monitoring method is to provide reliable data as a basis not only for detection of possible freezing of liquid vaccines but also for discussion of cold chain management and improvement with medical staff.