Microbial communities acclimate to recurring changes in soil redox potential status
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAngelis, Kristen M.; Silver, Whendee; Thompson, Andrew
Rapidly fluctuating environmental conditions can significantly stress organisms, particularly when fluctuations cross thresholds of normal physiological tolerance. Redox potential fluctuations are common in humid tropical soils, and microbial community acclimation or avoidance strategies for survival will in turn shape microbial community diversity and biogeochemistry. To assess the extent to which indigenous bacterial and archaeal communities are adapted to changing in redox potential, soils were incubated under static anoxic, static oxic or fluctuating redox potential conditions, and the standing (DNA-based) and active (RNA-based) communities and biogeochemistry were determined. Fluctuating redox potential conditions permitted simultaneous CO{sub 2} respiration, methanogenesis, N{sub 2}O productionmore » and iron reduction. Exposure to static anaerobic conditions significantly changed community composition, while 4-day redox potential fluctuations did not. Using RNA: DNA ratios as a measure of activity, 285 taxa were more active under fluctuating than static conditions, compared with three taxa that were more active under static compared with fluctuating conditions. These data suggest an indigenous microbialcommunity adapted to fluctuating redox potential.« less
Investigation of Gearbox Vibration Transmission Paths on Gear Condition Indicator Performance
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Islam, AKM Anwarul; Feldman, Jason; Larsen, Chris
2013-01-01
Helicopter health monitoring systems use vibration signatures generated from damaged components to identify transmission faults. For damaged gears, these signatures relate to changes in dynamics due to the meshing of the damaged tooth. These signatures, referred to as condition indicators (CI), can perform differently when measured on different systems, such as a component test rig, or a full-scale transmission test stand, or an aircraft. These differences can result from dissimilarities in systems design and environment under dynamic operating conditions. The static structure can also filter the response between the vibration source and the accelerometer, when the accelerometer is installed on the housing. To assess the utility of static vibration transfer paths for predicting gear CI performance, measurements were taken on the NASA Glenn Spiral Bevel Gear Fatigue Test Rig. The vibration measurements were taken to determine the effect of torque, accelerometer location and gearbox design on accelerometer response. Measurements were taken at the housing and compared while impacting the gear set near mesh. These impacts were made at gear mesh to simulate gear meshing dynamics. Data measured on a helicopter gearbox installed in a static fixture were also compared to the test rig. The behavior of the structure under static conditions was also compared to CI values calculated under dynamic conditions. Results indicate that static vibration transfer path measurements can provide some insight into spiral bevel gear CI performance by identifying structural characteristics unique to each system that can affect specific CI response.
NASA Technical Reports Server (NTRS)
Leavitt, L. D.; Bangert, L. S.
1982-01-01
An investigation was conducted in the Langley 16 foot Transonic Tunnel and in the static test facility of that tunnel to determine the effects of divergent flap ventilation of an axisymmetric nozzle on nozzle internal (static) and wind on performance. Tests were conducted at 0 deg angle of attack at static conditions and at Mach numbers from 0.6 to 1.2. Ratios of jet total pressure to free stream static pressure were varied from 1.0 (jet off) to approximately 14.0 depending on Mach number. The results of this study indicate that divergent flap ventilation generally provided large performance benefits at overexpanded nozzle conditions and performance reductions at underexpanded nozzle conditions when compared to the baseline (unventilated) nozzles. Ventilation also reduced the peak static and wind on performance levels.
Bernhardt, Anne; Lode, Anja; Peters, Fabian; Gelinsky, Michael
2011-06-01
The aim of this study was to optimize culture conditions for human mesenchymal stem cells (hMSCs) in β-tricalcium phosphate ceramics with large interconnected channels. Fully interconnected macrochannels comprising pore diameters of 750 µm and 1400 µm were inserted into microporous β-tricalcium phosphate (β-TCP) scaffolds by milling. Human bone marrow-derived MSCs were seeded into the scaffolds and cultivated for up to 3 weeks in both static and perfusion culture in the presence of osteogenic supplements (dexamethasone, β-glycerophosphate, ascorbate). It was confirmed by scanning electron microscopic investigations and histological staining that the perfusion culture resulted in uniform distribution of cells inside the whole channel network, whereas the statically cultivated cells were primarily found at the surface of the ceramic samples. It was also determined that perfusion with standard medium containing 10% fetal calf serum (FCS) led to a strong increase (seven-fold) of cell numbers compared with static cultivation observed after 3 weeks. Perfusion with low-serum medium (2% FCS) resulted in moderate proliferation rates which were comparable to those achieved in static culture, although the specific alkaline phosphatase (ALP) activity increased by a factor of more than 3 compared to static cultivation. Gene expression analysis of the ALP gene also revealed higher levels of ALP mRNA in low-serum perfused samples compared to statically cultivated constructs. In contrast, gene expression of the late osteogenic marker bone sialoprotein II (BSPII) was decreased for perfused samples compared to statically cultivated samples. Copyright © 2010 John Wiley & Sons, Ltd.
Wong, Del P.; Chaouachi, Anis; Lau, Patrick W.C.; Behm, David G.
2011-01-01
This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key points The duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). No significant differences in RSA and COD between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. PMID:24149890
Wong, Del P; Chaouachi, Anis; Lau, Patrick W C; Behm, David G
2011-01-01
This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key pointsThe duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001).No significant differences in RSA and COD between the 3 stretching conditions.The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects.The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments.
Should Ballet Dancers Vary Postures and Underfoot Surfaces When Practicing Postural Balance?
Steinberg, Nili; Waddington, Gordon; Adams, Roger; Karin, Janet; Tirosh, Oren
2018-01-01
Postural balance (PB) is an important component skill for professional dancers. However, the effects of different types of postures and different underfoot surfaces on PB have not adequately been addressed. The main aim of this study was to investigate the effect of different conditions of footwear, surfaces, and standing positions on static and dynamic PB ability of young ballet dancers. A total of 36 male and female young professional ballet dancers (aged 14-19 years) completed static and dynamic balance testing, measured by head and lumbar accelerometers, while standing on one leg in the turnout position, under six different conditions: (1) "relaxed" posture; (2) "ballet" posture; (3) barefoot; (4) ballet shoes with textured insoles; (5) barefoot on a textured mat; and (6) barefoot on a spiky mat. A condition effect was found for static and dynamic PB. Static PB was reduced when dancers stood in the ballet posture compared with standing in the relaxed posture and when standing on a textured mat and on a spiky mat (p < .05), and static PB in the relaxed posture was significantly better than PB in all the other five conditions tested. Dynamic PB was significantly better while standing in ballet shoes with textured insoles and when standing on a spiky mat compared with all other conditions (p < .05). The practical implications derived from this study are that both male and female dancers should try to be relaxed in their postural muscles when practicing a ballet aligned position, including dance practice on different types of floors and on different types of textured/spiky materials may result in skill transfer to practice on normal floor surfaces, and both static and dynamic PB exercises should be assessed and generalized into practical dance routines.
Ab-initio study of several static and dynamic properties of liquid palladium and platinum
NASA Astrophysics Data System (ADS)
González, L. E.; González, D. J.; Molla, Mohammad Riazuddin; Ahmed, A. Z. Ziauddin; Bhuiyan, G. M.
2017-08-01
We report a study on several static and dynamic properties of liquid Pd and Pt metals at thermodynamic conditions near their respective triple points. The calculations have been carried out by an ab initio molecular dynamics simulation technique. Results are reported for several static structural magnitudes which are compared with the available X-ray diffraction. As for the dynamic properties, results have been obtained for both single and collective dynamical magnitudes as well as for some transport coeffcients which are compared with the corresponding experimental data.
Rood, Akkie; Hannink, Gerjon; Lenting, Anke; Groenen, Karlijn; Koëter, Sander; Verdonschot, Nico; van Kampen, Albert
2015-10-01
Reconstructing the medial patellofemoral ligament (MPFL) has become a key procedure for stabilizing the patella. Different techniques to reconstruct the MPFL have been described: static techniques in which the graft is fixed rigidly to the bone or dynamic techniques with soft tissue fixation. Static MPFL reconstruction is most commonly used. However, dynamic reconstruction deforms more easily and presumably functions more like the native MPFL. The aim of the study was to evaluate the effect of the different MPFL fixation techniques on patellofemoral pressures compared with the native situation. The hypothesis was that dynamic reconstruction would result in patellofemoral pressures closer to those generated in an intact knee. Controlled laboratory study. Seven fresh-frozen knee specimens were tested in an in vitro knee joint loading apparatus. Tekscan pressure-sensitive films fixed to the retropatellar cartilage measured mean patellofemoral and peak pressures, contact area, and location of the center of force (COF) at fixed flexion angles from 0° to 110°. Four different conditions were tested: intact, dynamic, partial dynamic, and static MPFL reconstruction. Data were analyzed using linear mixed models. Static MPFL reconstruction resulted in higher peak and mean pressures from 60° to 110° of flexion (P < .001). There were no differences in pressure between the 2 different dynamic reconstructions and the intact situation (P > .05). The COF in the static reconstruction group moved more medially on the patella from 50° to 110° of flexion compared with the other conditions. The contact area showed no significant differences between the test conditions. After static MPFL reconstruction, the patellofemoral pressures in flexion angles from 60° to 110° were 3 to 5 times higher than those in the intact situation. The pressures after dynamic MPFL reconstruction were similar as compared with those in the intact situation, and therefore, dynamic MPFL reconstruction could be a safer option than static reconstruction for stabilizing the patella. This study showed that static MPFL reconstruction results in higher patellofemoral pressures and thus enhances the chance of osteoarthritis in the long term, while dynamic reconstruction results in more normal pressures. © 2015 The Author(s).
Clément, Julien; Hagemeister, Nicola; Aissaoui, Rachid; de Guise, Jacques A
2014-01-01
Numerous studies have described 3D kinematics, 3D kinetics and electromyography (EMG) of the lower limbs during quasi-static or dynamic squatting activities. One study compared these two squatting conditions but only at low speed on healthy subjects, and provided no information on kinetics and EMG of the lower limbs. The purpose of the present study was to contrast simultaneous recordings of 3D kinematics, 3D kinetics and EMG of the lower limbs during quasi-stat ic and fast-dynamic squats in healthy and pathological subjects. Ten subjects were recruited: five healthy and five osteoarthritis subjects. A motion-capture system, force plate, and surface electrodes respectively recorded 3D kinematics, 3D kinetics and EMG of the lower limbs. Each subject performed a quasi-static squat and several fast-dynamic squats from 0° to 70° of knee flexion. The two squatting conditions were compared for positions where quasi-static and fast-dynamic knee flexion-extension angles were similar. Mean differences between quasi-static and fast-dynamic squats were 1.5° for rotations, 1.9 mm for translations, 2.1% of subjects' body weight for ground reaction forces, 6.6 Nm for torques, 11.2 mm for center of pressure, and 6.3% of maximum fast-dynamic electromyographic activities for EMG. Some significant differences (p<0.05) were found in internal rotation, anterior translation, vertical force and EMG. All differences between quasi-static and fast-dynamic squats were small. 69.5% of compared data were equivalent. In conclusion, this study showed that quasi-static and fast-dynamic squatting activities are comparable in terms of 3D kinematics, 3D kinetics and EMG, although some reservations still remain. Copyright © 2014 Elsevier B.V. All rights reserved.
Mangan, Stephanie; Urbina, Mauricio A; Findlay, Helen S; Wilson, Rod W; Lewis, Ceri
2017-10-25
Ocean acidification (OA) studies typically use stable open-ocean pH or CO 2 values. However, species living within dynamic coastal environments can naturally experience wide fluctuations in abiotic factors, suggesting their responses to stable pH conditions may not be reflective of either present or near-future conditions. Here we investigate the physiological responses of the mussel Mytilus edulis to variable seawater pH conditions over short- (6 h) and medium-term (2 weeks) exposures under both current and near-future OA scenarios. Mussel haemolymph pH closely mirrored that of seawater pH over short-term changes of 1 pH unit with acidosis or recovery accordingly, highlighting a limited capacity for acid-base regulation. After 2 weeks, mussels under variable pH conditions had significantly higher metabolic rates, antioxidant enzyme activities and lipid peroxidation than those exposed to static pH under both current and near-future OA scenarios. Static near-future pH conditions induced significant acid-base disturbances and lipid peroxidation compared with the static present-day conditions but did not affect the metabolic rate. These results clearly demonstrate that living in naturally variable environments is energetically more expensive than living in static seawater conditions, which has consequences for how we extrapolate future OA responses in coastal species. © 2017 The Authors.
Static and dynamic stability analysis of the space shuttle vehicle-orbiter
NASA Technical Reports Server (NTRS)
Chyu, W. J.; Cavin, R. K.; Erickson, L. L.
1978-01-01
The longitudinal static and dynamic stability of a Space Shuttle Vehicle-Orbiter (SSV Orbiter) model is analyzed using the FLEXSTAB computer program. Nonlinear effects are accounted for by application of a correction technique in the FLEXSTAB system; the technique incorporates experimental force and pressure data into the linear aerodynamic theory. A flexible Orbiter model is treated in the static stability analysis for the flight conditions of Mach number 0.9 for rectilinear flight (1 g) and for a pull-up maneuver (2.5 g) at an altitude of 15.24 km. Static stability parameters and structural deformations of the Orbiter are calculated at trim conditions for the dynamic stability analysis, and the characteristics of damping in pitch are investigated for a Mach number range of 0.3 to 1.2. The calculated results for both the static and dynamic stabilities are compared with the available experimental data.
Wind Tunnel Testing of Various Disk-Gap-Band Parachutes
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; Mineck, Raymond E.; Keller, Donald F.; Bobskill, Maria V.
2003-01-01
Two Disk-Gap-Band model parachute designs were tested in the NASA Langley Transonic Dynamics Tunnel. The purposes of these tests were to determine the drag and static stability coefficients of these two model parachutes at various subsonic Mach numbers in support of the Mars Exploration Rover mission. The two model parachute designs were designated 1.6 Viking and MPF. These model parachute designs were chosen to investigate the tradeoff between drag and static stability. Each of the parachute designs was tested with models fabricated from MIL-C-7020 Type III or F-111 fabric. The reason for testing model parachutes fabricated with different fabrics was to evaluate the effect of fabric permeability on the drag and static stability coefficients. Several improvements over the Viking-era wind tunnel tests were implemented in the testing procedures and data analyses. Among these improvements were corrections for test fixture drag interference and blockage effects, and use of an improved test fixture for measuring static stability coefficients. The 1.6 Viking model parachutes had drag coefficients from 0.440 to 0.539, while the MPF model parachutes had drag coefficients from 0.363 to 0.428. The 1.6 Viking model parachutes had drag coefficients 18 to 22 percent higher than the MPF model parachute for equivalent fabric materials and test conditions. Model parachutes of the same design tested at the same conditions had drag coefficients approximately 11 to 15 percent higher when manufactured from F-111 fabric as compared to those fabricated from MIL-C-7020 Type III fabric. The lower fabric permeability of the F-111 fabric was the source of this difference. The MPF model parachutes had smaller absolute statically stable trim angles of attack as compared to the 1.6 Viking model parachutes for equivalent fabric materials and test conditions. This was attributed to the MPF model parachutes larger band height to nominal diameter ratio. For both designs, model parachutes fabricated from F-111 fabric had significantly greater statically stable absolute trim angles of attack at equivalent test conditions as compared to those fabricated from MILC-7020 Type III fabric. This reduction in static stability exhibited by model parachutes fabricated from F-111 fabric was attributed to the lower permeability of the F-111 fabric. The drag and static stability coefficient results were interpolated to obtain their values at Mars flight conditions using total porosity as the interpolating parameter.
Comparative evaluation of power factor impovement techniques for squirrel cage induction motors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spee, R.; Wallace, A.K.
1992-04-01
This paper describes the results obtained from a series of tests of relatively simple methods of improving the power factor of squirrel-cage induction motors. The methods, which are evaluated under controlled laboratory conditions for a 10-hp, high-efficiency motor, include terminal voltage reduction; terminal static capacitors; and a floating'' winding with static capacitors. The test results are compared with equivalent circuit model predictions that are then used to identify optimum conditions for each of the power factor improvement techniques compared with the basic induction motor. Finally, the relative economic value, and the implications of component failures, of the three methods aremore » discussed.« less
Trautmann-Lengsfeld, Sina Alexa; Domínguez-Borràs, Judith; Escera, Carles; Herrmann, Manfred; Fehr, Thorsten
2013-01-01
A recent functional magnetic resonance imaging (fMRI) study by our group demonstrated that dynamic emotional faces are more accurately recognized and evoked more widespread patterns of hemodynamic brain responses than static emotional faces. Based on this experimental design, the present study aimed at investigating the spatio-temporal processing of static and dynamic emotional facial expressions in 19 healthy women by means of multi-channel electroencephalography (EEG), event-related potentials (ERP) and fMRI-constrained regional source analyses. ERP analysis showed an increased amplitude of the LPP (late posterior positivity) over centro-parietal regions for static facial expressions of disgust compared to neutral faces. In addition, the LPP was more widespread and temporally prolonged for dynamic compared to static faces of disgust and happiness. fMRI constrained source analysis on static emotional face stimuli indicated the spatio-temporal modulation of predominantly posterior regional brain activation related to the visual processing stream for both emotional valences when compared to the neutral condition in the fusiform gyrus. The spatio-temporal processing of dynamic stimuli yielded enhanced source activity for emotional compared to neutral conditions in temporal (e.g., fusiform gyrus), and frontal regions (e.g., ventromedial prefrontal cortex, medial and inferior frontal cortex) in early and again in later time windows. The present data support the view that dynamic facial displays trigger more information reflected in complex neural networks, in particular because of their changing features potentially triggering sustained activation related to a continuing evaluation of those faces. A combined fMRI and EEG approach thus provides an advanced insight to the spatio-temporal characteristics of emotional face processing, by also revealing additional neural generators, not identifiable by the only use of an fMRI approach. PMID:23818974
Air stepping in response to optic flows that move Toward and Away from the neonate.
Barbu-Roth, Marianne; Anderson, David I; Desprès, Adeline; Streeter, Ryan J; Cabrol, Dominique; Trujillo, Michael; Campos, Joseph J; Provasi, Joëlle
2014-07-01
To shed further light on the perceptual regulation of newborn stepping, we compared neonatal air stepping in response to optic flows simulating forward or backward displacement with stepping forward on a surface. Twenty-two 3-day-olds performed four 60 s trials in which they stepped forward on a table (Tactile) or in the air in response to a pattern that moved toward (Toward) or away (Away) from them or was static (Static). Significantly more steps were taken in the Tactile and Toward conditions than the Static condition. The Away condition was intermediate to the other conditions. The knee joint activity across the entire trial was significantly greater in the Toward than the Away condition. Within-limb kinematics and between-limb coordination were very similar for steps taken in the air and on the table, particularly in the Toward and Tactile conditions. These findings highlight that visual and tactile stimulation can equally elicit neonatal stepping. © 2013 Wiley Periodicals, Inc.
Kinesthetic information facilitates saccades towards proprioceptive-tactile targets.
Voudouris, Dimitris; Goettker, Alexander; Mueller, Stefanie; Fiehler, Katja
2016-05-01
Saccades to somatosensory targets have longer latencies and are less accurate and precise than saccades to visual targets. Here we examined how different somatosensory information influences the planning and control of saccadic eye movements. Participants fixated a central cross and initiated a saccade as fast as possible in response to a tactile stimulus that was presented to either the index or the middle fingertip of their unseen left hand. In a static condition, the hand remained at a target location for the entire block of trials and the stimulus was presented at a fixed time after an auditory tone. Therefore, the target location was derived only from proprioceptive and tactile information. In a moving condition, the hand was first actively moved to the same target location and the stimulus was then presented immediately. Thus, in the moving condition additional kinesthetic information about the target location was available. We found shorter saccade latencies in the moving compared to the static condition, but no differences in accuracy or precision of saccadic endpoints. In a second experiment, we introduced variable delays after the auditory tone (static condition) or after the end of the hand movement (moving condition) in order to reduce the predictability of the moment of the stimulation and to allow more time to process the kinesthetic information. Again, we found shorter latencies in the moving compared to the static condition but no improvement in saccade accuracy or precision. In a third experiment, we showed that the shorter saccade latencies in the moving condition cannot be explained by the temporal proximity between the relevant event (auditory tone or end of hand movement) and the moment of the stimulation. Our findings suggest that kinesthetic information facilitates planning, but not control, of saccadic eye movements to proprioceptive-tactile targets. Copyright © 2016 Elsevier Ltd. All rights reserved.
Elastic facial movement influences part-based but not holistic processing
Xiao, Naiqi G.; Quinn, Paul C.; Ge, Liezhong; Lee, Kang
2013-01-01
Face processing has been studied for decades. However, most of the empirical investigations have been conducted using static face images as stimuli. Little is known about whether static face processing findings can be generalized to real world contexts, in which faces are constantly moving. The present study investigates the nature of face processing (holistic vs. part-based) in elastic moving faces. Specifically, we focus on whether elastic moving faces, as compared to static ones, can facilitate holistic or part-based face processing. Using the composite paradigm, participants were asked to remember either an elastic moving face (i.e., a face that blinks and chews) or a static face, and then tested with a static composite face. The composite effect was (1) significantly smaller in the dynamic condition than in the static condition, (2) consistently found with different face encoding times (Experiments 1–3), and (3) present for the recognition of both upper and lower face parts (Experiment 4). These results suggest that elastic facial motion facilitates part-based processing, rather than holistic processing. Thus, while previous work with static faces has emphasized an important role for holistic processing, the current work highlights an important role for featural processing with moving faces. PMID:23398253
NASA Astrophysics Data System (ADS)
Kan, C. W.; Yuen, C. W. M.
2008-01-01
Low temperature plasma treatment has been conducted in textile industry and has some success in the dyeing and finishing processes. In this paper, an attempt was made to apply low temperature plasma treatment to improve the anti-static property of polyester fabric. The polyester fabrics were treated under different conditions using low temperature plasma. An Orthogonal Array Testing Strategy was employed to determine the optimum treatment condition. After low temperature plasma treatment, the polyester fabrics were evaluated with different characterisation methods. Under the observation of scanning electron microscope, the surface structure of low temperature plasma-treated polyester fabric was seriously altered. This provided more capacity for polyester to capture moisture and hence increase the dissipation of static charges. The relationship between moisture content and half-life decay time for static charges was studied and the results showed that the increment of moisture content would result in shortening the time for the dissipation of static charges. Moreover, there was a great improvement in the anti-static property of the low temperature plasma-treated polyester fabric after comparing with that of the polyester fabric treated with commercial anti-static finishing agent.
Varela, Jorge G; Boccaccini, Marcus T; Cuervo, Veronica A; Murrie, Daniel C; Clark, John W
2014-10-01
The popular Static-99R allows evaluators to convey results in terms of risk category (e.g., low, moderate, high), relative risk (compared with other sexual offenders), or normative sample recidivism rate formats (e.g., 30% reoffended in 5 years). But we do not know whether judges and jurors draw similar conclusions about the same Static-99R score when findings are communicated using different formats. Community members reporting for jury duty (N = 211) read a tutorial on the Static-99R and a description of a sexual offender and his crimes. We varied his Static-99R score (1 or 6) and risk communication format (categorical, relative risk, or recidivism rate). Participants rated the high-scoring offender as higher risk than the low-scoring offender in the categorical communication condition, but not in the relative risk or recidivism rate conditions. Moreover, risk ratings of the high-scoring offender were notably higher in the categorical communication condition than the relative risk and recidivism rate conditions. Participants who read about a low Static-99R score tended to report that Static-99R results were unimportant and difficult to understand, especially when risk was communicated using categorical or relative risk formats. Overall, results suggest that laypersons are more receptive to risk results indicating high risk than low risk and more receptive to risk communication messages that provide an interpretative label (e.g., high risk) than those that provide statistical results. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Brzonkalik, Katrin; Herrling, Tanja; Syldatk, Christoph; Neumann, Anke
2011-05-27
The aim of this study was to determine the influence of different carbon and nitrogen sources on the production of the mycotoxins alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA) by Alternaria alternata at 28°C using a semi-synthetic medium (modified Czapek-Dox broth) supplemented with nitrogen and carbon sources. Additionally the effect of shaken and static cultivation on mycotoxin production was tested. Initial experiments showed a clear dependency between nitrogen depletion and mycotoxin production. To assess whether nitrogen limitation in general or the type of nitrogen source triggers the production, various nitrogen sources including several ammonium/nitrate salts and amino acids were tested. In static culture the production of AOH/AME can be enhanced greatly with phenylalanine whereas some nitrogen sources seem to inhibit the AOH/AME production completely. TA was not significantly affected by the choice of nitrogen source. In shaken culture the overall production of all mycotoxins was lower compared to static cultivation. Furthermore tests with a wide variety of carbon sources including monosaccharides, disaccharides, complex saccharides such as starch as well as glycerol and acetate were performed. In shaken culture AOH was produced when glucose, fructose, sucrose, acetate or mixtures of glucose/sucrose and glucose/acetate were used as carbon sources. AME production was not detected. The use of sodium acetate resulted in the highest AOH production. In static culture AOH production was also stimulated by acetate and the amount is comparable to shaken conditions. Under static conditions production of AOH was lower except when cultivated with acetate. In static cultivation 9 of 14 tested carbon sources induced mycotoxin production compared to 4 in shaken culture. This is the first study which analyses the influence of carbon and nitrogen sources in a semi-synthetic medium and assesses the effects of culture conditions on mycotoxin production by A. alternata. Copyright © 2011 Elsevier B.V. All rights reserved.
Leland, Azadeh; Tavakol, Kamran; Scholten, Joel; Bakhshi, Simin; Kelarestaghi, Kaveh
2018-04-01
Traditionally, the diagnosis of postural instability relies on the clinical examination of static balance. In recent years, computerized technologies have provided a new approach for the accurate detection of positional changes during functional balance. The aim of this study was to investigate the similarities and differences between two electronic systems, NeuroCom and BioSensics , and their application in the clinical assessment of impaired balance in American veterans. We examined the sway around the center of mass during static balance conditions in 25 veterans with mild traumatic brain injury, using the two electronic systems. These patients met the inclusion criteria and were assessed for their impaired balance at the District of Columbia Veterans Affair Medical Center, Washington, DC, USA. There were six static balance tests conducted on either NeuroCom or BioSensics system in triplicate. Of the data for 36 sets of statistical data analyses, there were significant correlations among those for eight data sets (22.2%) between the two systems. The strongest positive correlation between the data from the two systems was found during the baseline test, when inputs from visual, vestibular and sensorymotor sources were uninterrupted. The data from the remaining experimental conditions did not correlate significantly with one another. Both NeuroCom and BioSensics provided comparable data in eight out of 36 experimental conditions in the assessment of static balance in patients with mild traumatic brain injury. The findings clarified the ambiguities in the application of NeuroCom versus BioSensics, provided new knowledge for the field of physical medicine and rehabilitation, and improved the clinical assessment of static balance in patients with mTBI.
Utilization of Facial Image Analysis Technology for Blink Detection: A Validation Study.
Kitazawa, Momoko; Yoshimura, Michitaka; Liang, Kuo-Ching; Wada, Satoshi; Mimura, Masaru; Tsubota, Kazuo; Kishimoto, Taishiro
2018-06-25
The assessment of anterior eye diseases and the understanding of psychological functions of blinking can benefit greatly from a validated blinking detection technology. In this work, we proposed an algorithm based on facial recognition built on current video processing technologies to automatically filter and analyze blinking movements. We compared electrooculography (EOG), the gold standard of blinking measurement, with manual video tape recording counting (mVTRc) and our proposed automated video tape recording analysis (aVTRa) in both static and dynamic conditions to validate our aVTRa method. We measured blinking in both static condition, where the subject was sitting still with chin fixed on the table, and dynamic condition, where the subject's face was not fixed and natural communication was taking place between the subject and interviewer. We defined concordance of blinks between measurement methods as having less than 50 ms difference between eyes opening and closing. The subjects consisted of seven healthy Japanese volunteers (3 male, four female) without significant eye disease with average age of 31.4±7.2. The concordance of EOG vs. aVTRa, EOG vs. mVTRc, and aVTRa vs. mVTRc (average±SD) were found to be 92.2±10.8%, 85.0±16.5%, and 99.6±1.0% in static conditions and 32.6±31.0%, 28.0±24.2%, and 98.5±2.7% in dynamic conditions, respectively. In static conditions, we have found a high blink concordance rate between the proposed aVTRa versus EOG, and confirmed the validity of aVTRa in both static and dynamic conditions.
ERIC Educational Resources Information Center
Falkmer, Marita; Bjallmark, Anna; Larsson, Matilda; Falkmer, Torbjorn
2011-01-01
Several studies, using eye tracking methodology, suggest that different visual strategies in persons with autism spectrum conditions, compared with controls, are applied when viewing facial stimuli. Most eye tracking studies are, however, made in laboratory settings with either static (photos) or non-interactive dynamic stimuli, such as video…
Engineering large cartilage tissues using dynamic bioreactor culture at defined oxygen conditions.
Daly, Andrew C; Sathy, Binulal N; Kelly, Daniel J
2018-01-01
Mesenchymal stem cells maintained in appropriate culture conditions are capable of producing robust cartilage tissue. However, gradients in nutrient availability that arise during three-dimensional culture can result in the development of spatially inhomogeneous cartilage tissues with core regions devoid of matrix. Previous attempts at developing dynamic culture systems to overcome these limitations have reported suppression of mesenchymal stem cell chondrogenesis compared to static conditions. We hypothesize that by modulating oxygen availability during bioreactor culture, it is possible to engineer cartilage tissues of scale. The objective of this study was to determine whether dynamic bioreactor culture, at defined oxygen conditions, could facilitate the development of large, spatially homogeneous cartilage tissues using mesenchymal stem cell laden hydrogels. A dynamic culture regime was directly compared to static conditions for its capacity to support chondrogenesis of mesenchymal stem cells in both small and large alginate hydrogels. The influence of external oxygen tension on the response to the dynamic culture conditions was explored by performing the experiment at 20% O 2 and 3% O 2 . At 20% O 2 , dynamic culture significantly suppressed chondrogenesis in engineered tissues of all sizes. In contrast, at 3% O 2 dynamic culture significantly enhanced the distribution and amount of cartilage matrix components (sulphated glycosaminoglycan and collagen II) in larger constructs compared to static conditions. Taken together, these results demonstrate that dynamic culture regimes that provide adequate nutrient availability and a low oxygen environment can be employed to engineer large homogeneous cartilage tissues. Such culture systems could facilitate the scaling up of cartilage tissue engineering strategies towards clinically relevant dimensions.
Computational Investigation of the Aerodynamic Effects on Fluidic Thrust Vectoring
NASA Technical Reports Server (NTRS)
Deere, K. A.
2000-01-01
A computational investigation of the aerodynamic effects on fluidic thrust vectoring has been conducted. Three-dimensional simulations of a two-dimensional, convergent-divergent (2DCD) nozzle with fluidic injection for pitch vector control were run with the computational fluid dynamics code PAB using turbulence closure and linear Reynolds stress modeling. Simulations were computed with static freestream conditions (M=0.05) and at Mach numbers from M=0.3 to 1.2, with scheduled nozzle pressure ratios (from 3.6 to 7.2) and secondary to primary total pressure ratios of p(sub t,s)/p(sub t,p)=0.6 and 1.0. Results indicate that the freestream flow decreases vectoring performance and thrust efficiency compared with static (wind-off) conditions. The aerodynamic penalty to thrust vector angle ranged from 1.5 degrees at a nozzle pressure ratio of 6 with M=0.9 freestream conditions to 2.9 degrees at a nozzle pressure ratio of 5.2 with M=0.7 freestream conditions, compared to the same nozzle pressure ratios with static freestream conditions. The aerodynamic penalty to thrust ratio decreased from 4 percent to 0.8 percent as nozzle pressure ratio increased from 3.6 to 7.2. As expected, the freestream flow had little influence on discharge coefficient.
Influence of Dynamic Hydraulic Conditions on Nitrogen Cycling in Column Experiments
NASA Astrophysics Data System (ADS)
Gassen, Niklas; von Netzer, Frederick; Ryabenko, Evgenia; Lüders, Tillmann; Stumpp, Christine
2015-04-01
In order to improve management strategies of agricultural nitrogen input, it is of major importance to further understand which factors influence turnover processes within the nitrogen cycle. Many studies have focused on the fate of nitrate in hydrological systems, but up to date only little is known about the influence of dynamic hydraulic conditions on the fate of nitrate at the soil-groundwater interface. We conducted column experiments with natural sediment and compared a system with a fluctuating water table to systems with different water content and static conditions under the constant input of ammonia into the system. We used hydrochemical methods in order to trace nitrogen species, 15N isotope methods to get information about dominating turnover processes and microbial community analysis in order to connect hydrochemical and microbial information. We found that added ammonia was removed more effectively under dynamic hydraulic conditions than under static conditions. Furthermore, denitrification is the dominant process under saturated, static conditions, while nitrification is more important under unsaturated, static conditions. We conclude that a fluctuating water table creates hot spots where both nitrification and denitrification processes can occur spatially close to each other and therefore remove nitrogen more effectively from the system. Furthermore, the fluctuating water table enhances the exchange of solutes and triggers hot moments of solute turnover. Therefore we conclude that a fluctuating water table can amplify hot spots and trigger hot moments of nitrogen cycling.
Structural integrity of a confinement vessel for testing nuclear fuels for space propulsion
NASA Astrophysics Data System (ADS)
Bergmann, V. L.
Nuclear propulsion systems for rockets could significantly reduce the travel time to distant destinations in space. However, long before such a concept can become reality, a significant effort must be invested in analysis and ground testing to guide the development of nuclear fuels. Any testing in support of development of nuclear fuels for space propulsion must be safely contained to prevent the release of radioactive materials. This paper describes analyses performed to assess the structural integrity of a test confinement vessel. The confinement structure, a stainless steel pressure vessel with bolted flanges, was designed for operating static pressures in accordance with the ASME Boiler and Pressure Vessel Code. In addition to the static operating pressures, the confinement barrier must withstand static overpressures from off-normal conditions without releasing radioactive material. Results from axisymmetric finite element analyses are used to evaluate the response of the confinement structure under design and accident conditions. For the static design conditions, the stresses computed from the ASME code are compared with the stresses computed by the finite element method.
CFD research on runaway transient of pumped storage power station caused by pumping power failure
NASA Astrophysics Data System (ADS)
Zhang, L. G.; Zhou, D. Q.
2013-12-01
To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.
NASA Astrophysics Data System (ADS)
Garkushin, G. V.; Razorenov, S. V.; Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.
2015-02-01
The elastic limit and tensile strength of deformed magnesium alloys Ma2-1 with different structures and textures were measured with the aim of finding a correlation between the spectrum of defects in the material and the resistance to deformation and fracture under quasi-static and dynamic loading conditions. The studies were performed using specimens in the as-received state after high-temperature annealing and specimens subjected to equal-channel angular pressing at a temperature of 250°C. The anisotropy of strength characteristics of the material after shock compression with respect to the direction of rolling of the original alloy was investigated. It was shown that, in contrast to the quasi-static loading conditions, under the shock wave loading conditions, the elastic limit and tensile strength of the magnesium alloy Ma2-1 after equal-channel angular pressing decrease as compared to the specimens in the as-received state.
Prediction of unsuppressed jet engine exhaust noise in flight from static data
NASA Technical Reports Server (NTRS)
Stone, J. R.
1980-01-01
A methodology developed for predicting in-flight exhaust noise from static data is presented and compared with experimental data for several unsuppressed turbojet engines. For each engine, static data over a range of jet velocities are compared with the predicted jet mixing noise and shock-cell noise. The static engine noise over and above the jet and shock noises is identified as excess noise. The excess noise data are then empirically correlated to smooth the spectral and directivity relations and account for variations in test conditions. This excess noise is then projected to flight based on the assumption that the only effects of flight are a Doppler frequency shift and a level change given by 40 log (1 - m sub 0 cos theta), where M sub 0 is the flight Mach number and theta is the observer angle relative to the jet axis.
Cyclic Fatigue of Brittle Materials with an Indentation-Induced Flaw System
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Salem, Jonathan A.
1996-01-01
The ratio of static to cyclic fatigue life, or 'h ratio', was obtained numerically for an indentation flaw system subjected to sinusoidal loading conditions. Emphasis was placed on developing a simple, quick lifetime prediction tool. The solution for the h ratio was compared with experimental static and cyclic fatigue data obtained from as-indented 96 wt.% alumina specimens tested in room-temperature distilled water.
Fogel, Guy R; Li, Zhenyu; Liu, Weiqiang; Liao, Zhenhua; Wu, Jia; Zhou, Wenyu
2010-05-01
Anterior cervical plating has been accepted in corpectomy and fusion of the cervical spine. Constrained plates were criticized for stress shielding that may lead to subsidence and pseudarthrosis. A dynamic plate allows load sharing as the graft subsides. Ideally, the dynamic plate design should maintain adequate stiffness of the construct while providing a reasonable load sharing with the strut graft. The purpose of the study was to compare dynamic and static plate kinematics with graft subsidence. The study designed was an in vitro biomechanical study in a porcine cervical spine model. Twelve spines were initially tested in intact condition with 20-N axial load in 15 degrees of flexion and extension range of motion (ROM). Then, a two-level corpectomy was created in all specimens with spines randomized to receive either a static or dynamic plate. The spines were retested under identical conditions with optimal length and undersized graft. Range of motion and graft loading were analyzed with a one-way analysis of variance (p<.05). Both plates significantly limited ROM compared with the intact spine in both graft length conditions. In extension graft, load was significantly higher (p=.001) in the static plate with optimal length, and in flexion, there was a significant loss of graft load (p=.0004). In flexion, the dynamic plate with undersized graft demonstrated significantly more load sustained (p=.0004). Both plates reasonably limited the ROM of the corpectomy. The static plate had significantly higher graft loads in extension and significant loss of graft load in flexion, whereas the dynamic plate maintained a reasonable graft load in ROM even when graft contact was imperfect. Copyright 2010 Elsevier Inc. All rights reserved.
Effect of Cognitive Demand on Functional Visual Field Performance in Senior Drivers with Glaucoma.
Gangeddula, Viswa; Ranchet, Maud; Akinwuntan, Abiodun E; Bollinger, Kathryn; Devos, Hannes
2017-01-01
Purpose: To investigate the effect of cognitive demand on functional visual field performance in drivers with glaucoma. Method: This study included 20 drivers with open-angle glaucoma and 13 age- and sex-matched controls. Visual field performance was evaluated under different degrees of cognitive demand: a static visual field condition (C1), dynamic visual field condition (C2), and dynamic visual field condition with active driving (C3) using an interactive, desktop driving simulator. The number of correct responses (accuracy) and response times on the visual field task were compared between groups and between conditions using Kruskal-Wallis tests. General linear models were employed to compare cognitive workload, recorded in real-time through pupillometry, between groups and conditions. Results: Adding cognitive demand (C2 and C3) to the static visual field test (C1) adversely affected accuracy and response times, in both groups ( p < 0.05). However, drivers with glaucoma performed worse than did control drivers when the static condition changed to a dynamic condition [C2 vs. C1 accuracy; glaucoma: median difference (Q1-Q3) 3 (2-6.50) vs. 2 (0.50-2.50); p = 0.05] and to a dynamic condition with active driving [C3 vs. C1 accuracy; glaucoma: 2 (2-6) vs. 1 (0.50-2); p = 0.02]. Overall, drivers with glaucoma exhibited greater cognitive workload than controls ( p = 0.02). Conclusion: Cognitive demand disproportionately affects functional visual field performance in drivers with glaucoma. Our results may inform the development of a performance-based visual field test for drivers with glaucoma.
AB INITIO Molecular Dynamics Simulations of Water Under Static and Shock Compressed Conditions
NASA Astrophysics Data System (ADS)
Goldman, Nir; Fried, Laurence E.; Mundy, Christopher J.; Kuo, I.-F. William; Curioni, Alessandro; Reed, Evan J.
2007-12-01
We report herein a series of ab initio simulations of water under both static and shocked conditions. We have calculated the coherent x-ray scattering intensity of several phases of water under high pressure, using ab initio Density Functional Theory (DFT). We provide new atomic scattering form factors for water at extreme conditions, which take into account frequently neglected changes in ionic charge and electron delocalization. We have also simulated liquid water undergoing shock loading of velocities from 5-11 km/s using the Multi-Scale Shock Technique (MSST). We show that Density Functional Theory (DFT) molecular dynamics results compare extremely well to experiments on the water shock Hugoniot.
NASA Technical Reports Server (NTRS)
Sitterley, T. E.
1974-01-01
The effectivess of an improved static retraining method was evaluated for a simulated space vehicle approach and landing under instrument and visual flight conditions. Experienced pilots were trained and then tested after 4 months without flying to compare their performance using the improved method with three methods previously evaluated. Use of the improved static retraining method resulted in no practical or significant skill degradation and was found to be even more effective than methods using a dynamic presentation of visual cues. The results suggested that properly structured open loop methods of flight control task retraining are feasible.
Taghizadeh, Ata; Favis, Basil D
2013-02-15
Starch gelatinization in the presence of high molecular weight polyol plasticizers and water was studied under static and dynamic conditions and was compared to a glycerol reference. For static gelatinization, glycerol, sorbitol, diglycerol and polyglycerol were examined using polarized light microscopy and differential scanning calorimetry. A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The plasticizers show that the onset and conclusion temperatures for sorbitol and glycerol are in the same range and are lower than the other two plasticizers. On the other hand, polyglycerol shows a higher gelatinization temperature than diglycerol because of its higher molecular weight and viscosity. The results indicate that in the case of all plasticizers, increasing the water content tends to decrease the gelatinization temperature and, except for polyglycerol, increasing the plasticizer content increases the gelatinization temperature. In the case of polyglycerol, however, increasing the plasticizer content had the opposite effect and this was found to be related to the borderline solubility of polyglycerol in water. When the polyglycerol/water solubility was increased by increasing the temperature of the water/plasticizer/starch slurry, the gelatinization temperature dependence was found to be similar to the other polyols. A rheological technique was developed to study the dynamic gelatinization process by tracking the influence of shear on the complex viscosity in a couette flow system. Glycerol, diglycerol and sorbitol were subjected to different dynamic gelatinization treatments and the results were compared with static gelatinization. It is quantitatively shown that shear has a major effect on the gelatinization process. The conclusion temperature of gelatinization is significantly diminished (up to 21 °C) in the presence of shear whereas the onset temperature of gelatinization remains virtually unchanged as compared to static conditions. By comparing glycerol, diglycerol and sorbitol data, it is shown that the molecular weight or structure did not qualitatively affect the changes shear imposed on dynamic gelatinization. Shear had a relatively more pronounced effect on diglycerol as the plasticizer with less hydrogen bonding ability. Copyright © 2012 Elsevier Ltd. All rights reserved.
Harvey, Hannah; Walker, Robin
2014-05-01
Horizontally scrolling text is, in theory, ideally suited to enhance viewing strategies recommended to improve reading performance under conditions of central vision loss such as macular disease, although it is largely unproven in this regard. This study investigated if the use of scrolling text produced an observable improvement in reading performed under conditions of eccentric viewing in an artificial scotoma paradigm. Participants (n=17) read scrolling and static text with a central artificial scotoma controlled by an eye-tracker. There was an improvement in measures of reading accuracy, and adherence to eccentric viewing strategies with scrolling, compared to static, text. These findings illustrate the potential benefits of scrolling text as a potential reading aid for those with central vision loss. Copyright © 2014 Elsevier B.V. All rights reserved.
Balderson, Michael; Brown, Derek; Johnson, Patricia; Kirkby, Charles
2016-01-01
The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic-based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for the different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Effects of translational and rotational motions and display polarity on visual performance.
Feng, Wen-Yang; Tseng, Feng-Yi; Chao, Chin-Jung; Lin, Chiuhsiang Joe
2008-10-01
This study investigated effects of both translational and rotational motion and display polarity on a visual identification task. Three different motion types--heave, roll, and pitch--were compared with the static (no motion) condition. The visual task was presented on two display polarities, black-on-white and white-on-black. The experiment was a 4 (motion conditions) x 2 (display polarities) within-subjects design with eight subjects (six men and two women; M age = 25.6 yr., SD = 3.2). The dependent variables used to assess the performance on the visual task were accuracy and reaction time. Motion environments, especially the roll condition, had statistically significant effects on the decrement of accuracy and reaction time. The display polarity was significant only in the static condition.
Lutter, Christoph; Nothhaft, Matthias; Rzany, Alexander; Garlichs, Christoph D; Cicha, Iwona
2015-01-01
In coronary artery disease, highly stenosed arteries are frequently treated by stent implantation, which thereafter necessitates a dual-antiplatelet therapy (DAPT) in order to prevent stent-thrombosis. We hypothesized that specific patterns of microstructures on stents can accelerate endothelialisation thereby reducing their thrombogenicity and the DAPT duration. Differently designed, 2-5 μm high elevations or hollows were lithographically etched on silicon plates, subsequently coated with silicon carbide. Smooth silicon plates and bare metal substrates were used as controls. To assess attachment and growth of human umbilical vein endothelial cells under static or flow conditions, actin cytoskeleton was visualised with green phalloidin. Endothelial migration was assessed in a modified barrier assay. To investigate surface thrombogenicity, platelets were incubated on the structured surfaces in static and flow conditions, and visualised with fluorescein-conjugated P-selectin antibody. Images were taken with incident-light fluorescent microscope for non-transparent objects. Compared to smooth surface, flat cubic elevations (5 μm edge length) improved endothelial cell attachment and growth under static and dynamic conditions, whereas smaller, spiky structures (2 μm edge length) had a negative influence on endothelialisation. Endothelial cell migration was fastest on flat cubic elevations, hollows, and smooth surfaces, whereas spiky structures and bare metal had a negative effect on endothelial migration. Thrombogenicity assays under static and flow conditions showed that platelet adhesion was reduced on the flat elevations and the smooth surface, as compared to the spiky structures, the hollow design and the bare metal substrates. Surface microstructures strongly influence endothelialisation of substrates. Designing stents with surface topography which accelerates endothelialisation and reduces thrombogenicity may be of clinical benefit by improving the safety profile of coronary interventions.
NASA Technical Reports Server (NTRS)
Zhang, Ye; Edwards, Christopher; Wu, Honglu
2011-01-01
This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulation of cells in response to antineoplastic agents, we cultured LNCaP cells for 96 hr either in a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as a control. 24 hr after the culture started, mitoxantrone was introduced to the cells at a final concentration of 1 M. The mitoxantrone treatment lasted 72 hr and then the cells were collected for various measurements. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not show significant differences in cell viability, growth rate, or cell cycle distribution. However, in response to mitoxantrone (1uM), a significant proportion of bioreactor cultured cells (30%) was arrested at G2 phase and a significant number of these cells were apoptotic in comparison to their static controls. The expressions of 84 oxidative stress related genes were analyzed using Qiagen PCR array to identify the possible mechanism underlying the altered responses of bioreactor culture cells to mitoxantrone. Nine out of 84 genes showed higher expression at four hour post mitoxantrone treatment in cells cultured at rotating condition compared to those at static. Taken together, the results reported here indicate that simulated microgravity may alter the responses of LNCaP cells to mitoxantrone treatment. The alteration of oxidative stress pathways in cells cultured under simulated microgravity conditions may be one of the mechanisms to cause such changes of sensitivity of LNCaP cells to mitoxantrone treatment.
Hannafin, J A; Arnoczky, S P
1994-05-01
This study was designed to determine the effects of various loading conditions (no load and static and cyclic tensile load) on the water content and pattern of nutrient diffusion of canine flexor tendons in vitro. Region D (designated by Okuda et al.) of the flexor digitorum profundus was subjected to a cyclic or static tensile load of 100 g for times ranging from 5 minutes to 24 hours. The results demonstrated a statistically significant loss of water in tendons subjected to both types of load as compared with the controls (no load). This loss appeared to progress with time. However, neither static nor cyclic loading appeared to alter the diffusion of 3H-glucose into the tendon over a 24-hour period compared with the controls. These results suggest that any benefit in tendon repair derived from intermittent passive motion is probably not a result of an increase in the diffusion of small nutrients in response to intermittent tensile load.
Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Sweeney, Kevin; Delahunt, Eamonn
2015-07-01
This investigation combined measures of inter-joint coordination and stabilometry to evaluate eyes-open (condition 1) and eyes-closed (condition 2) static unilateral stance performance in a group of participants with an acute, first-time lateral ankle sprain injury in comparison to a control group. Sixty-six participants with an acute first-time lateral ankle sprain and 19 non-injured controls completed three 20-second unilateral stance task trials in conditions 1 and 2. An adjusted coefficient of multiple determination statistic was used to compare stance limb 3-D kinematic data for similarity in the aim of establishing patterns of inter-joint coordination for these groups. Between-group analyses revealed significant differences in stance limb inter-joint coordination strategies for conditions 1 and 2. Injured participants displayed increases in ankle-hip linked coordination compared to controls in condition 1 (sagittal/frontal plane: 0.12 [0.09] vs 0.06 [0.04]; η(2)=.16) and condition 2 (sagittal/frontal plane: 0.18 [0.13] vs 0.08 [0.06]; η(2)=0.37). Participants with acute first-time lateral ankle sprain exhibit a hip-dominant coordination strategy for static unilateral stance compared to non-injured controls. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of Cognitive Demand on Functional Visual Field Performance in Senior Drivers with Glaucoma
Gangeddula, Viswa; Ranchet, Maud; Akinwuntan, Abiodun E.; Bollinger, Kathryn; Devos, Hannes
2017-01-01
Purpose: To investigate the effect of cognitive demand on functional visual field performance in drivers with glaucoma. Method: This study included 20 drivers with open-angle glaucoma and 13 age- and sex-matched controls. Visual field performance was evaluated under different degrees of cognitive demand: a static visual field condition (C1), dynamic visual field condition (C2), and dynamic visual field condition with active driving (C3) using an interactive, desktop driving simulator. The number of correct responses (accuracy) and response times on the visual field task were compared between groups and between conditions using Kruskal–Wallis tests. General linear models were employed to compare cognitive workload, recorded in real-time through pupillometry, between groups and conditions. Results: Adding cognitive demand (C2 and C3) to the static visual field test (C1) adversely affected accuracy and response times, in both groups (p < 0.05). However, drivers with glaucoma performed worse than did control drivers when the static condition changed to a dynamic condition [C2 vs. C1 accuracy; glaucoma: median difference (Q1–Q3) 3 (2–6.50) vs. controls: 2 (0.50–2.50); p = 0.05] and to a dynamic condition with active driving [C3 vs. C1 accuracy; glaucoma: 2 (2–6) vs. controls: 1 (0.50–2); p = 0.02]. Overall, drivers with glaucoma exhibited greater cognitive workload than controls (p = 0.02). Conclusion: Cognitive demand disproportionately affects functional visual field performance in drivers with glaucoma. Our results may inform the development of a performance-based visual field test for drivers with glaucoma. PMID:28912712
Creep of experimental short fiber-reinforced composite resin.
Garoushi, Sufyan; Kaleem, Muhammad; Shinya, Akikazu; Vallittu, Pekka K; Satterthwaite, Julian D; Watts, David C; Lassila, Lippo V J
2012-01-01
The purpose of this study was to investigate the reinforcing effect of short E-glass fiber fillers oriented in different directions on composite resin under static and dynamic loading. Experimental short fiber-reinforced composite resin (FC) was prepared by mixing 22.5 wt% of short E-glass fibers, 22.5 wt% of resin, and 55 wt% of silane-treated silica fillers. Three groups of specimens (n=5) were tested: FC with isotropic fiber orientation, FC with anisotropic fiber orientation, and particulate-filled composite resin (PFC) as a control. Time-dependent creep and recovery were recorded. ANOVA revealed that after secondary curing in a vacuum oven and after storage in dry condition for 30 days, FC with isotropic fiber orientation (1.73%) exhibited significantly lower static creep value (p<0.05) than PFC (2.54%). For the different curing methods and storage conditions evaluated in this study, FC achieved acceptable static and dynamic creep values when compared to PFC.
Kinks in higher derivative scalar field theory
NASA Astrophysics Data System (ADS)
Zhong, Yuan; Guo, Rong-Zhen; Fu, Chun-E.; Liu, Yu-Xiao
2018-07-01
We study static kink configurations in a type of two-dimensional higher derivative scalar field theory whose Lagrangian contains second-order derivative terms of the field. The linear fluctuation around arbitrary static kink solutions is analyzed. We find that, the linear spectrum can be described by a supersymmetric quantum mechanics problem, and the criteria for stable static solutions can be given analytically. We also construct a superpotential formalism for finding analytical static kink solutions. Using this formalism we first reproduce some existed solutions and then offer a new solution. The properties of our solution is studied and compared with those preexisted. We also show the possibility in constructing twinlike model in the higher derivative theory, and give the consistency conditions for twinlike models corresponding to the canonical scalar field theory.
Aagaard, Brad T.; Knepley, M.G.; Williams, C.A.
2013-01-01
We employ a domain decomposition approach with Lagrange multipliers to implement fault slip in a finite-element code, PyLith, for use in both quasi-static and dynamic crustal deformation applications. This integrated approach to solving both quasi-static and dynamic simulations leverages common finite-element data structures and implementations of various boundary conditions, discretization schemes, and bulk and fault rheologies. We have developed a custom preconditioner for the Lagrange multiplier portion of the system of equations that provides excellent scalability with problem size compared to conventional additive Schwarz methods. We demonstrate application of this approach using benchmarks for both quasi-static viscoelastic deformation and dynamic spontaneous rupture propagation that verify the numerical implementation in PyLith.
Arvidsson, Tommy; Bergström, Lars; Kreuger, Jenny
2011-06-01
In this study, the collecting efficiency of different samplers of airborne drift was compared both in wind tunnel and in field experiments. The aim was to select an appropriate sampler for collecting airborne spray drift under field conditions. The wind tunnel study examined three static samplers and one dynamic sampler. The dynamic sampler had the highest overall collecting efficiency. Among the static samplers, the pipe cleaner collector had the highest efficiency. These two samplers were selected for evaluation in the subsequent field study. Results from 29 individual field experiments showed that the pipe cleaner collector on average had a 10% lower collecting efficiency than the dynamic sampler. However, the deposits on the pipe cleaners generally were highest at the 0.5 m level, and for the dynamic sampler at the 1 m level. It was concluded from the wind tunnel part of the study that the amount of drift collected on the static collectors had a more strongly positive correlation with increasing wind speed compared with the dynamic sampler. In the field study, the difference in efficiency between the two types of collector was fairly small. As the difference in collecting efficiency between the different types of sampler was small, the dynamic sampler was selected for further measurements of airborne drift under field conditions owing to its more well-defined collecting area. This study of collecting efficiency of airborne spray drift of static and dynamic samplers under field conditions contributes to increasing knowledge in this field of research. Copyright © 2011 Society of Chemical Industry.
Development of a Perfusion Platform for Dynamic Cultivation of in vitro Skin Models.
Strüver, Kay; Friess, Wolfgang; Hedtrich, Sarah
2017-01-01
Reconstructed skin models are suitable test systems for toxicity testing and for basic investigations on (patho-)physiological aspects of human skin. Reconstructed human skin, however, has clear limitations such as the lack of immune cells and a significantly weaker skin barrier function compared to native human skin. Potential reasons for the latter might be the lack of mechanical forces during skin model cultivation which is performed classically in static well-plate setups. Mechanical forces and shear stress have a major impact on tissue formation and, hence, tissue engineering. In the present work, a perfusion platform was developed allowing dynamic cultivation of in vitro skin models. The platform was designed to cultivate reconstructed skin at the air-liquid interface with a laminar and continuous medium flow below the dermis equivalent. Histological investigations confirmed the formation of a significantly thicker stratum corneum compared to the control cultivated under static conditions. Moreover, the skin differentiation markers involucrin and filaggrin as well as the tight junction proteins claudin 1 and occludin showed increased expression in the dynamically cultured skin models. Unexpectedly, despite improved differentiation, the skin barrier function of the dynamically cultivated skin models was not enhanced compared with the skin models cultivated under static conditions. © 2017 S. Karger AG, Basel.
Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest.
Stremel, R W; Convertino, V A; Bernauer, E M; Greenleaf, J E
1976-12-01
Bed rest deconditioning was assessed in seven healthy men (19-22 yr) following three 14-day periods of controlled activity during recumbency by measuring submaximal and maximal oxygen uptake (VO2), ventilation (VE), heart rate, and plasma volume. Exercise regimens were performed in the supine position and included a) two 30-min periods daily of intermittent static exercise at 21% of maximal leg extension force, and b) two 30-min periods of dynamic bicycle ergometer exercise daily at 68% of VO2max. No prescribed exercise was performed during the third bed rest period. Compared with their respective pre-bed rest control values, VO2max decreased (P less than 0.05) under all exercise conditions; -12.3% with no exercise, -9.2% with dynamic exercise, but only -4.8% with static exercise. Maximal heart rate was increased by 3.3% to 4.9% (P less than 0.05) under the three exercise conditions, while plasma volume decreased (P less than 0.05) -15.1% with no exercise and -10.1% with static, but only -7.8% (NS) with dynamic exercise. Since neither the static nor dynamic exercise training regimes minimized the changes in all the variables studied, some combination of these two types of exercise may be necessary for maximum protection from the effects of the bed deconditioning.
Funk, Shany; Jacob, T; Ben-Dov, D; Yanovich, E; Tirosh, O; Steinberg, N
2018-02-01
Optimal functioning of the lower extremities under repeated movements on unstable surfaces is essential for military effectiveness. Intervention training to promote proprioceptive ability should be considered in order to limit the risk for musculoskeletal injuries. The aim of this study was to assess the effect of a proprioceptive intervention programme on static and dynamic postural balance among Israel Defense Forces combat soldiers. Twenty-seven male soldiers, aged 18-20 years, from a physical fitness instructor's course, were randomly divided into two groups matched by age and army unit. The intervention group (INT) underwent 4 weeks of proprioceptive exercises for 10 min daily; the control group underwent 4 weeks of upper body stretching exercises for 10 min daily. All participants were tested pre and postintervention for both static and dynamic postural balance. Significant interaction (condition*pre-post-test*group) was found for static postural balance, indicating that for the INT group, in condition 3 (on an unstable surface-BOSU), the post-test result was significantly better compared with the pretest result (p<0.05). Following intervention, the INT group showed significant correlations between static postural stability in condition 2 (eyes closed) and the dynamic postural stability (length of time walked on the beam following fatigue) ( r ranged from 0.647 to 0.822; p<0.05). The proprioceptive intervention programme for combat soldiers improved static postural balance on unstable surfaces, and improved the correlation between static postural balance in the eyes closed condition and dynamic postural balance following fatigue. Further longitudinal studies are needed to verify the relationship between proprioception programmes, additional weight bearing and the reduction of subsequent injuries in combat soldiers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Designing automation for complex work environments under different levels of stress.
Sauer, Juergen; Nickel, Peter; Wastell, David
2013-01-01
This article examines the effectiveness of different forms of static and adaptable automation under low- and high-stress conditions. Forty participants were randomly assigned to one of four experimental conditions, comparing three levels of static automation (low, medium and high) and one level of adaptable automation, with the environmental stressor (noise) being varied as a within-subjects variable. Participants were trained for 4 h on a simulation of a process control environment, called AutoCAMS, followed by a 2.5-h testing session. Measures of performance, psychophysiology and subjective reactions were taken. The results showed that operators preferred higher levels of automation under noise than under quiet conditions. A number of parameters indicated negative effects of noise exposure, such as performance impairments, physiological stress reactions and higher mental workload. It also emerged that adaptable automation provided advantages over low and intermediate static automation, with regard to mental workload, effort expenditure and diagnostic performance. The article concludes that for the design of automation a wider range of operational scenarios reflecting adverse as well as ideal working conditions needs to be considered. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Technical Reports Server (NTRS)
Dewitt, R. L.; Mcintire, T. O.
1974-01-01
Pressurized expulsion tests were conducted to determine the effect of various physical parameters on the pressurant gas (methane, helium, hydrogen, and nitrogen) requirements during the expulsion of liquid methane from a 1.52-meter-(5-ft-) diameter spherical tank and to compare results with those predicted by an analytical program. Also studied were the effects on methane, helium, and hydrogen pressurant requirements of various slosh excitation frequencies and amplitudes, both with and without slosh suppressing baffles in the tank. The experimental results when using gaseous methane, helium, and hydrogen show that the predictions of the analytical program agreed well with the actual pressurant requirements for static tank expulsions. The analytical program could not be used for gaseous nitrogen expulsions because of the large quantities of nitrogen which can dissolve in liquid methane. Under slosh conditions, a pronounced increase in gaseous methane requirements was observed relative to results obtained for the static tank expulsions. Slight decreases in the helium and hydrogen requirements were noted under similar test conditions.
A strong static-magnetic field alters operant responding by rats.
Nakagawa, M; Matsuda, Y
1988-01-01
Forty male rats of the Wistar ST strain were trained and observed for Sidman avoidance (SA) for 7 weeks or for discriminative avoidance (DA) for 14 weeks to determine the effects of exposure to a strong static-magnetic field. Before avoidance conditioning was completed, rats in the SA group were exposed to the static field at 0.6 T, 16 h/day for 4 days during the fifth week, and those in the DA group were exposed for 6 h/day for 4 days during the seventh week. In the SA conditioning, frequency of lever-pressing by exposed rats gradually decreased during 1 week of exposure and stayed low for at least 2 weeks after exposure. Frequencies of electric shocks received by the rats increased dramatically during the second day of exposure and consistently stayed higher than those of control rats. In the DA condition, exposed rats responded at lower rates than did control rats throughout the observation period. They received more shocks during the 2 weeks following exposure. The data indicate that performance of avoidance responses was inhibited by a comparatively long exposure to a strong magnetic field.
Effects of static stretching on 1-mile uphill run performance.
Lowery, Ryan P; Joy, Jordan M; Brown, Lee E; Oliveira de Souza, Eduardo; Wistocki, David R; Davis, Gregory S; Naimo, Marshall A; Zito, Gina A; Wilson, Jacob M
2014-01-01
It is previously demonstrated that static stretching was associated with a decrease in running economy and distance run during a 30-minute time trial in trained runners. Recently, the detrimental effects of static stretching on economy were found to be limited to the first few minutes of an endurance bout. However, economy remains to be studied for its direct effects on performance during shorter endurance events. The aim of this study was to investigate the effects of static stretching on 1-mile uphill run performance, electromyography (EMG), ground contact time (GCT), and flexibility. Ten trained male distance runners aged 24 ± 5 years with an average VO2max of 64.9 ± 6.5 mL·kg-1·min-1 were recruited. Subjects reported to the laboratory on 3 separate days interspersed by 72 hours. On day 1, anthropometrics and V[Combining Dot Above]O2max were determined on a motor-driven treadmill. On days 2 and 3, subjects performed a 5-minute treadmill warm-up and either performed a series of 6 lower-body stretches for three 30-second repetitions or sat still for 10 minutes. Time to complete a 1-mile run under stretching and nonstretching conditions took place in randomized order. For the performance run, subjects were instructed to run as fast as possible at a set incline of 5% until a distance of 1 mile was completed. Flexibility from the sit and reach test, EMG, GCT, and performance, determined by time to complete the 1-mile run, were recorded after each condition. Time to complete the run was significantly less (6:51 ± 0:28 minutes) in the nonstretching condition as compared with the stretching condition (7:04 ± 0:32 minutes). A significant condition-by-time interaction for muscle activation existed, with no change in the nonstretching condition (pre 91.3 ± 11.6 mV to post 92.2 ± 12.9 mV) but increased in the stretching condition (pre 91.0 ± 11.6 mV to post 105.3 ± 12.9 mV). A significant condition-by-time interaction for GCT was also present, with no changes in the nonstretching condition (pre 211.4 ± 20.8 ms to post 212.5 ± 21.7 ms) but increased in the stretching trial (pre 210.7 ± 19.6 ms to post 237.21 ± 22.4 ms). A significant condition-by-time interaction for flexibility was found, which was increased in the stretching condition (pre 33.1 ± 2 to post 38.8 ± 2) but unchanged in the nonstretching condition (pre 33.5 ± 2 to post 35.2 ± 2). Study findings indicate that static stretching decreases performance in short endurance bouts (∼8%) while increasing GCT and muscle activation. Coaches and athletes may be at risk for decreased performance after a static stretching bout. Therefore, static stretching should be avoided before a short endurance bout.
Superconductor in a weak static gravitational field
NASA Astrophysics Data System (ADS)
Ummarino, Giovanni Alberto; Gallerati, Antonio
2017-08-01
We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T_ {c} superconductor with a classical low-T_ {c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field.
Immediate effects of cryotherapy on static and dynamic balance.
Douglas, Matthew; Bivens, Serena; Pesterfield, Jennifer; Clemson, Nathan; Castle, Whitney; Sole, Gisela; Wassinger, Craig A
2013-02-01
Cryotherapy is commonly used in physical therapy with many known benefits; however several investigations have reported decreased functional performance following therapeutic application thereof. The purpose of this study was to determine the effect of cryotherapy applied to the ankle on static and dynamic standing balance. It was hypothesized that balance would be decreased after cryotherapy application. Twenty individuals (aged 18 to 40 years) participated in this research project. Each participant was tested under two conditions: an experimental condition where subjects received ice water immersion of the foot and ankle for 15 minutes immediately before balance testing and a control condition completed at room temperature. A Biodex® Balance System was used to quantify balance using anterior/posterior (AP), medial/lateral (ML), and overall balance indices. Paired t-tests were used to compare the balance indices for the two conditions with alpha set at 0.05 a priori. Effect size was also calculated to account for the multiple comparisons made. The static balance indices did not display statistically significant differences between the post-cryotherapy and the control conditions with low effect sizes. Dynamic ML indices significantly increased following the cryotherapy application compared to the control exhibiting a moderate effect size indicating decreased balance following cryotherapy application. No differences were noted between experimental and control conditions for the dynamic AP or overall balance indices while a small effect size was noted for both. The results suggest that cryotherapy to the ankle has a negative effect on the ML component of dynamic balance following ice water immersion. Immediate return to play following cryotherapy application is cautioned given the decreased dynamic ML balance and potential for increased injury risk. 3b Case-control study.
Computation of viscous transonic flow about a lifting airfoil
NASA Technical Reports Server (NTRS)
Walitt, L.; Liu, C. Y.
1976-01-01
The viscous transonic flow about a stationary body in free air was numerically investigated. The geometry chosen was a symmetric NACA 64A010 airfoil at a freestream Mach number of 0.8, a Reynolds number of 4 million based on chord, and angles of attack of 0 and 2 degrees. These conditions were such that, at 2 degrees incidence unsteady periodic motion was calculated along the aft portion of the airfoil and in its wake. Although no unsteady measurements were made for the NACA 64A010 airfoil at these flow conditions, interpolated steady measurements of lift, drag, and surface static pressures compared favorably with corresponding computed time-averaged lift, drag, and surface static pressures.
Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi
2016-01-01
Vision is important for estimating self-motion, which is thought to involve optic-flow processing. Here, we investigated the fMRI response profiles in visual area V6, the precuneus motion area (PcM), and the cingulate sulcus visual area (CSv)—three medial brain regions recently shown to be sensitive to optic-flow. We used wide-view stereoscopic stimulation to induce robust self-motion processing. Stimuli included static, randomly moving, and coherently moving dots (simulating forward self-motion). We varied the stimulus size and the presence of stereoscopic information. A combination of univariate and multi-voxel pattern analyses (MVPA) revealed that fMRI responses in the three regions differed from each other. The univariate analysis identified optic-flow selectivity and an effect of stimulus size in V6, PcM, and CSv, among which only CSv showed a significantly lower response to random motion stimuli compared with static conditions. Furthermore, MVPA revealed an optic-flow specific multi-voxel pattern in the PcM and CSv, where the discrimination of coherent motion from both random motion and static conditions showed above-chance prediction accuracy, but that of random motion from static conditions did not. Additionally, while area V6 successfully classified different stimulus sizes regardless of motion pattern, this classification was only partial in PcM and was absent in CSv. This may reflect the known retinotopic representation in V6 and the absence of such clear visuospatial representation in CSv. We also found significant correlations between the strength of subjective self-motion and univariate activation in all examined regions except for primary visual cortex (V1). This neuro-perceptual correlation was significantly higher for V6, PcM, and CSv when compared with V1, and higher for CSv when compared with the visual motion area hMT+. Our convergent results suggest the significant involvement of CSv in self-motion processing, which may give rise to its percept. PMID:26973588
NASA Astrophysics Data System (ADS)
Rodi, A. R.; Leon, D. C.
2012-05-01
Geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system on the University of Wyoming King Air research aircraft are used to estimate acceleration effects on static pressure measurement. Using data collected during periods of accelerated flight, comparison of measured pressure with that derived from GNSS/IMU geometric altitude show that errors exceeding 150 Pa can occur which is significant in airspeed and atmospheric air motion determination. A method is developed to predict static pressure errors from analysis of differential pressure measurements from a Rosemount model 858 differential pressure air velocity probe. The method was evaluated with a carefully designed probe towed on connecting tubing behind the aircraft - a "trailing cone" - in steady flight, and shown to have a precision of about ±10 Pa over a wide range of conditions including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, compared to the GNSS/IMU data, this algorithm predicts corrections to a precision of better than ±20 Pa. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are examined.
Analysis of laboratory compaction methods of roller compacted concrete
NASA Astrophysics Data System (ADS)
Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef
2017-09-01
Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.
Lower Limb Interjoint Postural Coordination One Year after First-Time Lateral Ankle Sprain.
Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Sweeney, Kevin; Patterson, Matthew R; Delahunt, Eamonn
2015-11-01
Longitudinal analyses of participants with a history of lateral ankle sprain are lacking. This investigation combined measures of lower limb interjoint coordination and stabilometry to evaluate static unipedal stance with the eyes open (condition 1) and closed (condition 2) in a group of participants with chronic ankle instability (CAI) compared to lateral ankle sprain "copers" (both recruited 12 months after sustaining an acute first-time lateral ankle sprain) and a group of noninjured controls. Twenty-eight participants with CAI, 42 lateral ankle sprain "copers," and 20 noninjured controls completed three 20-s single-limb stance trials in conditions 1 and 2. An adjusted coefficient of multiple determination statistic was used to compare stance limb three-dimensional kinematic data for similarity to establish patterns of interjoint coordination. The fractal dimension of the stance limb center of pressure path was also calculated. Between-group analyses revealed that participants with CAI displayed notable increases in ankle-hip linked coordination compared with both lateral ankle sprain "copers" (-0.52 (1.05) vs 0.28 (0.9), P = 0.007) and controls (-0.52 (1.05) vs 0.63 (0.64), P = 0.006) in condition 1 and compared with controls only (0.62 (1.92) vs 0.1 (1.0) P = 0.002) in condition 2. Participants with CAI also exhibited a decrease in the fractal dimension of the center-of-pressure path during condition 2 compared with both controls and lateral ankle sprain "copers." Participants with CAI present with a hip-dominant strategy of eyes-open and eyes-closed static unipedal stance. This coincided with reduced complexity of the stance limb center of pressure path in the eyes-closed condition.
NASA Astrophysics Data System (ADS)
Kruszka, Leopold; Moćko, Wojciech; Fenu, Luigi; Cadoni, Ezio
2015-09-01
Specimen reinforced with glass and basalt fibers were prepared using Standard Portland cement (CEM I, 52.5 R as prescribed by EN 197-1) and standard sand, in accordance with EN 196-1. From this cementitious mixture, a reference cement mortar without fibers was first prepared. Compressive strength, modulus of elasticity, and mod of fracture were determined for all specimens. Static and dynamic properties were investigated using Instron testing machine and split Hopkinson pressure bar, respectively. Content of the glass fibers in the mortar does not influence the fracture stress at static loading conditions in a clearly observed way. Moreover at dynamic range 5% content of the fiber results in a significant drop of fracture stress. Analysis of the basalt fibers influence on the fracture stress shows that optimal content of this reinforcement is equal to 3% for both static and dynamic loading conditions. Further increase of the fiber share gives the opposite effect, i.e. drop of the fracture stress.
AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal
Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang
2015-01-01
An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal. PMID:26512665
AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal.
Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang
2015-10-23
An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal.
Static and yawed-rolling mechanical properties of two type 7 aircraft tires
NASA Technical Reports Server (NTRS)
Tanner, J. A.; Stubbs, S. M.; Mccarty, J. L.
1981-01-01
Selected mechanical properties of 18 x 5.5 and 49 x 17 size, type 7 aircraft tires were evaluated. The tires were subjected to pure vertical loads and to combined vertical and lateral loads under both static and rolling conditions. Parameters for the static tests consisted of tire load in the vertical and lateral directions, and parameters for the rolling tests included tire vertical load, yaw angle, and ground speed. Effects of each of these parameters on the measured tire characteristics are discussed and, where possible, compared with previous work. Results indicate that dynamic tire properties under investigation were generally insensitive to speed variations and therefore tend to support the conclusion that many tire dynamic characteristics can be obtained from static and low speed rolling tests. Furthermore, many of the tire mechanical properties are in good agreement with empirical predictions based on earlier research.
NASA Astrophysics Data System (ADS)
Moon, Hye Sun
Visuals are most extensively used as instructional tools in education to present spatially-based information. Recent computer technology allows the generation of 3D animated visuals to extend the presentation in computer-based instruction. Animated visuals in 3D representation not only possess motivational value that promotes positive attitudes toward instruction but also facilitate learning when the subject matter requires dynamic motion and 3D visual cue. In this study, three questions are explored: (1) how 3D graphics affects student learning and attitude, in comparison with 2D graphics; (2) how animated graphics affects student learning and attitude, in comparison with static graphics; and (3) whether the use of 3D graphics, when they are supported by interactive animation, is the most effective visual cues to improve learning and to develop positive attitudes. A total of 145 eighth-grade students participated in a 2 x 2 factorial design study. The subjects were randomly assigned to one of four computer-based instructions: 2D static; 2D animated; 3D static; and 3D animated. The results indicated that: (1) Students in the 3D graphic condition exhibited more positive attitudes toward instruction than those in the 2D graphic condition. No group differences were found between the posttest score of 3D graphic condition and that of 2D graphic condition. However, students in the 3D graphic condition took less time for information retrieval on posttest than those in the 2D graphic condition. (2) Students in the animated graphic condition exhibited slightly more positive attitudes toward instruction than those in the static graphic condition. No group differences were found between the posttest score of animated graphic condition and that of static graphic condition. However, students in the animated graphic condition took less time for information retrieval on posttest than those in the static graphic condition. (3) Students in the 3D animated graphic condition exhibited more positive attitudes toward instruction than those in other treatment conditions (2D static, 2D animated, and 3D static conditions). No group differences were found in the posttest scores among four treatment conditions. However, students in the 3D animated condition took less time for information retrieval on posttest than those in other treatment conditions.
NASA Technical Reports Server (NTRS)
Strout, F. G.
1978-01-01
A JT8D-17R engine with inverted primary and fan flows was tested under static conditions as well as in the NASA Ames 40 by 80 Foot Wind Tunnel to determine static and flight noise characteristics, and flow profile of a large scale engine. Test and analysis techniques developed by a previous model and JT8D engine test program were used to determine the in-flight noise. The engine with inverted flow was tested with a conical nozzle and with a plug nozzle, 20 lobe nozzle, and an acoustic shield. Wind tunnel results show that forward velocity causes significant reduction in peak PNL suppression relative to uninverted flow. The loss of EPNL suppression is relatively modest. The in-flight peak PNL suppression of the inverter with conical nozzle was 2.5 PNdb relative to a static value of 5.5 PNdb. The corresponding EPNL suppression was 4.0 EPNdb for flight and 5.0 EPNdb for static operation. The highest in-flight EPNL suppression was 7.5 EPNdb obtained by the inverter with 20 lobe nozzle and acoustic shield. When compared with the JT8D engine with internal mixer, the inverted flow configuration provides more EPNL suppression under both static and flight conditions.
Sela, Shai; van Es, Harold M; Moebius-Clune, Bianca N; Marjerison, Rebecca; Moebius-Clune, Daniel; Schindelbeck, Robert; Severson, Keith; Young, Eric
2017-03-01
Large temporal and spatial variability in soil nitrogen (N) availability leads many farmers across the United States to over-apply N fertilizers in maize ( L.) production environments, often resulting in large environmental N losses. Static Stanford-type N recommendation tools are typically promoted in the United States, but new dynamic model-based decision tools allow for highly adaptive N recommendations that account for specific production environments and conditions. This study compares the Corn N Calculator (CNC), a static N recommendation tool for New York, to Adapt-N, a dynamic simulation tool that combines soil, crop, and management information with real-time weather data to estimate optimum N application rates for maize. The efficiency of the two tools in predicting the Economically Optimum N Rate (EONR) is compared using field data from 14 multiple N-rate trials conducted in New York during the years 2011 through 2015. The CNC tool was used with both realistic grower-estimated potential yields and those extracted from the CNC default database, which were found to be unrealistically low when compared with field data. By accounting for weather and site-specific conditions, the Adapt-N tool was found to increase the farmer profits and significantly improve the prediction of the EONR (RMSE = 34 kg ha). Furthermore, using a dynamic instead of a static approach led to reduced N application rates, which in turn resulted in substantially lower simulated environmental N losses. This study shows that better N management through a dynamic decision tool such as Adapt-N can help reduce environmental impacts while sustaining farm economic viability. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Observing the Forces Involved in Static Friction under Static Situations
ERIC Educational Resources Information Center
Kaplan, Daniel
2013-01-01
Static friction is an important concept in introductory physics. Later in the year students apply their understanding of static friction under more complex conditions of static equilibrium. Traditional lab demonstrations in this case involve exceeding of the maximum level of static friction, resulting in the "onset of motion." (Contains…
NASA Astrophysics Data System (ADS)
Nihei, Tatsuya; Nishioka, Hidetoshi; Kawamura, Chikara; Nishimura, Masahiro; Edamatsu, Masayuki; Koda, Masayuki
In order to introduce the performance based design of pile foundation, vertical stiffness of pile is one of the important design factors. Although it had been es timated the vertical stiffness of pile had the displacement-level dependency, it had been not clarified. We compared the vertical stiffness of pile measured by two loading conditions at pile foundation of the railway viaduct. Firstly, we measured the vertical stiffness at static loading test under construction of the viaduct. Secondly, we measured the vertical stiffness at the time of train passing. So, we recognized that the extrapolation of the displacement level dependency in static loading test could evaluate the vertical stiffness of pile during train passing.
Compression Behavior and Energy Absorption of Aluminum Alloy AA6061 Tubes with Multiple Holes
NASA Astrophysics Data System (ADS)
Simhachalam, Bade; Lakshmana Rao, C.; Srinivas, Krishna
2014-05-01
In this article, compression behavior and energy absorption of aluminum alloy AA6061 tubes are investigated both experimentally and numerically. Static and dynamic simulations are done using LS-Dyna Software for AA6061 tubes. True stress-plastic strain curves from the tensile test are used in the static and dynamic simulations of AA6061 tubes. The energy absorption values between experimental compression results and numeral simulation are found to be in good agreement. Dynamic simulations are done with drop velocity of up to 10 m/s to understand the inertia effects on energy absorption. The deformed modes from the numerical simulation are compared between tubes with and without holes in static and dynamic conditions.
Vanhommerig, Evelyn; Moons, Pieter; Pirici, Daniel; Lammens, Christine; Hernalsteens, Jean-Pierre; De Greve, Henri; Kumar-Singh, Samir; Goossens, Herman; Malhotra-Kumar, Surbhi
2014-01-01
Epidemic methicillin-resistant S. aureus (MRSA) clones cause infections in both hospital and community settings. As a biofilm phenotype further facilitates evasion of the host immune system and antibiotics, we compared the biofilm-forming capacities of various MRSA clones. Seventy-six MRSA classified into 13 clones (USA300, EMRSA-15, Hungarian/Brazilian etc.), and isolated from infections or from carriers were studied for biofilm formation under static and dynamic conditions. Static biofilms in microtitre plates were quantified colorimetrically. Dynamic biofilms (Bioflux 200, Fluxion, USA) were studied by confocal laser-scanning and time-lapse microscopy, and the total volume occupied by live/dead bacteria quantified by Volocity 5.4.1 (Improvision, UK). MRSA harbouring SCCmec IV produced significantly more biomass under static conditions than SCCmec I-III (P = 0.003), and those harbouring SCCmec II significantly less than those harbouring SCCmec I or III (P<0.001). In the dynamic model, SCCmec I-III harbouring MRSA were significantly better biofilm formers than SCCmec IV (P = 0.036). Only 16 strains successfully formed biofilms under both conditions, of which 13 harboured SCCmec IV and included all tested USA300 strains (n = 3). However, USA300 demonstrated remarkably lower percentages of cell-occupied space (6.6%) compared to the other clones (EMRSA-15 = 19.0%) under dynamic conditions. Time-lapse microscopy of dynamic biofilms demonstrated that USA300 formed long viscoelastic tethers that stretched far from the point of attachment, while EMRSA-15 consisted of micro-colonies attached densely to the surface. MRSA harbouring SCCmec types IV and I-III demonstrate distinct biofilm forming capacities, possibly owing to their adaptation to the community and hospital settings, respectively. USA300 demonstrated abundant biofilm formation under both conditions, which probably confers a competitive advantage, contributing to its remarkable success as a pathogen.
Rath, Subha N; Strobel, Leonie A; Arkudas, Andreas; Beier, Justus P; Maier, Anne-Kathrin; Greil, Peter; Horch, Raymund E; Kneser, Ulrich
2012-10-01
In many tissue engineering approaches, the basic difference between in vitro and in vivo conditions for cells within three-dimensional (3D) constructs is the nutrition flow dynamics. To achieve comparable results in vitro, bioreactors are advised for improved cell survival, as they are able to provide a controlled flow through the scaffold. We hypothesize that a bioreactor would enhance long-term differentiation conditions of osteogenic cells in 3D scaffolds. To achieve this either primary rat osteoblasts or bone marrow stromal cells (BMSC) were implanted on uniform-sized biphasic calcium phosphate (BCP) scaffolds produced by a 3D printing method. Three types of culture conditions were applied: static culture without osteoinduction (Group A); static culture with osteoinduction (Group B); dynamic culture with osteoinduction (Group C). After 3 and 6 weeks, the scaffolds were analysed by alkaline phosphatase (ALP), dsDNA amount, SEM, fluorescent labelled live-dead assay, and real-time RT-PCR in addition to weekly alamarBlue assays. With osteoinduction, increased ALP values and calcium deposition are observed; however, under static conditions, a significant decrease in the cell number on the biomaterial is observed. Interestingly, the bioreactor system not only reversed the decreased cell numbers but also increased their differentiation potential. We conclude from this study that a continuous flow bioreactor not only preserves the number of osteogenic cells but also keeps their differentiation ability in balance providing a suitable cell-seeded scaffold product for applications in regenerative medicine. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Yang, J J; Niu, C C; Guo, X H
2015-01-01
Bacillus has been proposed as a probiotic due to its in vivo effectiveness in the gastrointestinal tract through antimicrobial activities. The present study investigates the effects of Lactobacillus alone or in the presence of Bacillus subtilis MA139 on the inhibition of pathogenic Escherichia coli K88. Mixed cultures were used to predict the possible interactions among these bacteria within the intestinal tract of animals. B. subtilis MA139 was first assayed for its inhibition against E. coli K88 both under shaking and static culture conditions. A co-culture assay was employed under static conditions to test the inhibitory effects of Lactobacillus reuteri on E. coli K88, with or without addition of B. subtilis MA139. The results showed that B. subtilis MA139 had marked inhibition against E. coli K88 under shaking conditions and weak inhibition under static conditions. Lactobacillus alone as well as in combination with B. subtilis MA139 spores exerted strong inhibition against E. coli K88 under static conditions. However, the inhibition by Lactobacillus in combination with B. subilis spores was much higher than that by Lactobacillus alone (P<0.01). B. subtilis MA139 significantly decreased the pH and oxidation-reduction potential values of the co-culture broth compared to that of Lactobacillus alone (P<0.05). The viability of Lactobacillus increased when co-cultured with B. subtilis MA139 because of significantly higher Lactobacillus counts and lower pH values in the broth (P<0.05). The role of Bacillus in the mixed culture models suggests that Bacillus may produce beneficial effects by increasing the viability of lactobacilli and subsequently inhibiting the growth of pathogenic E. coli. Therefore, the combination of Bacillus and Lactobacillus species as a probiotic is recommended.
Biomimetic evaluation of β tricalcium phosphate prepared by hot isostatic pressing
Mateescu, Mihaela; Rguitti, Emmanuelle; Ponche, Arnaud; Descamps, Michel; Anselme, Karine
2012-01-01
Two types of completely densified β-TCP tablets were synthesized from a stoichiometric β-TCP powder. The first ones (TCP) were conventionally sintered, while the second ones (TCP-T) were sintered and treated by hot isostatic process (HIP). The HIP produced completely densified materials with relative densities greater than 99.9% and a transparent appearance of tablets. Samples were immersed in culture medium with (CM) or without serum (NCM) in static and dynamic conditions for a biomimetic evaluation. Similarly, SaOs-2 cells were cultured on samples in a static or dynamic flow perfusion system. The results of surface transformation in absence of cells showed that the dynamic condition increased the speed of calcium phosphate precipitations compared with the static condition. The morphology of precipitates was different with nature of tablets. The immersion in CM did impede this precipitation. XPS analysis of TCP-T tablets showed the presence of hydroxyapatite (HA) precipitates after incubation in NCM while octacalcium phosphate (OCP) precipitates were formed after incubation in CM. The analysis of the response of SaOs-2 cells on surfaces showed that the two types of materials are biocompatible. However, the dynamic mode of culture stimulated the differentiation of cells. Finally, it appears that the HIP treatment of TCP produces highly densified and transparent samples that display a good in vitro biocompatibility in static and dynamic culture conditions. Moreover, an interesting result of this work is the relationship between the presence of proteins in the immersion medium and the quality of precipitates formed on hipped TCP surface. PMID:23507861
NASA Astrophysics Data System (ADS)
Redmond, M. C.
2016-02-01
The Deepwater Horizon oil spill highlighted the ability of microbes to degrade hydrocarbons in both cold, deep water and at the warm sea surface. However, the temperature and differing hydrocarbons in the deep ocean and sea surface led to different microbial communities and biodegradation patterns. In order to develop a better understanding of the factors that control microbial community composition and biodegradation patterns, we conducted laboratory microcosm studies with seawater samples from coastal South Carolina and hydrocarbon seeps in the Gulf of Mexico, incubated with different hydrocarbons, at different temperatures, and in static or shaking incubation conditions. We analyzed microbial community composition after three weeks and used successive transfers on liquid and then solid media to isolate cultures. More rapid growth was observed at 28 degrees than 4 degrees, with hexadecane compared to benzene, cyclohexane, or crude oil, and in shaking incubations compared to static. However, we were able to successfully culture microbes under all conditions. Physiological and genetic characterization of isolated strains is ongoing, and will be combined with assessment of hydrocarbon substrate preferences and kinetics under different environmental conditions.
Animated graphics for comparing two risks: a cautionary tale.
Zikmund-Fisher, Brian J; Witteman, Holly O; Fuhrel-Forbis, Andrea; Exe, Nicole L; Kahn, Valerie C; Dickson, Mark
2012-07-25
The increasing use of computer-administered risk communications affords the potential to replace static risk graphics with animations that use motion cues to reinforce key risk messages. Research on the use of animated graphics, however, has yielded mixed findings, and little research exists to identify the specific animations that might improve risk knowledge and patients' decision making. To test whether viewing animated forms of standard pictograph (icon array) risk graphics displaying risks of side effects would improve people's ability to select the treatment with the lowest risk profile, as compared with viewing static images of the same risks. A total of 4198 members of a demographically diverse Internet panel read a scenario about two hypothetical treatments for thyroid cancer. Each treatment was described as equally effective but varied in side effects (with one option slightly better than the other). Participants were randomly assigned to receive all risk information in 1 of 10 pictograph formats in a quasi-factorial design. We compared a control condition of static grouped icons with a static scattered icon display and with 8 Flash-based animated versions that incorporated different combinations of (1) building the risk 1 icon at a time, (2) having scattered risk icons settle into a group, or (3) having scattered risk icons shuffle themselves (either automatically or by user control). We assessed participants' ability to choose the better treatment (choice accuracy), their gist knowledge of side effects (knowledge accuracy), and their graph evaluation ratings, controlling for subjective numeracy and need for cognition. When compared against static grouped-icon arrays, no animations significantly improved any outcomes, and most showed significant performance degradations. However, participants who received animations of grouped icons in which at-risk icons appeared 1 at a time performed as well on all outcomes as the static grouped-icon control group. Displays with scattered icons (static or animated) performed particularly poorly unless they included the settle animation that allowed users to view event icons grouped. Many combinations of animation, especially those with scattered icons that shuffle randomly, appear to inhibit knowledge accuracy in this context. Static pictographs that group risk icons, however, perform very well on measures of knowledge and choice accuracy. These findings parallel recent evidence in other data communication contexts that less can be more-that is, that simpler, more focused information presentation can result in improved understanding. Decision aid designers and health educators should proceed with caution when considering the use of animated risk graphics to compare two risks, given that evidence-based, static risk graphics appear optimal.
Viscoelastic characterization of soft biological materials
NASA Astrophysics Data System (ADS)
Nayar, Vinod Timothy
Progressive and irreversible retinal diseases are among the primary causes of blindness in the United States, attacking the cells in the eye that transform environmental light into neural signals for the optic pathway. Medical implants designed to restore visual function to afflicted patients can cause mechanical stress and ultimately damage to the host tissues. Research shows that an accurate understanding of the mechanical properties of the biological tissues can reduce damage and lead to designs with improved safety and efficacy. Prior studies on the mechanical properties of biological tissues show characterization of these materials can be affected by environmental, length-scale, time, mounting, stiffness, size, viscoelastic, and methodological conditions. Using porcine sclera tissue, the effects of environmental, time, and mounting conditions are evaluated when using nanoindentation. Quasi-static tests are used to measure reduced modulus during extended exposure to phosphate-buffered saline (PBS), as well as the chemical and mechanical analysis of mounting the sample to a solid substrate using cyanoacrylate. The less destructive nature of nanoindentation tests allows for variance of tests within a single sample to be compared to the variance between samples. The results indicate that the environmental, time, and mounting conditions can be controlled for using modified nanoindentation procedures for biological samples and are in line with averages modulus values from previous studies but with increased precision. By using the quasi-static and dynamic characterization capabilities of the nanoindentation setup, the additional stiffness and viscoelastic variables are measured. Different quasi-static control methods were evaluated along with maximum load parameters and produced no significant difference in reported reduced modulus values. Dynamic characterization tests varied frequency and quasi-static load, showing that the agar could be modeled as a linearly elastic material. The effects of sample stiffness were evaluated by testing both the quasi-static and dynamic mechanical properties of different concentration agar samples, ranging from 0.5% to 5.0%. The dynamic nanoindentation protocol showed some sensitivity to sample stiffness, but characterization remained consistently applicable to soft biological materials. Comparative experiments were performed on both 0.5% and 5.0% agar as well as porcine eye tissue samples using published dynamic macrocompression standards. By comparing these new tests to those obtained with nanoindentation, the effects due to length-scale, stiffness, size, viscoelastic, and methodological conditions are evaluated. Both testing methodologies can be adapted for the environmental and mounting conditions, but the limitations of standardized macro-scale tests are explored. The factors affecting mechanical characterization of soft and thin viscoelastic biological materials are researched and a comprehensive protocol is presented. This work produces material mechanical properties for use in improving future medical implant designs on a wide variety of biological tissue and materials.
Smooth-pursuit eye movements without head movement disrupt the static body balance.
Kim, Sang-Yeob; Moon, Byeong-Yeon; Cho, Hyun Gug
2016-04-01
[Purpose] To investigate the changes of body balance in static posture in smooth-pursuit eye movements (SPEMs) without head movement. [Subjects and Methods] Forty subjects (24 males, 16 females) aged 23.24 ± 2.58 years participated. SPEMs were activated in three directions (horizontal, vertical, and diagonal movements); the target speed was set at three conditions (10°/s, 20°/s, and 30°/s); and the binocular visual field was limited to 50°. To compare the body balance changes, the general stability (ST) and the fall risk index (FI) were measured with TETRAX. The subjects wore a head-neck collar and stood on a balance plate for 32 s during each measurement in three directions. SPEMs were induced to each subject with nine target speeds and directions. All measured values were compared with those in stationary fixation. [Results] The ST and FI increased significantly in all SPEMs directions, with an increased target speed than that in stationary fixation. In the same condition of the target speed, the FI had the highest value relative to diagonal SPEMs. [Conclusion] SPEMs without head movement disrupt the stability of body balance in a static posture, and diagonal SPEMs may have a more negative effect in maintaining body balance than horizontal or vertical SPEMs.
A Comparison of Quasi-Static Indentation Testing to Low Velocity Impact Testing
NASA Technical Reports Server (NTRS)
Nettles, Alan T.; Douglas, Michael J.
2001-01-01
The need for a static test method for modeling low-velocity foreign object impact events to composites would prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low velocity impact tests were carried out and compared. Square specimens of many sizes and thickness were utilized to cover the array of types of low velocity impact events. Laminates with a n/4 stacking sequence were employed since this is by the most common type of engineering laminate. Three distinct flexural rigidities under two different boundary conditions were tested in order to obtain damage due to large deflections, contact stresses and both to examine if the static indentation-impact comparisons are valid under the spectrum of damage modes that can be experienced. Comparisons between static indentation and low velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined included dent depth, back surface crack length, delamination area and to a limited extent, load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low velocity impact tests, indicating that static indentation can be used to represent a low velocity impact event.
A Comparison of Quasi-Static Indentation to Low-Velocity Impact
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Douglas, M. J.
2000-01-01
A static test method for modeling low-velocity foreign object impact events to composites would prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low-velocity impact tests were carried out and compared. Square specimens of many sizes and thicknesses were utilized to cover the array of types of low velocity impact events. Laminates with a pi/4 stacking sequence were employed since this is by far the most common type of engineering laminate. Three distinct flexural rigidities -under two different boundary conditions were tested in order to obtain damage ranging from that due to large deflection to contact stresses and levels in-between to examine if the static indentation-impact comparisons are valid under the spectrum of damage modes that can be experienced. Comparisons between static indentation and low-velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined included dent depth, back surface crack length, delamination area, and to a limited extent, load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low-velocity impact tests, indicating that static indentation can be used to represent a low-velocity impact event.
Sun, T; Donoghue, P S; Higginson, J R; Gadegaard, N; Barnett, S C; Riehle, M O
2012-12-01
In tissue engineering, chemical and topographical cues are normally developed using static cell cultures but then applied directly to tissue cultures in three dimensions (3D) and under perfusion. As human cells are very sensitive to changes in the culture environment, it is essential to evaluate the performance of any such cues in a perfused environment before they are applied to tissue engineering. Thus, the aim of this research was to bridge the gap between static and perfusion cultures by addressing the effect of perfusion on cell cultures within 3D scaffolds. For this we developed a scaled-down bioreactor system, which allows evaluation of the effectiveness of various chemical and topographical cues incorporated into our previously developed tubular ε-polycaprolactone scaffold under perfused conditions. Investigation of two exemplary cell types (fibroblasts and cortical astrocytes) using the miniaturized bioreactor indicated that: (a) quick and firm cell adhesion in the 3D scaffold was critical for cell survival in perfusion culture compared with static culture; thus, cell-seeding procedures for static cultures might not be applicable, therefore it was necessary to re-evaluate cell attachment on different surfaces under perfused conditions before a 3D scaffold was applied for tissue cultures; (b) continuous medium perfusion adversely influenced cell spread and survival, which could be balanced by intermittent perfusion; (c) micro-grooves still maintained their influences on cell alignment under perfused conditions, while medium perfusion demonstrated additional influence on fibroblast alignment but not on astrocyte alignment on grooved substrates. This research demonstrated that the mini-bioreactor system is crucial for the development of functional scaffolds with suitable chemical and topographical cues by bridging the gap between static culture and perfusion culture. Copyright © 2011 John Wiley & Sons, Ltd.
Force fluctuations while pressing and moving against high- and low-friction touch screen surfaces.
Joshi, Mukta N; Keenan, Kevin G
2016-07-01
The purpose of this study was to identify the influence of a high- and low-friction surface on the ability to maintain a steady downward force during an index finger pressing and moving task. Fifteen right-handed subjects (24-48 years) performed a static force pressing task and a hybrid pressing and moving task on the surface of an iPad mini while holding a steady 2-N force on high- and low-friction surfaces. Variability of force was quantified as the standard deviation (SD) of normal force (F z) and shear force (F xy) across friction conditions and tasks. The SD of F z was 227 % greater during the hybrid task as compared to the static task (p < .001) and was 19 % greater for the high- versus low-friction condition (p = .033). There were positive correlations between SD of F z and F xy during the hybrid force/motion tasks on the high- and low-friction conditions (r (2) = 0.5 and 0.86, respectively), suggesting significant associations between normal and shear forces for this hybrid task. The correlation between the SD of F z for static and hybrid tasks was r (2) = 0.44, indicating that the common practice of examining the control of static tasks may not sufficiently explain performance during hybrid tasks, at least for the young subjects tested in the current study. As activities of daily living frequently require hybrid force/motion tasks (e.g., writing, doing the dishes, and cleaning counters), the results of this study emphasize the need to study motor performance during hybrid tasks in addition to static force tasks.
Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian
2013-01-01
Background Inertial measurement of motion with Attitude and Heading Reference Systems (AHRS) is emerging as an alternative to 3D motion capture systems in biomechanics. The objectives of this study are: 1) to describe the absolute and relative accuracy of multiple units of commercially available AHRS under various types of motion; and 2) to evaluate the effect of motion velocity on the accuracy of these measurements. Methods The criterion validity of accuracy was established under controlled conditions using an instrumented Gimbal table. AHRS modules were carefully attached to the center plate of the Gimbal table and put through experimental static and dynamic conditions. Static and absolute accuracy was assessed by comparing the AHRS orientation measurement to those obtained using an optical gold standard. Relative accuracy was assessed by measuring the variation in relative orientation between modules during trials. Findings Evaluated AHRS systems demonstrated good absolute static accuracy (mean error < 0.5o) and clinically acceptable absolute accuracy under condition of slow motions (mean error between 0.5o and 3.1o). In slow motions, relative accuracy varied from 2o to 7o depending on the type of AHRS and the type of rotation. Absolute and relative accuracy were significantly affected (p<0.05) by velocity during sustained motions. The extent of that effect varied across AHRS. Interpretation Absolute and relative accuracy of AHRS are affected by environmental magnetic perturbations and conditions of motions. Relative accuracy of AHRS is mostly affected by the ability of all modules to locate the same global reference coordinate system at all time. Conclusions Existing AHRS systems can be considered for use in clinical biomechanics under constrained conditions of use. While their individual capacity to track absolute motion is relatively consistent, the use of multiple AHRS modules to compute relative motion between rigid bodies needs to be optimized according to the conditions of operation. PMID:24260324
Edsgärd, Daniel; Iglesias, Maria Jesus; Reilly, Sarah-Jayne; Hamsten, Anders; Tornvall, Per; Odeberg, Jacob; Emanuelsson, Olof
2016-01-01
Allele-specific expression (ASE) is the imbalance in transcription between maternal and paternal alleles at a locus and can be probed in single individuals using massively parallel DNA sequencing technology. Assessing ASE within a single sample provides a static picture of the ASE, but the magnitude of ASE for a given transcript may vary between different biological conditions in an individual. Such condition-dependent ASE could indicate a genetic variation with a functional role in the phenotypic difference. We investigated ASE through RNA-sequencing of primary white blood cells from eight human individuals before and after the controlled induction of an inflammatory response, and detected condition-dependent and static ASE at 211 and 13021 variants, respectively. We developed a method, GeneiASE, to detect genes exhibiting static or condition-dependent ASE in single individuals. GeneiASE performed consistently over a range of read depths and ASE effect sizes, and did not require phasing of variants to estimate haplotypes. We observed condition-dependent ASE related to the inflammatory response in 19 genes, and static ASE in 1389 genes. Allele-specific expression was confirmed by validation of variants through real-time quantitative RT-PCR, with RNA-seq and RT-PCR ASE effect-size correlations r = 0.67 and r = 0.94 for static and condition-dependent ASE, respectively. PMID:26887787
Contemori, Samuele; Biscarini, Andrea; Botti, Fabio Massimo; Busti, Daniele; Panichi, Roberto; Pettorossi, Vito Enrico
2017-06-12
Isolated infraspinatus muscle atrophy (IIMA) only affects the hitting shoulder of overhead-activity athletes, and is caused by suprascapular nerve neuropathy. No study has assessed the static and dynamic stability of the shoulder in overhead professional athletes with IIMA to reveal possible shoulder sensorimotor alterations. To assess the shoulder static stability, dynamic stability, and strength in professional volleyball players with IIMA and in healthy control players. Cross-sectional study. Research laboratory. Twenty-four male professional volleyball players (12 players with diagnosed IIMA and 12 healthy players) recruited from local volleyball teams. Static stability was evaluated with two independent force platforms and dynamic stability was assessed with the "Upper Quarter Y Balance Test". The static stability assessment was conducted in different support (single hand and both hand) and vision (open and closed eyes) conditions. Data from each test were analyzed with ANOVA and paired t-test models, to highlight statistical differences within and between groups. In addition to reduced abduction and external rotation strength, athletes with IIMA consistently demonstrated significant less static (P < 0.001) and dynamic stability (P < 0,001), compared with the contralateral shoulder and with healthy athletes. Closed eyes condition significantly enhanced the static stability deficit of the shoulder with IIMA (P = 0.039 and P = 0.034 for both hand and single hand support, respectively), but had no effect in healthy contralateral and healthy players' shoulders. This study highlights an impairment of the sensorimotor control system of the shoulder with IIMA, which likely results from both proprioceptive and strength deficits. This condition could yield subtle alteration in the functional use of the shoulder and predispose it to acute or overuse injuries. The results of this study may help athletic trainers and physical/physiotherapists to prevent shoulder injuries and create specific proprioceptive and neuromuscular training programs.
Muscular activities during sling- and ground-based push-up exercise.
Maeo, Sumiaki; Chou, Tatsuya; Yamamoto, Masayoshi; Kanehisa, Hiroaki
2014-03-28
This study aimed to clarify the characteristics of muscle activities during push-up exercises performed under sling condition by comparison with those performed under ground condition. We hypothesized that sling-based push-ups induce higher muscle activities than the ground-based push-ups, and its effects are more prominent in dynamic compared to static exercise owing to increased demands of stabilization. Twenty young males performed sling- and ground-based push-ups in each of static (maintaining the posture with the elbow joint angle at 90 deg) and dynamic (repeating push-ups at a rate of 45 per minute) exercises. Surface electromyograms (EMGs) of the pectoralis major, latissimus dorsi, triceps brachii, biceps brachii, rectus abdominis, external oblique, internal oblique, and erector spinae muscles were recorded during the exercises. The EMG data were normalized to those obtained during maximal voluntary contraction of each muscle (% EMGmax). In the static exercise, sling condition showed significantly higher % EMGmax values than the ground condition in the triceps brachii (+27%: relative to ground condition) and biceps brachii (+128%) as well as the three abdominal muscles (+15% to +27%). In the dynamic exercise, such condition-related differences were more prominent and those in the pectoralis major (+29%) in addition to the aforementioned five muscles (+19% to +144%) were significant. These results supported the hypothesis and indicate that sling-based push-up exercise can provide greater activation in upper limb and anterior trunk muscles than the ground-based push-up exercise.
Muscular activities during sling- and ground-based push-up exercise
2014-01-01
Background This study aimed to clarify the characteristics of muscle activities during push-up exercises performed under sling condition by comparison with those performed under ground condition. We hypothesized that sling-based push-ups induce higher muscle activities than the ground-based push-ups, and its effects are more prominent in dynamic compared to static exercise owing to increased demands of stabilization. Findings Twenty young males performed sling- and ground-based push-ups in each of static (maintaining the posture with the elbow joint angle at 90 deg) and dynamic (repeating push-ups at a rate of 45 per minute) exercises. Surface electromyograms (EMGs) of the pectoralis major, latissimus dorsi, triceps brachii, biceps brachii, rectus abdominis, external oblique, internal oblique, and erector spinae muscles were recorded during the exercises. The EMG data were normalized to those obtained during maximal voluntary contraction of each muscle (% EMGmax). In the static exercise, sling condition showed significantly higher % EMGmax values than the ground condition in the triceps brachii (+27%: relative to ground condition) and biceps brachii (+128%) as well as the three abdominal muscles (+15% to +27%). In the dynamic exercise, such condition-related differences were more prominent and those in the pectoralis major (+29%) in addition to the aforementioned five muscles (+19% to +144%) were significant. Conclusion These results supported the hypothesis and indicate that sling-based push-up exercise can provide greater activation in upper limb and anterior trunk muscles than the ground-based push-up exercise. PMID:24678968
Failure to produce taste-aversion learning in rats exposed to static electric fields and air ions.
Creim, J A; Lovely, R H; Weigel, R J; Forsythe, W C; Anderson, L E
1995-01-01
Taste-aversion (TA) learning was measured to determine whether exposure to high-voltage direct current (HVdc) static electric fields can produce TA learning in male Long Evans rats. Fifty-six rats were randomly distributed into four groups of 14 rats each. All rats were placed on a 20 min/day drinking schedule for 12 consecutive days prior to receiving five conditioning trials. During the conditioning trials, access to 0.1% sodium saccharin-flavored water was given for 20 min, followed 30 min later by one of four treatments. Two groups of 14 rats each were individually exposed to static electric fields and air ions, one group to +75 kV/m (+2 x 10(5) air ions/cm3) and the other group to -75 kV/m (-2 x 10(5) air ions/cm3). Two other groups of 14 rats each served as sham-exposed controls, with the following variation in one of the sham-exposed groups: This group was subdivided into two subsets of seven rats each, so that a positive control group could be included to validate the experimental design. The positive control group (n = 7) was injected with cyclophosphamide 25 mg/kg, i.p., 30 min after access to saccharin-flavored water on conditioning days, whereas the other subset of seven rats was similarly injected with an equivalent volume of saline. Access to saccharin-flavored water on conditioning days was followed by the treatments described above and was alternated daily with water "recovery" sessions in which the rats received access to water for 20 min in the home cage without further treatment. Following the last water-recovery session, a 20 min, two-bottle preference test (between water and saccharin-flavored water) was administered to each group. The positive control group did show TA learning, thus validating the experimental protocol. No saccharin-flavored water was consumed in the two-bottle preference test by the cyclophosphamide-injected, sham-exposed group compared to 74% consumed by the saline-injected sham-exposed controls (P < .0001). Saccharin-preference data for the static field-exposed groups showed no TA learning compared to data for sham-exposed controls. In summary, exposure to intense static electric fields and air ions did not produce TA learning as assessed by this particular design.
Hsieh, Yi-Yin; Chin, Hui Yen; Tsai, Min-Lang
2015-11-20
This study aimed to establish the sequential static and static-dynamic supercritical carbon dioxide (SDCO2) fractionation conditions to obtain a higher yield and desired chitosan with lower polydispersity index (PDI) and higher degree of deacetylation (DD). The yield increased with increasing DD of used chitosan and amount of cosolvent. The yield of acetic acid cosolvent was higher than those of malic and citric acid cosolvents. SDCO2, compared to static supercritical carbon dioxide, has higher yield. The yield of extracted chitosan was 5.82-14.70% by SDCO2/acetic acid, which increases with increasing pressure. The DD of fractionated chitosan increased from 66.1% to 70.81-85.33%, while the PDI decreased from 3.97 to 1.69-3.16. The molecular weight changed from 622kDa to 412-649kDa, which increased as density of supercritical carbon dioxide increases. Hence, higher DD and lower PDI extracted chitosan can be obtained through controlling the temperature and pressure of SDCO2. Copyright © 2015 Elsevier Ltd. All rights reserved.
Equilibrium disorders in workers exposed to mixed solvents.
Giorgianni, Concetto; Tanzariello, Mariagiuseppina; De Pasquale, Domenico; Brecciaroli, Renato; Spatari, Giovanna
2018-02-06
Organic solvents cause diseases of the vestibular system. However, little is known regarding the correlation between vestibular damage and exposure to organic solvents below threshold limit values. The best measure by which to evaluate vestibular disorders is static and dynamic posturography. The aim of this study was to evaluate equilibrium disorders via static and dynamic posturography in workers without clear symptoms and exposed to low doses of mixed solvents. 200 subjects were selected. Using an Otometrics device (Madsen, Denmark), all subjects endured static and dynamic posturography testing with both eyes-open and eyes-closed conditions. Results were compared with a control group of unexposed individuals. Based on the obtained data, the following results can be drawn: (a) subjects exposed to mixtures of solvents show highly significant differences regarding all static and dynamic posturography parameters in comparison to the control group; (b) posturography testing has proven to be a valid means by which to detect subliminal equilibrium disorders in subjects exposed to solvents. We can confirm that refinery workers exposed to mixtures of solvents can present subliminal equilibrium disorders. Early diagnosis of the latter is made possible by static and dynamic posturography.
Yu, Kai; Andruschak, Paula; Yeh, Han Hung; Grecov, Dana; Kizhakkedathu, Jayachandran N
2018-06-01
The information regarding the nature of protein corona (and its changes) and cell binding on biomaterial surface under dynamic conditions is critical to dissect the mechanism of surface-induced thrombosis. In this manuscript, we investigated the nature of protein corona and blood cell binding in heparinized recalcified human plasma, platelet rich plasma and whole blood on three highly hydrophilic antifouling polymer brushes, (poly(N, N-dimethylacrylamide) (PDMA), poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly[N-(2-hydroxypropyl) methacrylamide] (PHPMA) using an in vitro blood loop model at comparable arterial and venous flow, and static conditions. A fluid dynamics model was used initially to better understand the resulting flow patterns in a vertical channel containing the substrates to arrive at the placement of the substrates within the blood loop. The protein binding on the brush modified substrates was determined using ellipsometry, fluorescence microscopy and the nature of the protein corona was investigated using mass spectrometry based proteomics. The flow elevated fouling on brush coated surface from blood. The extent of plasma protein adsorption and platelet adhesion onto PDMA brush was lower than other surfaces in both static and flow conditions. The profiles of adsorbed protein corona showed strong dependence on the test conditions (static vs. flow), and the chemistry of the polymer brushes. Specially, the PDMA brush under flow conditions was more enriched with coagulation proteins, complement proteins, vitronectin and fibronectin but was less enriched with serum albumin. Apolipoprotein B-100 and complement proteins were the most abundant proteins seen on PMPC and PHPMA surfaces under both flow and static conditions, respectively. Unlike PDMA brush, the flow conditions did not affect the composition of protein corona on PMPC and PHPMA brushes. The nature of the protein corona formed in flow conditions influenced the platelet and red blood cell binding. The dependence of shear stress on platelet adhesion from platelet rich plasma and whole blood highlights the contribution of red blood cells in enhancing platelet adhesion on the surface under high shear condition. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sharp, Jamie; Spitters, Tim Wgm; Vermette, Patrick
2018-03-01
Few studies report whole pancreatic tissue culture, as it is a difficult task using traditional culture methods. Here, a factorial design was used to investigate the singular and combinational effects of flow, dissolved oxygen concentration (D.O.) and pulsation on whole mechanically disrupted rat pancreata in a perfusion bioreactor. Whole rat pancreata were cultured for 72 h under defined bioreactor process conditions. Secreted insulin was measured and histological (haematoxylin and eosin (H&E)) as well as immunofluorescent insulin staining were performed and quantified. The combination of flow and D.O. had the most significant effect on secreted insulin at 5 h and 24 h. The D.O. had the biggest effect on tissue histological quality, and pulsation had the biggest effect on the number of insulin-positive structures. Based on the factorial design analysis, bioreactor conditions using high flow, low D.O., and pulsation were selected to further study glucose-stimulated insulin secretion. Here, mechanically disrupted rat pancreata were cultured for 24 h under these bioreactor conditions and were then challenged with high glucose concentration for 6 h and high glucose + IBMX (an insulin secretagogue) for a further 6 h. These cultures secreted insulin in response to high glucose concentration in the first 6 h, however stimulated-insulin secretion was markedly weaker in response to high glucose concentration + IBMX thereafter. After this bioreactor culture period, higher tissue metabolic activity was found compared to that of non-bioreacted static controls. More insulin- and glucagon-positive structures, and extensive intact endothelial structures were observed compared to non-bioreacted static cultures. H&E staining revealed more intact tissue compared to static cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:432-444, 2018. © 2017 American Institute of Chemical Engineers.
Effect of Ventilated Caging on Water Intake and Loss in 4 Strains of Laboratory Mice
Nicolaus, Mackenzie L; Bergdall, Valerie K; Davis, Ian C; Hickman-Davis, Judy M
2016-01-01
Food availability, temperature, humidity, strain, and caging type all affect water consumption by mice. Measurement of transepidermal water loss (TEWL) is a new technique for the quantification of water turnover in mice. To understand water turnover in common strains of adult mice, male and female SCID, SKH, C57BL/6, and FVB mice were housed in same-sex groups of 5 animals in static cages or IVC. Body weight, TEWL, urine osmolality, and water consumption of mice and intracage temperature and humidity were measured every 48 h for comparison. Static cages were monitored for 7 d and IVC for 14 d before cage change. Female SCID, FVB, and C57 mice drank less water than did their male counterparts. Male and female SCID, SKH, and FVB mice in IVC drank less water and had higher urine osmolality than did those in static cages. In SCID and SKH mice, TEWL paralleled water consumption. C57 mice in static cages drank less water, had lower urine osmolality, and had less TEWL than did those in IVC. Temperature and humidity within the cage was higher than the macroenvironmental levels for all housing conditions, mouse strains, and sexes. Temperatures within IVC ranged from 76.6 to 81.4 °F compared with 69 ± 0.4 °F in the room. Humidity within IVC ranged from 68% to 79% compared with 27.o% ± 2.7% within the room. These data demonstrate that mouse strain and housing conditions significantly influence water balance and indicate that macroenvironmental measurements do not always reflect the intracage environment. PMID:27657706
Structural modeling of aircraft tires
NASA Technical Reports Server (NTRS)
Clark, S. K.; Dodge, R. N.; Lackey, J. I.; Nybakken, G. H.
1973-01-01
A theoretical and experimental investigation of the feasibility of determining the mechanical properties of aircraft tires from small-scale model tires was accomplished. The theoretical results indicate that the macroscopic static and dynamic mechanical properties of aircraft tires can be accurately determined from the scale model tires although the microscopic and thermal properties of aircraft tires can not. The experimental investigation was conducted on a scale model of a 40 x 12, 14 ply rated, type 7 aircraft tire with a scaling factor of 8.65. The experimental results indicate that the scale model tire exhibited the same static mechanical properties as the prototype tire when compared on a dimensionless basis. The structural modeling concept discussed in this report is believed to be exact for mechanical properties of aircraft tires under static, rolling, and transient conditions.
2013-01-01
Background Actinobacillus pleuropneumoniae is the Gram-negative bacterium responsible for porcine pleuropneumonia. This respiratory infection is highly contagious and characterized by high morbidity and mortality. The objectives of our study were to study the transcriptome of A. pleuropneumoniae biofilms at different stages and to develop a protocol to grow an A. pleuropneumoniae biofilm in a drip-flow apparatus. This biofilm reactor is a system with an air-liquid interface modeling lung-like environment. Bacteria attached to a surface (biofilm) and free floating bacteria (plankton) were harvested for RNA isolation. Labelled cDNA was hybridized to a microarray to compare the expression profiles of planktonic cells and biofilm cells. Results It was observed that 47 genes were differentially expressed (22 up, 25 down) in a 4 h-static growing/maturing biofilm and 117 genes were differentially expressed (49 up, 68 down) in a 6h-static dispersing biofilm. The transcriptomes of a 4 h biofilm and a 6 h biofilm were also compared and 456 genes (235 up, 221 down) were identified as differently expressed. Among the genes identified in the 4 h vs 6h biofilm experiment, several regulators of stress response were down-regulated and energy metabolism associated genes were up-regulated. Biofilm bacteria cultured using the drip-flow apparatus differentially expressed 161 genes (68 up, 93 down) compared to the effluent bacteria. Cross-referencing of differentially transcribed genes in the different assays revealed that drip-flow biofilms shared few differentially expressed genes with static biofilms (4 h or 6 h) but shared several differentially expressed genes with natural or experimental infections in pigs. Conclusion The formation of a static biofilm by A. pleuropneumoniae strain S4074 is a rapid process and transcriptional analysis indicated that dispersal observed at 6 h is driven by nutritional stresses. Furthermore, A. pleuropneumoniae can form a biofilm under low-shear force in a drip-flow apparatus and analyses indicated that the formation of a biofilm under low-shear force requires a different sub-set of genes than a biofilm grown under static conditions. The drip-flow apparatus may represent the better in vitro model to investigate biofilm formation of A. pleuropneumoniae. PMID:23725589
An automated high throughput tribometer for adhesion, wear, and friction measurements
NASA Astrophysics Data System (ADS)
Kalihari, Vivek; Timpe, Shannon J.; McCarty, Lyle; Ninke, Matthew; Whitehead, Jim
2013-03-01
Understanding the origin and correlation of different surface properties under a multitude of operating conditions is critical in tribology. Diverse tribological properties and a lack of a single instrument to measure all make it difficult to compare and correlate properties, particularly in light of the wide range of interfaces commonly investigated. In the current work, a novel automated tribometer has been designed and validated, providing a unique experimental platform capable of high throughput adhesion, wear, kinetic friction, and static friction measurements. The innovative design aspects are discussed that allow for a variety of probes, sample surfaces, and testing conditions. Critical components of the instrument and their design criteria are described along with examples of data collection schemes. A case study is presented with multiple surface measurements performed on a set of characteristic substrates. Adhesion, wear, kinetic friction, and static friction are analyzed and compared across surfaces, highlighting the comprehensive nature of the surface data that can be generated using the automated high throughput tribometer.
35Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsh, David A.; Rossini, Aaron J.; Emsley, Lyndon
In this paper, we show how to obtain efficient dynamic nuclear polarization (DNP) enhanced 35Cl solid-state NMR (SSNMR) spectra at 9.4 T and demonstrate how they can be used to characterize the molecular-level structure of hydrochloride salts of active pharmaceutical ingredients (APIs) in both bulk and low wt% API dosage forms. 35Cl SSNMR central-transition powder patterns of chloride ions are typically tens to hundreds of kHz in breadth, and most cannot be excited uniformly with high-power rectangular pulses or acquired under conditions of magic-angle spinning (MAS). Herein, we demonstrate the combination of DNP and 1H– 35Cl broadband adiabatic inversion crossmore » polarization (BRAIN-CP) experiments for the acquisition of high quality wideline spectra of APIs under static sample conditions, and obtain signals up to 50 times greater than in spectra acquired without the use of DNP at 100 K. We report a new protocol, called spinning-on spinning-off (SOSO) acquisition, where MAS is applied during part of the polarization delay to increase the DNP enhancements and then the MAS rotation is stopped so that a wideline 35Cl NMR powder pattern free from the effects of spinning sidebands can be acquired under static conditions. This method provides an additional two-fold signal enhancement compared to DNP-enhanced SSNMR spectra acquired under purely static conditions. DNP-enhanced 35Cl experiments are used to characterize APIs in bulk and dosage forms with Cl contents as low as 0.45 wt%. These results are compared to DNP-enhanced 1H– 13C CP/MAS spectra of APIs in dosage forms, which are often hindered by interfering signals arising from the binders, fillers and other excipient materials.« less
35Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients
Hirsh, David A.; Rossini, Aaron J.; Emsley, Lyndon; ...
2016-08-24
In this paper, we show how to obtain efficient dynamic nuclear polarization (DNP) enhanced 35Cl solid-state NMR (SSNMR) spectra at 9.4 T and demonstrate how they can be used to characterize the molecular-level structure of hydrochloride salts of active pharmaceutical ingredients (APIs) in both bulk and low wt% API dosage forms. 35Cl SSNMR central-transition powder patterns of chloride ions are typically tens to hundreds of kHz in breadth, and most cannot be excited uniformly with high-power rectangular pulses or acquired under conditions of magic-angle spinning (MAS). Herein, we demonstrate the combination of DNP and 1H– 35Cl broadband adiabatic inversion crossmore » polarization (BRAIN-CP) experiments for the acquisition of high quality wideline spectra of APIs under static sample conditions, and obtain signals up to 50 times greater than in spectra acquired without the use of DNP at 100 K. We report a new protocol, called spinning-on spinning-off (SOSO) acquisition, where MAS is applied during part of the polarization delay to increase the DNP enhancements and then the MAS rotation is stopped so that a wideline 35Cl NMR powder pattern free from the effects of spinning sidebands can be acquired under static conditions. This method provides an additional two-fold signal enhancement compared to DNP-enhanced SSNMR spectra acquired under purely static conditions. DNP-enhanced 35Cl experiments are used to characterize APIs in bulk and dosage forms with Cl contents as low as 0.45 wt%. These results are compared to DNP-enhanced 1H– 13C CP/MAS spectra of APIs in dosage forms, which are often hindered by interfering signals arising from the binders, fillers and other excipient materials.« less
Portable global positioning system receivers: static validity and environmental conditions.
Duncan, Scott; Stewart, Tom I; Oliver, Melody; Mavoa, Suzanne; MacRae, Deborah; Badland, Hannah M; Duncan, Mitch J
2013-02-01
GPS receivers are becoming increasingly common as an objective measure of spatiotemporal movement in free-living populations; however, research into the effects of the surrounding physical environment on the accuracy of off-the-shelf GPS receivers is limited. The goal of the current study was to (1) determine the static validity of seven portable GPS receiver models under diverse environmental conditions and (2) compare the battery life and signal acquisition times among the models. Seven GPS models (three units of each) were placed on six geodetic sites subject to a variety of environmental conditions (e.g., open sky, high-rise buildings) on three separate occasions. The observed signal acquisition time and battery life of each unit were compared to advertised specifications. Data were collected and analyzed in June 2012. Substantial variation in positional error was observed among the seven GPS models, ranging from 12.1 ± 19.6 m to 58.8 ± 393.2 m when averaged across the three test periods and six geodetic sites. Further, mean error varied considerably among sites: the lowest error occurred at the site under open sky (7.3 ± 27.7 m), with the highest error at the site situated between high-rise buildings (59.2 ± 99.2 m). While observed signal acquisition times were generally longer than advertised, the differences between observed and advertised battery life were less pronounced. Results indicate that portable GPS receivers are able to accurately monitor static spatial location in unobstructed but not obstructed conditions. It also was observed that signal acquisition times were generally underestimated in advertised specifications. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Prosperini, Luca; Kouleridou, Anna; Petsas, Nikolaos; Leonardi, Laura; Tona, Francesca; Pantano, Patrizia; Pozzilli, Carlo
2011-05-15
The role of static posturography and magnetic resonance imaging (MRI) in identifying patients at high risk of falls was investigated. Relationships between static posturography measures and MRI metrics were also investigated. A total of 31 ambulatory MS patients (EDSS ranging from 2.0 to 5.0) with a predominant balance disorder were recruited. Each patient underwent a static posturography with a monoaxial platform and a conventional 1.5 T brain MRI scan. Measurements of T1-hypointense and T2-hyperintense lesion volumes (LVs), focusing on lesions selectively located at infratentorial levels, were performed by two operators unaware of clinical data. The self-reported number of falls in the previous 6 months was considered as the main outcome measure. Fourteen (45%) patients reported 1 or more falls over the past 6 months. When compared to non-faller patients, they had a higher EDSS score, poorer static standing balance, and greater brainstem and middle cerebellar peduncle (MCP) T2-LVs. A strength correlation between brainstem T2-LV and impaired static standing balance in an open eye condition was also found. In the multivariate analysis, the variables more strictly associated with recurrent falls were greater T2-LV at the MCP (beta: 6.2; p=0.01) and brainstem (beta: 5.8; p=0.001) levels, and a wider displacement of the body center of pressure in the closed eye condition (beta: 0.02; p=0.03). Our data suggests that the damage of specific infratentorial areas negatively affect the static standing balance and may predispose MS patients to accidental falls. These findings might contribute in selecting patients requiring a proper rehabilitation intervention program. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Tanner, John A.
1996-01-01
A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.
NASA Technical Reports Server (NTRS)
Tanner, John A.
1996-01-01
A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical-loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.
Visual processing of moving and static self body-parts.
Frassinetti, Francesca; Pavani, Francesco; Zamagni, Elisa; Fusaroli, Giulia; Vescovi, Massimo; Benassi, Mariagrazia; Avanzi, Stefano; Farnè, Alessandro
2009-07-01
Humans' ability to recognize static images of self body-parts can be lost following a lesion of the right hemisphere [Frassinetti, F., Maini, M., Romualdi, S., Galante, E., & Avanzi, S. (2008). Is it mine? Hemispheric asymmetries in corporeal self-recognition. Journal of Cognitive Neuroscience, 20, 1507-1516]. Here we investigated whether the visual information provided by the movement of self body-parts may be separately processed by right brain-damaged (RBD) patients and constitute a valuable cue to reduce their deficit in self body-parts processing. To pursue these aims, neurological healthy subjects and RBD patients were submitted to a matching-task of a pair of subsequent visual stimuli, in two conditions. In the dynamic condition, participants were shown movies of moving body-parts (hand, foot, arm and leg); in the static condition, participants were shown still images of the same body-parts. In each condition, on half of the trials at least one stimulus in the pair was from the participant's own body ('Self' condition), whereas on the remaining half of the trials both stimuli were from another person ('Other' condition). Results showed that in healthy participants the self-advantage was present when processing both static and dynamic body-parts, but it was more important in the latter condition. In RBD patients, however, the self-advantage was absent in the static, but present in the dynamic body-parts condition. These findings suggest that visual information from self body-parts in motion may be processed independently in patients with impaired static self-processing, thus pointing to a modular organization of the mechanisms responsible for the self/other distinction.
A first step towards a consensus static in vitro model for simulating full-term infant digestion.
Ménard, O; Bourlieu, C; De Oliveira, S C; Dellarosa, N; Laghi, L; Carrière, F; Capozzi, F; Dupont, D; Deglaire, A
2018-02-01
In vitro alternatives to clinical trials are used for studying human food digestion. For simulating infant digestion, only a few models, lacking physiological relevance, are available. Thanks to an extensive literature review of the in vivo infant digestive conditions, a gastrointestinal static in vitro model was developed for infants born at term and aged 28days. The model was applied to the digestion of a commercial infant formula. Kinetics of digestion, as well as the structural evolution, were compared with those obtained while submitting the same formula to the adult international consensus protocol of in vitro static digestion. The kinetics of proteolysis and lipolysis differed according to the physiological stage resulting mainly from the reduced level of enzymes and bile salts, as well as the higher gastric pH in the infant model. This in vitro static model of infant digestion is of interest for scientists, food or pharmaceutical manufacturers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamic Characterization of Galfenol (Fe81.6Ga18.4)
NASA Technical Reports Server (NTRS)
Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.
2016-01-01
Galfenol has the potential to transform the smart materials industry by allowing for the development of multifunctional, load-bearing devices. One of the primary technical challenges faced by this development is the very limited experimental data on Galfenol's frequency-dependent response to dynamic stress, which is critically important for the design of such devices. This report details a novel and precise characterization of the constitutive behavior of polycrystalline Galfenol (Fe81.6Ga18.4) under quasi-static (1 Hz) and dynamic (4 to 1000 Hz) stress loadings. Mechanical loads are applied using a high-frequency load frame. Quasi-static minor and major hysteresis loop measurements of magnetic flux density and strain are presented for constant electromagnet currents (0 to 1.1 A) and constant magnetic fields 0 to 14 kA/m (0 to 180 Oe). The dynamic stress amplitude for minor and major loops is 2.88 and 31.4 MPa (418 and 4550 psi), respectively. Quasi-static material properties closely match published values for similar Galfenol materials. Quasi-static actuation responses are also measured and compared to quasi-static sensing responses; the high degree of reversibility seen in the comparison is consistent with published measurements and modeling results. Dynamic major and minor loops are measured for dynamic stresses up to 31 MPa (4496 psi) and 1 kHz, and the bias condition resulting in maximum, quasi-static sensitivity. Eddy current effects are quantified by considering solid and laminated Galfenol rods. Three key sources of error in the dynamic measurements are accounted for: (1) electromagnetic noise in strain signals due to Galfenol's magnetic response, (2) error in load signals due to the inertial force of fixturing, and (3) phase misalignment between signals due to conditioning electronics. For dynamic characterization, strain error is kept below 1.2 percent of full scale by wiring two collocated gauges in series (noise cancellation) and through leadwire weaving. Inertial force error is kept below 0.41 percent by measuring the dynamic force in the specimen using a nearly collocated piezoelectric load washer. The phase response of all conditioning electronics is explicitly measured and corrected for. In general, as frequency is increased, the sensing response becomes more linear because of an increase in eddy currents. As frequency increases above approximately 100 Hz, the elbow in the strain-versus-stress response disappears as the active (soft) regime stiffens toward the passive (hard) regime. Under constant-field conditions, the loss factors of the solid rod peak between 200 and 600 Hz, rather than exhibiting a monotonic increase. Compared to the solid rod, the laminated rod exhibits much slower increases in hysteresis with frequency, and its quasi-static behavior extends to higher frequencies. The elastic modulus of the laminated rod decreases between 100 and 300 Hz; this trend is currently unexplained.
NASA Technical Reports Server (NTRS)
Hilton, D. A.; Henderson, H. R.; Lawton, B. W.
1975-01-01
The field noise measurements on the Cessna 02-T turbine powered propeller aircraft are presented. The objective of the study was to obtain the basic noise characteristics of the aircraft during static ground runs and flyover tests, to identify the sources of the noise, and to correlate the noises with the aircraft operating conditions. The results are presented in the form of a overall noise levels, radiation patterns, and frequency spectra. The noise characteristics of the turbine powered aircraft are compared with those of the reciprocating engine powered aircraft.
Failure of a laminated composite under tension-compression fatigue loading
NASA Technical Reports Server (NTRS)
Rotem, A.; Nelson, H. G.
1989-01-01
The fatigue behavior of composite laminates under tension-compression loading is analyzed and compared with behavior under tension-tension and compression-compression loading. It is shown that for meaningful fatigue conditions, the tension-compression case is the dominant one. Both tension and compression failure modes can occur under the reversed loading, and failure is dependent on the specific lay-up of the laminate and the difference between the tensile static strength and the absolute value of the compressive static strength. The use of a fatigue failure envelope for determining the fatigue life and mode of failure is proposed and demonstrated.
Jacobs, Matthieu; Grégoire, Nicolas; Couet, William; Bulitta, Jurgen B.
2016-01-01
Semi-mechanistic pharmacokinetic-pharmacodynamic (PK-PD) modeling is increasingly used for antimicrobial drug development and optimization of dosage regimens, but systematic simulation-estimation studies to distinguish between competing PD models are lacking. This study compared the ability of static and dynamic in vitro infection models to distinguish between models with different resistance mechanisms and support accurate and precise parameter estimation. Monte Carlo simulations (MCS) were performed for models with one susceptible bacterial population without (M1) or with a resting stage (M2), a one population model with adaptive resistance (M5), models with pre-existing susceptible and resistant populations without (M3) or with (M4) inter-conversion, and a model with two pre-existing populations with adaptive resistance (M6). For each model, 200 datasets of the total bacterial population were simulated over 24h using static antibiotic concentrations (256-fold concentration range) or over 48h under dynamic conditions (dosing every 12h; elimination half-life: 1h). Twelve-hundred random datasets (each containing 20 curves for static or four curves for dynamic conditions) were generated by bootstrapping. Each dataset was estimated by all six models via population PD modeling to compare bias and precision. For M1 and M3, most parameter estimates were unbiased (<10%) and had good imprecision (<30%). However, parameters for adaptive resistance and inter-conversion for M2, M4, M5 and M6 had poor bias and large imprecision under static and dynamic conditions. For datasets that only contained viable counts of the total population, common statistical criteria and diagnostic plots did not support sound identification of the true resistance mechanism. Therefore, it seems advisable to quantify resistant bacteria and characterize their MICs and resistance mechanisms to support extended simulations and translate from in vitro experiments to animal infection models and ultimately patients. PMID:26967893
The Relative Contribution of Interaural Time and Magnitude Cues to Dynamic Sound Localization
NASA Technical Reports Server (NTRS)
Wenzel, Elizabeth M.; Null, Cynthia H. (Technical Monitor)
1995-01-01
This paper presents preliminary data from a study examining the relative contribution of interaural time differences (ITDs) and interaural level differences (ILDs) to the localization of virtual sound sources both with and without head motion. The listeners' task was to estimate the apparent direction and distance of virtual sources (broadband noise) presented over headphones. Stimuli were synthesized from minimum phase representations of nonindividualized directional transfer functions; binaural magnitude spectra were derived from the minimum phase estimates and ITDs were represented as a pure delay. During dynamic conditions, listeners were encouraged to move their heads; the position of the listener's head was tracked and the stimuli were synthesized in real time using a Convolvotron to simulate a stationary external sound source. ILDs and ITDs were either correctly or incorrectly correlated with head motion: (1) both ILDs and ITDs correctly correlated, (2) ILDs correct, ITD fixed at 0 deg azimuth and 0 deg elevation, (3) ITDs correct, ILDs fixed at 0 deg, 0 deg. Similar conditions were run for static conditions except that none of the cues changed with head motion. The data indicated that, compared to static conditions, head movements helped listeners to resolve confusions primarily when ILDs were correctly correlated, although a smaller effect was also seen for correct ITDs. Together with the results for static conditions, the data suggest that localization tends to be dominated by the cue that is most reliable or consistent, when reliability is defined by consistency over time as well as across frequency bands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Andresen
2000-11-08
Stress corrosion crack growth studies have been performed on annealed and cold worked Titanium Grade 7 and Alloy 22 in 110 C, aerated, concentrated, high pH salt environments characteristic of concentrated ground water. Following a very careful transition from fatigue precracking conditions to SCC conditions, the long term behavior under very stable conditions was monitored using reversing dc potential drop. Titanium Grade 7 exhibited continuous crack growth under both near-static and complete static loading conditions. Alloy 22 exhibited similar growth rates, but was less prone to maintain stable crack growth as conditions approached fully static loading.
Azarpaikan, Atefeh; Taheri Torbati, Hamidreza
2017-10-23
The aim of this study was to assess the effectiveness of balance training with somatosensory and neurofeedback training on dynamic and static balance in healthy, elderly adults. The sample group consisted of 45 healthy adults randomly assigned to one of the three test groups: somatosensory, neurofeedback, and a control. Individualization of the balance program started with pre-tests for static and dynamic balances. Each group had 15- and 30-min training sessions. All groups were tested for static (postural stability) and dynamic balances (Berg Balance Scale) in acquisition and transfer tests (fall risk of stability and timed up and go). Improvements in static and dynamic balances were assessed by somatosensory and neurofeedback groups and then compared with the control group. Results indicated significant improvements in static and dynamic balances in both test groups in the acquisition test. Results revealed a significant improvement in the transfer test in the neurofeedback and somatosensory groups, in static and dynamic conditions, respectively. The findings suggest that these methods of balance training had a significant influence on balance. Both the methods are appropriate to prevent falling in adults. Neurofeedback training helped the participants to learn static balance, while somatosensory training was effective on dynamic balance learning. Further research is needed to assess the effects of longer and discontinuous stimulation with somatosensory and neurofeedback training on balance in elderly adults.
Patla, Aftab E; Greig, Michael
In the two experiments discussed in this paper we quantified obstacle avoidance performance characteristics carried out open loop (without vision) but with different initial visual sampling conditions and compared it to the full vision condition. The initial visual sampling conditions included: static vision (SV), vision during forward walking for three steps and stopping (FW), vision during forward walking for three steps and not stopping (FW-NS), and vision during backward walking for three steps and stopping (BW). In experiment 1, we compared performance during SV, FW and BW with full vision condition, while in the second experiment we compared performance during FW and FW-NS conditions. The questions we wanted to address are: Is ecologically valid dynamic visual sampling of the environment superior to static visual sampling for open loop obstacle avoidance task? What are the reasons for failure in performing open loop obstacle avoidance task? The results showed that irrespective of the initial visual sampling condition when open loop control is initiated from a standing posture, the success rate was only approximately 50%. The main reason for the high failure rates was not inappropriate limb elevation, but incorrect foot placement before the obstacle. The second experiment showed that it is not the nature of visual sampling per se that influences success rate, but the fact that the open loop obstacle avoidance task is initiated from a standing posture. The results of these two experiments clearly demonstrate the importance of on-line visual information for adaptive human locomotion.
Sarafidis, P A; Lazaridis, A A; Imprialos, K P; Georgianos, P I; Avranas, K A; Protogerou, A D; Doumas, M N; Athyros, V G; Karagiannis, A I
2016-12-01
Ambulatory blood pressure monitoring is an important tool in hypertension diagnosis and management. Although several ambulatory devices exist, comparative studies are scarce. This study aimed to compare for the first time brachial blood pressure levels of Spacelabs 90217A and Mobil-O-Graph NG, under static and ambulatory conditions. We examined 40 healthy individuals under static (study A) and ambulatory (study B) conditions. In study A, participants were randomized into two groups that included blood pressure measurements with mercury sphygmomanometer, Spacelabs and Mobil-O-Graph devices with reverse order of recordings. In study B, simultaneous 6-h recordings with both devices were performed with participants randomized in two sequences of device positioning with arm reversal at 3 h. Finally, all the participants filled in a questionnaire rating their overall preference for a device. In study A, brachial systolic blood pressure (117.2±10.3 vs 117.1±9.8 mm Hg, P=0.943) and diastolic blood pressure (73.3±9.4 mm Hg vs 74.1±9.4 mm Hg, P=0.611) did not differ between Spacelabs and Mobil-O-Graph or vs sphygmomanometer (117.8±11.1 mm Hg, P=0.791 vs Spacelabs, P=0.753 vs Mobil-O-Graph). Similarly, no differences were found in ambulatory systolic blood pressure (117.9±11.4 vs 118.3±11.0 mm Hg, P=0.864), diastolic blood pressure (73.7±7.4 vs 74.7±8.0 mm Hg, P=0.571), mean blood pressure and heart rate between Spacelabs and Mobil-O-Graph. Correlation analyses and Bland-Altman plots showed agreement between the monitors. Overall, the participants showed a preference for the Mobil-O-Graph. Spacelabs 90217A and Mobil-O-Graph NG provide practically identical measurements during the static and ambulatory conditions in healthy individuals and can be rather used interchangeably in clinical practice.
Agabalyan, Natacha A.; Borys, Breanna S.; Sparks, Holly D.; Boon, Kathryn; Raharjo, Eko W.; Abbasi, Sepideh; Kallos, Michael S.
2016-01-01
Abstract Endogenous dermal stem cells (DSCs) reside in the adult hair follicle mesenchyme and can be isolated and grown in vitro as self‐renewing colonies called skin‐derived precursors (SKPs). Following transplantation into skin, SKPs can generate new dermis and reconstitute the dermal papilla and connective tissue sheath, suggesting they could have important therapeutic value for the treatment of skin disease (alopecia) or injury. Controlled cell culture processes must be developed to efficiently and safely generate sufficient stem cell numbers for clinical use. Compared with static culture, stirred‐suspension bioreactors generated fivefold greater expansion of viable SKPs. SKPs from each condition were able to repopulate the dermal stem cell niche within established hair follicles. Both conditions were also capable of inducing de novo hair follicle formation and exhibited bipotency, reconstituting the dermal papilla and connective tissue sheath, although the efficiency was significantly reduced in bioreactor‐expanded SKPs compared with static conditions. We conclude that automated bioreactor processing could be used to efficiently generate large numbers of autologous DSCs while maintaining their inherent regenerative function. Stem Cells Translational Medicine 2017;6:434–443 PMID:28191777
Static Corrosion Test of Porous Iron Material with Polymer Coating
NASA Astrophysics Data System (ADS)
Markušová-Bučková, Lucia; Oriňaková, Renáta; Oriňak, Andrej; Gorejová, Radka; Kupková, Miriam; Hrubovčáková, Monika; Baláž, Matej; Kováľ, Karol
2016-12-01
At present biodegradable implants received increased attention due to their use in various fields of medicine. This work is dedicated to testing of biodegradable materials which could be used as bone implants. The samples were prepared from the carbonyl iron powder by replication method and surface polymer film was produced through sol-gel process. Corrosion testing was carried out under static conditions during 12 weeks in Hank's solution. The quantity of corrosion products increased with prolonging time of static test as it can be concluded from the results of EDX analysis. The degradation of open cell materials with polyethylene glycol coating layer was faster compared to uncoated Fe sample. Also the mass losses were higher for samples with PEG coating. The polymer coating brought about the desired increase in degradation rate of porous iron material.
Guy, Alison; McGrogan, Damian; Inston, Nicholas; Ready, Andrew
2015-04-01
The logistics of deceased-donor renal transplants are largely affected by cold ischemia time. However, to attain successful outcomes, other issues must be considered. Extending cold ischemia time to accommodate these issues would be valuable. We investigated the role of hypothermic machine perfusion to extend cold ischaemia time. Deceased-donor kidneys were allocated to a storage method, depending on predicted time to operation. Kidneys to be transplanted from 8:00 AM to 8:00 PM in the transplant room remained in static cold storage. If predicted operating time was out of hours, the kidney was transferred to hypothermic machine perfusion and transplanted at the earliest opportunity on the dedicated transplant list. There were 74 kidneys transplanted from hypothermic machine perfusion and 101 kidneys from static cold storage. Median cold ischemia time was 23.85 hours in the hypothermic machine perfusion group, compared with 13 hours in the static cold storage group (P ≤ .0001). There were 20 kidneys (27%) from hypothermic machine perfusion that had delayed graft function, compared with 47 kidneys (47%) in the static cold storage group (P = .012). There were no other significant differences in graft or postoperative complications. This study demonstrated that improved early graft outcomes can be achieved following longer cold ischemia time by using hypothermic machine perfusion rather than static cold storage. This effect is likely multifactorial including the inherent effects of hypothermic machine perfusion, improved recipient preparation, and possibly better perioperative conditions.
Characteristics of propeller noise on an aircraft fuselage related to interior noise transmission
NASA Technical Reports Server (NTRS)
Mixson, J. S.; Barton, C. K.; Piersol, A. G.; Wilby, J. F.
1979-01-01
Exterior noise was measured on the fuselage of a twin-engine, light aircraft at four values of engine rpm in ground static tests and at forward speeds up to 36 m/s in taxi tests. Propeller noise levels, spectra, and correlations were determined using a horizontal array of seven flush-mounted microphones and a vertical array of four flush-mounted microphones in the propeller plane. The measured levels and spectra are compared with predictions based on empirical and analytical methods for static and taxi conditions. Trace wavelengths of the propeller noise field, obtained from point-to-point correlations, are compared with the aircraft sidewall structural dimensions, and some analytical results are presented that suggest the sensitivity of interior noise transmission to variations of the propeller noise characteristics.
76 FR 28131 - Federal Motor Vehicle Safety Standards; Motorcycle Helmets
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
..., this final rule sets a quasi-static load application rate for the helmet retention system; revises the... Analysis and Conclusion e. Quasi-Static Retention Test f. Helmet Conditioning Tolerances g. Other... it as a quasi-static test, instead of a static test. Specifying the application rate will aid...
14 CFR 27.1325 - Static pressure systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ambient atmospheric static pressure is not altered when the rotorcraft encounters icing conditions. An... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static pressure systems. 27.1325 Section 27... pressure systems. (a) Each instrument with static air case connections must be vented so that the influence...
Effects of Temporal Features and Order on the Apparent duration of a Visual Stimulus
Bruno, Aurelio; Ayhan, Inci; Johnston, Alan
2012-01-01
The apparent duration of a visual stimulus has been shown to be influenced by its speed. For low speeds, apparent duration increases linearly with stimulus speed. This effect has been ascribed to the number of changes that occur within a visual interval. Accordingly, a higher number of changes should produce an increase in apparent duration. In order to test this prediction, we asked subjects to compare the relative duration of a 10-Hz drifting comparison stimulus with a standard stimulus that contained a different number of changes in different conditions. The standard could be static, drifting at 10 Hz, or mixed (a combination of variable duration static and drifting intervals). In this last condition the number of changes was intermediate between the static and the continuously drifting stimulus. For all standard durations, the mixed stimulus looked significantly compressed (∼20% reduction) relative to the drifting stimulus. However, no difference emerged between the static (that contained no changes) and the mixed stimuli (which contained an intermediate number of changes). We also observed that when the standard was displayed first, it appeared compressed relative to when it was displayed second with a magnitude that depended on standard duration. These results are at odds with a model of time perception that simply reflects the number of temporal features within an interval in determining the perceived passing of time. PMID:22461778
NASA Technical Reports Server (NTRS)
Grantham, William D.; Person, Lee H., Jr.; Brown, Philip W.; Becker, Lawrence E.; Hunt, George E.; Rising, J. J.; Davis, W. J.; Willey, C. S.; Weaver, W. A.; Cokeley, R.
1985-01-01
Piloted simulation studies have been conducted to evaluate the effectiveness of two pitch active control systems (PACS) on the flying qualities of a wide-body transport airplane when operating at negative static margins. These two pitch active control systems consisted of a simple 'near-term' PACS and a more complex 'advanced' PACS. Eight different flight conditions, representing the entire flight envelope, were evaluated with emphasis on the cruise flight conditions. These studies were made utilizing the Langley Visual/Motion Simulator (VMS) which has six degrees of freedom. The simulation tests indicated that (1) the flying qualities of the baseline aircraft (PACS off) for the cruise and other high-speed flight conditions were unacceptable at center-of-gravity positions aft of the neutral static stability point; (2) within the linear static stability flight envelope, the near-term PACS provided acceptable flying qualities for static stabilty margins to -3 percent; and (3) with the advanced PACS operative, the flying qualities were demonstrated to be good (satisfactory to very acceptable) for static stabilty margins to -20 percent.
Kim, Tae-Whan; Lee, Sang-Cheol; Kil, Se-Kee; Kang, Sung-Chul; Lim, Young-Tae; Kim, Ki-Tae; Panday, Siddhartha Bikram
2017-05-01
The purpose of the study was to investigate the effect of different kicking modality, i.e., erratic-dynamic target (EDT) versus static target (ST) on the performance of the roundhouse kick in two groups of taekwondo athletes of different skill level. Three-dimensional analysis and surface electromyography (SEMG) analysis were performed on 12 (Group A: six sub-elite, Group B: six elite) athletes to investigate muscle co-activation pattern under two conditions, i.e., EDT versus ST. In the results, the muscle recruitment ratio of the agonistic muscles was higher for Group A, whereas Group B had higher recruitment ratio for antagonist muscles. Overall, the co-activation index (CI) of hip joints appeared higher in the extensors for Group A, whereas higher CI was observed in flexor muscles for Group B with comparatively higher CI during EDT condition than ST condition. Higher value of CI was observed in flexor muscles of the knee joints among Group A during EDT conditions, in contrast, higher CI in the extensor muscles was observed among Group B during ST conditions. In conclusion, the study confirmed that erratic-dynamic movements of target could change the movement coordination pattern to maintain the joint stability of participants.
Comparative Tests of Pitot-static Tubes
NASA Technical Reports Server (NTRS)
Merriam, Kenneth G; Spaulding, Ellis R
1935-01-01
Comparative tests were made on seven conventional Pitot-static tubes to determine their static, dynamic, and resultant errors. The effect of varying the dynamic opening, static opening, wall thickness, and inner-tube diameter was investigated. Pressure-distribution measurements showing stem and tip effects were also made. A tentative design for a standard Pitot-static tube for use in measuring air velocity is submitted.
NASA Astrophysics Data System (ADS)
Grossir, Guillaume; Van Hove, Bart; Paris, Sébastien; Rambaud, Patrick; Chazot, Olivier
2016-05-01
The performance of fast-response slender static pressure probes is evaluated in the short-duration, cold-gas, VKI Longshot hypersonic wind tunnel. Free-stream Mach numbers range between 9.5 and 12, and unit Reynolds numbers are within 3-10 × 106/m. Absolute pressure sensors are fitted within the probes, and an inexpensive calibration method, suited to low static pressure environments (200-1000 Pa), is described. Transfer functions relating the probe measurements p w to the free-stream static pressure p ∞ are established for the Longshot flow conditions based on numerical simulations. The pressure ratios p w / p ∞ are found to be close to unity for both laminar and turbulent boundary layers. Weak viscous effects characterized by small viscous interaction parameters {bar{χ }}<1.5 are confirmed experimentally for probe aspect ratios of L/ D > 16.5 by installing multiple pressure sensors in a single probe. The effect of pressure orifice geometry is also evaluated experimentally and found to be negligible for either straight or chamfered holes, 0.6-1 mm in diameter. No sensitivity to probe angle of attack could be evidenced for α < 0.33°. Pressure measurements are compared to theoretical predictions assuming an isentropic nozzle flow expansion. Significant deviations from this ideal case and the Mach 14 contoured nozzle design are uncovered. Validation of the static pressure measurements is obtained by comparing shock wave locations on Schlieren photographs to numerical predictions using free-stream properties derived from the static pressure probes. While these results apply to the Longshot wind tunnel, the present methodology and sensitivity analysis can guide similar investigations for other hypersonic test facilities.
Propulsion Simulations with the Unstructured-Grid CFD Tool TetrUSS
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Pandya, Mohagna J.
2002-01-01
A computational investigation has been completed to assess the capability of the NASA Tetrahedral Unstructured Software System (TetrUSS) for simulation of exhaust nozzle flows. Three configurations were chosen for this study: (1) a fluidic jet effects model, (2) an isolated nacelle with a supersonic cruise nozzle, and (3) a fluidic pitchthrust- vectoring nozzle. These configurations were chosen because existing data provided a means for measuring the ability of the TetrUSS flow solver USM3D for simulating complex nozzle flows. Fluidic jet effects model simulations were compared with structured-grid CFD (computational fluid dynamics) data at Mach numbers from 0.3 to 1.2 at nozzle pressure ratios up to 7.2. Simulations of an isolated nacelle with a supersonic cruise nozzle were compared with wind tunnel experimental data and structured-grid CFD data at Mach numbers of 0.9 and 1.2, with a nozzle pressure ratio of 5. Fluidic pitch-thrust-vectoring nozzle simulations were compared with static experimental data and structured-grid CFD data at static freestream conditions and nozzle pressure ratios from 3 to 10. A fluidic injection case was computed with the third configuration at a nozzle pressure ratio of 4.6 and a secondary pressure ratio of 0.7. Results indicate that USM3D with the S-A turbulence model provides accurate exhaust nozzle simulations at on-design conditions, but does not predict internal shock location at overexpanded conditions or pressure recovery along a boattail at transonic conditions.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.
1990-01-01
Scale model technology represents one method of investigating the behavior of advanced, weight-efficient composite structures under a variety of loading conditions. It is necessary, however, to understand the limitations involved in testing scale model structures before the technique can be fully utilized. These limitations, or scaling effects, are characterized. in the large deflection response and failure of composite beams. Scale model beams were loaded with an eccentric axial compressive load designed to produce large bending deflections and global failure. A dimensional analysis was performed on the composite beam-column loading configuration to determine a model law governing the system response. An experimental program was developed to validate the model law under both static and dynamic loading conditions. Laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic were tested to examine a diversity of composite response and failure modes. The model beams were loaded under scaled test conditions until catastrophic failure. A large deflection beam solution was developed to compare with the static experimental results and to analyze beam failure. Also, the finite element code DYCAST (DYnamic Crash Analysis of STructure) was used to model both the static and impulsive beam response. Static test results indicate that the unidirectional and cross ply beam responses scale as predicted by the model law, even under severe deformations. In general, failure modes were consistent between scale models within a laminate family; however, a significant scale effect was observed in strength. The scale effect in strength which was evident in the static tests was also observed in the dynamic tests. Scaling of load and strain time histories between the scale model beams and the prototypes was excellent for the unidirectional beams, but inconsistent results were obtained for the angle ply, cross ply, and quasi-isotropic beams. Results show that valuable information can be obtained from testing on scale model composite structures, especially in the linear elastic response region. However, due to scaling effects in the strength behavior of composite laminates, caution must be used in extrapolating data taken from a scale model test when that test involves failure of the structure.
Static and dynamic balance performance in patients with osteoporotic vertebral compression fracture.
Wang, Ling-Yi; Liaw, Mei-Yun; Huang, Yu-Chi; Lau, Yiu-Chung; Leong, Chau-Peng; Pong, Ya-Ping; Chen, Chia-Lin
2013-01-01
Patients with osteoporotic vertebral compression fracture (OVCF) have postural changes and increased risk of falling. The aim of this study is to compare balance characteristics between patients with OVCF and healthy control subjects. Patients with severe OVCF and control subjects underwent computerised dynamic posturography (CDP) in this case-control study. Forty-seven OVCF patients and 45 controls were recruited. Compared with the control group, the OVCF group had significantly decreased average stability; maximal stability under the `eye open with swayed support surface' (CDP subtest 4) and 'eye closed with swayed support surface' conditions (subtest 5); and decreased ankle strategy during subtests 4 and 5 and under the `swayed vision with swayed support surface' condition (subtest 6). The OVCF group fell more frequently during subtests 5 and 6 and had longer overall reaction time and longer reaction time when moving backward during the directional control test. OVCF patients had poorer static and dynamic balance performance compared with normal control. They had decreased postural stability and ankle strategy with increased fall frequency on a swayed surface; they also had longer reaction times overall and in the backward direction. Therefore, we suggest balance rehabilitation for patients with OVCF to prevent fall.
Stress Distribution Around Single Short Dental Implants: A Finite Element Study.
Vidya Bhat, S; Premkumar, Priyanka; Kamalakanth Shenoy, K
2014-12-01
Bone height restrictions are more common in the posterior regions of the mandible, because of either bone resorption resulting from tooth loss or even anatomic limitations, such as the position of the inferior alveolar nerve. In situations where adequate bone height is not available in the posterior mandible region, smaller lengths of implants may have to be used but it has been reported that the use of long implants (length ≥10 mm) is a positive factor in osseointegration and authors have reported failures with short implants. Hence knowledge about the stress generated on the bone with different lengths of implants needs scientific evaluation. The purpose of this study was to compare and evaluate the influence of different lengths of implants on stress upon bone in mandibular posterior area. A 3 D finite element model was made of the posterior mandible using the details from a CT scan, using computer software (ANSYS 12). Four simulated implants with lengths 6 mm, 8 mm, 10 mm and 13 mm were placed in the centre of the bone. A static vertical force of 250 N and a static horizontal force of 100 N were applied. The stress generated in the cortical and cancellous bone around the implant were recorded and evaluated with the help of ANSYS. In this study, Von Mises stress on a 6 mm implant under a static vertical load of 250 N appeared to be almost in the same range of 8 and 10 mm implant which were more as compared to 13 mm implant. Von Mises stress on a 6mm implant under a static horizontal load of 100 N appeared to be less when compared to 8, 10 and 13 mm implants. From the results obtained it may be inferred that under static horizontal loading conditions, shorter implants receive lesser load and thus may tend to transfer more stresses to the surrounding bone. While under static vertical loading the shorter implants bear more loads and comparatively transmit lesser load to the surrounding bone.
An improved method for predicting brittleness of rocks via well logs in tight oil reservoirs
NASA Astrophysics Data System (ADS)
Wang, Zhenlin; Sun, Ting; Feng, Cheng; Wang, Wei; Han, Chuang
2018-06-01
There can be no industrial oil production in tight oil reservoirs until fracturing is undertaken. Under such conditions, the brittleness of the rocks is a very important factor. However, it has so far been difficult to predict. In this paper, the selected study area is the tight oil reservoirs in Lucaogou formation, Permian, Jimusaer sag, Junggar basin. According to the transformation of dynamic and static rock mechanics parameters and the correction of confining pressure, an improved method is proposed for quantitatively predicting the brittleness of rocks via well logs in tight oil reservoirs. First, 19 typical tight oil core samples are selected in the study area. Their static Young’s modulus, static Poisson’s ratio and petrophysical parameters are measured. In addition, the static brittleness indices of four other tight oil cores are measured under different confining pressure conditions. Second, the dynamic Young’s modulus, Poisson’s ratio and brittleness index are calculated using the compressional and shear wave velocity. With combination of the measured and calculated results, the transformation model of dynamic and static brittleness index is built based on the influence of porosity and clay content. The comparison of the predicted brittleness indices and measured results shows that the model has high accuracy. Third, on the basis of the experimental data under different confining pressure conditions, the amplifying factor of brittleness index is proposed to correct for the influence of confining pressure on the brittleness index. Finally, the above improved models are applied to formation evaluation via well logs. Compared with the results before correction, the results of the improved models agree better with the experimental data, which indicates that the improved models have better application effects. The brittleness index prediction method of tight oil reservoirs is improved in this research. It is of great importance in the optimization of fracturing layer and fracturing construction schemes and the improvement of oil recovery.
In-Flight Pitot-Static Calibration
NASA Technical Reports Server (NTRS)
Foster, John V. (Inventor); Cunningham, Kevin (Inventor)
2016-01-01
A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.
NASA Astrophysics Data System (ADS)
Zhu, Ning; Sun, Shou-Guang; Li, Qiang; Zou, Hua
2014-12-01
One of the major problems in structural fatigue life analysis is establishing structural load spectra under actual operating conditions. This study conducts theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains. The quasistatic load series that corresponds to quasi-static deformation modes are identified according to the structural form and bearing conditions of high-speed train bogie frames. Moreover, a force-measuring frame is designed and manufactured based on the quasi-static load series. The load decoupling model of the quasi-static load series is then established via calibration tests. Quasi-static load-time histories, together with online tests and decoupling analysis, are obtained for the intermediate range of the Beijing—Shanghai dedicated passenger line. The damage consistency calibration of the quasi-static discrete load spectra is performed according to a damage consistency criterion and a genetic algorithm. The calibrated damage that corresponds with the quasi-static discrete load spectra satisfies the safety requirements of bogie frames.
Rigid Facial Motion Influences Featural, But Not Holistic, Face Processing
Xiao, Naiqi; Quinn, Paul C.; Ge, Liezhong; Lee, Kang
2012-01-01
We report three experiments in which we investigated the effect of rigid facial motion on face processing. Specifically, we used the face composite effect to examine whether rigid facial motion influences primarily featural or holistic processing of faces. In Experiments 1, 2, and 3, participants were first familiarized with dynamic displays in which a target face turned from one side to another; then at test, participants judged whether the top half of a composite face (the top half of the target face aligned or misaligned with the bottom half of a foil face) belonged to the target face. We compared performance in the dynamic condition to various static control conditions in Experiments 1, 2, and 3, which differed from each other in terms of the display order of the multiple static images or the inter stimulus interval (ISI) between the images. We found that the size of the face composite effect in the dynamic condition was significantly smaller than that in the static conditions. In other words, the dynamic face display influenced participants to process the target faces in a part-based manner and consequently their recognition of the upper portion of the composite face at test became less interfered with by the aligned lower part of the foil face. The findings from the present experiments provide the strongest evidence to date to suggest that the rigid facial motion mainly influences facial featural, but not holistic, processing. PMID:22342561
Reichardt, Anne; Polchow, Bianca; Shakibaei, Mehdi; Henrich, Wolfgang; Hetzer, Roland; Lueders, Cora
2013-01-01
Widespread use of human umbilical cord cells for cardiovascular tissue engineering requires production of large numbers of well-characterized cells under controlled conditions. In current research projects, the expansion of cells to be used to create a tissue construct is usually performed in static cell culture systems which are, however, often not satisfactory due to limitations in nutrient and oxygen supply. To overcome these limitations dynamic cell expansion in bioreactor systems under controllable conditions could be an important tool providing continuous perfusion for the generation of large numbers of viable pre-conditioned cells in a short time period. For this purpose cells derived from human umbilical cord arteries were expanded in a rotating bed system bioreactor for up to 9 days. For a comparative study, cells were cultivated under static conditions in standard culture devices. Our results demonstrated that the microenvironment in the perfusion bioreactor was more favorable than that of the standard cell culture flasks. Data suggested that cells in the bioreactor expanded 39 fold (38.7 ± 6.1 fold) in comparison to statically cultured cells (31.8 ± 3.0 fold). Large-scale production of cells in the bioreactor resulted in more than 3 x 108 cells from a single umbilical cord fragment within 9 days. Furthermore cell doubling time was lower in the bioreactor system and production of extracellular matrix components was higher. With this study, we present an appropriate method to expand human umbilical cord artery derived cells with high cellular proliferation rates in a well-defined bioreactor system under GMP conditions. PMID:23847691
Onset of frictional sliding of rubber–glass contact under dry and lubricated conditions
Tuononen, Ari J.
2016-01-01
Rubber friction is critical in many applications ranging from automotive tyres to cylinder seals. The process where a static rubber sample transitions to frictional sliding is particularly poorly understood. The experimental and simulation results in this paper show a completely different detachment process from the static situation to sliding motion under dry and lubricated conditions. The results underline the contribution of the rubber bulk properties to the static friction force. In fact, simple Amontons’ law is sufficient as a local friction law to produce the correct detachment pattern when the rubber material and loading conditions are modelled properly. Simulations show that micro-sliding due to vertical loading can release initial shear stresses and lead to a high static/dynamic friction coefficient ratio, as observed in the measurements. PMID:27291939
Experiment/Analytical Characterization of the RBCC Rocket-Ejector Mode
NASA Technical Reports Server (NTRS)
Ruf, J. H.; Lehman, M.; Pal, S.; Santoro, R. J.; West, J.; Turner, James E. (Technical Monitor)
2000-01-01
Experimental and complementary CFD results from the study of the rocket-ejector mode of a Rocket Based Combined Cycle (RBCC) engine are presented and discussed. The experiments involved systematic flowfield measurements in a two-dimensional, variable geometry rocket-ejector system. The rocket-ejector system utilizes a single two-dimensional, gaseous oxygen/gaseous hydrogen rocket as the ejector. To gain a thorough understanding of the rocket-ejector's internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static configurations for a range of rocket operating conditions. Overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust, whereas detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (oxygen, hydrogen, nitrogen and water vapor). The experimental results for both the direct-connect and sea-level static configurations are compared with CFD predictions of the flowfield.
Magnetically targeted delivery through cartilage
NASA Astrophysics Data System (ADS)
Jafari, Sahar; Mair, Lamar O.; Chowdhury, Sagar; Nacev, Alek; Hilaman, Ryan; Stepanov, Pavel; Baker-McKee, James; Ijanaten, Said; Koudelka, Christian; English, Bradley; Malik, Pulkit; Weinberg, Irving N.
2018-05-01
In this study, we have invented a method of delivering drugs deep into articular cartilage with shaped dynamic magnetic fields acting on small metallic magnetic nanoparticles with polyethylene glycol coating and average diameter of 30 nm. It was shown that transport of magnetic nanoparticles through the entire thickness of bovine articular cartilage can be controlled by a combined alternating magnetic field at 100 Hz frequency and static magnetic field of 0.8 tesla (T) generated by 1" dia. x 2" thick permanent magnet. Magnetic nanoparticles transport through bovine articular cartilage samples was investigated at various settings of magnetic field and time durations. Combined application of an alternating magnetic field and the static field gradient resulted in a nearly 50 times increase in magnetic nanoparticles transport in bovine articular cartilage tissue as compared with static field conditions. This method can be applied to locally deliver therapeutic-loaded magnetic nanoparticles deep into articular cartilage to prevent cartilage degeneration and promote cartilage repair in osteoarthritis.
Comparison of Self-Prompting of Cooking Skills via Picture-Based Cookbooks and Video Recipes
ERIC Educational Resources Information Center
Mechling, Linda C.; Stephens, Erin
2009-01-01
This investigation compared the use of static picture prompting, in a cookbook format, and video prompting to self-prompt four students with moderate intellectual disabilities to independently complete multi-step cooking tasks. An adapted alternating treatments design (AATD) with baseline, alternating treatments, and final treatment condition, was…
Visual and Ocular Control Anomalies in Relation to Reading Difficulty.
ERIC Educational Resources Information Center
Bedwell, C. H.; And Others
1980-01-01
The visual behavior under both static and dynamic viewing conditions was examined in a group of 13-year-old successful readers, compared with a group of the same age retarded in reading. Research supports the notion that problems of dynamic binocular vision and control while reading are important. (Author/KC)
ERIC Educational Resources Information Center
Lim, Yi Huey; Partridge, Katie; Girdler, Sonya; Morris, Susan L.
2017-01-01
Impairments in postural control affect the development of motor and social skills in individuals with autism spectrum disorder (ASD). This review compared the effect of different sensory conditions on static standing postural control between ASD and neurotypical individuals. Results from 19 studies indicated a large difference in postural control…
Reactance, Restoration, and Cognitive Structure: Comparative Statics
ERIC Educational Resources Information Center
Bessarabova, Elena; Fink, Edward L.; Turner, Monique
2013-01-01
This study (N = 143) examined the effects of freedom threat on cognitive structures, using recycling as its topic. The results of a 2(Freedom Threat: low vs. high) x 2(Postscript: restoration vs. filler) plus 1(Control) experiment indicated that, relative to the control condition, high freedom threat created a boomerang effect for the targeted…
The Effect of Adaptive Nonlinear Frequency Compression on Phoneme Perception.
Glista, Danielle; Hawkins, Marianne; Bohnert, Andrea; Rehmann, Julia; Wolfe, Jace; Scollie, Susan
2017-12-12
This study implemented a fitting method, developed for use with frequency lowering hearing aids, across multiple testing sites, participants, and hearing aid conditions to evaluate speech perception with a novel type of frequency lowering. A total of 8 participants, including children and young adults, participated in real-world hearing aid trials. A blinded crossover design, including posttrial withdrawal testing, was used to assess aided phoneme perception. The hearing aid conditions included adaptive nonlinear frequency compression (NFC), static NFC, and conventional processing. Enabling either adaptive NFC or static NFC improved group-level detection and recognition results for some high-frequency phonemes, when compared with conventional processing. Mean results for the distinction component of the Phoneme Perception Test (Schmitt, Winkler, Boretzki, & Holube, 2016) were similar to those obtained with conventional processing. Findings suggest that both types of NFC tested in this study provided a similar amount of speech perception benefit, when compared with group-level performance with conventional hearing aid technology. Individual-level results are presented with discussion around patterns of results that differ from the group average.
Li, Da-Peng; Huang, Yong; Yuan, Yan; Fan, Cheng-Xin
2011-01-01
The mechanisms of phosphorus (P) adsorption and immobility were investigated in laboratory experiments. The sediments and waters used were taken from an inner-city heavily polluted canal. Addition of KH2PO4 into the operated experimental units, with and without (i.e., static) intermittent sediment resuspension, were made similar to the external P input and carried out periodically. The results show that the amount of the accumulative P adsorption onto the sediments was up to 363.4 mg x kg(-1) under the conditions of sediment disturbance over a 39-day period, and it was evidently higher than that (213.2 mg x kg(-1)) under static conditions. Sequential fractionation indicated that most of the incorporated P was accounted for in the Fe/Al-P. There were over 61% in the case of intermittent sediment disturbance and up to 83% in the case of static conditions. Based on the bioavailability of Fe/Al-P, 40.6% of the incorporated P was accounted for in non-occluded Fe/Al-P of the sediments under intermittent sediment disturbance conditions. This value increased to 59.5% under static conditions. In addition, more than 23% of the incorporated P was accounted for in HCl-P of the sediments under intermittent sediment disturbance conditions, on the other hand, the concentration of HCl-P kept relatively constant under static conditions. After 39 d of P adsorption by the both sediments, the values of the maximum sorption capacity (S(max)) decreased,while zero equilibrium P concentration (EPC0) and P saturation P(%) increased. However, the extent of EPC0 and P% under intermittent sediment disturbance conditions was obviously lower than that under static conditions. It was hopefully suggested that intermittent sediment disturbance can not only accelerate the P adsorption but also enhance the P retention by sediments.
Delta wing vortex manipulation using pulsed and steady blowing during ramp pitching
NASA Technical Reports Server (NTRS)
Moreira, J.; Johari, H.
1995-01-01
The effectiveness of steady and pulsed blowing as a method of controlling delta wing vortices during ramp pitching has been investigated in flow visualization experiments conducted in a water tunnel. The recessed angled spanwise blowing technique was utilized for vortex manipulation. This technique was implemented on a beveled 60 delta wing using a pair of blowing ports located beneath the vortex core at 40% chord. The flow was injected primarily in the spanwise direction but was also composed of a component normal to the wing surface. The location of vortex burst was measured as a function of blowing intensity and pulsing frequency under static conditions, and the optimum blowing case was applied at three different wing pitching rates. Experimental results have shown that, when the burst location is upstream of the blowing port, pulsed blowing delays vortex breakdown in static and dynamic cases. Dynamic tests verified the existence of a hysteresis effect and demonstrated the improvements offered by pulsed blowing over both steady blowing and no-blowing scenarios. The application of blowing, at the optimum pulsing frequency, made the vortex breakdown location comparable in static and ramp pitch-up conditions.
Bond strength of Bis-GMA and glass ionomer pit and fissure sealants using cyclic fatigue.
Dewji, H R; Drummond, J L; Fadavi, S; Punwani, I
1998-02-01
The aim of the study was to determine the bond strength of glass ionomer and resin-modified glass ionomer sealants compared to Bis-GMA sealants using both static and cyclic fatigue shear testing. Four materials were evaluated: D, a Bis-GMA sealant with 10% phosphoric acid etchant; FC, a resin-modified glass ionomer sealant with 20% polyacrylic acid etchant; FD, a resin-modified glass ionomer sealant with 10% polyacrylic acid etchant; and FSC, a self-cured glass ionomer sealant with no etchant. Gelatin capsules filled with the sealant material were bonded to the enamel surfaces of bovine teeth after appropriate surface conditioning and then tested in shear static and cyclic fatigue. Static and cyclic shear bond strengths, respectively, for each group were (MPa): FC: 21.1+/-2.8 and 17.1+/-3.1; FD: 14.6+/-5.9 and 8.5+/-3.1; D: 10.8+/-4.9 and 4.7+/-2.6; FSC: 8.7 (1.0 and 2.9+/-0.6. The resin-modified glass ionomer sealants had better fatigue bond strength than both Bis-GMA and self-cured glass ionomer sealants with the surface conditioning affecting the bond strength of the resin-modified glass ionomer sealants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattarai, Bishnu P.; Gentle, Jake P.; Hill, Porter
Abstract—Overhead transmission lines (TLs) are conventionally given seasonal ratings based on conservative environmental assumptions. Such an approach often results in underutilization of the line ampacity as the worst conditions prevail only for a short period over a year/season. We presents dynamic line rating (DLR) as an enabling smart grid technology that adaptively computes ratings of TLs based on local weather conditions to utilize additional headroom of existing lines. In particular, general line ampacity state solver utilizes measured weather data for computing the real-time thermal rating of the TLs. The performance of the presented method is demonstrated from a field studymore » of DLR technology implementation on four TL segments at AltaLink, Canada. The performance is evaluated and quantified by comparing the existing static and proposed dynamic line ratings, and the potential benefits of DLR for enhanced transmission assets utilization. For the given line segments, the proposed DLR results in real-time ratings above the seasonal static ratings for most of the time; up to 95.1% of the time, with a mean increase of 72% over static rating.« less
Olusanmi, D; Roberts, K J; Ghadiri, M; Ding, Y
2011-06-15
The influence of crystallographic structural anisotropy on the breakage behaviour of Aspirin under impact loading is highlighted. Under both quasi-static testing conditions, using nano-indentation, and dynamic impact tests, Aspirin demonstrates clear anisotropy in its slip and fracture behaviour. During nano-indentation on the (100) and (001) faces, cracks were propagated along the [010] direction. While the hardness was found to be comparatively similar for both these faces, it was observed that slip due to plastic deformation occurred more readily on the (100) than the (001) crystal planes suggesting the former as the preferred slip plane. Furthermore, the fracture toughness on the (001) planes was found to be distinctly lower than that of the (100) planes, indicating the former as the preferred cleavage plane. Observations of the crystal morphology of damaged particles after dynamic impact testing showed that both the chipping and fragmentation of Aspirin mostly occurred via cleavage in a manner consistent with the observed fracture behaviour following nano-indentation. This work highlights the importance of cleavage as a dominant factor underpinning the fracture mechanism of Aspirin under both quasi-static and impact loading conditions. Copyright © 2011 Elsevier B.V. All rights reserved.
Technical Evaluation Motor no. 5 (TEM-5)
NASA Technical Reports Server (NTRS)
Cook, M.
1990-01-01
Technical Evaluation Motor No. 5 (TEM-5) was static test fired at the Thiokol Corporation Static Test Bay T-97. TEM-5 was a full scale, full duration static test fire of a high performance motor (HPM) configuration solid rocket motor (SRM). The primary purpose of TEM static tests is to recover SRM case and nozzle hardware for use in the redesigned solid rocket motor (RSRM) flight program. Inspection and instrumentation data indicate that the TEM-5 static test firing was successful. The ambient temperature during the test was 41 F and the propellant mean bulk temperature (PMBT) was 72 F. Ballistics performance values were within the specified requirements. The overall performance of the TEM-5 components and test equipment was nominal. Dissembly inspection revealed that joint putty was in contact with the inner groove of the inner primary seal of the ignitor adapter-to-forward dome (inner) joint gasket; this condition had not occurred on any previous static test motor or flight RSRM. While no qualification issues were addressed on TEM-5, two significant component changes were evaluated. Those changes were a new vented assembly process for the case-to-nozzle joint and the installation of two redesigned field joint protection systems. Performance of the vented case-to-nozzle joint assembly was successful, and the assembly/performance differences between the two field joint protection system (FJPS) configurations were compared.
Mori, Koichiro
2009-02-01
The purpose of this short article is to set static and dynamic models for optimal floodplain management and to compare policy implications from the models. River floodplains are important multiple resources in that they provide various ecosystem services. It is fundamentally significant to consider environmental externalities that accrue from ecosystem services of natural floodplains. There is an interesting gap between static and dynamic models about policy implications for floodplain management, although they are based on the same assumptions. Essentially, we can derive the same optimal conditions, which imply that the marginal benefits must equal the sum of the marginal costs and the social external costs related to ecosystem services. Thus, we have to internalise the external costs by market-based policies. In this respect, market-based policies seem to be effective in a static model. However, they are not sufficient in the context of a dynamic model because the optimal steady state turns out to be unstable. Based on a dynamic model, we need more coercive regulation policies.
Intercepting a sound without vision
Vercillo, Tiziana; Tonelli, Alessia; Gori, Monica
2017-01-01
Visual information is extremely important to generate internal spatial representations. In the auditory modality, the absence of visual cues during early infancy does not preclude the development of some spatial strategies. However, specific spatial abilities might result impaired. In the current study, we investigated the effect of early visual deprivation on the ability to localize static and moving auditory stimuli by comparing sighted and early blind individuals’ performance in different spatial tasks. We also examined perceptual stability in the two groups of participants by matching localization accuracy in a static and a dynamic head condition that involved rotational head movements. Sighted participants accurately localized static and moving sounds. Their localization ability remained unchanged after rotational movements of the head. Conversely, blind participants showed a leftward bias during the localization of static sounds and a little bias for moving sounds. Moreover, head movements induced a significant bias in the direction of head motion during the localization of moving sounds. These results suggest that internal spatial representations might be body-centered in blind individuals and that in sighted people the availability of visual cues during early infancy may affect sensory-motor interactions. PMID:28481939
Dynamic electrical response of solar cells
NASA Technical Reports Server (NTRS)
Catani, J. P.
1981-01-01
The dynamic response of a solar generator is of primary importance as much for the design and development of electrical power conditioning hardware as for the analysis of electromagnetic compatibility. A mathematical model of photo-batteries was developed on the basis of impedance measurements performed under differing conditions of temperature, light intensity, before and after irradiation. This model was compared with that derived from PN junction theory and to static measurements. These dynamic measurements enabled the refinement of an integration method capable of determining, under normal laboratory conditions, the dynamic response of a generator to operational lighting conditions.
Analytical solutions for the profile of two-dimensional droplets with finite-length precursor films
NASA Astrophysics Data System (ADS)
Perazzo, Carlos Alberto; Mac Intyre, J. R.; Gomba, J. M.
2017-12-01
By means of the lubrication approximation we obtain the full family of static bidimensional profiles of a liquid resting on a substrate under partial-wetting conditions imposed by a disjoining-conjoining pressure. We show that for a set of quite general disjoining-conjoining pressure potentials, the free surface can adopt only five nontrivial static patterns; in particular, we find solutions when the height goes to zero which describe satisfactorily the complete free surface for a finite amount of fluid deposited on a substrate. To test the extension of the applicability of our solutions, we compare them with those obtained when the lubrication approximations are not employed and under conditions where the lubrication hypothesis are not strictly valid, and also with axisymmetric solutions. For a given disjoining-conjoining potential, we report a new analytical solution that accounts for all the five possible solutions.
A study on task difficulty and acceleration stress
NASA Technical Reports Server (NTRS)
Repperger, D. W.; Rogers, D. B.
1981-01-01
The results of two experiments which relate to task difficulty and the effects of environmental stress on tracking performance are discussed and compared to subjective evaluations. The first experiment involved five different sum of sine tracking tasks which humans tracked both in a static condition and under a 5 Gz acceleration stress condition. The second experiment involved similar environmental stress conditions but in this case the tasks were constructed from deterministic functions with specially designed velocity and acceleration profiles. Phase Plane performance analysis was conducted to study potential measures of workload or tracking difficulty.
NASA Technical Reports Server (NTRS)
Knott, P. R.; Blozy, J. T.; Staid, P. S.
1981-01-01
The results of model scale parametric static and wind tunnel aerodynamic performance tests on unsuppressed coannular plug nozzle configurations with inverted velocity profile are discussed. The nozzle configurations are high-radius-ratio coannular plug nozzles applicable to dual-stream exhaust systems typical of a variable cycle engine for Advanced Supersonic Transport application. In all, seven acoustic models and eight aerodynamic performance models were tested. The nozzle geometric variables included outer stream radius ratio, inner stream to outer stream ratio, and inner stream plug shape. When compared to a conical nozzle at the same specific thrust, the results of the static acoustic tests with the coannular nozzles showed noise reductions of up to 7 PNdB. Extensive data analysis showed that the overall acoustic results can be well correlated using the mixed stream velocity and the mixed stream density. Results also showed that suppression levels are geometry and flow regulation dependent with the outer stream radius ratio, inner stream-to-outer stream velocity ratio and inner stream velocity ratio and inner stream plug shape, as the primary suppression parameters. In addition, high-radius ratio coannular plug nozzles were found to yield shock associated noise level reductions relative to a conical nozzle. The wind tunnel aerodynamic tests showed that static and simulated flight thrust coefficient at typical takeoff conditions are quite good - up to 0.98 at static conditions and 0.974 at a takeoff Mach number of 0.36. At low inner stream flow conditions significant thrust loss was observed. Using an inner stream conical plug resulted in 1% to 2% higher performance levels than nozzle geometries using a bent inner plug.
Benoit, Michael; Klaus, David
2005-01-01
Space flight has been shown to affect various bacterial growth parameters. It is proposed that weightlessness allows the cells to remain evenly distributed, consequently altering the chemical makeup of their surrounding fluid, and hence indirectly affecting their physiological behaviour. In support of this argument, ground-based studies using clinostats to partially simulate the quiescent environment attained in microgravity have generally been successful in producing bacterial growth characteristics that mimic responses reported under actual space conditions. A novel approach for evaluating the effects of reduced cell sedimentation is presented here through use of Escherichia coli cultures genetically modified to be neutrally buoyant. Since clinorotation would not (or would only minimally) affect cell distribution of this already near-colloidal cell system, it was hypothesized that the effects on final population density would be eliminated relative to a static control. Gas-vesicle-producing E. coli cultures were grown under clinostat and static conditions and the culture densities at 60 h were compared. As a control, E. coli that do not produce gas vesicles, but were otherwise identical to the experimental strain, were also grown under clinostat and static conditions. As hypothesized, no significant difference was observed in cell populations at 60 h between the clinorotated and static gas-vesicle-producing E. coli cultures, while the cells that did not produce gas vesicles showed a mean increase in population density of 10.5 % (P = 0.001). These results further suggest that the lack of cumulative cell sedimentation is the dominant effect of space flight on non-stirred, in vitro E. coli cultures.
Optical properties of materials at low temperature and their application to optical detection
NASA Technical Reports Server (NTRS)
Hartwig, W. H.; Tarchi, A. A.
1972-01-01
A lumped model to represent the photodielectric effect is developed. An analog simulation for a sample in a microwave cavity with a static magnetic field is developed. A system to measure continuously the PDE is analyzed. A performance factor to compared PD detectors versus ac photoconductors is computed. The operating conditions are defined for the appropriate noise conditions. The detectivity of the detector is found to be limited by the semiconductor sample noise.
The Neglect of Monotone Comparative Statics Methods
ERIC Educational Resources Information Center
Tremblay, Carol Horton; Tremblay, Victor J.
2010-01-01
Monotone methods enable comparative static analysis without the restrictive assumptions of the implicit-function theorem. Ease of use and flexibility in solving comparative static and game-theory problems have made monotone methods popular in the economics literature and in graduate courses, but they are still absent from undergraduate…
Guianvarc'h, Cécile; Gavioso, Roberto M; Benedetto, Giuliana; Pitre, Laurent; Bruneau, Michel
2009-07-01
Condenser microphones are more commonly used and have been extensively modeled and characterized in air at ambient temperature and static pressure. However, several applications of interest for metrology and physical acoustics require to use these transducers in significantly different environmental conditions. Particularly, the extremely accurate determination of the speed of sound in monoatomic gases, which is pursued for a determination of the Boltzmann constant k by an acoustic method, entails the use of condenser microphones mounted within a spherical cavity, over a wide range of static pressures, at the temperature of the triple point of water (273.16 K). To further increase the accuracy achievable in this application, the microphone frequency response and its acoustic input impedance need to be precisely determined over the same static pressure and temperature range. Few previous works examined the influence of static pressure, temperature, and gas composition on the microphone's sensitivity. In this work, the results of relative calibrations of 1/4 in. condenser microphones obtained using an electrostatic actuator technique are presented. The calibrations are performed in pure helium and argon gas at temperatures near 273 K and in the pressure range between 10 and 600 kPa. These experimental results are compared with the predictions of a realistic model available in the literature, finding a remarkable good agreement. The model provides an estimate of the acoustic impedance of 1/4 in. condenser microphones as a function of frequency and static pressure and is used to calculate the corresponding frequency perturbations induced on the normal modes of a spherical cavity when this is filled with helium or argon gas.
Effects of borate-based bioactive glass on neuron viability and neurite extension.
Marquardt, Laura M; Day, Delbert; Sakiyama-Elbert, Shelly E; Harkins, Amy B
2014-08-01
Bioactive glasses have recently been shown to promote regeneration of soft tissues by positively influencing tissue remodeling during wound healing. We were interested to determine whether bioactive glasses have the potential for use in the treatment of peripheral nerve injury. In these experiments, degradable bioactive borate glass was fabricated into rods and microfibers. To study the compatibility with neurons, embryonic chick dorsal root ganglia (DRG) were cultured with different forms of bioactive borate glass. Cell viability was measured with no media exchange (static condition) or routine media exchange (transient condition). Neurite extension was measured within fibrin scaffolds with embedded glass microfibers or aligned rod sheets. Mixed cultures of neurons, glia, and fibroblasts growing in static conditions with glass rods and microfibers resulted in decreased cell viability. However, the percentage of neurons compared with all cell types increased by the end of the culture protocol compared with culture without glass. Furthermore, bioactive glass and fibrin composite scaffolds promoted neurite extension similar to that of control fibrin scaffolds, suggesting that glass does not have a significant detrimental effect on neuronal health. Aligned glass scaffolds guided neurite extension in an oriented manner. Together these findings suggest that bioactive glass can provide alignment to support directed axon growth. © 2013 Wiley Periodicals, Inc.
Culture of C3A cells in alginate beads for fluidized bed bioartificial liver.
Kinasiewicz, A; Gautier, A; Lewinska, D; Bukowski, J; Legallais, C; Weryński, A
2007-11-01
Extracorporeal bioartificial liver has been designed to sustain the detoxification and synthetic function of the failed liver in patients suffering from acute liver failure until the time of liver allotransplantation or regeneration of their own. A fluidized bed, bioartificial liver improves the mass transfer velocity between the medium and the hepatocytes. Detoxification functions of the liver could be replaced by completely artificial systems, but the synthetic functions of hepatocytes may be obtained only by metabolically active cells. The aim of our study was to investigate the influence of C3A cell culture in alginate beads on synthetic function in a fluidized bed, bioartificial liver. Cells in alginate beads were prepared using an electrostatic droplet generator of our own design using low-viscosity alginate. Beads were cultured for 24 hours then 7 days in static conditions and then 24 hours of fluidization in the bioreactor to assess albumin production. We observed significantly increased albumin production by C3A cells entrapped in alginate beads during static culture. Fluidization increased albumin production compared with static culture. Fluidization performed after 7 days of static culture resulted in a significant increase in albumin synthesis. In conclusion, static culture of alginate beads hosting hepatic cells facilitates restoration of cell function.
NASA Astrophysics Data System (ADS)
Zhang, Ye; Wu, Honglu
2012-07-01
RESPONSE OF HUMAN PROSTATE CANCER CELLS TO MITOXANTRONE TREATMENT IN SIMULATED MICROGRAVITY ENVIRONMENT Ye Zhang1,2, Christopher Edwards3, and Honglu Wu1 1 NASA-Johnson Space Center, Houston, TX 2 Wyle Integrated Science and Engineering Group, Houston, TX 3 Oregon State University, Corvallis, OR This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of an antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to the treatment of drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulations of cells in response to antineoplastic agents, we cultured LNCaP cells in either a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as control, and treated the cells with mitoxantrone. Cell growth, as well as expressions of oxidative stress related genes, were analyzed after the drug treatment. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not present significant differences in cell viability, growth rate, or cell cycle distribution. However, after mitoxantrone treatment, a significant proportion of bioreactor cultured cells became apoptotic or was arrested in G2. Several oxidative stress related genes also showed a higher expression level post mitoxantrone treatment. Our results indicate that simulated microgravity may alter the response of LNCaP cells to mitoxantrone treatment. Understanding the mechanisms by which cells respond to drugs differently in an altered gravity environment will be useful for the improvement of cancer treatment on the ground. This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of an antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to the treatment of drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulations of cells in response to antineoplastic agents, we cultured LNCaP cells in either a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as control, and treated the cells with mitoxantrone. Cell growth, as well as expressions of oxidative stress related genes, were analyzed after the drug treatment. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not present significant differences in cell viability, growth rate, or cell cycle distribution. However, after mitoxantrone treatment, a significant proportion of bioreactor cultured cells became apoptotic or was arrested in G2. Several oxidative stress related genes also showed a higher expression level post mitoxantrone treatment. Our results indicate that simulated microgravity may alter the response of LNCaP cells to mitoxantrone treatment. Understanding the mechanisms by which cells respond to drugs differently in an altered gravity environment will be useful for the improvement of cancer treatment on the ground.
NASA Astrophysics Data System (ADS)
Nicolas, Yves; Paques, Marcel; Knaebel, Alexandra; Steyer, Alain; Munch, Jean-Pierre; Blijdenstein, Theo B. J.; van Aken, George A.
2003-08-01
An oscillatory shear configuration was developed to improve understanding of structural evolution during deformation. It combines an inverted confocal scanning laser microscope (CSLM) and a special sample holder that can apply to the sample specific deformation: oscillatory shear or steady strain. In this configuration, a zero-velocity plane is created in the sample by moving two plates in opposite directions, thereby providing stable observation conditions of the structural behavior under deformation. The configuration also includes diffusion wave spectroscopy (DWS) to monitor the network properties via particle mobility under static and dynamic conditions. CSLM and DWS can be performed simultaneously and three-dimensional images can be obtained under static conditions. This configuration is mainly used to study mechanistic phenomena like particle interaction, aggregation, gelation and network disintegration, interactions at interfaces under static and dynamic conditions in semisolid food materials (desserts, dressings, sauces, dairy products) and in nonfood materials (mineral emulsions, etc.). Preliminary data obtained with this new oscillatory shear configuration are described that demonstrate their capabilities and the potential contribution to other areas of application also.
Martian Atmospheric Pressure Static Charge Elimination Tool
NASA Technical Reports Server (NTRS)
Johansen, Michael R.
2014-01-01
A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.
Cazzoli, Dario; Hopfner, Simone; Preisig, Basil; Zito, Giuseppe; Vanbellingen, Tim; Jäger, Michael; Nef, Tobias; Mosimann, Urs; Bohlhalter, Stephan; Müri, René M; Nyffeler, Thomas
2016-11-01
An impairment of the spatial deployment of visual attention during exploration of static (i.e., motionless) stimuli is a common finding after an acute, right-hemispheric stroke. However, less is known about how these deficits: (a) are modulated through naturalistic motion (i.e., without directional, specific spatial features); and, (b) evolve in the subacute/chronic post-stroke phase. In the present study, we investigated free visual exploration in three patient groups with subacute/chronic right-hemispheric stroke and in healthy subjects. The first group included patients with left visual neglect and a left visual field defect (VFD), the second patients with a left VFD but no neglect, and the third patients without neglect or VFD. Eye movements were measured in all participants while they freely explored a traffic scene without (static condition) and with (dynamic condition) naturalistic motion, i.e., cars moving from the right or left. In the static condition, all patient groups showed similar deployment of visual exploration (i.e., as measured by the cumulative fixation duration) as compared to healthy subjects, suggesting that recovery processes took place, with normal spatial allocation of attention. However, the more demanding dynamic condition with moving cars elicited different re-distribution patterns of visual attention, quite similar to those typically observed in acute stroke. Neglect patients with VFD showed a significant decrease of visual exploration in the contralesional space, whereas patients with VFD but no neglect showed a significant increase of visual exploration in the contralesional space. No differences, as compared to healthy subjects, were found in patients without neglect or VFD. These results suggest that naturalistic motion, without directional, specific spatial features, may critically influence the spatial distribution of visual attention in subacute/chronic stroke patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Friction testing of a new ligature
NASA Astrophysics Data System (ADS)
Mantel, Alison R.
Objective. To determine if American Orthodontics' (AO) new, experimental ligature demonstrates less friction in vitro when compared to four other ligatures on the market. Methods. Four brackets were mounted on a custom metal fixture allowing an 0.018-in stainless steel wire attached to an opposite fixture with one bracket to be passively centered in the bracket slot. The wire was ligated to the bracket using one of five types of ligatures including the low friction test ligatures (AO), conventional ligatures (AO), Sili-Ties(TM) Silicone Infused Ties (GAC), SynergyRTM Low-Friction Ligatures (RMO), and SuperSlick ligatures (TP Orthodontics). Resistance to sliding was measured over a 7 mm sliding distance using a universal testing machine (Instron) with a 50 Newton load cell and a crosshead speed of 5 mm/min. The initial resistance to sliding (static) was determined by the peak force needed to initiate movement and the kinetic resistance to sliding was taken as the force at 5 mm of wire/bracket sliding. Fifteen unique tests were run for each ligature group in both dry and wet (saliva soaked for 24 hours with one drop prior to testing) conditions. Results. In the dry state, the SuperSlick ligature demonstrated more static friction than all of the other ligatures, while SuperSlick and Sili-Ties demonstrated more kinetic friction than the AO conventional, AO experimental and Synergy ligatures. In the wet condition, SuperSlick and the AO experimental ligature demonstrated the least static friction, followed by the AO conventional and Sili-Ties. The most static friction was observed with the Synergy ligatures. In the wet condition, the SuperSlick, AO experimental and AO conventional exhibited less kinetic friction than the Sili-Ties and Synergy ligatures. Conclusions. AO's experimental ligature exhibits less friction in the wet state than conventional ligatures, Sili-Ties and Synergy and is comparable to the SuperSlick ligature. These preliminary results suggest that the AO experimental ligature and the SuperSlick ligature create less friction, but direct conclusions regarding in vivo performance cannot be made and randomized controlled clinical trials are needed to determine if these ligatures have clinical significance in treatment efficiency.
Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics
NASA Technical Reports Server (NTRS)
Ericsson, L. E.; Reding, J. P.
1988-01-01
Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.
Wu, Wei; Le, Andrew V.; Mendez, Julio J.; Chang, Julie; Niklason, Laura E.
2015-01-01
Adipose-derived mesenchymal cells (ACs) and bone marrow-derived mesenchymal cells (BMCs) have been widely used for bone regeneration and can be seeded on a variety of rigid scaffolds. However, to date, a direct comparison of mesenchymal cells (MC) harvested from different tissues from the same donor and cultured in identical osteogenic conditions has not been investigated. Indeed, it is unclear whether marrow-derived or fat-derived MC possess intrinsic differences in bone-forming capabilities, since within-patient comparisons have not been previously done. This study aims at comparing ACs and BMCs from three donors ranging in age from neonatal to adult. Matched cells from each donor were studied in three distinct bioreactor settings, to determine the best method to create a viable osseous engineered construct. Human ACs and BMCs were isolated from each donor, cultured, and seeded on decellularized porcine bone (DCB) constructs. The constructs were then subjected to either static or dynamic (stirring or perfusion) bioreactor culture conditions for 7–21 days. Afterward, the constructs were analyzed for cell adhesion and distribution and osteogenic differentiation. ACs demonstrated higher seeding efficiency than BMCs. However, static and dynamic culture significantly increased BMCs proliferation more than ACs. In all conditions, BMCs demonstrated stronger osteogenic activity as compared with ACs, through higher alkaline phosphatase activity and gene expression for various bony markers. Conversely, ACs expressed more collagen I, which is a nonspecific matrix molecule in most connective tissues. Overall, dynamic bioreactor culture conditions enhanced osteogenic gene expression in both ACs and BMCs. Scaffolds seeded with BMCs in dynamic stirring culture conditions exhibit the greatest osteogenic proliferation and function in vitro, proving that marrow-derived MC have superior bone-forming potential as compared with adipose-derived cells. PMID:25668104
Modeling human perception of orientation in altered gravity
Clark, Torin K.; Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.
2015-01-01
Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments. PMID:25999822
A refined analysis of composite laminates. [theory of statics and dynamics
NASA Technical Reports Server (NTRS)
Srinivas, S.
1973-01-01
The purpose of this paper is to develop a sufficiently accurate analysis, which is much simpler than exact three-dimensional analysis, for statics and dynamics of composite laminates. The governing differential equations and boundary conditions are derived by following a variational approach. The displacements are assumed piecewise linear across the thickness and the effects of transverse shear deformations and rotary inertia are included. A procedure for obtaining the general solution of the above governing differential equations in the form of hyperbolic-trigonometric series is given. The accuracy of the present theory is assessed by obtaining results for free vibrations and flexure of simply supported rectangular laminates and comparing them with results from exact three-dimensional analysis.
NASA Technical Reports Server (NTRS)
Viegas, John R.; Rubesin, Morris W.
1991-01-01
Several recently published compressibility corrections to the standard k-epsilon turbulence model are used with the Navier-Stokes equations to compute the mixing region of a large variety of high speed flows. These corrections, specifically developed to address the weakness of higher order turbulence models to accurately predict the spread rate of compressible free shear flows, are applied to two stream flows of the same gas mixing under a large variety of free stream conditions. Results are presented for two types of flows: unconfined streams with either (1) matched total temperatures and static pressures, or (2) matched static temperatures and pressures, and a confined stream.
Experimental study on vertical static stiffnesses of polycal wire rope isolators
NASA Astrophysics Data System (ADS)
Balaji, P. S.; Moussa, Leblouba; Khandoker, Noman; Yuk Shyh, Ting; Rahman, M. E.; Hieng Ho, Lau
2017-07-01
Wire rope isolator is one of the most effective isolation system that can be used to attenuate the vibration disturbances and shocks during the operation of machineries. This paper presents the results of investigation on static elastic stiffnesses (both in tension and in compression) of Polycal Wire Rope Isolator (PWRI) under quasi-static monotonic loading conditions. It also studied effect of variations in height and width of PWRI on its static stiffnesses. Suitable experimental setup was designed and manufactured to meet the test conditions. The results show that their elastic stiffnesses for both tension and compression loading conditions are highly influenced by their geometric dimensions. It is found that their compressive stiffness reduced by 55% for an increment of 20% in their height to width ratio. Therefore, the stiffness of PWRI can be fine-tuned by controlling their dimensions according to the requirements of the application.
Thermomechanical Fatigue Damage/Failure Mechanisms in SCS-6/Timetal 21S [0/90](Sub S) Composite
NASA Technical Reports Server (NTRS)
Castelli, Michael G.
1994-01-01
The thermomechanical fatigue (TMF) deformation, damage, and life behaviors of SCS6/Timetal 21S (0/90)s were investigated under zero-tension conditions. In-phase (IP) and out-of-phase (OP) loadings were investigated with a temperature cycle from 150 to 650 deg C. An advanced TMF test technique was used to quantify mechanically damage progression. The technique incorporated explicit measurements of the macroscopic (1) isothermal static moduli at the temperature extremes of the TMF cycle and (2) coefficient of thermal expansion (CTE) as functions of the TMF cycles. The importance of thermal property degradation and its relevance to accurate post-test data analysis and interpretation is briefly addressed. Extensive fractography and metallography were conducted on specimens from failed and interrupted tests to characterize the extent of damage at the microstructure level. Fatigue life results indicated trends analogous to those established for similar unidirectional(0) reinforced titanium matrix composite systems. High stress IP and mid to low stress OP loading conditions were life-limiting in comparison to maximum temperature isothermal conditions. Dominant damage mechanisms changed with cycle type. Damage resulting from IP TMF conditions produced measurable decreases in static moduli but only minimal changes in the CTE. Metallography on interrupted and failed specimens revealed extensive (0) fiber cracking with sparse matrix damage. No surface initiated matrix cracks were present. Comparable OP TMF conditions initiated environment enhanced surface cracking and matrix cracking initiated at (90) fiber/matrix (F/M) interfaces. Notable static moduli and CTE degradations were measured. Fractography and metallography revealed that the transverse cracks originating from the surface and (90) F/M interfaces tended to converge and coalesce at the (0) fibers.
NASA Technical Reports Server (NTRS)
Kaldschmidt, G.; Syltebo, B. E.; Ting, C. T.
1973-01-01
The results from testing of a 0.3 scale model center duct inlet (S duct) for the Pratt and Whitney Aircraft JT8D-100 engines are presented. The objective of this test was to demonstrate that the required airflow of the JT8D-100 engine (480 lb/sec as compared to 334 lb/sec for JT8D-15) can be achieved with minimum modifications to the existing 727 airplane structure at acceptable levels of total pressure recovery and distortion. Steady-state pressure recovery, steady-state pressure distortion, and dynamic pressure measurements were taken at the engine face station. Surface static pressure measurements were taken along the duct. Test results indicated that the required airflow was achieved with acceptable pressure recovery (comparable to the current 727-200 S duct). Inlet inflow angle variation within the 727 airplane operating regime (minus 5 to 5 degrees) had no effect on the inlet performance. Pressure distortion at static and forward speed at takeoff airflow conditions are within P and WA limits for the Phase II duct when equipped with vortex generators. Static crosswind operation between 10 knots and 25 knots appears feasible at full takeoff power.
Agrawal, Parinita; Pramanik, Krishna; Biswas, Amit; Ku Patra, Ranjan
2018-02-01
Cartilage construct generation includes a scaffold with appropriate composition to mimic matrix of the damaged tissue on which the stem cells grow and differentiate. In this study, umbilical cord blood (UCB) derived human mesenchymal stem cells (hMSCs) were seeded on freeze dried porous silk-fibroin (SF)/chitosan (CS) scaffolds. Influence of static and dynamic (spinner flask bioreactor) culture conditions on the developing cartilage construct were studied by in-vitro characterization for viability, proliferation, distribution, and chondrogenic differentiation of hMSCs over the scaffold. Constructs developed in spinner flask consisted of 62% live cells, and exhibited 543% more cell density at the core than constructs cultured in static system. Quantification of DNA and glycosaminoglycans accumulation after 21 days showed the progression of chondrogenic differentiation of hMSCs was higher in dynamic culture compared to static one. In constructs generated under dynamic condition, histology staining for proteoglycan matrix, and fluorescence staining for collagen-II and aggrecan showed positive correlation between early and late stage chondrogenic markers, which was further confirmed by quantitative PCR analysis, showing low collagen-I expression and highly expressed Sox9, collagen-II and aggrecan. The present study demonstrated that construct generated by combining 3D SF/CS scaffold with UCB-hMSCs under dynamic condition using spinner flask bioreactor can be used for cartilage tissue regeneration for future medical treatments. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 397-407, 2018. © 2017 Wiley Periodicals, Inc.
Lightweight ZERODUR: Validation of Mirror Performance and Mirror Modeling Predictions
NASA Technical Reports Server (NTRS)
Hull, Tony; Stahl, H. Philip; Westerhoff, Thomas; Valente, Martin; Brooks, Thomas; Eng, Ron
2017-01-01
Upcoming spaceborne missions, both moderate and large in scale, require extreme dimensional stability while relying both upon established lightweight mirror materials, and also upon accurate modeling methods to predict performance under varying boundary conditions. We describe tests, recently performed at NASA's XRCF chambers and laboratories in Huntsville Alabama, during which a 1.2 m diameter, f/1.2988% lightweighted SCHOTT lightweighted ZERODUR(TradeMark) mirror was tested for thermal stability under static loads in steps down to 230K. Test results are compared to model predictions, based upon recently published data on ZERODUR(TradeMark). In addition to monitoring the mirror surface for thermal perturbations in XRCF Thermal Vacuum tests, static load gravity deformations have been measured and compared to model predictions. Also the Modal Response(dynamic disturbance) was measured and compared to model. We will discuss the fabrication approach and optomechanical design of the ZERODUR(TradeMark) mirror substrate by SCHOTT, its optical preparation for test by Arizona Optical Systems (AOS). Summarize the outcome of NASA's XRCF tests and model validations
Lightweight ZERODUR®: Validation of mirror performance and mirror modeling predictions
NASA Astrophysics Data System (ADS)
Hull, Anthony B.; Stahl, H. Philip; Westerhoff, Thomas; Valente, Martin; Brooks, Thomas; Eng, Ron
2017-01-01
Upcoming spaceborne missions, both moderate and large in scale, require extreme dimensional stability while relying both upon established lightweight mirror materials, and also upon accurate modeling methods to predict performance under varying boundary conditions. We describe tests, recently performed at NASA’s XRCF chambers and laboratories in Huntsville Alabama, during which a 1.2m diameter, f/1.29 88% lightweighted SCHOTT lightweighted ZERODUR® mirror was tested for thermal stability under static loads in steps down to 230K. Test results are compared to model predictions, based upon recently published data on ZERODUR®. In addition to monitoring the mirror surface for thermal perturbations in XRCF Thermal Vacuum tests, static load gravity deformations have been measured and compared to model predictions. Also the Modal Response (dynamic disturbance) was measured and compared to model. We will discuss the fabrication approach and optomechanical design of the ZERODUR® mirror substrate by SCHOTT, its optical preparation for test by Arizona Optical Systems (AOS), and summarize the outcome of NASA’s XRCF tests and model validations.
NASA Astrophysics Data System (ADS)
Shao, Yuyan; Kou, Rong; Wang, Jun; Viswanathan, Vilayanur V.; Kwak, Ja Hun; Liu, Jun; Wang, Yong; Lin, Yuehe
The understanding of the degradation mechanisms of electrocatalysts is very important for developing durable electrocatalysts for polymer electrolyte membrane (PEM) fuel cells. The degradation of Pt/C electrocatalysts under potential-static holding conditions (at 1.2 V and 1.4 V vs. RHE) and potential step conditions with the upper potential of 1.4 V for 150 s and lower potential limits (0.85 V and 0.60 V) for 30 s in each period [denoted as Pstep(1.4V_150s-0.85V_30s) and Pstep(1.4V_150s-0.60V_30s), respectively] were investigated. The electrocatalysts and support were characterized with electrochemical voltammetry, transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Pt/C degrades much faster under Pstep conditions than that under potential-static holding conditions. Pt/C degrades under the Pstep(1.4V_150s-0.85V_30s) condition mainly through the coalescence process of Pt nanoparticles due to the corrosion of carbon support, which is similar to that under the conditions of 1.2 V- and 1.4 V-potential-static holding; however, Pt/C degrades mainly through the dissolution/loss and dissolution/redeposition process if stressed under Pstep(1.4V_150s-0.60V_30s). The difference in the degradation mechanisms is attributed to the chemical states of Pt nanoparticles: Pt dissolution can be alleviated by the protective oxide layer under the Pstep(1.4V_150s-0.85V_30s) condition and the potential-static holding conditions. These findings are very important for understanding PEM fuel cell electrode degradation and are also useful for developing fast test protocol for screening durable catalyst support materials.
Markhoff, Jana; Wieding, Jan; Weissmann, Volker; Pasold, Juliane; Jonitz-Heincke, Anika; Bader, Rainer
2015-01-01
In the treatment of osseous defects micro-structured three-dimensional materials for bone replacement serve as leading structure for cell migration, proliferation and bone formation. The scaffold design and culture conditions are crucial for the limited diffusion distance of nutrients and oxygen. In static culture, decreased cell activity and irregular distribution occur within the scaffold. Dynamic conditions entail physical stimulation and constant medium perfusion imitating physiological nutrient supply and metabolite disposal. Therefore, we investigated the influence of different scaffold configurations and cultivation methods on human osteoblasts. Cells were seeded on three-dimensional porous Ti-6Al-4V scaffolds manufactured with selective laser melting (SLM) or electron beam melting (EBM) varying in porosity, pore size and basic structure (cubic, diagonal, pyramidal) and cultured under static and dynamic conditions. Cell viability, migration and matrix production were examined via mitochondrial activity assay, fluorescence staining and ELISA. All scaffolds showed an increasing cell activity and matrix production under static conditions over time. Expectations about the dynamic culture were only partially fulfilled, since it enabled proliferation alike the static one and enhanced cell migration. Overall, the SLM manufactured scaffold with the highest porosity, small pore size and pyramidal basic structure proved to be the most suitable structure for cell proliferation and migration. PMID:28793519
Markhoff, Jana; Wieding, Jan; Weissmann, Volker; Pasold, Juliane; Jonitz-Heincke, Anika; Bader, Rainer
2015-08-24
In the treatment of osseous defects micro-structured three-dimensional materials for bone replacement serve as leading structure for cell migration, proliferation and bone formation. The scaffold design and culture conditions are crucial for the limited diffusion distance of nutrients and oxygen. In static culture, decreased cell activity and irregular distribution occur within the scaffold. Dynamic conditions entail physical stimulation and constant medium perfusion imitating physiological nutrient supply and metabolite disposal. Therefore, we investigated the influence of different scaffold configurations and cultivation methods on human osteoblasts. Cells were seeded on three-dimensional porous Ti-6Al-4V scaffolds manufactured with selective laser melting (SLM) or electron beam melting (EBM) varying in porosity, pore size and basic structure (cubic, diagonal, pyramidal) and cultured under static and dynamic conditions. Cell viability, migration and matrix production were examined via mitochondrial activity assay, fluorescence staining and ELISA. All scaffolds showed an increasing cell activity and matrix production under static conditions over time. Expectations about the dynamic culture were only partially fulfilled, since it enabled proliferation alike the static one and enhanced cell migration. Overall, the SLM manufactured scaffold with the highest porosity, small pore size and pyramidal basic structure proved to be the most suitable structure for cell proliferation and migration.
Aurally aided visual search performance in a dynamic environment
NASA Astrophysics Data System (ADS)
McIntire, John P.; Havig, Paul R.; Watamaniuk, Scott N. J.; Gilkey, Robert H.
2008-04-01
Previous research has repeatedly shown that people can find a visual target significantly faster if spatial (3D) auditory displays direct attention to the corresponding spatial location. However, previous research has only examined searches for static (non-moving) targets in static visual environments. Since motion has been shown to affect visual acuity, auditory acuity, and visual search performance, it is important to characterize aurally-aided search performance in environments that contain dynamic (moving) stimuli. In the present study, visual search performance in both static and dynamic environments is investigated with and without 3D auditory cues. Eight participants searched for a single visual target hidden among 15 distracting stimuli. In the baseline audio condition, no auditory cues were provided. In the 3D audio condition, a virtual 3D sound cue originated from the same spatial location as the target. In the static search condition, the target and distractors did not move. In the dynamic search condition, all stimuli moved on various trajectories at 10 deg/s. The results showed a clear benefit of 3D audio that was present in both static and dynamic environments, suggesting that spatial auditory displays continue to be an attractive option for a variety of aircraft, motor vehicle, and command & control applications.
LEWICE3D/GlennHT Particle Analysis of the Honeywell Al502 Low Pressure Compressor
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.; Rigby, David L.
2015-01-01
A flow and ice particle trajectory analysis was performed for the booster of the Honeywell AL502 engine. The analysis focused on two closely related conditions one of which produced a rollback and another which did not rollback during testing in the Propulsion Systems Lab at NASA Glenn Research Center. The flow analysis was generated using the NASA Glenn GlennHT flow solver and the particle analysis was generated using the NASA Glenn LEWICE3D v3.56 ice accretion software. The flow and particle analysis used a 3D steady flow, mixing plane approach to model the transport of flow and particles through the engine. The inflow conditions for the rollback case were: airspeed, 145 ms; static pressure, 33,373 Pa; static temperature, 253.3 K. The inflow conditions for the non-roll-back case were: airspeed, 153 ms; static pressure, 34,252 Pa; static temperature, 260.1 K. Both cases were subjected to an ice particle cloud with a median volume diameter of 24 microns, an ice water content of 2.0 gm3 and a relative humidity of 100 percent. The most significant difference between the rollback and non-rollback conditions was the inflow static temperature which was 6.8 K higher for the non-rollback case.
[Correlation analysis on the disorders of patella-femoral joint and torsional deformity of tibia].
Sun, Zhen-Jie; Yuan, Yi; Liu, Rui-Bo
2015-03-01
To reveal the possible mechanism involved in patella-femoral degenerative arthritis (PFDA) in- duced by torsion-deformity of tibia via analyzing the relationship between torsion-deformity of the tibia in patients with PFDA and the disorder of patella-femoral joint under the static and dynamic conditions. From October 2009 to October 2010, 50 patients (86 knees, 24 knees of male patients and 62 knees of female patients) with PFDA were classified as disease group and 16 people (23 knees, 7 knees of males and 16 knees of females) in the control group. The follow indexes were measured: the torsion-angle of tibia on CT scanning imagings, the patella-femoral congruence angle and lateral patella-femoral angle under static and dynamic conditions when the knee bent at 30 degrees of flexion. Based on the measurement results, the relationship between the torsion-deformity of tibias and the disorders of patella-femoral joints in patients with PFDA were analyzed. Finally,the patients were divided into three groups including large torsion-angle group, small torsion-angle group and normal group according to the size of torsion-angle, in order to analyze the relationship between torsion-deformity and disorders of patella-femoral joint, especially under the dynamic conditions. Compared with patients without PFDA, the ones with PFDA had bigger torsion-angle (30.30 ± 7.11)° of tibia, larger patella-femoral congruence angle (13.20 ± 3.94)° and smaller lateral patella-femoral angle (12.30 ± 3.04)°. The congruence angle and lateral patella-femoral angle under static and dynamic conditions had statistical differences respectively in both too-big torsion-angle group and too-small torsion-angle group. The congruence angle and lateral patella-femoral angle under static and dynamic conditions had no statistical differences in normal torsion-angle group. Torsion-deformity of tibia is the main reason for disorder of patella-femoral joint in the patients with PFDA. Torsion-deformity of tibia is always accompanied by instability of patella-femoral joint,especially under the dynamic condition, thus causing PFDA. It can not only provide arrangement information and degenerative condition of patella-femoral joint,but also provide guidance through the analysis on the relationship for better clinical prevention and early treatment of degenerative bone and joint disease.
Hygrothermomechanical evaluation of transverse filament tape epoxy/polyester fiberglass composites
NASA Technical Reports Server (NTRS)
Lark, R. L.; Chamis, C. C.
1983-01-01
The static and cyclic load behavior of transverse filament tape (TFT) fiberglass/epoxy and TFY fiberglass/polyester composites, intended for use in the design of low-cost wind turbine blades, are presented. The data behavior is also evaluated with respect to predicted properties based on an integrated hygrothermomechanical response theory. Experimental TFT composite data were developed by the testing of laminates made by using composite layups typical of those used for the fabrication of TFT fiberglass wind turbine blades. Static properties include tension, compression, and interlaminar shear strengths at ambient conditions and at high humidity/elevated temperature conditions after a 500 hour exposure. Cyclic fatigue data were obtained using similar environmental conditions and a range of cyclic stresses. The environmental (temperature and moisture) and cyclic load effects on composite strength degradation are subsequently compared with the predictions obtained by using the composite life/durability theory. The results obtained show that the predicted hygrothermomechanical environmental effects on TFT composites are in good agreement with measured data for various properties including fatigue at different cyclic stresses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ossler, Frederik; Santodonato, Louis J.; Bilheux, Hassina Z.
Here, we report results from experiments where we characterize the surface properties of soot particles interacting with high-pressure methane. We also found considerable differences in behavior of the soot material between static and dynamic pressure conditions that can be explained by multiscale correlations in the dynamics, from the micro to macro of the porous fractal-like carbon matrix. The measurements were possible utilizing cold neutron imaging of methane mixed with combustion generated carbon (soot) inside steel cells. The studies were performed under static and dynamic pressure conditions in the range 10-90 bar, and are of interest for applications of energy storagemore » of hydrogenous fuels. The very high cross sections for neutrons compared to hard X-ray photons, enabled us to find considerable amounts of native hydrogen in the soot and to see and quantify the presence of hydrogen atoms in the carbon soot matrix under different pressure conditions. Our work lays the base for more detailed in-situ investigations on the interaction of porous carbon materials with hydrogen in practical environments for hydrogen and methane storage.« less
Ossler, Frederik; Santodonato, Louis J.; Bilheux, Hassina Z.
2017-02-12
Here, we report results from experiments where we characterize the surface properties of soot particles interacting with high-pressure methane. We also found considerable differences in behavior of the soot material between static and dynamic pressure conditions that can be explained by multiscale correlations in the dynamics, from the micro to macro of the porous fractal-like carbon matrix. The measurements were possible utilizing cold neutron imaging of methane mixed with combustion generated carbon (soot) inside steel cells. The studies were performed under static and dynamic pressure conditions in the range 10-90 bar, and are of interest for applications of energy storagemore » of hydrogenous fuels. The very high cross sections for neutrons compared to hard X-ray photons, enabled us to find considerable amounts of native hydrogen in the soot and to see and quantify the presence of hydrogen atoms in the carbon soot matrix under different pressure conditions. Our work lays the base for more detailed in-situ investigations on the interaction of porous carbon materials with hydrogen in practical environments for hydrogen and methane storage.« less
NASA Astrophysics Data System (ADS)
Sakellariou, J. S.; Fassois, S. D.
2017-01-01
The identification of a single global model for a stochastic dynamical system operating under various conditions is considered. Each operating condition is assumed to have a pseudo-static effect on the dynamics and be characterized by a single measurable scheduling variable. Identification is accomplished within a recently introduced Functionally Pooled (FP) framework, which offers a number of advantages over Linear Parameter Varying (LPV) identification techniques. The focus of the work is on the extension of the framework to include the important FP-ARMAX model case. Compared to their simpler FP-ARX counterparts, FP-ARMAX models are much more general and offer improved flexibility in describing various types of stochastic noise, but at the same time lead to a more complicated, non-quadratic, estimation problem. Prediction Error (PE), Maximum Likelihood (ML), and multi-stage estimation methods are postulated, and the PE estimator optimality, in terms of consistency and asymptotic efficiency, is analytically established. The postulated estimators are numerically assessed via Monte Carlo experiments, while the effectiveness of the approach and its superiority over its FP-ARX counterpart are demonstrated via an application case study pertaining to simulated railway vehicle suspension dynamics under various mass loading conditions.
Zech, Astrid; Argubi-Wollesen, Andreas; Rahlf, Anna-Lina
2015-01-01
In recreational sports, uncushioned, light-weight and minimalist shoes are increasingly used to imitate barefoot situations. Uncertainty exists whether these shoes provide sufficient stability during challenging movements. In this randomised crossover study, 35 healthy distance runners performed jump landing stabilisation and single-leg stance tests on a force plate, using four conditions in random order: barefoot, uncushioned minimalist shoes, cushioned ultraflexible shoes and standard running shoes. Ground reaction force (GRF) and centre of pressure (COP) data were used to determine unilateral jump landing stabilisation time and COP sway velocity during single-leg stance. Repeated measures analysis of variance revealed significant footwear interactions for medial-lateral (p < 0.001) and anterior-posterior COP sway velocity during standing (p < 0.001). The barefoot condition produced significantly greater postural sway velocities (p < 0.001) compared to all footwear conditions. No significant effects were found for jump landing stabilisation time. In conclusion, the results of this study indicate that increased shoe flexibility and reduced sole support have no, or only minor influence on static and dynamic postural control, and therefore, may not increase the risk of traumatic events during sports activities. However, barefoot conditions should be considered carefully when adequate postural control is needed.
Lam, Freddy M H; Liao, L R; Kwok, Timothy C Y; Pang, Marco Y C
2016-06-01
This study aimed to investigate how whole-body vibration (WBV) and exercise and their interactions influenced leg muscle activity in elderly adults. An experimental study with repeated measures design that involved a group of ambulatory, community-dwelling elderly adults (n=30; 23 women; mean age=61.4±5.3years). Muscle activity of the vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius (GS) was measured by surface electromyography (EMG), while participants were performing seven different exercises during 4 WBV conditions (condition 1: frequency=30Hz, amplitude=0.6mm, intensity=2.25 units of Earth's gravity (g); condition 2: 30Hz, 0.9mm, 3.40g; condition 3: 40Hz, 0.6mm, 3.65g; condition 4: 40Hz, 0.9mm, 5.50g) and a no-WBV condition in a single experimental session. Significantly greater muscle activity was recorded in VL (3%-148%), BF (16%-202%), and GS (19% -164%) when WBV was added to the exercises, compared with the same exercises without WBV (p≤0.015). The effect of vibration intensity on EMG amplitude was exercise-dependent in VL (p=0.002), and this effect was marginally significant in GS (p=0.052). The EMG activity induced by the four WBV intensities was largely similar, and was the most pronounced during static erect standing and static single-leg standing. The EMG amplitude of majority of leg muscles tested was significantly greater during WBV exposure compared with the no-WBV condition. Low-intensity WBV can induce muscle activity as effectively as higher-intensity protocols, and may be the preferred choice for frail elderly adults. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Sweeney, Kevin; Delahunt, Eamonn
2015-02-01
Longitudinal analyses of participants with a history of lateral ankle sprain are lacking. This investigation combined measures of inter-joint coordination and stabilometry to evaluate eyes-open (condition 1) and eyes-closed (condition 2) static unilateral stance performance in a group of participants, 6-months after they sustained an acute, first-time lateral ankle sprain in comparison to a control group. Sixty-nine participants with a 6-month history of first-time lateral ankle sprain and 20 non-injured controls completed three 20-second unilateral stance task trials in conditions 1 and 2. An adjusted coefficient of multiple determination statistic was used to compare stance limb 3-dimensional kinematic data for similarity in the aim of establishing patterns of lower-limb inter-joint coordination. The fractal dimension of the stance limb centre of pressure path was also calculated. Between-group analyses revealed significant differences in stance limb inter-joint coordination strategies for conditions 1 and 2, and in the fractal dimension of the centre-of-pressure path for condition 2 only. Injured participants displayed increases in ankle-hip linked coordination compared to controls in condition 1 (sagittal/frontal plane: 0.15 [0.14] vs 0.06 [0.04]; η(2)=.19; sagittal/transverse plane: 0.14 [0.11] vs 0.09 [0.05]; η(2)=0.14) and condition 2 (sagittal/frontal plane: 0.15 [0.12] vs 0.08 [0.06]; η(2)=0.23), with an associated decrease in the fractal dimension of the centre-of-pressure path (injured limb: 1.23 [0.13] vs 1.36 [0.13]; η(2)=0.20). Participants with a 6-month history of first-time lateral ankle sprain exhibit a hip-dominant coordination strategy for static unilateral stance compared to non-injured controls. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Effects of Attention Cueing on Visualizers' Multimedia Learning
ERIC Educational Resources Information Center
Yang, Hui-Yu
2016-01-01
The present study examines how various types of attention cueing and cognitive preference affect learners' comprehension of a cardiovascular system and cognitive load. EFL learners were randomly assigned to one of four conditions: non-signal, static-blood-signal, static-blood-static-arrow-signal, and animation-signal. The results indicated that…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balderson, Michael, E-mail: michael.balderson@rmp.uhn.ca; Brown, Derek; Johnson, Patricia
The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic–based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for themore » different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15 mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT.« less
Gladden, M H; Matsuzaki, H
2002-01-01
Ideas about the functions of static γ-motoneurones are based on the responses of primary and secondary endings to electrical stimulation of single static γ-axons, usually at high frequencies. We compared these effects with the actions of spontaneously active γ-motoneurones. In anaesthetised cats, afferents and efferents were recorded in intramuscular nerve branches to single muscle spindles. The occurrence of γ-spikes, identified by a spike shape recognition system, was linked to video-taped contractions of type-identified intrafusal fibres in the dissected muscle spindles. When some static γ-motoneurones were active at low frequency (< 15 Hz) they coupled the firing of group Ia and II afferents. Activity of other static γ-motoneurones which tensed the intrafusal fibres appeared to enhance this effect. Under these conditions the secondary ending responded at shorter latency than the primary ending. In another series of experiments on decerebrate cats, responses of primary and secondary endings of single muscle spindles to activation of γ-motoneurones by natural stimuli were compared with their responses to electrical stimulation of single γ-axons supplying the same spindle. Electrical stimulation mimicked the natural actions of γ-motoneurones on either the primary or the secondary ending, but not on both together. However, γ-activity evoked by natural stimuli coupled the firing of afferents with the muscle at constant length, and also when it was stretched. Analysis showed that the timing and tightness of this coupling determined the degree of summation of excitatory postsynaptic potentials (EPSPs) evoked by each afferent in α-motoneurones and interneurones contacted by terminals of both endings, and thus the degree of facilitation of reflex actions of group II afferents. PMID:12181298
The Effect of Pre-Stressing on the Static Indentation Load Capacity of the Superelastic 60NiTi
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.
2013-01-01
Superelastic nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt.%), are under development for use in mechanical components like rolling element bearings and gears. Compared to traditional bearing steels, these intermetallic alloys, when properly heat-treated, are hard but exhibit much lower elastic modulus (approx.100 GPa) and a much broader elastic deformation range (approx.3 percent or more). These material characteristics lead to high indentation static load capacity, which is important for certain applications especially space mechanisms. To ensure the maximum degree of elastic behavior, superelastic materials must be pre-stressed, a process referred to as "training" in shape memory effect (SME) terminology, at loads and stresses beyond expected use conditions. In this paper, static indentation load capacity tests are employed to assess the effects of pre-stressing on elastic response behavior of 60NiTi. The static load capacity is measured by pressing 12.7 mm diameter ceramic Si3N4 balls into highly polished, hardened 60NiTi flat plates that have previously been exposed to varying levels of pre-stress (up to 2.7 GPa) to determine the load that results in shallow but measurable (0.6 m, 25 in. deep) permanent dents. Hertz stress calculations are used to estimate contact stress. Without exposure to pre-stress, the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.4 m deep) occurs. When pre-stressed to 2.7 GPa, a static load of 4900 kN is required to achieve a comparable dent, a 30 percent increase. These results suggest that stressing contact surfaces prior to use enhances the static indentation load capacity of the superelastic 60NiTi. This approach may be adaptable to the engineering and manufacture of highly resilient mechanical components such as rolling element bearings.
Dynamic gastric digestion of a commercial whey protein concentrate†.
Miralles, Beatriz; Del Barrio, Roberto; Cueva, Carolina; Recio, Isidra; Amigo, Lourdes
2018-03-01
A dynamic gastrointestinal simulator, simgi ® , has been applied to assess the gastric digestion of a whey protein concentrate. Samples collected from the outlet of the stomach have been compared to those resulting from the static digestion protocol INFOGEST developed on the basis of physiologically inferred conditions. Progress of digestion was followed by SDS-PAGE and LC-MS/MS. By SDS-PAGE, serum albumin and α-lactalbumin were no longer detectable at 30 and 60 min, respectively. On the contrary, β-lactoglobulin was visible up to 120 min, although in decreasing concentrations in the dynamic model due to the gastric emptying and the addition of gastric fluids. Moreover, β-lactoglobulin was partly hydrolysed by pepsin probably due to the presence of heat-denatured forms and the peptides released using both digestion models were similar. Under dynamic conditions, a stepwise increase in number of peptides over time was observed, while the static protocol generated a high number of peptides from the beginning of digestion. Whey protein digestion products using a dynamic stomach are consistent with those generated with the static protocol but the kinetic behaviour of the peptide profile emphasises the effect of the sequential pepsin addition, peristaltic shaking, and gastric emptying on protein digestibility. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
What the Human Brain Likes About Facial Motion
Schultz, Johannes; Brockhaus, Matthias; Bülthoff, Heinrich H.; Pilz, Karin S.
2013-01-01
Facial motion carries essential information about other people's emotions and intentions. Most previous studies have suggested that facial motion is mainly processed in the superior temporal sulcus (STS), but several recent studies have also shown involvement of ventral temporal face-sensitive regions. Up to now, it is not known whether the increased response to facial motion is due to an increased amount of static information in the stimulus, to the deformation of the face over time, or to increased attentional demands. We presented nonrigidly moving faces and control stimuli to participants performing a demanding task unrelated to the face stimuli. We manipulated the amount of static information by using movies with different frame rates. The fluidity of the motion was manipulated by presenting movies with frames either in the order in which they were recorded or in scrambled order. Results confirm higher activation for moving compared with static faces in STS and under certain conditions in ventral temporal face-sensitive regions. Activation was maximal at a frame rate of 12.5 Hz and smaller for scrambled movies. These results indicate that both the amount of static information and the fluid facial motion per se are important factors for the processing of dynamic faces. PMID:22535907
Static and Vibration Analyses of General Wing Structures Using Equivalent Plate Models
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Liu, Youhua
1999-01-01
An efficient method, using equivalent plate model, is developed for studying the static and vibration analyses of general built-up wing structures composed of skins, spars, and ribs. The model includes the transverse shear effects by treating the built-up wing as a plate following the Reissner-Mindlin theory, the so-called First-order Shear Deformation Theory (FSDT). The Ritz method is used with the Legendre polynomials being employed as the trial functions. This is in contrast to previous equivalent plate model methods which have used simple polynomials, known to be prone to numerical ill-conditioning, as the trial functions. The present developments are evaluated by comparing the results with those obtained using MSC/NASTRAN, for a set of examples. These examples are: (i) free-vibration analysis of a clamped trapezoidal plate with (a) uniform thickness, and (b) non-uniform thickness varying as an airfoil, (ii) free-vibration and static analyses (including skin stress distribution) of a general built-up wing, and (iii) free-vibration and static analyses of a swept-back box wing. The results obtained by the present equivalent plate model are in good agreement with those obtained by the finite element method.
Wang, Juan; Liu, Lumei; Wu, Yifan; Maitz, Manfred F.; Wang, Zhihong; Koo, Youngmi; Zhao, Ansha; Sankar, Jagannathan; Kong, Deling; Huang, Nan; Yun, Yeoheung
2017-01-01
Current in vitro models fail in predicting the degradation rate and mode of magnesium (Mg) stents in vivo. To overcome this, the microenvironment of the stent is simulated here in an ex vivo bioreactor with porcine aorta and circulating medium, and compared with standard static in vitro immersion and with in vivo rat aorta models. In ex vivo and in vivo conditions, pure Mg wires were exposed to the aortic lumen and inserted into the aortic wall to mimic early- and long-term implantation, respectively. Results showed that: 1) Degradation rates of Mg were similar for all the fluid diffusion conditions (in vitro static, aortic wall ex vivo and in vivo); however, Mg degradation under flow condition (i.e. in the lumen) in vivo was slower than ex vivo; 2) The corrosion mode in the samples can be mainly described as localized (in vitro), mixed localized and uniform (ex vivo), and uniform (in vivo); 3) Abundant degradation products (MgO/Mg(OH)2 and Ca/P) with gas bubbles accumulated around the localized degradation regions ex vivo, but a uniform and thin degradation product layer was found in vivo. It is concluded that the ex vivo vascular bioreactor provides an improved test setting for magnesium degradation between static immersion and animal experiments and highlights its promising role in bridging degradation behavior and biological response for vascular stent research. PMID:28013101
Comparative static curing versus dynamic curing on tablet coating structures.
Gendre, Claire; Genty, Muriel; Fayard, Barbara; Tfayli, Ali; Boiret, Mathieu; Lecoq, Olivier; Baron, Michel; Chaminade, Pierre; Péan, Jean Manuel
2013-09-10
Curing is generally required to stabilize film coating from aqueous polymer dispersion. This post-coating drying step is traditionally carried out in static conditions, requiring the transfer of solid dosage forms to an oven. But, curing operation performed directly inside the coating equipment stands for an attractive industrial application. Recently, the use of various advanced physico-chemical characterization techniques i.e., X-ray micro-computed tomography, vibrational spectroscopies (near infrared and Raman) and X-ray microdiffraction, allowed new insights into the film-coating structures of dynamically cured tablets. Dynamic curing end-point was efficiently determined after 4h. The aim of the present work was to elucidate the influence of curing conditions on film-coating structures. Results demonstrated that 24h of static curing and 4h of dynamic curing, both performed at 60°C and ambient relative humidity, led to similar coating layers in terms of drug release properties, porosity, water content, structural rearrangement of polymer chains and crystalline distribution. Furthermore, X-ray microdiffraction measurements pointed out different crystalline coating compositions depending on sample storage time. An aging mechanism might have occur during storage, resulting in the crystallization and the upward migration of cetyl alcohol, coupled to the downward migration of crystalline sodium lauryl sulfate within the coating layer. Interestingly, this new study clearly provided further knowledge into film-coating structures after a curing step and confirmed that curing operation could be performed in dynamic conditions. Copyright © 2013 Elsevier B.V. All rights reserved.
2008-04-29
under a quasi-static condition. The duration of the impact is relatively long compared with the period of the fundamental natural frequency of the...Y, Katano, Y, and Matoba, K, 1989, “Spherical-Impact Damage and Strength Degradation in Silicon Nitrides for Automobile Turbocharger Rotors,” J. Am
NASA Technical Reports Server (NTRS)
Debogdan, C. E.; Moss, J. E., Jr.; Braithwaite, W. M.
1977-01-01
The measured distribution of compressor interstage pressures and temperatures resulting from a 180 deg inlet-total-pressure distortion for a J85-13 turbojet engine is reported. Extensive inner stage instrumentation combined with stepwise rotation of the inlet distortion gave data of high circumferential resolution. The steady-state pressures and temperatures along with the amplitude, extent, and location of the distorted areas are given. Data for 80, 90, and 100 percent of rotor design speed are compared with clean (undistorted) inlet flow conditions to show pressure and temperature behavior within the compressor. Both overall and stagewise compressor performances vary only slightly when clean and distorted inlet conditions are compared. Total and static pressure distortions increase in amplitude in the first few stages of the compressor and then attenuate fairly uniformly to zero at the discharge. Total-temperature distortion induced by the pressure distortion reached a maximum amplitude by the first two stages and decayed only a little through the rest of the compressor. Distortion amplitude tended to peak in line with the screen edges, and, except for total and static pressure in the tip zone, there was little swirl in the axial direction.
Diurnal forcing of planetary atmospheres
NASA Technical Reports Server (NTRS)
Houben, Howard C.
1991-01-01
A free convection parameterization has been introduced into the Mars Planetary Boundary Layer Model (MPBL). Previously, the model would fail to generate turbulence under conditions of zero wind shear, even when statically unstable. This in turn resulted in erroneous results at the equator, for example, when the lack of Coriolis forcing allowed zero wind conditions. The underlying cause of these failures was the level 2 second-order turbulence closure scheme which derived diffusivities as algebraic functions of the Richardson number (the ratio of static stability to wind shear). In the previous formulation, the diffusivities were scaled by the wind shear--a convenient parameter since it is non-negative. This was the drawback that all diffusivities are zero under conditions of zero shear (viz., the free convection case). The new scheme tests for the condition of zero shear in conjunction with static instability and recalculates the diffusivities using a static stability scaling. The results for a simulation of the equatorial boundary layer at autumnal equinox are presented. (Note that after some wind shear is generated, the model reverts to the traditional diffusivity calculation.)
Matlab Stability and Control Toolbox: Trim and Static Stability Module
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.
2006-01-01
This paper presents the technical background of the Trim and Static module of the Matlab Stability and Control Toolbox. This module performs a low-fidelity stability and control assessment of an aircraft model for a set of flight critical conditions. This is attained by determining if the control authority available for trim is sufficient and if the static stability characteristics are adequate. These conditions can be selected from a prescribed set or can be specified to meet particular requirements. The prescribed set of conditions includes horizontal flight, take-off rotation, landing flare, steady roll, steady turn and pull-up/ push-over flight, for which several operating conditions can be specified. A mathematical model was developed allowing for six-dimensional trim, adjustable inertial properties, asymmetric vehicle layouts, arbitrary number of engines, multi-axial thrust vectoring, engine(s)-out conditions, crosswind and gyroscopic effects.
The acute effect of different stretching methods on sprint performance in taekwondo practitioners.
Alemdaroğlu, Utku; Köklü, Yusuf; Koz, Mitat
2017-09-01
The purpose of this study was to compare the acute effects of different stretching types on sprint performance in taekwondo practitioners. Twelve male taekwondo practitioners performed stretching exercises using different types (ballistic, proprioceptive neuromuscular facilitation [PNF], static stretching) in a random order at three-day intervals; there was also a control condition involving no stretching exercises. The subjects performed 2 maximal 20-m sprints (with 10-m split times also recorded) with a recovery period of 1 minute immediately post stretching and at 5, 10, 15 and 20 minutes after stretching. They also performed these sprints before doing the stretching exercises. The study results showed that sprint times significantly increased after static stretching (10-m pre =1.84±0.07 s, 10-m post =1.89±0.08 s; 20-m pre =3.33±0.19 s, 20-m post= 3.38±0.2 s), PNF stretching (10-m pre =1.84±0.07 s, 10-m post =1.89±0.08 s; 20-m pre =3.33±0.19 s, 20-m post =3.38±0.20 s) and ballistic stretching (pre =1.84±0.08 s, post =1.86±0.07 s; 20-m pre =3.33±0.20 s, 20-m post =3.35±0.21 s) (P<0.05). In the static stretching condition, 10-m and 20-m sprint performance had fully returned to normal at 15 minutes after stretching. In the PNF stretching condition, 20-m sprint performance returned to normal levels at 15 minutes after stretching, while 10-m performance took 20 minutes to recover fully. In the ballistic stretching method, both 10-m and 20-m sprint performances had fully recovered at 5 minutes after stretching. It is therefore concluded that the acute effects of static, PNF and ballistic stretching may negatively affect sprint performance, although sprint performance is less affected after ballistic stretching than after the other stretching types. Therefore, it is not advisable to perform PNF or static stretching immediately before sprint performance.
NASA Technical Reports Server (NTRS)
Sikavitsas, Vassilios I.; Bancroft, Gregory N.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)
2002-01-01
The aim of this study is to investigate the effect of the cell culture conditions of three-dimensional polymer scaffolds seeded with rat marrow stromal cells (MSCs) cultured in different bioreactors concerning the ability of these cells to proliferate, differentiate towards the osteoblastic lineage, and generate mineralized extracellular matrix. MSCs harvested from male Sprague-Dawley rats were culture expanded, seeded on three-dimensional porous 75:25 poly(D,L-lactic-co-glycolic acid) biodegradable scaffolds, and cultured for 21 days under static conditions or in two model bioreactors (a spinner flask and a rotating wall vessel) that enhance mixing of the media and provide better nutrient transport to the seeded cells. The spinner flask culture demonstrated a 60% enhanced proliferation at the end of the first week when compared to static culture. On day 14, all cell/polymer constructs exhibited their maximum alkaline phosphatase activity (AP). Cell/polymer constructs cultured in the spinner flask had 2.4 times higher AP activity than constructs cultured under static conditions on day 14. The total osteocalcin (OC) secretion in the spinner flask culture was 3.5 times higher than the static culture, with a peak OC secretion occurring on day 18. No considerable AP activity and OC secretion were detected in the rotating wall vessel culture throughout the 21-day culture period. The spinner flask culture had the highest calcium content at day 14. On day 21, the calcium deposition in the spinner flask culture was 6.6 times higher than the static cultured constructs and over 30 times higher than the rotating wall vessel culture. Histological sections showed concentration of cells and mineralization at the exterior of the foams at day 21. This phenomenon may arise from the potential existence of nutrient concentration gradients at the interior of the scaffolds. The better mixing provided in the spinner flask, external to the outer surface of the scaffolds, may explain the accelerated proliferation and differentiation of marrow stromal osteoblasts, and the localization of the enhanced mineralization on the external surface of the scaffolds. Copyright 2002 Wiley Periodicals, Inc.
Springer, Andrea; Kappeler, Peter M; Nunn, Charles L
2017-05-01
Social networks provide an established tool to implement heterogeneous contact structures in epidemiological models. Dynamic temporal changes in contact structure and ranging behaviour of wildlife may impact disease dynamics. A consensus has yet to emerge, however, concerning the conditions in which network dynamics impact model outcomes, as compared to static approximations that average contact rates over longer time periods. Furthermore, as many pathogens can be transmitted both environmentally and via close contact, it is important to investigate the relative influence of both transmission routes in real-world populations. Here, we use empirically derived networks from a population of wild primates, Verreaux's sifakas (Propithecus verreauxi), and simulated networks to investigate pathogen spread in dynamic vs. static social networks. First, we constructed a susceptible-exposed-infected-recovered model of Cryptosporidium spread in wild Verreaux's sifakas. We incorporated social and environmental transmission routes and parameterized the model for two different climatic seasons. Second, we used simulated networks and greater variation in epidemiological parameters to investigate the conditions in which dynamic networks produce larger outbreak sizes than static networks. We found that average outbreak size of Cryptosporidium infections in sifakas was larger when the disease was introduced in the dry season than in the wet season, driven by an increase in home range overlap towards the end of the dry season. Regardless of season, dynamic networks always produced larger average outbreak sizes than static networks. Larger outbreaks in dynamic models based on simulated networks occurred especially when the probability of transmission and recovery were low. Variation in tie strength in the dynamic networks also had a major impact on outbreak size, while network modularity had a weaker influence than epidemiological parameters that determine transmission and recovery. Our study adds to emerging evidence that dynamic networks can change predictions of disease dynamics, especially if the disease shows low transmissibility and a long infectious period, and when environmental conditions lead to enhanced between-group contact after an infectious agent has been introduced. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Kieslinger, Dorit C; Hao, Zhenxia; Vergouw, Carlijn G; Kostelijk, Elisabeth H; Lambalk, Cornelis B; Le Gac, Séverine
2015-03-01
To compare the development of human embryos in microfluidic devices with culture in standard microdrop dishes, both under static conditions. Prospective randomized controlled trial. In vitro fertilization laboratory. One hundred eighteen donated frozen-thawed human day-4 embryos. Random allocation of embryos that fulfilled the inclusion criteria to single-embryo culture in a microfluidics device (n = 58) or standard microdrop dish (n = 60). Blastocyst formation rate and quality after 24, 28, 48, and 72 hours of culture. The percentage of frozen-thawed day-4 embryos that developed to the blastocyst stage did not differ significantly in the standard microdrop dishes and microfluidic devices after 28 hours of culture (53.3% vs. 58.6%) or at any of the other time points. The proportion of embryos that would have been suitable for embryo transfer was comparable after 28 hours of culture in the control dishes and microfluidic devices (90.0% vs. 93.1%). Furthermore, blastocyst quality was similar in the two study groups. This study shows that a microfluidic device can successfully support human blastocyst development in vitro under static culture conditions. Future studies need to clarify whether earlier stage embryos will benefit from the culture in microfluidic devices more than the tested day-4 embryos because many important steps in the development of human embryos already take place before day 4. Further improvements of the microfluidic device will include parallel culture of single embryos, application of medium refreshment, and built-in sensors. NTR3867. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ishii, Yuichiro; Tanaka, Miki; Yabuuchi, Makoto; Sawada, Yohei; Tanaka, Shinji; Nii, Koji; Lu, Tien Yu; Huang, Chun Hsien; Sian Chen, Shou; Tse Kuo, Yu; Lung, Ching Cheng; Cheng, Osbert
2018-04-01
We propose a highly symmetrical 10 transistor (10T) 2-read/write (2RW) dual-port (DP) static random access memory (SRAM) bitcell in 28 nm high-k/metal-gate (HKMG) planar bulk CMOS. It replaces the conventional 8T 2RW DP SRAM bitcell without any area overhead. It significantly improves the robustness of process variations and an asymmetric issue between the true and bar bitline pairs. Measured data show that read current (I read) and read static noise margin (SNM) are respectively boosted by +20% and +15 mV by introducing the proposed bitcell with enlarged pull-down (PD) and pass-gate (PG) N-channel MOSs (NMOSs). The minimum operating voltage (V min) of the proposed 256 kbit 10T DP SRAM is 0.53 V in the TT process, 25 °C under the worst access condition with read/write disturbances, and improved by 90 mV (15%) compared with the conventional one.
Static vs dynamic settlement and adhesion of diatoms to ship hull coatings.
Zargiel, Kelli A; Swain, Geoffrey W
2014-01-01
Many experiments utilize static immersion tests to evaluate the performance of ship hull coatings. These provide valuable data; however, they do not accurately represent the conditions both the hull and fouling organisms encounter while a ship is underway. This study investigated the effect of static and dynamic immersion on the adhesion and settlement of diatoms to one antifouling coating (BRA 640), four fouling-release coatings (Intersleek(®) 700, Intersleek(®) 900, Hempasil X3, and Dow Corning 3140) and one standard surface (Intergard(®) 240 Epoxy). Differences in community composition were observed between the static and dynamic treatments. Achnanthes longipes was present on all coatings under static immersion, but was not present under dynamic immersion. This was also found for diatoms in the genera Bacillaria and Gyrosigma. Melosira moniformis was the only diatom present under dynamic conditions, but not static conditions. Several common fouling diatom genera were present on panels regardless of treatment: Amphora, Cocconeis, Entomoneis Cylindrotheca, Licmophora, Navicula, Nitzschia, Plagiotropis, and Synedra. Biofilm adhesion, diatom abundance and diatom diversity were found to be significantly different between static and dynamic treatments; however, the difference was dependent on coating and sampling date. Several coatings (Epoxy, DC 3140 and IS 700) had significantly higher biofilm adhesion on dynamically treated panels on at least one of the four sampling dates, while all coatings had significantly higher diatom abundance on at least one sampling date. Diversity was significantly greater on static panels than dynamic panels for Epoxy, IS 700 and HX3 at least once during the sampling period. The results demonstrate how hydrodynamic stress will significantly influence the microfouling community. Dynamic immersion testing is required to fully understand how antifouling surfaces will respond to biofilm formation when subjected to the stresses experienced by a ship underway.
Measurement of static pressure on aircraft
NASA Technical Reports Server (NTRS)
Gracey, William
1958-01-01
Existing data on the errors involved in the measurement of static pressure by means of static-pressure tubes and fuselage vents are presented. The errors associated with the various design features of static-pressure tubes are discussed for the condition of zero angle of attack and for the case where the tube is inclined to flow. Errors which result from variations in the configuration of static-pressure vents are also presented. Errors due to the position of a static-pressure tube in the flow field of the airplane are given for locations ahead of the fuselage nose, ahead of the wing tip, and ahead of the vertical tail fin. The errors of static-pressure vents on the fuselage of an airplane are also presented. Various methods of calibrating static-pressure installations in flight are briefly discussed.
The Effect of Altitude Conditions on the Particle Emissions of a J85-GE-5L Turbojet Engine
NASA Technical Reports Server (NTRS)
Rickey, June Elizabeth
1995-01-01
Particles from a J85-GE-5L turbojet engine were measured over a range of engine speeds at simulated altitude conditions ranging from near sea level to 45,000 ft and at flight Mach numbers of 0.5 and 0.8. Samples were collected from the engine by using a specially designed probe positioned several inches behind the exhaust nozzle. A differential mobility particle sizing system was used to determine particle size. Particle data measured at near sea-level conditions were compared with Navy Aircraft Environmental Support Office (AESO) particle data taken from a GE-J85-4A engine at a sea-level static condition. Particle data from the J85 engine were also compared with particle data from a J85 combustor at three different simulated altitudes.
Jan, Luka; Fefer, Dušan; Košmelj, Katarina; Gaberščik, Alenka; Jerman, Igor
2015-04-01
The geomagnetic field (GMF) varies over Earth's surface and changes over time, but it is generally not considered as a factor that could influence plant growth. The effects of reduced and enhanced GMFs and a strong static magnetic field on growth and chlorophyll a (Chl a) fluorescence of Lemna minor plants were investigated under controlled conditions. A standard 7 day test was conducted in extreme geomagnetic environments of 4 µT and 100 µT as well as in a strong static magnetic field environment of 150 mT. Specific growth rates as well as slow and fast Chl a fluorescence kinetics were measured after 7 days incubation. The results, compared to those of controls, showed that the reduced GMF significantly stimulated growth rate of the total frond area in the magnetically treated plants. However, the enhanced GMF pointed towards inhibition of growth rate in exposed plants in comparison to control, but the difference was not statistically significant. This trend was not observed in the case of treatments with strong static magnetic fields. Our measurements suggest that the efficiency of photosystem II is not affected by variations in GMF. In contrast, the strong static magnetic field seems to have the potential to increase initial Chl a fluorescence and energy dissipation in Lemna minor plants. © 2015 Wiley Periodicals, Inc.
Effects of age and loading rate on equine cortical bone failure.
Kulin, Robb M; Jiang, Fengchun; Vecchio, Kenneth S
2011-01-01
Although clinical bone fractures occur predominantly under impact loading (as occurs during sporting accidents, falls, high-speed impacts or other catastrophic events), experimentally validated studies on the dynamic fracture behavior of bone, at the loading rates associated with such events, remain limited. In this study, a series of tests were performed on femoral specimens obtained post-mortem from equine donors ranging in age from 6 months to 28 years. Fracture toughness and compressive tests were performed under both quasi-static and dynamic loading conditions in order to determine the effects of loading rate and age on the mechanical behavior of the cortical bone. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack initiation between dynamic and quasi-static experiments. Compressive properties were measured on bone loaded parallel and transverse to the osteonal growth direction. Fracture propagation was then analyzed using scanning electron and scanning confocal microscopy to observe the effects of microstructural toughening mechanisms at different strain rates. Specimens from each horse were also analyzed for dry, wet and mineral densities, as well as weight percent mineral, in order to investigate possible influences of composition on mechanical behavior. Results indicate that bone has a higher compressive strength, but lower fracture toughness when tested dynamically as compared to quasi-static experiments. Fracture toughness also tends to decrease with age when measured quasi-statically, but shows little change with age under dynamic loading conditions, where brittle "cleavage-like" fracture behavior dominates. Copyright © 2010 Elsevier Ltd. All rights reserved.
A 4DCT imaging-based breathing lung model with relative hysteresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.
To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for bothmore » models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. - Highlights: • We developed a breathing human lung CFD model based on 4D-dynamic CT images. • The 4DCT-based breathing lung model is able to capture lung relative hysteresis. • A new boundary condition for lung model based on one static CT image was proposed. • The difference between lung models based on 4D and static CT images was quantified.« less
Rossi, Anthony M; Claiborne, Tina L; Thompson, Gregory B; Todaro, Stacey
2016-09-01
The pocketing effect of helmet padding helps to dissipate forces experienced by the head, but if the player's helmet remains stationary in an opponent's shoulder pads, the compressive force on the cervical spine may increase. To (1) measure the coefficient of static friction between different football helmet finishes and football jersey fabrics and (2) calculate the potential amount of force on a player's helmet due to the amount of friction present. Cross-sectional study. Laboratory. Helmets with different finishes and different football jersey fabrics. The coefficient of friction was determined for 2 helmet samples (glossy and matte), 3 football jerseys (collegiate, high school, and youth), and 3 types of jersey numbers (silkscreened, sublimated, and stitched on) using the TAPPI T 815 standard method. These measurements determined which helmet-to-helmet, helmet-to-jersey number, and helmet-to-jersey material combination resulted in the least amount of static friction. The glossy helmet versus glossy helmet combination produced a greater amount of static friction than the other 2 helmet combinations (P = .013). The glossy helmet versus collegiate jersey combination produced a greater amount of static friction than the other helmet-to-jersey material combinations (P < .01). The glossy helmet versus silkscreened numbers combination produced a greater amount of static friction than the other helmet-to-jersey number combinations (P < .01). The force of static friction experienced during collisions can be clinically relevant. Conditions with higher coefficients of static friction result in greater forces. In this study, the highest coefficient of friction (glossy helmet versus silkscreened number) could increase the forces on the player's helmet by 3553.88 N when compared with other helmet-to-jersey combinations. Our results indicate that the makeup of helmet and uniform materials may affect sport safety.
Rodrussamee, Nadchanok; Lertwattanasakul, Noppon; Hirata, Katsushi; Suprayogi; Limtong, Savitree; Kosaka, Tomoyuki; Yamada, Mamoru
2011-05-01
Ethanol fermentation ability of the thermotolerant yeast Kluyveromyces marxianus, which is able to utilize various sugars including glucose, mannose, galactose, xylose, and arabinose, was examined under shaking and static conditions at high temperatures. The yeast was found to produce ethanol from all of these sugars except for arabinose under a shaking condition but only from hexose sugars under a static condition. Growth and sugar utilization rate under a static condition were slower than those under a shaking condition, but maximum ethanol yield was slightly higher. Even at 40°C, a level of ethanol production similar to that at 30°C was observed except for galactose under a static condition. Glucose repression on utilization of other sugars was observed, and it was more evident at elevated temperatures. Consistent results were obtained by the addition of 2-deoxyglucose. The glucose effect was further examined at a transcription level, and it was found that KmGAL1 for galactokinase and KmXYL1 for xylose reductase for galactose and xylose/arabinose utilization, respectively, were repressed by glucose at low and high temperatures, but KmHXK2 for hexokinase was not repressed. We discuss the possible mechanism of glucose repression and the potential for utilization of K. marxianus in high-temperature fermentation with mixed sugars containing glucose.
ERIC Educational Resources Information Center
Baser, Mustafa; Geban, Omer
2007-01-01
This study was conducted to investigate the effectiveness of learning activities based on conceptual change conditions and traditionally designed physics instruction on tenth-grade students' understanding of static electricity concepts and their attitudes toward physics as a school subject. Misconceptions related to static electricity concepts…
14 CFR Appendix E to Part 43 - Altimeter System Test and Inspection
Code of Federal Regulations, 2011 CFR
2011-01-01
... made that would affect the relationship between air pressure in the static pressure system and true ambient static air pressure for any flight condition. (b) Altimeter: (1) Test by an appropriately rated... inspections required by § 91.411 shall comply with the following: (a) Static pressure system: (1) Ensure...
Ahmed, Ashik; Al-Amin, Rasheduzzaman; Amin, Ruhul
2014-01-01
This paper proposes designing of Static Synchronous Series Compensator (SSSC) based damping controller to enhance the stability of a Single Machine Infinite Bus (SMIB) system by means of Invasive Weed Optimization (IWO) technique. Conventional PI controller is used as the SSSC damping controller which takes rotor speed deviation as the input. The damping controller parameters are tuned based on time integral of absolute error based cost function using IWO. Performance of IWO based controller is compared to that of Particle Swarm Optimization (PSO) based controller. Time domain based simulation results are presented and performance of the controllers under different loading conditions and fault scenarios is studied in order to illustrate the effectiveness of the IWO based design approach.
Tensile Properties of Under-Matched Weld Joints for 950 MPa Steel.
NASA Astrophysics Data System (ADS)
Yamamoto, Kouji; Arakawa, Toshiaki; Akazawa, Nobuki; Yamamoto, Kousei; Matsuo, Hiroki; Nakagara, Kiyoyuki; Suita, Yoshikazu
In welding of 950 MPa-class high tensile strength steel, preheating is crucial in order to avoid cold cracks, which, however, eventually increases welding deformations. One way to decrease welding deformations is lowering preheating temperature by using under-matched weld metal. Toyota and others clarify that although breaking elongation can decrease due to plastic constraint effect under certain conditions, static tensile of under-matched weld joints is comparable to that of base metal. However, there has still been no report about joint static tensile of under-matched weld joints applied to 950 MPa-class high tensile strength steel. In this study, we aim to research tensile strength and fatigue strength of under-matched weld joints applied to 950 MPa-class high tensile steel.
The acoustical structure of highly porous open-cell foams
NASA Technical Reports Server (NTRS)
Lambert, R. F.
1982-01-01
This work concerns both the theoretical prediction and measurement of structural parameters in open-cell highly porous polyurethane foams. Of particular interest are the dynamic flow resistance, thermal time constant, and mass structure factor and their dependence on frequency and geometry of the cellular structure. The predictions of cell size parameters, static flow resistance, and heat transfer as accounted for by a Nusselt number are compared with measurement. Since the static flow resistance and inverse thermal time constant are interrelated via the 'mean' pore size parameter of Biot, only two independent measurements such as volume porosity and mean filament diameter are required to make the predictions for a given fluid condition. The agreements between this theory and nonacoustical experiments are excellent.
Recombination of Hydrogen-Air Combustion Products in an Exhaust Nozzle
NASA Technical Reports Server (NTRS)
Lezberg, Erwin A.; Lancashire, Richard B.
1961-01-01
Thrust losses due to the inability of dissociated combustion gases to recombine in exhaust nozzles are of primary interest for evaluating the performance of hypersonic ramjets. Some results for the expansion of hydrogen-air combustion products are described. Combustion air was preheated up to 33000 R to simulate high-Mach-number flight conditions. Static-temperature measurements using the line reversal method and wall static pressures were used to indicate the state of the gas during expansion. Results indicated substantial departure from the shifting equilibrium curve beginning slightly downstream of the nozzle throat at stagnation pressures of 1.7 and 3.6 atmospheres. The results are compared with an approximate method for determining a freezing point using an overall rate equation for the oxidation of hydrogen.
Stress-corrosion behavior of aluminum-lithium alloys in aqueous salt environments
NASA Technical Reports Server (NTRS)
Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.
1984-01-01
The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg; two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.
Moderate MAS enhances local (1)H spin exchange and spin diffusion.
Roos, Matthias; Micke, Peter; Saalwächter, Kay; Hempel, Günter
2015-11-01
Proton NMR spin-diffusion experiments are often combined with magic-angle spinning (MAS) to achieve higher spectral resolution of solid samples. Here we show that local proton spin diffusion can indeed become faster at low (<10 kHz) spinning rates as compared to static conditions. Spin diffusion under static conditions can thus be slower than the often referred value of 0.8 nm(2)/ms, which was determined using slow MAS (Clauss et al., 1993). The enhancement of spin diffusion by slow MAS relies on the modulation of the orientation-dependent dipolar couplings during sample rotation and goes along with transient level crossings in combination with dipolar truncation. The experimental finding and its explanation is supported by density matrix simulations, and also emphasizes the sensitivity of spin diffusion to the local coupling topology. The amplification of spin diffusion by slow MAS cannot be explained by any model based on independent spin pairs; at least three spins have to be considered. Copyright © 2015 Elsevier Inc. All rights reserved.
Stress-corrosion behavior of aluminum-lithium alloys in aqueous environments
NASA Technical Reports Server (NTRS)
Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.
1983-01-01
The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.
The role of movement in the recognition of famous faces.
Lander, K; Christie, F; Bruce, V
1999-11-01
The effects of movement on the recognition of famous faces shown in difficult conditions were investigated. Images were presented as negatives, upside down (inverted), and thresholded. Results indicate that, under all these conditions, moving faces were recognized significantly better than static ones. One possible explanation of this effect could be that a moving sequence contains more static information about the different views and expressions of the face than does a single static image. However, even when the amount of static information was equated (Experiments 3 and 4), there was still an advantage for moving sequences that contained their original dynamic properties. The results suggest that the dynamics of the motion provide additional information, helping to access an established familiar face representation. Both the theoretical and the practical implications for these findings are discussed.
The Influence of Forward Flight on Propeller Noise
NASA Technical Reports Server (NTRS)
Magliozzi, B.
1977-01-01
The effect of flight on blade surface pressures and propeller noise was reported. There were significant differences in blade surface pressures and far-field noise between static and flight conditions. The static data showed many high-intensity, tone-like peaks whereas the flight data was generally free from tones. The turbulence ingested by the propeller operating statically was dominated by long, thin eddies. In flight the scale of the turbulence was greately reduced from that observed statically.
Bowman, J D; Thomas, D C; London, S J; Peters, J M
1995-01-01
We present a hypothesis that the risk of childhood leukemia is related to exposure to specific combinations of static and extremely-low-frequency (ELF) magnetic fields. Laboratory data from calcium efflux and diatom mobility experiments were used with the gyromagnetic equation to predict combinations of 60 Hz and static magnetic fields hypothesized to enhance leukemia risk. The laboratory data predicted 19 bands of the static field magnitude with a bandwidth of 9.1 microT that, together with 60 Hz magnetic fields, are expected to have biological activity. We then assessed the association between this exposure metric and childhood leukemia using data from a case-control study in Los Angeles County. ELF and static magnetic fields were measured in the bedrooms of 124 cases determined from a tumor registry and 99 controls drawn from friends and random digit dialing. Among these subjects, 26 cases and 20 controls were exposed to static magnetic fields lying in the predicted bands of biological activity centered at 38.0 microT and 50.6 microT. Although no association was found for childhood leukemia in relation to measured ELF or static magnetic fields alone, an increasing trend of leukemia risk with measured ELF fields was found for subjects within these static field bands (P for trend = 0.041). The odds ratio (OR) was 3.3 [95% confidence interval (CI) = 0.4-30.5] for subjects exposed to static fields within the derived bands and to ELF magnetic field above 0.30 microT (compared to subjects exposed to static fields outside the bands and ELF magnetic fields below 0.07 microT). When the 60 Hz magnetic fields were assessed according to the Wertheimer-Leeper code for wiring configurations, leukemia risks were again greater with the hypothesized exposure conditions (OR = 9.2 for very high current configurations within the static field bands; 95% CI = 1.3-64.6). Although the risk estimates are based on limited magnetic field measurements for a small number of subjects, these findings suggest that the risk of childhood leukemia may be related to the combined effects of the static and ELF magnetic fields. Further tests of the hypothesis are proposed.
Numerical simulation of supersonic flow using a new analytical bleed boundary condition
NASA Technical Reports Server (NTRS)
Harloff, G. J.; Smith, G. E.
1995-01-01
A new analytical bleed boundary condition is used to compute flowfields for a strong oblique shock wave/boundary layer interaction with a baseline and three bleed rates at a freestream Mach number of 2.47 with an 8 deg shock generator. The computational results are compared to experimental Pitot pressure profiles and wall static pressures through the interaction region. An algebraic turbulence model is employed for the bleed and baseline cases, and a one equation model is also used for the baseline case where the boundary layer is separated.
Lee, Jung Keun; Park, Edward J.; Robinovitch, Stephen N.
2012-01-01
This paper proposes a Kalman filter-based attitude (i.e., roll and pitch) estimation algorithm using an inertial sensor composed of a triaxial accelerometer and a triaxial gyroscope. In particular, the proposed algorithm has been developed for accurate attitude estimation during dynamic conditions, in which external acceleration is present. Although external acceleration is the main source of the attitude estimation error and despite the need for its accurate estimation in many applications, this problem that can be critical for the attitude estimation has not been addressed explicitly in the literature. Accordingly, this paper addresses the combined estimation problem of the attitude and external acceleration. Experimental tests were conducted to verify the performance of the proposed algorithm in various dynamic condition settings and to provide further insight into the variations in the estimation accuracy. Furthermore, two different approaches for dealing with the estimation problem during dynamic conditions were compared, i.e., threshold-based switching approach versus acceleration model-based approach. Based on an external acceleration model, the proposed algorithm was capable of estimating accurate attitudes and external accelerations for short accelerated periods, showing its high effectiveness during short-term fast dynamic conditions. Contrariwise, when the testing condition involved prolonged high external accelerations, the proposed algorithm exhibited gradually increasing errors. However, as soon as the condition returned to static or quasi-static conditions, the algorithm was able to stabilize the estimation error, regaining its high estimation accuracy. PMID:22977288
Slipping and Tipping: Measuring Static Friction with a Straightedge
ERIC Educational Resources Information Center
Dietz, Eric; Aguilar, Isaac
2012-01-01
Following a discussion of forces, torques, and the conditions for static equilibrium, I tell my introductory mechanics class that I will show them how to measure the coefficient of static friction, us, between the surfaces of a block and the front bench using "nothing but a straightedge". After a few seconds of hushed anticipation, I nudge the…
A comparison of dynamic and static economic models of uneven-aged stand management
Robert G. Haight
1985-01-01
Numerical techniques have been used to compute the discrete-time sequence of residual diameter distributions that maximize the present net worth (PNW) of harvestable volume from an uneven-aged stand. Results contradicted optimal steady-state diameter distributions determined with static analysis. In this paper, optimality conditions for solutions to dynamic and static...
Static Orbits in Rotating Spacetimes
NASA Astrophysics Data System (ADS)
Collodel, Lucas G.; Kleihaus, Burkhard; Kunz, Jutta
2018-05-01
We show that under certain conditions an axisymmetric rotating spacetime contains a ring of points in the equatorial plane, where a particle at rest with respect to an asymptotic static observer remains at rest in a static orbit. We illustrate the emergence of such orbits for boson stars. Further examples are wormholes, hairy black holes, and Kerr-Newman solutions.
Static Standing Balance in Adolescents with Down Syndrome
ERIC Educational Resources Information Center
Villarroya, M. Adoracion; Gonzalez-Aguero, Alejandro; Moros-Garcia, Teresa; de la Flor Marin, Mario; Moreno, Luis A.; Casajus, Jose A.
2012-01-01
Aim: To analyse static-standing-balance of adolescents with Down syndrome (DS). Methods: Thirty-two adolescents with DS aged 10-19 years (DSG); 33 adolescents, age/sex-matched, without DS (CG). Static-standing-balance under four conditions (C1: open-eyes/fixed-foot-support; C2: closed-eyes/fixed-foot-support; C3: open-eyes/compliant-foot-support;…
Enhancing Learning from Dynamic and Static Visualizations by Means of Cueing
ERIC Educational Resources Information Center
Kuhl, Tim; Scheiter, Katharina; Gerjets, Peter
2012-01-01
The current study investigated whether learning from dynamic and two presentation formats for static visualizations can be enhanced by means of cueing. One hundred and fifty university students were randomly assigned to six conditions, resulting from a 2x3-design, with cueing (with/without) and type of visualization (dynamic, static-sequential,…
Toulotte, Claire; Thevenon, Andre; Fabre, Claudine
2006-01-30
The aim of this study was to evaluate the effects of training based on static and dynamic balance in single and dual task conditions in order to analyse the effects of detraining on static and dynamic balance in healthy elderly fallers and non-fallers. A group of 16 subjects were trained: eight fallers aged 71.1 +/- 5.0 years and eight non-fallers aged 68.4 +/- 4.5 years. The subjects were evaluated 3 months before the training period, 2 days before the training period, 2 days after the end of the training period and 3 months after the training period. All subjects performed a unipedal test with eyes open and eyes closed. Gait parameters were analysed under single-task and dual motor-task conditions. This study demonstrated a loss of physical capacities over 3 months for stride time, single support time for fallers in both conditions. Physical training significantly improves static and dynamic balance under single and dual task conditions. Lastly, after 3 months of detraining, a loss of the physical training effects were measured for fallers and non-fallers on the different walking parameters in the two conditions and on the unipedal tests. The absence of stimulation before the trained period shows a negative effect of ageing on walking and falls whereas training permits an improvement in static balance and the pattern of walking under single and dual task conditions, which could be due to an increase in muscular strength and a better division of attention. On the other hand, 3 months of detraining inhibited the effects of training, which showed the speed of the decline caused by 'natural' ageing.
Comparing spatially static and dynamic vibrotactile take-over requests in the driver seat.
Petermeijer, S M; Cieler, S; de Winter, J C F
2017-02-01
Vibrotactile stimuli can be effective as warning signals, but their effectiveness as directional take-over requests in automated driving is yet unknown. This study aimed to investigate the correct response rate, reaction times, and eye and head orientation for static versus dynamic directional take-over requests presented via vibrating motors in the driver seat. In a driving simulator, eighteen participants performed three sessions: 1) a session involving no driving (Baseline), 2) driving a highly automated car without additional task (HAD), and 3) driving a highly automated car while performing a mentally demanding task (N-Back). Per session, participants received four directional static (in the left or right part of the seat) and four dynamic (moving from one side towards the opposite left or right of the seat) take-over requests via two 6×4 motor matrices embedded in the seat back and bottom. In the Baseline condition, participants reported whether the cue was left or right, and in the HAD and N-Back conditions participants had to change lanes to the left or to the right according to the directional cue. The correct response rate was operationalized as the accuracy of the self-reported direction (Baseline session) and the accuracy of the lane change direction (HAD & N-Back sessions). The results showed that the correct response rate ranged between 94% for static patterns in the Baseline session and 74% for dynamic patterns in the N-Back session, although these effects were not statistically significant. Steering wheel touch and steering input reaction times were approximately 200ms faster for static patterns than for dynamic ones. Eye tracking results revealed a correspondence between head/eye-gaze direction and lane change direction, and showed that head and eye-gaze movements where initiated faster for static vibrations than for dynamic ones. In conclusion, vibrotactile stimuli presented via the driver seat are effective as warnings, but their effectiveness as directional take-over requests may be limited. The present study may encourage further investigation into how to get drivers safely back into the loop. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baevich, V. Ya
1987-05-01
The kinetic mechanisms of the oxidation and combustion of hydrogen, methane, methyl alcohol, acetylene, ethylene, ethane, and methylamine, using oxygen as well as hydrogen peroxide and nitric acid as oxidants, are discussed. The calculated and experimental data obtained under static conditions, in a flow, during flame propagation, and in shock tubes are compared. The bibliography includes 184 references.
Chronic effect of static stretching on strength performance and basal serum IGF-1 levels.
Borges Bastos, Carmen L; Miranda, Humberto; Vale, Rodrigo Gomes de Souza; Portal, Maria de Nazaré; Gomes, M Thiago; Novaes, Jefferson da Silva; Winchester, Jason B
2013-09-01
Improving the process of how physical performance is enhanced is one of the main topics evaluated by physiologists. This process often involves athletes and nonathletic populations. The purpose of this study was to assess the chronic response to 10 weeks of static stretching exercises carried out before and during a strength training program for 8 exercises on an 8 repetition maximum (8RM) test performance, and basal serum insulinlike growth factor (IGF-1) levels. Thirty recreationally trained volunteers were randomly assigned to 1 of 3 training groups: (a) SBST (performed a warm-up with a static stretching protocol before each strength training session); (b) SDST (before each training set, a static stretching exercise was performed); and (c) OST (entire session was performed without any type of stretching exercise). Strength and IGF-1 levels were collected at the beginning (pretest) and end (posttest) of the entire experimental procedure. All the exercises showed a significant increase in muscle strength for the OST group. However, the results revealed a significant increase in the muscle strength for only a few exercises in the SBST (LP, LE) and SDST (LP) experimental conditions. Significant statistical differences were found between SBST and SDST for all the exercises in the OST experimental condition. Furthermore, the IGF-1 expression showed no significant differences in the intragroup analysis. However, the OST group showed higher values (p < 0.05) in the posttest when compared with those of the other groups (increased significantly only in the OST experimental condition). It has been concluded that, although all the groups showed an increase in muscular strength, the strength training performed without any type of stretching exercise, regardless of whether the stretching is performed before or during the lifting session, can more effectively increase muscle strength and basal serum IGF-1 levels. It was concluded that strength training, with or without the use of stretching exercises, increased muscular strength in the studied groups, and can induce an increase in IGF-1 levels.
Posturography and risk of recurrent falls in healthy non-institutionalized persons aged over 65.
Buatois, Séverine; Gueguen, René; Gauchard, Gérome C; Benetos, Athanase; Perrin, Philippe P
2006-01-01
A poor postural stability in older people is associated with an increased risk of falling. The posturographic tool has widely been used to assess balance control; however, its value in predicting falls remains unclear. The purpose of this prospective study was to determine the predictive value of posturography in the estimation of the risk of recurrent falls, including a comparison with standard clinical balance tests, in healthy non-institutionalized persons aged over 65. Two hundred and six healthy non-institutionalized volunteers aged over 65 were tested. Postural control was evaluated by posturographic tests, performed on static, dynamic and dynamized platforms (static test, slow dynamic test and Sensory Organization Test [SOT]) and clinical balance tests (Timed 'Up & Go' test, One-Leg Balance, Sit-to-Stand-test). Subsequent falls were monitored prospectively with self-questionnaire sent every 4 months for a period of 16 months after the balance testing. Subjects were classified prospectively in three groups of Non-Fallers (0 fall), Single-Fallers (1 fall) and Multi-Fallers (more than 2 falls). Loss of balance during the last trial of the SOT sensory conflicting condition, when visual and somatosensory inputs were distorted, was the best factor to predict the risk of recurrent falls (OR = 3.6, 95% CI = 1.3-10.11). Multi-Fallers showed no postural adaptation during the repetitive trials of this sensory condition, contrary to Non-Fallers and Single-Fallers. The Multi-Fallers showed significantly more sway when visual inputs were occluded. The clinical balance tests, the static test and the slow dynamic test revealed no significant differences between the groups. In a sample of non-institutionalized older persons aged over 65, posturographic evaluation by the SOT, especially with repetition of the same task in sensory conflicting condition, compared to the clinical tests and the static and dynamic posturographic test, appears to be a more sensitive tool to identify those at high-risk of recurrent falls. Copyright (c) 2006 S. Karger AG, Basel.
Static and dynamic removal of aquatic natural organic matter by carbon nanotubes.
Ajmani, Gaurav S; Cho, Hyun-Hee; Abbott Chalew, Talia E; Schwab, Kellogg J; Jacangelo, Joseph G; Huang, Haiou
2014-08-01
Carbon nanotubes (CNTs) were investigated for their capability and mechanisms to simultaneously remove colloidal natural organic matter (NOM) and humic substances from natural surface water. Static removal testing was conducted via adsorption experiments while dynamic removal was evaluated by layering CNTs onto substrate membranes and filtering natural water through the CNT-layered membranes. Analyses of treated water samples showed that removal of humic substances occurred via adsorption under both static and dynamic conditions. Removal of colloidal NOM occurred at a moderate level of 36-66% in static conditions, independent of the specific surface area (SSA) of CNTs. Dynamic removal of colloidal NOM increased from approximately 15% with the unmodified membrane to 80-100% with the CNT-modified membranes. Depth filtration played an important role in colloidal NOM removal. A comparison of the static and dynamic removal of humic substances showed that equilibrium static removal was higher than dynamic (p < 0.01), but there was also a significant linear relationship between static and dynamic removal (p < 0.05). Accounting for contact time of CNTs with NOM during filtration, it appeared that CNT mat structure was an important determinant of removal efficiencies for colloidal NOM and humic substances during CNT membrane filtration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dai, D; Raskin, L; Xi, C
2017-12-01
Interactions with water bacteria affect the incorporation of pathogens into biofilms and thus pathogen control in drinking water systems. This study was to examine the impact of static vs flow conditions on interactions between a pathogen and a water bacterium on pathogen biofilm formation under laboratory settings. A pathogen surrogate Escherichia coli and a drinking water isolate Stenotrophomonas maltophilia was selected for this study. Biofilm growth was examined under two distinct conditions, in flow cells with continuous medium supply vs in static microtitre plates with batch culture. E. coli biofilm was greatly stimulated (c. 2-1000 times faster) with the presence of S. maltophilia in flow cells, but surprisingly inhibited (c. 65-95% less biomass) in microtitre plates. These divergent effects were explained through various aspects including surface attachment, cellular growth, extracellular signals and autoaggregation. Interactions with the same water bacterium resulted in different effects on E. coli biofilm formation when culture conditions changed from static to flow. This study highlights the complexity of species interactions on biofilm formation and suggests that environmental conditions such as the flow regime can be taken into consideration for the management of microbial contamination in drinking water systems. © 2017 The Society for Applied Microbiology.
Orbital-resolved nonadiabatic tunneling ionization
NASA Astrophysics Data System (ADS)
Zhang, Qingbin; Basnayake, Gihan; Winney, Alexander; Lin, Yun Fei; Debrah, Duke; Lee, Suk Kyoung; Li, Wen
2017-08-01
In this theoretical work, we show that both the orbital helicity (p+ vs p-) and the adiabaticity of tunneling have a significant effect on the initial conditions of tunneling ionization. We developed a hybrid quantum (numerical solution of the time-dependent Schrödinger equation) and classical (back propagation of trajectories) approach to extract orbital-specific initial conditions of electrons at the tunneling exit. Clear physical insight connecting these initial conditions with the final momentum and deflection angles of electrons are presented. Moreover, the adiabaticity of tunneling ionization is characterized by comparing the initial conditions with those with a static field. Significant nonadiabatic tunneling is found to persist beyond a Keldysh parameter of less than 0.5.
Static and dynamic postural control in low-vision and normal-vision adults.
Tomomitsu, Mônica S V; Alonso, Angelica Castilho; Morimoto, Eurica; Bobbio, Tatiana G; Greve, Julia M D
2013-04-01
This study aimed to evaluate the influence of reduced visual information on postural control by comparing low-vision and normal-vision adults in static and dynamic conditions. Twenty-five low-vision subjects and twenty-five normal sighted adults were evaluated for static and dynamic balance using four protocols: 1) the Modified Clinical Test of Sensory Interaction on Balance on firm and foam surfaces with eyes opened and closed; 2) Unilateral Stance with eyes opened and closed; 3) Tandem Walk; and 4) Step Up/Over. The results showed that the low-vision group presented greater body sway compared with the normal vision during balance on a foam surface (p≤0.001), the Unilateral Stance test for both limbs (p≤0.001), and the Tandem Walk test. The low-vision group showed greater step width (p≤0.001) and slower gait speed (p≤0.004). In the Step Up/Over task, low-vision participants were more cautious in stepping up (right p≤0.005 and left p≤0.009) and in executing the movement (p≤0.001). These findings suggest that visual feedback is crucial for determining balance, especially for dynamic tasks and on foam surfaces. Low-vision individuals had worse postural stability than normal-vision adults in terms of dynamic tests and balance on foam surfaces.
Effect of static and dynamic exercise on heart rate and blood pressure variabilities.
González-Camarena, R; Carrasco-Sosa, S; Román-Ramos, R; Gaitán-González, M J; Medina-Bañuelos, V; Azpiroz-Leehan, J
2000-10-01
This study examines the effect of static and dynamic leg exercises on heart rate variability (HRV) and blood pressure variability (BPV) in humans. 10 healthy male subjects were studied at rest, during static exercise performed at 30% of maximal voluntary contraction (SX30), and during dynamic cycling exercises done at 30% of VO2max (DX30) and at 60% of VO2max (DX60). Respiration, heart rate, and blood pressure signals were digitized to analyze temporal and spectral parameters involving short and overall indexes (SD, deltaRANGE, RMSSD, Total power), power of the low (LF), middle (MF), and high (HF) frequency components, and the baroreceptor sensitivity by the alphaMF index. During SX30, indexes of HRV as SD, deltaRANGE, Total power, and MF in absolute units increased in relation with rest values and were significantly higher (P < 0.001) than during DX30 and DX60; HF during SX30, in normalized and absolute units, was not different of the rest condition but was higher (P < 0.001) than HF during DX30 and DX60. Parameters of BPV as SD and deltaRANGE increased (P < 0.001) during both type of exercises, and significant (P < 0.01) increments were observed on MF during SX30 and DX30; systolic HF was attenuated during DX30 (P < 0.05), whereas diastolic HF was augmented during DX60 (P < 0.001). Compared with rest condition, the alphaMF index decreased (P < 0.01) only during dynamic exercises. Because HRV and BPV response is different when induced by static or dynamic exercise, differences in the autonomic activity can be advised. Instead of the vagal withdrawal and sympathetic augmentation observed during dynamic exercise, the increase in the overall HRV and the MF component during static exercise suggest an increased activity of both autonomic branches.
NASA Technical Reports Server (NTRS)
Smiley, Robert F; Horne, Walter B
1957-01-01
The vertical force-deflection characteristics were experimentally determined for a pair of 56-inch-diameter tires under static and drop-test conditions with and without prerotation. For increasing force, the tires were found to be least stiff for static tests, almost the same as for the static case for prerotation drop tests as long as the tires remain rotating, and appreciably stiffer for drop tests without prerotation.
W. James Catallo
2000-01-01
This work addressed the influence of tidal vs. static hydrologic conditions on biogeochemical processes and the transformation of pollutant organic chemicals (eight representative N-, O-, and S-heterocycles (NOSHs) from coal chemicals, crude oils, and pyrogenic mixtures) in salt marsh sediments. The goals were to: (1) determine the effects of static (flooded, drained)...
Liao, Wen-Jun; Chen, Wan-Wen; Wen, Zhang; Wu, Yue-Heng; Li, Dong-Feng; Zhou, Jia-Hui; Zheng, Jian-Yi; Lin, Zhan-Yi
2016-06-20
To improve Luo-Ye pump-based stress-forming system and optimize the stimulating effect on smooth muscle cells during cultivation of tissue-engineered blood vessels (TEBV). A new Luo-Ye pump-based TEBV 3D culture system was developed by adding an air pump to the output of the bioreactor. A pressure guide wire was used to measure the stress at different points of the silicone tube inside the TEBV bio-reactor, and fitting curves of the stress changes over time was created using Origin 8.0 software. The TEBVs were constructed by seeding vascular smooth muscle cells (VSMCs) isolated from human umbilical artery on polyglycolic acid (PGA) and cultured under dynamic conditions with 40 mmHg resistance (improved group), dynamic conditions without resistance (control group) or static condition (static group) for 4 weeks. The harvested TEBVs were then examined with HE staining, masson staining, α-SMA immunohistochemical staining, and scanning and transmission electron microscopy with semi-quantitative analysis of collagen content and α-SMA expression. The measured stress values and the fitting curves showed that the stress stimuli from the Luo-Ye pump were enhanced by adding an air pump to the output of the bioreactor. Histological analysis revealed improved VSMC density, collagen content and α-SMA expression in the TEBVs constructed with the improved method as compared with those in the control and static groups. Adding an air pump to the Luo-Ye pump significantly enhances the stress stimulation in the TEBV 3-D culture system to promote the secretion function of VSMCs.
NASA Technical Reports Server (NTRS)
1956-01-01
Report presents the correlation of extensive data obtained relating properties of wrought n-155 alloy under static, combined static and dynamic, and complete reversed dynamic stress conditions. Time period for fracture ranged from 50 to 500 hours at room temperature, 1,000 degrees, 1,200 degrees, and 1,500 degrees F.
Inhibitory guidance in visual search: the case of movement-form conjunctions.
Dent, Kevin; Allen, Harriet A; Braithwaite, Jason J; Humphreys, Glyn W
2012-02-01
We used a probe-dot procedure to examine the roles of excitatory attentional guidance and distractor suppression in search for movement-form conjunctions. Participants in Experiment 1 completed a conjunction (moving X amongst moving Os and static Xs) and two single-feature (moving X amongst moving Os, and static X amongst static Os) conditions. "Active" participants searched for the target, whereas "passive" participants viewed the displays without responding. Subsequently, both groups located (left or right) a probe dot appearing in either an occupied or an unoccupied location. In the conjunction condition, the active group located probes presented on static distractors more slowly than probes presented on moving distractors, reversing the direction of the difference found within the passive group. This disadvantage for probes on static items was much stronger in conjunction than in single-feature search. The same pattern of results was replicated in Experiment 2, which used a go/no-go procedure. Experiment 3 extended the go/no-go procedure to the case of search for a static target and revealed increased probe localisation times as a consequence of active search, primarily for probes on moving distractor items. The results demonstrated attentional guidance by inhibition of distractors in conjunction search.
Effect of micro-vibration culture system on embryo development.
Hur, Yong Soo; Park, Jeong Hyun; Ryu, Eun Kyung; Park, Sung Jin; Lee, Jun Ho; Lee, Soo Hee; Yoon, Jung; Yoon, San Hyun; Hur, Chang Young; Lee, Won Don; Lim, Jin Ho
2013-06-01
Micro-vibration culture system was examined to determine the effects on mouse and human embryo development and possible improvement of clinical outcomes in poor responders. The embryonic development rates and cell numbers of blastocysts were compared between a static culture group (n = 178) and a micro-vibration culture group (n = 181) in mice. The embryonic development rates and clinical results were compared between a static culture group (n = 159 cycles) and a micro-vibration culture group (n = 166 cycles) in poor responders. A micro-vibrator was set at a frequency of 42 Hz, 5 s/60 min duration for mouse and human embryo development. The embryonic development rate was significantly improved in the micro-vibration culture group in mice (p < 0.05). The cell numbers of mouse blastocysts were significantly higher in the micro-vibration group than in the static culture group (p < 0.05). In the poor responders, the rate of high grade embryos was not significantly improved in the micro-vibration culture group on day 3. However, the optimal embryonic development rate on day 5 was improved in the micro-vibration group, and the total pregnancy rate and implantation rate were significantly higher in the micro-vibration group than in the static culture group (p < 0.05). Micro-vibration culture methods have a beneficial effect on embryonic development in mouse embryos. In poor responders, the embryo development rate was improved to a limited extent under the micro-vibration culture conditions, but the clinical results were significantly improved.
Survival of Shewanella Oneidensis MR-1 to GPa pressures
NASA Astrophysics Data System (ADS)
Hazael, Rachael; Foglia, Fabrizia; Leighs, James; Appleby-Thomas, Gareth; Daniel, Isabelle; Eakins, Daniel; Meersman, Filip; McMillian, Paul
2013-06-01
Most life on Earth is thought to occupy near-surface environments under relatively mild conditions of temperature, pressure, pH, salinity etc. That view is changing following discovery of extremophile organisms that prefer environments based on high or low T, extreme chemistries, or very high pressures. Over the past three decades, geomicrobiologists have discovered an extensive subsurface biosphere, that may account for between 1/10 to 1/3 of Earth's living biomass. We subjected samples of Shewanella oneidensis to several pressure cycles to examine its survival to static high pressures to above 1.5 GPa. Shewanella forms part of a genus that contains several piezophile species like S. violacea and S. benthica. We have obtained growth curves for populations recovered from high P conditions and cultured in the laboratory, before being subjected to even higher pressures. We have also carried out dynamic shock experiments using a specially designed cell to maintain high-P, low-T conditions during shock-recovery experiments and observe colony formation among the survivors. Colony counts, shape and growth curves allow us to compare the static vs dynamic pressure resistance of wild type vs pressure-adapted strains. Leverhulme
Parallel Numerical Simulations of Water Reservoirs
NASA Astrophysics Data System (ADS)
Torres, Pedro; Mangiavacchi, Norberto
2010-11-01
The study of the water flow and scalar transport in water reservoirs is important for the determination of the water quality during the initial stages of the reservoir filling and during the life of the reservoir. For this scope, a parallel 2D finite element code for solving the incompressible Navier-Stokes equations coupled with scalar transport was implemented using the message-passing programming model, in order to perform simulations of hidropower water reservoirs in a computer cluster environment. The spatial discretization is based on the MINI element that satisfies the Babuska-Brezzi (BB) condition, which provides sufficient conditions for a stable mixed formulation. All the distributed data structures needed in the different stages of the code, such as preprocessing, solving and post processing, were implemented using the PETSc library. The resulting linear systems for the velocity and the pressure fields were solved using the projection method, implemented by an approximate block LU factorization. In order to increase the parallel performance in the solution of the linear systems, we employ the static condensation method for solving the intermediate velocity at vertex and centroid nodes separately. We compare performance results of the static condensation method with the approach of solving the complete system. In our tests the static condensation method shows better performance for large problems, at the cost of an increased memory usage. Performance results for other intensive parts of the code in a computer cluster are also presented.
NASA Astrophysics Data System (ADS)
Nandi, N.; Chowdhury, Roy; Dutta, S. C.
2018-02-01
The present study makes an effort to understand the damage of earthen dams under static and seismic loading condition. To make the investigation more realistic, behaviour of earthen dams considering the occurrence of a phreatic line indicating the submerged zone due to seepage within the dam body is considered. In case of earthen dams, homogeneous or nonhomogeneous, the consideration of the occurrence of a phreatic line or seepage line through the dam body is an important part of the earthen dam design methodology. The impervious material properties in the submerged zone below the phreatic line due to seepage may differ a lot in magnitudes as compared to the value of the same materials lying above this line. Hence, to have the exact stress distribution scenarios within the earthen dam, the different material properties above and below the phreatic line are considered in this present study. The study is first carried out by two-dimensional as well as three-dimensional finite element analysis under static loading condition. The work is further extended to observe the effect of seepage due to the consideration of the phreatic line on dynamic characteristics of earthen dams. Free vibration analysis and seismic analysis based on the Complete Quadratic Combination (CQC) method by considering twodimensional and three-dimensional modeling are carried out to present the frequencies, mode shapes and the stress distribution pattern of the earthen dam.
Maeda, Noriaki; Urabe, Yukio; Tsutsumi, Shogo; Sakai, Shogo; Fujishita, Hironori; Kobayashi, Toshiki; Asaeda, Makoto; Hirata, Kazuhiko; Mikami, Yukio; Kimura, Hiroaki
2017-12-01
This study aimed to clarify the acute effects of static stretching (SS) and cyclic stretching (CS) on muscle stiffness and hardness of the medial gastrocnemius muscle (MG) by using ultrasonography, range of motion (ROM) of the ankle joint and ankle plantar flexor. Twenty healthy men participated in this study. Participants were randomly assigned to SS, CS and control conditions. Each session consisted of a standard 5-minute cycle warm-up, accompanied by one of the subsequent conditions in another day: (a) 2 minutes static stretching, (b) 2 minutes cyclic stretching, (c) control. Maximum ankle dorsiflexion range of motion (ROM max) and normalized peak torque (NPT) of ankle plantar flexor were measured in the pre- and post-stretching. To assess muscle stiffness, muscle-tendon junction (MTJ) displacement (the length changes in tendon and muscle) and MTJ angle (the angle made by the tendon of insertion and muscle fascicle) of MG were measured using ultrasonography at an ankle dorsiflexion angle of -10°, 0°, 10° and 20° before and after SS and CS for 2 minutes in the pre- and post-stretching. MG hardness was measured using ultrasound real-time tissue elastography (RTE). The results of this study indicate a significant effect of SS for ROM maximum, MTJ angle (0°, 10°, 20°) and RTE (10°, 20°) compared with CS (p < 0.05). There were no significant differences in MTJ displacement between SS and CS. CS was associated with significantly higher NPT values than SS. This study suggests that SS of 2 minutes' hold duration significantly affected muscle stiffness and hardness compared with CS. In addition, CS may contribute to the elongation of muscle tissue and increased muscle strength.
Application Possibility of Smartphone as Payload for Photogrammetric Uav System
NASA Astrophysics Data System (ADS)
Yun, M. H.; Kim, J.; Seo, D.; Lee, J.; Choi, C.
2012-07-01
Smartphone can not only be operated under 3G network environment anytime and anyplace but also cost less than the existing photogrammetric UAV since it provides high-resolution image, 3D location and attitude data on a real-time basis from a variety of built-in sensors. This study is aimed to assess the possibility of smartphone as a payload for photogrammetric UAV system. Prior to such assessment, a smartphone-based photogrammetric UAV system application was developed, through which real-time image, location and attitude data was obtained using smartphone under both static and dynamic conditions. Subsequently the accuracy assessment on the location and attitude data obtained and sent by this system was conducted. The smartphone images were converted into ortho-images through image triangulation. The image triangulation was conducted in accordance with presence or absence of consideration of the interior orientation (IO) parameters determined by camera calibration. In case IO parameters were taken into account in the static experiment, the results from triangulation for any smartphone type were within 1.5 pixel (RMSE), which was improved at least by 35% compared to when IO parameters were not taken into account. On the contrary, the improvement effect of considering IO parameters on accuracy in triangulation for smartphone images in dynamic experiment was not significant compared to the static experiment. It was due to the significant impact of vibration and sudden attitude change of UAV on the actuator for automatic focus control within the camera built in smartphone under the dynamic condition. This cause appears to have a negative impact on the image-based DEM generation. Considering these study findings, it is suggested that smartphone is very feasible as a payload for UAV system. It is also expected that smartphone may be loaded onto existing UAV playing direct or indirect roles significantly.
NASA Astrophysics Data System (ADS)
Keshta, H. E.; Ali, A. A.; Saied, E. M.; Bendary, F. M.
2016-10-01
Large-scale integration of wind turbine generators (WTGs) may have significant impacts on power system operation with respect to system frequency and bus voltages. This paper studies the effect of Static Var Compensator (SVC) connected to wind energy conversion system (WECS) on voltage profile and the power generated from the induction generator (IG) in wind farm. Also paper presents, a dynamic reactive power compensation using Static Var Compensator (SVC) at the a point of interconnection of wind farm while static compensation (Fixed Capacitor Bank) is unable to prevent voltage collapse. Moreover, this paper shows that using advanced optimization techniques based on artificial intelligence (AI) such as Harmony Search Algorithm (HS) and Self-Adaptive Global Harmony Search Algorithm (SGHS) instead of a Conventional Control Method to tune the parameters of PI controller for SVC and pitch angle. Also paper illustrates that the performance of the system with controllers based on AI is improved under different operating conditions. MATLAB/Simulink based simulation is utilized to demonstrate the application of SVC in wind farm integration. It is also carried out to investigate the enhancement in performance of the WECS achieved with a PI Controller tuned by Harmony Search Algorithm as compared to a Conventional Control Method.
Oxidation performance of platinum-clad Mo-47Re alloy
NASA Technical Reports Server (NTRS)
Clark, Ronald K.; Wallace, Terryl A.
1994-01-01
The alloy Mo-47Re has favorable mechanical properties at temperatures above 1400 C, but it undergoes severe oxidation when used in air with no protective coating. To shield the alloy from oxidation, platinum cladding has been evaluated. The unprotected alloy undergoes catastrophic oxidation under static and dynamic oxidation conditions. The platinum cladding provides good protection from static and dynamic oxidation for moderate times at 1260 C. Samples tested for longer times under static oxidation conditions experienced severe oxidation. The data suggest that oxidation results from the transport of oxygen through the grain boundaries and through the pinhole defects of the platinum cladding.
How humans use visual optic flow to regulate stepping during walking.
Salinas, Mandy M; Wilken, Jason M; Dingwell, Jonathan B
2017-09-01
Humans use visual optic flow to regulate average walking speed. Among many possible strategies available, healthy humans walking on motorized treadmills allow fluctuations in stride length (L n ) and stride time (T n ) to persist across multiple consecutive strides, but rapidly correct deviations in stride speed (S n =L n /T n ) at each successive stride, n. Several experiments verified this stepping strategy when participants walked with no optic flow. This study determined how removing or systematically altering optic flow influenced peoples' stride-to-stride stepping control strategies. Participants walked on a treadmill with a virtual reality (VR) scene projected onto a 3m tall, 180° semi-cylindrical screen in front of the treadmill. Five conditions were tested: blank screen ("BLANK"), static scene ("STATIC"), or moving scene with optic flow speed slower than ("SLOW"), matched to ("MATCH"), or faster than ("FAST") walking speed. Participants took shorter and faster strides and demonstrated increased stepping variability during the BLANK condition compared to the other conditions. Thus, when visual information was removed, individuals appeared to walk more cautiously. Optic flow influenced both how quickly humans corrected stride speed deviations and how successful they were at enacting this strategy to try to maintain approximately constant speed at each stride. These results were consistent with Weber's law: healthy adults more-rapidly corrected stride speed deviations in a no optic flow condition (the lower intensity stimuli) compared to contexts with non-zero optic flow. These results demonstrate how the temporal characteristics of optic flow influence ability to correct speed fluctuations during walking. Copyright © 2017 Elsevier B.V. All rights reserved.
Parameter Identification of Static Friction Based on An Optimal Exciting Trajectory
NASA Astrophysics Data System (ADS)
Tu, X.; Zhao, P.; Zhou, Y. F.
2017-12-01
In this paper, we focus on how to improve the identification efficiency of friction parameters in a robot joint. First, the static friction model that has only linear dependencies with respect to their parameters is adopted so that the servomotor dynamics can be linearized. In this case, the traditional exciting trajectory based on Fourier series is modified by replacing the constant term with quintic polynomial to ensure the boundary continuity of speed and acceleration. Then, the Fourier-related parameters are optimized by genetic algorithm(GA) in which the condition number of regression matrix is set as the fitness function. At last, compared with the constant-velocity tracking experiment, the friction parameters from the exciting trajectory experiment has the similar result with the advantage of time reduction.
Evaluation of composite flattened tubular specimen. [fatigue tests
NASA Technical Reports Server (NTRS)
Liber, T.; Daniel, I. M.
1978-01-01
Flattened tubular specimens of graphite/epoxy, S-glass/epoxy, Kevlar-49/epoxy, and graphite/S-glass/epoxy hybrid materials were evaluated under static and cyclic uniaxial tensile loading and compared directly with flat coupon data of the same materials generated under corresponding loading conditions. Additional development for the refinement of the flattened specimen configuration and fabrication was required. Statically tested graphite/epoxy, S-glass/epoxy, and Kevlar 49/epoxy flattened tube specimens exhibit somewhat higher average strengths than their corresponding flat coupons. Flattened tube specimens of the graphite/S-glass/epoxy hybrid and the graphite/epoxy flattened tube specimens failed in parasitic modes with consequential lower strength than the corresponding flat coupons. Fatigue tested flattened tube specimens failed in parasitic modes resulting in lower fatigue strengths than the corresponding flat coupons.
Raasch, Martin; Rennert, Knut; Jahn, Tobias; Peters, Sven; Henkel, Thomas; Huber, Otmar; Schulz, Ingo; Becker, Holger; Lorkowski, Stefan; Funke, Harald; Mosig, Alexander
2015-03-02
Hemodynamic forces generated by the blood flow are of central importance for the function of endothelial cells (ECs), which form a biologically active cellular monolayer in blood vessels and serve as a selective barrier for macromolecular permeability. Mechanical stimulation of the endothelial monolayer induces morphological remodeling in its cytoskeleton. For in vitro studies on EC biology culture devices are desirable that simulate conditions of flow in blood vessels and allow flow-based adhesion/permeability assays under optimal perfusion conditions. With this aim we designed a biochip comprising a perfusable membrane that serves as cell culture platform multi-organ-tissue-flow (MOTiF biochip). This biochip allows an effective supply with nutrition medium, discharge of catabolic cell metabolites and defined application of shear stress to ECs under laminar flow conditions. To characterize EC layers cultured in the MOTiF biochip we investigated cell viability, expression of EC marker proteins and cell adhesion molecules of ECs dynamically cultured under low and high shear stress, and compared them with an endothelial culture in established two-dimensionally perfused flow chambers and under static conditions. We show that ECs cultured in the MOTiF biochip form a tight EC monolayer with increased cellular density, enhanced cell layer thickness, presumably as the result of a rapid and effective adaption to shear stress by remodeling of the cytoskeleton. Moreover, endothelial layers in the MOTiF biochip express higher amounts of EC marker proteins von-Willebrand-factor and PECAM-1. EC layers were highly responsive to stimulation with TNFα as detected at the level of ICAM-1, VCAM-1 and E-selectin expression and modulation of endothelial permeability in response to TNFα/IFNγ treatment under flow conditions. Compared to static and two-dimensionally perfused cell culture condition we consider MOTiF biochips as a valuable tool for studying EC biology in vitro under advanced culture conditions more closely resembling the in vivo situation.
Comparison of Static Balance and the Role of Vision in Elite Athletes
Hammami, Raouf; Behm, David G; Chtara, Mokhtar; Ben Othman, Aymen; Chaouachi, Anis
2014-01-01
When prescribing balance exercises to athletes in different sports, it may be important to recognize performance variations. Indeed, how athletes from different sports perform on balance tests is not well understood. The goal of the present study was to compare static balance and the role of vision among elite sprinters, jumpers and rugby players. The modified clinical test of sensory interaction on balance (mCTSIB) was used to assess the velocity of the center-of-pressure (CoP) on a force platform during a 30 s bipedal quiet standing posture in 4 conditions: firm surface with opened and closed eyes, foam surface with opened and closed eyes. Three-factor ANOVA indicated a significant main effect for groups (F=21.69, df=2, p<0.001, η2 = 0.34). Significant main effect of vision (F=43.20, df=1, p<0.001, η2 = 0.34) and surface (F=193.41, df=1, p<0.001, η2 = 0.70) as well as an interaction between vision (eyes open, eyes closed) and surface (firm and foam) (F=21.79, df=1, p=0.001) were reported in all groups. The subsequent Bonferroni-Dunn post hoc test indicated that rugby players displayed better static balance than sprinters and jumpers (p=0.001). The comparison of sprinters and jumpers did not reveal significant differences (p>0.05). The nature of the sport practiced and the absence of visual control are linked to modify static balance in elite athletes. Coaches and strength and conditioning professionals are recommended to use a variety of exercises to improve balance, including both exercises with opened and closed eyes on progressively challenging surfaces in order to make decisions about tasks and sensory availability during assessment and training. PMID:25114729
Karim Soltani, Mohammad; Golfeshan, Farzaneh; Alizadeh, Yoones; Mehrzad, Jabraiel
2015-03-01
Frictional forces are considered as important counterforce to orthodontic tooth movement. It is claimed that self-ligating brackets reduce the frictional forces. The aim of this study was to compare the resistance to sliding in metallic and clear Damon brackets with the conventional brackets in a wet condition. The samples included 4 types of brackets; metallic and clear Damon brackets and metallic and clear conventional brackets (10 brackets in each group). In this study, stainless steel wires sized 0.019×0.025 were employed and the operator's saliva was used to simulate the conditions of oral cavity. The tidy-modified design was used for simulation of sliding movement. The resistance to sliding and static frictional forces was measured by employing Testometric machine and load cell. The mean (±SD) of resistance to sliding was 194.88 (±26.65) and 226.62 (±39.9) g in the esthetic and metallic Damon brackets, while these values were 187.81(±27.84) and 191.17(±66.68) g for the clear and metallic conventional brackets, respectively. Static frictional forces were 206.4(±42.45) and 210.38(±15.89) g in the esthetic and metallic Damon brackets and 220.63(±49.29) and 215.13(±62.38) g in the clear and metallic conventional brackets. According to two-way ANOVA, no significant difference was observed between the two bracket materials (clear and metal) and the two types of bracket (self-ligating versus conventional) regarding resistance to sliding (p= 0.17 and p= 0.23, respectively) and static frictional forces (p= 0.55 and p= 0.96, respectively). Neither the type of bracket materials nor their type of ligation made difference in resistance to sliding and static friction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xiaoqing; Deng, Liping
The moist static energy (MSE) anomalies and MSE budget associated with the Madden–Julian oscillation (MJO) simulated in the Iowa State University General Circulation Model (ISUGCM) over the Indian and Pacific Oceans are compared with observations. Different phase relationships between MJO 850-hPa zonal wind, precipitation, and surface latent heat flux are simulated over the Indian Ocean and western Pacific, which are greatly influenced by the convection closure, trigger conditions, and convective momentum transport (CMT). The moist static energy builds up from the lower troposphere 15–20 days before the peak of MJO precipitation, and reaches the maximum in the middle troposphere (500–600more » hPa) near the peak of MJO precipitation. The gradual lower-tropospheric heating and moistening and the upward transport of moist static energy are important aspects of MJO events, which are documented in observational studies but poorly simulated in most GCMs. The trigger conditions for deep convection, obtained from the year-long cloud resolving model (CRM) simulations, contribute to the striking difference between ISUGCM simulations with the original and modified convection schemes and play the major role in the improved MJO simulation in ISUGCM. Additionally, the budget analysis with the ISUGCM simulations shows the increase in MJO MSE is in phase with the horizontal advection of MSE over the western Pacific, while out of phase with the horizontal advection of MSE over the Indian Ocean. However, the NCEP analysis shows that the tendency of MJO MSE is in phase with the horizontal advection of MSE over both oceans.« less
Vazini Taher, Amir; Parnow, Abdolhossein
2017-05-01
Different methods of warm-up may have implications in improving various aspects of soccer performance. The present study aimed to investigate acute effects of soccer specific warm-up protocols on functional performance tests. This study using randomized within-subject design, investigated the performance of 22 collegiate elite soccer player following soccer specific warm-ups using dynamic stretching, static stretching, and FIFA 11+ program. Post warm-up examinations consisted: 1) Illinois Agility Test; 2) vertical jump; 3) 30 meter sprint; 4) consecutive turns; 5) flexibility of knee. Vertical jump performance was significantly lower following static stretching, as compared to dynamic stretching (P=0.005). Sprint performance declined significantly following static stretching as compared to FIFA 11+ (P=0.023). Agility time was significantly faster following dynamic stretching as compared to FIFA 11+ (P=0.001) and static stretching (P=0.001). Knee flexibility scores were significantly improved following the static stretching as compared to dynamic stretching (P=016). No significant difference was observed for consecutive turns between three warm-up protocol. The present finding showed that a soccer specific warm-up protocol relied on dynamic stretching is preferable in enhancing performance as compared to protocols relying on static stretches and FIFA 11+ program. Investigators suggest that while different soccer specific warm-up protocols have varied types of effects on performance, acute effects of dynamic stretching on performance in elite soccer players are assured, however application of static stretching in reducing muscle stiffness is demonstrated.
How visual timing and form information affect speech and non-speech processing.
Kim, Jeesun; Davis, Chris
2014-10-01
Auditory speech processing is facilitated when the talker's face/head movements are seen. This effect is typically explained in terms of visual speech providing form and/or timing information. We determined the effect of both types of information on a speech/non-speech task (non-speech stimuli were spectrally rotated speech). All stimuli were presented paired with the talker's static or moving face. Two types of moving face stimuli were used: full-face versions (both spoken form and timing information available) and modified face versions (only timing information provided by peri-oral motion available). The results showed that the peri-oral timing information facilitated response time for speech and non-speech stimuli compared to a static face. An additional facilitatory effect was found for full-face versions compared to the timing condition; this effect only occurred for speech stimuli. We propose the timing effect was due to cross-modal phase resetting; the form effect to cross-modal priming. Copyright © 2014 Elsevier Inc. All rights reserved.
MATLAB Stability and Control Toolbox Trim and Static Stability Module
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Crespo, Luis
2012-01-01
MATLAB Stability and Control Toolbox (MASCOT) utilizes geometric, aerodynamic, and inertial inputs to calculate air vehicle stability in a variety of critical flight conditions. The code is based on fundamental, non-linear equations of motion and is able to translate results into a qualitative, graphical scale useful to the non-expert. MASCOT was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental nonlinear equations of motion, MASCOT then calculates vehicle trim and static stability data for the desired flight condition(s). Available flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind, and sideslip, plus three take-off rotation conditions. Results are displayed through a unique graphical interface developed to provide the non-stability and control expert conceptual design engineer a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. If desired, the user can also examine the detailed, quantitative results.
DSMC Simulations of Blunt Body Flows for Mars Entries: Mars Pathfinder and Mars Microprobe Capsules
NASA Technical Reports Server (NTRS)
Moss, James N.; Wilmoth, Richard G.; Price, Joseph M.
1997-01-01
The hypersonic transitional flow aerodynamics of the Mars Pathfinder and Mars Microprobe capsules are simulated with the direct simulation Monte Carlo method. Calculations of axial, normal, and static pitching coefficients were obtained over an angle of attack range comparable to actual flight requirements. Comparisons are made with modified Newtonian and free-molecular-flow calculations. Aerothermal results were also obtained for zero incidence entry conditions.
Ivancevich, Nikolas M.; Dahl, Jeremy J.; Smith, Stephen W.
2010-01-01
Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively. PMID:19942503
Ivancevich, Nikolas M; Dahl, Jeremy J; Smith, Stephen W
2009-10-01
Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively.
Leivo, Joni; Virjula, Sanni; Vanhatupa, Sari; Kartasalo, Kimmo; Kreutzer, Joose; Miettinen, Susanna; Kallio, Pasi
2017-07-01
Polydimethylsiloxane (PDMS) is widely used in dynamic biological microfluidic applications. As a highly hydrophobic material, native PDMS does not support cell attachment and culture, especially in dynamic conditions. Previous covalent coating methods use glutaraldehyde (GA) which, however, is cytotoxic. This paper introduces a novel and simple method for binding collagen type I covalently on PDMS using ascorbic acid (AA) as a cross-linker instead of GA. We compare the novel method against physisorption and GA cross-linker-based methods. The coatings are characterized by immunostaining, contact angle measurement, atomic force microscopy and infrared spectroscopy, and evaluated in static and stretched human adipose stem cell (hASC) cultures up to 13 days. We found that AA can replace GA as a cross-linker in the covalent coating method and that the coating is durable after sonication and after 6 days of stretching. Furthermore, we show that hASCs attach and proliferate better on AA cross-linked samples compared with physisorbed or GA-based methods. Thus, in this paper, we provide a new PDMS coating method for studying cells, such as hASCs, in static and dynamic conditions. The proposed method is an important step in the development of PDMS-based devices in cell and tissue engineering applications. © 2017 The Author(s).
Fujimura, Tomomi; Suzuki, Naoto
2010-01-01
We investigated the effects of dynamic information on decoding facial expressions. A dynamic face entailed a change from a neutral to a full-blown expression, whereas a static face included only the full-blown expression. Sixty-eight participants were divided into two groups, the dynamic condition and the static condition. The facial stimuli expressed eight kinds of emotions (excited, happy, calm, sleepy, sad, angry, fearful, and surprised) according to a dimensional perspective. Participants evaluated each facial stimulus using two methods, the Affect Grid (Russell et al, 1989 Personality and Social Psychology 29 497-510) and the forced-choice task, allowing for dimensional and categorical judgment interpretations. For activation ratings in dimensional judgments, the results indicated that dynamic calm faces, low-activation expressions were rated as less activated than static faces. For categorical judgments, dynamic excited, happy, and fearful faces, which are high- and middle-activation expressions, had higher ratings than did those under the static condition. These results suggest that the beneficial effect of dynamic information depends on the emotional properties of facial expressions.
Mammals' response and adaptation to static magnetic fields as a nonspecific stressor
NASA Astrophysics Data System (ADS)
Nakagawa, Masayoshi
1990-06-01
Biological effects of static magnetic fields are still unclear and sometimes contradictory, and it has not been possible to connect this situation directly to some explanations of the mechanisms of the effects of static magnetic fields at the molecular level. Some researchers have pointed out that the process through which animals respond at the whole-body level to static magnetic fields follows the same pattern as the GAS (general adaptation syndrome) described by Selye. This biological or behavioral pattern is considered to be a common process followed by animals which are affected by environmental stimulants; they are depressed first, then surpass the deteriorated conditions and recover their normal conditions, or sometimes overshoot it. When this process is observed with mammals subjected to the magnetic fields, it can be concluded that magnetism has affected the organism. In this paper, the author reviews reports in which magnetic field density and minimum exposure time were determined with certain effects produced under certain conditions, and proposes a regression model for estimating the minimum amount of exposure which produces some effect on mammals.
Progressive Damage and Failure Analysis of Composite Laminates
NASA Astrophysics Data System (ADS)
Joseph, Ashith P. K.
Composite materials are widely used in various industries for making structural parts due to higher strength to weight ratio, better fatigue life, corrosion resistance and material property tailorability. To fully exploit the capability of composites, it is required to know the load carrying capacity of the parts made of them. Unlike metals, composites are orthotropic in nature and fails in a complex manner under various loading conditions which makes it a hard problem to analyze. Lack of reliable and efficient failure analysis tools for composites have led industries to rely more on coupon and component level testing to estimate the design space. Due to the complex failure mechanisms, composite materials require a very large number of coupon level tests to fully characterize the behavior. This makes the entire testing process very time consuming and costly. The alternative is to use virtual testing tools which can predict the complex failure mechanisms accurately. This reduces the cost only to it's associated computational expenses making significant savings. Some of the most desired features in a virtual testing tool are - (1) Accurate representation of failure mechanism: Failure progression predicted by the virtual tool must be same as those observed in experiments. A tool has to be assessed based on the mechanisms it can capture. (2) Computational efficiency: The greatest advantages of a virtual tools are the savings in time and money and hence computational efficiency is one of the most needed features. (3) Applicability to a wide range of problems: Structural parts are subjected to a variety of loading conditions including static, dynamic and fatigue conditions. A good virtual testing tool should be able to make good predictions for all these different loading conditions. The aim of this PhD thesis is to develop a computational tool which can model the progressive failure of composite laminates under different quasi-static loading conditions. The analysis tool is validated by comparing the simulations against experiments for a selected number of quasi-static loading cases.
Qualitative models of seat discomfort including static and dynamic factors.
Ebe, K; Griffin, M J
2000-06-01
Judgements of overall seating comfort in dynamic conditions sometimes correlate better with the static characteristics of a seat than with measures of the dynamic environment. This study developed qualitative models of overall seat discomfort to include both static and dynamic seat characteristics. A dynamic factor that reflected how vibration discomfort increased as vibration magnitude increased was combined with a static seat factor which reflected seating comfort without vibration. The ability of the model to predict the relative and overall importance of dynamic and static seat characteristics on comfort was tested in two experiments. A paired comparison experiment, using four polyurethane foam cushions (50, 70, 100, 120 mm thick), provided different static and dynamic comfort when 12 subjects were exposed to one-third octave band random vertical vibration with centre frequencies of 2.5 and 5.5 Hz, at magnitudes of 0.00, 0.25 and 0.50 m x s(-2) rms measured beneath the foam samples. Subject judgements of the relative discomfort of the different conditions depended on both static and dynamic characteristics in a manner consistent with the model. The effect of static and dynamic seat factors on overall seat discomfort was investigated by magnitude estimation using three foam cushions (of different hardness) and a rigid wooden seat at six vibration magnitudes with 20 subjects. Static seat factors (i.e. cushion stiffness) affected the manner in which vibration influenced the overall discomfort: cushions with lower stiffness were more comfortable and more sensitive to changes in vibration magnitude than those with higher stiffness. The experiments confirm that judgements of overall seat discomfort can be affected by both the static and dynamic characteristics of a seat, with the effect depending on vibration magnitude: when vibration magnitude was low, discomfort was dominated by static seat factors; as the vibration magnitude increased, discomfort became dominated by dynamic factors.
Gas Measurement Using Static Fourier Transform Infrared Spectrometers.
Köhler, Michael H; Schardt, Michael; Rauscher, Markus S; Koch, Alexander W
2017-11-13
Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm - 1 to 1250 cm - 1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising.
Gas Measurement Using Static Fourier Transform Infrared Spectrometers
Schardt, Michael; Rauscher, Markus S.; Koch, Alexander W.
2017-01-01
Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm−1 to 1250 cm−1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising. PMID:29137193
Energy loss of α-particle moving in warm dense deuterium plasma: Role of local field corrections
NASA Astrophysics Data System (ADS)
Fu, Zhen-Guo; Wang, Zhigang; Zhang, Ping
2017-11-01
We theoretically study the energy loss of α-particles traveling in the warm dense plasma (WDP) of deuterium (D) with temperatures from 10 to 100 eV and electron number densities from 1023 to 1024 cm-3. Beyond the random phase approximation (RPA) model, the extended Mermin dielectric function (MDF) model including the static and dynamic local field corrections (LFC) is employed in the calculations. Compared with the static LFC, the dynamic LFC introduced in the extended MDF model gives rise to a more significant departure from the RPA result. For the plasma conditions focused in this work, the departure induced by dynamic LFC reaches almost ˜ 30 % , which may be detected in the inertial confinement fusion (ICF) related experiment. Moreover, we find that the effect of static e-e collision may be of importance (unimportance) for the WDP of D with a temperature of tens (hundreds) of eV. Our findings may be important for ICF ignition since the uncertainty induced by the correlation effects between plasma component particles is crucial for the prediction of α-particle heating in fusion plasmas.
Dynamic and static fatigue behavior of sintered silicon nitrides
NASA Technical Reports Server (NTRS)
Chang, J.; Khandelwal, P.; Heitman, P. W.
1987-01-01
The dynamic and static fatigue behavior of Kyocera SN220M sintered silicon nitride at 1000 C was studied. Fractographic analysis of the material failing in dynamic fatigue revealed the presence of slow crack growth (SCG) at stressing rates below 41 MPa/min. Under conditions of static fatigue this material also displayed SCG at stresses below 345 MPa. SCG appears to be controlled by microcracking of the grain boundaries. The crack velocity exponent (n) determined from both dynamic and static fatigue tests ranged from 11 to 16.
Strategy for Alternative Occupant Volume Testing
DOT National Transportation Integrated Search
2009-10-20
This paper describes plans for a series of quasi-static : compression tests of rail passenger equipment. These tests are : designed to evaluate the strength of the occupant volume under : static loading conditions. The research plan includes a detail...
No static black hole hairs in gravitational theories with broken Lorentz invariance
NASA Astrophysics Data System (ADS)
Lin, Kai; Mukohyama, Shinji; Wang, Anzhong; Zhu, Tao
2017-06-01
In this paper, we revisit the issue of static hairs of black holes in gravitational theories with broken Lorentz invariance in the case that the speed cϕ of the khronon field becomes infinitely large, cϕ=∞ , for which the sound horizon of the khronon field coincides with the universal horizon, and the boundary conditions at the sound horizon reduce to those given normally at the universal horizons. As a result, fewer boundary conditions are present in this extreme case in comparison with the case cϕ=finite . Consequently, it is expected that static hairs might exist. However, we show analytically that, even in this case, static hairs still cannot exist, based on a decoupling limit analysis. We also consider the cases in which cϕ is finite but with cϕ≫1 , and we obtain the same conclusion.
Smithline, Howard A; Caglar, Selin; Blank, Fidela S J
2010-01-01
This study assessed the convergent validity of 2 dyspnea measures, the transition measure and the change measure, by comparing them with each other in patients admitted to the hospital with acute decompensated heart failure. Static measures of dyspnea were obtained at baseline (pre-static measure) and at time 1 hour and 4 hour (post-static measures). The change measure was calculated as the difference between the pre-static and post-static measures. Transition measures were obtained at time 1 hour and 4 hour. Visual analog scales and Likert scales were used. Both physicians and patients measured the dyspnea independently. A total of 112 patients had complete data sets at time 0 and 1 hour and 86 patients had complete data sets at all 3 time points. Correlations were calculated between the transition measures and static measures (pre-static, post-static, and change measure). Bland-Altman plots were generated and the mean difference and limits of agreement between the transition measures and the change measures were calculated. In general, short-term dyspnea assessment using transition measures and serial static measures can not be used to validate each other in this population of patients being admitted with acute decompensated heart failure. © 2010 Wiley Periodicals, Inc.
Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel
2014-01-01
Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older. PMID:24474907
Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel
2013-01-01
Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older.
Hockley, F A; Wilson, C A M E; Graham, N; Cable, J
2014-01-01
Group living in fish can provide benefits of protection from predators and some parasites, more efficient foraging for food, increased mating opportunities and enhanced energetic benefit when swimming. For riverine species, shoaling behaviour can be influenced by various environmental stressors, yet little is known how flow rate might influence the shoaling of diseased fish shoals. In view of the increasingly unpredictable flow rates in streams and rivers, this study aimed to assess the combined effect of flow condition and parasitism on the shoaling behaviour of a model fish species. Shoal size, shoal cohesion and time spent shoaling of female guppies Poecilia reticulata were compared when infected with the directly transmitted ectoparasite Gyrodactylus turnbulli under flow and static conditions. Flow condition was an important factor in influencing shoaling behaviour of guppies with the fish forming larger shoals in the absence of flow. When a shoal member was infected with G. turnbulli , shoal cohesion was reduced, but the magnitude of this effect was dependent on flow condition. In both flow and static conditions, bigger fish formed larger shoals than smaller counterparts. Future changes to stream hydrology with more frequent flooding and drought events will affect the shoaling tendency of fish. During high-flow events, diseased fish may not be able to keep up with shoal mates and therefore have a higher risk of predation. Additionally, these findings may be important for aquaria and farmed species where an increase in flow rate may reduce aggregation in fish.
Measurement of volatile organic compounds inside automobiles.
Fedoruk, Marion J; Kerger, Brent D
2003-01-01
The objective of the current study was to evaluate the types and concentrations of volatile organic compounds (VOCs) in the passenger cabin of selected sedan automobiles under static (parked, unventilated) and specified conditions of operation (i.e., driving the vehicle using air conditioning alone, vent mode alone, or driver's window half open). Data were collected on five different passenger sedan vehicles from three major automobile manufacturers. Airborne concentrations were assessed using 90-min time-weighted average (TWA) samples under U.S. Environmental Protection Agency (USEPA) Method IP-1B to assess individual VOC compounds and total VOCs (TVOCs) calibrated to toluene. Static vehicle testing demonstrated TVOC levels of approximately 400-800 microg/m(3) at warm interior vehicle temperatures (approximately 80 degrees F), whereas TVOCs at least fivefold higher were observed under extreme heat conditions (e.g., up to 145 degrees F). The profile of most prevalent individual VOC compounds varied considerably according to vehicle brand, age, and interior temperature tested, with predominant compounds including styrene, toluene, and 8- to 12-carbon VOCs. TVOC levels under varied operating conditions (and ventilation) were generally four- to eightfold lower (at approximately 50-160 microg/m(3)) than the static vehicle measurements under warm conditions, with the lowest measured levels generally observed in the trials with the driver's window half open. These data indicate that while relatively high concentrations of certain VOCs can be measured inside static vehicles under extreme heat conditions, normal modes of operation rapidly reduce the inside-vehicle VOC concentrations even when the air conditioning is set on recirculation mode.
The role of flow field structure in determining the aerodynamic response of a delta wing
NASA Astrophysics Data System (ADS)
Addington, Gregory Alan
Delta wings have long been known to exhibit nonlinear aerodynamic responses as a result of the presence of helical leading-edge vortices. This nonlinearity, found under both steady-state and unsteady conditions, is particularly profound in the presence of vortex burst. Modeling such aerodynamic responses with the Nonlinear Indicial Response (NIR) methodology provides a means of simulating these nonlinearities through its inclusion of motion history in addition to superposition. The NIR model also includes provisions for a finite number of discrete locations where the aerodynamic response is discontinuous with response to a state variable. These critical states also separate regions of states where the unsteady aerodynamic responses are potentially of highly-disparate characters. Although these critical states have been found in the past, their relationship with flow field bifurcation is uncertain. The purpose of this dissertation is to explore the relationship between nonlinear aerodynamic responses, critical states and flow field bifurcations from an experimental approach. This task has been accomplished by comparing a comprehensive database of skin-friction line topologies with static and unsteady aerodynamic responses. These data were collected using a 65sp° delta wing which rolled about an inclined longitudinal body axis. In this study, compelling, but not conclusive, evidence was found to suggest that a bifurcation in the skin-friction line topology was a necessary condition for the presence of a critical state. Although the presence of critical states was well predicted through careful observation and analysis of highly-resolved static loading data alone, their precise placement as a function of the independent variable was aided through the consideration of the locations of skin-friction line bifurcations. Furthermore, these static data were found to contain indications of the basic lagged or unlagged behavior of the unsteady aerodynamic response. This indication was found by comparing the relative rate of change seen in the estimated vortical- and potential-rolling-moment components. Through the review of these data in light of current theories on the mechanisms of leading-edge vortex breakdown, the formulation of a hypothesis regarding the relationship between both the static and unsteady aerodynamic response and vorticity dynamics was possible.
Statistical Learning of Origin-Specific Statically Optimal Individualized Treatment Rules
van der Laan, Mark J.; Petersen, Maya L.
2008-01-01
Consider a longitudinal observational or controlled study in which one collects chronological data over time on a random sample of subjects. The time-dependent process one observes on each subject contains time-dependent covariates, time-dependent treatment actions, and an outcome process or single final outcome of interest. A statically optimal individualized treatment rule (as introduced in van der Laan et. al. (2005), Petersen et. al. (2007)) is a treatment rule which at any point in time conditions on a user-supplied subset of the past, computes the future static treatment regimen that maximizes a (conditional) mean future outcome of interest, and applies the first treatment action of the latter regimen. In particular, Petersen et. al. (2007) clarified that, in order to be statically optimal, an individualized treatment rule should not depend on the observed treatment mechanism. Petersen et. al. (2007) further developed estimators of statically optimal individualized treatment rules based on a past capturing all confounding of past treatment history on outcome. In practice, however, one typically wishes to find individualized treatment rules responding to a user-supplied subset of the complete observed history, which may not be sufficient to capture all confounding. The current article provides an important advance on Petersen et. al. (2007) by developing locally efficient double robust estimators of statically optimal individualized treatment rules responding to such a user-supplied subset of the past. However, failure to capture all confounding comes at a price; the static optimality of the resulting rules becomes origin-specific. We explain origin-specific static optimality, and discuss the practical importance of the proposed methodology. We further present the results of a data analysis in which we estimate a statically optimal rule for switching antiretroviral therapy among patients infected with resistant HIV virus. PMID:19122792
Rotary motion impairs attention to color change in 4-month-old infants.
Kavšek, Michael
2013-06-01
Continuous color changes of an array of elements appear to stop changing if the array undergoes a coherent motion. This silencing illusion was demonstrated for adults by Suchow and Alvarez (Current Biology, 2011, vol. 21, pp. 140-143). The current forced-choice preferential looking study examined 4-month-old infants' sensitivity to the silencing illusion. Two experimental conditions were conducted. In the dynamic condition, infants were tested with two rotating rings of circular different-colored dots. In one of these rings the dots continuously changed color, whereas in the other ring the dots did not change color. In the static condition, the global rotary motion was eliminated from the targets. Infants preferred looking at the color-changing target in the static condition but not in the dynamic condition; they attended to the color changes in the static condition but failed to detect them in the dynamic condition. This differential looking pattern is consistent with the hypothesis that the silencing illusion can be established during early infancy. A control group of adults also responded to the silencing phenomenon. This substantiates that the stimuli generate a robust illusory effect. Copyright © 2013 Elsevier Inc. All rights reserved.
Directing visual attention during action observation modulates corticospinal excitability
Wood, Greg; Franklin, Zoe C.; Marshall, Ben; Riach, Martin; Holmes, Paul S.
2018-01-01
Transcranial magnetic stimulation (TMS) research has shown that corticospinal excitability is facilitated during the observation of human movement. However, the relationship between corticospinal excitability and participants’ visual attention during action observation is rarely considered. Nineteen participants took part in four conditions: (i) a static hand condition, involving observation of a right hand holding a ball between the thumb and index finger; (ii) a free observation condition, involving observation of the ball being pinched between thumb and index finger; and (iii and iv) finger-focused and ball-focused conditions, involving observation of the same ball pinch action with instructions to focus visual attention on either the index finger or the ball. Single-pulse TMS was delivered to the left motor cortex and motor evoked potentials (MEPs) were recorded from the first dorsal interosseous (FDI) and abductor digiti minimi muscles of the right hand. Eye movements were recorded simultaneously throughout each condition. The ball-focused condition produced MEPs of significantly larger amplitude in the FDI muscle, compared to the free observation or static hand conditions. Furthermore, regression analysis indicated that the number of fixations on the ball was a significant predictor of MEP amplitude in the ball-focused condition. These results have important implications for the design and delivery of action observation interventions in motor (re)learning settings. Specifically, providing viewing instructions that direct participants to focus visual attention on task-relevant objects affected by the observed movement promotes activity in the motor system in a more optimal manner than free observation or no instructions. PMID:29304044
Transmission of whole body vibration to the lower body in static and dynamic half-squat exercises.
Munera, Marcela; Bertucci, William; Duc, Sebastien; Chiementin, Xavier
2016-11-01
Whole body vibration (WBV) is used as a training method but its physical risk is not yet clear. Hence, the aim of this study is to assess the exposure to WBV by a measure of acceleration at the lower limb under dynamic and static postural conditions. The hypothesis of this paper is that this assessment is influenced by the frequency, position, and movement of the body. Fifteen healthy males are exposed to vertical sinusoidal vibration at different frequencies (20-60 Hz), while adopting three different static postures (knee extension angle: 180°, 120° and 90°) or performing a dynamic half-squat exercise. Accelerations at input source and at three joints of the lower limb (ankle, knee, and hip) are measured using skin-mounted accelerometers. Acceleration values (g) in static conditions show a decrease in the vibrational dose when it is measured at a more proximal location in the lower extremity. The results of the performed statistical test show statistically significant differences (p < 0.05) in the transmissibility values caused by the frequency, the position, and to the presence of the movement and its direction at the different conditions. The results confirm the initial hypothesis and justify the importance of a vibration assessment in dynamic conditions.
NASA Astrophysics Data System (ADS)
Huang, X.; Oram, C.; Sick, M.
2014-03-01
More efforts are put on hydro-power to balance voltage and frequency within seconds for primary control in modern smart grids. This requires hydraulic turbines to run at off-design conditions. especially at low load or speed-no load. Besides. the tendency of increasing power output and decreasing weight of the turbine runners has also led to the high level vibration problem of the runners. especially high head Francis runners. Therefore. it is important to carry out the static and dynamic stress analyses of prototype high head Francis runners. This paper investigates the static and dynamic stresses on the prototype high head Francis runner based on site measurements and numerical simulations. The site measurements are performed with pressure transducers and strain gauges. Based on the measured results. computational fluid dynamics (CFD) simulations for the flow channel from stay vane to draft tube cone are performed. Static pressure distributions and dynamic pressure pulsations caused by rotor-stator interaction (RSI) are obtained under various operating conditions. With the CFD results. static and dynamic stresses on the runner at different operating points are calculated by means of the finite element method (FEM). The agreement between simulation and measurement is analysed with linear regression method. which indicates that the numerical result agrees well with that of measurement. Furthermore. the maximum static and dynamic stresses on the runner blade are obtained at various operating points. The relations of the maximum stresses and the power output are discussed in detail. The influences of the boundary conditions on the structural behaviour of the runner are also discussed.
Deformation behavior of welded steel sandwich panels under quasi-static loading
DOT National Transportation Integrated Search
2011-03-01
This report describes engineering studies that were conducted to examine the deformation behavior of flat, welded steel sandwich panels under two quasi-static loading conditions: (1) uniaxial compression; and (2) bending with an indenter. Testing and...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2014 CFR
2014-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2013 CFR
2013-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2012 CFR
2012-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2011 CFR
2011-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
NASA Technical Reports Server (NTRS)
Bittker, D. A.; Scullin, V. J.
1972-01-01
A general chemical kinetics program is described for complex, homogeneous ideal-gas reactions in any chemical system. Its main features are flexibility and convenience in treating many different reaction conditions. The program solves numerically the differential equations describing complex reaction in either a static system or one-dimensional inviscid flow. Applications include ignition and combustion, shock wave reactions, and general reactions in a flowing or static system. An implicit numerical solution method is used which works efficiently for the extreme conditions of a very slow or a very fast reaction. The theory is described, and the computer program and users' manual are included.
Effect of microstructure on static and dynamic mechanical properties of high strength steels
NASA Astrophysics Data System (ADS)
Qu, Jinbo
The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited much better dynamic factor values. This may suggest that solid solution strengthening should be more utilized in the design of crashworthy dual phase steels.
Rossi, Anthony M.; Claiborne, Tina L.; Thompson, Gregory B.; Todaro, Stacey
2016-01-01
Context: The pocketing effect of helmet padding helps to dissipate forces experienced by the head, but if the player's helmet remains stationary in an opponent's shoulder pads, the compressive force on the cervical spine may increase. Objective: To (1) measure the coefficient of static friction between different football helmet finishes and football jersey fabrics and (2) calculate the potential amount of force on a player's helmet due to the amount of friction present. Design: Cross-sectional study. Setting: Laboratory. Patients or Other Participants: Helmets with different finishes and different football jersey fabrics. Main Outcome Measure(s): The coefficient of friction was determined for 2 helmet samples (glossy and matte), 3 football jerseys (collegiate, high school, and youth), and 3 types of jersey numbers (silkscreened, sublimated, and stitched on) using the TAPPI T 815 standard method. These measurements determined which helmet-to-helmet, helmet-to-jersey number, and helmet-to-jersey material combination resulted in the least amount of static friction. Results: The glossy helmet versus glossy helmet combination produced a greater amount of static friction than the other 2 helmet combinations (P = .013). The glossy helmet versus collegiate jersey combination produced a greater amount of static friction than the other helmet-to-jersey material combinations (P < .01). The glossy helmet versus silkscreened numbers combination produced a greater amount of static friction than the other helmet-to-jersey number combinations (P < .01). Conclusions: The force of static friction experienced during collisions can be clinically relevant. Conditions with higher coefficients of static friction result in greater forces. In this study, the highest coefficient of friction (glossy helmet versus silkscreened number) could increase the forces on the player's helmet by 3553.88 N when compared with other helmet-to-jersey combinations. Our results indicate that the makeup of helmet and uniform materials may affect sport safety. PMID:27824251
NASA Astrophysics Data System (ADS)
Muthukumaran, Packirisamy; Stiharu, Ion G.; Bhat, Rama B.
2003-10-01
This paper presents and applies the concept of micro-boundary conditioning to the design synthesis of microsystems in order to quantify the influence of inherent limitations of the fabrication process and the operating conditions on both static and dynamic behavior of microsystems. The predicted results on the static and dynamic behavior of a capacitive MEMS device, fabricated through MUMPs process, under the influence of the fabrication limitation and operating environment are presented along with the test results. The comparison between the predicted and experimental results shows a good agreement.
An empirical comparison of a dynamic software testability metric to static cyclomatic complexity
NASA Technical Reports Server (NTRS)
Voas, Jeffrey M.; Miller, Keith W.; Payne, Jeffrey E.
1993-01-01
This paper compares the dynamic testability prediction technique termed 'sensitivity analysis' to the static testability technique termed cyclomatic complexity. The application that we chose in this empirical study is a CASE generated version of a B-737 autoland system. For the B-737 system we analyzed, we isolated those functions that we predict are more prone to hide errors during system/reliability testing. We also analyzed the code with several other well-known static metrics. This paper compares and contrasts the results of sensitivity analysis to the results of the static metrics.
Toker, S M; Canadinc, D
2014-07-01
Effects of intraoral environment on the surface degradation of nickel-titanium (NiTi) shape memory alloy orthodontic wires was simulated through ex situ static immersion experiments in artificial saliva. The tested wires were compared to companion wires retrieved from patients in terms of chemical changes and formation of new structures on the surface. Results of the ex situ experiments revealed that the acidic erosion effective at the earlier stages of immersion led to the formation of new structures as the immersion period approached 30 days. Moreover, comparison of these results with the analysis of wires utilized in clinical treatment evidenced that ex situ experiments are reliable in terms predicting C-rich structure formation on the wire surfaces. However, the formation of C pileups at the contact sites of arch wires and brackets could not be simulated with the aid of static immersion experiments, warranting the simulation of the intraoral environment in terms of both chemical and physical conditions, including mechanical loading, when evaluating the biocompatibility of NiTi orthodontic arch wires. Copyright © 2014 Elsevier B.V. All rights reserved.
Development of the Main Wing Structure of a High Altitude Long Endurance UAV
NASA Astrophysics Data System (ADS)
Park, Sang Wook; Shin, Jeong Woo; Kim, Tae-Uk
2018-04-01
To enhance the flight endurance of a HALE UAV, the main wing of the UAV should have a high aspect ratio and low structural weight. Since a main wing constructed with the thin walled and slender components needed for low structural weight can suffer catastrophic failure during flight, it is important to develop a light-weight airframe without sacrificing structural integrity. In this paper, the design of the main wing of the HALE UAV was conducted using spars which were composed of a carbon-epoxy cylindrical tube and bulkheads to achieve both the weight reduction and structural integrity. The spars were sized using numerical analysis considering non-linear deformation under bending moment. Static strength testing of the wing was conducted under the most critical load condition. Then, the experimental results obtained for the wing were compared to the analytical result from the non-linear finite-element analysis. It was found that the developed main wing reduced its structural weight without any failure under the ultimate load condition of the static strength testing.
Suttanon, Plaiwan; Hill, Keith D; Said, Catherine M; Logiudice, Dina; Lautenschlager, Nicola T; Dodd, Karen J
2012-01-01
This study aimed to identify the magnitude and type of balance and mobility impairments in people with Alzheimer disease by comparing their performance with that of older people without cognitive impairment. Twenty-five community-dwelling people with mild to moderate Alzheimer disease and a comparison group of 25 cognitively intact age- and sex-matched people completed a comprehensive balance and mobility assessment. This included computerized posturography measures of static and dynamic balance under various conditions, clinical balance, and mobility measures, and measures of falls and falls risk. The level of falls risk was higher in people with Alzheimer disease. Standing balance in people with Alzheimer disease was significantly impaired across a range of static and dynamic balance conditions. Activity level, gait, and mobility measures were also impaired, particularly turning and dual tasks. The findings of the study highlight the value of including balance screening as a routine component of early dementia assessment. This would allow for the early detection of balance dysfunction and the introduction of balance retraining before impairments progress to more advanced levels.
Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.; Yungster, Shaye
2002-01-01
This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.
NASA Technical Reports Server (NTRS)
Martindale, W. R.; Carter, L. D.
1975-01-01
Pitot pressure and total-temperature measurements were made in the windward surface shock layer of two 0.0175-scale space shuttle orbiter models at simulated re-entry conditions. Corresponding surface static pressure measurements were also made. Flow properties at the edge of the model boundary layer were derived from these measurements and compared with values calculated using conventional methods.
Comparison of the aerodynamic characteristics of an ablating and nonablating blunted conical body
NASA Technical Reports Server (NTRS)
Kruse, R. L.
1973-01-01
The influence of ablation on the aerodynamic characteristics of a blunted slender cone was investigated. Plastic models were launched in free flight at ablating conditions. The results were compared with results of similar tests using metal nonablating models. Ablation was found to decrease the dynamic stability and the drag, but had little effect on static stability and lift. The plastic models appeared to experience ablation-induced roll.
Lei, Xiao-hua; Ning, Li-na; Cao, Yu-jing; Liu, Shuang; Zhang, Shou-bing; Qiu, Zhi-fang; Hu, Hui-min; Zhang, Hui-shan; Liu, Shu; Duan, En-kui
2011-01-01
The skin is susceptible to different injuries and diseases. One major obstacle in skin tissue engineering is how to develop functional three-dimensional (3D) substitute for damaged skin. Previous studies have proved a 3D dynamic simulated microgravity (SMG) culture system as a "stimulatory" environment for the proliferation and differentiation of stem cells. Here, we employed the NASA-approved rotary bioreactor to investigate the proliferation and differentiation of human epidermal stem cells (hEpSCs). hEpSCs were isolated from children foreskins and enriched by collecting epidermal stem cell colonies. Cytodex-3 micro-carriers and hEpSCs were co-cultured in the rotary bioreactor and 6-well dish for 15 days. The result showed that hEpSCs cultured in rotary bioreactor exhibited enhanced proliferation and viability surpassing those cultured in static conditions. Additionally, immunostaining analysis confirmed higher percentage of ki67 positive cells in rotary bioreactor compared with the static culture. In contrast, comparing with static culture, cells in the rotary bioreactor displayed a low expression of involucrin at day 10. Histological analysis revealed that cells cultured in rotary bioreactor aggregated on the micro-carriers and formed multilayer 3D epidermis structures. In conclusion, our research suggests that NASA-approved rotary bioreactor can support the proliferation of hEpSCs and provide a strategy to form multilayer epidermis structure.
Static postural control among school-aged youth with Down syndrome: A systematic review.
Maïano, Christophe; Hue, Olivier; Tracey, Danielle; Lepage, Geneviève; Morin, Alexandre J S; Moullec, Grégory
2018-05-01
Youth with Down syndrome are characterized by motor delays when compared to typically developing (TD) youth, which may be explained by a lower postural control or reduced postural tone. In the present article, we summarize research comparing the static postural control, assessed by posturography, between youth with Down syndrome and TD youth. A systematic literature search was performed in 10 databases and seven studies, published between 2001 and 2017, met our inclusion criteria. Based on the present reviewed findings, it is impossible to conclude that children with Down syndrome present significantly lower static postural control compared to TD children. In contrast, findings showed that adolescents with Down syndrome tended to present significantly lower static postural control compared to TD adolescents when visual and plantar cutaneous inputs were disturbed separately or simultaneously. The present findings should be interpreted with caution given the limitations of the small number of reviewed studies. Therefore, the static postural control among youth with Down syndrome should be further investigated in future rigorous studies examining the contribution of a range of sensory information. Copyright © 2018 Elsevier B.V. All rights reserved.
Commuter rail seat testing and analysis of facing seats
DOT National Transportation Integrated Search
2003-12-01
Tests have been conducted on the Bombardier back-to-back commuter rail car seat in a facing-seat configuration to evaluate its performance under static and dynamic loading conditions. Quasi-static tests have been conducted to establish the load defle...
NASA Astrophysics Data System (ADS)
Sokolov, R. I.; Abdullin, R. R.
2017-11-01
The use of nonlinear Markov process filtering makes it possible to restore both video stream frames and static photos at the stage of preprocessing. The present paper reflects the results of research in comparison of these types image filtering quality by means of special algorithm when Gaussian or non-Gaussian noises acting. Examples of filter operation at different values of signal-to-noise ratio are presented. A comparative analysis has been performed, and the best filtered kind of noise has been defined. It has been shown the quality of developed algorithm is much better than quality of adaptive one for RGB signal filtering at the same a priori information about the signal. Also, an advantage over median filter takes a place when both fluctuation and pulse noise filtering.
Meshless Solution of the Problem on the Static Behavior of Thin and Thick Laminated Composite Beams
NASA Astrophysics Data System (ADS)
Xiang, S.; Kang, G. W.
2018-03-01
For the first time, the static behavior of laminated composite beams is analyzed using the meshless collocation method based on a thin-plate-spline radial basis function. In the approximation of a partial differential equation by using a radial basis function, the shape parameter has an important role in ensuring the numerical accuracy. The choice of a shape parameter in the thin plate spline radial basis function is easier than in other radial basis functions. The governing differential equations are derived based on Reddy's third-order shear deformation theory. Numerical results are obtained for symmetric cross-ply laminated composite beams with simple-simple and cantilever boundary conditions under a uniform load. The results found are compared with available published ones and demonstrate the accuracy of the present method.
Wallmann, Harvey W; Gillis, Carrie B; Alpert, Patricia T; Miller, Sally K
2009-01-01
The purpose of this pilot study is to assess the impact of a senior jazz dance class on static balance for healthy women over 50 years of age using the NeuroCom Smart Balance Master System (Balance Master). A total of 12 healthy women aged 54-88 years completed a 15-week jazz dance class which they attended 1 time per week for 90 min per class. Balance data were collected using the Sensory Organization Test (SOT) at baseline (pre), at 7 weeks (mid), and after 15 weeks (post). An equilibrium score measuring postural sway was calculated for each of six different conditions. The composite equilibrium score (all six conditions integrated to 1 score) was used as an overall measure of balance. Repeated measures analyses of variance (ANOVAs) were used to compare the means of each participant's SOT composite equilibrium score in addition to the equilibrium score for each individual condition (1-6) across the 3 time points (pre, mid, post). There was a statistically significant difference among the means, p < .0005. Pairwise (Bonferroni) post hoc analyses revealed the following statistically significant findings for SOT composite equilibrium scores for the pre (67.33 + 10.43), mid (75.25 + 6.97), and post (79.00 + 4.97) measurements: premid (p = .008); prepost (p < .0005); midpost (p = .033). In addition, correlational statistics were used to determine any relationship between SOT scores and age. Results indicated that administration of a 15-week jazz dance class 1 time per week was beneficial in improving static balance as measured by the Balance Master SOT.
de Soure, António M; Fernandes-Platzgummer, Ana; Moreira, Francisco; Lilaia, Carla; Liu, Shi-Hwei; Ku, Chen-Peng; Huang, Yi-Feng; Milligan, William; Cabral, Joaquim M S; da Silva, Cláudia L
2017-05-01
Umbilical cord matrix (UCM)-derived mesenchymal stem/stromal cells (MSCs) are promising therapeutic candidates for regenerative medicine settings. UCM MSCs have advantages over adult cells as these can be obtained through a non-invasive harvesting procedure and display a higher proliferative capacity. However, the high cell doses required in the clinical setting make large-scale manufacturing of UCM MSCs mandatory. A commercially available human platelet lysate-based culture supplement (UltraGRO TM , AventaCell BioMedical) (5%(v/v)) was tested to effectively isolate UCM MSCs and to expand these cells under (1) static conditions, using planar culture systems and (2) stirred culture using plastic microcarriers in a spinner flask. The MSC-like cells were isolated from UCM explant cultures after 11 ± 2 days. After five passages in static culture, UCM MSCs retained their immunophenotype and multilineage differentiation potential. The UCM MSCs cultured under static conditions using UltraGRO TM -supplemented medium expanded more rapidly compared with UCM MSCs expanded using a previously established protocol. Importantly, UCM MSCs were successfully expanded under dynamic conditions on plastic microcarriers using UltraGRO TM -supplemented medium in spinner flasks. Upon an initial 54% cell adhesion to the beads, UCM MSCs expanded by >13-fold after 5-6 days, maintaining their immunophenotype and multilineage differentiation ability. The present paper reports the establishment of an easily scalable integrated culture platform based on a human platelet lysate supplement for the effective isolation and expansion of UCM MSCs in a xenogeneic-free microcarrier-based system. This platform represents an important advance in obtaining safer and clinically meaningful MSC numbers for clinical translation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Frikha, Mohamed; Chaâri, Nesrine; Derbel, Mohammad S; Elghoul, Yousri; Zinkovsky, Anatoly V; Chamari, Karim
2017-09-01
The present study addressed the lack of data on the effect of different types of stretching on selected measures of throwing accuracy. We hypothesized that the stretching procedures, within pre-exercise warm-up, could affect the accuracy and the consistency in throwing darts performances under different stress conditions. Eighteen right-handed schoolboys (13.1±0.4 years, 166±0.1 cm and 54.5±9 kg; mean±SD) completed the Darts Throwing Accuracy Test in free (FDT) and in time-pressure (TPDT) conditions, either after static (SS), dynamic (DS), ballistic (BS) or no-stretching (NS) protocols, on nonconsecutive days and in a counter-balanced randomized order. After performing 5 minutes of light standardized jogging and one of the three stretching protocols for 10 minutes, each participant completed the FDT and TPDT tests. Mean scores, missed darts and variability of scores, were recorded and analyzed using a two-way ANOVA with repeated measures. Heart rate (HR), ratings of perceived exertion (RPE) and the task difficulty perception (DP), were recorded through each experimental session. There was no effect of the stretching procedures on accuracy in FDT. However, in the TPDT condition, better performances were recorded after NS and SS compared to DS and BS. The accuracy performances decreased in TPDT by 9.6% after NS (P<0.01); 15.3% after DS (P<0.001) and 11.8% after BS (P<0.001); but not after SS (P<0.05). Static stretching helped reducing the adverse effects of time-pressure on darts throwing performance. Consequently, static exercises are recommended before practicing activities requiring both upper limbs speed and accuracy.
Some observations on loss of static strength due to fatigue cracks
NASA Technical Reports Server (NTRS)
Illg, Walter; Hardrath, Herbert F
1955-01-01
Static tensile tests were performed on simple notched specimens containing fatigue cracks. Four types of aluminum alloys were investigated: 2024-T3(formerly 24S-T3) and 7075-T6(formerly 75S-T6) in sheet form, and 2024-T4(formerly 24S-T4) and 7075-T6(formerly 75S-T6) in extruded form. The cracked specimens were tested statically under four conditions: unmodified and with reduced eccentricity of loading by three methods. Results of static tests on C-46 wings containing fatigue cracks are also reported.
NASA Technical Reports Server (NTRS)
Perry, B., III
1982-01-01
The relationships between elevon deflection and static margin using elements from static and dynamic stability and control and from classical control theory are emphasized. Expressions are derived and presented for calculating elevon deflections required to trim the vehicle in lg straight-and-level flight and to perform specified longitudinal and lateral maneuvers. Applications of this methodology are made at several flight conditions for the ARW-2 wing. On the basis of these applications, it appears possible to trim and maneuver the vehicle with the existing elevons at -15% static margin.
Williams, N; Coburn, J; Gillum, T
2015-11-01
The aim of this paper was to determine if two different warm-up protocols differently affect torque of the quadriceps and hamstrings, and electromyography (EMG) output of the rectus femoris (RF) and vastus lateralis (VL) when completing 30 maximal leg extensions and curls. Twenty-one healthy male (N.=8) and female (N.=13) subjects volunteered to participate in a familiarization session and three testing sessions. The three testing sessions control, dynamic, and static were completed in a counterbalanced order on non-consecutive days. First, subjects warmed-up on a treadmill for five minutes before completing six dynamic movements, six static-stretches, or no stretches. They then rested for five minutes before completing 30 maximal leg extensions and curls at a speed of 60 s-1. A significant decrease in quadriceps torque output over time was determined for the dynamic protocol when compared to the control (P<0.01) and static (P<0.05) protocols. A significant decrease was found in peak quadriceps torque for the dynamic protocol (P<0.01) when compared to the static, and a significant increase was found for the static protocol (P<0.05) when compared to the control. A significant decrease in average quadriceps torque was found for the dynamic protocol when compared to the static (P<0.05) and control (P<0.01) protocols. No difference was found in hamstring torque or EMG output of the RF and VL. Short duration static-stretching has the ability to increase peak and average torque of the leg extensors, while some types of anaerobic exercise involving maximal contractions to fatigue may be hindered by performing dynamic movements as part of the warm-up.
Viscoelastic and fatigue properties of model methacrylate-based dentin adhesives
Singh, Viraj; Misra, Anil; Marangos, Orestes; Park, Jonggu; Ye, Qiang; Kieweg, Sarah L.; Spencer, Paulette
2013-01-01
The objective of the current study is to characterize the viscoelastic and fatigue properties of model methacrylate-based dentin adhesives under dry and wet conditions. Static, creep, and fatigue tests were performed on cylindrical samples in a 3-point bending clamp. Static results showed that the apparent elastic modulus of the model adhesive varied from 2.56 to 3.53 GPa in the dry condition, and from 1.04 to 1.62 GPa in the wet condition, depending upon the rate of loading. Significant differences were also found for the creep behavior of the model adhesive under dry and wet conditions. A linear viscoelastic model was developed by fitting the adhesive creep behavior. The developed model with 5 Kelvin Voigt elements predicted the apparent elastic moduli measured in the static tests. The model was then utilized to interpret the fatigue test results. It was found that the failure under cyclic loading can be due to creep or fatigue, which has implications for the failure criterion that are applied for these types of tests. Finally, it was found that the adhesive samples tested under dry conditions were more durable than those tested under wet conditions. PMID:20848661
NASA Astrophysics Data System (ADS)
Patselov, A. M.; Gladkovskii, S. V.; Lavrikov, R. D.; Kamantsev, I. S.
2015-10-01
The static and cyclic fracture toughnesses of a Ti-Al3Ti-Al-Al3Ti laminate composite material containing at most 15 vol % intermetallic compound are studied. Composite specimens are prepared by terminating reaction sintering of titanium and aluminum foils under pressure. The fracture of the titanium layers is quasi-cleavage during cyclic crack growth and is ductile during subsequent static loading.
Potential role for microfluctuations as a temporal directional cue to accommodation
Metlapally, Sangeetha; Tong, Jianliang L.; Tahir, Humza J.; Schor, Clifton M.
2016-01-01
The goal was to revisit an important, yet unproven notion that accommodative microfluctuations facilitate the determination of direction (sign) of abrupt focus changes in the stimulus to accommodation. We contaminated the potential temporal cues from natural accommodative microfluctuations by presenting uncorrelated external (screen) temporal defocus noise that combined with the retinal image effects of natural microfluctuations. A polychromatic Maltese spoke pattern thus either modulated defocus at a combination of two temporal frequencies (on-screen noise condition) or was static (control condition). The on-screen conditions were combined with step changes in optical vergence that were randomized in direction and magnitude. Five subjects monocularly viewed stimuli through a Badal optical system in a Maxwellian view. An artificial 4-mm aperture was imaged at the entrance pupil of the eye. Wavefront aberrations were measured dynamically at 50 Hz using a custom Shack–Hartmann aberrometer. Dynamic changes in the Zernike defocus term with step changes in optical vergence were analyzed. We calculated the percentage of correct directional responses for 1, 2, and 3 D accommodative and disaccommodative step stimuli using preset criteria for latency, velocity, and persistence of the response. The on-screen noise condition reduced the percent-correct responses compared to the static stimulus, suggesting that this manipulation affected the detectability of the sign of the accommodative stimulus. Several possible reasons and implications of this result are discussed. PMID:27120075
Acceleration of a Static Observer Near the Event Horizon of a Static Isolated Black Hole.
ERIC Educational Resources Information Center
Doughty, Noel A.
1981-01-01
Compares the magnitude of the proper acceleration of a static observer in a static, isolated, spherically symmetric space-time region with the Newtonian result including the situation in the interior of a perfect-fluid star. This provides a simple physical interpretation of surface gravity and illustrates the global nature of the event horizon.…
Pimenta, A F R; Valente, A; Pereira, J M C; Pereira, J C F; Filipe, H P; Mata, J L G; Colaço, R; Saramago, B; Serro, A P
2016-12-01
Currently, most in vitro drug release studies for ophthalmic applications are carried out in static sink conditions. Although this procedure is simple and useful to make comparative studies, it does not describe adequately the drug release kinetics in the eye, considering the small tear volume and flow rates found in vivo. In this work, a microfluidic cell was designed and used to mimic the continuous, volumetric flow rate of tear fluid and its low volume. The suitable operation of the cell, in terms of uniformity and symmetry of flux, was proved using a numerical model based in the Navier-Stokes and continuity equations. The release profile of a model system (a hydroxyethyl methacrylate-based hydrogel (HEMA/PVP) for soft contact lenses (SCLs) loaded with diclofenac) obtained with the microfluidic cell was compared with that obtained in static conditions, showing that the kinetics of release in dynamic conditions is slower. The application of the numerical model demonstrated that the designed cell can be used to simulate the drug release in the whole range of the human eye tear film volume and allowed to estimate the drug concentration in the volume of liquid in direct contact with the hydrogel. The knowledge of this concentration, which is significantly different from that measured in the experimental tests during the first hours of release, is critical to predict the toxicity of the drug release system and its in vivo efficacy. In conclusion, the use of the microfluidic cell in conjunction with the numerical model shall be a valuable tool to design and optimize new therapeutic drug-loaded SCLs.
Hoffman, Scott E; Peltz, Cathryn D; Haladik, Jeffrey A; Divine, George; Nurse, Matthew A; Bey, Michael J
2015-03-01
Running-related injuries are common and previous research has suggested that the magnitude and/or rate of pronation may contribute to the development of these injuries. Accurately and directly measuring pronation can be challenging, and therefore previous research has often relied on navicular drop (under both static and dynamic conditions) as an indirect assessment of pronation. The objectives of this study were to use dynamic, biplane X-ray imaging to assess the effects of three footwear conditions (barefoot, minimalist shoes, motion control shoes) on the magnitude and rate of navicular drop during running, and to determine the association between static and dynamic measures of navicular drop. Twelve healthy distance runners participated in this study. The magnitude and rate of navicular drop were determined by tracking the 3D position of the navicular from biplane radiographic images acquired at 60Hz during the stance phase of overground running. Static assessments of navicular drop and foot posture were also recorded in each subject. Footwear condition was not found to have a significant effect on the magnitude of navicular drop (p=0.22), but motion control shoes had a slower navicular drop rate than running barefoot (p=0.05) or in minimalist shoes (p=0.05). In an exploratory analysis, static assessments of navicular drop and foot posture were found to be poor predictors of dynamic navicular drop in all footwear conditions (p>0.18). Copyright © 2015 Elsevier B.V. All rights reserved.
Fatigue and shear behavior of HPC bulb tee girders : LTRC technical summary report.
DOT National Transportation Integrated Search
2008-04-01
The objectives of the research were (1) to provide assurance that full size, deep prestressed concrete girders made with HPC would perform satisfactorily under flexural fatigue, static shear, and static flexural loading conditions; (2) to determine i...
DOT National Transportation Integrated Search
1996-10-01
Tests have been conducted on Amtrak's traditional passenger seat to evaluate its performance under static and dynamic loading conditions. Quasi-static tests have been conducted to establish the load-deflection characteristics of the seat. Dynamic tes...
Lee, Ji-Hye; Lee, Won; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2017-09-05
To evaluate the axial displacement of the implant-abutment assembly of different implant diameter after static and cyclic loading of overload condition. An internal conical connection system with three diameters (Ø 4.0, 4.5, and 5.0) applying identical abutment dimension and the same abutment screw was evaluated. Axial displacement of abutment and reverse torque loss of abutment screw were evaluated under static and cyclic loading conditions. Static loading test groups were subjected to vertical static loading of 250, 400, 500, 600, 700, and 800 N consecutively. Cyclic loading test groups were subjected to 500 N cyclic loading to evaluate the effect of excessive masticatory loading. After abutment screw tightening for 30 Ncm, axial displacement was measured upon 1, 3, 10, and 1,000,000 cyclic loadings of 500 N. Repeated-measure ANOVA and 2-way ANOVA were used for statistical analysis (α = 0.05). The increasing magnitude of vertical load and thinner wall thickness of implant increased axial displacement of abutment and reverse torque loss of abutment screw (p < 0.05). Implants in the Ø 5.0 diameter group demonstrated significantly low axial displacement, and reverse torque loss after static loading than Ø 4.0 and Ø 4.5 diameter groups (p < 0.05). In the cyclic loading test, all diameter groups of implant showed significant axial displacement after 1 cycle of loading of 500 N (p < 0.05). There was no significant axial displacement after 3, 10, or 1,000,000 cycles of loading (p = 0.603). Implants with Ø 5.0 diameter demonstrated significantly low axial displacement and reverse torque loss after the cyclic and static loading of overload condition. © 2017 by the American College of Prosthodontists.
Measured daylighting potential of a static optical louver system under real sun and sky conditions
Konis, Kyle; Lee, Eleanor S.
2015-05-04
Side-by-side comparisons were made over solstice-to-solstice changes in sun and sky conditions between an optical louver system (OLS) and a conventional Venetian blind set at a horizontal slat angle and located inboard of a south-facing, small-area, clerestory window in a full-scale office testbed. Daylight autonomy (DA), window luminance, and ceiling luminance uniformity were used to assess performance. The performance of both systems was found to have significant seasonal variation, where performance under clear sky conditions improved as maximum solar altitude angles transitioned from solstice to equinox. Although the OLS produced fewer hours per day of DA on average than themore » Venetian blind, the OLS never exceeded the designated 2000 cd/m2 threshold for window glare. In contrast, the Venetian blind was found to exceed the visual discomfort threshold over a large fraction of the day during equinox conditions. Notably, these peak periods of visual discomfort occurred during the best periods of daylighting performance. Luminance uniformity was analyzed using calibrated high dynamic range luminance images. Under clear sky conditions, the OLS was found to increase the luminance of the ceiling as well as produce a more uniform distribution. Furthermore, compared to conventional venetian blinds, the static optical sunlight redirecting system studied has the potential to significantly reduce the annual electrical lighting energy demand of a daylit space and improve the quality from the perspective of building occupants by consistently transmitting useful daylight while eliminating window glare.« less
Evolution of brain-body allometry in Lake Tanganyika cichlids.
Tsuboi, Masahito; Kotrschal, Alexander; Hayward, Alexander; Buechel, Severine Denise; Zidar, Josefina; Løvlie, Hanne; Kolm, Niclas
2016-07-01
Brain size is strongly associated with body size in all vertebrates. This relationship has been hypothesized to be an important constraint on adaptive brain size evolution. The essential assumption behind this idea is that static (i.e., within species) brain-body allometry has low ability to evolve. However, recent studies have reported mixed support for this view. Here, we examine brain-body static allometry in Lake Tanganyika cichlids using a phylogenetic comparative framework. We found considerable variation in the static allometric intercept, which explained the majority of variation in absolute and relative brain size. In contrast, the slope of the brain-body static allometry had relatively low variation, which explained less variation in absolute and relative brain size compared to the intercept and body size. Further examination of the tempo and mode of evolution of static allometric parameters confirmed these observations. Moreover, the estimated evolutionary parameters indicate that the limited observed variation in the static allometric slope could be a result of strong stabilizing selection. Overall, our findings suggest that the brain-body static allometric slope may represent an evolutionary constraint in Lake Tanganyika cichlids. © 2016 The Author(s).
Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions
NASA Astrophysics Data System (ADS)
Carlile, Julie A.; Hendricks, Robert C.; Yoder, Dennis A.
1992-06-01
The leakage performance of a brush seal with gaseous working fluids at static and low rotor speed conditions was studied. The leakage results included for air, helium, and carbon dioxide at several bristle/rotor interferences. Also, the effects of packing a lubricant into the bristles and also of reversing the pressure drop across the seal were studied. Results were compared to that of an annular seal at similar operating conditions. In order to generalize the results, they were correlated using corresponding state theory. The brush seal tested had a bore diameter of 3.792 cm (1.4930 in.), a fence height of 0.0635 cm (0.025 in.), and 1800 bristles/cm circumference (4500 bristles/in. circumference). Various bristle/rotor radial interferences were achieved by using a tapered rotor. The brush seal reduced the leakage in comparison to the annular seal, up to 9.5 times. Reversing the pressure drop across the brush seal produced leakage rates approximately the same as that of the annular seal. Addition of a lubricant reduced the leakage by 2.5 times. The air and carbon dioxide data were successfully correlated using corresponding state theory. However, the helium data followed a different curve than the air and carbon dioxide data.
Assessing Videogrammetry for Static Aeroelastic Testing of a Wind-Tunnel Model
NASA Technical Reports Server (NTRS)
Spain, Charles V.; Heeg, Jennifer; Ivanco, Thomas G.; Barrows, Danny A.; Florance, James R.; Burner, Alpheus W.; DeMoss, Joshua; Lively, Peter S.
2004-01-01
The Videogrammetric Model Deformation (VMD) technique, developed at NASA Langley Research Center, was recently used to measure displacements and local surface angle changes on a static aeroelastic wind-tunnel model. The results were assessed for consistency, accuracy and usefulness. Vertical displacement measurements and surface angular deflections (derived from vertical displacements) taken at no-wind/no-load conditions were analyzed. For accuracy assessment, angular measurements were compared to those from a highly accurate accelerometer. Shewhart's Variables Control Charts were used in the assessment of consistency and uncertainty. Some bad data points were discovered, and it is shown that the measurement results at certain targets were more consistent than at other targets. Physical explanations for this lack of consistency have not been determined. However, overall the measurements were sufficiently accurate to be very useful in monitoring wind-tunnel model aeroelastic deformation and determining flexible stability and control derivatives. After a structural model component failed during a highly loaded condition, analysis of VMD data clearly indicated progressive structural deterioration as the wind-tunnel condition where failure occurred was approached. As a result, subsequent testing successfully incorporated near- real-time monitoring of VMD data in order to ensure structural integrity. The potential for higher levels of consistency and accuracy through the use of statistical quality control practices are discussed and recommended for future applications.
Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions
NASA Technical Reports Server (NTRS)
Carlile, Julie A.; Hendricks, Robert C.; Yoder, Dennis A.
1992-01-01
The leakage performance of a brush seal with gaseous working fluids at static and low rotor speed conditions was studied. The leakage results included for air, helium, and carbon dioxide at several bristle/rotor interferences. Also, the effects of packing a lubricant into the bristles and also of reversing the pressure drop across the seal were studied. Results were compared to that of an annular seal at similar operating conditions. In order to generalize the results, they were correlated using corresponding state theory. The brush seal tested had a bore diameter of 3.792 cm (1.4930 in.), a fence height of 0.0635 cm (0.025 in.), and 1800 bristles/cm circumference (4500 bristles/in. circumference). Various bristle/rotor radial interferences were achieved by using a tapered rotor. The brush seal reduced the leakage in comparison to the annular seal, up to 9.5 times. Reversing the pressure drop across the brush seal produced leakage rates approximately the same as that of the annular seal. Addition of a lubricant reduced the leakage by 2.5 times. The air and carbon dioxide data were successfully correlated using corresponding state theory. However, the helium data followed a different curve than the air and carbon dioxide data.
Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions
NASA Technical Reports Server (NTRS)
Carlile, Julie A.; Hendricks, Robert C.; Yoder, Dennis A.
1992-01-01
The leakage performance of a brush seal with gaseous working fluids at static and low rotor speed conditions was studied. The leakage results are included for air, helium, and carbon dioxide at several bristle/rotor interferences. Also, the effects of packing a lubricant into the bristles and also of reversing the pressure drop across the seal were studied. Results were compared to that of an annular seal at similar operating conditions. In order to generalize the results, they were correlated using corresponding state theory. The brush seal tested had a bore diameter of 3.792 cm (1.4930 in), a fence height of 0.0635 cm (0.025 in), and 1800 bristles/cm circumference (4500 bristles/in circumference). Various bristle/rotor radial interferences were achieved by using a tapered rotor. The brush seal reduced the leakage in comparison to the annular seal, up to 9.5 times. Reversing the pressure drop across the brush seal produced leakage rates approx. the same as that of the annular seal. Addition of a lubricant reduced the leakage by 2.5 times. The air and carbon dioxide data were successfully correlated using corresponding state theory. However, the helium data followed a different curve than the air and carbon dioxide data.
NASA Technical Reports Server (NTRS)
Miller, C. G., III
1972-01-01
A computer program written in FORTRAN 4 language is presented which determines expansion-tube flow quantities for real test gases CO2 N2, O2, Ar, He, and H2, or mixtures of these gases, in thermochemical equilibrium. The effects of dissociation and first and second ionization are included. Flow quantities behind the incident shock into the quiescent test gas are determined from the pressure and temperature of the quiescent test gas in conjunction with: (1) incident-shock velocity, (2) static pressure immediately behind the incident shock, or (3) pressure and temperature of the driver gas (imperfect hydrogen or helium). The effect of the possible existence of a shock reflection at the secondary diaphragm of the expansion tube is included. Expansion-tube test-section flow conditions are obtained by performing an isentropic unsteady expansion from the conditions behind the incident shock or reflected shock to either the test-region velocity or the static pressure. Both a thermochemical-equilibrium expansion and a frozen expansion are included. Flow conditions immediately behind the bow shock of a model positioned at the test section are also determined. Results from the program are compared with preliminary experimental data obtained in the Langley 6-inch expansion tube.
Silicon Carbide Diodes Performance Characterization at High Temperatures
NASA Technical Reports Server (NTRS)
Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry
2004-01-01
NASA Glenn Research center's Electrical Systems Development branch is working to demonstrate and test the advantages of Silicon Carbide (SiC) devices in actual power electronics applications. The first step in this pursuit is to obtain commercially available SiC Schottky diodes and to individually test them under both static and dynamic conditions, and then compare them with current state of the art silicon Schottky and ultra fast p-n diodes of similar voltage and current ratings. This presentation covers the results of electrical tests performed at NASA Glenn. Steady state forward and reverse current-volt (I-V) curves were generated for each device to compare performance and to measure their forward voltage drop at rated current, as well as the reverse leakage current at rated voltage. In addition, the devices were individually connected as freewheeling diodes in a Buck (step down) DC to DC converter to test their reverse recovery characteristics and compare their transient performance in a typical converter application. Both static and transient characterization tests were performed at temperatures ranging from 25 C to 300 C, in order to test and demonstrate the advantages of SiC over Silicon at high temperatures.
A comparative analysis of numerical approaches to the mechanics of elastic sheets
NASA Astrophysics Data System (ADS)
Taylor, Michael; Davidovitch, Benny; Qiu, Zhanlong; Bertoldi, Katia
2015-06-01
Numerically simulating deformations in thin elastic sheets is a challenging problem in computational mechanics due to destabilizing compressive stresses that result in wrinkling. Determining the location, structure, and evolution of wrinkles in these problems has important implications in design and is an area of increasing interest in the fields of physics and engineering. In this work, several numerical approaches previously proposed to model equilibrium deformations in thin elastic sheets are compared. These include standard finite element-based static post-buckling approaches as well as a recently proposed method based on dynamic relaxation, which are applied to the problem of an annular sheet with opposed tractions where wrinkling is a key feature. Numerical solutions are compared to analytic predictions of the ground state, enabling a quantitative evaluation of the predictive power of the various methods. Results indicate that static finite element approaches produce local minima that are highly sensitive to initial imperfections, relying on a priori knowledge of the equilibrium wrinkling pattern to generate optimal results. In contrast, dynamic relaxation is much less sensitive to initial imperfections and can generate low-energy solutions for a wide variety of loading conditions without requiring knowledge of the equilibrium solution beforehand.
Wang, Juan; Liu, Lumei; Wu, Yifan; Maitz, Manfred F; Wang, Zhihong; Koo, Youngmi; Zhao, Ansha; Sankar, Jagannathan; Kong, Deling; Huang, Nan; Yun, Yeoheung
2017-03-01
Current in vitro models fail in predicting the degradation rate and mode of magnesium (Mg) stents in vivo. To overcome this, the microenvironment of the stent is simulated here in an ex vivo bioreactor with porcine aorta and circulating medium, and compared with standard static in vitro immersion and with in vivo rat aorta models. In ex vivo and in vivo conditions, pure Mg wires were exposed to the aortic lumen and inserted into the aortic wall to mimic early- and long-term implantation, respectively. Results showed that: 1) Degradation rates of Mg were similar for all the fluid diffusion conditions (in vitro static, aortic wall ex vivo and in vivo); however, Mg degradation under flow condition (i.e. in the lumen) in vivo was slower than ex vivo; 2) The corrosion mode in the samples can be mainly described as localized (in vitro), mixed localized and uniform (ex vivo), and uniform (in vivo); 3) Abundant degradation products (MgO/Mg(OH) 2 and Ca/P) with gas bubbles accumulated around the localized degradation regions ex vivo, but a uniform and thin degradation product layer was found in vivo. It is concluded that the ex vivo vascular bioreactor provides an improved test setting for magnesium degradation between static immersion and animal experiments and highlights its promising role in bridging degradation behavior and biological response for vascular stent research. Magnesium and its alloys are candidates for a new generation of biodegradable stent materials. However, the in vitro degradation of magnesium stents does not match the clinical degradation rates, corrupting the validity of conventional degradation tests. Here we report an ex vivo vascular bioreactor, which allows simulation of the microenvironment with and without blood vessel integration to study the biodegradation of magnesium implants in comparison with standard in vitro test conditions and with in vivo implantations. The bioreactor did simulate the corrosion of an intramural implant very well, but showed too high degradation for non-covered implants. It is concluded that this system is in between static incubation and animal experiments concerning the predictivity of the degradation. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs).
DeStefano, Jackson G; Xu, Zinnia S; Williams, Ashley J; Yimam, Nahom; Searson, Peter C
2017-08-04
The endothelial cells that form the lumen of capillaries and microvessels are an important component of the blood-brain barrier. Cell phenotype is regulated by transducing a range of biomechanical and biochemical signals in the local microenvironment. Here we report on the role of shear stress in modulating the morphology, motility, proliferation, apoptosis, and protein and gene expression, of confluent monolayers of human brain microvascular endothelial cells derived from induced pluripotent stem cells. To assess the response of derived human brain microvascular endothelial cells (dhBMECs) to shear stress, confluent monolayers were formed in a microfluidic device. Monolayers were subjected to a shear stress of 4 or 12 dyne cm -2 for 40 h. Static conditions were used as the control. Live cell imaging was used to assess cell morphology, cell speed, persistence, and the rates of proliferation and apoptosis as a function of time. In addition, immunofluorescence imaging and protein and gene expression analysis of key markers of the blood-brain barrier were performed. Human brain microvascular endothelial cells exhibit a unique phenotype in response to shear stress compared to static conditions: (1) they do not elongate and align, (2) the rates of proliferation and apoptosis decrease significantly, (3) the mean displacement of individual cells within the monolayer over time is significantly decreased, (4) there is no cytoskeletal reorganization or formation of stress fibers within the cell, and (5) there is no change in expression levels of key blood-brain barrier markers. The characteristic response of dhBMECs to shear stress is significantly different from human and animal-derived endothelial cells from other tissues, suggesting that this unique phenotype that may be important in maintenance of the blood-brain barrier. The implications of this work are that: (1) in confluent monolayers of dhBMECs, tight junctions are formed under static conditions, (2) the formation of tight junctions decreases cell motility and prevents any morphological transitions, (3) flow serves to increase the contact area between cells, resulting in very low cell displacement in the monolayer, (4) since tight junctions are already formed under static conditions, increasing the contact area between cells does not cause upregulation in protein and gene expression of BBB markers, and (5) the increase in contact area induced by flow makes barrier function more robust.
NASA Astrophysics Data System (ADS)
Martinez, P.; Kasper, M.; Costille, A.; Sauvage, J. F.; Dohlen, K.; Puget, P.; Beuzit, J. L.
2013-06-01
Context. Observing sequences have shown that the major noise source limitation in high-contrast imaging is the presence of quasi-static speckles. The timescale on which quasi-static speckles evolve is determined by various factors, mechanical or thermal deformations, among others. Aims: Understanding these time-variable instrumental speckles and, especially, their interaction with other aberrations, referred to as the pinning effect, is paramount for the search for faint stellar companions. The temporal evolution of quasi-static speckles is, for instance, required for quantifying the gain expected when using angular differential imaging (ADI) and to determining the interval on which speckle nulling techniques must be carried out. Methods: Following an early analysis of a time series of adaptively corrected, coronagraphic images obtained in a laboratory condition with the high-order test bench (HOT) at ESO Headquarters, we confirm our results with new measurements carried out with the SPHERE instrument during its final test phase in Europe. The analysis of the residual speckle pattern in both direct and differential coronagraphic images enables the characterization of the temporal stability of quasi-static speckles. Data were obtained in a thermally actively controlled environment reproducing realistic conditions encountered at the telescope. Results: The temporal evolution of the quasi-static wavefront error exhibits a linear power law, which can be used to model quasi-static speckle evolution in the context of forthcoming high-contrast imaging instruments, with implications for instrumentation (design, observing strategies, data reduction). Such a model can be used for instance to derive the timescale on which non-common path aberrations must be sensed and corrected. We found in our data that quasi-static wavefront error increases with ~0.7 Å per minute.
Flaibani, Marina; Luni, Camilla; Sbalchiero, Elisa; Elvassore, Nicola
2009-01-01
It has been widely demonstrated that perfusion bioreactors improve in vitro three-dimensional (3D) cultures in terms of high cell density and uniformity of cell distribution; however, the studies reported in literature were primarily based on qualitative analysis (histology, immunofluorescent staining) or on quantitative data averaged on the whole population (DNA assay, PCR). Studies on the behavior, in terms of cell cycle, of a cell population growing in 3D scaffolds in static or dynamic conditions are still absent. In this work, a perfusion bioreactor suitable to culture C(2)C(12) muscle precursor cells within 3D porous collagen scaffolds was designed and developed and a method based on flowcytometric analyses for analyzing the cell cycle in the cell population was established. Cells were extracted by enzymatic digestion of the collagen scaffolds after 4, 7, and 10 days of culture, and flow cytometric live/dead and cell cycle analyses were performed with Propidium Iodide. A live/dead assay was used for validating the method for cell extraction and staining. Moreover, to investigate spatial heterogeneity of the cell population under perfusion conditions, two stacked scaffolds in the 3D domain, of which only the upstream layer was seeded, were analyzed separately. All results were compared with those obtained from static 3D cultures. The live/dead assay revealed the presence of less than 20% of dead cells, which did not affect the cell cycle analysis. Cell cycle analyses highlighted the increment of cell fractions in proliferating phases (S/G(2)/M) owing to medium perfusion in long-term cultures. After 7-10 days, the percentage of proliferating cells was 8-12% for dynamic cultures and 3-5% for the static controls. A higher fraction of proliferating cells was detected in the downstream scaffold. From a general perspective, this method provided data with a small standard deviation and detected the differences between static and dynamic cultures and between upper and lower scaffolds. Our methodology can be extended to other cell types to investigate the influence of 3D culture conditions on the expression of other relevant cell markers.
pH Static Titration: A Quasistatic Approach
ERIC Educational Resources Information Center
Michalowski, Tadeusz; Toporek, Marcin; Rymanowski, Maciej
2007-01-01
The pH-static titration is applicable to those systems where at least two types of reactions occur in comparable intensities. The commonalities in titrimetric procedure realized according to pH-static titration, irrespective of the kind of chemical processes occurring are discussed.
Enhancement of viability of muscle precursor cells on 3D scaffold in a perfusion bioreactor.
Cimetta, E; Flaibani, M; Mella, M; Serena, E; Boldrin, L; De Coppi, P; Elvassore, N
2007-05-01
The aim of this study was to develop a methodology for the in vitro expansion of skeletal-muscle precursor cells (SMPC) in a three-dimensional (3D) environment in order to fabricate a cellularized artificial graft characterized by high density of viable cells and uniform cell distribution over the entire 3D domain. Cell seeding and culture within 3D porous scaffolds by conventional static techniques can lead to a uniform cell distribution only on the scaffold surface, whereas dynamic culture systems have the potential of allowing a uniform growth of SMPCs within the entire scaffold structure. In this work, we designed and developed a perfusion bioreactor able to ensure long-term culture conditions and uniform flow of medium through 3D collagen sponges. A mathematical model to assist the design of the experimental setup and of the operative conditions was developed. The effects of dynamic vs static culture in terms of cell viability and spatial distribution within 3D collagen scaffolds were evaluated at 1, 4 and 7 days and for different flow rates of 1, 2, 3.5 and 4.5 ml/min using C2C12 muscle cell line and SMPCs derived from satellite cells. C2C12 cells, after 7 days of culture in our bioreactor, perfused applying a 3.5 ml/min flow rate, showed a higher viability resulting in a three-fold increase when compared with the same parameter evaluated for cultures kept under static conditions. In addition, dynamic culture resulted in a more uniform 3D cell distribution. The 3.5 ml/min flow rate in the bioreactor was also applied to satellite cell-derived SMPCs cultured on 3D collagen scaffolds. The dynamic culture conditions improved cell viability leading to higher cell density and uniform distribution throughout the entire 3D collagen sponge for both C2C12 and satellite cells.
NASA Astrophysics Data System (ADS)
Li, Xibing; Wang, Shaofeng; Wang, Shanyong
2018-01-01
High geostress is a prominent condition in deep excavations and affects the cuttability of deep hard rock. This study aims to determine the influence of confining stress on hard rock fragmentation as applied by a conical pick. Using a true triaxial test apparatus, static and coupled static and dynamic loadings from pick forces were applied to end faces of cubic rock specimens to break them under biaxial, uniaxial and stress-free confining stress conditions. The cuttability indices (peak pick force, insertion depth and disturbance duration), failure patterns and fragment sizes were measured and compared to estimate the effects of confining stress. The results show that the rock cuttabilities decreased in order from rock breakages under stress-free conditions to uniaxial confining stress and then to biaxial confining stress. Under biaxial confining stress, only flake-shaped fragments were stripped from the rock surfaces under the requirements of large pick forces or disturbance durations. As the level of uniaxial confining stress increased, the peak pick force and the insertion depth initially increased and then decreased, and the failure patterns varied from splitting to partial splitting and then to rock bursts with decreasing average fragment sizes. Rock bursts will occur under elastic compression via ultra-high uniaxial confining stresses. There are two critical uniaxial confining stress levels, namely stress values at which peak pick forces begin to decrease and improve rock cuttability, and those at which rock bursts initially occur and cutting safety decreases. In particular, hard rock is easiest to split safely and efficiently under stress-free conditions. Moreover, coupled static preloading and dynamic disturbance can increase the efficiency of rock fragmentation with increasing preloading levels and disturbance amplitudes. The concluding remarks confirm hard rock cuttability using conical pick, which can improve the applicability of mechanical excavation in deep hard rock masses.
Moriyama, Hideki; Tobimatsu, Yoshiko; Ozawa, Junya; Kito, Nobuhiro; Tanaka, Ryo
2013-11-01
Joint contractures are a common complication of many neurologic conditions, and stretching often is advocated to prevent and treat these contractures. However, the magnitude and duration of the stretching done in practice usually are guided by subjective clinical impressions. Using an established T8 spinal cord injury rat model of knee contracture, we sought to determine what combination of static or intermittent stretching, varied by magnitude (high or low) and duration (long or short), leads to the best (1) improvement in the limitation in ROM; (2) restoration of the muscular and articular factors leading to contractures; and (3) prevention and treatment of contracture-associated histologic alterations of joint capsule and articular cartilage. Using a rat animal model, the spinal cord was transected completely at the level of T8. The rats were randomly assigned to seven treatment groups (n = 4 per group), which were composed of static or intermittent stretching in combination with different amounts of applied torque magnitude and duration. We assessed the effect of stretching by measuring the ROM and evaluating the histologic alteration of the capsule and cartilage. Contractures improved in all treated groups except for the low-torque and short-duration static stretching conditions. High-torque stretching was effective against shortening of the synovial membrane and adhesions in the posterosuperior regions. Collagen Type II and VEGF in the cartilage were increased by stretching. High-torque and long-duration static stretching led to greater restoration of ROM than the other torque and duration treatment groups. Stretching was more effective in improving articular components of contractures compared with the muscular components. Stretching in this rat model prevented shortening and adhesion of the joint capsule, and affected biochemical composition, but did not change morphologic features of the cartilage. This animal study tends to support the ideas that static stretching can influence joint ROM and histologic qualities of joint tissues, and that the way stretching is performed influences its efficacy. However, further studies are warranted to determine if our findings are clinically applicable.
Numerical Modeling of Sliding Stability of RCC dam
NASA Astrophysics Data System (ADS)
Mughieda, O.; Hazirbaba, K.; Bani-Hani, K.; Daoud, W.
2017-06-01
Stability and stress analyses are the most important elements that require rigorous consideration in design of a dam structure. Stability of dams against sliding is crucial due to the substantial horizontal load that requires sufficient and safe resistance to develop by mobilization of adequate shearing forces along the base of the dam foundation. In the current research, the static sliding stability of a roller-compacted-concrete (RCC) dam was modelled using finite element method to investigate the stability against sliding. A commercially available finite element software (SAP 2000) was used to analyze stresses in the body of the dam and foundation. A linear finite element static analysis was performed in which a linear plane strain isoperimetric four node elements was used for modelling the dam-foundation system. The analysis was carried out assuming that no slip will occur at the interface between the dam and the foundation. Usual static loading condition was applied for the static analysis. The greatest tension was found to develop in the rock adjacent to the toe of the upstream slope. The factor of safety against sliding along the entire base of the dam was found to be greater than 1 (FS>1), for static loading conditions.
Age-related effects on postural control under multi-task conditions.
Granacher, Urs; Bridenbaugh, Stephanie A; Muehlbauer, Thomas; Wehrle, Anja; Kressig, Reto W
2011-01-01
Changes in postural sway and gait patterns due to simultaneously performed cognitive (CI) and/or motor interference (MI) tasks have previously been reported and are associated with an increased risk of falling in older adults. The objectives of this study were to investigate the effects of a CI and/or MI task on static and dynamic postural control in young and elderly subjects, and to find out whether there is an association between measures of static and dynamic postural control while concurrently performing the CI and/or MI task. A total of 36 healthy young (n = 18; age: 22.3 ± 3.0 years; BMI: 21.0 ± 1.6 kg/m(2)) and elderly adults (n = 18; age: 73.5 ± 5.5 years; BMI: 24.2 ± 2.9 kg/m(2)) participated in this study. Static postural control was measured during bipedal stance, and dynamic postural control was obtained while walking on an instrumented walkway. Irrespective of the task condition, i.e. single-task or multiple tasks, elderly participants showed larger center-of-pressure displacements and greater stride-to-stride variability than younger participants. Associations between measures of static and dynamic postural control were found only under the single-task condition in the elderly. Age-related deficits in the postural control system seem to be primarily responsible for the observed results. The weak correlations detected between static and dynamic measures could indicate that fall-risk assessment should incorporate dynamic measures under multi-task conditions, and that skills like erect standing and walking are independent of each other and may have to be trained complementarily. Copyright © 2010 S. Karger AG, Basel.
The scope of the LeChatelier Principle
NASA Astrophysics Data System (ADS)
George M., Lady; Quirk, James P.
2007-07-01
LeChatelier [Comptes Rendus 99 (1884) 786; Ann. Mines 13 (2) (1888) 157] showed that a physical system's “adjustment” to a disturbance to its equilibrium tended to be smaller as constraints were added to the adjustment process. Samuelson [Foundations of Economic Analysis, Harvard University Press, Cambridge, 1947] applied this result to economics in the context of the comparative statics of the actions of individual agents characterized as the solutions to optimization problems; and later (1960), extended the application of the Principle to a stable, multi-market equilibrium and the case of all commodities gross substitutes [e.g., L. Metzler, Stability of multiple markets: the hicks conditions. Econometrica 13 (1945) 277-292]. Refinements and alternative routes of derivation have appeared in the literature since then, e.g., Silberberg [The LeChatelier Principle as a corollary to a generalized envelope theorem, J. Econ. Theory 3 (1971) 146-155; A revision of comparative statics methodology in economics, or, how to do comparative statics on the back of an envelope, J. Econ. Theory 7 (1974) 159-172], Milgrom and Roberts [The LeChatelier Principle, Am. Econ. Rev. 86 (1996) 173-179], W. Suen, E. Silberberg, P. Tseng [The LeChatelier Principle: the long and the short of it, Econ. Theory 16 (2000) 471-476], and Chavas [A global analysis of constrained behavior: the LeChatelier Principle ‘in the large’, South. Econ. J. 72 (3) (2006) 627-644]. In this paper, we expand the scope of the Principle in various ways keyed to Samuelson's proposed means of testing comparative statics results (optimization, stability, and qualitative analysis). In the optimization framework, we show that the converse LeChatelier Principle also can be found in constrained optimization problems and for not initially “conjugate” sensitivities. We then show how the Principle and its converse can be found through the qualitative analysis of any linear system. In these terms, the Principle and its converse also may be found in the same system at the same time with respect to the imposition of the same constraint. Based upon this, we expand the cases for which the Principle can be found based upon the stability hypothesis.
Tan, Yinyee; Fang, Mingyue; Jin, Lihua; Zhang, Chong; Li, He-Ping; Xing, Xin-Hui
2015-10-01
For biomass production of Spirulina platensis as feedstock of fermentation, the culture characteristics of three typical mutants of 3-A10, 3-B2 and 4-B3 generated by atmospheric and room temperature plasmas (ARTP) mutagenesis were systematically studied by using CO2 aeration culture system and compared with the wild strain. The specific growth rate of wild strain in the pure air aeration culture system exhibited a 76.2% increase compared with static culture, while the specific growth rates of the 3-A10, 3-B2 and 4-B3 in pure air aeration culture system were increased by 114.4%, 95.9% and 88.2% compared with their static cultures. Compared with static culture, the carbohydrate contents of wild strain, 3-A10, 3-B2 and 4-B3 in pure air aeration culture system dropped plainly by 51.0%, 79.3%, 85.5% and 26.1%. Increase of CO2 concentration enhanced carbohydrate content and productivity. Based on the carbohydrate productivity, the optimal inlet of CO2 concentration in aeration culture was determined to be 12% (v/v). Under this condition, 3-B2 exhibited the highest carbohydrate content (30.7%), CO2 fixation rate (0.120gCO2·g(-1)·d(-1)) and higher growth rate (0.093 g L(-1)·d(-1)), while 3-A10 showed the highest growth rate (0.118 g L(-1)·d(-1)) and higher CO2 fixation rate (0.117gCO2·g(-1)·d(-1)) but low carbohydrate content (24.5%), and 4-B3 showed the highest chlorophyll (Chl) content (3.82 mg·g(-1)). The most outstanding mutant by static culture in terms of growth rate and carbohydrate productivity (3-B2), was also demonstrated by CO2 aeration culture system. This study revealed that the ARTP mutagenesis could generate the S. platensis mutants suitable for CO2 aeration culture aiming at biomass production. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Slope Stability Analysis In Seismic Areas Of The Northern Apennines (Italy)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo Presti, D.; Fontana, T.; Marchetti, D.
2008-07-08
Several research works have been published on the slope stability in the northern Tuscany (central Italy) and particularly in the seismic areas of Garfagnana and Lunigiana (Lucca and Massa-Carrara districts), aimed at analysing the slope stability under static and dynamic conditions and mapping the landslide hazard. In addition, in situ and laboratory investigations are available for the study area, thanks to the activities undertaken by the Tuscany Seismic Survey. Based on such a huge information the co-seismic stability of few ideal slope profiles have been analysed by means of Limit equilibrium method LEM - (pseudo-static) and Newmark sliding block analysismore » (pseudo-dynamic). The analysis--results gave indications about the most appropriate seismic coefficient to be used in pseudo-static analysis after establishing allowable permanent displacement. Such indications are commented in the light of the Italian and European prescriptions for seismic stability analysis with pseudo-static approach. The stability conditions, obtained from the previous analyses, could be used to define microzonation criteria for the study area.« less
Srivastava, Kshama; Soin, Seepika; Sapra, B K; Ratna, P; Datta, D
2017-11-01
The occupational exposure incurred by the radiation workers due to the external radiation is estimated using personal dosemeter placed on the human body during the monitoring period. In certain situations, it is required to determine whether the dosemeter alone was exposed accidentally/intentionally in radiation field (static exposure) or was exposed while being worn by a worker moving in his workplace (dynamic exposure). The present thermoluminscent (TL) based personnel monitoring systems are not capable of distinguishing between the above stated (static and dynamic) exposure conditions. The feasibility of a new methodology developed using the charge coupled device based imaging technique for identification of the static/dynamic exposure of CaSO4:Dy based TL detectors for low energy photons has been investigated. The techniques for the qualitative and the quantitative assessments of the exposure conditions are presented in this paper. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Castagna, O; Desruelle, A V; Blatteau, J E; Schmid, B; Dumoulin, G; Regnard, J
2015-12-01
Highly trained "combat swimmers" encounter physiological difficulties when performing missions in warm water. The aim of this study was to assess the respective roles of immersion and physical activity in perturbing fluid balance of military divers on duty in warm water. 12 trained divers performed 2 dives each (2 h, 3 m depth) in fresh water at 29 °C. Divers either remained Static or swam continuously (Fin) during the dive. In the Fin condition, oxygen consumption and heart rate were 2-fold greater than during the Static dive. Core and skin temperatures were also higher (Fin: 38.5±0.4 °C and 36.2±0.3 °C and Static: 37.2±0.3 °C and 34.3±0.3 °C; respectively p=0.0002 and p=0.0003). During the Fin dive, the average mass loss was 989 g (39% urine loss, 41% sweating and 20% insensible water loss and blood sampling); Static divers lost 720 g (84% urine loss, 2% sweating and 14% insensible water loss and blood sampling) (p=0.003). In the Fin condition, a greater decrease in total body mass and greater sweating occurred, without effects on circulating renin and aldosterone concentrations; diuresis was reduced, and plasma volume decreased more than in the Static condition. © Georg Thieme Verlag KG Stuttgart · New York.
Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina
2014-12-01
Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p < 0.001). An interaction effect between strength and static postural control was found with narrow surface walking and talking while walking (change of β 0.980, p < 0.001 in strength for 1 SD improvements in static postural control for narrow walking, and [Formula: see text] -0.730, p < 0.01 in talking while walking). These results indicate that good static postural control facilitates the utilisation of lower limb strength to better perform complex, dynamic functional balance tasks. Practical implications for assessment and training are discussed.
Using electronic storybooks to support word learning in children with severe language impairments.
Smeets, Daisy J H; van Dijken, Marianne J; Bus, Adriana G
2014-01-01
Novel word learning is reported to be problematic for children with severe language impairments (SLI). In this study, we tested electronic storybooks as a tool to support vocabulary acquisition in SLI children. In Experiment 1, 29 kindergarten SLI children heard four e-books each four times: (a) two stories were presented as video books with motion pictures, music, and sounds, and (b) two stories included only static illustrations without music or sounds. Two other stories served as the control condition. Both static and video books were effective in increasing knowledge of unknown words, but static books were most effective. Experiment 2 was designed to examine which elements in video books interfere with word learning: video images or music or sounds. A total of 23 kindergarten SLI children heard 8 storybooks each four times: (a) two static stories without music or sounds, (b) two static stories with music or sounds, (c) two video stories without music or sounds, and (d) two video books with music or sounds. Video images and static illustrations were equally effective, but the presence of music or sounds moderated word learning. In children with severe SLI, background music interfered with learning. Problems with speech perception in noisy conditions may be an underlying factor of SLI and should be considered in selecting teaching aids and learning environments. © Hammill Institute on Disabilities 2012.
NASA Astrophysics Data System (ADS)
Jamison, David, IV
Low back pain is a large and costly problem in the United States. Several working populations, such as miners, construction workers, forklift operators, and military personnel, have an increased risk and prevalence of low back pain compared to the general population. This is due to exposure to repeated, transient impact shocks, particularly while operating vehicles or other machinery. These shocks typically do not cause acute injury, but rather lead to pain and injury over time. The major focus in low back pain is often the intervertebral disc, due to its role as the major primary load-bearing component along the spinal column. The formation of a reliable standard for human lumbar disc exposure to repeated transient shock could potentially reduce injury risk for these working populations. The objective of this project, therefore, is to characterize the mechanical response of the lumbar intervertebral disc subjected to sub-traumatic impact loading conditions using both cadaveric and computational models, and to investigate the possible implications of this type of loading environment for low back pain. Axial, compressive impact loading events on Naval high speed boats were simulated in the laboratory and applied to human cadaveric specimen. Disc stiffness was higher and hysteresis was lower than quasi-static loading conditions. This indicates a shift in mechanical response when the disc is under impact loads and this behavior could be contributing to long-term back pain. Interstitial fluid loss and disc height changes were shown to affect disc impact mechanics in a creep study. Neutral zone increased, while energy dissipation and low-strain region stiffness decreased. This suggests that the disc has greater clinical instability during impact loading with progressive creep and fluid loss, indicating that time of day should be considered for working populations subjected to impact loads. A finite element model was developed and validated against cadaver specimen subjected to impacts in the laboratory. Analysis showed greater total von Mises stress and pore pressure in the components of the disc under transient shocks compared to static or quasi-static loading. These findings support the idea that impact shocks cause a change in mechanical response and are potentially damaging to the disc in the long term.
Beiβner, Nicole; Mattern, Kai; Dietzel, Andreas; Reichl, Stephan
2018-05-01
In the present study, a formerly designed Dynamic Micro Tissue Engineering System (DynaMiTES) was applied with our prevalidated human hemicornea (HC) construct to obtain a test platform for improved absorption studies of the anterior eye (Ocular DynaMiTES). First, the cultivation procedure of the classic HC was slightly adapted to the novel DynaMiTES design. The obtained inverted HC was then compared to classic HC regarding cell morphology using light and scanning electron microscopy, cell viability using MTT dye reaction and epithelial barrier properties observing transepithelial electrical resistance and apparent permeation coefficient of sodium fluorescein. These tested cell criteria were similar. In addition, the effects of four different flow rates on the same cell characteristics were investigated using the DynaMiTES. Because no harmful potential of flow was found, dynamic absorption studies of sodium fluorescein with and without 0.005%, 0.01% and 0.02% benzalkonium chloride were performed compared to the common static test procedure. In this proof-of-concept study, the dynamic test conditions showed different results than the static test conditions with a better prediction of in vivo data. Thus, we propose that our DynaMiTES platform provides great opportunities for the improvement of common in vitro drug testing procedures. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Staszek, M.; Orlecka-Sikora, B.; Leptokaropoulos, K.; Kwiatek, G.; Martínez-Garzón, P.
2017-07-01
We use a high-quality data set from the NW part of The Geysers geothermal field to determine statistical significance of temporal static stress drop variations and their relation to injection rate changes. We use a group of 322 seismic events which occurred in the proximity of Prati-9 and Prati-29 injection wells to examine the influence of parameters such as moment magnitude, focal mechanism, hypocentral depth, and normalized hypocentral distances from open-hole sections of injection wells on static stress drop changes. Our results indicate that (1) static stress drop variations in time are statistically significant, (2) statistically significant static stress drop changes are inversely related to injection rate fluctuations. Therefore, it is highly expected that static stress drop of seismic events is influenced by pore pressure in underground fluid injection conditions and depends on the effective normal stress and strength of the medium.
Cherifi, Tamazight; Jacques, Mario; Quessy, Sylvain; Fravalo, Philippe
2017-01-01
Biofilm formation by the pathogen Listeria monocytogenes is a major concern in food industries. The aim of this work was to elucidate the effect of nutrient limitation on both biofilm architecture and on the viability of the bacteria in microfluidic growth conditions. Biofilm formation by two L. monocytogenes strains was performed in a rich medium (BHI) and in a 10-fold diluted BHI (BHI/10) at 30°C for 24 h by using both static conditions and the microfluidic system Bioflux. In dynamic conditions, biofilms grown in rich and poor medium showed significant differences as well in structure and in the resulting biovolume. In BHI/10, biofilm was organized in a knitted network where cells formed long chains, whereas in the rich medium, the observed structure was homogeneous cellular multilayers. Biofilm biovolume production in BHI/10 was significantly higher than in BHI in these dynamic conditions. Interestingly, biovolume of dead cells in biofilms formed under limited nutrient conditions (BHI/10) was significantly higher than in biofilms formed in the BHI medium. In the other hand, in static conditions, biofilm is organized in a multilayer cells and dispersed cells in a rich medium BHI and poor medium BHI/10 respectively. There was significantly more biomass in the rich medium compared to BHI/10 but no difference was noted in the dead/damaged subpopulation showing how L. monocytogenes biofilm could be affected by the growth conditions. This work demonstrated that nutrient concentration affects biofilm structure and the proportion of dead cells in biofilms under microfluidic condition. Our study also showed that limited nutrients play an important role in the structural stability of L. monocytogenes biofilm by enhancing cell death and liberating extracellular DNA.
Cherifi, Tamazight; Jacques, Mario; Quessy, Sylvain; Fravalo, Philippe
2017-01-01
Biofilm formation by the pathogen Listeria monocytogenes is a major concern in food industries. The aim of this work was to elucidate the effect of nutrient limitation on both biofilm architecture and on the viability of the bacteria in microfluidic growth conditions. Biofilm formation by two L. monocytogenes strains was performed in a rich medium (BHI) and in a 10-fold diluted BHI (BHI/10) at 30°C for 24 h by using both static conditions and the microfluidic system Bioflux. In dynamic conditions, biofilms grown in rich and poor medium showed significant differences as well in structure and in the resulting biovolume. In BHI/10, biofilm was organized in a knitted network where cells formed long chains, whereas in the rich medium, the observed structure was homogeneous cellular multilayers. Biofilm biovolume production in BHI/10 was significantly higher than in BHI in these dynamic conditions. Interestingly, biovolume of dead cells in biofilms formed under limited nutrient conditions (BHI/10) was significantly higher than in biofilms formed in the BHI medium. In the other hand, in static conditions, biofilm is organized in a multilayer cells and dispersed cells in a rich medium BHI and poor medium BHI/10 respectively. There was significantly more biomass in the rich medium compared to BHI/10 but no difference was noted in the dead/damaged subpopulation showing how L. monocytogenes biofilm could be affected by the growth conditions. This work demonstrated that nutrient concentration affects biofilm structure and the proportion of dead cells in biofilms under microfluidic condition. Our study also showed that limited nutrients play an important role in the structural stability of L. monocytogenes biofilm by enhancing cell death and liberating extracellular DNA. PMID:28567031
Comparison between static stretching and the Pilates method on the flexibility of older women.
Oliveira, Laís Campos de; Oliveira, Raphael Gonçalves de; Pires-Oliveira, Deise Aparecida de Almeida
2016-10-01
Flexibility decreases with advancing age and some forms of exercise, such as static stretching and Pilates, can contribute to the improvement of this physical ability. To compare the effects of static stretching and Pilates on the flexibility of healthy older women, over the age of 60 years. Thirty-two volunteers were randomized into two groups (Static stretching or Pilates) to perform exercises for 60 min, twice a week, for three months. Evaluations to analyze the movements of the trunk (flexion and extension), hip flexion and plantar and dorsiflexion of the ankle were performed before and after the intervention, using a fleximeter. The static stretching exercises improved the trunk flexion and hip flexion movements, while the Pilates improved all evaluated movements. However, over time, the groups presented differences only for the trunk extension movement. For some body segments, Pilates may be more effective for improving flexibility in older women compared to static stretching. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, Dong Wook
2015-08-01
The aim of this study was to compare the diagnostic accuracy of real-time and static ultrasonography (US) for the incidental detection of diffuse thyroid disease (DTD). In 118 consecutive patients, a single radiologist performed real-time US before thyroidectomy. For static US, the same radiologist retrospectively investigated the sonographic findings on a picture-archiving and communication system after 3 months. The diagnostic categories of both real-time and static US diagnoses were determined based on the number of abnormal findings, and the diagnostic indices were calculated by a receiver operating characteristic (ROC) curve analysis using the histopathologic results as the reference standard. Histopathologic results included normal thyroid (n = 77), Hashimoto thyroiditis (n = 11), non-Hashimoto lymphocytic thyroiditis (n = 29), and diffuse hyperplasia (n = 1). Normal thyroid and DTD showed significant differences in echogenicity, echotexture, glandular margin, and vascularity on both real-time and static US. There was a positive correlation between US categories and histopathologic results in both real-time and static US. The highest diagnostic indices were obtained when the cutoff criteria of real-time and static US diagnoses were chosen as indeterminate and suspicious for DTD, respectively. The ROC curve analysis showed that real-time US was superior to static US in diagnostic accuracy. Both real-time and static US may be helpful for the detection of incidental DTD, but real-time US is superior to static US for detecting incidental DTD.
Mpelasoka, Freddie; Awange, Joseph L; Goncalves, Rodrigo Mikosz
2018-05-01
Changes in drought around the globe are among the most daunting potential effects of climate change. However, changes in droughts are often not well distinguished from changes in aridity levels. As drought constitutes conditions of aridity, the projected declines in mean precipitation tend to override changes in drought. This results in projections of more dire changes in drought than ever. The overestimate of changes can be attributed to the use of 'static' normal precipitation in the derivation of drought events. The failure in distinguishing drought from aridity is a conceptual problem of concern, particularly to drought policymakers. Given that the key objective of drought policies is to determine drought conditions, which are rare and so protracted that they are beyond the scope of normal risk management, for interventions. The main objective of this Case Study of Brazil is to demonstrate the differences between projections of changes in drought based on 'static' and '30-year dynamic' precipitation normal conditions. First we demonstrate that the 'static' based projections suggest 4-fold changes in the probability of drought-year occurrences against changes by the dynamic normal precipitation. The 'static-normal mean precipitation' based projections tend to be monotonically increasing in magnitude, and were arguably considered unrealistic. Based on the '30-year dynamic' normal precipitation conditions, the 13-member GCM ensemble median projection estimates of changes for 2050 under rcp4.5 1 and rcp8.5 2 suggest: (i) Significant differences between changes associated with rcp4.5 and rcp8.5, and are more noticeable for droughts at long than short timescales in the 2070; (ii) Overall, the results demonstrate more realistic projections of changes in drought characteristics over Brazil than previous projections based on 'static' normal precipitation conditions. However, the uncertainty of response of droughts to climate change in CMIP5 simulations is still large, regardless of GCMs selection and translation processes undertaken. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Glasser, Philip W
1950-01-01
An experimental investigation of the effects of injecting a water-alcohol mixture of 2:1 at the compressor inlet of a centrifugal-flow type turbojet engine was conducted in an altitude test chamber at static sea-level conditions and at an altitude of 20,000 feet with a flight Mach number of 0.78 with an engine operating at rated speed. The net thrust was augmented by 0.16 for both flight conditions with a ratio of injected liquid to air flow of 0.05. Further increases in the liquid-air ratio did not give comparable increases in thrust.
NASA Technical Reports Server (NTRS)
Librescu, L.; Khdeir, A. A.
1988-01-01
A simple theory for bending of composite anisotropic plates that are laminated symmetrically about their mid-plane is presented. This theory incorporates transverse shear deformation and transverse normal stress as well as the higher-order effects and fulfills the static conditions on the external boundary planes. Further on, by using Levy-type solutions considered in conjunction with the state space concept, the state of stress and displacement of rectangular plates for a variety of edge conditions is determined and the results are compared to their first-order shear deformation and classical counterparts, obtained by using the same state-space technique.
A Progression of Static Equilibrium Laboratory Exercises
ERIC Educational Resources Information Center
Kutzner, Mickey; Kutzner, Andrew
2013-01-01
Although simple architectural structures like bridges, catwalks, cantilevers, and Stonehenge have been integral in human societies for millennia, as have levers and other simple tools, modern students of introductory physics continue to grapple with Newton's conditions for static equilibrium. As formulated in typical introductory physics…
14 CFR 23.1323 - Airspeed indicating system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... instrument calibration error when the corresponding pitot and static pressures are applied. (b) Each airspeed... positive drainage of moisture from the pitot static plumbing. (d) If certification for instrument flight rules or flight in icing conditions is requested, each airspeed system must have a heated pitot tube or...
A Note on Local Stability Conditions for Two Types of Monetary Models with Recursive Utility
NASA Astrophysics Data System (ADS)
Miyazaki, Kenji; Utsunomiya, Hitoshi
2009-09-01
This note explores local stability conditions for money-in-utility-function (MIUF) and transaction-costs (TC) models with recursive utility. Although Chen et al. [Chen, B.-L., M. Hsu, and C.-H. Lin, 2008, Inflation and growth: impatience and a qualitative equivalent, Journal of Money, Credit, and Banking, Vol. 40, No. 6, 1310-1323] investigated the relationship between inflation and growth in MIUF and TC models with recursive utility, they conducted only a comparative static analysis in a steady state. By establishing sufficient conditions for local stability, this note proves that impatience should be increasing in consumption and real balances. Increasing impatience, although less plausible from an empirical point of view, receives more support from a theoretical viewpoint.
Thermal stability of static coronal loops: Part 1: Effects of boundary conditions
NASA Technical Reports Server (NTRS)
Antiochos, S. K.; Shoub, E. C.; An, C. H.; Emslie, A. G.
1985-01-01
The linear stability of static coronal-loop models undergoing thermal perturbations was investigated. The effect of conditions at the loop base on the stability properties of the models was considered in detail. The question of appropriate boundary conditions at the loop base was considered and it was concluded that the most physical assumptions are that the temperature and density (or pressure) perturbations vanish there. However, if the base is taken to be sufficiently deep in the chromosphere, either several chromospheric scale heights or several coronal loop lengths in depth, then the effect of the boundary conditions on loop stability becomes negligible so that all physically acceptable conditions are equally appropriate. For example, one could as well assume that the velocity vanishes at the base. The growth rates and eigenmodes of static models in which gravity is neglected and in which the coronal heating is a relatively simple function, either constant per-unit mass or per-unit volume were calculated. It was found that all such models are unstable with a growth rate of the order of the coronal cooling time. The physical implications of these results for the solar corona and transition region are discussed.
Acoustic tests of duct-burning turbofan jet noise simulation
NASA Technical Reports Server (NTRS)
Knott, P. R.; Stringas, E. J.; Brausch, J. F.; Staid, P. S.; Heck, P. H.; Latham, D.
1978-01-01
The results of a static acoustic and aerodynamic performance, model-scale test program on coannular unsuppressed and multielement fan suppressed nozzle configurations are summarized. The results of the static acoustic tests show a very beneficial interaction effect. When the measured noise levels were compared with the predicted noise levels of two independent but equivalent conical nozzle flow streams, noise reductions for the unsuppressed coannular nozzles were of the order of 10 PNdB; high levels of suppression (8 PNdB) were still maintained even when only a small amount of core stream flow was used. The multielement fan suppressed coannular nozzle tests showed 15 PNdB noise reductions and up to 18 PNdB noise reductions when a treated ejector was added. The static aerodynamic performance tests showed that the unsuppressed coannular plug nozzles obtained gross thrust coefficients of 0.972, with 1.2 to 1.7 percent lower levels for the multielement fan-suppressed coannular flow nozzles. For the first time anywhere, laser velocimeter velocity profile measurements were made on these types of nozzle configurations and with supersonic heated flow conditions. Measurements showed that a very rapid decay in the mean velocity occurs for the nozzle tested.
Brittleness Effect on Rock Fatigue Damage Evolution
NASA Astrophysics Data System (ADS)
Nejati, Hamid Reza; Ghazvinian, Abdolhadi
2014-09-01
The damage evolution mechanism of rocks is one of the most important aspects in studying of rock fatigue behavior. Fatigue damage evolution of three rock types (onyx marble, sandstone and soft limestone) with different brittleness were considered in the present study. Intensive experimental tests were conducted on the chosen rock samples and acoustic emission (AE) sensors were used in some of them to monitor the fracturing process. Experimental tests indicated that brittleness strongly influences damage evolution of rocks in the course of static and dynamic loading. AE monitoring revealed that micro-crack density induced by the applied loads during different stages of the failure processes increases as rock brittleness increases. Also, results of fatigue tests on the three rock types indicated that the rock with the most induced micro-cracks during loading cycles has the least fatigue life. Furthermore, the condition of failure surfaces of the studied rocks samples, subjected to dynamic and static loading, were evaluated and it was concluded that the roughness of failure surfaces is influenced by loading types and rock brittleness. Dynamic failure surfaces were rougher than static ones and low brittle rock demonstrate a smoother failure surface compared to high brittle rock.
Wave equation datuming applied to marine OBS data and to land high resolution seismic profiling
NASA Astrophysics Data System (ADS)
Barison, Erika; Brancatelli, Giuseppe; Nicolich, Rinaldo; Accaino, Flavio; Giustiniani, Michela; Tinivella, Umberta
2011-03-01
One key step in seismic data processing flows is the computation of static corrections, which relocate shots and receivers at the same datum plane and remove near surface weathering effects. We applied a standard static correction and a wave equation datuming and compared the obtained results in two case studies: 1) a sparse ocean bottom seismometers dataset for deep crustal prospecting; 2) a high resolution land reflection dataset for hydrogeological investigation. In both cases, a detailed velocity field, obtained by tomographic inversion of the first breaks, was adopted to relocate shots and receivers to the datum plane. The results emphasize the importance of wave equation datuming to properly handle complex near surface conditions. In the first dataset, the deployed ocean bottom seismometers were relocated to the sea level (shot positions) and a standard processing sequence was subsequently applied to the output. In the second dataset, the application of wave equation datuming allowed us to remove the coherent noise, such as ground roll, and to improve the image quality with respect to the application of static correction. The comparison of the two approaches evidences that the main reflecting markers are better resolved when the wave equation datuming procedure is adopted.
Investigation of two pitot-static tubes at supersonic speeds
NASA Technical Reports Server (NTRS)
Hasel, Lowell E; Coletti, Donald E
1948-01-01
The results of tests at a Mach number of 1.94 of an ogives-nose cylindrical pitot-static tube and similar tests at Mach numbers of 1.93 and 1.62 of a service pitot-static tube to determine body static pressures and indicated Mach numbers are presented and discussed. The radial pressure distribution on the cylindrical bodies is compared with that calculated by an approximate theory.
Turbine Engine Control Synthesis. Volume 1. Optimal Controller Synthesis and Demonstration
1975-03-01
Nomenclature (Continued) Symbol Deseription M Matrix (of Table 12) M Mach number N Rotational speed, rpm N ’ Nonlinear rotational speed, rpm P Power lever... P Pressure, N /m 2; bfh/ft 2 PLA Power lever angle PR = PT3/PT2 Pressure ratio ( P Power, ft-lbf/sec Q Matrix (of Table 30) R Universal gas constant, 53...function, i = 1, 2, 3, ... in Inlet n Stage number designation out Outlet p Variable associated with particle s Static condition _se Static condition
NASA Astrophysics Data System (ADS)
Venkateswara Rao, B.; Kumar, G. V. Nagesh; Chowdary, D. Deepak; Bharathi, M. Aruna; Patra, Stutee
2017-07-01
This paper furnish the new Metaheuristic algorithm called Cuckoo Search Algorithm (CSA) for solving optimal power flow (OPF) problem with minimization of real power generation cost. The CSA is found to be the most efficient algorithm for solving single objective optimal power flow problems. The CSA performance is tested on IEEE 57 bus test system with real power generation cost minimization as objective function. Static VAR Compensator (SVC) is one of the best shunt connected device in the Flexible Alternating Current Transmission System (FACTS) family. It has capable of controlling the voltage magnitudes of buses by injecting the reactive power to system. In this paper SVC is integrated in CSA based Optimal Power Flow to optimize the real power generation cost. SVC is used to improve the voltage profile of the system. CSA gives better results as compared to genetic algorithm (GA) in both without and with SVC conditions.
ZrCuAl Bulk Metallic Glass spall induced by laser shock
NASA Astrophysics Data System (ADS)
Jodar, Benjamin; Loison, Didier; Yokoyama, Yoshihiko; Lescoute, Emilien; Berthe, Laurent; Sangleboeuf, Jean-Christophe
2017-06-01
To face High Velocity Impacts, the aerospace industry is always seeking for innovative materials usable as debris shielding components. Bulk Metallic Glasses (BMG) revealed interesting mechanical properties in case of static and quasi-static loading conditions: high elasticity, high tenacity, low density and high fracture threshold... The department of Mechanics and Glass of the Institut of Physics Rennes conducted on the ELFIE facility, laser shock experiments to study the behavior of a ternary ZrCuAl BMG under high strain rate, up-to fragmentation process. On the one hand, in-situ diagnostics were used to measure ejection velocities with PDV and debris morphologies were observed by Shadowgraphy. On the other hand, spalled areas (dimensions and features) were characterized through post-mortem analysis (optical observations, profilometry and SEM). These results are compared to experimental and numerical data on the crystalline forms of the ZrCuAl basic compounds.
NASA Technical Reports Server (NTRS)
Hunter, Craig A.
1995-01-01
An analytical/numerical method has been developed to predict the static thrust performance of non-axisymmetric, two-dimensional convergent-divergent exhaust nozzles. Thermodynamic nozzle performance effects due to over- and underexpansion are modeled using one-dimensional compressible flow theory. Boundary layer development and skin friction losses are calculated using an approximate integral momentum method based on the classic karman-Polhausen solution. Angularity effects are included with these two models in a computational Nozzle Performance Analysis Code, NPAC. In four different case studies, results from NPAC are compared to experimental data obtained from subscale nozzle testing to demonstrate the capabilities and limitations of the NPAC method. In several cases, the NPAC prediction matched experimental gross thrust efficiency data to within 0.1 percent at a design NPR, and to within 0.5 percent at off-design conditions.
Judgments of natural and anomalous trajectories in the presence and absence of motion
NASA Technical Reports Server (NTRS)
Kaiser, M. K.; Proffitt, D. R.; Anderson, K.
1985-01-01
Three experiments using McCloskey's curved tube problem, in which people are asked to predict the path that a ball takes when it is shot through a tube curved in a 'C' or spiral, are reported. The first experiment compared the perceptual and representational competencies of observers in recognizing the natural trajectory of the ball, and the second examined the competencies of children on this problem. The third experiment attempted to enhance the representational competence of observers by encouraging them to use a mental imagery approach to the problem. The subjects were presented with both on-going events and with static representations of the event. Men performed better than women under both these conditions, a result not attributable to formal instruction in physics. Children showed no gender effect. The use of mental imagery did not enhance performance on the static test.
NASA Astrophysics Data System (ADS)
Shirko, A. V.; Kamlyuk, A. N.; Drobysh, A. S.; Spiglazov, A. V.
2017-05-01
A strength and stiffness comparative analysis has been made of a concrete slab reinforced with composite-reinforcement rods and a slab reinforced with steel rods. The stress-strain state has been assessed for both versions of reinforcement of the slab. The stress-strain state was determined under the action of only static load and with subsequent application of temperature fields, i.e., under standard-fire conditions. It has been shown that the fire resistance of the slab with a composite reinforcement turns out to be 1.6 higher as far as the bearing capacity is concerned, than the fire resistance of the slab with a steel reinforcement, although the initial deflection due to the action of only static load for the slab reinforced with composite rods exceeds six to seven times the deflection of the slab reinforced with steel rods.
Cold flow testing of the Space Shuttle Main Engine high pressure fuel turbine model
NASA Technical Reports Server (NTRS)
Hudson, Susan T.; Gaddis, Stephen W.; Johnson, P. D.; Boynton, James L.
1991-01-01
In order to experimentally determine the performance of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) turbine, a 'cold' air flow turbine test program was established at NASA's Marshall Space Flight Center. As part of this test program, a baseline test of Rocketdyne's HPFTP turbine has been completed. The turbine performance and turbine diagnostics such as airfoil surface static pressure distributions, static pressure drops through the turbine, and exit swirl angles were investigated at the turbine design point, over its operating range, and at extreme off-design points. The data was compared to pretest predictions with good results. The test data has been used to improve meanline prediction codes and is now being used to validate various three-dimensional codes. The data will also be scaled to engine conditions and used to improve the SSME steady-state performance model.
Comparison of results of experimental research with numerical calculations of a model one-sided seal
NASA Astrophysics Data System (ADS)
Joachimiak, Damian; Krzyślak, Piotr
2015-06-01
Paper presents the results of experimental and numerical research of a model segment of a labyrinth seal for a different wear level. The analysis covers the extent of leakage and distribution of static pressure in the seal chambers and the planes upstream and downstream of the segment. The measurement data have been compared with the results of numerical calculations obtained using commercial software. Based on the flow conditions occurring in the area subjected to calculations, the size of the mesh defined by parameter y+ has been analyzed and the selection of the turbulence model has been described. The numerical calculations were based on the measurable thermodynamic parameters in the seal segments of steam turbines. The work contains a comparison of the mass flow and distribution of static pressure in the seal chambers obtained during the measurement and calculated numerically in a model segment of the seal of different level of wear.
Solution procedure of dynamical contact problems with friction
NASA Astrophysics Data System (ADS)
Abdelhakim, Lotfi
2017-07-01
Dynamical contact is one of the common research topics because of its wide applications in the engineering field. The main goal of this work is to develop a time-stepping algorithm for dynamic contact problems. We propose a finite element approach for elastodynamics contact problems [1]. Sticking, sliding and frictional contact can be taken into account. Lagrange multipliers are used to enforce non-penetration condition. For the time discretization, we propose a scheme equivalent to the explicit Newmark scheme. Each time step requires solving a nonlinear problem similar to a static friction problem. The nonlinearity of the system of equation needs an iterative solution procedure based on Uzawa's algorithm [2][3]. The applicability of the algorithm is illustrated by selected sample numerical solutions to static and dynamic contact problems. Results obtained with the model have been compared and verified with results from an independent numerical method.
Effect of Immobilized Antithrombin III on the Thromboresistance of Polycarbonate Urethane.
Lukas, Karin; Stadtherr, Karin; Gessner, Andre; Wehner, Daniel; Schmid, Thomas; Wendel, Hans Peter; Schmid, Christof; Lehle, Karla
2017-03-24
The surface of foils and vascular grafts made from a thermoplastic polycarbonate urethanes (PCU) (Chronoflex AR) were chemically modified using gas plasma treatment, binding of hydrogels-(1) polyethylene glycol bisdiamine and carboxymethyl dextran (PEG-DEX) and (2) polyethyleneimine (PEI)-and immobilization of human antithrombin III (AT). Their biological impact was tested in vitro under static and dynamic conditions. Static test methods showed a significantly reduced adhesion of endothelial cells, platelets, and bacteria, compared to untreated PCU. Modified PCU grafts were circulated in a Chandler-Loop model for 90 min at 37 °C with human blood. Before and after circulation, parameters of the hemostatic system (coagulation, platelets, complement, and leukocyte activation) were analyzed. PEI-AT significantly inhibited the activation of both coagulation and platelets and prevented the activation of leukocytes and complement. In conclusion, both modifications significantly reduce coagulation activation, but only PEI-AT creates anti-bacterial and anti-thrombogenic functionality.
Recent advances in the modelling of crack growth under fatigue loading conditions
NASA Technical Reports Server (NTRS)
Dekoning, A. U.; Tenhoeve, H. J.; Henriksen, T. K.
1994-01-01
Fatigue crack growth associated with cyclic (secondary) plastic flow near a crack front is modelled using an incremental formulation. A new description of threshold behaviour under small load cycles is included. Quasi-static crack extension under high load excursions is described using an incremental formulation of the R-(crack growth resistance)- curve concept. The integration of the equations is discussed. For constant amplitude load cycles the results will be compared with existing crack growth laws. It will be shown that the model also properly describes interaction effects of fatigue crack growth and quasi-static crack extension. To evaluate the more general applicability the model is included in the NASGRO computer code for damage tolerance analysis. For this purpose the NASGRO program was provided with the CORPUS and the STRIP-YIELD models for computation of the crack opening load levels. The implementation is discussed and recent results of the verification are presented.
NASA Technical Reports Server (NTRS)
Allison, Dennis O.; Cavallo, Peter A.
2003-01-01
An equivalent-plate structural deformation technique was coupled with a steady-state unstructured-grid three-dimensional Euler flow solver and a two-dimensional strip interactive boundary-layer technique. The objective of the research was to assess the extent to which a simple accounting for static model deformations could improve correlations with measured wing pressure distributions and lift coefficients at transonic speeds. Results were computed and compared to test data for a wing-fuselage model of a generic low-wing transonic transport at a transonic cruise condition over a range of Reynolds numbers and dynamic pressures. The deformations significantly improved correlations with measured wing pressure distributions and lift coefficients. This method provided a means of quantifying the role of dynamic pressure in wind-tunnel studies of Reynolds number effects for transonic transport models.
Long-term exposure of several marine benthic animals to static magnetic fields.
Bochert, R; Zettler, M L
2004-10-01
Electrical currents in underwater sea cables could induce magnetic fields. The sea cables lie on or within the sea bottom and this is the living area for many invertebrate and vertebrate species. North Sea prawn Crangon crangon (Crustacea, Decapoda), round crab Rhithropanopeus harrisii (Crustacea, Brachyura), glacial relict isopod Saduria entomon (Crustacea, Isopoda), blue mussel Mytilus edulis (Bivalvia), and young flounder Plathichthys flesus (Pisces) were exposed to a static magnetic field (MF) of 3.7 mT for several weeks. The results showed no differences in survival between experimental and control animals. Mussels M. edulis were kept under static magnetic field conditions for 3 months during their reproductive period in spring. The determination of gonad index and condition index revealed no significant differences to the control group. 2004 Wiley-Liss, Inc.
Determination of thin hydrodynamic lubricating film thickness using dichromatic interferometry.
Guo, L; Wong, P L; Guo, F; Liu, H C
2014-09-10
This paper introduces the application of dichromatic interferometry for the study of hydrodynamic lubrication. In conventional methods, two beams with different colors are projected consecutively on a static object. By contrast, the current method deals with hydrodynamic lubricated contacts under running conditions and two lasers with different colors are projected simultaneously to form interference images. Dichromatic interferometry incorporates the advantages of monochromatic and chromatic interferometry, which are widely used in lubrication research. This new approach was evaluated statically and dynamically by measuring the inclination of static wedge films and the thickness of the hydrodynamic lubricating film under running conditions, respectively. Results show that dichromatic interferometry can facilitate real-time determination of lubricating film thickness and is well suited for the study of transient or dynamic lubricating problems.
The force synergy of human digits in static and dynamic cylindrical grasps.
Kuo, Li-Chieh; Chen, Shih-Wei; Lin, Chien-Ju; Lin, Wei-Jr; Lin, Sheng-Che; Su, Fong-Chin
2013-01-01
This study explores the force synergy of human digits in both static and dynamic cylindrical grasping conditions. The patterns of digit force distribution, error compensation, and the relationships among digit forces are examined to quantify the synergetic patterns and coordination of multi-finger movements. This study recruited 24 healthy participants to perform cylindrical grasps using a glass simulator under normal grasping and one-finger restricted conditions. Parameters such as the grasping force, patterns of digit force distribution, and the force coefficient of variation are determined. Correlation coefficients and principal component analysis (PCA) are used to estimate the synergy strength under the dynamic grasping condition. Specific distribution patterns of digit forces are identified for various conditions. The compensation of adjacent fingers for the force in the normal direction of an absent finger agrees with the principle of error compensation. For digit forces in anti-gravity directions, the distribution patterns vary significantly by participant. The forces exerted by the thumb are closely related to those exerted by other fingers under all conditions. The index-middle and middle-ring finger pairs demonstrate a significant relationship. The PCA results show that the normal forces of digits are highly coordinated. This study reveals that normal force synergy exists under both static and dynamic cylindrical grasping conditions.
The Force Synergy of Human Digits in Static and Dynamic Cylindrical Grasps
Kuo, Li-Chieh; Chen, Shih-Wei; Lin, Chien-Ju; Lin, Wei-Jr; Lin, Sheng-Che; Su, Fong-Chin
2013-01-01
This study explores the force synergy of human digits in both static and dynamic cylindrical grasping conditions. The patterns of digit force distribution, error compensation, and the relationships among digit forces are examined to quantify the synergetic patterns and coordination of multi-finger movements. This study recruited 24 healthy participants to perform cylindrical grasps using a glass simulator under normal grasping and one-finger restricted conditions. Parameters such as the grasping force, patterns of digit force distribution, and the force coefficient of variation are determined. Correlation coefficients and principal component analysis (PCA) are used to estimate the synergy strength under the dynamic grasping condition. Specific distribution patterns of digit forces are identified for various conditions. The compensation of adjacent fingers for the force in the normal direction of an absent finger agrees with the principle of error compensation. For digit forces in anti-gravity directions, the distribution patterns vary significantly by participant. The forces exerted by the thumb are closely related to those exerted by other fingers under all conditions. The index-middle and middle-ring finger pairs demonstrate a significant relationship. The PCA results show that the normal forces of digits are highly coordinated. This study reveals that normal force synergy exists under both static and dynamic cylindrical grasping conditions. PMID:23544151
Non-axisymmetric flow characteristics in centrifugal compressor
NASA Astrophysics Data System (ADS)
Wang, Leilei; Lao, Dazhong; Liu, Yixiong; Yang, Ce
2015-06-01
The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute. The experimental and numerical simulation methods were adopted in this work to study the compressor flow field distribution with different flow conditions. The results show that the pressure distributionin volute is characterized by the circumferential non-uniform phenomenon and the pressure fluctuation on the high static pressure zone propagates reversely to upstream, which results in the non-axisymmetric flow inside the compressor. The non-uniform level of pressure distribution in large flow condition is higher than that in small flow condition, its effect on the upstream flow field is also stronger. Additionally, the non-uniform circumferential pressure distribution in volute brings the non-axisymmetric flow at impeller outlet. In different flow conditions,the circumferential variation of the absolute flow angle at impeller outlet is also different. Meanwhile, the non-axisymmetric flow characteristics in internal impeller can be also reflected by the distribution of the mass flow. The high static pressure region of the volute corresponds to the decrease of mass flow in upstream blade channel, while the low static pressure zone of the volute corresponds to the increase of the mass flow. In small flow condition, the mass flow difference in the blade channel is bigger than that in the large flow condition.
Jeong, Yoonah; Schäffer, Andreas; Smith, Kilian
2018-06-15
In this work, Oasis HLB® beads were embedded in a silicone matrix to make a single phase passive sampler with a higher affinity for polar and ionisable compounds than silicone alone. The applicability of this mixed polymer sampler (MPS) was investigated for 34 aquatic contaminants (log K OW -0.03 to 6.26) in batch experiments. The influence of flow was investigated by comparing uptake under static and stirred conditions. The sampler characteristics of the MPS was assessed in terms of sampling rates (R S ) and sampler-water partition coefficients (K SW ), and these were compared to those of the polar organic chemical integrative sampler (POCIS) as a reference kinetic passive sampler. The MPS was characterized as an equilibrium sampler for both polar and non-polar compounds, with faster uptake rates and a shorter time to reach equilibrium than the POCIS. Water flow rate impacted sampling rates by up to a factor of 12 when comparing static and stirred conditions. In addition, the relative accumulation of compounds in the polyethersulfone (PES) membranes versus the inner Oasis HLB sorbent was compared for the POCIS, and ranged from <1% to 83% depending on the analyte properties. This is indicative of a potentially significant lag-phase for less polar compounds within POCIS. The findings of this study can be used to quantitatively describe the partitioning and kinetic behaviour of MPS and POCIS for a range of aquatic organic contaminants for application in field sampling. Copyright © 2018 Elsevier B.V. All rights reserved.
Arifin, Nooranida; Abu Osman, Noor Azuan; Wan Abas, Wan Abu Bakar
2014-04-01
The measurements of postural balance often involve measurement error, which affects the analysis and interpretation of the outcomes. In most of the existing clinical rehabilitation research, the ability to produce reliable measures is a prerequisite for an accurate assessment of an intervention after a period of time. Although clinical balance assessment has been performed in previous study, none has determined the intrarater test-retest reliability of static and dynamic stability indexes during dominant single stance. In this study, one rater examined 20 healthy university students (female=12, male=8) in two sessions separated by 7 day intervals. Three stability indexes--the overall stability index (OSI), anterior/posterior stability index (APSI), and medial/ lateral stability index (MLSI) in static and dynamic conditions--were measured during single dominant stance. Intraclass correlation coefficient (ICC), standard error measurement (SEM) and 95% confidence interval (95% CI) were calculated. Test-retest ICCs for OSI, APSI, and MLSI were 0.85, 0.78, and 0.84 during static condition and were 0.77, 0.77, and 0.65 during dynamic condition, respectively. We concluded that the postural stability assessment using Biodex stability system demonstrates good-to-excellent test-retest reliability over a 1 week time interval.
NASA Astrophysics Data System (ADS)
Adam, L.; Frehner, M.; Sauer, K. M.; Toy, V.; Guerin-Marthe, S.; Boulton, C. J.
2017-12-01
Reconciling experimental and static-dynamic numerical estimations of seismic anisotropy in Alpine Fault mylonitesLudmila Adam1, Marcel Frehner2, Katrina Sauer3, Virginia Toy3, Simon Guerin-Marthe4, Carolyn Boulton5(1) University of Auckland, New Zealand, (2) ETH Zurich, Switzerland, (3) University of Otago, New Zealand (4) Durham University, Earth Sciences, United Kingdom (5) Victoria University of Wellington, New Zealand Quartzo-feldspathic mylonites and schists are the main contributors to seismic wave anisotropy in the vicinity of the Alpine Fault (New Zealand). We must determine how the physical properties of rocks like these influence elastic wave anisotropy if we want to unravel both the reasons for heterogeneous seismic wave propagation, and interpret deformation processes in fault zones. To study such controls on velocity anisotropy we can: 1) experimentally measure elastic wave anisotropy on cores at in-situ conditions or 2) estimate wave velocities by static (effective medium averaging) or dynamic (finite element) modelling based on EBSD data or photomicrographs. Here we compare all three approaches in study of schist and mylonite samples from the Alpine Fault. Volumetric proportions of intrinsically anisotropic micas in cleavage domains and comparatively isotropic quartz+feldspar in microlithons commonly vary significantly within one sample. Our analysis examines the effects of these phases and their arrangement, and further addresses how heterogeneity influences elastic wave anisotropy. We compare P-wave seismic anisotropy estimates based on millimetres-scale ultrasonic waves under in situ conditions, with simulations that account for micrometre-scale variations in elastic properties of constitutent minerals with the MTEX toolbox and finite-element wave propagation on EBSD images. We observe that the sorts of variations in the distribution of micas and quartz+feldspar within any one of our real core samples can change the elastic wave anisotropy by 10%. In addition, at 60 MPa confining pressure, experimental elastic anisotropy is greater than modelled anisotropy, which could indicate that open microfractures dramatically influence seismic wave anisotropy in the top 3 to 4 km of the crust, or be related to the different resolutions of the two methods.
Cama-Moncunill, Raquel; Markiewicz-Keszycka, Maria; Dixit, Yash; Cama-Moncunill, Xavier; Casado-Gavalda, Maria P; Cullen, Patrick J; Sullivan, Carl
2016-07-01
Powdered infant formula (PIF) is a worldwide, industrially produced, human milk substitute. Manufacture of PIF faces strict quality controls in order to ensure that the product meets all compositional requirements. Near-infrared (NIR) spectroscopy is a rapid, non-destructive and well-qualified technique for food quality assessments. The use of fibre-optic NIR sensors allows measuring in-line and at real-time, and can record spectra from different stages of the process. The non-contact character of fibre-optic sensors can be enhanced by fitting collimators, which allow operation at various distances. The system, based on a Fabry-Perot interferometer, records four spectra concurrently, rather than consecutively as in the "quasi-simultaneous" multipoint NIR systems. In the present study, a novel multipoint NIR spectroscopy system equipped with four fibre-optic probes with collimators was assessed to determine carbohydrate and protein contents of PIF samples under static and motion conditions (0.02, 0.15 and 0.30m/s) to simulate possible industrial scenarios. Best results were obtained under static conditions providing a R(2) of calibration of 0.95 and RMSEP values of 1.89%. Yet, considerably low values of RMSEP, for instance 2.70% at 0.15m/s, were provided with the in-motion predictions, demonstrating the system's potential for in/on-line applications at various levels of speed. The current work also evaluated the viability of using general off-line calibrations developed under static conditions for on/in-line applications subject to motion. To this end, calibrations in both modes were developed and compared. Best results were obtained with specific calibrations; however, reasonably accurate models were obtained with the general calibration. Furthermore, this work illustrated independency of the collimator-probe setup by characterizing PIF samples simultaneously recorded according to their carbohydrate content, even when measured under different conditions. Therefore, the improved multipoint NIR approach constitutes a potential in/on-line tool for quality evaluation of PIF over the manufacturing process. Copyright © 2016 Elsevier B.V. All rights reserved.
Karim Soltani, Mohammad; Golfeshan, Farzaneh; Alizadeh, Yoones; Mehrzad, Jabraiel
2015-01-01
Statement of the Problem Frictional forces are considered as important counterforce to orthodontic tooth movement. It is claimed that self-ligating brackets reduce the frictional forces. Purpose The aim of this study was to compare the resistance to sliding in metallic and clear Damon brackets with the conventional brackets in a wet condition. Materials and Method The samples included 4 types of brackets; metallic and clear Damon brackets and metallic and clear conventional brackets (10 brackets in each group). In this study, stainless steel wires sized 0.019×0.025 were employed and the operator’s saliva was used to simulate the conditions of oral cavity. The tidy-modified design was used for simulation of sliding movement. The resistance to sliding and static frictional forces was measured by employing Testometric machine and load cell. Results The mean (±SD) of resistance to sliding was 194.88 (±26.65) and 226.62 (±39.9) g in the esthetic and metallic Damon brackets, while these values were 187.81(±27.84) and 191.17(±66.68) g for the clear and metallic conventional brackets, respectively. Static frictional forces were 206.4(±42.45) and 210.38(±15.89) g in the esthetic and metallic Damon brackets and 220.63(±49.29) and 215.13(±62.38) g in the clear and metallic conventional brackets. According to two-way ANOVA, no significant difference was observed between the two bracket materials (clear and metal) and the two types of bracket (self-ligating versus conventional) regarding resistance to sliding (p= 0.17 and p= 0.23, respectively) and static frictional forces (p= 0.55 and p= 0.96, respectively). Conclusion Neither the type of bracket materials nor their type of ligation made difference in resistance to sliding and static friction. PMID:26106630
Development and validity of an instrumented handbike: initial results of propulsion kinetics.
van Drongelen, Stefan; van den Berg, Jos; Arnet, Ursina; Veeger, Dirkjan H E J; van der Woude, Lucas H V
2011-11-01
To develop an instrumented handbike system to measure the forces applied to the handgrip during handbiking. A 6 degrees of freedom force sensor was built into the handgrip of an attach-unit handbike, together with two optical encoders to measure the orientation of the handgrip and crank in space. Linearity, precision, and percent error were determined for static and dynamic tests. High linearity was demonstrated for both the static and the dynamic condition (r=1.01). Precision was high under the static condition (standard deviation of 0.2N), however the precision decreased with higher loads during the dynamic condition. Percent error values were between 0.3 and 5.1%. This is the first instrumented handbike system that can register 3-dimensional forces. It can be concluded that the instrumented handbike system allows for an accurate force analysis based on forces registered at the handle bars. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Dumont, Courtney M; Piselli, Jennifer M; Kazi, Nadeem; Bowman, Evan; Li, Guoyun; Linhardt, Robert J; Temple, Sally; Dai, Guohao; Thompson, Deanna M
2017-08-15
The microvasculature within the neural stem cell (NSC) niche promotes self-renewal and regulates lineage progression. Previous work identified endothelial-produced soluble factors as key regulators of neural progenitor cell (NPC) fate and proliferation; however, endothelial cells (ECs) are sensitive to local hemodynamics, and the effect of this key physiological process has not been defined. In this study, we evaluated adult mouse NPC response to soluble factors isolated from static or dynamic (flow) EC cultures. Endothelial factors generated under dynamic conditions significantly increased neuronal differentiation, while those released under static conditions stimulated oligodendrocyte differentiation. Flow increases EC release of neurogenic factors and of heparin sulfate glycosaminoglycans that increase their bioactivity, likely underlying the enhanced neuronal differentiation. Additionally, endothelial factors, especially from static conditions, promoted adherent growth. Together, our data suggest that blood flow may impact proliferation, adhesion, and the neuron-glial fate choice of adult NPCs, with implications for diseases and aging that reduce flow.
Sadra, Saba; Fleischer, Adam; Klein, Erin; Grewal, Gurtej S; Knight, Jessica; Weil, Lowell Scott; Weil, Lowell; Najafi, Bijan
2013-01-01
Hallux valgus (HV) is associated with poorer performance during gait and balance tasks and is an independent risk factor for falls in older adults. We sought to assess whether corrective HV surgery improves gait and balance. Using a cross-sectional study design, gait and static balance data were obtained from 40 adults: 19 patients with HV only (preoperative group), 10 patients who recently underwent successful HV surgery (postoperative group), and 11 control participants. Assessments were made in the clinic using body-worn sensors. Patients in the preoperative group generally demonstrated poorer static balance control compared with the other two groups. Despite similar age and body mass index, postoperative patients exhibited 29% and 63% less center of mass sway than preoperative patients during double-and single-support balance assessments, respectively (analysis of variance P =.17 and P =.14, respectively [both eyes open condition]). Overall, gait performance was similar among the groups, except for speed during gait initiation, where lower speeds were encountered in the postoperative group compared with the preoperative group (Scheffe P = .049). This study provides supportive evidence regarding the benefits of corrective lower-extremity surgery on certain aspects of balance control. Patients seem to demonstrate early improvements in static balance after corrective HV surgery, whereas gait improvements may require a longer recovery time. Further research using a longitudinal study design and a larger sample size capable of assessing the long-term effects of HV surgical correction on balance and gait is probably warranted.
do Nascimento, J A; Silva, C C; Dos Santos, H H; de Almeida Ferreira, J J; de Andrade, P R
2017-12-01
The aim of this study was to evaluate the postural control of obese young adults with normal body mass index during different static (bipedic and unipedic support) and dynamic postural conditions (gait velocity and limits of stability) in order to compare the static and dynamic balance of these individuals. A cross-sectional quantitative study was carried out to evaluate static and dynamic balance in 25 sedentary individuals. The sample was divided into two groups, 10 in the normal-weight group (24.70 ± 3.89 years and 21.5 ± 1.66 kg m -2 ) and 15 in the obese group (26.80 ± 5.16 years and 35.66 ± 4.29 kg m -2 ). Postural evaluation was performed through visual inspection, and balance analyses were performed using the Timed Up & Go test (TUGT) and Balance System (Biodex). Descriptive analyses, Fisher's exact test and Mann Whitney U-tests were performed using the Statistical Package for Social Sciences (SPSS - 20.0, Armonk, NY) software. Most of the obese volunteers presented postural alterations, such as head protrusion (47.6%), hyperkyphosis (46.7%) and hyperlordosis (26.7%). Medial-lateral dynamic displacement, risk of falls and mean time to perform the limits of stability test and TUGT were higher for obese subjects (P < 0.05), while there were no significant differences between the groups (P > 0.05) for static balance tests for either bipedal or unipedal tasks. The disadvantage presented by the young obese subjects occurs in dynamic activities, representing worse balance and an increase in time needed to accomplish these activities. © 2017 World Obesity Federation.
Time-Averaged Velocity, Temperature and Density Surveys of Supersonic Free Jets
NASA Technical Reports Server (NTRS)
Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.
2005-01-01
A spectrally resolved molecular Rayleigh scattering technique was used to simultaneously measure axial component of velocity U, static temperature T, and density p in unheated free jets at Mach numbers M = 0.6,0.95, 1.4 and 1.8. The latter two conditions were achieved using contoured convergent-divergent nozzles. A narrow line-width continuous wave laser was passed through the jet plumes and molecular scattered light from a small region on the beam was collected and analyzed using a Fabry-Perot interferometer. The optical spectrum analysis air density at the probe volume was determined by monitoring the intensity variation of the scattered light using photo-multiplier tubes. The Fabry-Perot interferometer was operated in the imaging mode, whereby the fringe formed at the image plane was captured by a cooled CCD camera. Special attention was given to remove dust particles from the plume and to provide adequate vibration isolation to the optical components. The velocity profiles from various operating conditions were compared with that measured by a Pitot tube. An excellent comparison within 5m's demonstrated the maturity of the technique. Temperature was measured least accurately, within 10K, while density was measured within 1% uncertainty. The survey data consisted of centerline variations and radial profiles of time-averaged U, T and p. The static temperature and density values were used to determine static pressure variations inside the jet. The data provided a comparative study of jet growth rates with increasing Mach number. The current work is part of a data-base development project for Computational Fluid Dynamics and Aeroacoustics codes that endeavor to predict noise characteristics of high speed jets. A limited amount of far field noise spectra from the same jets are also presented. Finally, a direct experimental validation was obtained for the Crocco-Busemann equation which is commonly used to predict temperature and density profiles from known velocity profiles. Data presented in this paper are available in ASCII format upon request.
Heidari, Mohammad; Heidari, Ali; Homaei, Hadi
2014-01-01
The static pull-in instability of beam-type microelectromechanical systems (MEMS) is theoretically investigated. Two engineering cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps, and size effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS. PMID:24860602
Finite element modeling of ROPS in static testing and rear overturns.
Harris, J R; Mucino, V H; Etherton, J R; Snyder, K A; Means, K H
2000-08-01
Even with the technological advances of the last several decades, agricultural production remains one of the most hazardous occupations in the United States. Death due to tractor rollover is a prime contributor to this hazard. Standards for rollover protective structures (ROPS) performance and certification have been developed by groups such as the Society of Automotive Engineers (SAE) and the American Society of Agricultural Engineers (ASAE) to combat these problems. The current ROPS certification standard, SAE J2194, requires either a dynamic or static testing sequence or both. Although some ROPS manufacturers perform both the dynamic and static phases of SAE J2194 testing, it is possible for a ROPS to be certified for field operation using static testing alone. This research compared ROPS deformation response from a simulated SAE J2194 static loading sequence to ROPS deformation response as a result of a simulated rearward tractor rollover. Finite element analysis techniques for plastic deformation were used to simulate both the static and dynamic rear rollover scenarios. Stress results from the rear rollover model were compared to results from simulated static testing per SAE J2194. Maximum stress values from simulated rear rollovers exceeded maximum stress values recorded during simulated static testing for half of the elements comprising the uprights. In the worst case, the static model underpredicts dynamic model results by approximately 7%. In the best case, the static model overpredicts dynamic model results by approximately 32%. These results suggest the need for additional experimental work to characterize ROPS stress levels during staged overturns and during testing according to the SAE standard.
Influence of static habitat attributes on local and regional Rocky intertidal community structure
Konar, B.; Iken, K.; Coletti, H.; Monson, Daniel H.; Weitzman, Ben P.
2016-01-01
Rocky intertidal communities are structured by local environmental drivers, which can be dynamic, fluctuating on various temporal scales, or static and not greatly varying across years. We examined the role of six static drivers (distance to freshwater, tidewater glacial presence, wave exposure, fetch, beach slope, and substrate composition) on intertidal community structure across the northern Gulf of Alaska. We hypothesized that community structure is less similar at the local scale compared with the regional scale, coinciding with static drivers being less similar on smaller than larger scales. We also hypothesized that static attributes mainly drive local biological community structure. For this, we surveyed five to six sites in each of the six regions in the mid and low intertidal strata. Across regions, static attributes were not consistently different and only small clusters of sites had similar attributes. Additionally, intertidal communities were less similar on the site compared with the region level. These results suggest that these biological communities are not strongly influenced by the local static attributes measured in this study. An alternative explanation is that static attributes among our regions are not different enough to influence the biological communities. This lack of evidence for a strong static driver may be a result of our site selection, which targeted rocky sheltered communities. This suggests that this habitat may be ideal to examine the influence of dynamic drivers. We recommend that future analyses of dynamic attributes may best be performed after analyses have demonstrated that sites do not differ in static attributes.
Corticomuscular synchronization with small and large dynamic force output
Andrykiewicz, Agnieszka; Patino, Luis; Naranjo, Jose Raul; Witte, Matthias; Hepp-Reymond, Marie-Claude; Kristeva, Rumyana
2007-01-01
Background Over the last few years much research has been devoted to investigating the synchronization between cortical motor and muscular activity as measured by EEG/MEG-EMG coherence. The main focus so far has been on corticomuscular coherence (CMC) during static force condition, for which coherence in beta-range has been described. In contrast, we showed in a recent study [1] that dynamic force condition is accompanied by gamma-range CMC. The modulation of the CMC by various dynamic force amplitudes, however, remained uninvestigated. The present study addresses this question. We examined eight healthy human subjects. EEG and surface EMG were recorded simultaneously. The visuomotor task consisted in isometric compensation for 3 forces (static, small and large dynamic) generated by a manipulandum. The CMC, the cortical EEG spectral power (SP), the EMG SP and the errors in motor performance (as the difference between target and exerted force) were analyzed. Results For the static force condition we found the well-documented, significant beta-range CMC (15–30 Hz) over the contralateral sensorimotor cortex. Gamma-band CMC (30–45 Hz) occurred in both small and large dynamic force conditions without any significant difference between both conditions. Although in some subjects beta-range CMC was observed during both dynamic force conditions no significant difference between conditions could be detected. With respect to the motor performance, the lowest errors were obtained in the static force condition and the highest ones in the dynamic condition with large amplitude. However, when we normalized the magnitude of the errors to the amplitude of the applied force (relative errors) no significant difference between both dynamic conditions was observed. Conclusion These findings confirm that during dynamic force output the corticomuscular network oscillates at gamma frequencies. Moreover, we show that amplitude modulation of dynamic force has no effect on the gamma CMC in the low force range investigated. We suggest that gamma CMC is rather associated with the internal state of the sensorimotor system as supported by the unchanged relative error between both dynamic conditions. PMID:18042289
NASA Technical Reports Server (NTRS)
Kozlowski, H.; Packman, A. B.
1978-01-01
Jet noise spectra obtained at static conditions from an acoustic wind tunnel and an outdoor facility are compared. Data curves are presented for (1) the effect of relative velocity on OASPL directivity (all configurations); (2) the effect of relative velocity on noise spectra (all configurations); (3) the effect of velocity on PNL directivity (coannular nozzle configurations); (4) nozzle exhaust plume velocity profiles; and (5) the effect of relative velocity on aerodynamic performance.
Summary of experimental heat-transfer results from the turbine hot section facility
NASA Technical Reports Server (NTRS)
Gladden, Herbert J.; Yeh, Fredrick C.
1993-01-01
Experimental data from the turbine Hot Section Facility are presented and discussed. These data include full-coverage film-cooled airfoil results as well as special instrumentation results obtained at simulated real engine conditions. Local measurements of airfoil wall temperature, airfoil gas-path static-pressure distribution, and local heat-transfer coefficient distributions are presented and discussed. In addition, measured gas and coolant temperatures and pressures are presented. These data are also compared with analyses from Euler and boundary-layer codes.
Lin, Guoping; Candela, Y; Tillement, O; Cai, Zhiping; Lefèvre-Seguin, V; Hare, J
2012-12-15
A method based on thermal bistability for ultralow-threshold microlaser optimization is demonstrated. When sweeping the pump laser frequency across a pump resonance, the dynamic thermal bistability slows down the power variation. The resulting line shape modification enables a real-time monitoring of the laser characteristic. We demonstrate this method for a functionalized microsphere exhibiting a submicrowatt laser threshold. This approach is confirmed by comparing the results with a step-by-step recording in quasi-static thermal conditions.
NASA Astrophysics Data System (ADS)
Feng, Zhi-Yong; Xu, Li; Matsushita, Shin-Ya; Wu, Min
Further results on sufficient LMI conditions for H∞ static output feedback (SOF) control of discrete-time systems are presented in this paper, which provide some new insights into this issue. First, by introducing a slack variable with block-triangular structure and choosing the coordinate transformation matrix properly, the conservativeness of one kind of existing sufficient LMI condition is further reduced. Then, by introducing a slack variable with linear matrix equality constraint, another kind of sufficient LMI condition is proposed. Furthermore, the relation of these two kinds of LMI conditions are revealed for the first time through analyzing the effect of different choices of coordinate transformation matrices. Finally, a numerical example is provided to demonstrate the effectiveness and merits of the proposed methods.
Tan, Onder; Atik, Bekir; Dogan, Ali; Uslu, Mustafa; Alpaslan, Suleyman
2007-01-01
Skin grafting is widely used for the treatment of postburn contractures. Their main disadvantage, a tendency to contract again, can be reduced and better outcomes achieved by postoperative splinting. In this study we compared the outcomes of dynamic and static splinting postoperatively. Of the 57 patients managed by split grafts, 36 (44 hands) had Kirschner (K) wires applied with static splints, whereas 21 (26 hands) had dynamic splinting. The mean age was 11 (range 2-37) and 15 (range 2-50) years in the two groups. Before and after the operation, basic hand functions were evaluated clinically, and the results analysed statistically. The mean follow-up times were 18 and 14 months respectively, and recurrence rates were 22% and 14%. We think that the postoperative dynamic splinting is superior to fixation with K-wires with or without static splints.
LMI-based adaptive reliable H∞ static output feedback control against switched actuator failures
NASA Astrophysics Data System (ADS)
An, Liwei; Zhai, Ding; Dong, Jiuxiang; Zhang, Qingling
2017-08-01
This paper investigates the H∞ static output feedback (SOF) control problem for switched linear system under arbitrary switching, where the actuator failure models are considered to depend on switching signal. An active reliable control scheme is developed by combination of linear matrix inequality (LMI) method and adaptive mechanism. First, by exploiting variable substitution and Finsler's lemma, new LMI conditions are given for designing the SOF controller. Compared to the existing results, the proposed design conditions are more relaxed and can be applied to a wider class of no-fault linear systems. Then a novel adaptive mechanism is established, where the inverses of switched failure scaling factors are estimated online to accommodate the effects of actuator failure on systems. Two main difficulties arise: first is how to design the switched adaptive laws to prevent the missing of estimating information due to switching; second is how to construct a common Lyapunov function based on a switched estimate error term. It is shown that the new method can give less conservative results than that for the traditional control design with fixed gain matrices. Finally, simulation results on the HiMAT aircraft are given to show the effectiveness of the proposed approaches.
Comparative study of the vapor analytes of trinitrotoluene (TNT)
NASA Astrophysics Data System (ADS)
Edge, Cindy C.; Gibb, Julie; Dugan, Regina E.
1998-12-01
Trinitrotoluene (TNT) is a high explosive used in most antipersonnel and antitank landmines. The Institute for Biological Detection Systems (IBDS) has developed a quantitative vapor delivery system, termed olfactometer, for conducting canine olfactory research. The research is conducted utilizing dynamic conditions, therefore, it is imperative to evaluate the headspace of TNT to ensure consistency with the dynamic generation of vapor. This study quantified the vapor headspace of military- grade TNT utilizing two different vapor generated methodologies, static and dynamic, reflecting differences between field and laboratory environments. Static vapor collection, which closely mimics conditions found during field detection, is defined as vapor collected in an open-air environment at ambient temperature. Dynamic vapor collection incorporates trapping of gases from a high flow vapor generation cell used during olfactometer operation. Analysis of samples collected by the two methodologies was performed by gas chromatography/mass spectrometry and the results provided information with regard to the constituents detected. However, constituent concentration did vary between the sampling methods. This study provides essential information regarding the vapor constituents associated with the TNT sampled using different sampling methods. These differences may be important in determining the detection signature dogs use to recognize TNT.
Tensile characterisation of the aorta across quasi-static to blast loading strain rates
NASA Astrophysics Data System (ADS)
Magnus, Danyal; Proud, William; Haller, Antoine; Jouffroy, Apolline
2017-06-01
The dynamic tensile failure mechanisms of the aorta during Traumatic Aortic Injury (TAI) are poorly understood. In automotive incidents, where the aorta may be under strains of the order of 100/s, TAI is the second largest cause of mortality. In these studies, the proximal descending aorta is the most common site where rupture is observed. In particular, the transverse direction is most commonly affected due to the circumferential orientation of elastin, and hence the literature generally concentrates upon axial samples. This project extends these dynamic studies to the blast loading regime where strain-rates are of the order of 1000/s. A campaign of uniaxial tensile experiments are conducted at quasi-static, intermediate (drop-weight) and high (tensile Split-Hopkinson Pressure Bar) strain rates. In each case, murine and porcine aorta models are considered and the extent of damage assessed post-loading using histology. Experimental data will be compared against current viscoelastic models of the aorta under axial stress. Their applicability across strain rates will be discussed. Using a multi-disciplinary approach, the conditions applied to the samples replicate in vivo conditions, employing a blood simulant-filled tubular specimen surrounded by a physiological solution.
NASA Technical Reports Server (NTRS)
Tenney, D. R.
1974-01-01
The oxidation behavior of TD-NiCr and TD-NiCrAlY alloys have been studied at 2000 and 2200 F in static and high speed flowing air environments. The TD-NiCrAlY alloys preoxidized to produce an Al2O3 scale on the surface showed good oxidation resistance in both types of environments. The TD-NiCr alloy which had a Cr2O3 oxide scale after preoxidation was found to oxidize more than an order of magnitude faster under the dynamic test conditions than at comparable static test conditions. Although Cr2O3 normally provides good oxidation protection, it was rapidly lost due to formation of volatile CrO3 when exposed to the high speed air stream. The preferred oxide arrangement for the dynamic test consisted of an external layer of NiO with a porous mushroom type morphology, an intermediate duplex layer of NiO and Cr2O3, and a continuous inner layer of Cr2O3 in contact with the alloy substrate. An oxidation model has been developed to explain the observed microstructure and overall oxidation behavior of all alloys.
NASA Astrophysics Data System (ADS)
de Szoeke, S. P.
2017-12-01
Averaged over the tropical marine boundary layer (BL), 130 W m-2 turbulent surface moist static energy (MSE) flux, 120 W m-2 of which is evaporation, is balanced by upward MSE flux at the BL top due to 1) incorporation of cold air by downdrafts from deep convective clouds, and 2) turbulent entrainment of dry air into the BL. Cold saturated downdraft air, and warm clear air entrained into the BL have distinct thermodynamic properties. This work observationally quantifies their respective MSE fluxes in the central Indian Ocean in 2011, under different convective conditions of the intraseasonal (40-90 day) Madden Julian oscillation (MJO). Under convectively suppressed conditions, entrainment and downdraft fluxes export equal shares (60 W m-2) of MSE from the BL. Downdraft fluxes are more variable, increasing for stronger convection. In the convectively active phase of the MJO, downdrafts export 90 W m-2 from the BL, compared to 40 W m-2 by entrainment. These processes that control the internal, latent (condensation), and MSE of the tropical marine atmospheric BL determine the parcel buoyancy and strength of tropical deep convection.
Cyclic load magnitude is a risk factor for a cumulative lower back disorder.
Le, Peter; Solomonow, Moshe; Zhou, Bing-He; Lu, Yun; Patel, Vikas
2007-04-01
Epidemiological data suggest that high loads lifted by workers engaged in static and cyclic daily activities may be a risk factor for low back disorder. Our previous research provided physiological and biomechanical validation of the epidemiological data for static load conditions. The objective of this report was to provide physiological and biomechanical experimental validation to the epidemiological data in cyclic (repetitive) load conditions. Three groups of in vivo feline models were subjected to 3 cyclic load levels in a series of 6 periods of 10 minutes of work spaced by 10 minutes of rest followed by 7 hours of rest. Multifidus electromyography (EMG) and lumbar displacement were statistically analyzed after processing. Delayed muscular hyperexcitability was observed only in moderate (40 N) and high (60 N) loads (P<0.0001) but was absent in low (20 N) loads. The magnitude of the delayed hyperexcitability was found to be higher (P<0.0001) in the high (60 N) loads compared with the moderate (40 N) loads. Exposure to moderate and high loads in cyclic (repetitive) work results in an acute neuromuscular disorder indicative of soft tissue inflammation that may become chronic with further exposure.
Raqeeb, Abdul; Solomon, Dennis; Paré, Peter D; Seow, Chun Y
2010-11-01
Airway smooth muscle (ASM) is able to generate maximal force under static conditions, and this isometric force can be maintained over a large length range due to length adaptation. The increased force at short muscle length could lead to excessive narrowing of the airways. Prolonged exposure of ASM to submaximal stimuli also increases the muscle's ability to generate force in a process called force adaptation. To date, the effects of length and force adaptation have only been demonstrated under static conditions. In the mechanically dynamic environment of the lung, ASM is constantly subjected to periodic stretches by the parenchyma due to tidal breathing and deep inspiration. It is not known whether force recovery due to muscle adaptation to a static environment could occur in a dynamic environment. In this study the effect of length oscillation mimicking tidal breathing and deep inspiration was examined. Force recovery after a length change was attenuated in the presence of length oscillation, except at very short lengths. Force adaptation was abolished by length oscillation. We conclude that in a healthy lung (with intact airway-parenchymal tethering) where airways are not allowed to narrow excessively, large stretches (associated with deep inspiration) may prevent the ability of the muscle to generate maximal force that would occur under static conditions irrespective of changes in mean length; mechanical perturbation on ASM due to tidal breathing and deep inspiration, therefore, is the first line of defense against excessive bronchoconstriction that may result from static length and force adaptation.
Damage and fracture in fabric-reinforced composites under quasi-static and dynamic bending
NASA Astrophysics Data System (ADS)
Ullah, H.; Harland, A. R.; Silberschmidt, V. V.
2013-07-01
Fabric-reinforced polymer composites used in sports products can be exposed to different in-service conditions such as large deformations caused by quasi-static and dynamic loading. Composite materials subjected to such bending loads can demonstrate various damage modes - matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution in composites affects both their in-service properties and performance that can deteriorate with time. Such behaviour needs adequate means of analysis and investigation, the main approaches being experimental characterisation and non-destructive examination of internal damage in composite laminates. This research deals with a deformation behaviour and damage in carbon fabric-reinforced polymer (CFRP) laminates caused by quasi-static and dynamic bending. Experimental tests were carried out to characterise the behaviour of a CFRP material under large-deflection bending, first in quasi-static and then in dynamic conditions. Izod-type impact bending tests were performed on un-notched specimens of CFRP using a Resil impactor to assess the transient response and energy absorbing capability of the material. X-ray micro computed tomography (micro-CT) was used to analyse various damage modes in the tested specimens. X-ray tomographs revealed that through-thickness matrix cracking, inter-ply and intra-ply delamination such as tow debonding, and fabric fracture were the prominent damage modes both in quasi-static and dynamic test specimens. However, the inter-ply damage was localised at impact location in dynamically tested specimens, whereas in the quasi-static specimens, it spread almost over the entire interface.
Finite Element Modeling of In-Situ Stresses near Salt Bodies
NASA Astrophysics Data System (ADS)
Sanz, P.; Gray, G.; Albertz, M.
2011-12-01
The in-situ stress field is modified around salt bodies because salt rock has no ability to sustain shear stresses. A reliable prediction of stresses near salt is important for planning safe and economic drilling programs. A better understanding of in-situ stresses before drilling can be achieved using finite element models that account for the creeping salt behavior and the elastoplastic response of the surrounding sediments. Two different geomechanical modeling techniques can be distinguished: "dynamic" modeling and "static" modeling. "Dynamic" models, also known as forward models, simulate the development of structural processes in geologic time. This technique provides the evolution of stresses and so it is used to simulate the initiation and development of structural features, such as, faults, folds, fractures, and salt diapers. The original or initial configuration and the unknown final configuration of forward models are usually significantly different therefore geometric non-linearities need to be considered. These models may be difficult to constrain when different tectonic, deposition, and erosion events, and the timing among them, needs to be accounted for. While dynamic models provide insight into the stress evolution, in many cases is very challenging, if not impossible, to forward model a configuration to its known present-day geometry; particularly in the case of salt layers that evolve into highly irregular and complex geometries. Alternatively, "static" models use the present-day geometry and present-day far-field stresses to estimate the present-day in-situ stress field inside a domain. In this case, it is appropriate to use a small deformation approach because initial and final configurations should be very similar, and more important, because the equilibrium of stresses should be stated in the present-day initial configuration. The initial stresses and the applied boundary conditions are constrained by the geologic setting and available data. This modeling technique does not predict the evolution of structural elements or stresses with time; therefore it does not provide any insight into the formation of fractures that were previously developed under a different stress condition or the development of overpressure generated by a high sedimentation rate. This work provides a validation for predicting in-situ stresses near salt using "static" models. We compare synthetic examples using both modeling techniques and show that stresses near salt predicted with "static" models are comparable to the ones generated by "dynamic" models.
Nowomiejska, Katarzyna; Oleszczuk, Agnieszka; Zubilewicz, Anna; Krukowski, Jacek; Mańkowska, Anna; Rejdak, Robert; Zagórski, Zbigniew
2007-01-01
To compare the visual field results obtained by static perimetry, microperimetry and rabbit perimetry in patients suffering from dry age related macular degeneration (AMD). Fifteen eyes with dry AMD (hard or soft macula drusen and RPE disorders) were enrolled into the study. Static perimetry was performed using M2 macula program included in Octopus 101 instrument. Microperimetry was performed using macula program (14-2 threshold, 10dB) within 10 degrees of the central visual field. The fovea program within 4 degrees was used while performing rarebit perimetry. The mean sensitivity was significantly lower (p<0.001) during microperimetry (13.5 dB) comparing to static perimetry (26.7 dB). The mean deviation was significantly higher (p<0.001) during microperimetry (-6.32 dB) comparing to static perimetry (-3.11 dB). The fixation was unstable in 47% and eccentric in 40% while performing microperimetry. The median of the "mean hit rate" in rarebit perimetry was 90% (range 40-100%). The mean examination duration was 6.5 min. in static perimetry, 10.6 min. in microperimetry and 5,5 min. in rarebit perimetry (p<0.001). Sensitivity was 30%, 53% and 93% respectively. The visual field defects obtained by microperimetry were more pronounced than those obtained by static perimetry. Microperimetry was the most sensitive procedure although the most time-consuming. Microperimetry enables the control of the fixation position and stability, that is not possible using the remaining methods. Rarebit perimetry revealed slight reduction of the integrity of neural architecture of the retina. Microperimetry and rarebit perimetry provide more information in regard to the visual function than static perimetry, thus are the valuable method in the diagnosis of dry AMD.
NASA Technical Reports Server (NTRS)
Hancock, Thomas
1993-01-01
This experiment investigated the integrity of static computer memory (floppy disk media) when exposed to the environment of low earth orbit. The experiment attempted to record soft-event upsets (bit-flips) in static computer memory. Typical conditions that exist in low earth orbit that may cause soft-event upsets include: cosmic rays, low level background radiation, charged fields, static charges, and the earth's magnetic field. Over the years several spacecraft have been affected by soft-event upsets (bit-flips), and these events have caused a loss of data or affected spacecraft guidance and control. This paper describes a commercial spin-off that is being developed from the experiment.
Static postural sway of women with and without fibromyalgia syndrome: A cross-sectional study.
Trevisan, Deborah Colucci; Driusso, Patricia; Avila, Mariana Arias; Gramani-Say, Karina; Moreira, Fernando Manuel Araujo; Parizotto, Nivaldo Antonio
2017-05-01
There is a frequent complaint about balance problems among fibromyalgia syndrome patients; however, there are not enough studies that have shown static postural sway of women with fibromyalgia syndrome. This study aimed to compare static postural sway of women with and without fibromyalgia syndrome. This is a cross-sectional study in which twenty-nine women with fibromyalgia syndrome and 20 without took part. A posturography evaluation was performed in six different situations (bipedal, right tandem and left tandem, with eyes opened and closed), and questionnaires for clinical depression symptoms, clinical anxiety symptoms, sleep quality, and Visual Analogue Scales for Pain and Fatigue were applied. Mann-Whitney U test was used to check differences among groups; Wilcoxon matched-pair test was used to check differences intragroup; Cohen d coefficient was used to measure effect sizes and Pearson Correlation Coefficient was used for correlations among variables. Level of significance adopted was 5%. Women with fibromyalgia syndrome have presented worse postural sway than women without fibromyalgia syndrome in all situations (P<0.05), and worse scores in all questionnaires (P<0.05). In the eyes closed situations, women with fibromyalgia syndrome presented worse postural sway than women without in the same conditions. Women with fibromyalgia syndrome have worse performance in the static posture test, more prominent in reduced support bases with eyes closed. Pain, fatigue, depression and anxiety may have directly influenced postural sway in fibromyalgia syndrome patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Whitaker, Mike
1991-01-01
Severe precipitation static problems affecting the communication equipment onboard the P-3B aircraft were recently studied. The study was conducted after precipitation static created potential safety-of-flight problems on Naval Reserve aircraft. A specially designed flight test program was conducted in order to measure, record, analyze, and characterize potential precipitation static problem areas. The test program successfully characterized the precipitation static interference problems while the P-3B was flown in moderate to extreme precipitation conditions. Data up to 400 MHz were collected on the effects of engine charging, precipitation static, and extreme cross fields. These data were collected using a computer controlled acquisition system consisting of a signal generator, RF spectrum and audio analyzers, data recorders, and instrumented static dischargers. The test program is outlined and the computer controlled data acquisition system is described in detail which was used during flight and ground testing. The correlation of test results is also discussed which were recorded during the flight test program and those measured during ground testing.
Stability of the Einstein static universe in open cosmological models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canonico, Rosangela; Parisi, Luca; INFN, Sezione di Napoli, GC di Salerno, Via Ponte Don Melillo, I-84081 Baronissi
2010-09-15
The stability properties of the Einstein static solution of general relativity are altered when corrective terms arising from modification of the underlying gravitational theory appear in the cosmological equations. In this paper the existence and stability of static solutions are considered in the framework of two recently proposed quantum gravity models. The previously known analysis of the Einstein static solutions in the semiclassical regime of loop quantum cosmology with modifications to the gravitational sector is extended to open cosmological models where a static neutrally stable solution is found. A similar analysis is also performed in the framework of Horava-Lifshitz gravitymore » under detailed balance and projectability conditions. In the case of open cosmological models the two solutions found can be either unstable or neutrally stable according to the admitted values of the parameters.« less
Numerical simulations of the flow in the HYPULSE expansion tube
NASA Technical Reports Server (NTRS)
Wilson, Gregory J.; Sussman, Myles A.; Bakos, Robert J.
1995-01-01
Axisymmetric numerical simulations with finite-rate chemistry are presented for two operating conditions in the HYPULSE expansion tube. The operating gas for these two cases is nitrogen and the computations are compared to experimental data. One test condition is at a total enthalpy of 15.2 MJ/Kg and a relatively low static pressure of 2 kPa. This case is characterized by a laminar boundary layer and significant chemical nonequilibrium in the acceleration gas. The second test condition is at a total enthalpy of 10.2 MJ/Kg and a static pressure of 38 kPa and is characterized by a turbulent boundary layer. For both cases, the time-varying test gas pressure predicted by the simulations is in good agreement with experimental data. The computations are also found to be in good agreement with Mirels' correlations for shock tube flow. It is shown that the nonuniformity of the test gas observed in the HYPULSE expansion tube is strongly linked to the boundary layer thickness. The turbulent flow investigated has a larger boundary layer and greater test gas nonuniformity. In order to investigate possibilities of improving expansion tube flow quality by reducing the boundary layer thickness, parametric studies showing the effect of density and turbulent transition point on the test conditions are also presented. Although an increase in the expansion tube operating pressure level would reduce the boundary layer thickness, the simulations indicate that the reduction would be less than what is predicted by flat plate boundary layer correlations.
Matching voice and face identity from static images.
Mavica, Lauren W; Barenholtz, Elan
2013-04-01
Previous research has suggested that people are unable to correctly choose which unfamiliar voice and static image of a face belong to the same person. Here, we present evidence that people can perform this task with greater than chance accuracy. In Experiment 1, participants saw photographs of two, same-gender models, while simultaneously listening to a voice recording of one of the models pictured in the photographs and chose which of the two faces they thought belonged to the same model as the recorded voice. We included three conditions: (a) the visual stimuli were frontal headshots (including the neck and shoulders) and the auditory stimuli were recordings of spoken sentences; (b) the visual stimuli only contained cropped faces and the auditory stimuli were full sentences; (c) we used the same pictures as Condition 1 but the auditory stimuli were recordings of a single word. In Experiment 2, participants performed the same task as in Condition 1 of Experiment 1 but with the stimuli presented in sequence. Participants also rated the model's faces and voices along multiple "physical" dimensions (e.g., weight,) or "personality" dimensions (e.g., extroversion); the degree of agreement between the ratings for each model's face and voice was compared to performance for that model in the matching task. In all three conditions, we found that participants chose, at better than chance levels, which faces and voices belonged to the same person. Performance in the matching task was not correlated with the degree of agreement on any of the rated dimensions.
Bascou, Joseph; Sauret, Christophe; Lavaste, Francois; Pillet, Hélène
2017-01-01
Among the different resistances occurring during wheelchair locomotion and that limit the user autonomy, bearing resistance is generally neglected, based on a few studies carried out in static conditions and by manufacturer's assertion. Therefore, no special attention is generally paid to the mounting and the maintenance of manual wheelchair bearings. However, the effect of inadequate mounting or maintenance on wheelchair bearing resistance has still to be clarified. This study aimed at filling this gap by developing and validating a specific device allowing the measurement of wheelchair bearing friction, characterized by low speed velocities, with an accuracy lower than 0.003 Nm. The bearing resistance measured by the device was compared to free deceleration measurement, intra and inter operator reproducibility were assessed. A factorial experiment allowed the effects of various functioning parameters (axial and radial loads, velocity) to be classified. The device allowed significant differences in the bearing resistance of static and rotating conditions to be measured, even if a relatively high proportionality was found between both conditions. The factorial experiment allowed the expected impact of the radial load on bearing resistance as well as the predominant effect of the axial load to be demonstrated. As a consequence, it appeared that the control of the axial load is compulsory for measurement purposes or during wheel mounting, to avoid significant increase of global resistance during wheelchair locomotion. The findings of this study could help enhancing the models which assess manual wheelchair mechanical power from its settings and use conditions.
Effects of Static Stretching on Squat Performance in Division I Female Athletes
HEISEY, CLARE F.; KINGSLEY, J. DEREK
2016-01-01
Static stretching was once recognized as a method of preparation for physical activity that would inhibit performance and increase risk of injury. However, a growing body of research suggests that static stretching may not have an inhibitory effect. Regardless, the data have not examined gender differences or the fatigue index (FI) and flexibility effects of static stretching on the back squat over multiple sets. Therefore, the purpose of this study was to examine the relationship between a static-stretch condition (SC) and control condition (CC) on flexibility and the FI of Division I female athletes during 4 sets of the back squat. Eighteen subjects (mean ± SD; age 20 ± 1 yrs; height 164.5 ± 14.6 cm; mass 74.1 ± 26.8 kg; waist circumference 73.2 ± 5.4 cm) participated in 3 testing days over the course of 3 weeks. Each subject’s 1RM back squat was assessed during the first day of testing and verified during the second. On the third testing day, subjects assigned to the SC held 3 lower-body stretches twice for 30 second intervals and those assigned to the CC rested during the corresponding 7 minutes and 50 second time period. The subjects also performed a fatiguing squat protocol consisting of 4 sets of maximum repetitions on the third day of testing. A significant (p=0.04) interaction was noted for flexibility. No significant interaction (p=0.41) was observed between the FI of the CC (41.8 ± 24.1%) or the SC (27.6 ± 45.2%). These results indicate that static stretching does not have a significant effect on multiple sets of the back squat. Therefore, coaches may allow their athletes to engage in static stretching prior to resistance exercise ad libitum. PMID:27766127
Performance tradeoffs in static and dynamic load balancing strategies
NASA Technical Reports Server (NTRS)
Iqbal, M. A.; Saltz, J. H.; Bokhart, S. H.
1986-01-01
The problem of uniformly distributing the load of a parallel program over a multiprocessor system was considered. A program was analyzed whose structure permits the computation of the optimal static solution. Then four strategies for load balancing were described and their performance compared. The strategies are: (1) the optimal static assignment algorithm which is guaranteed to yield the best static solution, (2) the static binary dissection method which is very fast but sub-optimal, (3) the greedy algorithm, a static fully polynomial time approximation scheme, which estimates the optimal solution to arbitrary accuracy, and (4) the predictive dynamic load balancing heuristic which uses information on the precedence relationships within the program and outperforms any of the static methods. It is also shown that the overhead incurred by the dynamic heuristic is reduced considerably if it is started off with a static assignment provided by either of the other three strategies.
30 CFR 250.1153 - When must I conduct a static bottomhole pressure survey?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER... following conditions: If you have . . . Then you must conduct . . . (1) A new producing reservoir A static bottomhole pressure survey within 90 days after the date of first continuous production. (2) A reservoir with...
NASA Astrophysics Data System (ADS)
Akhtar, S. S.; Hussain, T.; Bokhari, A. H.; Khan, F.
2018-04-01
We provide a complete classification of static plane symmetric space-times according to conformal Ricci collineations (CRCs) and conformal matter collineations (CMCs) in both the degenerate and nondegenerate cases. In the case of a nondegenerate Ricci tensor, we find a general form of the vector field generating CRCs in terms of unknown functions of t and x subject to some integrability conditions. We then solve the integrability conditions in different cases depending upon the nature of the Ricci tensor and conclude that the static plane symmetric space-times have a 7-, 10- or 15-dimensional Lie algebra of CRCs. Moreover, we find that these space-times admit an infinite number of CRCs if the Ricci tensor is degenerate. We use a similar procedure to study CMCs in the case of a degenerate or nondegenerate matter tensor. We obtain the exact form of some static plane symmetric space-time metrics that admit nontrivial CRCs and CMCs. Finally, we present some physical applications of our obtained results by considering a perfect fluid as a source of the energy-momentum tensor.
Dickinson, Christopher A.; Zelinsky, Gregory J.
2013-01-01
Two experiments are reported that further explore the processes underlying dynamic search. In Experiment 1, observers’ oculomotor behavior was monitored while they searched for a randomly oriented T among oriented L distractors under static and dynamic viewing conditions. Despite similar search slopes, eye movements were less frequent and more spatially constrained under dynamic viewing relative to static, with misses also increasing more with target eccentricity in the dynamic condition. These patterns suggest that dynamic search involves a form of sit-and-wait strategy in which search is restricted to a small group of items surrounding fixation. To evaluate this interpretation, we developed a computational model of a sit-and-wait process hypothesized to underlie dynamic search. In Experiment 2 we tested this model by varying fixation position in the display and found that display positions optimized for a sit-and-wait strategy resulted in higher d′ values relative to a less optimal location. We conclude that different strategies, and therefore underlying processes, are used to search static and dynamic displays. PMID:23372555
Wave energy absorption by a submerged air bag connected to a rigid float.
Kurniawan, A; Chaplin, J R; Hann, M R; Greaves, D M; Farley, F J M
2017-04-01
A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section.
Wave energy absorption by a submerged air bag connected to a rigid float
Chaplin, J. R.; Hann, M. R.; Greaves, D. M.; Farley, F. J. M.
2017-01-01
A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section. PMID:28484330
Wave energy absorption by a submerged air bag connected to a rigid float
NASA Astrophysics Data System (ADS)
Kurniawan, A.; Chaplin, J. R.; Hann, M. R.; Greaves, D. M.; Farley, F. J. M.
2017-04-01
A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section.
Static and dynamic strain energy release rates in toughened thermosetting composite laminates
NASA Technical Reports Server (NTRS)
Cairns, Douglas S.
1992-01-01
In this work, the static and dynamic fracture properties of several thermosetting resin based composite laminates are presented. Two classes of materials are explored. These are homogeneous, thermosetting resins and toughened, multi-phase, thermosetting resin systems. Multi-phase resin materials have shown enhancement over homogenous materials with respect to damage resistance. The development of new dynamic tests are presented for composite laminates based on Width Tapered Double Cantilevered Beam (WTDCB) for Mode 1 fracture and the End Notched Flexure (ENF) specimen. The WTDCB sample was loaded via a low inertia, pneumatic cylinder to produce rapid cross-head displacements. A high rate, piezo-electric load cell and an accelerometer were mounted on the specimen. A digital oscilloscope was used for data acquisition. Typical static and dynamic load versus displacement plots are presented. The ENF specimen was impacted in three point bending with an instrumented impact tower. Fracture initiation and propagation energies under static and dynamic conditions were determined analytically and experimentally. The test results for Mode 1 fracture are relatively insensitive to strain rate effects for the laminates tested in this study. The test results from Mode 2 fracture indicate that the toughened systems provide superior fracture initiation and higher resistance to propagation under dynamic conditions. While the static fracture properties of the homogeneous systems may be relatively high, the apparent Mode 2 dynamic critical strain energy release rate drops significantly. The results indicate that static Mode 2 fracture testing is inadequate for determining the fracture performance of composite structures subjected to conditions such as low velocity impact. A good correlation between the basic Mode 2 dynamic fracture properties and the performance is a combined material/structural Compression After Impact (CAI) test is found. These results underscore the importance of examining rate-dependent behavior for determining the longevity of structures manufactured from composite materials.
Wang, Peng; Zhang, Dun; Sun, Shimei; Li, Tianping; Sun, Yan
2017-01-11
Marine optical instruments are bearing serious biofouling problem, which affects the accuracy of data collected. To solve the biofouling problem of marine optical instruments, a novel instance of slippery lubricant-infused porous surface (SLIPS) with high underwater-transparency was designed over glass substrate via infusing lubricant into its porous microstructure fabricated with hydrothermal method. The advantage of SLIPS as antibiofouling strategy to marine optical instruments was proven by comparing its underwater optical and antibiofouling performances with three kinds of samples (hydrophilic glass sample, textured hydrophilic glass sample, and superhydrophobic glass sample). The modification of SLIPS enhances the underwater-transparency of glass sample within the wavelength of 500-800 nm, for the infusion of lubricant with lower refractive index than glass substrate. In contrast with hydrophilic surface, textured hydrophilic surface and superhydrophobic surface, SLIPS can significantly inhibit bacterial and algal settlements, thereby maintaining high underwater-transparency in both dynamic and static seawater. The inhibition of bacterial and algal settlements over SLIPS results from its liquid-like property. The contact angle hysteresis of water over SLIPS increases with immersion time in seawater under different conditions (static, dynamic, and vibration conditions). Both dynamic and vibration conditions accelerate the failure of SLIPS exposed in seawater. This research provides valuable information for solving biofouling problem of marine optical instruments with SLIPS.
Effect of shear stress on the migration of hepatic stellate cells.
Sera, Toshihiro; Sumii, Tateki; Fujita, Ryosuke; Kudo, Susumu
2018-01-01
When the liver is damaged, hepatic stellate cells (HSCs) can change into an activated, highly migratory state. The migration of HSCs may be affected by shear stress due not only to sinusoidal flow but also by the flow in the space of Disse because this space is filled with blood plasma. In this study, we evaluated the effects of shear stress on HSC migration in a scratch-wound assay with a parallel flow chamber. At regions upstream of the wound area, the migration was inhibited by 0.6 Pa and promoted by 2.0 Pa shear stress, compared to the static condition. The platelet-derived growth factor (PDGF)-BB receptor, PDGFR-β, was expressed in all conditions and the differences were not significant. PDGF increased HSC migration, except at 0.6 Pa shear stress, which was still inhibited. These results indicate that another molecular factor, such as PDGFR-α, may act to inhibit the migration under low shear stress. At regions downstream of the wound area, the migration was smaller under shear stress than under the static condition, although the expression of PDGFR-β was significantly higher. In particular, the migration direction was opposite to the wound area under high shear stress; therefore, migration might be influenced by the intercellular environment. Our results indicate that HSC migration was influenced by shear stress intensity and the intercellular environment.
Liu, Weiyu; Shao, Jinyou; Ren, Yukun; Liu, Jiangwei; Tao, Ye; Jiang, Hongyuan; Ding, Yucheng
2016-01-01
By imposing a biased gate voltage to a center metal strip, arbitrary symmetry breaking in induced-charge electroosmotic flow occurs on the surface of this planar gate electrode, a phenomenon termed as AC-flow field effect transistor (AC-FFET). In this work, the potential of AC-FFET with a shiftable flow stagnation line to flexibly manipulate micro-nano particle samples in both a static and continuous flow condition is demonstrated via theoretical analysis and experimental validation. The effect of finite Debye length of induced double-layer and applied field frequency on the manipulating flexibility factor for static condition is investigated, which indicates AC-FFET turns out to be more effective for achieving a position-controllable concentrating of target nanoparticle samples in nanofluidics compared to the previous trial in microfluidics. Besides, a continuous microfluidics-based particle concentrator/director is developed to deal with incoming analytes in dynamic condition, which exploits a design of tandem electrode configuration to consecutively flow focus and divert incoming particle samples to a desired downstream branch channel, as prerequisite for a following biochemical analysis. Our physical demonstrations with AC-FFET prove valuable for innovative designs of flexible electrokinetic frameworks, which can be conveniently integrated with other microfluidic or nanofluidic components into a complete lab-on-chip diagnostic platform due to a simple electrode structure. PMID:27190570
Liu, Weiyu; Shao, Jinyou; Ren, Yukun; Liu, Jiangwei; Tao, Ye; Jiang, Hongyuan; Ding, Yucheng
2016-05-01
By imposing a biased gate voltage to a center metal strip, arbitrary symmetry breaking in induced-charge electroosmotic flow occurs on the surface of this planar gate electrode, a phenomenon termed as AC-flow field effect transistor (AC-FFET). In this work, the potential of AC-FFET with a shiftable flow stagnation line to flexibly manipulate micro-nano particle samples in both a static and continuous flow condition is demonstrated via theoretical analysis and experimental validation. The effect of finite Debye length of induced double-layer and applied field frequency on the manipulating flexibility factor for static condition is investigated, which indicates AC-FFET turns out to be more effective for achieving a position-controllable concentrating of target nanoparticle samples in nanofluidics compared to the previous trial in microfluidics. Besides, a continuous microfluidics-based particle concentrator/director is developed to deal with incoming analytes in dynamic condition, which exploits a design of tandem electrode configuration to consecutively flow focus and divert incoming particle samples to a desired downstream branch channel, as prerequisite for a following biochemical analysis. Our physical demonstrations with AC-FFET prove valuable for innovative designs of flexible electrokinetic frameworks, which can be conveniently integrated with other microfluidic or nanofluidic components into a complete lab-on-chip diagnostic platform due to a simple electrode structure.
Balance evaluation in haemophilic preadolescent patients using Nintendo Wii Balance Board®.
Pérez-Alenda, S; Carrasco, J J; Aguilar-Rodríguez, M; Martínez-Gómez, L; Querol-Giner, M; Cuesta-Barriuso, R; Torres-Ortuño, A; Querol, F
2017-01-01
Alterations in the musculoskeletal system, especially in the lower limbs, limit physical activity and affect balance and walking. Postural impairments in haemophilic preteens could increase the risk of bleeding events and deteriorate the physical condition, promoting the progression of haemophilic arthropathy. This study aims to evaluate static postural balance in haemophilic children, assessed by means of the Wii Balance Board ® (WBB). Nineteen children with haemophilia and 19 without haemophilia aged 9-10 years, have participated in this study. Postural balance was assessed by performing four tests, each one lasting 15 s: bipodal eyes open (BEO), bipodal eyes closed (BEC), monopodal dominant leg (MD) and monopodal non-dominant leg (MND). Two balance indices, standard deviation of amplitude (SDA) and standard deviation of velocity (SDV) were calculated in the anterior-posterior (AP) and medial-lateral (ML) directions. Index values were higher in haemophilic group and the differences were statistically significant (P < 0.05) in only six (SDAAP in BEO, BEC and MD conditions, SDAML in BEO, SDVAP in BEO and SDVML in MND condition) of 16 parameters analysed. Tests performed indicate a poorer static postural balance in the haemophilic cohort compared to the control group. Accordingly, physiotherapy programmes, physical activity and sports should be designed to improve the postural balance with the aim of preventing joint deterioration and improving quality of life. © 2016 John Wiley & Sons Ltd.
Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Zhang, He
2016-11-20
Angular velocity information is a requisite for a spacecraft guidance, navigation, and control system. In this paper, an approach for angular velocity estimation based merely on star vector measurement with an improved current statistical model Kalman filter is proposed. High-precision angular velocity estimation can be achieved under dynamic conditions. The amount of calculation is also reduced compared to a Kalman filter. Different trajectories are simulated to test this approach, and experiments with real starry sky observation are implemented for further confirmation. The estimation accuracy is proved to be better than 10-4 rad/s under various conditions. Both the simulation and the experiment demonstrate that the described approach is effective and shows an excellent performance under both static and dynamic conditions.
Study of mesoscale phenomena, winter monsoon clouds and snow area based on LANDSAT data
NASA Technical Reports Server (NTRS)
Tsuchiya, K. (Principal Investigator)
1976-01-01
The author has identified the following significant results. Most longitudinal clouds which appear as continuous linear clouds are composed of small transversal clouds. There are mountain waves of different wavelength in a comparatively narrow area indicating complicated orographical effects on wind and temperature distribution or on both dynamical and static stability condition. There is a particular shape of cirrus cloud suggestive of turbulence in the vicinity of CAT in the upper troposphere near jet stream level and its cold air side. Thin cirrus of overcast condition can be distinguished by MSS; however, extremely thin cirrus of partly cloudy condition cannot be detected even in LANDSAT data. This presents a serious problem in the interpretation of satellite thermal infrared radiation data since they affect the value.
Biswas, Swarajit K; Chaffin, W LaJean
2005-08-01
C. albicans is an opportunistic fungus causing life-threatening systemic infections particularly in immunocompromised individuals. The organism is a commensal in humans and grows either aerobically, e.g., the oral cavity, or anaerobically, e.g., the gut. We studied anaerobic growth of C. albicans in a defined yeast nitrogen base dextrose medium after adaptation and subculturing in an anaerobic chamber. At 37 degrees C in suspension culture, much slower growth was observed anaerobically with a generation time of 248 min compared to 98 min for aerobic growth. Although the organism grew well on solid medium, shaking increased the growth rate in suspension culture at 37 degrees C. Growth was enhanced at acidic pH compared to neutral or alkaline pH. Cells grown anaerobically produced hyphae, but did not produce biofilm on plastic surface or denture acrylic under either static conditions or with mild shaking, conditions that support aerobic biofilm formation.
NASA Astrophysics Data System (ADS)
Akai, Takashi; Bijeljic, Branko; Blunt, Martin J.
2018-06-01
In the color gradient lattice Boltzmann model (CG-LBM), a fictitious-density wetting boundary condition has been widely used because of its ease of implementation. However, as we show, this may lead to inaccurate results in some cases. In this paper, a new scheme for the wetting boundary condition is proposed which can handle complicated 3D geometries. The validity of our method for static problems is demonstrated by comparing the simulated results to analytical solutions in 2D and 3D geometries with curved boundaries. Then, capillary rise simulations are performed to study dynamic problems where the three-phase contact line moves. The results are compared to experimental results in the literature (Heshmati and Piri, 2014). If a constant contact angle is assumed, the simulations agree with the analytical solution based on the Lucas-Washburn equation. However, to match the experiments, we need to implement a dynamic contact angle that varies with the flow rate.
Jenkin, Michael R; Dyde, Richard T; Jenkin, Heather L; Zacher, James E; Harris, Laurence R
2011-01-01
The perceived direction of up depends on both gravity and visual cues to orientation. Static visual cues to orientation have been shown to be less effective in influencing the perception of upright (PU) under microgravity conditions than they are on earth (Dyde et al., 2009). Here we introduce dynamic orientation cues into the visual background to ascertain whether they might increase the effectiveness of visual cues in defining the PU under different gravity conditions. Brief periods of microgravity and hypergravity were created using parabolic flight. Observers viewed a polarized, natural scene presented at various orientations on a laptop viewed through a hood which occluded all other visual cues. The visual background was either an animated video clip in which actors moved along the visual ground plane or an individual static frame taken from the same clip. We measured the perceptual upright using the oriented character recognition test (OCHART). Dynamic visual cues significantly enhance the effectiveness of vision in determining the perceptual upright under normal gravity conditions. Strong trends were found for dynamic visual cues to produce an increase in the visual effect under both microgravity and hypergravity conditions.
NASA Astrophysics Data System (ADS)
Nita, Loredana E.; Chiriac, Aurica P.; Bercea, Maria; Nistor, Manuela T.
2015-12-01
The present investigation is focused on evaluation of self-assembling ability in aqueous solutions of two water soluble polymers: poly(aspartic acid) (PAS) and Pluronic F127 (PL). The intermolecular complexes, realized between polyacid and neutral copolymer surfactant in different ratios, have been studied by combining various characterization techniques as rheology, DLS, spectroscopy, microscopy, chemical imaging, and zeta potential determination, measurements performed in static and/or dynamic conditions. In static conditions, when the equilibrium state between PAS/PL polymeric pair was reached, and depending on the polymers mixture composition, and of experimental rheological conditions, positive or negative deviations from the additive rule are registered. Conformational changes of the macromolecular chains and correspondingly physical interactions are generated between PL and PAS for self-assembly and the formation of interpolymer complex as suprastructure with micellar configuration. The phenomenon was better evidenced in case of 1/1 wt ratio between the two polymers. In dynamic conditions of determination, during ;in situ; evaluation of the hydrodynamic diameter, zeta potential and conductivity, when the equilibrium state is not reached and as result either the intermolecular bonds are not achieved, the self-assembling process is not so obvious evidenced.
NASA Astrophysics Data System (ADS)
Juarsa, M.; Giarno; Rohman, A. N.; Heru K., G. B.; Witoko, J. P.; Sony Tjahyani, D. T.
2018-02-01
The need for large-scale experimental facilities to investigate the phenomenon of natural circulation flow rate becomes a necessity in the development of nuclear reactor safety management. The FASSIP-01 loop has been built to determine the natural circulation flow rate performance in the large-scale media and aimed to reduce errors in the results for its application in the design of new generation reactors. The commissioning needs to be done to define the capability of the FASSIP-01 loop and to prescribe the experiment limitations. On this commissioning, two scenarios experimental method has been used. The first scenario is a static condition test which was conducted to verify measurement system response during 24 hours without electrical load in heater and cooler, there is water and no water inside the rectangular loop. Second scenario is a dynamics condition that aims to understand the flow rate, a dynamic test was conducted using heater power of 5627 watts and coolant flow rate in the HSS loop of 9.35 LPM. The result of this test shows that the temperature characterization on static test provide a recommendation, that the experiments should be done at night because has a better environmental temperature stability compared to afternoon, with stable temperature around 1°C - 3°C. While on the dynamic test, the water temperature difference between the inlet-outlets in the heater area is quite large, about 7 times the temperature difference in the cooler area. The magnitude of the natural circulation flow rate calculated is much larger at about 300 times compared to the measured flow rate with different flow rate profiles.
Frictional and mechanical properties of diamond-like carbon-coated orthodontic brackets.
Muguruma, Takeshi; Iijima, Masahiro; Brantley, William A; Nakagaki, Susumu; Endo, Kazuhiko; Mizoguchi, Itaru
2013-04-01
This study investigated the effects of a diamond-like carbon (DLC) coating on frictional and mechanical properties of orthodontic brackets. DLC films were deposited on stainless steel brackets using the plasma-based ion implantation/deposition (PBIID) method under two different atmospheric conditions. As-received metal brackets served as the control. Two sizes of stainless steel archwires, 0.018 inch diameter and 0.017 × 0.025 inch cross-section dimensions, were used for measuring static and kinetic friction by drawing the archwires through the bracket slots, using a mechanical testing machine (n = 10). The DLC-coated brackets were observed with a scanning electron microscope (SEM). Values of hardness and elastic modulus were obtained by nanoindentation testing (n = 10). Friction forces were compared by one-way analysis of variance and the Scheffé test. The hardness and elastic modulus of the brackets were compared using Kruskal-Wallis and Mann-Whitney U-tests. SEM photomicrographs showed DLC layers on the bracket surfaces with thickness of approximately 5-7 μm. DLC-coated brackets deposited under condition 2 showed significantly less static frictional force for the stainless steel wire with 0.017 × 0.025 inch cross-section dimensions than as-received brackets and DLC-coated brackets deposited under condition 1, although both DLC-coated brackets showed significantly less kinetic frictional force than as-received brackets. The hardness of the DLC layers was much higher than that of the as-received bracket surfaces. In conclusion, the surfaces of metal brackets can be successfully modified by the PBIID method to create a DLC layer, and the DLC-coating process significantly reduces frictional forces.
NASA Astrophysics Data System (ADS)
Hu, S. X.; Collins, L. A.; Boehly, T. R.; Ding, Y. H.; Radha, P. B.; Goncharov, V. N.; Karasiev, V. V.; Collins, G. W.; Regan, S. P.; Campbell, E. M.
2018-05-01
Polystyrene (CH), commonly known as "plastic," has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation-hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ = 0.1 to 100 g/cm3 and T = 103 to 4 × 106 K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have built several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state, the QMD-based thermal conductivity (κQMD) and ionization, and the first-principles opacity table. This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles-based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation-hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility. Finally, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.
NASA Astrophysics Data System (ADS)
Edwards, Nicholas W. M.; Best, Emma L.; Connell, Simon D.; Goswami, Parikshit; Carr, Chris M.; Wilcox, Mark H.; Russell, Stephen J.
2017-12-01
Healthcare associated infections (HCAIs) are responsible for substantial patient morbidity, mortality and economic cost. Infection control strategies for reducing rates of transmission include the use of nonwoven wipes to remove pathogenic bacteria from frequently touched surfaces. Wiping is a dynamic process that involves physicochemical mechanisms to detach and transfer bacteria to fibre surfaces within the wipe. The purpose of this study was to determine the extent to which systematic changes in fibre surface energy and nano-roughness influence removal of bacteria from an abiotic polymer surface in dry wiping conditions, without liquid detergents or disinfectants. Nonwoven wipe substrates composed of two commonly used fibre types, lyocell (cellulosic) and polypropylene, with different surface energies and nano-roughnesses, were manufactured using pilot-scale nonwoven facilities to produce samples of comparable structure and dimensional properties. The surface energy and nano-roughness of some lyocell substrates were further adjusted by either oxygen (O2) or hexafluoroethane (C2F6) gas plasma treatment. Static adpression wiping of an inoculated surface under dry conditions produced removal efficiencies of between 9.4% and 15.7%, with no significant difference (p < 0.05) in the relative removal efficiencies of Escherichia coli, Staphylococcus aureus or Enterococcus faecalis. However, dynamic wiping markedly increased peak wiping efficiencies to over 50%, with a minimum increase in removal efficiency of 12.5% and a maximum increase in removal efficiency of 37.9% (all significant at p < 0.05) compared with static wiping, depending on fibre type and bacterium. In dry, dynamic wiping conditions, nonwoven wipe substrates with a surface energy closest to that of the contaminated surface produced the highest E. coli removal efficiency, while the associated increase in fibre nano-roughness abrogated this trend with S. aureus and E. faecalis.
A survey of the broadband shock associated noise prediction methods
NASA Technical Reports Server (NTRS)
Kim, Chan M.; Krejsa, Eugene A.; Khavaran, Abbas
1992-01-01
Several different prediction methods to estimate the broadband shock associated noise of a supersonic jet are introduced and compared with experimental data at various test conditions. The nozzle geometries considered for comparison include a convergent and a convergent-divergent nozzle, both axisymmetric. Capabilities and limitations of prediction methods in incorporating the two nozzle geometries, flight effect, and temperature effect are discussed. Predicted noise field shows the best agreement for a convergent nozzle geometry under static conditions. Predicted results for nozzles in flight show larger discrepancies from data and more dependable flight data are required for further comparison. Qualitative effects of jet temperature, as observed in experiment, are reproduced in predicted results.
NASA Technical Reports Server (NTRS)
Nelson, H. G.
1976-01-01
The investigation described was aimed at establishing the degree of compatibility between a plain carbon pipeline-type steel and hydrogen and also hydrogen-rich environments containing small additions of H2S, O2, H2O, CO, CO2, CH4, and natural gas at pressures near 1 atm. Test were carried out under conditions of static and cyclic loading; the subcritical crack growth was monitored. The rates of crack growth observed in the hydrogen and hydrogen-rich environments are compared with the crack rate observed in a natural gas environment to determine the compatibility of the present natural gas transmission system with gaseous hydrogen transport.
2016-08-01
quasi -static mechanical properties, deformation behavior, and damage mechanisms in HSHDC and compare the behavior with VHSC. 2. Develop experimental ...using the experimental setup described in Chapter 6. The quasi -static strain rate was approximately 10-4/s. All panels tested have nominal dimensions...ER D C TR -1 6- 13 Force Protection Basing; TeCD 1a Equipment and Protocols for Quasi -Static and Dynamic Tests of Very-High-Strength
Comparison of forward flight effects theory of A. Michalke and U. Michel with measured data
NASA Technical Reports Server (NTRS)
Rawls, J. W., Jr.
1983-01-01
The scaling laws of a Michalke and Michel predict flyover noise of a single stream shock free circular jet from static data or static predictions. The theory is based on a farfield solution to Lighthill's equation and includes density terms which are important for heated jets. This theory is compared with measured data using two static jet noise prediction methods. The comparisons indicate the theory yields good results when the static noise levels are accurately predicted.
Development of wide-angle 2D light scattering static cytometry
NASA Astrophysics Data System (ADS)
Xie, Linyan; Liu, Qiao; Shao, Changshun; Su, Xuantao
2016-10-01
We have recently developed a 2D light scattering static cytometer for cellular analysis in a label-free manner, which measures side scatter (SSC) light in the polar angular range from 79 to 101 degrees. Compared with conventional flow cytometry, our cytometric technique requires no fluorescent labeling of the cells, and static cytometry measurements can be performed without flow control. In this paper we present an improved label-free static cytometer that can obtain 2D light scattering patterns in a wider angular range. By illuminating the static microspheres on chip with a scanning optical fiber, wide-angle 2D light scattering patterns of single standard microspheres with a mean diameter of 3.87 μm are obtained. The 2D patterns of 3.87 μm microspheres contain both large-angle forward scatter (FSC) and SSC light in the polar angular range from 40 to 100 degrees, approximately. Experimental 2D patterns of 3.87 μm microspheres are in good agreement with Mie theory simulated ones. The wide-angle light scattering measurements may provide a better resolution for particle analysis as compared with the SSC measurements. Two dimensional light scattering patterns of HL-60 human acute leukemia cells are obtained by using our static cytometer. Compared with SSC 2D light scattering patterns, wide-angle 2D patterns contain richer information of the HL-60 cells. The obtaining of 2D light scattering patterns in a wide angular range could help to enhance the capabilities of our label-free static cytometry for cell analysis.
Evaluation of the safety and durability of low-cost nonprogrammable electric powered wheelchairs.
Pearlman, Jonathan L; Cooper, Rory A; Karnawat, Jaideep; Cooper, Rosemarie; Boninger, Michael L
2005-12-01
To evaluate whether a selection of low-cost, nonprogrammable electric-powered wheelchairs (EPWs) meets the American National Standards Institute (ANSI)/Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) Wheelchair Standards requirements. Objective comparison tests of various aspects of power wheelchair design and performance of 4 EPW types. Three of each of the following EPWs: Pride Mobility Jet 10 (Pride), Invacare Pronto M50 (Invacare), Electric Mobility Rascal 250PC (Electric Mobility), and the Golden Technologies Alanté GP-201-F (Golden). Rehabilitation engineering research center. Not applicable. Static tipping angle; dynamic tipping score; braking distance; energy consumption; climatic conditioning; power and control systems integrity and safety; and static, impact, and fatigue life (equivalent cycles). Static tipping angle and dynamic tipping score were significantly different across manufacturers for each tipping direction (range, 6.6 degrees-35.6 degrees). Braking distances were significantly different across manufacturers (range, 7.4-117.3 cm). Significant differences among groups were found with analysis of variance (ANOVA). Energy consumption results show that all EPWs can travel over 17 km before the battery is expected to be exhausted under idealized conditions (range, 18.2-32.0 km). Significant differences among groups were found with ANOVA. All EPWs passed the climatic conditioning tests. Several adverse responses were found during the power and control systems testing, including motors smoking during the stalling condition (Electric Mobility), charger safety issues (Electric Mobility, Invacare), and controller failures (Golden). All EPWs passed static and impact testing; 9 of 12 failed fatigue testing (3 Invacare, 3 Golden, 1 Electric Mobility, 2 Pride). Equivalent cycles did not differ statistically across manufacturers (range, 9759-824,628 cycles). Large variability in the results, especially with respect to static tipping, power and control system failures, and fatigue life suggest design improvements must be made to make these low-cost, nonprogrammable EPWs safe and reliable for the consumer. Based on our results, these EPWs do not, in general, meet the ANSI/RESNA Wheelchair Standards requirements.
Zeinalzadeh, Afsaneh; Talebian, Saeed; Naghdi, Soofia; Salavati, Mahyar; Nazary-Moghadam, Salman; Zeynalzadeh Ghoochani, Bahareh
2018-04-01
To compare the effects of vision and cognitive load on static postural control in subjects with and without patellofemoral pain syndrome (PFPS). Twenty-eight PFPS patients and 28 controls participated in the study. Postural control was assessed in isolation as well as with visual manipulation and cognitive loading on symptomatic limb. The outcome measures of postural control were quantified in terms of area, anterior-posterior (AP), medial-lateral (ML), and mean velocity (MV) of the displacements of center of pressure (COP). In addition, cognitive performance (auditory Stroop task) was measured in the forms of average reaction time and error ratio in baseline (sitting) and different postural conditions. PFPS subjects showed greater increases in area (p = 0.01), AP (p = 0.01), and ML (p = 0.05) displacements of COP in the blindfolded tasks as compared to control group. However, cognitive load did not differently affect postural control in the two groups. Although PFPS and control group had similar reaction times in the sitting position (p = 0.29), PFPS subjects had longer reaction times than healthy subjects in dual task conditions (p = 0.04). Visual inputs seem to be essential for discriminating postural control between PFPS and healthy individuals. PFPS patients biased toward decreasing cognitive performance more than healthy subjects when they perform the single leg stance and cognitive task concurrently.
Alves, Yanina; Ribeiro, Fernando; Silva, Anabela G
2017-07-05
Chronic ankle instability presents a high incidence and prevalence in basketbal players. It's important to develop strategies to reduce the functional and mechanical limitations resulting from this condition. To compare the effect of Mulligan ́s fibular repositioning taping with a placebo taping immediatly after application and after a running test (Yo-Yo IRT). 16 adult basketball players (10 male, 6 female) with chronic ankle instability and mean age 21.50 ± 2.76 years old. Assessment of static postural control (15 seconds of unipedal stance test with eyes closed in a force platform), functional performance (figure 8 hop test and lateral hop test) and neuromuscular control (peroneus longus latency time in sudden inversion) in two conditions: Mulligan and Placebo. No significant effect was found for the intervantion factor in both hop tests (p>0.170), but there was a significant effect for the time factor (p<0.03). For the peroneus longus latency time, there was a significant interaction between factors (p=0.028) and also for time (p=0.042). No significant effect was found for any of the static postural control variables (area, speed and total displacement) (p≥0.10). There was no differences between Mulligan's fibular repositioning taping and Placebo taping in postural control and functional performance in basketball players with chronic ankle instability. However, Mulligan's taping appears to reduce peroneus longus latency time after a running when compared with a placebo taping.
Study of the influence of hole quality on composite materials
NASA Technical Reports Server (NTRS)
Pengra, J. J.
1980-01-01
The influence of hole quality on the structural behavior of composite materials was investigated. From an industry survey it was determined that the most frequent imperfections encountered during hole fabrication are chipout, delamination, and oversize conditions. These hole flaw types were generated in critical areas of static, compression, and fatigue specimens fabricated from T300/5208 graphite/epoxy system. The specimens were tested in static and cyclic pin bearing modes in addition to compression loading. Results of these tests are presented and discussed. The hole chipout defect reduced the static and cyclic endurance characteristics. Oversize holes also lowered the cyclic pin bearing endurance, but had no influence of the static pin bearing characteristics. Delamination had no insignificant influence on the static tension and cyclic pin bearing characteristics. Compression tests demonstrated a deleterious effect for chipout of delamination defects. Hole quality requirements proposed are discussed.
Effect of revised high-heeled shoes on foot pressure and static balance during standing.
Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min
2015-04-01
[Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance.
Akaike, Shun; Hayakawa, Tohru; Kobayashi, Daishiro; Aono, Yuko; Hirata, Atsushi; Hiratsuka, Masanori; Nakamura, Yoshiki
2015-01-01
In orthodontics, a reduction in static friction between the brackets and wire is important to enable easy tooth movement. The aim of this study was to examine the effects of a homogeneous diamond-like carbon (DLC) coating on the whole surfaces of slots in stainless steel orthodontic brackets on reducing the static friction between the brackets and the wire. The DLC coating was characterized using Raman spectroscopy, surface roughness and contact angle measurements, and SEM observations. Rectangular stainless steel and titanium-molybdenum alloy wires with two different sizes were employed, and the static friction between the brackets and wire was measured under dry and wet conditions. The DLC coating had a thickness of approximately 1.0 μm and an amorphous structure was identified. The results indicated that the DLC coating always led to a reduction in static friction.
Investigation on Static Softening Behaviors of a Low Carbon Steel Under Ferritic Rolling Condition
NASA Astrophysics Data System (ADS)
Dong, Haifeng; Cai, Dayong; Zhao, Zhengzheng; Wang, Zhiyong; Wang, Yuhui; Yang, Qingxiang; Liao, Bo
2010-03-01
The study aims to postulate a theoretical hypothesis for the finishing period of ferritic rolling technique of the low carbon steel. The static softening behavior during multistage hot deformation of a low carbon steel has been studied by double hot compression tests at 700-800 °C and strain rate of 1 s-1 using a Gleeble-3500 simulator. Interrupted deformation is conducted with interpass times varying from 1 to 100 s after achieving a true strain of 0.5 in the first stage. The results indicate that the flow stress value at the second deformation is lower than that at the first one, and the flow stress drops substantially. The static softening effects increase with the increase of deformation temperature, holding temperature, and interpass time. The value of the ferritic static softening activation energy is obtained, and the static softening kinetics is modeled by the Avrami equation.
Effect of revised high-heeled shoes on foot pressure and static balance during standing
Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min
2015-01-01
[Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance. PMID:25995572
Measurement of noise and its correlation to performance and geometry of small aircraft propellers
NASA Astrophysics Data System (ADS)
Štorch, Vít; Nožička, Jiří; Brada, Martin; Gemperle, Jiří; Suchý, Jakub
2016-03-01
A set of small model and UAV propellers is measured both in terms of aerodynamic performance and acoustic noise under static conditions. Apart from obvious correlation of noise to tip speed and propeller diameter the influence of blade pitch, blade pitch distribution, efficiency and shape of the blade is sought. Using the measured performance data a computational model for calculation of aerodynamic noise of propellers will be validated. The range of selected propellers include both propellers designed for nearly static conditions and propellers that are running at highly offdesign conditions, which allows to investigate i.e. the effect of blade stall on both noise level and performance results.
On the thermal stability of coronal loop plasma
NASA Technical Reports Server (NTRS)
Antiochos, S. K.; Emslie, A. G.; Shoub, E. C.; An, C. H.
1982-01-01
The stability to thermal perturbation of static models of coronal loops is considered including the effects of cool, radiatively stable material at the loop base. The linear stability turns out to be sensitive only to the boundary conditions assumed on the velocity at the loop base. The question of the appropriate boundary conditions is discussed, and it is concluded that the free surface condition (the pressure perturbation vanishes), rather than the rigid wall (the velocity vanishes), is relevant to the solar case. The static models are found to be thermally unstable, with a growth time of the order of the coronal cooking time. The physical implications of these results for the solar corona and transition region are examined.
NASA Astrophysics Data System (ADS)
Rodi, A. R.; Leon, D. C.
2012-11-01
A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns - angle of attack, angle of sideslip, dynamic pressure and the error in static pressure - if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft - a trailing cone - and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.
A method for predicting static-to-flight effects on coaxial jet noise
NASA Astrophysics Data System (ADS)
Bryce, William D.; Chinoy, Cyrus B.
2016-08-01
Previously-published work has provided a theoretical modelling of the jet noise from coaxial nozzle configurations in the form of component sources which can each be quantified in terms of modified single-stream jets. This modelling has been refined and extended to cover a wide range of the operating conditions of aircraft turbofan engines with separate exhaust flows, encompassing area ratios from 0.8 to 4. The objective has been to establish a basis for predicting the static-to-flight changes in the coaxial jet noise by applying single-stream flight effects to each of the sources comprising the modelling of the coaxial jet noise under static conditions. Relatively few experimental test points are available for validation although these do cover the full extent of the jet conditions and area ratios considered. The experimental results are limited in their frequency range by practical considerations but the static-to-flight changes in the third-octave SPLs are predicted to within a standard deviation of 0.4 dB although the complex effects of jet refraction and convection cause the errors to increase at low flight emission angles to the jet axis. The modelling also provides useful insights into the mechanisms involved in the generation of coaxial jet noise and has facilitated the identification of inadequacies in the experimental simulation of flight effects.
Morrin, Niamh; Redding, Emma
2013-01-01
The aim of this study was to examine the acute effects of static stretching (SS), dynamic stretching (DS), and a combined (static and dynamic) stretch protocol on vertical jump (VJ) height, balance, and range of motion (ROM) in dancers. A no-stretch (NS) intervention acted as the control condition. It was hypothesized that the DS and combination stretch protocols would have more positive effects on performance indicators than SS and NS, and SS would have negative effects as compared to the NS condition. Ten trained female dancers (27 ± 5 years of age) were tested on four occasions. Each session began with initial measurements of hamstring ROM on the dominant leg. The participants subsequently carried out a cardiovascular (CV) warm-up, which was followed by one of the four randomly selected stretch conditions. Immediately after the stretch intervention the participants were tested on VJ performance, hamstring ROM, and balance. The data showed that DS (p < 0.05) and the combination stretch (p < .05) produced significantly greater VJ height scores as compared to SS, and the combination stretch demonstrated significantly enhanced balance performance as compared to SS (p < 0.05). With regard to ROM, a one-way ANOVA indicated that SS and the combination stretch displayed significantly greater changes in ROM than DS (p < 0.05). From comparison of the stretch protocols used in the current study, it can be concluded that SS does not appear to be detrimental to a dancer's performance, and DS has some benefits but not in all three key area's tested, namely lower body power (VJ height), balance, and range of motion. However, combination stretching showed significantly enhanced balance and vertical jump height scores and significantly improved pre-stretch and post-stretch ROM values. It is therefore suggested that a combined warm-up protocol consisting of SS and DS should be promoted as an effective warm-up for dancers.
NASA Technical Reports Server (NTRS)
Budweg, H. L.; Shin, Y. S.
1987-01-01
An experimental investigation was conducted to determine the static and dynamic responses of a specific stiffened flat plate design. The air-backed rectangular flat plates of 6061-T6 aluminum with an externally machined longitudinal narrow-flanged T-stiffener and clamped boundary conditions were subjected to static loading by water hydropump pressure and shock loading from an eight pound TNT charge detonated underwater. The dynamic test plate was instrumented to measure transient strains and free field pressure. The static test plate was instrumented to measure transient strains, plate deflection, and pressure. Emphasis was placed upon forcing static and dynamic stiffener tripping, obtaining relevant strain and pressure data, and studying the associated plate-stiffener behavior.
NASA Astrophysics Data System (ADS)
Alves de Mesquita, Jayme; Lopes de Melo, Pedro
2004-03-01
Thermally sensitive devices—thermistors—have usually been used to monitor sleep-breathing disorders. However, because of their long time constant, these devices are not able to provide a good characterization of fast events, like hypopneas. Nasal pressure recording technique (NPR) has recently been suggested to quantify airflow during sleep. It is claimed that the short time constants of the devices used to implement this technique would allow an accurate analysis of fast abnormal respiratory events. However, these devices present errors associated with nonlinearities and acoustic resonance that could reduce the diagnostic value of the NPR. Moreover, in spite of the high scientific and clinical potential, there is no detailed description of a complete instrumentation system to implement this promising technique in sleep studies. In this context, the purpose of this work was twofold: (1) describe the development of a flexible NPR device and (2) evaluate the performance of this device when compared to pneumotachographs (PNTs) and thermistors. After the design details are described, the system static accuracy is evaluated by a comparative analysis with a PNT. This analysis revealed a significant reduction (p<0.001) of the static error when system nonlinearities were reduced. The dynamic performance of the NPR system was investigated by frequency response analysis and time constant evaluations and the results showed that the developed device response was as good as PNT and around 100 times faster (τ=5,3 ms) than thermistors (τ=512 ms). Experimental results obtained in simulated clinical conditions and in a patient are presented as examples, and confirmed the good features achieved in engineering tests. These results are in close agreement with physiological fundamentals, supplying substantial evidence that the improved dynamic and static characteristics of this device can contribute to a more accurate implementation of medical research projects and to improve the diagnoses of sleep-breathing disorders.
Bacterial adherence to graft tissues in static and flow conditions.
Veloso, Tiago Rafael; Claes, Jorien; Van Kerckhoven, Soetkin; Ditkowski, Bartosz; Hurtado-Aguilar, Luis G; Jockenhoevel, Stefan; Mela, Petra; Jashari, Ramadan; Gewillig, Marc; Hoylaerts, Marc F; Meyns, Bart; Heying, Ruth
2018-01-01
Various conduits and stent-mounted valves are used as pulmonary valve graft tissues for right ventricular outflow tract reconstruction with good hemodynamic results. Valve replacement carries an increased risk of infective endocarditis (IE). Recent observations have increased awareness of the risk of IE after transcatheter implantation of a stent-mounted bovine jugular vein valve. This study focused on the susceptibility of graft tissue surfaces to bacterial adherence as a potential risk factor for subsequent IE. Adhesion of Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus sanguinis to bovine pericardium (BP) patch, bovine jugular vein (BJV), and cryopreserved homograft (CH) tissues was quantified under static and shear stress conditions. Microscopic analysis and histology were performed to evaluate bacterial adhesion to matrix components. In general, similar bacteria numbers were recovered from CH and BJV tissue surfaces for all strains, especially in flow conditions. Static bacterial adhesion to the CH wall was lower for S sanguinis adhesion (P < .05 vs BP patch). Adhesion to the BJV wall, CH wall, and leaflet was decreased for S epidermidis in static conditions (P < .05 vs BP patch). Bacterial adhesion under shear stress indicated similar bacterial adhesion to all tissues, except for lower adhesion to the BJV wall after S sanguinis incubation. Microscopic analysis showed the importance of matrix component exposure for bacterial adherence to CH. Our data provide evidence that the surface composition of BJV and CH tissues themselves, bacterial surface proteins, and shear forces per se are not the prime determinants of bacterial adherence. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Design and evaluation of a wireless sensor network based aircraft strength testing system.
Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang
2009-01-01
The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.
Static Load Test on Instrumented Pile - Field Data and Numerical Simulations
NASA Astrophysics Data System (ADS)
Krasiński, Adam; Wiszniewski, Mateusz
2017-09-01
Static load tests on foundation piles are generally carried out in order to determine load - the displacement characteristic of the pile head. For standard (basic) engineering practices this type of test usually provides enough information. However, the knowledge of force distribution along the pile core and its division into the friction along the shaft and the resistance under the base can be very useful. Such information can be obtained by strain gage pile instrumentation [1]. Significant investigations have been completed on this technology, proving its utility and correctness [8], [10], [12]. The results of static tests on instrumented piles are not easy to interpret. There are many factors and processes affecting the final outcome. In order to understand better the whole testing process and soil-structure behavior some investigations and numerical analyses were done. In the paper, real data from a field load test on instrumented piles is discussed and compared with numerical simulation of such a test in similar conditions. Differences and difficulties in the results interpretation with their possible reasons are discussed. Moreover, the authors used their own analytical solution for more reliable determination of force distribution along the pile. The work was presented at the XVII French-Polish Colloquium of Soil and Rock Mechanics, Łódź, 28-30 November 2016.
Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System
Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang
2009-01-01
The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521
Rayes, Hanin; Sheft, Stanley; Shafiro, Valeriy
2014-01-01
Past work has shown relationship between the ability to discriminate spectral patterns and measures of speech intelligibility. The purpose of this study was to investigate the ability of both children and young adults to discriminate static and dynamic spectral patterns, comparing performance between the two groups and evaluating within-group results in terms of relationship to speech-in-noise perception. Data were collected from normal-hearing children (age range: 5.4 - 12.8 yrs) and young adults (mean age: 22.8 yrs) on two spectral discrimination tasks and speech-in-noise perception. The first discrimination task, involving static spectral profiles, measured the ability to detect a change in the phase of a low-density sinusoidal spectral ripple of wideband noise. Using dynamic spectral patterns, the second task determined the signal-to-noise ratio needed to discriminate the temporal pattern of frequency fluctuation imposed by stochastic low-rate frequency modulation (FM). Children performed significantly poorer than young adults on both discrimination tasks. For children, a significant correlation between speech-in-noise perception and spectral-pattern discrimination was obtained only with the dynamic patterns of the FM condition, with partial correlation suggesting that factors related to the children's age mediated the relationship.
Saxena, Udit; Allan, Chris; Allen, Prudence
2017-06-01
Previous studies have suggested elevated reflex thresholds in children with auditory processing disorders (APDs). However, some aspects of the child's ear such as ear canal volume and static compliance of the middle ear could possibly affect the measurements of reflex thresholds and thus impact its interpretation. Sound levels used to elicit reflexes in a child's ear may be higher than predicted by calibration in a standard 2-cc coupler, and lower static compliance could make visualization of very small changes in impedance at threshold difficult. For this purpose, it is important to evaluate threshold data with consideration of differences between children and adults. A set of studies were conducted. The first compared reflex thresholds obtained using standard clinical procedures in children with suspected APD to that of typically developing children and adults to test the replicability of previous studies. The second study examined the impact of ear canal volume on estimates of reflex thresholds by applying real-ear corrections. Lastly, the relationship between static compliance and reflex threshold estimates was explored. The research is a set of case-control studies with a repeated measures design. The first study included data from 20 normal-hearing adults, 28 typically developing children, and 66 children suspected of having an APD. The second study included 28 normal-hearing adults and 30 typically developing children. In the first study, crossed and uncrossed reflex thresholds were measured in 5-dB step size. Reflex thresholds were analyzed using repeated measures analysis of variance (RM-ANOVA). In the second study, uncrossed reflex thresholds, real-ear correction, ear canal volume, and static compliance were measured. Reflex thresholds were measured using a 1-dB step size. The effect of real-ear correction and static compliance on reflex threshold was examined using RM-ANOVA and Pearson correlation coefficient, respectively. Study 1 replicated previous studies showing elevated reflex thresholds in many children with suspected APD when compared to data from adults using standard clinical procedures, especially in the crossed condition. The thresholds measured in children with suspected APD tended to be higher than those measured in the typically developing children. There were no significant differences between the typically developing children and adults. However, when real-ear calibrated stimulus levels were used, it was found that children's thresholds were elicited at higher levels than in the adults. A significant relationship between reflex thresholds and static compliance was found in the adult data, showing a trend for higher thresholds in ears with lower static compliance, but no such relationship was found in the data from the children. This study suggests that reflex measures in children should be adjusted for real-ear-to-coupler differences before interpretation. The data in children with suspected APD support previous studies suggesting abnormalities in reflex thresholds. The lack of correlation between threshold and static compliance estimates in children as was observed in the adults may suggest a nonmechanical explanation for age and clinically related effects. American Academy of Audiology
NASA Technical Reports Server (NTRS)
Gooderum, P. B.; Bushnell, D. M.
1972-01-01
Atomization, drop size, and penetration data are presented for cross stream water injection at conditions simulating high altitude reentry (low Weber number, high static temperature, high Knudsen number, and low static pressure). These results are applied to the RAM C-1 and C-3 flights. Two primary breakup modes are considered, vapor pressure or flashing and aerodynamic atomization. Results are given for breakup boundaries and mean drop size for each of these atomization mechanisms. Both standard and flight orifice geometries are investigated. The data were obtained in both a static environment and in conventional aerodynamic facilities at Mach numbers of 4.5 and 8. The high temperature aspects of reentry were simulated in a Mach 5.5 cyanogen-oxygen tunnel with total temperature of 4500 K.
Oxidation behavior of TD-NiCr in a dynamic high temperature environment
NASA Technical Reports Server (NTRS)
Tenney, D. R.; Young, C. T.; Herring, H. W.
1974-01-01
The oxidation behavior of TD-NiCr has been studied in static and high-speed flowing air environments at 1100 and 1200 C. It has been found that the stable oxide morphologies formed on the specimens exposed to the static and dynamic environments were markedly different. The faceted crystal morphology characteristic of static oxidation was found to be unstable under high-temperature, high-speed flow conditions and was quickly replaced by a porous NiO 'mushroom' type structure. Also, it was found that the rate of formation of CrO3 from Cr2O3 was greatly enhanced by high gas velocity conditions. The stability of Cr2-O3 was found to be greatly improved by the presence of an outer NiO layer, even though the NiO layer was very porous. An oxidation model is proposed to explain the observed microstructures and overall oxidation behavior of TD-NiCr alloys.
NASA Astrophysics Data System (ADS)
Bittner-Rohrhofer, K.; Humer, K.; Weber, H. W.; Hamada, K.; Sugimoto, M.; Okuno, K.
2002-12-01
The insulation system proposed by the Japanese Home Team for the ITER Toroidal Field coil (TF coil) is a T-glass-fiber/Kapton reinforced epoxy prepreg system. In order to assess the material performance under the actual operating conditions of the coils, the insulation system was irradiated in the TRIGA reactor (Vienna) to a fast neutron fluence of 2×10 22 m -2 ( E>0.1 MeV). After measurements of swelling, all mechanical tests were carried out at 77 K. Tensile and short-beam-shear (SBS) tests were performed under static loading conditions. In addition, tension-tension fatigue experiments up to about 10 6 cycles were made. The laminate swells in the through-thickness direction by 0.86% at the highest dose level. The fatigue tests as well as the static tests do not show significant influences of the irradiation on the mechanical behavior of this composite.
Apostolopoulos, Nikos C; Lahart, Ian M; Plyley, Michael J; Taunton, Jack; Nevill, Alan M; Koutedakis, Yiannis; Wyon, Matthew; Metsios, George S
2018-03-12
Effects of passive static stretching intensity on recovery from unaccustomed eccentric exercise of right knee extensors was investigated in 30 recreationally active males randomly allocated into three groups: high-intensity (70-80% maximum perceived stretch), low-intensity (30-40% maximum perceived stretch), and control. Both stretching groups performed 3 sets of passive static stretching exercises of 60s each for hamstrings, hip flexors, and quadriceps, over 3 consecutive days, post-unaccustomed eccentric exercise. Muscle function (eccentric and isometric peak torque) and blood biomarkers (CK and CRP) were measured before (baseline) and after (24, 48, and 72h) unaccustomed eccentric exercise. Perceived muscle soreness scores were collected immediately (time 0), and after 24, 48, and 72h post-exercise. Statistical time x condition interactions observed only for eccentric peak torque (p=.008). Magnitude-based inference analyses revealed low-intensity stretching had most likely, very likely, or likely beneficial effects on perceived muscle soreness (48-72h and 0-72h) and eccentric peak torque (baseline-24h and baseline-72h), compared with high-intensity stretching. Compared with control, low-intensity stretching had very likely or likely beneficial effects on perceived muscle soreness (0-24h and 0-72h), eccentric peak torque (baseline-48h and baseline-72h), and isometric peak torque (baseline-72h). High-intensity stretching had likely beneficial effects on eccentric peak torque (baseline-48h), but likely harmful effects eccentric peak torque (baseline-24h) and CK (baseline-48h and baseline-72h), compared with control. Therefore, low-intensity stretching is likely to result in small-to-moderate beneficial effects on perceived muscle soreness and recovery of muscle function post-unaccustomed eccentric exercise, but not markers of muscle damage and inflammation, compared with high-intensity or no stretching.
Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model
NASA Technical Reports Server (NTRS)
Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh
2014-01-01
This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.
Mat, Damien J L; Cattenoz, Thomas; Souchon, Isabelle; Michon, Camille; Le Feunteun, Steven
2018-01-15
This study intends to demonstrate that acid titration at low pH is very well adapted to the monitoring of pepsin activity. After a description of the underlying principles, this approach was used during in vitro gastric digestions of a model of complex food containing 15wt% of whey proteins, according to both static (2h at pH = 3, Infogest protocol) and dynamic pH conditions (from pH 6.3 down to 2 in 1h). Pepsin activity was quantitatively assessed in all experiments through the calculation of degrees of hydrolysis (DH). Final values of 3.7 and 3.0% were obtained in static and dynamic pH conditions, respectively, and validated using an independent method. Results also show that about 92% of the peptides were detected at pH = 3, and 100% for pH≤2.5. Overall, the proposed approach proved to be very worthy to study protein hydrolysis during in vitro gastric digestions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhou, Haibo; Shi, Jianmin; Zhang, Chao; Li, Pei
2018-02-28
Mechanical compression often induces degenerative changes of disc nucleus pulposus (NP) tissue. It has been indicated that N-cadherin (N-CDH)-mediated signaling helps to preserve the NP cell phenotype. However, N-CDH expression and the resulting NP-specific phenotype alteration under the static compression and dynamic compression remain unclear. To study the effects of static compression and dynamic compression on N-CDH expression and NP-specific phenotype in an in vitro disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days and subjected to static or dynamic compression (0.4 MPa for 2 h once per day). The noncompressed discs were used as controls. Compared with the dynamic compression, static compression significantly down-regulated the expression of N-CDH and NP-specific markers (laminin, brachyury, and keratin 19); decreased the Alcian Blue staining intensity, glycosaminoglycan and hydroxyproline contents; and declined the matrix macromolecule (aggrecan and collagen II) expression. Compared with the dynamic compression, static compression causes N-CDH down-regulation, loss of NP-specific phenotype, and the resulting decrease in NP matrix synthesis. © 2018 The Author(s).
Stress-Rupture and Stress-Relaxation of SiC/SiC Composites at Intermediate Temperature
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Hurst, Janet; Levine, Stanley (Technical Monitor)
2001-01-01
Tensile static stress and static strain experiments were performed on woven Sylramic (Dow Corning, Midland, MI) and Hi-Nicalon (Nippon Carbon, Japan) fiber reinforced, BN interphase, melt-infiltrated SiC matrix composites at 815 C. Acoustic emission was used to monitor the damage accumulation during the test. The stress-rupture properties of Sylramic composites were superior to that of Hi-Nicalon Tm composites. Conversely, the applied strain levels that Hi-Nicalon composites can withstand for stress-relaxation experiments were superior to Sylramic composites; however, at a cost of poor retained strength properties for Hi-Nicalon composites. Sylramic composites exhibited much less stress-oxidation induced matrix cracking compared to Hi-Nicalon composites. This was attributed to the greater stiffness and roughness of Sylramic fibers themselves and the lack of a carbon layer between the fiber and the BN interphase for Sylramic composites, which existed in Hi-Nicalon composites. Due to the lack of stress-relief for Sylramic composites, time to failure for Sylramic composite stress-relaxation experiments was not much longer than for stress-rupture experiments when comparing the peak stress condition for stress-relaxation with the applied stress of stress-rupture.
Grooten, Wilhelmus J A; Äng, Björn O; Hagströmer, Maria; Conradsson, David; Nero, Håkan; Franzén, Erika
2017-04-01
Dynamic chairs have the potential to facilitate movements that could counteract health problems associated with sedentary office work. This study aimed to evaluate whether a dynamic chair can increase movements during desk-based office work. Fifteen healthy subjects performed desk-based office work using a dynamic office chair and compared to three other conditions in a movement laboratory. In a field study, the dynamic office chair was studied during three working days using accelerometry. Equivocal results showed that the dynamic chair increased upper body and chair movements as compared to the conventional chair, but lesser movements were found compared to standing. No differences were found between the conditions in the field study. A dynamic chair may facilitate movements in static desk-based office tasks, but the results were not consistent for all outcome measures. Validation of measuring protocols for assessing movements during desk-based office work is warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cool but counterproductive: interactive, Web-based risk communications can backfire.
Zikmund-Fisher, Brian J; Dickson, Mark; Witteman, Holly O
2011-08-25
Paper-based patient decision aids generally present risk information using numbers and/or static images. However, limited psychological research has suggested that when people interactively graph risk information, they process the statistics more actively, making the information more available for decision making. Such interactive tools could potentially be incorporated in a new generation of Web-based decision aids. The objective of our study was to investigate whether interactive graphics detailing the risk of side effects of two treatments improve knowledge and decision making over standard risk graphics. A total of 3371 members of a demographically diverse Internet panel viewed a hypothetical scenario about two hypothetical treatments for thyroid cancer. Each treatment had a chance of causing 1 of 2 side effects, but we randomly varied whether one treatment was better on both dimensions (strong dominance condition), slightly better on only one dimension (mild dominance condition), or better on one dimension but worse on the other (trade-off condition) than the other treatment. We also varied whether respondents passively viewed the risk information in static pictograph (icon array) images or actively manipulated the information by using interactive Flash-based animations of "fill-in-the-blank" pictographs. Our primary hypothesis was that active manipulation would increase respondents' ability to recognize dominance (when available) and choose the better treatment. The interactive risk graphic conditions had significantly worse survey completion rates (1110/1695, 65.5% vs 1316/1659, 79.3%, P < .001) than the static image conditions. In addition, respondents using interactive graphs were less likely to recognize and select the dominant treatment option (234/380, 61.6% vs 343/465, 73.8%, P < .001 in the strong dominance condition). Interactivity, however visually appealing, can both add to respondent burden and distract people from understanding relevant statistical information. Decision-aid developers need to be aware that interactive risk presentations may create worse outcomes than presentations of static risk graphic formats.
Cool but Counterproductive: Interactive, Web-Based Risk Communications Can Backfire
Dickson, Mark; Witteman, Holly O
2011-01-01
Background Paper-based patient decision aids generally present risk information using numbers and/or static images. However, limited psychological research has suggested that when people interactively graph risk information, they process the statistics more actively, making the information more available for decision making. Such interactive tools could potentially be incorporated in a new generation of Web-based decision aids. Objective The objective of our study was to investigate whether interactive graphics detailing the risk of side effects of two treatments improve knowledge and decision making over standard risk graphics. Methods A total of 3371 members of a demographically diverse Internet panel viewed a hypothetical scenario about two hypothetical treatments for thyroid cancer. Each treatment had a chance of causing 1 of 2 side effects, but we randomly varied whether one treatment was better on both dimensions (strong dominance condition), slightly better on only one dimension (mild dominance condition), or better on one dimension but worse on the other (trade-off condition) than the other treatment. We also varied whether respondents passively viewed the risk information in static pictograph (icon array) images or actively manipulated the information by using interactive Flash-based animations of “fill-in-the-blank” pictographs. Our primary hypothesis was that active manipulation would increase respondents’ ability to recognize dominance (when available) and choose the better treatment. Results The interactive risk graphic conditions had significantly worse survey completion rates (1110/1695, 65.5% vs 1316/1659, 79.3%, P < .001) than the static image conditions. In addition, respondents using interactive graphs were less likely to recognize and select the dominant treatment option (234/380, 61.6% vs 343/465, 73.8%, P < .001 in the strong dominance condition). Conclusions Interactivity, however visually appealing, can both add to respondent burden and distract people from understanding relevant statistical information. Decision-aid developers need to be aware that interactive risk presentations may create worse outcomes than presentations of static risk graphic formats. PMID:21868349
An easily implemented static condensation method for structural sensitivity analysis
NASA Technical Reports Server (NTRS)
Gangadharan, S. N.; Haftka, R. T.; Nikolaidis, E.
1990-01-01
A black-box approach to static condensation for sensitivity analysis is presented with illustrative examples of a cube and a car structure. The sensitivity of the structural response with respect to joint stiffness parameter is calculated using the direct method, forward-difference, and central-difference schemes. The efficiency of the various methods for identifying joint stiffness parameters from measured static deflections of these structures is compared. The results indicate that the use of static condensation can reduce computation times significantly and the black-box approach is only slightly less efficient than the standard implementation of static condensation. The ease of implementation of the black-box approach recommends it for use with general-purpose finite element codes that do not have a built-in facility for static condensation.
Directed current in the Holstein system.
Hennig, D; Burbanks, A D; Osbaldestin, A H
2011-03-01
We propose a mechanism to rectify charge transport in the semiclassical Holstein model. It is shown that localized initial conditions associated with a polaron solution, in conjunction with static electron on-site potential not having inversion symmetry, constitute minimal prerequisites for the emergence of a directed current in the underlying periodic lattice system. In particular, we demonstrate that for unbiased spatially localized initial conditions (constituted by kicked static polaron states), violation of parity prevents the existence of pairs of counterpropagating trajectories, thus allowing for a directed current despite the time reversibility of the equations of motion. Nevertheless, propagating polaron solutions associated with sets of unbiased localized initial conditions which eventually leave the region of localized initial conditions do not exhibit time reversibility. Since the initial conditions belonging to the corresponding counterpropagating, current-compensating polaron solutions are not contained in the set, this gives rise to the emergence of a current. Occurrence of long-range coherent charge transport is demonstrated.
NASA Technical Reports Server (NTRS)
Henderson, William P.; Burley, James R., II
1987-01-01
An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects on empennage arrangement on single-engine nozzle/afterbody static pressures. Tests were done at Mach numbers from 0.60 to 1.20, nozzle pressure ratios from 1.0 (jet off) to 8.0. and angles of attack from -3 to 9 deg (at jet off conditions), depending on Mach number. Three empennage arrangements (aft, staggered, and forward) were investigated. Extensive measurements were made of static pressure on the nozzle/afterbody in the vicinity of the tail surfaces.
Application of a Modal Approach in Solving the Static Stability Problem for Electric Power Systems
NASA Astrophysics Data System (ADS)
Sharov, J. V.
2017-12-01
Application of a modal approach in solving the static stability problem for power systems is examined. It is proposed to use the matrix exponent norm as a generalized transition function of the power system disturbed motion. Based on the concept of a stability radius and the pseudospectrum of Jacobian matrix, the necessary and sufficient conditions for existence of the static margins were determined. The capabilities and advantages of the modal approach in designing centralized or distributed control and the prospects for the analysis of nonlinear oscillations and rendering the dynamic stability are demonstrated.
Sani, R K; Azmi, W; Banerjee, U C
1998-01-01
Decolorization of several dyes (Red HE-8B, Malachite Green, Navy Blue HE-2R, Magenta, Crystal Violet) and an industrial effluent with growing cells of Phanerochaete chrysosporium in shake and static culture was demonstrated. All the dyes and the industrial effluent were decolorized to some extent with varying percentages of decolorization (20-100%). The rate of decolorization was very rapid with Red HE-8B, an industrial dye. Decolorization rates for all the dyes in static condition were found to be less than the shake culture and also dependent on biomass concentration.
Bressel, Eadric; Yonker, Joshua C; Kras, John; Heath, Edward M
2007-01-01
Context: How athletes from different sports perform on balance tests is not well understood. When prescribing balance exercises to athletes in different sports, it may be important to recognize performance variations. Objective: To compare static and dynamic balance among collegiate athletes competing or training in soccer, basketball, and gymnastics. Design: A quasi-experimental, between-groups design. Independent variables included limb (dominant and nondominant) and sport played. Setting: A university athletic training facility. Patients or Other Participants: Thirty-four female volunteers who competed in National Collegiate Athletic Association Division I soccer (n = 11), basketball (n = 11), or gymnastics (n = 12). Intervention(s): To assess static balance, participants performed 3 stance variations (double leg, single leg, and tandem leg) on 2 surfaces (stiff and compliant). For assessment of dynamic balance, participants performed multidirectional maximal single-leg reaches from a unilateral base of support. Main Outcome Measure(s): Errors from the Balance Error Scoring System and normalized leg reach distances from the Star Excursion Balance Test were used to assess static and dynamic balance, respectively. Results: Balance Error Scoring System error scores for the gymnastics group were 55% lower than for the basketball group (P = .01), and Star Excursion Balance Test scores were 7% higher in the soccer group than the basketball group (P = .04). Conclusions: Gymnasts and soccer players did not differ in terms of static and dynamic balance. In contrast, basketball players displayed inferior static balance compared with gymnasts and inferior dynamic balance compared with soccer players. PMID:17597942
NASA Astrophysics Data System (ADS)
Fruman, Mark D.; Remmler, Sebastian; Achatz, Ulrich; Hickel, Stefan
2014-10-01
A systematic approach to the direct numerical simulation (DNS) of breaking upper mesospheric inertia-gravity waves of amplitude close to or above the threshold for static instability is presented. Normal mode or singular vector analysis applied in a frame of reference moving with the phase velocity of the wave (in which the wave is a steady solution) is used to determine the most likely scale and structure of the primary instability and to initialize nonlinear "2.5-D" simulations (with three-dimensional velocity and vorticity fields but depending only on two spatial coordinates). Singular vector analysis is then applied to the time-dependent 2.5-D solution to predict the transition of the breaking event to three-dimensional turbulence and to initialize three-dimensional DNS. The careful choice of the computational domain and the relatively low Reynolds numbers, on the order of 25,000, relevant to breaking waves in the upper mesosphere, makes the three-dimensional DNS tractable with present-day computing clusters. Three test cases are presented: a statically unstable low-frequency inertia-gravity wave, a statically and dynamically stable inertia-gravity wave, and a statically unstable high-frequency gravity wave. The three-dimensional DNS are compared to ensembles of 2.5-D simulations. In general, the decay of the wave and generation of turbulence is faster in three dimensions, but the results are otherwise qualitatively and quantitatively similar, suggesting that results of 2.5-D simulations are meaningful if the domain and initial condition are chosen properly.
Oblique abdominal muscle activity in response to external perturbations when pushing a cart.
Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H
2010-05-07
Cyclic activation of the external and internal oblique muscles contributes to twisting moments during normal gait. During pushing while walking, it is not well understood how these muscles respond to presence of predictable (cyclic push-off forces) and unpredictable (external) perturbations that occur in pushing tasks. We hypothesized that the predictable perturbations due to the cyclic push-off forces would be associated with cyclic muscle activity, while external perturbations would be counteracted by cocontraction of the oblique abdominal muscles. Eight healthy male subjects pushed at two target forces and two handle heights in a static condition and while walking without and with external perturbations. For all pushing tasks, the median, the static (10th percentile) and the peak levels (90th percentile) of the electromyographic amplitudes were determined. Linear models with oblique abdominal EMGs and trunk angles as input were fit to the twisting moments, to estimate trunk stiffness. There was no significant difference between the static EMG levels in pushing while walking compared to the peak levels in pushing while standing. When pushing while walking, the additional dynamic activity was associated with the twisting moments, which were actively modulated by the pairs of oblique muscles as in normal gait. The median and static levels of trunk muscle activity and estimated trunk stiffness were significantly higher when perturbations occurred than without perturbations. The increase baseline of muscle activity indicated cocontraction of the antagonistic muscle pairs. Furthermore, this cocontraction resulted in an increased trunk stiffness around the longitudinal axis. Copyright 2010 Elsevier Ltd. All rights reserved.
Rac1 mediates laminar shear stress-induced vascular endothelial cell migration
Huang, Xianliang; Shen, Yang; Zhang, Yi; Wei, Lin; Lai, Yi; Wu, Jiang; Liu, Xiaojing; Liu, Xiaoheng
2013-01-01
The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. ECs are constantly subjected to shear stress resulting from blood flow and are able to convert mechanical stimuli into intracellular signals that affect cellular behaviors and functions. The aim of this study is to elucidate the effects of Rac1, which is the member of small G protein family, on EC migration under different laminar shear stress (5.56, 10.02, and 15.27 dyn/cm2). The cell migration distance under laminar shear stress increased significantly than that under the static culture condition. Especially, under relative high shear stress (15.27 dyn/cm2) there was a higher difference at 8 h (P < 0.01) and 2 h (P < 0.05) compared with static controls. RT-PCR results further showed increasing mRNA expression of Rac1 in ECs exposed to laminar shear stress than that exposed to static culture. Using plasmids encoding the wild-type (WT), an activated mutant (Q61L), and a dominant-negative mutant (T17N), plasmids encoding Rac1 were transfected into EA.hy 926 cells. The average net migration distance of Rac1Q61L group increased significantly, while Rac1T17N group decreased significantly in comparison with the static controls. These results indicated that Rac1 mediated shear stress-induced EC migration. Our findings conduce to elucidate the molecular mechanisms of EC migration induced by shear stress, which is expected to understand the pathophysiological basis of wound healing in health and diseases. PMID:24430179
Enhancement of sedimentation and coagulation with static magnetic field
NASA Astrophysics Data System (ADS)
Zieliński, Marcin; Dębowski, Marcin; Hajduk, Anna; Rusanowska, Paulina
2017-11-01
The static magnetic field can be an alternative method for wastewater treatment. It has been proved that this physical factor, accelerates the biochemical processes, catalyzes advanced oxidation, intensifies anaerobic and aerobic processes or reduces swelling of activated sludge. There are also reports proving the positive impact of the static magnetic field on the coagulation and sedimentation, as well as the conditioning and dewatering of sludge. In order to be applied in larger scale the published results should be verified and confirmed. In the studies, the enhancement of sedimentation by the static magnetic field was observed. The best sedimentation was noted in the experiment, where magnetizers were placed on activated sludge bioreactor and secondary settling tank. No effect of the static magnetic field on coagulation with the utilization of PIX 113 was observed. However, the static magnetic field enhanced coagulation with the utilization of PAX-XL9. The results suggest that increased sedimentation of colloids and activated sludge, can in practice mean a reduction in the size of the necessary equipment for sedimentation with an unchanged efficiency of the process.
Experimental Investigation of a Morphing Nacelle Ducted Fan
NASA Technical Reports Server (NTRS)
Kondor, Shayne A.; Moore, Mark
2005-01-01
The application of Circulation Control to the nacelle of a shrouded fan is proposed as a means to enhance off-design performance of the shrouded fan. Typically, a fixed geometry shroud is efficient at a single operating condition. Modifying circulation about the fixed geometry is proposed as a means to virtually morph the shroud without moving surfaces. This approach will enhance off-design-point performance with minimal complexity, weight, and cost. Termed the Morphing Nacelle, this concept provides an attractive propulsion option for Vertical Take-off and Landing (VTOL) aircraft, such conceptual Personal Air Vehicle (PAV) configurations proposed by NASA. An experimental proof of concept investigation of the Morphing Nacelle is detailed in this paper. A powered model shrouded fan model was constructed with Circulation Control (CC) devices integrated in the inlet and exit of the nacelle. Both CC devices consisted of an annular jet slot directing a jet sheet tangent to a curved surface, generally described as a Coanda surface. The model shroud was tailored for axial flight, with a diffusing inlet, but was operated off-design condition as a static lifting fan. Thrust stand experiments were conducted to determine if the CC devices could effectively improve off-design performance of the shrouded fan. Additional tests were conducted to explore the effectiveness of the CC devices a means to reduce peak static pressure on the ground below a lifting fan. Experimental results showed that off-design static thrust performance of the model was improved when the CC devices were employed under certain conditions. The exhaust CC device alone, while effective in diffusing the fan exhaust and improving weight flow into shroud inlet, tended to diminish performance of the fan with increased CC jet momentum. The inlet CC device was effective at reattaching a normally stalled inlet flow condition, proving an effective means of enhancing performance. A more dramatic improvement in static thrust was obtained when the inlet and exit CC devices were operated in unison, but only over a limited range of CC jet momentum. Operating the nacelle inlet and exit CC devices together proved very effective in reducing peak ground plane static pressure, while maintaining static thrust. The Morphing Nacelle concept proved effective at enhancing off-design performance of the model; however, additional investigation is necessary to generalize the results.
Efficiency tests of samplers for microbiological aerosols, a review
NASA Technical Reports Server (NTRS)
Henningson, E.; Faengmark, I.
1984-01-01
To obtain comparable results from studies using a variety of samplers of microbiological aerosols with different collection performances for various particle sizes, methods reported in the literature were surveyed, evaluated, and tabulated for testing the efficiency of the samplers. It is concluded that these samplers were not thoroughly tested, using reliable methods. Tests were conducted in static air chambers and in various outdoor and work environments. Results are not reliable as it is difficult to achieve stable and reproducible conditions in these test systems. Testing in a wind tunnel is recommended.