Behaviour of Epoxy Silica Nanocomposites Under Static and Creep Loading
NASA Astrophysics Data System (ADS)
Constantinescu, Dan Mihai; Picu, Radu Catalin; Sandu, Marin; Apostol, Dragos Alexandru; Sandu, Adriana; Baciu, Florin
2017-12-01
Specific manufacturing technologies were applied for the fabrication of epoxy-based nanocomposites with silica nanoparticles. For dispersing the fillers in the epoxy resin special equipment such as a shear mixer and a high energy sonicator with temperature control were used. Both functionalized and unfunctionalized silica nanoparticles were added in three epoxy resins. The considered filling fraction was in most cases 0.1, 0.3 and 0.5 wt%.. The obtained nanocomposites were subjected to monotonic uniaxial and creep loading at room temperature. The static mechanical properties were not significantly improved regardless the filler percentage and type of epoxy resin. Under creep loading, by increasing the stress level, the nanocomposite with 0.1 wt% silica creeps less than all other materials. Also the creep rate is reduced by adding silica nanofillers.
The Effects of Small Deformation on Creep and Stress Rupture Behavior of ODS Superalloys.
1983-01-07
effects or shock loading effects. During this project year, we modified several Satec high temperature static creep test machines to obtain the required...loading control. Figure 14 is a schematic represen- tation of our cyclic creep test system. The system retains features of the Satec machine such as...and almost completely while, if the stress is held at the initial level for longer periods, dislocation will es - cape the strengthening interactions
NASALIFE - Component Fatigue and Creep Life Prediction Program
NASA Technical Reports Server (NTRS)
Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.
2014-01-01
NASALIFE is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although the primary focus was for CMC components, the underlying methodologies are equally applicable to other material systems as well. The program references empirical data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method or a peak counting type method. Lastly, damage due to cyclic loading and creep is combined with Minor's Rule to determine damage due to cyclic loading, damage due to creep, and the total damage per mission and the number of potential missions the component can provide before failure.
Viscoelastic and fatigue properties of model methacrylate-based dentin adhesives
Singh, Viraj; Misra, Anil; Marangos, Orestes; Park, Jonggu; Ye, Qiang; Kieweg, Sarah L.; Spencer, Paulette
2013-01-01
The objective of the current study is to characterize the viscoelastic and fatigue properties of model methacrylate-based dentin adhesives under dry and wet conditions. Static, creep, and fatigue tests were performed on cylindrical samples in a 3-point bending clamp. Static results showed that the apparent elastic modulus of the model adhesive varied from 2.56 to 3.53 GPa in the dry condition, and from 1.04 to 1.62 GPa in the wet condition, depending upon the rate of loading. Significant differences were also found for the creep behavior of the model adhesive under dry and wet conditions. A linear viscoelastic model was developed by fitting the adhesive creep behavior. The developed model with 5 Kelvin Voigt elements predicted the apparent elastic moduli measured in the static tests. The model was then utilized to interpret the fatigue test results. It was found that the failure under cyclic loading can be due to creep or fatigue, which has implications for the failure criterion that are applied for these types of tests. Finally, it was found that the adhesive samples tested under dry conditions were more durable than those tested under wet conditions. PMID:20848661
Creep of experimental short fiber-reinforced composite resin.
Garoushi, Sufyan; Kaleem, Muhammad; Shinya, Akikazu; Vallittu, Pekka K; Satterthwaite, Julian D; Watts, David C; Lassila, Lippo V J
2012-01-01
The purpose of this study was to investigate the reinforcing effect of short E-glass fiber fillers oriented in different directions on composite resin under static and dynamic loading. Experimental short fiber-reinforced composite resin (FC) was prepared by mixing 22.5 wt% of short E-glass fibers, 22.5 wt% of resin, and 55 wt% of silane-treated silica fillers. Three groups of specimens (n=5) were tested: FC with isotropic fiber orientation, FC with anisotropic fiber orientation, and particulate-filled composite resin (PFC) as a control. Time-dependent creep and recovery were recorded. ANOVA revealed that after secondary curing in a vacuum oven and after storage in dry condition for 30 days, FC with isotropic fiber orientation (1.73%) exhibited significantly lower static creep value (p<0.05) than PFC (2.54%). For the different curing methods and storage conditions evaluated in this study, FC achieved acceptable static and dynamic creep values when compared to PFC.
Mechanical Properties of Ceramics for High Temperature Applications
1976-12-01
difficult so far. Also torsion creep tests have been performed /2 /, not considered in this figure. The data show a relatively consistent picture...mittent creep test. Corrosion effects are claimed to be operative during fatigue : The lifetime of a fa- tigue specimen, being controlled by the slow...of plot at extremely low rates of loading. The static fatigue limit on this type of plot is the strength below which there is no effect of loading
Regional Variation of Bone Tissue Properties at the Human Mandibular Condyle
Kim, Do-Gyoon; Jeong, Yong-Hoon; Kosel, Erin; Agnew, Amanda M.; McComb, David W.; Bodnyk, Kyle; Hart, Richard T.; Kim, Min Kyung; Han, Sang Yeun; Johnston, William M.
2015-01-01
The temporomandibular joint (TMJ) bears different types of static and dynamic loading during occlusion and mastication. As such, characteristics of mandibular condylar bone tissue play an important role in determining the mechanical stability of the TMJ under the macro-level loading. Thus, the objective of this study was to examine regional variation of the elastic, plastic, and viscoelastic mechanical properties of human mandibular condylar bone tissue using nanoindentation. Cortical and trabecular bone were dissected from mandibular condyles of human cadavers (9 males, 54 to 96 years). These specimens were scanned using microcomputed tomography to obtain bone tissue mineral distribution. Then, nanoindentation was conducted on the surface of the same specimens in hydration. Plastic hardness (H) at a peak load, viscoelastic creep (Creep/Pmax), viscosity (η), and tangent delta (tan δ) during a 30 second hold period, and elastic modulus (E) during unloading were obtained by a cycle of indentation at the same site of bone tissue. The tissue mineral and nanoindentation parameters were analyzed for the periosteal and endosteal cortex, and trabecular bone regions of the mandibular condyle. The more mineralized periosteal cortex had higher mean values of elastic modulus, plastic hardness, and viscosity but lower viscoelastic creep and tan δ than the less mineralized trabecular bone of the mandibular condyle. These characteristics of bone tissue suggest that the periosteal cortex tissue may have more effective properties to resist elastic, plastic, and viscoelastic deformation under static loading, and the trabecular bone tissue to absorb and dissipate time-dependent viscoelastic loading energy at the TMJ during static occlusion and dynamic mastication. PMID:25913634
Fatigue and creep to leak tests of proton exchange membranes using pressure-loaded blisters
NASA Astrophysics Data System (ADS)
Li, Yongqiang; Dillard, David A.; Case, Scott W.; Ellis, Michael W.; Lai, Yeh-Hung; Gittleman, Craig S.; Miller, Daniel P.
In this study, three commercially available proton exchange membranes (PEMs) are biaxially tested using pressure-loaded blisters to characterize their resistance to gas leakage under either static (creep) or cyclic fatigue loading. The pressurizing medium, air, is directly used for leak detection. These tests are believed to be more relevant to fuel cell applications than quasi-static uniaxial tensile-to-rupture tests because of the use of biaxial cyclic and sustained loading and the use of gas leakage as the failure criterion. They also have advantages over relative humidity cycling test, in which a bare PEM or catalyst coated membrane is clamped with gas diffusion media and flow field plates and subjected to cyclic changes in relative humidity, because of the flexibility in allowing controlled mechanical loading and accelerated testing. Nafion ® NRE-211 membranes are tested at three different temperatures and the time-temperature superposition principle is used to construct stress-lifetime master curve. Tested at 90 °C, 2%RH extruded Ion Power ® N111-IP membranes have a longer lifetime than Gore™-Select ® 57 and Nafion ® NRE-211 membranes.
NASALife-Component Fatigue and Creep Life Prediction Program and Illustrative Examples
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Mital, Subodh K.; Gyekenyesi, John Z.
2005-01-01
NASALife is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although, the primary focus was for CMC components the underlying methodologies are equally applicable to other material systems as well. The program references data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method. Lastly, damage due to cyclic loading (Miner s rule) and creep are combined to determine the total damage per mission and the number of missions the component can survive before failure are calculated. Illustration of code usage is provided through example problem of a CMC turbine stator vane made of melt-infiltrated, silicon carbide fiber-reinforced, silicon carbide matrix composite (MI SiC/SiC)
Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.
Gao, Li-Lan; Wei, Chao-Lei; Zhang, Chun-Qiu; Gao, Hong; Yang, Nan; Dong, Li-Min
2017-08-01
The quasi-static and ratcheting properties of trabecular bone were investigated by experiments and theoretical predictions. The creep tests with different stress levels were completed and it is found that both the creep strain and creep compliance increase rapidly at first and then increase slowly as the creep time goes by. With increase of compressive stress the creep strain increases and the creep compliance decreases. The uniaxial compressive tests show that the applied stress rate makes remarkable influence on the compressive behaviors of trabecular bone. The Young's modulus of trabecular bone increases with increase of stress rate. The stress-strain hysteresis loops of trabecular bone under cyclic load change from sparse to dense with increase of number of cycles, which agrees with the change trend of ratcheting strain. The ratcheting strain rate rapidly decreases at first, and then exhibits a relatively stable and small value after 50cycles. Both the ratcheting strain and ratcheting strain rate increase with increase of stress amplitude or with decrease of stress rate. The creep model and the nonlinear viscoelastic constitutive model of trabecular bone were proposed and used to predict its creep property and rate-dependent compressive property. The results show that there are good agreements between the experimental data and predictions. Copyright © 2017 Elsevier B.V. All rights reserved.
Creep rupture behavior of unidirectional advanced composites
NASA Technical Reports Server (NTRS)
Yeow, Y. T.
1980-01-01
A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.
The influence of exogenous cross-linking and compressive creep loading on intradiscal pressure.
Chuang, Shih-Youeng; Lin, Leou-Chyr; Hedman, Thomas P
2010-10-01
This study involves a biomechanical evaluation of a prospective injectable treatment for degenerative discs. The high osmolarity of the non-degenerated nucleus pulposus attracts water contributing to the hydrostatic behavior of the tissue. This intradiscal pressure is known to drop as fluid is exuded from the matrix due to compressive loading. The objective of this study was to compare the changes in intradiscal pressure in control and genipin cross-linked intervertebral discs. Thirty bovine lumbar motion segments were randomly divided into a phosphate-buffered saline control group and a 0.33% genipin group and soaked at room temperature for 2 days. A needle pressure sensor was held in the center of the disc while short-term and static creep compressive loads were applied. The control group demonstrated a 25% higher average intradiscal pressure compared to genipin-treated discs under 750 N compressive load (p=0.029). Depressurization during static compressive creep was 56% higher in the control than in the genipin group (p=0.014). These results suggest cross-linking induced changes in the poroelastic properties of the involved tissues affected the mechanics of compressive load support in the disc with lower levels of nucleus pressure, a corresponding decrease in the elastic expansion of the annulus, and an increased axial compressive loading of the inner and outer annulus tissues. It is possible that concurrent changes in hydraulic permeability and proteoglycan retention known to be associated with genipin cross-linking were also contributors to poroelastic changes. Reduction of peak pressures and moderation of pressure fluctuations could be beneficial relative to discogenic pain.
Analysis of shell type structures subjected to time dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Carlson, R. L.; Riff, R.
1985-01-01
A general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic or static thermomechanical loads is considered. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling and ratchetting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model.
Development of superconducting magnetic bearing using superconducting coil and bulk superconductor
NASA Astrophysics Data System (ADS)
Seino, H.; Nagashima, K.; Arai, Y.
2008-02-01
The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.
Fatigue behaviour analysis for the durability prequalification of strengthening mortars
NASA Astrophysics Data System (ADS)
Bocca, P.; Grazzini, A.; Masera, D.
2011-07-01
An innovative laboratory procedure used as a preliminary design stage for the pre-qualification of strengthening mortars applied to historical masonry buildings is described. In the analysis of the behaviour of masonry structures and their constituent materials, increasing importance has been assumed by the study of the long-term evolution of deformation and mechanical characteristics, which may be affected by both loading and environmental conditions. Through static and fatigue tests on mixed specimens historical brick-reinforced mortar it has been possible to investigate the durability of strengthening materials, in order to select, from a range of alternatives, the most suitable for the historical masonry. Cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of the historical brick-strengthening mortar system under static long-time loading. This methodology has proved useful in avoiding the errors associated with materials that are not mechanically compatible and guarantees the durability of strengthening work. The experimental procedure has been used effectively in the biggest restoration building site in Europe, the Royal Palace of Venaria, and it is in progress of carrying out at the Special Natural Reserve of the Sacro Monte di Varallo, in Piedmont (Italy).
Effects of radiation and creep on viscoelastic damping materials
NASA Astrophysics Data System (ADS)
Henderson, John P.; Lewis, Tom M.; Murrell, Fred H.; Mangra, Danny
1995-05-01
The Advanced Photon Source (APS), under construction at Argonne National Laboratory (ANL), requires precise alignment of several large magnets. Submicron vibratory displacements of the magnets can degrade the performance of this important facility. Viscoelastic materials (VEM) have been shown to be effective in the control of the vibration of these magnets. Damping pads, placed under the magnet support structures in the APS storage ring, use thin layers of VEM. These soft VEM layers are subject to both high-energy radiation environment and continuous through-the-thickness compressive loads. Material experiments were conducted to answer concerns over the long term effects of the radiation environment and creep in the viscoelastic damping layers. The effects of exposure to radiation as high as 108 rad on the complex modulus were measured. Through-the-thickness creep displacements of VEM thin layers subjected to static loads of 50 psi were measured. Creep tests were conducted at elevated temperatures. Time-temperature equivalence principles were used to project creep displacements at room temperatures over several years. These damping material measurements should be of interest to vibration control engineers working with a variety of applications of fields ranging from aerospace to industrial machinery.
Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Riff, R.
1987-01-01
A general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic, or static thermomechanical loads are developed. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling and ratcheting. Thus, geometric as well as material type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution procedures.
Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Carlson, R. L.; Riff, R.
1987-01-01
A general mathematical model and solution methodologies are being developed for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic, or static thermomechanical loads. Among the system responses, which were associated with these load conditions, were thermal buckling, creep buckling, and ratcheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution process.
NASA Astrophysics Data System (ADS)
Leksovskii, A. M.; Baskin, B. L.; Yakushev, P. N.
2015-12-01
The damaging kinetics of a composite system subjected to static loading, which simulates an inhomogeneous body with microductility, and of D16T-B(43%) composite simulating a quasi-brittle solid is analyzed with the acoustic emission method. By using laser interferometry, it is shown on a model sample that mesocracking may cause a short-term change in the plastic strain rate, which two or more orders of magnitude exceeds the change in the creep rate during the usual supramolecular structure reconfiguration. Whether the object will remain functional or acquire damage of the next scale after being subjected to such local "impact" loading depends on the ability of its immediate environment to absorb released energy.
Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Riff, R.
1988-01-01
This research is performed to develop a general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic or static thermomechanical loads. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling, and ratcheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution procedures.
Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, G. J.
1989-01-01
The objective is to develop a general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic, or static thermomechanical loads. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling, and racheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution procedures.
Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Riff, R.
1988-01-01
The objective of this research is to develop a general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic or static thermomechanical loads. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling and racheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution procedures.
NASA Astrophysics Data System (ADS)
Hagin, Paul N.
Laboratory experiments on dry, unconsolidated sands from the Wilmington field, CA, reveal significant viscous creep strain under a variety of loading conditions. In hydrostatic compression tests between 10 and 50 MPa of pressure, the creep strain exceeds the magnitude of the instantaneous strain and follows a power law function of time. Interestingly, the viscous effects only appear when loading a sample beyond its preconsolidation pressure. Cyclic loading tests (at quasi-static frequencies of 10-6 to 10 -2 Hz) show that the bulk modulus increases by a factor of two with increasing frequency while attenuation remains constant. I attempt to fit these observations using three classes of models: linear viscoelastic, viscoplastic, and rate-and-state friction models. For the linear viscoelastic modeling, I investigated two types of models; spring-dashpot (exponential) and power law models. I find that a combined power law-Maxwell solid creep model adequately fits all of the data. Extrapolating the power law-Maxwell creep model out to 30 years (to simulate the lifetime of a reservoir) predicts that the static bulk modulus is 25% of the dynamic modulus, in good agreement with field observations. Laboratory studies also reveal that a large portion of the deformation is permanent, suggesting that an elastic-plastic model is appropriate. However, because the viscous component of deformation is significant, an elastic-viscoplastic model is necessary. An appropriate model for unconsolidated sands is developed by incorporating Perzyna (power law) viscoplasticity theory into the modified Cambridge clay cap model. Hydrostatic compression tests conducted as a function of volumetric strain rate produced values for the required model parameters. As a result, by using an end cap model combined with power law viscoplasticity theory, changes in porosity in both the elastic and viscoplastic regimes can be predicted as a function of both stress path and strain rate. To test whether rate-and-state friction laws can be used to model creep strain, I expand the rate-and-state formulation to include deformation under hydrostatic stress boundary conditions. Results show that the expanded rate-and-state formulation successfully describes the creep strain of unconsolidated sand. Finally, I show that the viscoplastic end cap and rate-and-state models are mathematically similar.
Changes of lumbar posture and tissue loading during static trunk bending.
Alessa, Faisal; Ning, Xiaopeng
2018-02-01
Static trunk bending is an occupational risk factor for lower back pain (LBP). When assessing relative short duration trunk bending tasks, existing studies mostly assumed unchanged spine biomechanical responses during task performance. The purpose of the current study was to assess the biomechanical changes of lumbar spine during the performance of relatively short duration, sustained trunk bending tasks. Fifteen participants performed 40-s static trunk bending tasks in two different trunk angles (30° or 60°) with two different hand load levels (0 or 6.8 kg). Results of the current study revealed significantly increased lumbar flexion and lumbar passive moment during the 40 s of trunk bending. Significantly reduced lumbar and abdominal muscle activities were also observed in most conditions. These findings suggest that, during the performance of short duration, static trunk bending tasks, a shift of loading from lumbar active tissues to passive tissues occurs naturally. This mechanism is beneficial in reducing the accumulation of lumbar muscle fatigue; however, lumbar passive tissue creep could be introduced due to prolonged or repetitive exposure. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jamison, David, IV
Low back pain is a large and costly problem in the United States. Several working populations, such as miners, construction workers, forklift operators, and military personnel, have an increased risk and prevalence of low back pain compared to the general population. This is due to exposure to repeated, transient impact shocks, particularly while operating vehicles or other machinery. These shocks typically do not cause acute injury, but rather lead to pain and injury over time. The major focus in low back pain is often the intervertebral disc, due to its role as the major primary load-bearing component along the spinal column. The formation of a reliable standard for human lumbar disc exposure to repeated transient shock could potentially reduce injury risk for these working populations. The objective of this project, therefore, is to characterize the mechanical response of the lumbar intervertebral disc subjected to sub-traumatic impact loading conditions using both cadaveric and computational models, and to investigate the possible implications of this type of loading environment for low back pain. Axial, compressive impact loading events on Naval high speed boats were simulated in the laboratory and applied to human cadaveric specimen. Disc stiffness was higher and hysteresis was lower than quasi-static loading conditions. This indicates a shift in mechanical response when the disc is under impact loads and this behavior could be contributing to long-term back pain. Interstitial fluid loss and disc height changes were shown to affect disc impact mechanics in a creep study. Neutral zone increased, while energy dissipation and low-strain region stiffness decreased. This suggests that the disc has greater clinical instability during impact loading with progressive creep and fluid loss, indicating that time of day should be considered for working populations subjected to impact loads. A finite element model was developed and validated against cadaver specimen subjected to impacts in the laboratory. Analysis showed greater total von Mises stress and pore pressure in the components of the disc under transient shocks compared to static or quasi-static loading. These findings support the idea that impact shocks cause a change in mechanical response and are potentially damaging to the disc in the long term.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brochard, J.; Charras, T.; Ghoudi, M.
Modifications to a computer code for ductile fracture assessment of piping systems with postulated circumferential through-wall cracks under static or dynamic loading are very briefly described. The modifications extend the capabilities of the CASTEM2000 code to the determination of fracture parameters under creep conditions. The main advantage of the approach is that thermal loads can be evaluated as secondary stresses. The code is applicable to piping systems for which crack propagation predictions differ significantly depending on whether thermal stresses are considered as primary or secondary stresses.
Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures
NASA Technical Reports Server (NTRS)
Zimmerman, Richard S.; Adams, Donald F.
1989-01-01
Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber; Nippon Carbon, Ltd., (Dow Corning) nicalon NLM-102 silicon carbide fiber; and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 C to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.
Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures
NASA Technical Reports Server (NTRS)
Zimmerman, Richard S.; Adams, Donald F.
1988-01-01
Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber, Nippon Carbon, Ltd., (Dow Corning) Nicalon NLM-102 silicon carbide fiber, and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.
Halonen, K S; Mononen, M E; Jurvelin, J S; Töyräs, J; Salo, J; Korhonen, R K
2014-07-18
Novel conical beam CT-scanners offer high resolution imaging of knee structures with i.a. contrast media, even under weight bearing. With this new technology, we aimed to determine cartilage strains and meniscal movement in a human knee at 0, 1, 5, and 30 min of standing and compare them to the subject-specific 3D finite element (FE) model. The FE model of the volunteer׳s knee, based on the geometry obtained from magnetic resonance images, was created to simulate the creep. The effects of collagen fibril network stiffness, nonfibrillar matrix modulus, permeability and fluid flow boundary conditions on the creep response in cartilage were investigated. In the experiment, 80% of the maximum strain in cartilage developed immediately, after which the cartilage continued to deform slowly until the 30 min time point. Cartilage strains and meniscus movement obtained from the FE model matched adequately with the experimentally measured values. Reducing the fibril network stiffness increased the mean strains substantially, while the creep rate was primarily influenced by an increase in the nonfibrillar matrix modulus. Changing the initial permeability and preventing fluid flow through noncontacting surfaces had a negligible effect on cartilage strains. The present results improve understanding of the mechanisms controlling articular cartilage strains and meniscal movements in a knee joint under physiological static loading. Ultimately a validated model could be used as a noninvasive diagnostic tool to locate cartilage areas at risk for degeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Skarbek, R. M.; Savage, H. M.; Spiegelman, M. W.; Kelemen, P. B.; Yancopoulos, D.
2017-12-01
Deformation and cracking caused by reaction-driven volume increase is an important process in many geological settings, however the conditions controlling these processes are poorly understood. The interaction of rocks with reactive fluids can change permeability and reactive surface area, leading to a large variety of feedbacks. Gypsum is an ideal material to study these processes. It forms rapidly at room temperature via bassanite hydration, and is commonly used as an analogue for rocks in high-temperature, high-pressure conditions. We conducted uniaxial strain experiments to study the effects of applied axial load on deformation and fluid flow during the formation of gypsum from bassanite. While hydration of bassanite to gypsum involves a solid volume increase, gypsum exhibits significant creep compaction when in contact with water. These two volume changing processes occur simultaneously during fluid flow through bassanite. We cold-pressed bassanite powder to form cylinders 2.5 cm in height and 1.2 cm in diameter. Samples were compressed with a static axial load of 0.01 to 4 MPa. Water infiltrated initially unsaturated samples through the bottom face and the height of the samples was recorded as a measure of the total volume change. We also performed experiments on pure gypsum samples to constrain the amount of creep observed in tests on bassanite hydration. At axial loads < 0.15 MPa, volume increase due to the reaction dominates and samples exhibit monotonic expansion. At loads > 1 MPa, creep in the gypsum dominates and samples exhibit monotonic compaction. At intermediate loads, samples exhibit alternating phases of compaction and expansion due to the interplay of the two volume changing processes. We observed a change from net compaction to net expansion at an axial load of 0.250 MPa. We explain this behavior with a simple model that predicts the strain evolution, but does not take fluid flow into account. We also implement a 1D poro-visco-elastic model of the imbibition process that includes the reaction and gypsum creep. We use the results of these models, with models of the creep rate in gypsum, to estimate the temperature dependence of the axial load where total strain transitions from compaction to expansion. Our results have implications for the depth dependence of reaction induced volume changes in the Earth.
Intervertebral disc response to cyclic loading--an animal model.
Ekström, L; Kaigle, A; Hult, E; Holm, S; Rostedt, M; Hansson, T
1996-01-01
The viscoelastic response of a lumbar motion segment loaded in cyclic compression was studied in an in vivo porcine model (N = 7). Using surgical techniques, a miniaturized servohydraulic exciter was attached to the L2-L3 motion segment via pedicle fixation. A dynamic loading scheme was implemented, which consisted of one hour of sinusoidal vibration at 5 Hz, 50 N peak load, followed by one hour of restitution at zero load and one hour of sinusoidal vibration at 5 Hz, 100 N peak load. The force and displacement responses of the motion segment were sampled at 25 Hz. The experimental data were used for evaluating the parameters of two viscoelastic models: a standard linear solid model (three-parameter) and a linear Burger's fluid model (four-parameter). In this study, the creep behaviour under sinusoidal vibration at 5 Hz closely resembled the creep behaviour under static loading observed in previous studies. Expanding the three-parameter solid model into a four-parameter fluid model made it possible to separate out a progressive linear displacement term. This deformation was not fully recovered during restitution and is therefore an indication of a specific effect caused by the cyclic loading. High variability was observed in the parameters determined from the 50 N experimental data, particularly for the elastic modulus E1. However, at the 100 N load level, significant differences between the models were found. Both models accurately predicted the creep response under the first 800 s of 100 N loading, as displayed by mean absolute errors for the calculated deformation data from the experimental data of 1.26 and 0.97 percent for the solid and fluid models respectively. The linear Burger's fluid model, however, yielded superior predictions particularly for the initial elastic response.
Diffusional creep and creep degradation in the dispersion-strengthened alloy TD-NiCr
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.
1972-01-01
Dispersoid-free regions were observed in TD-NiCr (Ni-20Cr-2ThO2) after slow strain rate testing in air from 1145 to 1590 K. Formation of the dispersoid-free regions appears to be the result of diffusional creep. The net effect of this creep is the degradation of TD-NiCr to a duplex microstructure. Degradation is further enhanced by the formation of voids and integranular oxidation in the thoria-free regions. These regions apparently provided sites for void formation and oxide growth since the strength and oxidation resistance of Ni-20Cr is much less than Ni-20Cr-2ThO2. This localized oxidation does not appear to reduce the static load bearing capacity of TD-NiCr since long stress rupture lives were observed even with heavily oxidized microstructures. But this oxidation does significantly reduce the ductility and impact resistance of the material. Dispersoid-free bands and voids were also observed for two other dispersion strengthened alloys, TD-NiCrAl and IN-853. Thus, it appears that diffusional creep is charactertistic of dispersion-strengthened alloys and can play a major role in the creep degradation of these materials.
Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, George J.
1990-01-01
The development of a general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-like structures under dynamic and/or static thermomechanical loads is examined. In the mathematical model, geometric as well as material-type of nonlinearities are considered. Traditional as well as novel approaches are reported and detailed applications are presented in the appendices. The emphasis for the mathematical model, the related solution schemes, and the applications, is on thermal viscoelastic and viscoplastic phenomena, which can predict creep and ratchetting.
Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, G. J.
1991-01-01
This report deals with the development of a general mathematical model and solution methodology for analyzing the structural response of thin, metallic shell-like structures under dynamic and/or static thermomechanical loads. In the mathematical model, geometric as well as the material-type of nonlinearities are considered. Traditional as well as novel approaches are reported and detailed applications are presented in the appendices. The emphasis for the mathematical model, the related solution schemes, and the applications, is on thermal viscoelastic and viscoplastic phenomena, which can predict creep and ratchetting.
1980-09-25
applying the drying. When subjected to the static loading chemical and the adhesive might affect strength, test, joints did not creep after 1 week...wide by 39 percent (compare Group 2 with 1). 8-foot-long splice plate. This plate was nailed over the joint between the two plywood sheets One of the...were fixed to the floor. Roller bearings were further investigate the perimeter-bonding tech- placed beneath the loading beam and hold-downs nique, this
NASA Astrophysics Data System (ADS)
Masera, D.; Bocca, P.; Grazzini, A.
2011-07-01
In this experimental program the main goal is to monitor the damage evolution in masonry and concrete structures by Acoustic Emission (AE) signal analysis applying a well-know seismic method. For this reason the concept of the coda wave interferometry is applied to AE signal recorded during the tests. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced masonry walls under variable amplitude loading and strengthening reinforced concrete (RC) beams under monotonic static load has been carried out. In the reinforced masonry wall, cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of masonry under static long-time loading. During the tests, the evaluation of fracture growth is monitored by coda wave interferometry which represents a novel approach in structural monitoring based on AE relative change velocity of coda signal. In general, the sensitivity of coda waves has been used to estimate velocity changes in fault zones, in volcanoes, in a mining environment, and in ultrasound experiments. This method uses multiple scattered waves, which travelled through the material along numerous paths, to infer tiny temporal changes in the wave velocity. The applied method has the potential to be used as a "damage-gauge" for monitoring velocity changes as a sign of damage evolution into masonry and concrete structures.
Development of GENOA Progressive Failure Parallel Processing Software Systems
NASA Technical Reports Server (NTRS)
Abdi, Frank; Minnetyan, Levon
1999-01-01
A capability consisting of software development and experimental techniques has been developed and is described. The capability is integrated into GENOA-PFA to model polymer matrix composite (PMC) structures. The capability considers the physics and mechanics of composite materials and structure by integration of a hierarchical multilevel macro-scale (lamina, laminate, and structure) and micro scale (fiber, matrix, and interface) simulation analyses. The modeling involves (1) ply layering methodology utilizing FEM elements with through-the-thickness representation, (2) simulation of effects of material defects and conditions (e.g., voids, fiber waviness, and residual stress) on global static and cyclic fatigue strengths, (3) including material nonlinearities (by updating properties periodically) and geometrical nonlinearities (by Lagrangian updating), (4) simulating crack initiation. and growth to failure under static, cyclic, creep, and impact loads. (5) progressive fracture analysis to determine durability and damage tolerance. (6) identifying the percent contribution of various possible composite failure modes involved in critical damage events. and (7) determining sensitivities of failure modes to design parameters (e.g., fiber volume fraction, ply thickness, fiber orientation. and adhesive-bond thickness). GENOA-PFA progressive failure analysis is now ready for use to investigate the effects on structural responses to PMC material degradation from damage induced by static, cyclic (fatigue). creep, and impact loading in 2D/3D PMC structures subjected to hygrothermal environments. Its use will significantly facilitate targeting design parameter changes that will be most effective in reducing the probability of a given failure mode occurring.
NASA Technical Reports Server (NTRS)
Simitses, George J.; Carlson, Robert L.; Riff, Richard
1991-01-01
The object of the research reported herein was to develop a general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermomechanical loads. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) can be anticipated and must be considered in developing the mathematical model. The methodology is demonstrated through different problems of extension, shear, and of planar curved beams. Moreover, importance of the inclusion of large strain is clearly demonstrated, through the chosen applications.
Creep Damage Analysis of a Lattice Truss Panel Structure
NASA Astrophysics Data System (ADS)
Jiang, Wenchun; Li, Shaohua; Luo, Yun; Xu, Shugen
2017-01-01
The creep failure for a lattice truss sandwich panel structure has been predicted by finite element method (FEM). The creep damage is calculated by three kinds of stresses: as-brazed residual stress, operating thermal stress and mechanical load. The creep damage at tensile and compressive loads have been calculated and compared. The creep rate calculated by FEM, Gibson-Ashby and Hodge-Dunand models have been compared. The results show that the creep failure is located at the fillet at both tensile and creep loads. The damage rate at the fillet at tensile load is 50 times as much as that at compressive load. The lattice truss panel structure has a better creep resistance to compressive load than tensile load, because the creep and stress triaxiality at the fillet has been decreased at compressive load. The maximum creep strain at the fillet and the equivalent creep strain of the panel structure increase with the increase of applied load. Compared with Gibson-Ashby model and Hodge-Dunand models, the modified Gibson-Ashby model has a good prediction result compared with FEM. However, a more accurate model considering the size effect of the structure still needs to be developed.
Vectran Fiber Time-Dependent Behavior and Additional Static Loading Properties
NASA Technical Reports Server (NTRS)
Fette, Russell B.; Sovinski, Marjorie F.
2004-01-01
Vectran HS appears from literature and testing to date to be an ideal upgrade from Kevlar braided cords for many long-term, static-loading applications such as tie-downs on solar arrays. Vectran is a liquid crystalline polymer and exhibits excellent tensile properties. The material has been touted as a zero creep product. Testing discussed in this report does not support this statement, though the creep is on the order of four times slower than with similar Kevlar 49 products. Previous work with Kevlar and new analysis of Vectran testing has led to a simple predictive model for Vectran at ambient conditions. The mean coefficient of thermal expansion (negative in this case) is similar to Kevlar 49, but is not linear. A positive transition in the curve occurs near 100 C. Out-gassing tests show that the material performs well within parameters for most space flight applications. Vectran also offers increased abrasion resistance, minimal moisture regain, and similar UV degradation. The effects of material construction appear to have a dramatic effect in stress relaxation for braided Vectran. To achieve the improved relaxation rate, upgrades must also examine alternate construction or preconditioning methods. This report recommends Vectran HS as a greatly improved replacement material for applications where time-dependent relaxation is a major factor.
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Carlson, R. L.; Riff, R.
1985-01-01
The objective of the present research is to develop a general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermomechanical loads. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) can be anticipated and must be considered in developing the mathematical model. A complete, true ab-initio rate theory of kinematics and kinetics for continuum and curved thin structures, without any restriction on the magnitude of the strains or the deformations, was formulated. The time dependence and large strain behavior are incorporated through the introduction of the time rates of metric and curvature in two coordinate systems: fixed (spatial) and convected (material). The relations between the time derivative and the covariant derivative (gradient) were developed for curved space and motion, so the velocity components supply the connection between the equations of motion and the time rates of change of the metric and curvature tensors.
NASA Technical Reports Server (NTRS)
Berkovits, Avraham
1961-01-01
Three existing hypotheses are formulated mathematically to estimate tensile creep strain under varied loads and constant temperature from creep data obtained under constant load and constant temperature. hypotheses investigated include the time-hardening, strain-hardening, and life-fraction rules. Predicted creep behavior is compared with data obtained from tensile creep tests of 2024-T3 aluminum-alloy sheet at 400 F under cyclic-load conditions. creep strain under varied loads is presented on the basis of an equivalent stress, derived from the life-fraction rule, which reduces the varied-load case to a constant-load problem. Creep strain in the region of interest for structural design and rupture times, determined from the hypotheses investigated, are in fair agreement with data in most cases, although calculated values of creep strain are generally greater than the experimental values because creep recovery is neglected in the calculations.
Static Fatigue of a Siliconized Silicon Carbide
1987-03-01
flexitral stress rupture and stepped temperature stress rupture (STSR) testing were performed to assess the static fatigue and creep resistances. Isothermal... stress rupture experiments were performed at 1200 0C in air for com- parison to previous results. - 10 STSR experiments 15 were under deadweight...temperature and stress levels that static fatigue and creep processes are active. The applied stresses were computed on the basis of the elastic
A biomechanical comparison of single and double-row fixation in arthroscopic rotator cuff repair.
Smith, Christopher D; Alexander, Susan; Hill, Adam M; Huijsmans, Pol E; Bull, Anthony M J; Amis, Andrew A; De Beer, Joe F; Wallace, Andrew L
2006-11-01
The optimal method for arthroscopic rotator cuff repair is not yet known. The hypothesis of the present study was that a double-row repair would demonstrate superior static and cyclic mechanical behavior when compared with a single-row repair. The specific aims were to measure gap formation at the bone-tendon interface under static creep loading and the ultimate strength and mode of failure of both methods of repair under cyclic loading. A standardized tear of the supraspinatus tendon was created in sixteen fresh cadaveric shoulders. Arthroscopic rotator cuff repairs were performed with use of either a double-row technique (eight specimens) or a single-row technique (eight specimens) with nonabsorbable sutures that were double-loaded on a titanium suture anchor. The repairs were loaded statically for one hour, and the gap formation was measured. Cyclic loading to failure was then performed. Gap formation during static loading was significantly greater in the single-row group than in the double-row group (mean and standard deviation, 5.0 +/- 1.2 mm compared with 3.8 +/- 1.4 mm; p < 0.05). Under cyclic loading, the double-row repairs failed at a mean of 320 +/- 96.9 N whereas the single-row repairs failed at a mean of 224 +/- 147.9 N (p = 0.058). Three single-row repairs and three double-row repairs failed as a result of suture cut-through. Four single-row repairs and one double-row repair failed as a result of anchor or suture failure. The remaining five repairs did not fail, and a midsubstance tear of the tendon occurred. Although more technically demanding, the double-row technique demonstrates superior resistance to gap formation under static loading as compared with the single-row technique. A double-row reconstruction of the supraspinatus tendon insertion may provide a more reliable construct than a single-row repair and could be used as an alternative to open reconstruction for the treatment of isolated tears.
Kim, Kyungmok; Ko, Joon Soo
2016-01-01
This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating. PMID:28773873
Kim, Kyungmok; Ko, Joon Soo
2016-09-03
This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating.
Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading.
Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong
2016-09-06
The loss of glycosaminoglycan (GAG) content is a major biochemical change during intervertebral disc (IVD) degeneration. Abnormal mechanical loading is one of the major factors causing disc degeneration. In this study, a multiscale mathematical model was developed to quantify the effect of mechanical loading on GAG synthesis. This model was based on a recently developed cell volume dependent GAG synthesis theory that predicts the variation of GAG synthesis rate of a cell under the influence of mechanical stimuli, and the biphasic theory that describes the deformation of IVD under mechanical loading. The GAG synthesis (at the cell level) was coupled with the mechanical loading (at the tissue level) via a cell-matrix unit approach which established a relationship between the variation of cell dilatation and the local tissue dilatation. This multiscale mathematical model was used to predict the effect of static load (creep load) on GAG synthesis in bovine tail discs. The predicted results are in the range of experimental results. This model was also used to investigate the effect of static (0.2MPa) and diurnal loads (0.1/0.3MPa and 0.15/0.25MPa in 12/12 hours shift with an average of 0.2MPa over a cycle) on GAG synthesis. It was found that static load and diurnal loads have different effects on GAG synthesis in a diurnal cycle, and the diurnal load effects depend on the amplitude of the load. The model is important to understand the effect of mechanical loading at the tissue level on GAG synthesis at the cellular level, as well as to optimize the mechanical loading in growing engineered tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.
Galetz, Mathias Christian; Glatzel, Uwe
2010-05-01
The deformation behavior of ultrahigh molecular polyethylene (UHMWPE) is studied in the temperature range of 23-80 degrees C. Samples are examined in quasi-static compression, tensile and creep tests to determine the accelerated deformation of UHMWPE at elevated temperatures. The deformation mechanisms under compression load can be described by one strain rate and temperature dependent Eyring process. The activation energy and volume of that process do not change between 23 degrees C and 50 degrees C. This suggests that the deformation mechanism under compression remains stable within this temperature range. Tribological tests are conducted to transfer this activated energy approach to the deformation behavior under loading typical for artificial knee joints. While this approach does not cover the wear mechanisms close to the surface, testing at higher temperatures is shown to have a significant potential to reduce the testing time for lifetime predictions in terms of the macroscopic creep and deformation behavior of artificial joints. Copyright 2010. Published by Elsevier Ltd.
Inhibiting Effect of Additives on Pressure Solution of Calcite
NASA Astrophysics Data System (ADS)
Traskine, V.; Skvortsova, Z.; Badun, G.; Chernysheva, M.; Simonov, Ya.; Gazizullin, I.
2018-05-01
The task of protection of cultural heritage requires a better understanding of combined effects of mechanical and chemical factors involved in environmental deterioration of monuments. The present paper deals with extending some known physicochemical methods proposed for inhibiting the decay of unstressed materials to their study during water-assisted deformation. The tests have been carried out on natural limestone samples and calcite powders in CaCO3 saturated aqueous solutions under static loads causing measurable pressure solution creep. In the solutions containing 1-hydroxyethylidene-1,1-diphosphonic acid, nitrilotriacetic acid, or ethylenediaminetetraacetic acid, the creep rate decreases considerably with increasing concentration of additives. The extent of creep deceleration has been found to be proportional to the independently estimated calcite surface area occupied by adsorbed species. This fact enables us to discriminate the adsorption-induced effect from other variables controlling the pressure solution rate and may be used in screening of compounds able to minimize the environmental impact on marble and limestone objects undergoing mechanical stresses.
Creep of plain weave polymer matrix composites
NASA Astrophysics Data System (ADS)
Gupta, Abhishek
Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the composites, was experimentally evaluated for time periods ranging from 1--120 hours under both loading conditions. The composite showed increase in creep with increase in temperature and stress. Creep of composite increased with increase in angle of loading, from 1% under on-axis loading to 31% under off-axis loading, within the tested time window. The experimental creep data for plain weave composites were superposed using TTSP (Time Temperature Superposition Principle) to obtain a master curve of experimental data extending to several years and was compared with model predictions to validate the model. The experimental and model results were found in good agreement within an error range of +/-1-3% under both loading conditions. A parametric study was also conducted to understand the effect of microstructure of plain weave composites on its on-axis and off-axis creep. Generation of knowledge in this area is also "first". Additionally, this thesis generated knowledge on time-dependent damage m woven composites and its effect on creep and tensile properties and their prediction.
NASA Technical Reports Server (NTRS)
Coguill, Scott L.; Adams, Donald F.; Zimmerman, Richard S.
1989-01-01
Six types of uncoated ceramic fibers were static tensile and tensile creep tested at various elevated temperatures. Three types of boron nitride coated fibers were also tested. Room temperature static tensile tests were initially performed on all fibers, at gage lengths of 1, 2, and 4 inches, to determine the magnitude of end effects from the gripping system used. Tests at one elevated temperature, at gage lengths of 8 and 10 inches, were also conducted, to determine end effects at elevated temperatures. Fiber cross sectional shapes and areas were determined using scanning electron microscopy. Creep testing was typically performed for 4 hours, in an air atmosphere.
Creep deformation at crack tips in elastic-viscoplastic solids
NASA Astrophysics Data System (ADS)
Riedel, H.
1981-02-01
THE EVALUATION of crack growth tests under creep conditions must be based on the stress analysis of a cracked body taking into account elastic, plastic and creep deformation. In addition to the well-known analysis of a cracked body creeping in secondary (steady-state) creep, the stress field at the tip of a stationary crack is calculated for primary (strain-hardening) or tertiary (strain-softening) creep of the whole specimen. For the special hardening creep-law considered, a path-independent integral C∗h, can be defined which correlates the near-tip field to the applied load. It is also shown how, after sudden load application, creep strains develop in the initially elastic or, for a higher load level, plastic body. Characteristic times are derived to distinguish between short times when the creep-zones, in which creep strains are concentrated, are still small, and long times when the whole specimen creeps extensively in primary and finally in secondary and tertiary creep. Comparing the creep-zone sizes with the specimen dimensions or comparing the characteristic times with the test duration, one can decide which deformation mechanism prevails in the bulk of the specimen and which load parameter enters into the near-tip stress field and determines crack growth behavior. The governing load parameter is the stress intensity factor K 1 if the bulk of the specimen is predominantly elastic and it is the J-integral in a fully-plastic situation when large creep strains are still confined to a small zone. The C∗h-integral applies if the bulk of the specimen deforms in primary or tertiary creep, and C∗ is the relevant load parameter for predominantly secondary creep of the whole specimen.
A finite element program for postbuckling calculations (PSTBKL)
NASA Technical Reports Server (NTRS)
Simitses, G. T.; Carlson, R. L.; Riff, R.
1991-01-01
The object of the research reported herein was to develop a general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermochemical loads. This report describes the computer program resulting from the research. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) have been anticipated and are considered in developing the mathematical model. The methodology is demonstrated through different problems of extension, shear, and of planar curved beams. Moreover, importance of the inclusion of large strains is clearly demonstrated, through the chosen applications.
Creepy landscapes : river sediment entrainment develops granular flow rheology on creeping bed.
NASA Astrophysics Data System (ADS)
Prancevic, J.; Chatanantavet, P.; Ortiz, C. P.; Houssais, M.; Durian, D. J.; Jerolmack, D. J.
2015-12-01
To predict rates of river sediment transport, one must first address the zeroth-order question: when does sediment move? The concept and determination of the critical fluid shear stress remains hazy, as observing particle motion and determining sediment flux becomes increasingly hard in its vicinity. To tackle this problem, we designed a novel annular flume experiment - reproducing an infinite river channel - where the refractive index of particles and the fluid are matched. The fluid is dyed with a fluorescent powder and a green laser sheet illuminates the fluid only, allowing us to observe particle displacements in a vertical plane. Experiments are designed to highlight the basic granular interactions of sediment transport while suppressing the complicating effects of turbulence; accordingly, particles are uniform spheres and Reynolds numbers are of order 1. We have performed sediment transport measurements close to the onset of particle motion, at steady state, and over long enough time to record averaged rheological behavior of particles. We find that particles entrained by a fluid exhibit successively from top to bottom: a suspension regime, a dense granular flow regime, and - instead of a static bed - a creeping regime. Data from experiments at a range of fluid stresses can be collapsed onto one universal rheologic curve that indicates the effective friction is a monotonic function of a dimensionless number called the viscous number. These data are in remarkable agreement with the local rheology model proposed by Boyer et al., which means that dense granular flows, suspensions and bed-load transport are unified under a common frictional flow law. Importantly, we observe slow creeping of the granular bed even in the absence of bed load, at fluid stresses that are below the apparent critical value. This last observation challenges the classical definition of the onset of sediment transport, and points to a continuous transition from quasi-static deformation to granular flow. These results provide a new perspective to connect the transport laws for soil creep, landslides/debris flows and river transport. Although our experiments are highly idealized, evidence from other studies suggest that our observations may be directly relevant to natural systems. Finally we show that our findings are robust for mixed grain sizes.
Observation of creep behavior of cellulose electro-active paper (EAPap) actuator
NASA Astrophysics Data System (ADS)
Kim, Joo-Hyung; Lee, Sang-Woo; Yun, Gyu-Young; Yang, Chulho; Kim, Heung Soo; Kim, Jaehwan
2009-03-01
Understanding of creep effects on actuating mechanisms is important to precisely figure out the behavior of material. Creep behaviors of cellulose based Electro-Active Paper (EAPap) were studied under different constant loading conditions. We found the structural modification of microfibrils in EAPap after creep test. Structural differences of as-prepared and after creep tested samples were compared by SEM measurements. From the measured creep behaviors by different loading conditions, two different regions of induced strain and current were clearly observed as the measurement time increased. It is consider that local defects may occur and becomes micro-dimple or micro-crack formations in lower load cases as localized deformation proceeds, while the shrinkage of diameter of elongated fibers was observed only at the high level of loading. Therefore, cellulose nanofibers may play a role to be against the creep load and prevent the localized structural deformations. The results provide useful creep behavior and mechanism to understand the mechanical behavior of thin visco-elastic EAPap actuator.
Creep of trabecular bone from the human proximal tibia
Novitskaya, Ekaterina; Zin, Carolyn; Chang, Neil; Cory, Esther; Chen, Peter; D'Lima, Darryl; Sah, Robert L.; McKittrick, Joanna
2014-01-01
Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for two hours and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37°C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. PMID:24857486
Bartel, Thomas W.; Yaniv, Simone L.
1997-01-01
The 60 min creep data from National Type Evaluation Procedure (NTEP) tests performed at the National Institute of Standards and Technology (NIST) on 65 load cells have been analyzed in order to compare their creep and creep recovery responses, and to compare the 60 min creep with creep over shorter time periods. To facilitate this comparison the data were fitted to a multiple-term exponential equation, which adequately describes the creep and creep recovery responses of load cells. The use of such a curve fit reduces the effect of the random error in the indicator readings on the calculated values of the load cell creep. Examination of the fitted curves show that the creep recovery responses, after inversion by a change in sign, are generally similar in shape to the creep response, but smaller in magnitude. The average ratio of the absolute value of the maximum creep recovery to the maximum creep is 0.86; however, no reliable correlation between creep and creep recovery can be drawn from the data. The fitted curves were also used to compare the 60 min creep of the NTEP analysis with the 30 min creep and other parameters calculated according to the Organization Internationale de Métrologie Légale (OIML) R 60 analysis. The average ratio of the 30 min creep value to the 60 min value is 0.84. The OIML class C creep tolerance is less than 0.5 of the NTEP tolerance for classes III and III L. PMID:27805151
Creep Behavior of Passive Bovine Extraocular Muscle
Yoo, Lawrence; Kim, Hansang; Shin, Andrew; Gupta, Vijay; Demer, Joseph L.
2011-01-01
This paper characterized bovine extraocular muscles (EOMs) using creep, which represents long-term stretching induced by a constant force. After preliminary optimization of testing conditions, 20 fresh EOM samples were subjected to four different loading rates of 1.67, 3.33, 8.33, and 16.67%/s, after which creep was observed for 1,500 s. A published quasilinear viscoelastic (QLV) relaxation function was transformed to a creep function that was compared with data. Repeatable creep was observed for each loading rate and was similar among all six anatomical EOMs. The mean creep coefficient after 1,500 seconds for a wide range of initial loading rates was at 1.37 ± 0.03 (standard deviation, SD). The creep function derived from the relaxation-based QLV model agreed with observed creep to within 2.7% following 16.67%/s ramp loading. Measured creep agrees closely with a derived QLV model of EOM relaxation, validating a previous QLV model for characterization of EOM biomechanics. PMID:22131809
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Kruch, S.
1991-01-01
Three multiaxial isothermal continuum damage mechanics models for creep, fatigue, and creep/fatigue interaction of a unidirectional metal matrix composite volume element are presented, only one of which will be discussed in depth. Each model is phenomenological and stress based, with varying degrees of complexity to accurately predict the initiation and propagation of intergranular and transgranular defects over a wide range of loading conditions. The development of these models is founded on the definition of an initially transversely isotropic fatigue limit surface, static fracture surface, normalized stress amplitude function and isochronous creep damage failure surface, from which both fatigue and creep damage evolutionary laws can be obtained. The anisotropy of each model is defined through physically meaningful invariants reflecting the local stress and material orientation. All three transversely isotropic models have been shown, when taken to their isotropic limit, to directly simplify to previously developed and validated creep and fatigue continuum damage theories. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation when attempting to characterize a large class of composite materials, and (2) its ability to predict anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Additionally, the potential for the inclusion of various micromechanical effects (e.g., fiber/matrix bond strength, fiber volume fraction, etc.), into the phenomenological anisotropic parameters is noted, as well as a detailed discussion regarding the necessary exploratory and characterization experiments needed to utilize the featured damage theories.
Time- and temperature-dependent failures of a bonded joint
NASA Astrophysics Data System (ADS)
Sihn, Sangwook
This dissertation summarizes my study of time- and temperature-dependent behavior of a tubular lap bonded joint to provide a design methodology for windmill blade structures. The bonded joint is between a cast-iron rod and a GFRP composite pipe. The adhesive material is an epoxy containing chopped glass fibers. We proposed a new fabrication method to make concentric and void-less specimens of the tubular joint with a thick adhesive bondline to stimulate the root bond of a blade. The thick bondline facilitates the joint assembly of actual blades. For a better understanding of the behavior of the bonded joint, we studied viscoelastic behavior of the adhesive materials by measuring creep compliance at several temperatures during loading period. We observed that the creep compliance depends highly on the period of loading and the temperature. We applied time-temperature equivalence to the creep compliance of the adhesive material to obtain time-temperature shift factors. We also performed constant-rate of monotonically increased uniaxial tensile tests to measure static strength of the tubular lap joint at several temperatures and different strain-rates. We observed two failure modes from load-deflection curves and failed specimens. One is the brittle mode, which was caused by weakness of the interfacial strength occurring at low temperature and short period of loading. The other is the ductile mode, which was caused by weakness of the adhesive material at high temperature and long period of loading. Transition from the brittle to the ductile mode appeared as the temperature or the loading period increased. We also performed tests under uniaxial tensile-tensile cyclic loadings to measure fatigue strength of the bonded joint at several temperatures, frequencies and stress ratios. The fatigue data are analyzed statistically by applying the residual strength degradation model to calculate statistical distribution of the fatigue life. Combining the time-temperature equivalence and the residual strength degradation model enables us to estimate the fatigue life of the bonded joint at different load levels, frequencies and temperatures with a certain probability. A numerical example shows how to apply the life estimation method to a structure subjected to a random load history by rainflow cycle counting.
Study on the causes and methods of influencing concrete deflection
NASA Astrophysics Data System (ADS)
Zhou, Ying; Zhou, Xiang; Tang, Jinyu
2017-09-01
Under the long-term effect of static load on reinforced concrete beam, the stiffness decreases and the deformation increases with time. Therefore, the calculation of deflection is more complicated. According to the domestic and foreign research results by experiment the flexural deflection of reinforced concrete, creep, age, the thickness of the protective layer, the relative slip, the combination of steel yielding factors of reinforced concrete deflection are summarized, analyzed the advantages and disadvantages of the traditional direct measurement of deflection, that by increasing the beam height, increasing the moment of inertia, ncrease prestressed reinforcement ratio, arching, reduce the load, and other measures to reduce the deflection of prestressed construction, improve the reliability of structure.
Creep of a Silicon Nitride Under Various Specimen/Loading Configurations
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Powers, Lynn M.; Holland, Frederic A.; Gyekenyesi, John P.; Holland, F. A. (Technical Monitor)
2000-01-01
Extensive creep testing of a hot-pressed silicon nitride (NC132) was performed at 1300 C in air using five different specimen/loading configurations, including pure tension, pure compression, four-point uniaxial flexure, ball-on-ring biaxial flexure, and ring-on-ring biaxial flexure. Nominal creep strain and its rate for a given nominal applied stress were greatest in tension, least in compression, and intermediate in uniaxial and biaxial flexure. Except for the case of compressive loading, nominal creep strain generally decreased with time, resulting in less-defined steady-state condition. Of the four different creep formulations - power-law, hyperbolic sine, step, redistribution models - the conventional power-law model still provides the most convenient and reasonable means to estimate simple, quantitative creep parameters of the material. Predictions of creep deformation for the case of multiaxial stress state (biaxial flexure) were made based on pure tension and compression creep data by using the design code CARES/Creep.
Creep Strain and Strain Rate Response of 2219 Al Alloy at High Stress Levels
NASA Technical Reports Server (NTRS)
Taminger, Karen M. B.; Wagner, John A.; Lisagor, W. Barry
1998-01-01
As a result of high localized plastic deformation experienced during proof testing in an International Space Station connecting module, a study was undertaken to determine the deformation response of a 2219-T851 roll forging. After prestraining 2219-T851 Al specimens to simulate strains observed during the proof testing, creep tests were conducted in the temperature range from ambient temperature to 107 C (225 F) at stress levels approaching the ultimate tensile strength of 2219-T851 Al. Strain-time histories and strain rate responses were examined. The strain rate response was extremely high initially, but decayed rapidly, spanning as much as five orders of magnitude during primary creep. Select specimens were subjected to incremental step loading and exhibited initial creep rates of similar magnitude for each load step. Although the creep rates decreased quickly at all loads, the creep rates dropped faster and reached lower strain rate levels for lower applied loads. The initial creep rate and creep rate decay associated with primary creep were similar for specimens with and without prestrain; however, prestraining (strain hardening) the specimens, as in the aforementioned proof test, resulted in significantly longer creep life.
NASA Technical Reports Server (NTRS)
Raj, S. V.; Noebe, R. D.
2013-01-01
This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.
Creep crack growth by grain boundary cavitation under monotonic and cyclic loading
NASA Astrophysics Data System (ADS)
Wen, Jian-Feng; Srivastava, Ankit; Benzerga, Amine; Tu, Shan-Tung; Needleman, Alan
2017-11-01
Plane strain finite deformation finite element calculations of mode I crack growth under small scale creep conditions are carried out. Attention is confined to isothermal conditions and two time histories of the applied stress intensity factor: (i) a monononic increase to a plateau value subsequently held fixed; and (ii) a cyclic time variation. The crack growth calculations are based on a micromechanics constitutive relation that couples creep deformation and damage due to grain boundary cavitation. Grain boundary cavitation, with cavity growth due to both creep and diffusion, is taken as the sole failure mechanism contributing to crack growth. The influence on the crack growth rate of loading history parameters, such as the magnitude of the applied stress intensity factor, the ratio of the applied minimum to maximum stress intensity factors, the loading rate, the hold time and the cyclic loading frequency, are explored. The crack growth rate under cyclic loading conditions is found to be greater than under monotonic creep loading with the plateau applied stress intensity factor equal to its maximum value under cyclic loading conditions. Several features of the crack growth behavior observed in creep-fatigue tests naturally emerge, for example, a Paris law type relation is obtained for cyclic loading.
The Effective Fracture Toughness of Aluminum at Rapid Heating Rates.
1987-12-01
Stress Versus Time Relation During Test Under HWdraulic (Tinius-Olsen) Loading Device 32 11. Creep Rupture Tester ( SATEC ) Drawing ...... 33 12. SEN...1B7 Machine Corp Creep Frame SATEC C C-3053-P 12,000 Load Cell MTS 661.20A 271 5500 lb .02% Load Cell Interface 1220BF 34279B 25000 lb 1.6% Extenso- MIS... SATEC creep frame. A drawing of the creep frame can be seen in Figure 11. The samples were placed in the frame and the dead weight load was applied
NASA Astrophysics Data System (ADS)
WANG, Q.
2017-12-01
Used the finite element analysis software GeoStudio to establish vibration analysis model of Qianjiangping landslide, which locates at the Three Gorges Reservoir area. In QUAKE/W module, we chosen proper Dynamic elasticity modulus and Poisson's ratio of soil layer and rock stratum. When loading, we selected the waveform data record of Three Gorge Telemetric Seismic Network as input ground motion, which includes five rupture events recorded of Lujiashan seismic station. In dynamic simulating, we mainly focused on sliding process when the earthquake date record was applied. The simulation result shows that Qianjiangping landslide wasn't not only affected by its own static force, but also experienced the dynamic process of micro fracture-creep-slip rupture-creep-slip.it provides a new approach for the early warning feasibility of rock landslide in future research.
Creep Behavior of Poly(lactic acid) Based Biocomposites
Morreale, Marco; Mistretta, Maria Chiara; Fiore, Vincenzo
2017-01-01
Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep behavior of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. Tensile creep tests were performed at different temperatures (i.e., 40 and 60 °C). The results showed that the creep behavior of the composites is strongly influenced by the temperature and the woven fabrics used. As preliminary characterization, quasi-static tensile tests and dynamic mechanical tests were carried out on the composites. Furthermore, fabrics (both flax and jute) were tested as received by means of quasi-static tests and creep tests to evaluate the influence of fabrics mechanical behavior on the mechanical response of the resulting composites. The morphological analysis of the fracture surface of the tensile samples showed the better fiber-matrix adhesion between PLA and jute fabric. PMID:28772755
Creep Behavior of Poly(lactic acid) Based Biocomposites.
Morreale, Marco; Mistretta, Maria Chiara; Fiore, Vincenzo
2017-04-08
Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep behavior of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. Tensile creep tests were performed at different temperatures (i.e., 40 and 60 °C). The results showed that the creep behavior of the composites is strongly influenced by the temperature and the woven fabrics used. As preliminary characterization, quasi-static tensile tests and dynamic mechanical tests were carried out on the composites. Furthermore, fabrics (both flax and jute) were tested as received by means of quasi-static tests and creep tests to evaluate the influence of fabrics mechanical behavior on the mechanical response of the resulting composites. The morphological analysis of the fracture surface of the tensile samples showed the better fiber-matrix adhesion between PLA and jute fabric.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tehrani, Mehran; Al-Haik, Marwan; Garmestani, Hamid
2012-01-01
In this study the effect of moderate magnetic fields on the microstructure of a structural epoxy system was investigated. The changes in the microstructure have been quantitatively investigated using wide angle x-ray diffraction (WAXD) and pole figure analysis. The mechanical properties (modulus, hardness and strain rate sensitivity parameter) of the epoxy system annealed in the magnetic field were probed with the aid of instrumented nanoindentation and the results are compared to the reference epoxy sample. To further examine the creep response of the magnetically annealed and reference samples, short 45 min duration creep tests were carried out. An equivalent tomore » the macro scale creep compliance was calculated using the aforementioned nano-creep data. Using the continuous complex compliance (CCC) analysis, the phase lag angle, tan (δ), between the displacement and applied force in an oscillatory nanoindentation test was measured for both neat and magnetically annealed systems through which the effect of low magnetic fields on the viscoelastic properties of the epoxy was invoked. The comparison of the creep strain rate sensitivity parameter , A/d(0), from short term(80 ), creep tests and the creep compliance J(t) from the long term(2700 s) creep tests with the tan(δ) suggests that former parameter is a more useful comparative creep parameter than the creep compliance. The results of this investigation reveal that under low magnetic fields both the quasi-static and viscoelastic mechanical properties of the epoxy have been improved.« less
Takahashi, Yasuhito; Tateiwa, Toshiyuki; Shishido, Takaaki; Masaoka, Toshinori; Kubo, Kosuke; Yamamoto, Kengo
2016-10-01
The in-vivo progression of creep and wear in ultra-high molecular weight polyethylene (UHMWPE) acetabular liners has been clinically evaluated by measuring radiographic penetration of femoral heads. In such clinical assessments, however, viscoelastic strain relaxation has been rarely considered after a removal of hip joint loading, potentially leading to an underestimation of the penetrated thickness. The objective of this study was to investigate shape-recovery behavior of pre-compressed, radiation crosslinked and antioxidant vitamin E-diffused UHMWPE acetabular liners, and also to characterize the effects of varying their internal diameter (ID) and wall thickness (WT). We applied uniaxial compression to the UHMWPE specimens of various ID (28, 32, 36mm) and WT (4.8, 6.8, 8.9mm) for 4320min under the constant load of 3000N, and subsequently monitored the strain-relaxation behavior as a function of time after unloading. It was observed that there was a considerable shape recovery of the components after removal of the external static load. Reducing ID and WT significantly accelerated the rate of creep strain recovery, and varying WT was more sensitive to the recovery behavior than ID. Creep deformation of the tested liners recovered mostly within the first 300min after unloading. Note that approximately half of the total recovery amount proceeded just within 5min after unloading. These results suggest a remarkably high capability of shape recovery of vitamin E-diffused highly crosslinked UHMWPE. In conclusion, the time-dependent shape recovering and the diameter-thickness effect on its behavior should be carefully considered when the postoperative penetration is quantified in highly crosslinked UHMWPE acetabular liners (especially on the non-weight bearing radiographs). Copyright © 2016 Elsevier Ltd. All rights reserved.
Silicon Nitride Creep Under Various Specimen-Loading Configurations
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Holland, Frederic A.
2000-01-01
Extensive creep testing of a hot-pressed silicon nitride (NC 132) was performed at 1300 C in air using five different specimen-loading configurations: (1) pure tension, (2) pure compression, (3) four-point uniaxial flexure, (4) ball-on-ring biaxial flexure, and (5) ring-on-ring biaxial flexure. This paper reports experimental results as well as test techniques developed in this work. Nominal creep strain and its rate for a given nominal applied stress were greatest in tension, least in compression, and intermediate in uniaxial and biaxial flexure. Except for the case of compression loading, nominal creep strain generally decreased with time, resulting in a less-defined steady-state condition. Of the four creep formulations-power-law, hyperbolic sine, step, and redistribution--the conventional power-law formulation still provides the most convenient and reasonable estimation of the creep parameters of the NC 132 material. The data base to be obtained will be used to validate the NASA Glenn-developed design code CARES/Creep (ceramics analysis and reliability evaluation of structures and creep).
[Research progress on mechanical performance evaluation of artificial intervertebral disc].
Li, Rui; Wang, Song; Liao, Zhenhua; Liu, Weiqiang
2018-03-01
The mechanical properties of artificial intervertebral disc (AID) are related to long-term reliability of prosthesis. There are three testing methods involved in the mechanical performance evaluation of AID based on different tools: the testing method using mechanical simulator, in vitro specimen testing method and finite element analysis method. In this study, the testing standard, testing equipment and materials of AID were firstly introduced. Then, the present status of AID static mechanical properties test (static axial compression, static axial compression-shear), dynamic mechanical properties test (dynamic axial compression, dynamic axial compression-shear), creep and stress relaxation test, device pushout test, core pushout test, subsidence test, etc. were focused on. The experimental techniques using in vitro specimen testing method and testing results of available artificial discs were summarized. The experimental methods and research status of finite element analysis were also summarized. Finally, the research trends of AID mechanical performance evaluation were forecasted. The simulator, load, dynamic cycle, motion mode, specimen and test standard would be important research fields in the future.
Low-temperature creep of austenitic stainless steels
NASA Astrophysics Data System (ADS)
Reed, R. P.; Walsh, R. P.
2017-09-01
Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.
A Study on the Rheological Properties of Recycled Rubber-Modified Asphalt Mixtures
Karacasu, Murat; Er, Arzu
2015-01-01
Using waste rubber in asphalt mixes has become a common practice in road construction. This paper presents the results of a study on the rheological characteristics of rubber-modified asphalt (RMA) concrete under static and dynamic loading conditions. A number of static and dynamic creep tests were conducted on RMA mix specimens with different rubber sizes and contents, and a series of resonant column tests were conducted to evaluate the shear modulus and damping values. To simulate the stress-strain response of traffic-induced loading, the measurements were taken for different confining pressures and strain levels. The results of the study indicated that rubber modification increases stiffness and damping ratio, making it a very attractive material for use in road construction. However the grain size of the rubber is very important. Although RMA may cost up to 100% more than regular asphalt, the advantages it brings, such as an increased service life of the road and proper waste utilization contributing to a more sustainable infrastructure, may justify the added cost. PMID:25695096
Nanoindentation creep behavior of human enamel.
He, Li-Hong; Swain, Michael V
2009-11-01
In this study, the indentation creep behavior of human enamel was investigated with a nanoindentation system and a Berkovich indenter at a force of 250 mN with one-step loading and unloading method. A constant hold period of 900 s was incorporated into each test at the maximum load as well at 5 mN minimum load during unloading. The indentation creep at the maximum load and creep recovery at the minimum load was described with a double exponential function and compared with other classic viscoelastic models (Debye/Maxwell and Kohlrausch-Williams-Watts). Indentation creep rate sensitivity, m, of human enamel was measured for the first time with a value of approximately 0.012. Enamel displayed both viscoelastic and viscoplastic behavior similar to that of bone. These results indicate that, associated with entrapment of particulates between teeth under functional loading and sliding wear conditions, the enamel may inelastically deform but recover upon its release. This behavior may be important in explaining the excellent wear resistance, antifatigue, and crack resistant abilities of natural tooth structure. (c) 2008 Wiley Periodicals, Inc.
Scott E. Hamel; John C. Hermanson; Steven M. Cramer
2012-01-01
The thermoplastics within woodâplastic composites (WPCs) are known to experience significant time-dependent deformation or creep. In some formulations, creep deformation can be twice as much as the initial quasi-static strain in as little as 4 days. While extensive work has been done on the creep behavior of pure polymers, little information is available on the...
Training and shape retention in conducting polymer artificial muscles
NASA Astrophysics Data System (ADS)
Tominaga, Kazuo; Hashimoto, Hikaru; Takashima, Wataru; Kaneto, Keiichi
2011-12-01
Electrochemomechanical deformation (ECMD) of the conducting polymer polyaniline film is studied to investigate the behaviour of actuation under tensile loads. The ECMD was induced by the strains due to the insertion of ionic species (cyclic strain) and a creep due to applied loads during the redox cycle. The cyclic strain was enhanced by the experience of high tensile loads, indicating a training effect. The training effect was explained by the enhanced electrochemical activity of the film. The creep was recovered by removal of the tensile load and several electrochemical cycles. This fact indicates that the creep results from the one-dimensional anisotropic deformation, and is retained (shape retention) by the ionic crosslink. The recovery of creep results from the elastic relaxation of the polymer conformation.
Thermomechanical Fatigue Durability of T650-35/PMR-15 Sheet Molding Compound
NASA Technical Reports Server (NTRS)
Castelli, Michael G.; Sutter, James K.; Benson, Dianne
1998-01-01
Although polyimide based composites have been used for many years in a wide variety of elevated temperature applications, very little work has been done to examine the durability and damage behavior under more prototypical thermomechanical fatigue (TMF) loadings. Synergistic effects resulting from simultaneous temperature and load cycling can potentially lead to enhanced, if not unique, damage modes and contribute to a number of nonlinear deformation responses. The goal of this research was to examine the effects of a TMF loading spectrum, representative of a gas turbine engine compressor application, on a polyimide sheet molding compound (SMC). High performance SMCs present alternatives to prepreg forms with great potential for low cost component production through less labor intensive, more easily automated manufacturing. To examine the issues involved with TMF, a detailed experimental investigation was conducted to characterize the durability of a T650-35/PMR-15 SMC subjected to TMF mission cycle loadings. Fatigue damage progression was tracked through macroscopic deformation and elastic stiffness. Additional properties, such as the glass transition temperature (T(sub g) and dynamic mechanical properties were examined. The fiber distribution orientation was also characterized through a detailed quantitative image analysis. Damage tolerance was quantified on the basis of residual static tensile properties after a prescribed number of TMF missions. Detailed microstructural examinations were conducted using optical and scanning electron microscopy to characterize the local damage. The imposed baseline TMF missions had only a modest impact on inducing fatigue damage with no statistically significant degradation occurring in the measured macroscopic properties. Microstructural damage was, however, observed subsequent to 100 h of TMF cycling which consisted primarily of fiber debonding and transverse cracking local to predominantly transverse fiber bundles. The TMF loadings did introduce creep related effects (strain accumulation) which led to rupture in some of the more aggressive stress scenarios examined. In some cases this creep behavior occurred at temperatures in excess of 150 C below commonly cited values for T(sub g). Thermomechanical exploratory creep tests revealed that the SMC was subject to time dependent deformation at stress/temperature thresholds of 150 MPa/230 C and 170 MPa/180 C.
High temperature ceramic interface study
NASA Technical Reports Server (NTRS)
Lindberg, L. J.
1984-01-01
Monolithic SiC and Si3N4 are susceptible to contact stress damage at static and sliding interfaces. Transformation-toughened zirconia (TTZ) was evaluated under sliding contact conditions to determine if the higher material fracture toughness would reduce the susceptibility to contact stress damage. Contact stress tests were conducted on four commercially available TTZ materials at normal loads ranging from 0.455 to 22.7 kg (1 to 50 pounds) at temperatures ranging from room temperature to 1204C (2200 F). Static and dynamic friction were measured as a function of temperature. Flexural strength measurements after these tests determined that the contact stress exposure did not reduce the strength of TTZ at contact loads of 0.455, 4.55, and 11.3 kg (1, 10, and 25 pounds). Prior testing with the lower toughness SiC and Si3N4 materials resulted in a substantial strength reduction at loads of only 4.55 and 11.3 kg (10 and 25 pounds). An increase in material toughness appears to improve ceramic material resistance to contact stress damage. Baseline material flexure strength was established and the stress rupture capability of TTZ was evaluated. Stress rupture tests determined that TTZ materials are susceptible to deformation due to creep and that aging of TTZ materials at elevated temperatures results in a reduction of material strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, M.G.; Kohles, S.S.; Stevens, T.L.
1996-12-31
Duality of failure mechanisms (slow crack growth from pre-existing defects versus cumulative creep damage) is examined in a silicon nitride advanced ceramic recently tested at elevated-temperatures. Static (constant stress over time), dynamic (monotonically-increasing stress over time), and cyclic (fluctuating stress over time) fatigue behaviors were evaluated in tension in ambient air at temperatures of 1150, 1260, and 1370{degrees}C for a hot-isostatically pressed monolithic {beta}-silicon nitride. At 1150{degrees}C, all three types of fatigue results showed the similar failure mechanism of slow crack growth (SCG). At 1260 and 1370{degrees}C the failure mechanism was more complex. Failure under static fatigue was dominated bymore » the accumulation of creep damage via diffusion-controlled cavities. In dynamic fatigue, failure occurred by SCG at high stress rates (>10{sup {minus}2}MPa/s) and by creep damage at low stress rates ({le}10{sup {minus}2} MPa/s). For cyclic fatigue, such rate effects influenced the stress rupture results in which times to failure were greater for dynamic and cyclic fatigue than for static fatigue. Elucidation of failure mechanisms is necessary for accurate prediction of long-term survivability and reliability of structural ceramics.« less
Methods for structural design at elevated temperatures
NASA Technical Reports Server (NTRS)
Ellison, A. M.; Jones, W. E., Jr.; Leimbach, K. R.
1973-01-01
A procedure which can be used to design elevated temperature structures is discussed. The desired goal is to have the same confidence in the structural integrity at elevated temperature as the factor of safety gives on mechanical loads at room temperature. Methods of design and analysis for creep, creep rupture, and creep buckling are presented. Example problems are included to illustrate the analytical methods. Creep data for some common structural materials are presented. Appendix B is description, user's manual, and listing for the creep analysis program. The program predicts time to a given creep or to creep rupture for a material subjected to a specified stress-temperature-time spectrum. Fatigue at elevated temperature is discussed. Methods of analysis for high stress-low cycle fatigue, fatigue below the creep range, and fatigue in the creep range are included. The interaction of thermal fatigue and mechanical loads is considered, and a detailed approach to fatigue analysis is given for structures operating below the creep range.
Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.
Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo
2017-07-11
Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.
Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures
Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo
2017-01-01
Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load. PMID:28773144
Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.
Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard
2017-01-01
Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.
Wilkie, Iain C.; Fassini, Dario; Cullorà, Emanuele; Barbaglio, Alice; Tricarico, Serena; Sugni, Michela; Del Giacco, Luca; Candia Carnevali, M. Daniela
2015-01-01
The compass depressors (CDs) of the sea-urchin lantern are ligaments consisting mainly of discontinuous collagen fibrils associated with a small population of myocytes. They are mutable collagenous structures, which can change their mechanical properties rapidly and reversibly under nervous control. The aims of this investigation were to characterise the baseline (i.e. unmanipulated) static mechanical properties of the CDs of Paracentrotus lividus by means of creep tests and incremental force-extension tests, and to determine the effects on their mechanical behaviour of a range of agents. Under constant load the CDs exhibited a three-phase creep curve, the mean coefficient of viscosity being 561±365 MPa.s. The stress-strain curve showed toe, linear and yield regions; the mean strain at the toe-linear inflection was 0.86±0.61; the mean Young’s modulus was 18.62±10.30 MPa; and the mean tensile strength was 8.14±5.73 MPa. Hyaluronidase from Streptomyces hyalurolyticus had no effect on creep behaviour, whilst chondroitinase ABC prolonged primary creep but had no effect on secondary creep or on any force-extension parameters; it thus appears that neither hyaluronic acid nor sulphated glycosaminoglycans have an interfibrillar load transfer function in the CD. Acetylcholine, the muscarinic agonists arecoline and methacholine, and the nicotinic agonists nicotine and 1-[1-(3,4-dimethyl-phenyl)-ethyl]-piperazine produced an abrupt increase in CD viscosity; the CDs were not differentially sensitive to muscarinic or nicotinic agonists. CDs showed either no, or no consistent, response to adrenaline, L-glutamic acid, 5-hydroxytryptamine and γ-aminobutyric acid. Synthetic echinoid tensilin-like protein had a weak and inconsistent stiffening effect, indicating that, in contrast to holothurian tensilins, the echinoid molecule may not be involved in the regulation of collagenous tissue tensility. We compare in detail the mechanical behaviour of the CD with that of mammalian tendon and highlight its potential as a model system for investigating poorly understood aspects of the ontogeny and phylogeny of vertebrate collagenous tissues. PMID:25786033
2006-06-01
Mehrman investigated the effects of prior fatigue on creep behavior, and concluded that a history of prior fatigue loading increases creep life of...as reduced susceptibility to oxidation [4]. Nextel™ 720/Alumina composite (N720/A), combines the strength and creep resistance of a di- phase...studied the response to creep and cyclic loading, respectively, and showed that the presence of steam severely degrades performance at 1200ºC [35
Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures
NASA Astrophysics Data System (ADS)
Tahir, Fraaz
The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design codes for components undergoing creep-fatigue interaction at elevated temperatures require creep-fatigue testing data covering the entire range from fatigue-dominant to creep-dominant loading. Classical strain-controlled tests, which produce stress relaxation during the hold period, show a saturation in cycle life with increasing hold periods due to the rapid stress-relaxation of Alloy 617 at high temperatures. Therefore, applying longer hold time in these tests cannot generate creep-dominated failure. In this study, uniaxial isothermal creep-fatigue tests with non-traditional loading waveforms were designed and performed at 850 and 950°C, with an objective of generating test data in the creep-dominant regime. The new loading waveforms are hybrid strain-controlled and force-controlled testing which avoid stress relaxation during the creep hold. The experimental data showed varying proportions of creep and fatigue damage, and provided evidence for the inadequacy of the widely-used time fraction rule for estimating creep damage under creep-fatigue conditions. Micro-scale damage features in failed test specimens, such as fatigue cracks and creep voids, were quantified using a Scanning Electron Microscope (SEM) to find a correlation between creep and fatigue damage. Quantitative statistical imaging analysis showed that the microstructural damage features (cracks and voids) are correlated with a new mechanical driving force parameter. The results from this image-based damage analysis were used to develop a phenomenological life-prediction methodology called the effective time fraction approach. Finally, the constitutive creep-fatigue response of the material at 950°C was modeled using a unified viscoplastic model coupled with a damage accumulation model. The simulation results were used to validate an energy-based constitutive life-prediction model, as a mechanistic model for potential component and structure level creep-fatigue analysis.
Creep and shrinkage effects on integral abutment bridges
NASA Astrophysics Data System (ADS)
Munuswamy, Sivakumar
Integral abutment bridges provide bridge engineers an economical design alternative to traditional bridges with expansion joints owing to the benefits, arising from elimination of expensive joints installation and reduced maintenance cost. The superstructure for integral abutment bridges is cast integrally with abutments. Time-dependent effects of creep, shrinkage of concrete, relaxation of prestressing steel, temperature gradient, restraints provided by abutment foundation and backfill and statical indeterminacy of the structure introduce time-dependent variations in the redundant forces. An analytical model and numerical procedure to predict instantaneous linear behavior and non-linear time dependent long-term behavior of continuous composite superstructure are developed in which the redundant forces in the integral abutment bridges are derived considering the time-dependent effects. The redistributions of moments due to time-dependent effects have been considered in the analysis. The analysis includes nonlinearity due to cracking of the concrete, as well as the time-dependent deformations. American Concrete Institute (ACI) and American Association of State Highway and Transportation Officials (AASHTO) models for creep and shrinkage are considered in modeling the time dependent material behavior. The variations in the material property of the cross-section corresponding to the constituent materials are incorporated and age-adjusted effective modulus method with relaxation procedure is followed to include the creep behavior of concrete. The partial restraint provided by the abutment-pile-soil system is modeled using discrete spring stiffness as translational and rotational degrees of freedom. Numerical simulation of the behavior is carried out on continuous composite integral abutment bridges and the deformations and stresses due to time-dependent effects due to typical sustained loads are computed. The results from the analytical model are compared with the published laboratory experimental and field data. The behavior of the laterally loaded piles supporting the integral abutments is evaluated and presented in terms of the lateral deflection, bending moment, shear force and stress along the pile depth.
Creep rupture testing of carbon fiber-reinforced epoxy composites
NASA Astrophysics Data System (ADS)
Burton, Kathryn Anne
Carbon fiber is becoming more prevalent in everyday life. As such, it is necessary to have a thorough understanding of, not solely general mechanical properties, but of long-term material behavior. Creep rupture testing of carbon fiber is very difficult due to high strength and low strain to rupture properties. Past efforts have included testing upon strands, single tows and overwrapped pressure vessels. In this study, 1 inch wide, [0°/90°]s laminated composite specimens were constructed from fabric supplied by T.D. Williamson Inc. Specimen fabrication methods and gripping techniques were investigated and a method was developed to collect long term creep rupture behavior data. An Instron 1321 servo-hydraulic material testing machine was used to execute static strength and short term creep rupture tests. A hanging dead-weight apparatus was designed to perform long-term creep rupture testing. The testing apparatus, specimens, and specimen grips functioned well. Collected data exhibited a power law distribution and therefore, a linear trend upon a log strength-log time plot. Statistical analysis indicated the material exhibited slow degradation behavior, similar to previous studies, and could maintain a 50 year carrying capacity at 62% of static strength, approximately 45.7 ksi.
Effects of state recovery on creep buckling under variable loading
NASA Technical Reports Server (NTRS)
Robinson, D. N.; Arnold, S. M.
1986-01-01
Structural alloys embody internal mechanisms that allow recovery of state with varying stress and elevated temperature, i.e., they can return to a softer state following periods of hardening. Such material behavior is known to strongly influence structural response under some important thermomechanical loadings, for example, that involving thermal ratchetting. The influence of dynamic and thermal recovery on the creep buckling of a column under variable loading is investigated. The column is taken as the idealized (Shanley) sandwich column. The constitutive model, unlike the commonly employed Norton creep model, incorporates a representation of both dynamic and thermal (state) recovery. The material parameters of the constitutive model are chosen to characterize Narloy Z, a representative copper alloy used in thrust nozzle liners of reusable rocket engines. Variable loading histories include rapid cyclic unloading/reloading sequences and intermittent reductions of load for extended periods of time; these are superimposed on a constant load. The calculated results show that state recovery significantly affects creep buckling under variable loading. Structural alloys embody internal mechanisms that allow recovery of state with varying stress and time.
NASA Technical Reports Server (NTRS)
Davis, J. W.; Cramer, B. A.
1974-01-01
Cyclic creep response was investigated and design methods applicable to thermal protection system structures were developed. The steady-state (constant temperature and load) and cyclic creep response characteristics of four alloys were studied. Steady-state creep data were gathered through a literature survey to establish reference data bases. These data bases were used to develop empirical equations describing creep as a function of time, temperature, and stress and as a basis of comparison for test data. Steady-state creep tests and tensile cyclic tests were conducted. The following factors were investigated: material thickness and rolling direction; material cyclic creep response under varying loads and temperatures; constant stress and temperature cycles representing flight conditions; changing stresses present in a creeping beam as a result of stress redistribution; and complex stress and temperature profiles representative of space shuttle orbiter trajectories. A computer program was written, applying creep hardening theories and empirical equations for creep, to aid in analysis of test data. Results are considered applicable to a variety of structures which are cyclicly exposed to creep producing thermal environments.
Dynamic rheological comparison of silicones for podiatry applications.
Díaz-Díaz, Ana-María; Sánchez-Silva, Bárbara; Tarrío-Saavedra, Javier; López-Beceiro, Jorge; Janeiro-Arocas, Julia; Gracia-Fernández, Carlos; Artiaga, Ramón
2018-05-26
This work shows an effective methodology to evaluate the dynamic viscoelastic behavior of silicones for application in podiatry. The aim is to characterize, compare their viscoelastic properties according to the dynamic stresses they can be presumably subjected when used in podiatry orthotic applications. These results provide a deeper insight which extends the previous creep-recovery results to the world of dynamic stresses developed in physical activity. In this context, it shoulod be taken into account that an orthoses can subjected to a set of static and dynamic shear and compressive forces. Two different podiatric silicones, Blanda-blanda and Master, from Herbitas, are characterized by dynamic rheological methods. Three kinds of rheological tests are considered: shear stress sweep, compression frequency sweep and shear frequency sweep, all the three with simultaneous control of the static force at three different levels. The static force represents a static load like that produced by the weight of a human body on a shoe insole. In a practical sense, dynamic stresses are related to physical activity and are needed to evaluate the frequency effect on the viscoelastic behavior of the material. It is considered that the dynamic stresses can be applied in compression and shear since, in practice, the way the stresses are applied in real life depends on the orthoses geometry and its exact location with respect to the foot and shoe. The effects of static and dynamic loads are individualized and compared to each other through the relations between the elastic constants for isotropic materials. The overall proposed experimental methodology can provide very insightful information for better selection of materials in podiatry applications. This study focuses on the rheological characterization to choose the right silicone for each podiatric application, taking into account the dynamic viscoelastic requirements associated to the physical activity of user. Accordingly, one soft and one hard silicones of common use in podiatry were tested. Each of the two silicones exhibit not only different moduli values, but also, a different kind of dependence of the dynamic moduli with respect to the static load. In the case of the soft sample a linear trend is observed but in the case of of the hard one the dependence is of the power law type. Moreover, these samples exhibit very different Poisson's coefficient values for compression stresses lower than 20 kPa, and almost the same values for stresses above 40 kPa. That different dependence of the Poisson's ratio on the static load should also be taken into account for material selection in customized podiatry applications, where static and dynamic loads are strongly dependent on the individual weight and activity. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Buchanan, Dennis J.; John, Reji; Brockman, Robert A.; Rosenberger, Andrew H.
2010-01-01
Shot peening is a commonly used surface treatment process that imparts compressive residual stresses into the surface of metal components. Compressive residual stresses retard initiation and growth of fatigue cracks. During component loading history, shot-peened residual stresses may change due to thermal exposure, creep, and cyclic loading. In these instances, taking full credit for compressive residual stresses would result in a nonconservative life prediction. This article describes a methodical approach for characterizing and modeling residual stress relaxation under elevated temperature loading, near and above the monotonic yield strength of INI 00. The model incorporates the dominant creep deformation mechanism, coupling between the creep and plasticity models, and effects of prior plastic strain to simulate surface treatment deformation.
Evaluation of nanostructural, mechanical, and biological properties of collagen-nanotube composites.
Tan, Wei; Twomey, John; Guo, Dongjie; Madhavan, Krishna; Li, Min
2010-06-01
Collagen I is an essential structural and mechanical building block of various tissues, and it is often used as tissue-engineering scaffolds. However, collagen-based constructs reconstituted in vitro often lacks robust fiber structure, mechanical stability, and molecule binding capability. To enhance these performances, the present study developed 3-D collagen-nanotube composite constructs with two types of functionalized carbon nanotubes, carboxylated nanotubes and covalently functionalized nanotubes (CFNTs). The influences of nanotube functionalization and loading concentration on the collagen fiber structure, mechanical property, biocompatibility, and molecule binding were examined. Results revealed that surface modification and loading concentration of nanotubes determined the interactions between nanotubes and collagen fibrils, thus altering the structure and property of nanotube-collagen composites. Scanning electron microscopy and confocal microscopy revealed that the incorporation of CFNT in collagen-based constructs was an effective means of restructuring collagen fibrils because CFNT strongly bound to collagen molecules inducing the formation of larger fibril bundles. However, increased nanotube loading concentration caused the formation of denser fibril network and larger aggregates. Static stress-strain tests under compression showed that the addition of nanotube into collagen-based constructs did not significantly increase static compressive moduli. Creep/recovery testing under compression revealed that CFNT-collagen constructs showed improved mechanical stability under continuous loading. Testing with endothelial cells showed that biocompatibility was highly dependent on nanotube loading concentration. At a low loading level, CFNT-collagen showed higher endothelial coverage than the other tested constructs or materials. Additionally, CFNT-collagen showed capability of binding to other biomolecules to enhance the construct functionality. In conclusion, functionalized nanotube-collagen composites, particularly CFNT-collagen composites, could be promising materials, which provide structural support showing bundled fibril structure, biocompatibility, multifunctionality, and mechanical stability, but rigorous control over chemical modification, loading concentration, and nanotube dispersion are needed.
NASA Astrophysics Data System (ADS)
Cuddalorepatta, Gayatri; Williams, Maureen; Dasgupta, Abhijit
2010-10-01
The viscoplastic behavior of as-fabricated, undamaged, microscale Sn-3.0 Ag-0.5Cu (SAC305) Pb-free solder is investigated and compared with that of eutectic Sn-37Pb solder and near-eutectic Sn-3.8Ag-0.7Cu (SAC387) solder from prior studies. Creep measurements of microscale SAC305 solder shear specimens show significant piece-to-piece variability under identical loading. Orientation imaging microscopy reveals that these specimens contain only a few, highly anisotropic Sn grains across the entire joint. For the studied loads, the coarse-grained Sn microstructure has a more significant impact on the scatter in primary creep compared to that in the secondary creep. The observed lack of statistical homogeneity (microstructure) and joint-dependent mechanical behavior of microscale SAC305 joints are consistent with those observed for functional microelectronics interconnects. Compared with SAC305 joints, microscale Sn-37Pb shear specimens exhibit more homogenous behavior and microstructure with a large number of small Sn (and Pb) grains. Creep damage in the Pb-free joint is predominantly concentrated at highly misoriented Sn grain boundaries. The coarse-grained Sn microstructure recrystallizes into new grains with high misorientation angles under creep loading. In spite of the observed joint-dependent behavior, as-fabricated SAC305 is significantly more creep resistant than Sn-37Pb solder and slightly less creep resistant than near-eutectic SAC387 solder. Average model constants for primary and secondary creep of SAC305 are presented. Since the viscoplastic measurements are averaged over a wide range of grain configurations, the creep model constants represent the effective continuum behavior in an average sense. The average secondary creep behavior suggests that the dominant creep mechanism is dislocation climb assisted by dislocation pipe diffusion.
Indentation Size Effect on the Creep Behavior of a SnAgCu Solder
NASA Astrophysics Data System (ADS)
Han, Y. D.; Jing, H. Y.; Nai, S. M. L.; Xu, L. Y.; Tan, C. M.; Wei, J.
In the present study, nanoindentation studies of the 95.8Sn-3.5Ag-0.7Cu lead-free solder were conducted over a range of maximum loads from 20 mN to 100 mN, under a constant ramp rate of 0.05 s-1. The indentation scale dependence of creep behavior was investigated. The results revealed that the creep rate, creep strain rate and indentation stress are all dependent on the indentation depth. As the maximum load increased, an increasing trend in the creep rate was observed, while a decreasing trend in creep strain rate and indentation stress were observed. On the contrary, for the case of stress exponent value, no trend was observed and the values were found to range from 6.16 to 7.38. Furthermore, the experimental results also showed that the creep mechanism of the lead-free solder is dominated by dislocation climb.
Tension and Compression Creep Apparatus for wood-Plastic Composites
Scott E. Hamel; John C. Hermanson; Steven M. Cramer
2011-01-01
Design of structural members made of wood-plastic composites (WPC) is not possible without accurate test data for tension and compression. The viscoelastic behavior of these materials means that these data are required for both the quasi-static stress-strain response, and the long-term creep response. Their relative incompressibility causes inherent difficulties in...
Oxidation of a Commercial Nickel-Based Superalloy under Static Loading
NASA Astrophysics Data System (ADS)
Foss, B. J.; Hardy, M. C.; Child, D. J.; McPhail, D. S.; Shollock, B. A.
2014-12-01
The current demands of the aviation industry for increased gas-turbine efficiency necessitate higher turbine entry temperatures, requiring that alloys exhibit superior oxidation resistance. The synergistic effects of oxidation and mechanical stresses pose a complex issue. The purpose of the current research was to examine the effects of stress on the oxidation and oxygen transport in a commercial nickel-based superalloy. Fine grain RR1000 in both polished and shot-peened conditions was studied for classic (zero load) and statically loaded conditions using integrated two-stage isotopic tracing combined with focused-ion-beam secondary ion mass spectrometry (FIB-SIMS). Cr2O3 external oxide formed with semicontinuous TiO2 above and below. Preferential grain boundary Al2O3 internal oxide formation, γ'-dissolution, and recrystallization occurred subsurface. Oxidation mechanisms were dominated by anionic/cationic growth in the external oxide with inward oxygen transport, initially through the partially unprotective external oxide, then along internal oxide/alloy interfaces. Loading did not influence the oxidation products formed but did bring about expedited oxidation kinetics and changes to the oxide morphology. The oxygen diffusivity D {O/ * } (×10-13 cm2s-1) ranged from 0.39 for the polished alloy to 3.7 for the shot-peened condition under compressive stress. Arguably, the most significant effects took place in the subsurface regions. Increased oxidation kinetics were attributed to the development of fast cation diffusion paths as the alloy deformed by creep.
Creep of plasma sprayed zirconia
NASA Technical Reports Server (NTRS)
Firestone, R. F.; Logan, W. R.; Adams, J. W.
1982-01-01
Specimens of plasma-sprayed zirconia thermal barrier coatings with three different porosities and different initial particle sizes were deformed in compression at initial loads of 1000, 2000, and 3500 psi and temperatures of 1100 C, 1250 C, and 1400 C. The coatings were stabilized with lime, magnesia, and two different concentrations of yttria. Creep began as soon as the load was applied and continued at a constantly decreasing rate until the load was removed. Temperature and stabilization had a pronounced effect on creep rate. The creep rate for 20% Y2O3-80% ZrO2 was 1/3 to 1/2 that of 8% Y2O3-92% ZrO2. Both magnesia and calcia stabilized ZrO2 crept at a rate 5 to 10 times that of the 20% Y2O3 material. A near proportionality between creep rate and applied stress was observed. The rate controlling process appeared to be thermally activated, with an activation energy of approximately 100 cal/gm mole K. Creep deformation was due to cracking and particle sliding.
Design and quasi-static characterization of SMASH (SMA stabilizing handgrip)
NASA Astrophysics Data System (ADS)
Pathak, Anupam; Brei, Diann; Luntz, Jonathan; LaVigna, Chris; Kwatny, Harry
2007-04-01
Due to physiologically induced body tremors, there is a need for active stabilization in many hand-held devices such as surgical tools, optical equipment (cameras), manufacturing tools, and small arms weapons. While active stabilization has been achieved with electromagnetic and piezoceramics actuators for cameras and surgical equipment, the hostile environment along with larger loads introduced by manufacturing and battlefield environments make these approaches unsuitable. Shape Memory Alloy (SMA) actuators are capable of alleviating these limitations with their large force/stroke generation, smaller size, lower weight, and increased ruggedness. This paper presents the actuator design and quasi-static characterization of a SMA Stabilizing Handgrip (SMASH). SMASH is an antagonistically SMA actuated two degree-of-freedom stabilizer for disturbances in the elevation and azimuth directions. The design of the SMASH for a given application is challenging because of the difficulty in accurately modeling systems loads such as friction and unknown shakedown SMA material behavior (which is dependent upon the system loads). Thus, an iterative empirical design process is introduced that provides a method to estimate system loads, a SMA shakedown procedure using the system loads to reduce material creep, and a final selection and prediction for the full SMASH system performance. As means to demonstrate this process, a SMASH was designed, built and experimentally characterized for the extreme case study of small arms stabilization for a US Army M16 rifle. This study successfully demonstrated the new SMASH technology along with the unique design procedure that can be applied to small arms along with a variety of other hand-held devices.
Fractional order creep model for dam concrete considering degree of hydration
NASA Astrophysics Data System (ADS)
Huang, Yaoying; Xiao, Lei; Bao, Tengfei; Liu, Yu
2018-05-01
Concrete is a material that is an intermediate between an ideal solid and an ideal fluid. The creep of concrete is related not only to the loading age and duration, but also to its temperature and temperature history. Fractional order calculus is a powerful tool for solving physical mechanics modeling problems. Using a software element based on the generalized Kelvin model, a fractional order creep model of concrete considering the loading age and duration is established. Then, the hydration rate of cement is considered in terms of the degree of hydration, and the fractional order creep model of concrete considering the degree of hydration is established. Moreover, uniaxial tensile creep tests of dam concrete under different curing temperatures were conducted, and the results were combined with the creep test data and complex optimization method to optimize the parameters of a new creep model. The results show that the fractional tensile creep model based on hydration degree can better describe the tensile creep properties of concrete, and this model involves fewer parameters than the 8-parameter model.
NASA Astrophysics Data System (ADS)
Cho, H. E.; Horstemeyer, M. F.; Baumgardner, J. R.
2017-12-01
In this study, we present an internal state variable (ISV) constitutive model developed to model static and dynamic recrystallization and grain size progression in a unified manner. This method accurately captures temperature, pressure and strain rate effect on the recrystallization and grain size. Because this ISV approach treats dislocation density, volume fraction of recrystallization and grain size as internal variables, this model can simultaneously track their history during the deformation with unprecedented realism. Based on this deformation history, this method can capture realistic mechanical properties such as stress-strain behavior in the relationship of microstructure-mechanical property. Also, both the transient grain size during the deformation and the steady-state grain size of dynamic recrystallization can be predicted from the history variable of recrystallization volume fraction. Furthermore, because this model has a capability to simultaneously handle plasticity and creep behaviors (unified creep-plasticity), the mechanisms (static recovery (or diffusion creep), dynamic recovery (or dislocation creep) and hardening) related to dislocation dynamics can also be captured. To model these comprehensive mechanical behaviors, the mathematical formulation of this model includes elasticity to evaluate yield stress, work hardening in treating plasticity, creep, as well as the unified recrystallization and grain size progression. Because pressure sensitivity is especially important for the mantle minerals, we developed a yield function combining Drucker-Prager shear failure and von Mises yield surfaces to model the pressure dependent yield stress, while using pressure dependent work hardening and creep terms. Using these formulations, we calibrated against experimental data of the minerals acquired from the literature. Additionally, we also calibrated experimental data for metals to show the general applicability of our model. Understanding of realistic mantle dynamics can only be acquired once the various deformation regimes and mechanisms are comprehensively modeled. The results of this study demonstrate that this ISV model is a good modeling candidate to help reveal the realistic dynamics of the Earth's mantle.
The Creep of Laminated Synthetic Resin Plastics
NASA Technical Reports Server (NTRS)
Perkuhn, H
1941-01-01
The long-time loading strength of a number of laminated synthetic resin plastics was ascertained and the effect of molding pressure and resin content determined. The best value was observed with a 30 to 40 percent resin content. The long-time loading strength also increases with increasing molding pressure up to 250 kg/cm(exp 2); a further rise in pressure affords no further substantial improvement. The creep strength is defined as the load which in the hundredth hour of loading produces a rate of elongation of 5 X 10(exp -4) percent per hour. The creep strength values of different materials were determined and tabulated. The effect of humidity during long-term tests is pointed out.
Load relaxation of olivine single crystals
NASA Astrophysics Data System (ADS)
Cooper, Reid F.; Stone, Donald S.; Plookphol, Thawatchai
2016-10-01
Single crystals of ferromagnesian olivine (San Carlos, AZ, peridot; Fo88-90) have been deformed in both uniaxial creep and load relaxation under conditions of ambient pressure, T = 1500°C and pO2 = 10-10 atm; creep stresses were in the range 40 ≤ σ1 (MPa) ≤ 220. The crystals were oriented such that the applied stress was parallel to [011]c, which promotes single slip on the slowest slip system in olivine, (010)[001]. The creep rates at steady state match well the results of earlier investigators, as does the stress sensitivity (a power law exponent of n = 3.6). Dislocation microstructures, including spatial distribution of low-angle (subgrain) boundaries, additionally confirm previous investigations. Inverted primary creep (an accelerating strain rate with an increase in stress) was observed. Load relaxation, however, produced a singular response—a single hardness curve—regardless of the magnitude of creep stress or total accumulated strain preceding relaxation. The log stress versus log strain rate data from load-relaxation and creep experiments overlap to within experimental error. The load-relaxation behavior is distinctly different than that described for other crystalline solids, where the flow stress is affected strongly by work hardening such that a family of distinct hardness curves is generated, which are related by a scaling function. The response of olivine for the conditions studied, we argue, indicates flow that is rate limited by dislocation glide, reflecting specifically a high intrinsic lattice resistance (Peierls stress).
Load Relaxation of Olivine Single Crystals
NASA Astrophysics Data System (ADS)
Cooper, R. F.; Stone, D. S.; Plookphol, T.
2016-12-01
Single crystals of ferromagnesian olivine (San Carlos, AZ, peridot; Fo90-92) have been deformed in both uniaxial creep and load relaxation under conditions of ambient pressure, T = 1500ºC and pO2 = 10-10 atm; creep stresses were in the range 40 ≤ σ1 (MPa) ≤ 220. The crystals were oriented such that the applied stress was parallel to [011]c, which promotes single slip on the slowest slip system in olivine, (010)[001]. The creep rates at steady state match well the results of earlier investigators, as does the stress sensitivity (a power-law exponent of n = 3.6). Dislocation microstructures, including spatial distribution of low-angle (subgrain) boundaries, additionally confirm previous investigations. Inverted primary creep (an accelerating strain rate with an increase in stress) was observed. Load-relaxation, however, produced a singular response—a single hardness curve—regardless of the magnitude of creep stress or total accumulated strain preceding relaxation. The log-stress v. log-strain rate data from load-relaxation and creep experiments overlap to within experimental error. The load-relaxation behavior is distinctly different that that described for other crystalline solids, where the flow stress is affected strongly by work hardening such that a family of distinct hardness curves is generated, which are related by a scaling function. The response of olivine for the conditions studied, thus, indicates flow that is rate-limited by dislocation glide, reflecting specifically a high intrinsic lattice resistance (Peierls stress).
NASA Astrophysics Data System (ADS)
Laukkanen, Olli-Ville; Winter, H. Henning
2017-11-01
The creep-recovery (CR) test starts out with a period of shearing at constant stress (creep) and is followed by a period of zero-shear stress where some of the accumulated shear strain gets reversed. Linear viscoelasticity (LVE) allows one to predict the strain response to repeated creep-recovery (RCR) loading from measured small-amplitude oscillatory shear (SAOS) data. Only the relaxation and retardation time spectra of a material need to be known and these can be determined from SAOS data. In an application of the Boltzmann superposition principle (BSP), the strain response to RCR loading can be obtained as a linear superposition of the strain response to many single creep-recovery tests. SAOS and RCR data were collected for several unmodified and modified bituminous binders, and the measured and predicted RCR responses were compared. Generally good agreement was found between the measured and predicted strain accumulation under RCR loading. However, in the case of modified binders, the strain accumulation was slightly overestimated (≤20% relative error) due to the insufficient SAOS information at long relaxation times. Our analysis also demonstrates that the evolution in the strain response under RCR loading, caused by incomplete recovery, can be reasonably well predicted by the presented methodology. It was also shown that the outlined modeling framework can be used, as a first approximation, to estimate the rutting resistance of bituminous binders by predicting the values of the Multiple Stress Creep Recovery (MSCR) test parameters.
NASA Technical Reports Server (NTRS)
Kenner, WInfred S.; Jones, Thomas C.; Doggett, William R.; Duncan, Quinton; Plant, James
2015-01-01
An experimental study of the effects of environmental temperature and humidity conditions on long-term creep displacement data of high strength Kevlar and VectranTM woven fabric webbings under constant load for inflatable structures is presented. The restraint layer of an inflatable structure for long-duration space exploration missions is designed to bear load and consists of an assembly of high strength webbings. Long-term creep displacement data of webbings can be utilized by designers to validate service life parameters of restraint layers of inflatable structures. Five groups of high-strength webbings were researched over a two year period. Each group had a unique webbing length, load rating, applied load, and test period. The five groups consisted of 1.) 6K Vectran webbings loaded to 49% ultimate tensile strength (UTS), 2.) 6K Vectran webbings loaded to 55% UTS, 3.) 12.5K Vectran webbings loaded to 22% UTS, 4.) 6K Kevlar webbings loaded to 40% and 43% UTS, and 5.) 6K Kevlar webbings loaded to 48% UTS. Results show that all webbing groups exhibit the initial two stages of three of a typical creep curve of an elastic material. Results also show that webbings exhibit unique local wave patterns over the duration of the test period. Data indicate that the local pattern is primarily generated by daily variations in relative humidity values within the test facility. Data indicate that after a three to six month period, where webbings reach a steady-state creep condition, an annual sinusoidal displacement pattern is exhibited, primarily due to variations in annual mean temperature values. Data indicates that variations in daily temperature values and annual mean humidity values have limited secondary effects on creep displacement behavior. Results show that webbings in groups 2 and 5 do not exhibit well defined annual displacement patterns because the magnitude of the applied loads cause large deformations, and data indicate that material yielding within a webbing tends to neutralize the annual sinusoidal displacement pattern. Study indicates that applied load, environmental effects, mechanical strength, coefficient of thermal expansion, and hygroscopic properties of webbings are fundamental requirements for quantifying accurate creep displacements and behaviors over multiple year time periods. Results from a study of the environmental effects on long-term creep displacement data of Kevlar and Vectran woven webbings are presented to increase the knowledge base of webbing materials and to enhance designs of inflatable space structures for long-duration space missions.
Ali, A F; Taha, M M Reda; Thornton, G M; Shrive, N G; Frank, C B
2005-06-01
In normal daily activities, ligaments are subjected to repeated loads, and respond to this environment with creep and fatigue. While progressive recruitment of the collagen fibers is responsible for the toe region of the ligament stress-strain curve, recruitment also represents an elegant feature to help ligaments resist creep. The use of artificial intelligence techniques in computational modeling allows a large number of parameters and their interactions to be incorporated beyond the capacity of classical mathematical models. The objective of the work described here is to demonstrate a tool for modeling creep of the rabbit medial collateral ligament that can incorporate the different parameters while quantifying the effect of collagen fiber recruitment during creep. An intelligent algorithm was developed to predict ligament creep. The modeling is performed in two steps: first, the ill-defined fiber recruitment is quantified using the fuzzy logic. Second, this fiber recruitment is incorporated along with creep stress and creep time to model creep using an adaptive neurofuzzy inference system. The model was trained and tested using an experimental database including creep tests and crimp image analysis. The model confirms that quantification of fiber recruitment is important for accurate prediction of ligament creep behavior at physiological loads.
NASA Technical Reports Server (NTRS)
Cramer, B. A.; Davis, J. W.
1975-01-01
A method for predicting permanent cyclic creep deflections in stiffened panel structures was developed. The resulting computer program may be applied to either the time-hardening or strain-hardening theories of creep accumulation. Iterative techniques were used to determine structural rotations, creep strains, and stresses as a function of time. Deflections were determined by numerical integration of structural rotations along the panel length. The analytical approach was developed for analyzing thin-gage entry vehicle metallic-thermal-protection system panels subjected to cyclic bending loads at high temperatures, but may be applied to any panel subjected to bending loads. Predicted panel creep deflections were compared with results from cyclic tests of subsize corrugation and rib-stiffened panels. Empirical equations were developed for each material based on correlation with tensile cyclic creep data and both the subsize panels and tensile specimens were fabricated from the same sheet material. For Vol. 1, see N75-21431.
Substrate Creep on The Fatigue Life of A Model Dental Multilayer Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, J; Huang, M; Niu, X
In this paper, we investigated the effects of substrate creep on the fatigue behavior of a model dental multilayer structure, in which a top glass layer was bonded to a polycarbonate substrate through a dental adhesive. The top glass layers were ground using 120 grit or 600 grit sand papers before bonding to create different sub-surface crack sizes and morphologies. The multilayer structures were tested under cyclic Hertzian contact loading to study crack growth and obtain fatigue life curves. The experiment results showed that the fatigue lives of the multilayer structures were impaired by increasing crack sizes in the sub-surfaces.more » They were also significantly reduced by the substrate creep when tested at relatively low load levels i.e. P{sub m} < 60 N (Pm is the maximum magnitude of cyclic load). But at relatively high load levels i.e. P{sub m} > 65 N, slow crack growth (SCG) was the major failure mechanisms. A modeling study was then carried out to explore the possible failure mechanisms over a range of load levels. It is found that fatigue life at relatively low load levels can be better estimated by considering the substrate creep effect (SCE).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widjaja, S.; Jakus, K.; Ritter, J.E.
The feasibility of inducing a compressive residual stress in the matrix of a Nicalon-fiber-reinforced BMAS-glass-ceramic-matrix composite through a creep-load transfer treatment was studied. Specimens were crept at 1100 C under constant tensile load to cause load transfer from the matrix to the fibers, then cooled under load. Upon removal of the load at room temperature, the matrix was put into compression by the elastic recovery of the fibers. This compressive residual stress in the matrix increased the room-temperature proportional limit stress of the composite. The increase in the proportional limit stress was found to be dependent upon the applied creepmore » stress, with an increase in creep stress resulting in an increase in the proportional limit stress. Acoustic emission results showed that the onset of significant matrix cracking correlated closely to the proportional limit stress. Changes in the state of residual stress in the matrix were supported by X-ray diffraction results. Fracture surfaces of all specimens exhibited fiber pullout behavior, indicating that the creep-load transfer process did not embrittle the fiber/matrix interface.« less
Evaluation of models for predicting (total) creep of prestressed concrete mixtures.
DOT National Transportation Integrated Search
2001-01-01
Concrete experiences volume changes throughout its service life. When loaded, concrete experiences an instantaneous recoverable elastic deformation and a slow inelastic deformation called creep. Creep of concrete is composed of two components, basic ...
Constitutive Modeling of a Glass Fiber-Reinforced PTFE Gasketed-Joint Under a Re-torque
NASA Astrophysics Data System (ADS)
Williams, James; Gordon, Ali P.
Joints gasketed with viscoelastic seals often receive an application of a secondary torque, i.e., retorque, in order to ensure joint tightness and proper sealing. The motivation of this study is to characterize and analytically model the load and deflection re-torque response of a single 25% glass-fiber reinforced polytetrafluorethylene (PTFE) gasket-bolted joint with serrated flange detail. The Burger-type viscoelastic modeling constants of the material are obtained through isolating the gasket from the bolt by performing a gasket creep test via a MTS electromechanical test frame. The re-load creep response is also investigated by re-loading the gasket after a period of initial creep to observe the response. The modeling constants obtained from the creep tests are used with a Burger-type viscoelastic model to predict the re-torque response of a single bolt-gasket test fixture in order to validate the ability of the model to simulate the re-torque response under various loading conditions and flange detail.
Effect of the oxygen content in solution on the static and cyclic deformation of titanium foams.
Lefebvre, L P; Baril, E; Bureau, M N
2009-11-01
It is well known that interstitials affect the mechanical properties of titanium and titanium alloys. Their effects on the fatigue properties of titanium foams have not, however, been documented in the literature. This paper presents the effect of the oxygen content on the static and dynamic compression properties of titanium foams. Increasing the oxygen content from 0.24 to 0.51 wt% O in solution significantly increases the yield strength and reduces the ductility of the foams. However, the fatigue limit is not significantly affected by the oxygen content and falls within the 92 MPa +/- 12 MPa range for all specimens investigated in this study. During cyclic loading, deformation is initially coming from cumulative creep followed by the formation of microcracks. The coalescence of these microcracks is responsible for the rupture of the specimens. Fracture surfaces of the specimens having lower oxygen content show a more ductile aspect than the specimens having higher oxygen content.
Investigation of Tensile Creep of a Normal Strength Overlay Concrete.
Drexel, Martin; Theiner, Yvonne; Hofstetter, Günter
2018-06-12
The present contribution deals with the experimental investigation of the time-dependent behavior of a typical overlay concrete subjected to tensile stresses. The latter develop in concrete overlays, which are placed on existing concrete structures as a strengthening measure, due to the shrinkage of the young overlay concrete, which is restrained by the substrate concrete. Since the tensile stresses are reduced by creep, creep in tension is investigated on sealed and unsealed specimens, loaded at different concrete ages. The creep tests as well as the companion shrinkage tests are performed in a climatic chamber at constant temperature and constant relative humidity. Since shrinkage depends on the change of moisture content, the evolution of the mass water content is determined at the center of each specimen by means of an electrolytic resistivity-based system. Together with the experimental results for compressive creep from a previous study, a consistent set of time-dependent material data, determined for the same composition of the concrete mixture and on identical specimens, is now available. It consists of the hygral and mechanical properties, creep and shrinkage strains for both sealed and drying conditions, the respective compliance functions, and the mass water contents in sealed and unsealed, loaded and load-free specimens.
A 12 year EDF study of concrete creep under uniaxial and biaxial loading
Charpin, Laurent; Le Pape, Yann; Coustabeau, Eric; ...
2017-11-04
This paper presents a 12-year-long creep and shrinkage experimental campaign on cylindrical and prismatic concrete samples under uniaxial and biaxial stress, respectively. The motivation for the study is the need for predicting the delayed strains and the pre-stress loss of concrete containment buildings of nuclear power plants. Two subjects are central in this regard: the creep strain's long-term evolution and the creep Poisson's ratio. A greater understanding of these areas is necessary to ensure reliable predictions of the long-term behavior of the concrete containment buildings.Long-term basic creep appears to evolve as a logarithm function of time in the range ofmore » 3 to 10 years of testing. Similar trends are observed for drying creep, autogenous shrinkage, and drying shrinkage testing, which suggests that all delayed strains obtained using different loading and drying conditions originate from a common mechanism.The creep Poisson's ratio derived from the biaxial tests is approximately constant over time for both the basic and drying creep tests (creep strains corrected by the shrinkage strain).It is also shown that the biaxial non-drying samples undergo a significant increase in Young's modulus after 10 years.« less
A 12 year EDF study of concrete creep under uniaxial and biaxial loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charpin, Laurent; Le Pape, Yann; Coustabeau, Eric
This paper presents a 12-year-long creep and shrinkage experimental campaign on cylindrical and prismatic concrete samples under uniaxial and biaxial stress, respectively. The motivation for the study is the need for predicting the delayed strains and the pre-stress loss of concrete containment buildings of nuclear power plants. Two subjects are central in this regard: the creep strain's long-term evolution and the creep Poisson's ratio. A greater understanding of these areas is necessary to ensure reliable predictions of the long-term behavior of the concrete containment buildings.Long-term basic creep appears to evolve as a logarithm function of time in the range ofmore » 3 to 10 years of testing. Similar trends are observed for drying creep, autogenous shrinkage, and drying shrinkage testing, which suggests that all delayed strains obtained using different loading and drying conditions originate from a common mechanism.The creep Poisson's ratio derived from the biaxial tests is approximately constant over time for both the basic and drying creep tests (creep strains corrected by the shrinkage strain).It is also shown that the biaxial non-drying samples undergo a significant increase in Young's modulus after 10 years.« less
A dissolution-precipitation mechanism is at the origin of concrete creep in moist environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pignatelli, Isabella; Kumar, Aditya; Alizadeh, Rouhollah
Long-term creep (i.e., deformation under sustained load) is a significant material response that needs to be accounted for in concrete structural design. However, the nature and origin of concrete creep remain poorly understood and controversial. Here, we propose that concrete creep at relative humidity ≥ 50%, but fixed moisture content (i.e., basic creep), arises from a dissolution-precipitation mechanism, active at nanoscale grain contacts, as has been extensively observed in a geological context, e.g., when rocks are exposed to sustained loads, in liquid-bearing environments. Based on micro-indentation and vertical scanning interferometry data and molecular dynamics simulations carried out on calcium–silicate–hydrate (C–S–H),more » the major binding phase in concrete, of different compositions, we show that creep rates are correlated with dissolution rates—an observation which suggests a dissolution-precipitation mechanism as being at the origin of concrete creep. C–S–H compositions featuring high resistance to dissolution, and, hence, creep are identified. Analyses of the atomic networks of such C–S–H compositions using topological constraint theory indicate that these compositions present limited relaxation modes on account of their optimally connected (i.e., constrained) atomic networks.« less
A dissolution-precipitation mechanism is at the origin of concrete creep in moist environments.
Pignatelli, Isabella; Kumar, Aditya; Alizadeh, Rouhollah; Le Pape, Yann; Bauchy, Mathieu; Sant, Gaurav
2016-08-07
Long-term creep (i.e., deformation under sustained load) is a significant material response that needs to be accounted for in concrete structural design. However, the nature and origin of concrete creep remain poorly understood and controversial. Here, we propose that concrete creep at relative humidity ≥ 50%, but fixed moisture content (i.e., basic creep), arises from a dissolution-precipitation mechanism, active at nanoscale grain contacts, as has been extensively observed in a geological context, e.g., when rocks are exposed to sustained loads, in liquid-bearing environments. Based on micro-indentation and vertical scanning interferometry data and molecular dynamics simulations carried out on calcium-silicate-hydrate (C-S-H), the major binding phase in concrete, of different compositions, we show that creep rates are correlated with dissolution rates-an observation which suggests a dissolution-precipitation mechanism as being at the origin of concrete creep. C-S-H compositions featuring high resistance to dissolution, and, hence, creep are identified. Analyses of the atomic networks of such C-S-H compositions using topological constraint theory indicate that these compositions present limited relaxation modes on account of their optimally connected (i.e., constrained) atomic networks.
NASA Technical Reports Server (NTRS)
Vinogradov, Aleksandra M.; Ihlefeld, Curtis M.; Henslee, Issac
2009-01-01
The paper concerns the time-dependent behavior of electroactive polymers (EAP) and their use in advanced intelligent structures for space exploration. Innovative actuator design for low weight and low power valves required in small plants planned for use on the moon for chemical analysis is discussed. It is shown that in-depth understanding of cyclic loading effects observed through accelerated creep rates due to creep-fatigue interaction in polymers is critical in terms of proper functioning of EAP based actuator devices. In the paper, an overview of experimental results concerning the creep properties and cyclic creep response of a thin film piezoelectric polymer polyvinylidene fluoride (PVDF) is presented. The development of a constitutive creep-fatigue interaction model to predict the durability and service life of electroactive polymers is discussed. A novel method is proposed to predict damage accumulation and fatigue life of polymers under oyclic loading conditions in the presence of creep. The study provides a basis for ongoing research initiatives at the NASA Kennedy Space Center in the pursuit of new technologies using EAP as active elements for lunar exploration systems.
NASA Technical Reports Server (NTRS)
Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.
1997-01-01
The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. Such long life requirements necessitate subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this work is to present a design methodology for predicting the lifetimes of structural components subjected to multiaxial creep loading. This methodology utilizes commercially available finite element packages and takes into account the time varying creep stress distributions (stress relaxation). In this methodology, the creep life of a component is divided into short time steps, during which, the stress and strain distributions are assumed constant. The damage, D, is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. For components subjected to predominantly tensile loading, failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity.
Creep-Fatigue Interaction and Cyclic Strain Analysis in P92 Steel Based on Test
NASA Astrophysics Data System (ADS)
Ji, Dongmei; Zhang, Lai-Chang; Ren, Jianxing; Wang, Dexian
2015-04-01
This work focused on the interaction of creep and fatigue and cyclic strain analysis in high-chromium ferritic P92 steel based on load-controlled creep-fatigue (CF) tests and conventional creep test at 873 K. Mechanical testing shows that the cyclic load inhibits the propagation of creep damage in the P92 steel and CF interaction becomes more severe with the decrease in the holding period duration and stress ratio. These results are also verified by the analysis of cyclic strain. The fatigue lifetime reduces with the increasing of the holding period duration and it does not reduce much with the increasing stress ratio especially under the conditions of long holding period duration. The cyclic strains (i.e., the strain range and creep strain) of CF tests consist of three stages, which is the same as those for the conventional creep behavior. The microscopic fracture surface observations illustrated that two different kinds of voids are observed at the fracture surfaces and Laves phase precipitates at the bottom of the voids.
Computer program for predicting creep behavior of bodies of revolution
NASA Technical Reports Server (NTRS)
Adams, R.; Greenbaum, G.
1971-01-01
Computer program, CRAB, uses finite-element method to calculate creep behavior and predict steady-state stresses in an arbitrary body of revolution subjected to a time-dependent axisymmetric load. Creep strains follow a time hardening law and a Prandtl-Reuss stress-strain relationship.
Tensile and compressive creep behavior of extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H.; The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240; Wang, Q.D., E-mail: wangqudong@sjtu.edu.cn
2015-01-15
The tensile and compressive creep behavior of an extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy was investigated at temperatures ranging from 200 °C to 300 °C and under stresses ranging from 30 MPa to 120 MPa. There existed an asymmetry in the tensile and compressive creep properties. The minimum creep rate of the alloy was slightly greater in tension than in compression. The measured values of the transient strain and initial creep rate in compression were greater than those in tension. The creep stress exponent was approximately 2.5 at low temperatures (T < 250 °C) and 3.4 at higher temperatures both in tensionmore » and in compression. The compression creep activation energy at low temperatures and high temperatures was 83.4 and 184.3 kJ/mol respectively, while one activation energy (184 kJ/mol) represented the tensile–creep behavior over the temperature range examined. Dislocation creep was suggested to be the main mechanism in tensile creep and in the high-temperature regime in compressive creep, while grain boundary sliding was suggested to dominate in the low-temperature regime in compressive creep. Precipitate free zones were observed near grain boundaries perpendicular to the loading direction in tension and parallel to the loading direction in compression. Electron backscattered diffraction analysis revealed that the texture changed slightly during creep. Non-basal slip was suggested to contribute to the deformation after basal slip was introduced. In the tensile–creep ruptured specimens, intergranular cracks were mainly observed at general high-angle boundaries. - Highlights: • Creep behavior of an extruded Mg–RE alloy was characterized by EBSD. • T5 aging treatment enhanced the tension–compression creep asymmetry. • The grains grew slightly during tensile creep, but not for compressive creep. • Precipitate free zones (PFZs) were observed at specific grain boundaries. • Intergranular fracture was dominant and cracks mainly originated at GHABs.« less
The effect of creep on human lumbar intervertebral disk impact mechanics.
Jamison, David; Marcolongo, Michele S
2014-03-01
The intervertebral disk (IVD) is a highly hydrated tissue, with interstitial fluid making up 80% of the wet weight of the nucleus pulposus (NP), and 70% of the annulus fibrosus (AF). It has often been modeled as a biphasic material, consisting of both a solid and fluid phase. The inherent porosity and osmotic potential of the disk causes an efflux of fluid while under constant load, which leads to a continuous displacement phenomenon known as creep. IVD compressive stiffness increases and NP pressure decreases as a result of creep displacement. Though the effects of creep on disk mechanics have been studied extensively, it has been limited to nonimpact loading conditions. The goal of this study is to better understand the influence of creep and fluid loss on IVD impact mechanics. Twenty-four human lumbar disk samples were divided into six groups according to the length of time they underwent creep (tcreep = 0, 3, 6, 9, 12, 15 h) under a constant compressive load of 400 N. At the end of tcreep, each disk was subjected to a sequence of impact loads of varying durations (timp = 80, 160, 320, 400, 600, 800, 1000 ms). Energy dissipation (ΔE), stiffness in the toe (ktoe) and linear (klin) regions, and neutral zone (NZ) were measured. Analyzing correlations with tcreep, there was a positive correlation with ΔE and NZ, along with a negative correlation with ktoe. There was no strong correlation between tcreep and klin. The data suggest that the IVD mechanical response to impact loading conditions is altered by fluid content and may result in a disk that exhibits less clinical stability and transfers more load to the AF. This could have implications for risk of diskogenic pain as a function of time of day or tissue hydration.
Doser, D.I.; Olsen, K.B.; Pollitz, F.F.; Stein, R.S.; Toda, S.
2009-01-01
The occurrence of a right-lateral strike-slip earthquake in 1911 is inconsistent with the calculated 0.2-2.5 bar static stress decrease imparted by the 1906 rupture at that location on the Calaveras fault, and 5 yr of calculated post-1906 viscoelastic rebound does little to reload the fault. We have used all available first-motion, body-wave, and surface-wave data to explore possible focal mechanisms for the 1911 earthquake. We find that the event was most likely a right-lateral strikeslip event on the Calaveras fault, larger than, but otherwise resembling, the 1984 Mw 6.1 Morgan Hill earthquake in roughly the same location. Unfortunately, we could recover no unambiguous surface fault offset or geodetic strain data to corroborate the seismic analysis despite an exhaustive archival search. We calculated the static and dynamic Coulomb stress changes for three 1906 source models to understand stress transfer to the 1911 site. In contrast to the static stress shadow, the peak dynamic Coulomb stress imparted by the 1906 rupture promoted failure at the site of the 1911 earthquake by 1.4-5.8 bar. Perhaps because the sample is small and the aftershocks are poorly located, we find no correlation of 1906 aftershock frequency or magnitude with the peak dynamic stress, although all aftershocks sustained a calculated dynamic stress of ???3 bar. Just 20 km to the south of the 1911 epicenter, we find that surface creep of the Calaveras fault at Hollister paused for ~17 yr after 1906, about the expected delay for the calculated static stress drop imparted by the 1906 earthquake when San Andreas fault postseismic creep and viscoelastic relaxation are included. Thus, the 1911 earthquake may have been promoted by the transient dynamic stresses, while Calaveras fault creep 20 km to the south appears to have been inhibited by the static stress changes.
Creep and fatigue behavior of a novel 2-component paste-like formulation of acrylic bone cements.
Köster, Ulrike; Jaeger, Raimund; Bardts, Mareike; Wahnes, Christian; Büchner, Hubert; Kühn, Klaus-Dieter; Vogt, Sebastian
2013-06-01
The fatigue and creep performance of two novel acrylic bone cement formulations (one bone cement without antibiotics, one with antibiotics) was compared to the performance of clinically used bone cements (Osteopal V, Palacos R, Simplex P, SmartSet GHV, Palacos R+G and CMW1 with Gentamicin). The preparation of the novel bone cement formulations involves the mixing of two paste-like substances in a static mixer integrated into the cartridge which is used to apply the bone cement. The fatigue performance of the two novel bone cement formulations is comparable to the performance of the reference bone cements. The creep compliance of the bone cements is significantly influenced by the effects of physical ageing. The model parameters of Struik's creep law are used to compare the creep behavior of different bone cements. The novel 2-component paste-like bone cement formulations are in the group of bone cements which exhibit a higher creep resistance.
Effet de la poudre de verre sur le fluage du C-S-H
NASA Astrophysics Data System (ADS)
Danilova, Maryna
Glass is a unique inert material that could be recycled many times without changing its physical and chemical properties. Nevertheless, for some reason, large quantities of glass are still not recycled and therefore are stored as a waste. Its alternative recycling has become, since long, a major environmental problem. Moreover, glass is a potentially useful material for the development of ecological concrete, consequently, this way valorization seems to be imminent. In this research, characterization of the creep of concrete incorporating waste glass in powder form, i.e. glass powder (GP) as a supplementary cementitious material (GP-concrete) was carried out at a macro- and nanolevels. First, results from experimental study on the under load behaviour of GP-concrete are presented. Different types of strain occurring under load or after unload were discussed: quasi-instantaneous deformation, total mechanical deformation due to the maintained uniaxial compressive load during 1 year, total creep, basic creep, elastic recovery and total recovery. Shrinkage under drying conditions and endogenous shrinkage were also studied. After 1 year creep, the effects of constant load and drying on residual strength were also examined. A comparison was made concerning the final state of the porosity. Afterwards, the thesis reveals the results of tests conducted on the cement paste, going down to its composition and properties of the hydrated phases, in particular of calcium silicate hydrates (C-S-H). All of this, in order to conclude on the harmlessness use of GP regarding to the creep. Keywords : Glass powder, Air-entrained concrete, Creep, Shrinkage, C-S-H, Nanoindentation
Creep behaviour and creep mechanisms of normal and healing ligaments
NASA Astrophysics Data System (ADS)
Thornton, Gail Marilyn
Patients with knee ligament injuries often undergo ligament reconstructions to restore joint stability and, potentially, abate osteoarthritis. Careful literature review suggests that in 10% to 40% of these patients the graft tissue "stretches out". Some graft elongation is likely due to creep (increased elongation of tissue under repeated or sustained load). Quantifying creep behaviour and identifying creep mechanisms in both normal and healing ligaments is important for finding clinically relevant means to prevent creep. Ligament creep was accurately predicted using a novel yet simple structural model that incorporated both collagen fibre recruitment and fibre creep. Using the inverse stress relaxation function to model fibre creep in conjunction with fibre recruitment produced a superior prediction of ligament creep than that obtained from the inverse stress relaxation function alone. This implied mechanistic role of fibre recruitment during creep was supported using a new approach to quantify crimp patterns at stresses in the toe region (increasing stiffness) and linear region (constant stiffness) of the stress-strain curve. Ligament creep was relatively insensitive to increases in stress in the toe region; however, creep strain increased significantly when tested at the linear region stress. Concomitantly, fibre recruitment was evident at the toe region stresses; however, recruitment was limited at the linear region stress. Elevating the water content of normal ligament using phosphate buffered saline increased the creep response. Therefore, both water content and fibre recruitment are important mechanistic factors involved in creep of normal ligaments. Ligament scars had inferior creep behaviour compared to normal ligaments even after 14 weeks. In addition to inferior collagen properties affecting fibre recruitment and increased water content, increased glycosaminoglycan content and flaws in scar tissue were implicated as potential mechanisms of scar creep. Similarly, ligament autografts had persistently abnormal creep behaviour and creep recovery after 2 years likely due to infiltration by scar tissue. Short-term immobilization of autografts had long-term detrimental consequences perhaps due to re-injury of the graft at remobilization. Treatments that restore normal properties to these mechanistic factors in order to control creep would improve joint healing by restoring joint kinematics and maintaining normal joint loading.
NASA Astrophysics Data System (ADS)
Ji, Dongmei; Ren, Jianxing; Zhang, Lai-Chang
2016-11-01
A novel creep-fatigue life prediction model was deduced based on an expression of the strain energy density in this study. In order to obtain the expression of the strain energy density, the load-controlled creep-fatigue (CF) tests of P92 steel at 873 K were carried out. Cyclic strain of P92 steel under CF load was divided into elastic strain, applying and unloading plastic strain, creep strain, and anelastic strain. Analysis of cyclic strain indicates that the damage process of P92 steel under CF load consists of three stages, similar to pure creep. According to the characteristics of the strains above, an expression was defined to describe the strain energy density for each cycle. The strain energy density at stable stage is inversely proportional to the total strain energy density dissipated by P92 steel. However, the total strain energy densities under different test conditions are proportional to the fatigue life. Therefore, the expression of the strain energy density at stable stage was chosen to predict the fatigue life. The CF experimental data on P92 steel were employed to verify the rationality of the novel model. The model obtained from the load-controlled CF test of P92 steel with short holding time could predict the fatigue life of P92 steel with long holding time.
Creep behavior and in-depth microstructural characterization of dissimilar joints
Kauffmann, F; Klein, T; Klenk, A; Maile, K
2013-01-01
The 700 °C power plants currently under development will utilize Ni-base alloys such as alloy 617 for components to be operated at temperatures >650 °C. Due to economic reasons for components or parts of components which are subjected to temperatures <650 °C, 2% Cr or 9–12% Cr steels is used, depending on the required mechanical properties. This makes the dissimilar joining of Ni-base alloys and Cr steels a necessity in these plants. Experimental investigations show that these joints have to be identified as weak points with regard to damage development under creep and creep-fatigue loading. The present investigation focuses on welds between the alloy 617 and 2% Cr steel. Under creep load the fracture occurs near the fusion line between the 2% Cr steel base metal and alloy 617 weld metal. To explain the reasons for this fracture location, the microstructure of this fusion line was investigated using TEM and FIB techniques after welding and after creep loading. The TEM investigations have shown a small zone in the weld metal near the fusion line exhibiting chromium depletion and clearly reduced amounts of chromium carbides, leading to a weakening of this zone. PMID:27877551
Hindsight bias doesn't always come easy: causal models, cognitive effort, and creeping determinism.
Nestler, Steffen; Blank, Hartmut; von Collani, Gernot
2008-09-01
Creeping determinism, a form of hindsight bias, refers to people's hindsight perceptions of events as being determined or inevitable. This article proposes, on the basis of a causal-model theory of creeping determinism, that the underlying processes are effortful, and hence creeping determinism should disappear when individuals lack the cognitive resources to make sense of an outcome. In Experiments 1 and 2, participants were asked to read a scenario while they were under either low or high processing load. Participants who had the cognitive resources to make sense of the outcome perceived it as more probable and necessary than did participants under high processing load or participants who did not receive outcome information. Experiment 3 was designed to separate 2 postulated subprocesses and showed that the attenuating effect of processing load on hindsight bias is not due to a disruption of the retrieval of potential causal antecedents but to a disruption of their evaluation. Together the 3 experiments show that the processes underlying creeping determinism are effortful, and they highlight the crucial role of causal reasoning in the perception of past events. (c) 2008 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Yankovskii, A. P.
2017-09-01
The creep of homogenous and hybrid composite beams of an irregular laminar fibrous structure is investigated. The beams consist of thin walls and flanges (load-carrying layers). The walls may be reinforced longitudinally or crosswise in the plane, and the load-carrying layers are reinforced in the longitudinal direction. The mechanical behavior of phase materials is described by the Rabotnov nonlinear hereditary theory of creep taking into account their possible different resistance to tension and compression. On the basis of hypotheses of the Timoshenko theory, with using the method of time steps, a problem is formulated for the inelastic bending deformation of such beams with account of the weakened resistance of their walls to the transverse shear. It is shown that, at discrete instants of time, the mechanical behavior of such structures can formally be described by the governing relations for composite beams made of nonlinear elastic anisotropic materials with a known initial stress state. The method of successive iterations, similar to the method of variable parameters of elasticity, is used to linearize the boundary-value problem at each instant of time. The bending deformation is investigated for homogeneous and reinforced cantilever and simply supported beams in creep under the action of a uniformly distributed transverse load. The cross sections of the beams considered are I-shaped. It is found that the use of the classical theory for such beams leads to the prediction of indefensibly underestimated flexibility, especially in long-term loading. It is shown that, in beams with reinforced load-carrying layers, the creep mainly develops due to the shear strains of walls. It is found that, in short- and long-term loadings of composite beams, the reinforcement structures rational by the criterion of minimum flexibility are different.
Impact of High Temperature Creep on the Buckling of Axially Compressed Steel Members
NASA Astrophysics Data System (ADS)
Włóka, Agata; Pawłowski, Kamil; Świerzko, Robert
2017-10-01
The paper presents results of the laboratory tests of the impact of creep on the buckling of axially compressed steel members at elevated temperatures. Tests were conducted on samples prepared of normal strength steel (S235JR) and high strength steel (S355J2). Samples were made in the form of a prismatic bar of a rectangular cross section 12 x 30 mm and a length of 500 mm. Support type of the specimens during tests was hinged on both ends. The tests were done at 600, 700 and 800°C. Experiments were carried out at static loads corresponding to values 0,8Ncr,T, 0,9Ncr,T, 1,0Ngr,T, where Ncr,T was theoretical value of Euler’s critical load at given temperature. Short-term creep analyses were performed in the universal testing machine Instron/Satec KN 600 equipped with a furnace for high-temperature testing type SF-16 2230, that enables testing at temperatures up to 1200°C. Temperature of the sample placed inside the furnace was verified and recorded with use of the compactRIO cRIO-9076 controller, equipped with a module for the connection of NI 9211 and K-type thermocouples. The system for the measurement and recording of the temperature of the analysed samples operated in the LabVIEW software environment. To measure lateral and longitudinal displacements LVTD Solatron ACR 100 displacement transducer was used. During the tests, the samples were heated to the given temperature (600, 700 or 800°C) and then subjected to a constant compressive load. During each test, for each sample following data was registered: the temperature on the surface of samples, longitudinal and lateral displacements in the middle of the sample. Basing on the conducted tests it was noted, for both analysed steel types, at the temperature of 800°C, growth of lateral displacements due to creep was very rapid, and tested elements were losing bearing capacity over the period of tens to hundreds of seconds, depending on stress level and the grade of the steel. At a temperature of 700°C growth of lateral displacements was much slower and the total loss of the bearing capacity of tested samples has occurred after 2 to 5 hours. At the temperature of 600°C samples did not show significant increments of lateral displacements at the test duration more than 6 hours, while maintaining throughout the test rectilinear form.
Müller, Michael Thomas; Pötzsch, Hendrik Florian; Gohs, Uwe; Heinrich, Gert
2018-06-25
An electromechanical response behavior is realized by nanostructuring the glass fiber interphase with different highly electrically conductive carbon allotropes like carbon nanotubes (CNT), graphene nanoplatelets (GNP), or conductive carbon black (CB). The operational capability of these multifunctional glass fibers for an online structural-health monitoring is demonstrated in endless glass fiber-reinforced polypropylene. The electromechanical response behavior, during a static or dynamic three-point bending test of various carbon modifications, shows qualitative differences in the signal quality and sensitivity due to the different aspect ratios of the nanoparticles and the associated electrically conductive network densities in the interphase. Depending on the embedding position within the glass fiber-reinforced composite compression, shear and tension loadings of the fibers can be distinguished by different characteristics of the corresponding electrical signal. The occurrence of irreversible signal changes during the dynamic loading can be attributed to filler reorientation processes caused by polymer creeping or by destruction of electrically conductive paths by cracks in the glass fiber interphase.
NASA Astrophysics Data System (ADS)
Said, Magdi A.
2004-01-01
The assessment of creep and dynamic response behaviors on materials intended for ultra long duration balloon (ULDB) applications is essential. The first provides needed information for design and fabrication. The second ensures that the film is sufficiently tough to survive the dynamic events during launch and ascent. Characterization and assessment of these two important parameters are discussed in this paper. Visco-elastic behavior of materials in a loaded structure, such as the ULDB film change their geometry significantly over time under load causing possible changes in the load path and the stress distribution. These changes must be held in check to satisfy the functional requirements of the structure over its service life. Typically, the balloon experiences during its service life various environmental conditions each with a different creep response. These are characterized by a simplified load temperature history for the purpose of lifetime response assessment. At mid-latitudes a significant portion of the service life is spent at night, i.e., at low temperature and low load; for the ULDB film this night-time contribution to creep is negligible. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This paper presents the creep behavior of the ULDB film as a function of load, temperature, and time along with an overview of its implementation in the design. In addition, it presents a quantitative assessment on the toughness of the material under dynamic "Snatch" loading.
Creep-Fatigue Failure Diagnosis
Holdsworth, Stuart
2015-01-01
Failure diagnosis invariably involves consideration of both associated material condition and the results of a mechanical analysis of prior operating history. This Review focuses on these aspects with particular reference to creep-fatigue failure diagnosis. Creep-fatigue cracking can be due to a spectrum of loading conditions ranging from pure cyclic to mainly steady loading with infrequent off-load transients. These require a range of mechanical analysis approaches, a number of which are reviewed. The microstructural information revealing material condition can vary with alloy class. In practice, the detail of the consequent cracking mechanism(s) can be camouflaged by oxidation at high temperatures, although the presence of oxide on fracture surfaces can be used to date events leading to failure. Routine laboratory specimen post-test examination is strongly recommended to characterise the detail of deformation and damage accumulation under known and well-controlled loading conditions to improve the effectiveness and efficiency of failure diagnosis. PMID:28793676
NASA Astrophysics Data System (ADS)
Said, M.
Pumpkin type super pressure balloons require much less stringent mechanical requirements on the envelope film material when compared to spherical super pressure type balloons. However, since suitable thin films are typically viscoelastic in nature, their creep characteristics must be fully characterized and must not exceed specific and predetermined design limits. Proper assessment of materials limits to meet these design limits requires creep-load-temperature data that characterizes the performance of the material over a time that exceeds the duration of the design service life by some specified margin. Contrary to the behavior of materials with purely elastic response, visco-elastic materials such as these considered for the ULDB design, change their geometry under sustained loading over time. This change is usually reflected by exhibiting a significant visco-elastic component over the service life of the mission. For that regime of large visco-elastic response, where the material is highly nonlinear, a certain load-temperature threshold can be reached where the creep is limited by an asymptote that depends on both the temperature and load level. Such creep is recoverable, although the recovery period may be much longer than the 100 day design service life of the ULDB structure plus the factor of safety required for the design. For a typical flight, the most significant creep occurs at the highest temperature, which also produces the highest internal pressure. At mid- latitudes a significant portion of the service life is spent at night, i.e. at low temperature and low load; for the ULDB film, this nighttime contribution to creep is insignificant in comparison to any daytime contribution. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This response behavior must be sufficiently characterized to serve the needs of the structural design and performance predictions of the vehicle in service. In this work, a special emphasis will be given to the creep and dynamic characteristics of selected coextruded films and their dependence on the loading level and temperature. Preliminary testing has suggested t at the creep behavior of theh coextruded linear low density resin films is highly dependent on temperature and that the dynamic response depends on the make up of the composite film. In addition, the paper will, in general, highlight the process of qualify ing thin films for the pumpkin class of super pressure balloons.
A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite
NASA Astrophysics Data System (ADS)
Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.
1992-05-01
A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.
A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite
NASA Technical Reports Server (NTRS)
Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.
1992-01-01
A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.
Numerical-graphical method for describing the creep of damaged highly filled polymer materials
NASA Astrophysics Data System (ADS)
Bykov, D. L.; Martynova, E. D.; Mel'nikov, V. P.
2015-09-01
A method for describing the creep behavior until fracture of a highly filled polymer material previously damaged in preliminary tests is proposed. The constitutive relations are the relations of nonlinear endochronic theory of aging viscoelastic materials (NETAVEM) [1]. The numerical-graphical method for identifying the functions occurring in NETAVEM, which was proposed in [2] for describing loading processes at a constant strain rate, is used here for the first time in creep theory. We use the results of experiments with undamaged and preliminary damaged specimens under the action of the same constant tensile loads. The creep kernel is determined in experiments with an undamaged specimen. The reduced time function contained in NETAVEM is determined from the position of points corresponding to the same values of strain on the creep curves of the damaged and undamaged specimens. An integral equation is solved to obtain the aging function, and then the viscosity function is determined. The knowledge of all functions contained in the constitutive relations permits solving the creep problem for products manufactured from a highly filled polymer material.
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Veazie, David R.; Brinson, L. Catherine
1996-01-01
Experimental and analytical methods were used to investigate the similarities and differences of the effects of physical aging on creep compliance of IM7/K3B composite loaded in tension and compression. Two matrix dominated loading modes, shear and transverse, were investigated for two load cases, tension and compression. The tests, run over a range of sub-glass transition temperatures, provided material constants, material master curves and aging related parameters. Comparing results from the short-term data indicated that although trends in the data with respect to aging time and aging temperature are similar, differences exist due to load direction and mode. The analytical model used for predicting long-term behavior using short-term data as input worked equally as well for the tension or compression loaded cases. Comparison of the loading modes indicated that the predictive model provided more accurate long term predictions for the shear mode as compared to the transverse mode. Parametric studies showed the usefulness of the predictive model as a tool for investigating long-term performance and compliance acceleration due to temperature.
2012-01-19
specific dislocation reactions. Rae et al .[4,5,7] proposed micromechanisms for primary creep caused by SF shearing of c0 precipitates by ah112i...near the [0 0 1] was done by Matan et al .[3] They proposed a phenomenological creep model, which was adopted from Gilman’s dislocation density model...the original loading orientation). MacLachlan et al .[18 21] proposed a series of creep models for anisotropic creep of single-crystal superalloys. Their
A Continuum Damage Mechanics Model for the Static and Cyclic Fatigue of Cellular Composites
Huber, Otto
2017-01-01
The fatigue behavior of a cellular composite with an epoxy matrix and glass foam granules is analyzed and modeled by means of continuum damage mechanics. The investigated cellular composite is a particular type of composite foam, and is very similar to syntactic foams. In contrast to conventional syntactic foams constituted by hollow spherical particles (balloons), cellular glass, mineral, or metal place holders are combined with the matrix material (metal or polymer) in the case of cellular composites. A microstructural investigation of the damage behavior is performed using scanning electron microscopy. For the modeling of the fatigue behavior, the damage is separated into pure static and pure cyclic damage and described in terms of the stiffness loss of the material using damage models for cyclic and creep damage. Both models incorporate nonlinear accumulation and interaction of damage. A cycle jumping procedure is developed, which allows for a fast and accurate calculation of the damage evolution for constant load frequencies. The damage model is applied to examine the mean stress effect for cyclic fatigue and to investigate the frequency effect and the influence of the signal form in the case of static and cyclic damage interaction. The calculated lifetimes are in very good agreement with experimental results. PMID:28809806
Research on dynamic creep strain and settlement prediction under the subway vibration loading.
Luo, Junhui; Miao, Linchang
2016-01-01
This research aims to explore the dynamic characteristics and settlement prediction of soft soil. Accordingly, the dynamic shear modulus formula considering the vibration frequency was utilized and the dynamic triaxial test conducted to verify the validity of the formula. Subsequently, the formula was applied to the dynamic creep strain function, with the factors influencing the improved dynamic creep strain curve of soft soil being analyzed. Meanwhile, the variation law of dynamic stress with sampling depth was obtained through the finite element simulation of subway foundation. Furthermore, the improved dynamic creep strain curve of soil layer was determined based on the dynamic stress. Thereafter, it could to estimate the long-term settlement under subway vibration loading by norms. The results revealed that the dynamic shear modulus formula is straightforward and practical in terms of its application to the vibration frequency. The values predicted using the improved dynamic creep strain formula closed to the experimental values, whilst the estimating settlement closed to the measured values obtained in the field test.
NASA Astrophysics Data System (ADS)
Li, Xiaozhao; Shao, Zhushan
2016-07-01
The growth of subcritical cracks plays an important role in the creep of brittle rock. The stress path has a great influence on creep properties. A micromechanics-based model is presented to study the effect of the stress path on creep properties. The microcrack model of Ashby and Sammis, Charles' Law, and a new micro-macro relation are employed in our model. This new micro-macro relation is proposed by using the correlation between the micromechanical and macroscopic definition of damage. A stress path function is also introduced by the relationship between stress and time. Theoretical expressions of the stress-strain relationship and creep behavior are derived. The effects of confining pressure on the stress-strain relationship are studied. Crack initiation stress and peak stress are achieved under different confining pressures. The applied constant stress that could cause creep behavior is predicted. Creep properties are studied under the step loading of axial stress or the unloading of confining pressure. Rationality of the micromechanics-based model is verified by the experimental results of Jinping marble. Furthermore, the effects of model parameters and the unloading rate of confining pressure on creep behavior are analyzed. The coupling effect of step axial stress and confining pressure on creep failure is also discussed. The results provide implications on the deformation behavior and time-delayed rockburst mechanism caused by microcrack growth on surrounding rocks during deep underground excavations.
Creep behavior of sweetgum OSB: effect of load level and relative humidity
J.H. Pu; R.C. Tang; Chung-Yun Hse
1994-01-01
Flexural creep behavior of laboratory-fabricated sweetgum oriented strandboard (OSB). under constnat (65% and 95%) and cyclic (65% 95% at a 96-hr. frequency) relative humidity (RH) conditions at 75 F (23.9 C) is presented. Two levels (4.5% and 6.5%) of resin content (RC) of phenol-formaldehyde were used in fabricating the test panels. Two load levels (20% and...
Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause
NASA Astrophysics Data System (ADS)
Yang, Y. P.; Mohr, W. C.
2015-11-01
Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, <1 year, which has been a problem for a long time. The failure occurred in the weld joining an end bell to a roll shell and resulted in the complete 360° separation of the end bell from the roll shell. The heat transfer analysis was conducted to predict the temperature history of the roll by modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.
Creep and microstructural processes in a low-alloy 2.25%Cr1.6%W steel (ASTM Grade 23)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucharova, K.; Sklenicka, V., E-mail: sklen@ipm.cz; CEITEC — IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, CZ-616 62 Brno
2015-11-15
A low-alloy 2.25%Cr1%Mo steel (ASTM Grade 22) has been greatly improved by the substitution of almost all of the 1%Mo by 1.6%W. The improved material has been standardized as P/T23 steel (Fe–2.25Cr–1.6W–0.25V–0.05Nb–0.07C). The present investigation was conducted on T23 steel in an effort to obtain a more complete description and understanding of the role of the microstructural evolution and deformation processes in high-temperature creep. Constant load tensile creep tests were carried out in an argon atmosphere in the temperature range 500–650 °C at stresses ranging from 50 to 400 MPa. It was found that the diffusion in the matrix latticemore » is the creep-rate controlling process. The results of an extensive transmission electron microscopy (TEM) analysis programme to investigate microstructure evolution as a function of temperature are described and compared with the thermodynamic calculations using the software package Thermo-Calc. The significant creep-strength drop of T23 steel after long-term creep exposures can be explained by the decrease in dislocation hardening, precipitation hardening and solid solution hardening due to the instability of the microstructure at high temperature. - Highlights: • The constant load creep tests of T23 steel were carried out at 500–650 °C. • The stress exponents of the creep rate correspond to power law (dislocation) creep. • Diffusion in the matrix lattice is the creep-rate controlling process. • The microstructure instability is the main creep degradation process in T23 steel.« less
NASA Astrophysics Data System (ADS)
Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu
2016-09-01
Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.
Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu
2016-09-19
Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.
Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu
2016-01-01
Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors. PMID:27641908
Creep strain and creep-life prediction for alloy 718 using the omega method
NASA Astrophysics Data System (ADS)
Yeom, Jong-Taek; Kim, Jong-Yup; Na, Young-Sang; Park, Nho-Kwang
2003-12-01
The creep behavior of Alloy 718 was investigated in relation to the MPCs omega (Ω) method. To evaluate the creep model and determine material parameters, constant load creep tests were performed at different initial stresses in a temperature range between 550°C and 700°C. The imaginary initial strain rate ɛ limits^. _0 and omega (Ω), considered to be important variables in the model, were expressed as a function of initial stress and temperature. For these variables, power-law and hyperbolic sine-law equations were used as constitutive equations for the creep of Alloy 718. To consider the effect of γ″ coarsening leading to a radical drop of tensile strength and creep strength at temperatures above 650°C, different material constants at the temperatures above 650°C were applied. The reliability of the models was investigated in relation to the creep curve and creep life.
Indentation Creep Behavior of Nugget Zone of Friction Stir Welded 2014 Aluminum Alloy
NASA Astrophysics Data System (ADS)
Das, Jayashree; Robi, P. S.; Sankar, M. Ravi
2018-04-01
The present study is aimed at evaluating the creep behavior of the nugget zone of friction welded 2014 Aluminum alloy by indentation creep tests. Impression creep testing was carried out at different temperatures of 300°C, 350°C and 400 °C with stress 124.77MPa, 187.16MPa, 249.55 MPa using a 1.0 mm diameter WC indenter. Experiments were conducted till the curve enters the steady state creep region. Constitutive modeling of creep behavior was carried out considering the temperature, stress and steady state creep rate. Microstructural investigation of the crept specimen at 400°C temperature and 187.16 MPa load was carried out and found that the small precipitates accumulate along the grain boundaries at the favorable conditions of the creep temperature and stress, new precipitates evolve due to the ageing. The grains are broken and deformed due to the creep phenomena.
Little, Jesse S.; Khalsa, Partap S.
2005-01-01
There is a high incidence of low back pain (LBP) associated with occupations requiring sustained and/or repetitive lumbar flexion (SLF and RLF, respectively), which cause creep of the viscoelastic tissues. The purpose of this study was to determine the effect of creep on lumbar biomechanics and facet joint capsule (FJC) strain. Specimens were flexed for 10 cycles, to a maximum 10 Nm moment at L5-S1, before, immediately after, and 20 min after a 20-min sustained flexion at the same moment magnitude. The creep rates of SLF and RLF were also measured during each phase and compared to the creep rate predicted by the moment relaxation rate function of the lumbar spine. Both SLF and RLF resulted in significantly increased intervertebral motion, as well as significantly increased FJC strains at the L3-4 to L5-S1 joint levels. These parameters remained increased after the 20-min recovery. Creep during SLF occurred significantly faster than creep during RLF. The moment relaxation rate function was able to accurately predict the creep rate of the lumbar spine at the single moment tested. The data suggest that SLF and RLF result in immediate and residual laxity of the joint and stretch of the FJC, which could increase the potential for LBP. PMID:15868730
Effects of NaCl, pH, and Potential on the Static Creep Behavior of AA1100
NASA Astrophysics Data System (ADS)
Wan, Quanhe; Quesnel, David J.
2013-03-01
The creep rates of AA1100 are measured during exposure to a variety of aggressive environments. NaCl solutions of various concentrations have no influence on the steady-state creep behavior, producing creep rates comparable to those measured in lab air at room temperature. However, after an initial incubation period of steady strain rate, a dramatic increase of strain rate is observed on exposure to HCl solutions and NaOH solutions, as well as during cathodic polarization of specimens in NaCl solutions. Creep strain produces a continuous deformation and elongation of the sample surface that is comparable to slow strain rates at crack tips thought to control the kinetics of crack growth during stress corrosion cracking (SCC). In this experiment, we separate the strain and surface deformation from the complex geometry of the crack tip to better understand the processes at work. Based on this concept, two possible explanations for the environmental influences on creep strain rates are discussed relating to the anodic dissolution of the free surface and hydrogen influences on deformation mechanisms. Consistencies of pH dependence between corrosion creep and SCC at low pH prove a creep-involved SCC mechanism, while the discrepancies between corrosion creep behavior and previous SCC results at high pH indicate a rate-limit step change in the crack propagation of the SCC process.
NASA Astrophysics Data System (ADS)
Yankovskii, A. P.
2015-05-01
An indirect verification of a structural model describing the creep of a composite medium reinforced by honeycombs and made of nonlinear hereditary phase materials obeying the Rabotnov theory of creep is presented. It is shown that the structural model proposed is trustworthy and can be used in practical calculations. For different kinds of loading, creep curves for a honeycomb core made of a D16T aluminum alloy are calculated.
NASA Astrophysics Data System (ADS)
Han, Biao; Ma, Tianzhu; Lee, Daeyeon; Shenoy, Vivek; Han, Lin
This study aims to reveal unique nanoscale viscoelastic and viscoplastic properties of ionically linked polyelectrolyte networks. Layer-by-layer PAH/PAA complexes were tested by four continuous loading cycles in aqueous solutions. In each cycle, AFM-nanoindentation via a microspherical tip (R =5 μm) was applied up to 1 μN force, followed by a 30-60 sec hold at either a constant indentation depth to measure relaxation, or a constant force to measure creep. At a highly cross-linked, net neutral state (0.01M, pH 5.5), instantaneous modulus increased by 2.7-fold from first to last cycle, while the degree of relaxation (>95%) remain consistent. These results indicate repeated loading increases local cross-link density, while relaxation is consistently dominated by cross-link breaking and re-formation. In contrast, under creep, modulus increased by a similar 3.5-fold, and degree of creep is significantly attenuated from ~50% to 45% from first to last cycle. Results from creep suggest constant viscous flow of polymer chains in the absence of permanent anchorage. As a result, an irreversible deformation (~370nm) was observed after multiple creep cycles, suggesting the presence of viscoplasticity.
Sources of Variation in Creep Testing
NASA Technical Reports Server (NTRS)
Loewenthal, William S.; Ellis, David L.
2011-01-01
Creep rupture is an important material characteristic for the design of rocket engines. It was observed during the characterization of GRCop-84 that the complete data set had nearly 4 orders of magnitude of scatter. This scatter likely confounded attempts to determine how creep performance was influenced by manufacturing. It was unclear if this variation was from the testing, the material, or both. Sources of variation were examined by conducting tests on identically processed specimens at the same specified stresses and temperatures. Significant differences existed between the five constant-load creep frames. The specimen temperature was higher than the desired temperature by as much as 43 C. It was also observed that the temperature gradient was up to 44 C. Improved specimen temperature control minimized temperature variations. The data from additional tests demonstrated that the results from all five frames were comparable. The variation decreased to 1/2 order of magnitude from 2 orders of magnitude for the baseline data set. Independent determination of creep rates in a reference load frame closely matched the creep rates determined after the modifications. Testing in helium tended to decrease the sample temperature gradient, but helium was not a significant improvement over vacuum.
Creep behavior of sweetgum OSB: Effect of load level and relative humidity
J.H. Pu; R.C. Tang; Chung-Yun Hse
1994-01-01
flexural creep behavior of laboratory-fabricated sweetgum oriented strandboard (0SB), under constant (65% and 95%) and cyclic (65% ↔ 95% at a 96-hr. frequency) relative humidity (RH) conditions at 75°F(23.9°C) is presented. Two levels (4.5% and 6.5%) of resin content (RC) of phenol-formaldehyde were used in fabricating the test panels. Two load levels (20%...
Critical Speed of The Glass Glue Machine's Creep and Influence Factors Analysis
NASA Astrophysics Data System (ADS)
Yang, Jianxi; Huang, Jian; Wang, Liying; Shi, Jintai
When automatic glass glue machine works, two questions of the machine starting vibrating and stick-slip motion are existing. These problems should be solved. According to these questions, a glue machine's model for studying stick-slip is established. Based on the dynamics system describing of the model, mathematical expression is presented. The creep critical speed expression is constructed referring to existing research achievement and a new conclusion is found. The influencing factors of stiffness, dampness, mass, velocity, difference of static and kinetic coefficient of friction are analyzed through Matlab simulation. Research shows that reasonable choice of influence parameters can improve the creep phenomenon. These all supply the theory evidence for improving the machine's motion stability.
Modeling of Different Fiber Type and Content SiC/SiC Minicomposites Creep Behavior
NASA Technical Reports Server (NTRS)
Almansour, Amjad S.; Morscher, Gregory N.
2017-01-01
Silicon Carbide based Ceramic Matrix Composites (CMCs) are attractive materials for use in high-temperature applications in the aerospace and nuclear industries. However, creep damage mechanism in CMCs is the most dominant mechanism at elevated temperatures. Consequently, the tensile creep behavior of Hi-Nicalon, Hi-Nicalon Type S SiC fibers and Chemical vapor infiltrated Silicon Carbide matrix (CVI-SiC) were characterized and creep parameters were extracted from creep experiments. Some fiber creep tests were performed in inert environment at 1200 C on individual fibers. Creep behavior of different fiber content pristine and precracked Hi-Nicalon and Hi-Nicalon Type S reinforced minicomposites with BN interphases and CVI-SiC matrix were then modelled using the creep data found in this study and the literature and compared with creep experiments results for the pristine and precracked Hi-Nicalon and Hi-Nicalon Type S minicomposites. Finally, the effects of load-sharing and matrix cracking on CMC creep behavior will be discussed.
Onset of sediment transport is a continuous transition driven by fluid shear and granular creep.
Houssais, Morgane; Ortiz, Carlos P; Durian, Douglas J; Jerolmack, Douglas J
2015-03-09
Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain-grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow. This transition occurs inside the dense granular bed at a critical viscous number, similar to granular flows and colloidal suspensions and inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment transport, where 'bed load' is a dense granular flow bounded by creep below and suspension above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on hillslopes. Results provide new predictions for the onset and dynamics of sediment transport that challenge existing models.
NASA Astrophysics Data System (ADS)
Benson, P. M.; Fahrner, D.; Harnett, C. E.; Fazio, M.
2014-12-01
Time dependent deformation describes the process whereby brittle materials deform at a stress level below their short-term material strength (Ss), but over an extended time frame. Although generally well understood in engineering (where it is known as static fatigue or "creep"), knowledge of how rocks creep and fail has wide ramifications in areas as diverse as mine tunnel supports and the long term stability of critically loaded rock slopes. A particular hazard relates to the instability of volcano flanks. A large number of flank collapses are known such as Stromboli (Aeolian islands), Teide, and El Hierro (Canary Islands). Collapses on volcanic islands are especially complex as they necessarily involve the combination of active tectonics, heat, and fluids. Not only does the volcanic system generate stresses that reach close to the failure strength of the rocks involved, but when combined with active pore fluid the process of stress corrosion allows the rock mass to deform and creep at stresses far lower than Ss. Despite the obvious geological hazard that edifice failure poses, the phenomenon of creep in volcanic rocks at elevated temperatures has yet to be thoroughly investigated in a well controlled laboratory setting. We present new data using rocks taken from Stromboli, El Heirro and Teide volcanoes in order to better understand the interplay between the fundamental rock mechanics of these basalts and the effects of elevated temperature fluids (activating stress corrosion mechanisms). Experiments were conducted over short (30-60 minute) and long (8-10 hour) time scales. For this, we use the method of Heap et al., (2011) to impose a constant stress (creep) domain deformation monitored via non-contact axial displacement transducers. This is achieved via a conventional triaxial cell to impose shallow conditions of pressure (<25 MPa) and temperature (<200 °C), and equipped with a 3D laboratory seismicity array (known as acoustic emission, AE) to monitor the micro cracking due to the imposed deformation. By measuring the AE generated during deformation we are then able to apply fracture forecast models to predict, retrospectively, the time of failure. We find that higher temperatures increase the strain rate during creep for the same %Ss, and that the accuracy of the forecast does not change with increasing temperature.
Viscoelasticity and Creep Recovery of Polyimide Thin Films
1990-06-01
3931; (617) 253-0292. Accesion For NTIS CRA&I DTIC TAB Unannounced 0 JuslfIcation .... ’ ry (I’. . ,* VISCOELASTICITY AND CREEP RECOVERY OF POLYIMIDE...polyimide is subjected to sustained loads. Viscoelastic properties of materials are traditionally measured by uniaxial tests [4]. Creep, stress...structure The membrane fabrication and analysis is implemented in the environment of a previously reported CAD architecture [7,81, which uses a
J.B. Puthoff; J.E. Jakes; H. Cao; D.S. Stone
2009-01-01
The development of nanoindentation test systems with high data collection speeds has made possible a novel type of indentation creep test: broadband nanoindentation creep (BNC). Using the high density of data points generated and analysis techniques that can model the instantaneous projected indent area at all times during a constant-load indentation experiment, BNC...
The Physical Mechanism of Frictional Aging Revealed by Nanoindentation Creep
NASA Astrophysics Data System (ADS)
Thom, C.; Carpick, R. W.; Goldsby, D. L.
2017-12-01
A classical observation from rock friction experiments is that friction increases linearly with the logarithm of the time of stationary contact, a phenomenon sometimes referred to as aging. Aging is most often attributed to an increase in the real area of contact due to asperity creep. However, recent atomic force microscopy (AFM) experiments and molecular dynamics simulations suggest that time-dependent siloxane (Si—O—Si) bonding gives rise to aging in silica-silica contacts in the absence of plastic deformation. Determining whether an increase in contact `quantity' (due to creep), contact `quality' (due to chemical bonding), or another unknown mechanism causes aging is a challenging experimental task, despite its importance for developing a physical basis for rate and state friction laws. An intriguing observation is that aging is absent in friction experiments on quartz rocks and gouge at humidities <5% and returns upon exposure of the test specimens to humid air. This behavior has been attributed to the effects of water on asperity creep (via hydrolytic weakening) or on the adhesive strength of contacts. To discern between these possibilities, we have conducted nanoindentation experiments on single crystals of quartz to measure their indentation hardness and creep behavior at humidities of 2% to 50%, and in vacuum. Samples were loaded at 1000 mN/s to a peak load of 15, 40, or 400 mN, which was then held constant for 10 s. After the peak load is reached, the tip sinks into the material with time due to creep of the indentation contact. Our experiments reveal that there is no effect of varying humidity on either indentation hardness or indentation creep behavior over the full range of humidities investigated. If asperity creep were the dominant mechanism of frictional aging for quartz in the experiments cited above, then significant increases in hardness and decreases in the growth rate of indentation contacts at low humidities is expected, in stark contrast with our nanoindentation data. Our experiments indicate that asperity creep cannot be the cause of aging in quartz rocks, and suggest that chemical bonding may instead be the dominant mechanism of frictional aging.
Prediction of elemental creep. [steady state and cyclic data from regression analysis
NASA Technical Reports Server (NTRS)
Davis, J. W.; Rummler, D. R.
1975-01-01
Cyclic and steady-state creep tests were performed to provide data which were used to develop predictive equations. These equations, describing creep as a function of stress, temperature, and time, were developed through the use of a least squares regression analyses computer program for both the steady-state and cyclic data sets. Comparison of the data from the two types of tests, revealed that there was no significant difference between the cyclic and steady-state creep strains for the L-605 sheet under the experimental conditions investigated (for the same total time at load). Attempts to develop a single linear equation describing the combined steady-state and cyclic creep data resulted in standard errors of estimates higher than obtained for the individual data sets. A proposed approach to predict elemental creep in metals uses the cyclic creep equation and a computer program which applies strain and time hardening theories of creep accumulation.
The effects of confining pressure and stress difference on static fatigue of granite
NASA Technical Reports Server (NTRS)
Kranz, R. L.
1979-01-01
Samples of Barre granite were creep tested at room temperature at confining pressures up to 2 kilobars. The time to fracture increased with decreasing stress difference at every pressure, but the rate of change of fracture time with respect to the stress difference increased with pressure. At 87% of the short-term fracture strength, the time to fracture increased from about 4 minutes at atmospheric pressure to longer than one day at 2 Kb of pressure. The inelastic volumetric strain at the onset of tertiary creep, delta, was constant within 25% at any particular pressure but increased with pressure in a manner analogous to the increase of strength with pressure. At the onset of tertiary creep, the number of cracks and their average length increased with pressure. The crack angle and crack length spectra were quite similar, however, at each pressure at the onset of tertiary creep.
Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation
NASA Astrophysics Data System (ADS)
Hashiba, K.; Fukui, K.
2016-07-01
To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.
Optimum Design of a Ceramic Tensile Creep Specimen Using a Finite Element Method
Wang, Z.; Chiang, C. K.; Chuang, T.-J.
1997-01-01
An optimization procedure for designing a ceramic tensile creep specimen to minimize stress concentration is carried out using a finite element method. The effect of pin loading and the specimen geometry are considered in the stress distribution calculations. A growing contact zone between the pin and the specimen has been incorporated into the problem solution scheme as the load is increased to its full value. The optimization procedures are performed for the specimen, and all design variables including pinhole location and pinhole diameter, head width, neck radius, and gauge length are determined based on a set of constraints imposed on the problem. In addition, for the purpose of assessing the possibility of delayed failure outside the gage section, power-law creep in the tensile specimen is considered in the analysis. Using a particular grade of advanced ceramics as an example, it is found that if the specimen is not designed properly, significant creep deformation and stress redistribution may occur in the head of the specimen resulting in undesirable (delayed) head failure of the specimen during the creep test. PMID:27805126
Shelly, David R.; Johnson, Kaj M.
2011-01-01
The 2003 magnitude 6.5 San Simeon and the 2004 magnitude 6.0 Parkfield earthquakes induced small, but significant, static stress changes in the lower crust on the central San Andreas fault, where recently detected tectonic tremor sources provide new constraints on deep fault creep processes. We find that these earthquakes affect tremor rates very differently, consistent with their differing transferred static shear stresses. The San Simeon event appears to have cast a "stress shadow" north of Parkfield, where tremor activity was stifled for 3-6 weeks. In contrast, the 2004 Parkfield earthquake dramatically increased tremor activity rates both north and south of Parkfield, allowing us to track deep postseismic slip. Following this event, rates initially increased by up to two orders of magnitude for the relatively shallow tremor sources closest to the rupture, with activity in some sources persisting above background rates for more than a year. We also observe strong depth dependence in tremor recurrence patterns, with shallower sources generally exhibiting larger, less-frequent bursts, possibly signaling a transition toward steady creep with increasing temperature and depth. Copyright 2011 by the American Geophysical Union.
Creep Behavior of Near-Stoichiometric Polycrystalline Binary NiAl
NASA Technical Reports Server (NTRS)
Raj, S. V.
2002-01-01
New and published constant load creep and constant engineering strain rate data on near-stoichiometric binary NiAl in the intermediate temperature range 700 to 1300 K are reviewed. Both normal and inverse primary creep curves are observed depending on stress and temperature. Other characteristics relating to creep of NiAl involving grain size, stress and temperature dependence are critically examined and discussed. At stresses below 25 MPa and temperatures above 1000 K, a new grain boundary sliding mechanism was observed with n approx. 2, Qc approx. 100 kJ/ mol and a grain size exponent of about 2. It is demonstrated that Coble creep and accommodated grain boundary sliding models fail to predict the experimental creep rates by several orders of magnitude.
Autonomous Filling of Grain-Boundary Cavities during Creep Loading in Fe-Mo Alloys
NASA Astrophysics Data System (ADS)
Zhang, S.; Fang, H.; Gramsma, M. E.; Kwakernaak, C.; Sloof, W. G.; Tichelaar, F. D.; Kuzmina, M.; Herbig, M.; Raabe, D.; Brück, E.; van der Zwaag, S.; van Dijk, N. H.
2016-10-01
We have investigated the autonomous repair of creep damage by site-selective precipitation in a binary Fe-Mo alloy (6.2 wt pct Mo) during constant-stress creep tests at temperatures of 813 K, 823 K, and 838 K (540 °C, 550 °C, and 565 °C). Scanning electron microscopy studies on the morphology of the creep-failed samples reveal irregularly formed deposits that show a close spatial correlation with the creep cavities, indicating the filling of creep cavities at grain boundaries by precipitation of the Fe2Mo Laves phase. Complementary transmission electron microscopy and atom probe tomography have been used to characterize the precipitation mechanism and the segregation at grain boundaries in detail.
Probabilistic Structural Analysis Methods (PSAM) for Select Space Propulsion System Components
NASA Technical Reports Server (NTRS)
1999-01-01
Probabilistic Structural Analysis Methods (PSAM) are described for the probabilistic structural analysis of engine components for current and future space propulsion systems. Components for these systems are subjected to stochastic thermomechanical launch loads. Uncertainties or randomness also occurs in material properties, structural geometry, and boundary conditions. Material property stochasticity, such as in modulus of elasticity or yield strength, exists in every structure and is a consequence of variations in material composition and manufacturing processes. Procedures are outlined for computing the probabilistic structural response or reliability of the structural components. The response variables include static or dynamic deflections, strains, and stresses at one or several locations, natural frequencies, fatigue or creep life, etc. Sample cases illustrates how the PSAM methods and codes simulate input uncertainties and compute probabilistic response or reliability using a finite element model with probabilistic methods.
Modeling creep behavior of fiber composites
NASA Technical Reports Server (NTRS)
Chen, J. L.; Sun, C. T.
1988-01-01
A micromechanical model for the creep behavior of fiber composites is developed based on a typical cell consisting of a fiber and the surrounding matrix. The fiber is assumed to be linearly elastic and the matrix nonlinearly viscous. The creep strain rate in the matrix is assumed to be a function of stress. The nominal stress-strain relations are derived in the form of differential equations which are solved numerically for off-axis specimens under uniaxial loading. A potential function and the associated effective stress and effective creep strain rates are introduced to simplify the orthotropic relations.
Effect of simulated sampling disturbance on creep behaviour of rock salt
NASA Astrophysics Data System (ADS)
Guessous, Z.; Gill, D. E.; Ladanyi, B.
1987-10-01
This article presents the results of an experimental study of creep behaviour of a rock salt under uniaxial compression as a function of prestrain, simulating sampling disturbance. The prestrain was produced by radial compressive loading of the specimens prior to creep testing. The tests were conducted on an artifical salt to avoid excessive scattering of the results. The results obtained from several series of single-stage creep tests show that, at short-term, the creep response of salt is strongly affected by the preloading history of samples. The nature of this effect depends upon the intensity of radial compressive preloading, and its magnitude is a function of the creep stress level. The effect, however, decreases with increasing plastic deformation, indicating that large creep strains may eventually lead to a complete loss of preloading memory.
Effects of Aging-Time Reference on the Long Term Behavior of the IM7/K3B Composite
NASA Technical Reports Server (NTRS)
Veazie, David R.; Gates, Thomas S.
1998-01-01
An analytical study was undertaken to investigate the effects of the time-based shift reference on the long term behavior of the graphite reinforced thermoplastic polyimide composite IM7/K3B at elevated temperature. Creep compliance and the effects of physical aging on the time dependent response was measured for uniaxial loading at several isothermal conditions below the glass transition temperature (T(sub g). Two matrix dominated loading modes, shear and transverse, were investigated in tension and compression. The momentary sequenced creep/aging curves were collapsed through a horizontal (time) shift using the shortest, middle and longest aging time curve as the reference curve. Linear viscoelasticity was used to characterize the creep/recovery behavior and superposition techniques were used to establish the physical aging related material constants. The use of effective time expressions in a laminated plate model allowed for the prediction of long term creep compliance. The effect of using different reference curves with time/aging-time superposition was most sensitive to the physical aging shift rate at lower test temperatures. Depending on the loading mode, the reference curve used can result in a more accurate long term prediction, especially at lower test temperatures.
Creep rupture of fiber bundles: A molecular dynamics investigation
NASA Astrophysics Data System (ADS)
Linga, G.; Ballone, P.; Hansen, Alex
2015-08-01
The creep deformation and eventual breaking of polymeric samples under a constant tensile load F is investigated by molecular dynamics based on a particle representation of the fiber bundle model. The results of the virtual testing of fibrous samples consisting of 40 000 particles arranged on Nc=400 chains reproduce characteristic stages seen in the experimental investigations of creep in polymeric materials. A logarithmic plot of the bundle lifetime τ versus load F displays a marked curvature, ruling out a simple power-law dependence of τ on F . A power law τ ˜F-4 , however, is recovered at high load. We discuss the role of reversible bond breaking and formation on the eventual fate of the sample and simulate a different type of creep testing, imposing a constant stress rate on the sample up to its breaking point. Our simulations, relying on a coarse-grained representation of the polymer structure, introduce new features into the standard fiber bundle model, such as real-time dynamics, inertia, and entropy, and open the way to more detailed models, aiming at material science aspects of polymeric fibers, investigated within a sound statistical mechanics framework.
Tensile, Creep, and Fatigue Behaviors of 3D-Printed Acrylonitrile Butadiene Styrene
NASA Astrophysics Data System (ADS)
Zhang, Hanyin; Cai, Linlin; Golub, Michael; Zhang, Yi; Yang, Xuehui; Schlarman, Kate; Zhang, Jing
2018-01-01
Acrylonitrile butadiene styrene (ABS) is a widely used thermoplastics in 3D printing. However, there is a lack of thorough investigation of the mechanical properties of 3D-printed ABS components, including orientation-dependent tensile strength and creep fatigue properties. In this work, a systematic characterization is conducted on the mechanical properties of 3D-printed ABS components. Specifically, the effect of printing orientation on the tensile and creep properties is investigated. The results show that, in tensile tests, the 0° printing orientation has the highest Young's modulus of 1.81 GPa, and ultimate strength of 224 MPa. In the creep test, the 90° printing orientation has the lowest k value of 0.2 in the plastics creep model, suggesting 90° is the most creep resistant direction. In the fatigue test, the average cycle number under load of 30 N is 3796 cycles. The average cycle number decreases to 128 cycles when the load is 60 N. Using the Paris law, with an estimated crack size of 0.75 mm, and stress intensity factor is varied from 352 to 700 N√ m, the derived fatigue crack growth rate is 0.0341 mm/cycle. This study provides important mechanical property data that is useful for applying 3D-printed ABS in engineering applications.
Laboratory tests for hot-mix asphalt characterization in Virginia.
DOT National Transportation Integrated Search
2005-01-01
This project reviewed existing laboratory methods for accurately describing the constitutive behavior of the mixes used in the Commonwealth of Virginia. Indirect tensile (IDT) strength, resilient modulus, static creep in the IDT and uniaxial modes, f...
Load and Time Dependence of Interfacial Chemical Bond-Induced Friction at the Nanoscale.
Tian, Kaiwen; Gosvami, Nitya N; Goldsby, David L; Liu, Yun; Szlufarska, Izabela; Carpick, Robert W
2017-02-17
Rate and state friction (RSF) laws are widely used empirical relationships that describe the macroscale frictional behavior of a broad range of materials, including rocks found in the seismogenic zone of Earth's crust. A fundamental aspect of the RSF laws is frictional "aging," where friction increases with the time of stationary contact due to asperity creep and/or interfacial strengthening. Recent atomic force microscope (AFM) experiments and simulations found that nanoscale silica contacts exhibit aging due to the progressive formation of interfacial chemical bonds. The role of normal load (and, thus, normal stress) on this interfacial chemical bond-induced (ICBI) friction is predicted to be significant but has not been examined experimentally. Here, we show using AFM that, for nanoscale ICBI friction of silica-silica interfaces, aging (the difference between the maximum static friction and the kinetic friction) increases approximately linearly with the product of the normal load and the log of the hold time. This behavior is attributed to the approximately linear dependence of the contact area on the load in the positive load regime before significant wear occurs, as inferred from sliding friction measurements. This implies that the average pressure, and thus the average bond formation rate, is load independent within the accessible load range. We also consider a more accurate nonlinear model for the contact area, from which we extract the activation volume and the average stress-free energy barrier to the aging process. Our work provides an approach for studying the load and time dependence of contact aging at the nanoscale and further establishes RSF laws for nanoscale asperity contacts.
Load and Time Dependence of Interfacial Chemical Bond-Induced Friction at the Nanoscale
NASA Astrophysics Data System (ADS)
Tian, Kaiwen; Gosvami, Nitya N.; Goldsby, David L.; Liu, Yun; Szlufarska, Izabela; Carpick, Robert W.
2017-02-01
Rate and state friction (RSF) laws are widely used empirical relationships that describe the macroscale frictional behavior of a broad range of materials, including rocks found in the seismogenic zone of Earth's crust. A fundamental aspect of the RSF laws is frictional "aging," where friction increases with the time of stationary contact due to asperity creep and/or interfacial strengthening. Recent atomic force microscope (AFM) experiments and simulations found that nanoscale silica contacts exhibit aging due to the progressive formation of interfacial chemical bonds. The role of normal load (and, thus, normal stress) on this interfacial chemical bond-induced (ICBI) friction is predicted to be significant but has not been examined experimentally. Here, we show using AFM that, for nanoscale ICBI friction of silica-silica interfaces, aging (the difference between the maximum static friction and the kinetic friction) increases approximately linearly with the product of the normal load and the log of the hold time. This behavior is attributed to the approximately linear dependence of the contact area on the load in the positive load regime before significant wear occurs, as inferred from sliding friction measurements. This implies that the average pressure, and thus the average bond formation rate, is load independent within the accessible load range. We also consider a more accurate nonlinear model for the contact area, from which we extract the activation volume and the average stress-free energy barrier to the aging process. Our work provides an approach for studying the load and time dependence of contact aging at the nanoscale and further establishes RSF laws for nanoscale asperity contacts.
Creep-Fatigue Interaction Testing
NASA Technical Reports Server (NTRS)
Halford, Gary R.
2001-01-01
Fatigue fives in metals are nominally time independent below 0.5 T(sub Melt). At higher temperatures, fatigue lives are altered due to time-dependent, thermally activated creep. Conversely, creep rates are altered by super. imposed fatigue loading. Creep and fatigue generally interact synergistically to reduce material lifetime. Their interaction, therefore, is of importance to structural durability of high-temperature structures such as nuclear reactors, reusable rocket engines, gas turbine engines, terrestrial steam turbines, pressure vessel and piping components, casting dies, molds for plastics, and pollution control devices. Safety and lifecycle costs force designers to quantify these interactions. Analytical and experimental approaches to creep-fatigue began in the era following World War II. In this article experimental and life prediction approaches are reviewed for assessing creep-fatigue interactions of metallic materials. Mechanistic models are also discussed briefly.
Seismic, creep, and tensile testing of various epoxy bonded rebar products in hardened concrete.
DOT National Transportation Integrated Search
2007-02-01
The objective of this project was to evaluate the performance of currently specified epoxy adhesive anchor systems on various epoxy-coated rebar under seismic, creep and tensile loading. Previous testing of dowel bonding materials for use in hardened...
Seismic, creep, and tensile testing of various epoxy bonded rebar products in hardened concrete.
DOT National Transportation Integrated Search
2007-01-01
The objective of this project was to evaluate the performance of currently specified epoxy adhesive : anchor systems on various epoxy-coated rebar under seismic, creep and tensile loading. Previous testing of : dowel bonding materials for use in hard...
Seismic, creep, and tensile testing of various epoxy bonded rebar products in hardened concrete.
DOT National Transportation Integrated Search
2006-02-01
The objective of this project was to evaluate the performance of currently specified epoxy adhesive : anchor systems on various epoxy-coated rebar under seismic, creep and tensile loading. Previous testing of : dowel bonding materials for use in hard...
Sub-Surface and Bulk Creep Behaviour of Polyurethane/Clay Nanocomposites.
Jin, J; Yusoh, K; Zhang, H X; Song, M
2016-03-01
A series of exfoliated and intercalated polyurethane organoclay nanocomposites were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. The creep behaviour of subsurface and bulk of the polyurethane coatings was investigated by nanoindentation technique and uniaxial conventional creep testing method, respectively. The results showed that the creep resistance of the nanocomposites was significantly improved by incorporation of organoclay. The enhancement of creep resistance was dependent on clay content as well as organoclay structure (exfoliation or intercalation) in the polymer matrix. With 1 wt% organoclay, the creep resistance increased by about 50% for the intercalated organoclay and 6% for the exfoliated organoclay systems, respectively, compared to the pristine polyurethane. Viscoelastic model was employed to investigate the effect of organoclay loadings on the creep performance of the polyurethane. Results showed the model was in good agreement with the experimental data. Incorporation of clay leads to an increase in elastic deformation especially in exfoliated polyurethane nanocomposites and induces a higher initial displacement at the early stage of creep.
Solder creep-fatigue interactions with flexible leaded parts
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.; Wen, L. C.; Mon, G. R.; Jetter, E.
1992-01-01
With flexible leaded parts, the solder-joint failure process involves a complex interplay of creep and fatigue mechanisms. To better understand the role of creep in typical multi-hour cyclic loading conditions, a specialized non-linear finite-element creep simulation computer program has been formulated. The numerical algorithm includes the complete part-lead-solder-PWB system, accounting for strain-rate dependence of creep on applied stress and temperature, and the role of the part-lead dimensions and flexibility that determine the total creep deflection (solder strain range) during stress relaxation. The computer program has been used to explore the effects of various solder creep-fatigue parameters such as lead height and stiffness, thermal-cycle test profile, and part/board differential thermal expansion properties. One of the most interesting findings is the strong presence of unidirectional creep-ratcheting that occurs during thermal cycling due to temperature dominated strain-rate effects. To corroborate the solder fatigue model predictions, a number of carefully controlled thermal-cycle tests have been conducted using special bimetallic test boards.
NASA Astrophysics Data System (ADS)
Du, Dong-Ning; Wang, Lai-Gui; Zhang, Xiang-Dong; Zhang, Shu-Kun
2017-06-01
The sand particles in the sand - rock composite slope of the open pit mine occurs creep deformation and fatigue liquefaction under the action of vehicle load vibration and hydraulic gradient, which causes landslide geological disasters and it destroys the surface environment. To reveal the mechanism, a mechanics model based on the model considering the soil structural change with a new “plastic hinge” element is developed, to improve its constitutive and creep curve equations. Data from sand creep experiments are used to identify the parameters in the model and to validate the model. The results show that the mechanical model can describe the rotation progress between the sand particles, disclose the negative acceleration creep deformation stage during the third phase, and require fewer parameters while maintaining accuracy. It provides a new creep model considering rotation to analyze sand creep mechanism, which provides a theoretical basis for revealing the open pit mine landslide mechanism induced by creep deformation and fatigue liquefaction of sandy soil.
NASA Technical Reports Server (NTRS)
Davis, J. W.; Cramer, B. A.
1976-01-01
A method of analysis was developed for predicting permanent cyclic creep deflections in stiffened panel structures. This method uses creep equations based on cyclic tensile creep tests and a computer program to predict panel deflections as a function of mission cycle. Four materials were investigated - a titanium alloy (Ti-6Al-4V), a cobalt alloy (L605), and two nickel alloys (Rene'41 and TDNiCr). Steady-state and cyclic creep response data were obtained by testing tensile specimens fabricated from thin gage sheet (0.025 and 0.63 cm nominal). Steady-state and cyclic creep equations were developed which describe creep as a function of time, temperature and load. Tests were also performed on subsize (6.35 x 30.5 cm) rib and corrugation stiffened panels. These tests were used to correlate creep responses between elemental specimens and panels. The panel response was analyzed by use of a specially written computer program.
NASA Astrophysics Data System (ADS)
Zhu, Ning; Sun, Shou-Guang; Li, Qiang; Zou, Hua
2014-12-01
One of the major problems in structural fatigue life analysis is establishing structural load spectra under actual operating conditions. This study conducts theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains. The quasistatic load series that corresponds to quasi-static deformation modes are identified according to the structural form and bearing conditions of high-speed train bogie frames. Moreover, a force-measuring frame is designed and manufactured based on the quasi-static load series. The load decoupling model of the quasi-static load series is then established via calibration tests. Quasi-static load-time histories, together with online tests and decoupling analysis, are obtained for the intermediate range of the Beijing—Shanghai dedicated passenger line. The damage consistency calibration of the quasi-static discrete load spectra is performed according to a damage consistency criterion and a genetic algorithm. The calibrated damage that corresponds with the quasi-static discrete load spectra satisfies the safety requirements of bogie frames.
Life Prediction for a CMC Component Using the NASALIFE Computer Code
NASA Technical Reports Server (NTRS)
Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.
2005-01-01
The computer code, NASALIFE, was used to provide estimates for life of an SiC/SiC stator vane under varying thermomechanical loading conditions. The primary intention of this effort is to show how the computer code NASALIFE can be used to provide reasonable estimates of life for practical propulsion system components made of advanced ceramic matrix composites (CMC). Simple loading conditions provided readily observable and acceptable life predictions. Varying the loading conditions such that low cycle fatigue and creep were affected independently provided expected trends in the results for life due to varying loads and life due to creep. Analysis was based on idealized empirical data for the 9/99 Melt Infiltrated SiC fiber reinforced SiC.
A Generalized Maxwell Model for Creep Behavior of Artery Opening Angle
Zhang, W.; Guo, X.; Kassab, G. S.
2009-01-01
An artery ring springs open into a sector after a radial cut. The opening angle characterizes the residual strain in the unloaded state, which is fundamental to understanding stress and strain in the vessel wall. A recent study revealed that the opening angle decreases with time if the artery is cut from the loaded state, while it increases if the cut is made from the no-load state due to viscoelasticity. In both cases, the opening angle approaches the same value in 3 hours. This implies that the characteristic relaxation time is about 10,000 sec. Here, the creep function of a generalized Maxwell model (a spring in series with six Voigt bodies) is used to predict the temporal change of opening angle in multiple time scales. It is demonstrated that the theoretical model captures the salient features of the experimental results. The proposed creep function may be extended to study the viscoelastic response of blood vessels under various loading conditions. PMID:19045526
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiche, H. M.; New Mexico State University, Las Cruces, New Mexico 88003; Vogel, S. C.
2012-05-15
A resistive furnace combined with a load frame was built that allows for in situ neutron diffraction studies of high temperature deformation, in particular, creep. A maximum force of 2700 N can be applied at temperatures up to 1000 deg. C. A load control mode permits studies of, e.g., creep or phase transformations under applied uni-axial stress. In position control, a range of high temperature deformation experiments can be achieved. The examined specimen can be rotated up to 80 deg. around the vertical compression axis allowing texture measurements in the neutron time-of-flight diffractometer HIPPO (High Pressure - Preferred Orientation). Wemore » present results from the successful commissioning, deforming a Zr-2.5 wt.% Nb cylinder at 975 deg. C. The device is now available for the user program of the HIPPO diffractometer at the LANSCE (Los Alamos Neutron Science Center) user facility.« less
Memo WX7-14-1359, Subject: PBX 9502 Creep Data, Compression and Tension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Darla G.
2014-02-06
This is a summary of the constant-load, constant-temperature mechanical creep data that has been collected on PBX 9502 in tension and compression over the last 5+ years. This work was primarily funded by the Enhanced Surveillance Campaign (C-8).
Estok, Daniel M; Bragdon, Charles R; Plank, Gordon R; Huang, Anna; Muratoglu, Orhun K; Harris, William H
2005-02-01
Quantification of creep of highly cross-linked polyethylene would enable separation of creep from wear when evaluating femoral head penetration into polyethylene. We compared creep magnitude of a highly cross-linked versus conventional polyethylene in the laboratory. Twelve acetabular liners of each material were tested, 6 of which had a 32-mm inner diameter (ID) and 6 had 28-mm ID. Creep was measured using coordinate measuring machines during loading at 2 Hz without motion to 4 million cycles. Penetration into 32-mm ID conventional liners reached 97 microm versus 107 microm for highly cross-linked material, not significant. Penetration into 28-mm conventional liners was 132 microm versus 155 microm for highly cross-linked material (P = .017). Ninety percent of the creep had occurred by 2.5 million cycles.
Thermally activated creep and fluidization in flowing disordered materials
NASA Astrophysics Data System (ADS)
Merabia, Samy; Detcheverry, François
2016-11-01
When submitted to a constant mechanical load, many materials display power law creep followed by fluidization. A fundamental understanding of these processes is still far from being achieved. Here, we characterize creep and fluidization on the basis of a mesoscopic viscoplastic model that includes thermally activated yielding events and a broad distribution of energy barriers, which may be lowered under the effect of a local deformation. We relate the creep exponent observed before fluidization to the width of barrier distribution and to the specific form of stress redistribution following yielding events. We show that Andrade creep is accompanied by local strain hardening driven by stress redistribution and find that the fluidization time depends exponentially on the applied stress. The simulation results are interpreted in the light of a mean-field analysis, and should help in rationalizing the creep phenomenology in disordered materials.
Strength of Rocks Affected by Deformation Enhanced Grain Growth
NASA Astrophysics Data System (ADS)
Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.
2005-12-01
One way of looking into the possibility of long-term strength changes in the lithosphere is to study transient effects resulting from modifications of the microstructure of rocks. It is generally accepted that mechanical weakening may occur due to progressive grain size refinement resulting from dynamic recrystallization. A decrease in grain size may induce a switch from creep controlled by grain size insensitive dislocation mechanisms to creep governed by grain size sensitive (GSS) mechanisms involving diffusion and grain boundary sliding processes. This switch forms a well-known scenario to explain localization in the lithosphere. However, fine-grained rocks in localized deformation zones are prone to grain coarsening due to surface energy driven grain boundary migration (SED-GBM). This might harden the rock, affecting its role in localizing strain in the long term. The question has arisen if grain growth by SED-GBM in a rock deforming in the GSS creep field can be significantly affected by strain. The broad aim of this study is to shed more light onto this. We have experimentally investigated the microstructural and strength evolution of fine-grained (~0.6 μm) synthetic forsterite and Fe-bearing olivine aggregates that coarsen in grain size while deforming by GSS creep at elevated pressure (600 MPa) and temperature (850-1000 °C). The materials were prepared by `sol-gel' method and contained 0.3-0.5 wt% water and 5-10 vol% enstatite. We performed i) static heat treatment tests of various time durations involving hot isostatic pressing (HIP), and ii) heat treatment tests starting with HIP and continuing with deformation up to 45% axial strain at strain rates in the range 4x10-7 - 1x10-4 s-1. Microstructures were characterized by analyzing full grain size distributions and textures using SEM/EBSD. In addition to the experiments, we studied microstructural evolution in simple two-dimensional numerical models, combining deformation and SED-GBM by means of the modeling package ELLE. Synthetic olivine samples that were heat treated without straining showed only minor grain growth. Presumably, the second phase (enstatite) and/or porosity remaining in the starting material after densification slowed down or inhibited SED-GBM in the static situation. In contrast, samples heat treated and deformed for time durations similar to those of the static tests demonstrated, at identical temperature, an increase in grain size with increasing strain up to a value twice that of the static counterpart. This grain coarsening was associated with continuous hardening of the material, witnessed by the stress-strain curves. A random lattice preferred orientation combined with a low stress sensitivity (n~2) suggested dominant GSS creep controlled by grain boundary sliding. A dynamic grain growth model involving an increase in the fraction of non-hexagonal grains, related to grain neighbor switching, appears applicable to the observed grain growth that is held responsible for the hardening. The ELLE numerical modeling demonstrated that a combination of SED-GBM and geometrical deformation of a 2D grain aggregate can indeed result in enhanced grain growth compared to static grain growth tests. The fraction of non-hexagonal grains was found to remain more or less constant during static grain growth but increased during deformation. We suggest that the application of the dynamic grain growth model to the long-term microstructural evolution of fine-grained lithospheric shear zones can further improve our understanding of the transient or permanent character of strain localizations and related rheological behavior.
What holds paper together: Nanometre scale exploration of bonding between paper fibres
Schmied, Franz J.; Teichert, Christian; Kappel, Lisbeth; Hirn, Ulrich; Bauer, Wolfgang; Schennach, Robert
2013-01-01
Paper, a man-made material that has been used for hundreds of years, is a network of natural cellulosic fibres. To a large extent, it is the strength of bonding between these individual fibres that controls the strength of paper. Using atomic force microscopy, we explore here the mechanical properties of individual fibre-fibre bonds on the nanometre scale. A single fibre-fibre bond is loaded with a calibrated cantilever statically and dynamically until the bond breaks. Besides the calculation of the total energy input, time dependent processes such as creep and relaxation are studied. Through the nanometre scale investigation of the formerly bonded area, we show that fibrils or fibril bundles play a crucial role in fibre-fibre bonding because they act as bridging elements. With this knowledge, new fabrication routes can be deduced to increase the strength of an ancient product that is in fact an overlooked high-tech material. PMID:23969946
Static viscoelasticity of biomass polyethylene composites
NASA Astrophysics Data System (ADS)
Yang, Keyan; Cai, Hongzhen; Yi, Weiming; Zhang, Qingfa; Zhao, Kunpeng
The biomass polyethylene composites filled with poplar wood flour, rice husk, cotton stalk or corn stalk were prepared by extrusion molding. The static viscoelasticity of composites was investigated by the dynamic thermal mechanical analyzer (DMA). Through the stress-strain scanning, it is found that the linear viscoelasticity interval of composites gradually decreases as the temperature rises, and the critical stress and strain values are 0.8 MPa and 0.03% respectively. The experiment shows that as the temperature rises, the creep compliance of biomass polyethylene composites is increased; under the constant temperature, the creep compliance decreases with the increase of content of biomass and calcium carbonate. The biomass and calcium carbonate used to prepare composites as filler can improve damping vibration attenuation and reduce stress deformation of composites. The stress relaxation modulus of composites is reduced and the relaxation rate increases at the higher temperature. The biomass and calcium carbonate used to prepare composites as filler not only can reduce costs, but also can increase stress relaxation modulus and improve the size thermostability of composites. The corn stalk is a good kind of biomass raw material for composites since it can improve the creep resistance property and the stress relaxation resistance property of composites more effectively than other three kinds of biomass (poplar wood flour, rice husk and cotton stalk).
NASA Astrophysics Data System (ADS)
Piotrowski, J.
2010-07-01
This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.
30 CFR 56.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...
30 CFR 56.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...
30 CFR 56.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...
30 CFR 56.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...
30 CFR 56.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...
Low strain, long life creep fatigue of AF2-1DA and INCO 718
NASA Technical Reports Server (NTRS)
Thakker, A. B.; Cowles, B. A.
1983-01-01
Two aircraft turbine disk alloys, GATORIZED AF2-DA and INCO 718 were evaluated for their low strain long life creep-fatigue behavior. Static (tensile and creep rupture) and cyclic properties of both alloys were characterized. The cntrolled strain LCF tests were conducted at 760 C (1400 F) and 649 C (1200 F) for AF2-1DA and INCO 718, respectively. Hold times were varied for tensile, compressive and tensile/compressive strain dwell (relaxation) tests. Stress (creep) hold behavior of AF2-1DA was also evaluated. Generally, INCO 718 exhibited more pronounced reduction in cyclic life due to hold than AF2-1DA. The percent reduction in life for both alloys for strain dwell tests was greater at low strain ranges (longer life regime). Changing hold time from 0 to 0.5, 2.0 and 15.0 min. resulted in corresponding reductions in life. The continuous cycle and cyclic/dwell initiation failure mechanism was predominantly transgranular for AF2-1DA and intergranular for INCO 718.
The Consolidation Behavior of Silk Hydrogels
Kluge, Jonathan A.; Rosiello, Nicholas C.; Leisk, Gary G.; Kaplan, David L.; Dorfmann, A. Luis
2010-01-01
Hydrogels have mechanical properties and structural features that are similar to load bearing soft tissues including intervertebral disc and articular cartilage, and can be implanted for tissue restoration or for local release of therapeutic factors. To help predict their performance, mechanical characterization and mathematical modeling are available methods for use in tissue engineering and drug delivery settings. In this study, confined compression creep tests were performed on silk hydrogels, over a range of concentrations, to examine the phenomenological behavior of the gels under a physiological loading scenario. Based on the observed behavior, we show that the time-dependent response can be explained by a consolidation mechanism, and modeled using Biot’s poroelasticity theory. Two observations are in strong support of this modeling framework, namely, the excellent numerical agreement between increasing load step creep data and the linear Terzaghi theory, and the similar values obtained from numerical simulations and direct measurements of the permeability coefficient. The higher concentration gels (8% and 12% w/v) clearly show a strain-stiffening response to creep loading with increasing loads, while the lower concentration gel (4% w/v) does not. A nonlinear elastic constitutive formulation is employed to account for the stiffening. Furthermore, an empirical formulation is used to represent the deformation-dependent permeability. PMID:20142112
NASA Astrophysics Data System (ADS)
Le, Jia-Liang; Bažant, Zdeněk P.; Bazant, Martin Z.
2011-07-01
Engineering structures must be designed for an extremely low failure probability such as 10 -6, which is beyond the means of direct verification by histogram testing. This is not a problem for brittle or ductile materials because the type of probability distribution of structural strength is fixed and known, making it possible to predict the tail probabilities from the mean and variance. It is a problem, though, for quasibrittle materials for which the type of strength distribution transitions from Gaussian to Weibullian as the structure size increases. These are heterogeneous materials with brittle constituents, characterized by material inhomogeneities that are not negligible compared to the structure size. Examples include concrete, fiber composites, coarse-grained or toughened ceramics, rocks, sea ice, rigid foams and bone, as well as many materials used in nano- and microscale devices. This study presents a unified theory of strength and lifetime for such materials, based on activation energy controlled random jumps of the nano-crack front, and on the nano-macro multiscale transition of tail probabilities. Part I of this study deals with the case of monotonic and sustained (or creep) loading, and Part II with fatigue (or cyclic) loading. On the scale of the representative volume element of material, the probability distribution of strength has a Gaussian core onto which a remote Weibull tail is grafted at failure probability of the order of 10 -3. With increasing structure size, the Weibull tail penetrates into the Gaussian core. The probability distribution of static (creep) lifetime is related to the strength distribution by the power law for the static crack growth rate, for which a physical justification is given. The present theory yields a simple relation between the exponent of this law and the Weibull moduli for strength and lifetime. The benefit is that the lifetime distribution can be predicted from short-time tests of the mean size effect on strength and tests of the power law for the crack growth rate. The theory is shown to match closely numerous test data on strength and static lifetime of ceramics and concrete, and explains why their histograms deviate systematically from the straight line in Weibull scale. Although the present unified theory is built on several previous advances, new contributions are here made to address: (i) a crack in a disordered nano-structure (such as that of hydrated Portland cement), (ii) tail probability of a fiber bundle (or parallel coupling) model with softening elements, (iii) convergence of this model to the Gaussian distribution, (iv) the stress-life curve under constant load, and (v) a detailed random walk analysis of crack front jumps in an atomic lattice. The nonlocal behavior is captured in the present theory through the finiteness of the number of links in the weakest-link model, which explains why the mean size effect coincides with that of the previously formulated nonlocal Weibull theory. Brittle structures correspond to the large-size limit of the present theory. An important practical conclusion is that the safety factors for strength and tolerable minimum lifetime for large quasibrittle structures (e.g., concrete structures and composite airframes or ship hulls, as well as various micro-devices) should be calculated as a function of structure size and geometry.
Long-term creep characterization of Gr. 91 steel by modified creep constitutive equations
NASA Astrophysics Data System (ADS)
Kim, Woo-Gon; Kim, Sung-Ho; Lee, Chan-Bock
2011-06-01
This paper focuses on the long-term creep characterization of Gr. 91 steel using creep constitutive equations. The models of three such equations, a combination of power-law form and omega model (CPO), a combination of exponential form and omega model (CEO), and a combination of logarithmic form and omega model (CLO), which are described as sum decaying primary creep and accelerating tertiary creep, are proposed. A series of creep rupture data was obtained through creep tests with various applied loads at 600 °C. On the basis of the creep data, a nonlinear least-square fitting (NLSF) analysis was carried out to provide the best fit with the experimental data in optimizing the parameter constants of an individual equation. The results of the NLSF analysis showed that in the lower stress regions of 160 MPa (σ/σys <0.65), the CEO model showed a match with the experimental creep data comparable to those of the CPO and CLO models; however, in the higher stress regions of 160 MPa (σ/σy > 0.65), the CPO model showed better agreement than the other two models. It was found that the CEO model was superior to the CPO and CLO models in the modeling of long-term creep curves. Using the CEO model, the long-term creep curves of Gr. 91 steel were numerically characterized, and its creep life was predicted accurately.
Long-Term Creep and Creep Rupture Behavior of Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Haque, A.; Rahman, M.; Mach, A.; Jeelani, S.; Verrilli, Michael J. (Technical Monitor)
2001-01-01
Tensile creep behavior of SiC/SiNC ceramic matrix composites at elevated temperatures and at various stress levels have been investigated for turbine engine applications. The objective of this research is to present creep behavior of SiC/SiCN composites at stress levels above and below the monotonic proportional limit strength and predict the life at creep rupture conditions. Tensile creep-rupture tests were performed on an Instron 8502 servohydraulic testing machine at constant load conditions up to a temperature limit of 1000 C. Individual creep curves indicate three stages such as primary, secondary, and tertiary. The creep rate increased linearly at an early stage and then gradually became exponential at higher strains. The stress exponent and activation energy were also obtained at 700 and 1000 C. The specimen lifetime was observed to be 55 hrs at 121 MPa and at 700 C. The life span reduced to 35 hrs at 143 MPa and at 1000 C. Scanning electron microscopy observations revealed significant changes in the crystalline phases and creep damage development. Creep failures were accompanied by extensive fiber pullout, matrix cracking, and debonding along with fiber fracture. The creep data was applied to Time-Temperature-Stress superposition model and the Manson-Haferd parametric model for long-time life prediction.
Creep of Carbon Fibre Reinforced Plastics
1976-12-01
Details of the laminat - 5ing technique have already been given elsewhere The nominal thickness of material I composite was 2.5mm. All the other...TEST RESULTS 6 5 DISCUSSION 8 5.1 Composites containing 00 fibres 8 5.2 Multi-plied 90 ± 450 material 80I5,3 Angle-plied ±450 material 9 5.4 The...influence of laminate construction on the creep of CFRP 9 5.5 The relationship between creep strain and time under load in carbon fibre composites 10 6
Non-isothermal elastoviscoplastic snap-through and creep buckling of shallow arches
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Riff, R.
1987-01-01
The problem of buckling of shallow arches under transient thermomechanical loads is investigated. The analysis is based on nonlinear geometric and constitutive relations, and is expressed in a rate form. The material constitutive equations are capable of reproducing all non-isothermal, elasto-viscoplastic characteristics. The solution scheme is capable of predicting response which includes pre and postbuckling with creep and plastic effects. The solution procedure is demonstrated through several examples which include both creep and snap-through behavior.
Waanders, Daan; Janssen, Dennis; Miller, Mark A.; Mann, Kenneth A.; Verdonschot, Nico
2009-01-01
The goal of this study was to quantify the micromechanics of the cement-bone interface under tensile fatigue loading using finite element analysis (FEA) and to understand the underlying mechanisms that play a role in the fatigue behavior of this interface. Laboratory cement-bone specimens were subjected to a tensile fatigue load, while local displacements and crack growth on the specimen's surface were monitored. FEA models were created from these specimens based upon micro-computed tomography data. To accurately model interfacial gaps at the interface between the bone and cement, a custom-written erosion algorithm was applied to the bone model. A fatigue load was simulated in the FEA models while monitoring the local displacements and crack propagation. The results showed the FEA models were able to capture the general experimental creep damage behavior and creep stages of the interface. Consistent with the experiments, the majority of the deformation took place at the contact interface. Additionally, the FEA models predicted fatigue crack patterns similar to experimental findings. Experimental surface cracks correlated moderately with FEA surface cracks (r2=0.43), but did not correlate with the simulated crack volume fraction (r2=0.06). Although there was no relationship between experimental surface cracks and experimental creep damage displacement (r2=0.07), there was a strong relationship between the FEA crack volume fraction and the FEA creep damage displacement (r2=0.76). This study shows the additional value of FEA of the cement-bone interface relative to experimental studies and can therefore be used to optimize its mechanical properties. PMID:19682690
The effects of physical aging at elevated temperatures on the viscoelastic creep on IM7/K3B
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Feldman, Mark
1994-01-01
Physical aging at elevated temperature of the advanced composite IM7/K3B was investigated through the use of creep compliance tests. Testing consisted of short term isothermal, creep/recovery with the creep segments performed at constant load. The matrix dominated transverse tensile and in-plane shear behavior were measured at temperatures ranging from 200 to 230 C. Through the use of time based shifting procedures, the aging shift factors, shift rates and momentary master curve parameters were found at each temperature. These material parameters were used as input to a predictive methodology, which was based upon effective time theory and linear viscoelasticity combined with classical lamination theory. Long term creep compliance test data was compared to predictions to verify the method. The model was then used to predict the long term creep behavior for several general laminates.
NASA Astrophysics Data System (ADS)
Xue, Jilin; Zhou, Changyu
2016-03-01
Creep continuum damage finite element (FE) analyses were performed for P91 steel pipe containing local wall thinning (LWT) defect subjected to monotonic internal pressure, monotonic bending moment and combined internal pressure and bending moment by orthogonal experimental design method. The creep damage lives of pipe containing LWT defect under different load conditions were obtained. Then, the creep damage life formulas were regressed based on the creep damage life results from FE method. At the same time a skeletal point rupture stress was found and used for life prediction which was compared with creep damage lives obtained by continuum damage analyses. From the results, the failure lives of pipe containing LWT defect can be obtained accurately by using skeletal point rupture stress method. Finally, the influence of LWT defect geometry was analysed, which indicated that relative defect depth was the most significant factor for creep damage lives of pipe containing LWT defect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karr, Dale G.; Yu, Bingbin; Sirnivas, Senu
To create long-term solutions for offshore wind turbines in a variety of environmental conditions, CAE tools are needed to model the design-driving loads that interact with an offshore wind turbine system during operation. This report describes our efforts in augmenting existing CAE tools used for offshore wind turbine analysis with a new module that can provide simulation capabilities for ice loading on the system. This augmentation was accomplished by creating an ice-loading module coupled to FAST8, the CAE tool maintained by the NREL for simulating land-based and offshore wind turbine dynamics. The new module includes both static and dynamic icemore » loading that can be applied during a dynamic simulation of the response of an offshore wind turbine. The ice forces can be prescribed, or influenced by the structure’s compliant response, or by the dynamics of both the structure and the ice floe. The new module covers ice failure modes of spalling, buckling, crushing, splitting, and bending. The supporting structure of wind turbines can be modeled as a vertical or sloping form at the waterline. The Inward Battered Guide Structure (IBGS) foundation designed by Keystone Engineering for the Great Lakes was used to study the ice models coupled to FAST8. The IBGS foundation ice loading simulations in FAST8 were compared to the baseline simulation case without ice loading. The ice conditions reflecting those from Lake Huron at Port Huron and Lake Michigan at North Manitou were studied under near rated wind speed of 12 m/s for the NREL 5-MW reference turbine. Simulations were performed on ice loading models 1 through 4 and ice model 6 with their respective sub-models. The purpose of ice model 5 is to investigate ice loading on sloping structures such as ice-cones on a monopile and is not suitable for multi-membered jacketed structures like the IBGS foundation. The key response parameters from the simulations, shear forces and moments from the tower base and IBGS foundation base, were compared. Ice models 1 and 6 do not significantly affect the tower fore-aft shear and moment. However, ice model 2 (dynamic analyses), model 3 (random ice loading), and model 4 (multiple ice failure zone loading) show increased effect on the tower fore-aft shear and moment with significant effect from ice model 3.1. In general ice loading creates large reaction forces and moments at the base of the IBGS foundation; the largest occurred in model 1.1 (steady creep ice indentation loading) followed by model 3.1 (random creep ice indentation loading). In general the power production from the ice loading cases had little deviation from the baseline case without ice loading. For ultimate limit state (ULS), ice model 1.1 ice and 3.1 appear to be the ice most critical models to consider at an early stage of design. Ice model 4 is an important tool for assessing structural fatigue.« less
NASA Technical Reports Server (NTRS)
Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.
1995-01-01
Solving for the displacements of free-free coupled systems acted upon by static loads is commonly performed throughout the aerospace industry. Many times, these problems are solved using static analysis with inertia relief. This solution technique allows for a free-free static analysis by balancing the applied loads with inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus displacement-dependent loads. Solving for the final displacements of such systems is commonly performed using iterative solution techniques. Unfortunately, these techniques can be time-consuming and labor-intensive. Since the coupled system equations for free-free systems with displacement-dependent loads can be written in closed-form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. Using a MSC/NASTRAN DMAP Alter, displacement-dependent loads have been included in static analysis with inertia relief. Such an Alter has been used successfully to solve efficiently a common aerospace problem typically solved using an iterative technique.
Creep fatigue life prediction for engine hot section materials (isotropic)
NASA Technical Reports Server (NTRS)
Moreno, Vito; Nissley, David; Lin, Li-Sen Jim
1985-01-01
The first two years of a two-phase program aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components are discussed. In Phase 1 (baseline) effort, low cycle fatigue (LCF) models, using a data base generated for a cast nickel base gas turbine hot section alloy (B1900+Hf), were evaluated for their ability to predict the crack initiation life for relevant creep-fatigue loading conditions and to define data required for determination of model constants. The variables included strain range and rate, mean strain, strain hold times and temperature. None of the models predicted all of the life trends within reasonable data requirements. A Cycle Damage Accumulation (CDA) was therefore developed which follows an exhaustion of material ductility approach. Material ductility is estimated based on observed similarities of deformation structure between fatigue, tensile and creep tests. The cycle damage function is based on total strain range, maximum stress and stress amplitude and includes both time independent and time dependent components. The CDA model accurately predicts all of the trends in creep-fatigue life with loading conditions. In addition, all of the CDA model constants are determinable from rapid cycle, fully reversed fatigue tests and monotonic tensile and/or creep data.
Nanogranular origin of concrete creep.
Vandamme, Matthieu; Ulm, Franz-Josef
2009-06-30
Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.
Nanogranular origin of concrete creep
Vandamme, Matthieu; Ulm, Franz-Josef
2009-01-01
Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652
Effects of pre-creep on the dislocations of 316LN Austenite stainless steel
NASA Astrophysics Data System (ADS)
Pei, Hai-xiang; Hui, Jun; Hua, Hou; Feng, Zai-xin; Xu, Xiao-long
2017-09-01
The 316LN Austenite stainless steels (316LNASS) were pre-creep treated, the evolution of microstructure were investigated. The samples were pre-creep at 593 K and from 500 to 2000 h at 873 K with a stress in the range of 20 to 150 MPa, Then the evolution of microstructure and precipitation were investigated by optical microscope (OM), and transmission electron microscope (TEM). The results show that the crystal surface slipping resulted in dislocations and original dislocations decomposition during the pre-creep process, and generate quadrilateral or hexagonal dislocation network was obviously. The sub-grain boundary gradually became narrow with the increasing of pre-creep treatment time and temperature. When the pre-creep temperature was 593 K and 873 K, dislocation network gradually disappear with the increasing of pre-creep time and load. When the pre-creep temperature was 873 K under 120 MPa, and the treatment time was 2000 h, the hexagonal dislocation network (HDN) would completely disappeared. When the pre-creep temperature was 593 K under 20 MPa, and the treatment time was 500 h, the quadrilateral dislocation network (QDN) would completely disappeared.
Micromechanics f an Extrusion in High-Cycle Fatigue With Creep
1988-01-01
amount referred to as the "static extrusion" ( Mughrabi et al , 1983). This E{a causes an initial compression ta, in R. As the extrusion grows under cyclic...Deformation of sin- gle crystals at elevated temperatures (Johnson, et al , 1953, 1955) also occurs by slip in pri- marily the same slip systems that...growth will cease after the extrusion has reached the static extrusion. Lin, et al ., 1988 have shown that the residual tensile stress ’tact caused by
NASA Astrophysics Data System (ADS)
Ruslantsev, A. N.; Portnova, Ya M.; Tairova, L. P.; Dumansky, A. M.
2016-10-01
The polymer binder cracking problem arises while designing and maintaining polymer composite-based aircraft load-bearing members. Some technological methods are used to solve this problem. In particular the injection of nanoagents can block the initiation and growth of microscopic cracks. Crack propagation can also be blocked if the strain energy release is not related with fracturing. One of the possible ways for such energy release is creep. Testing of the anisotropy of the woven carbon fibre reinforced plastic elastic characteristics and creep have been conducted. The samples with different layouts have been made of woven carbon fibre laminate BMI-3/3692 with nanomodified bismaleimide matrix. This matrix has a higher glass transition temperature and improved mechanical properties. The deformation regularities have been analyzed, layer elastic characteristics have been determined. The constitutive equations describing composite material creep have been obtained and its parameters have been defined. Experimental and calculated creep curves have been plotted. It was found that the effects of rheology arise as the direction of load does not match the direction of reinforcing fibres of the material.
Creep and dynamic viscoelastic behavior of endodontic fiber-reinforced composite posts.
Papadogiannis, D; Lakes, R S; Palaghias, G; Papadogiannis, Y
2009-10-01
Fiber-reinforced composite (FRC) posts have gained much interest recently and understanding of their viscoelastic properties is important as they can be used in stress-bearing posterior restorations. The aim of this study was to evaluate the creep behavior and the viscoelastic properties of four commercial FRC posts under different temperatures and different storage conditions. The FRC posts tested were Glassix, C-Post, Carbonite and Snowlight. For the creep measurements a constant load below the proportional limit of the posts was applied and the angular deformation of the specimens was recorded. The viscoelastic parameters were determined by using dynamic torsional loading under four different conditions. All materials were susceptible to creep and exhibited linear viscoelastic behavior. Residual strain was observed in all FRC posts. The viscoelastic properties were affected by the increase of temperature and water storage (p<0.001) resulting in their decline. Carbon fiber posts exhibited better performance than glass fiber posts. FRC posts exhibit permanent strains under regular masticatory stresses that can be generated in the oral cavity. Their properties are susceptible to changes in temperature, while direct contact with water also affects them deleteriously.
Fatigue Behavior of a Third Generation PM Disk Superalloy
NASA Technical Reports Server (NTRS)
Gayda, John; Gabb, Timothy P.
2008-01-01
The fatigue behavior of a 3rd generation PM disk alloy, LSHR, was studied at 1300 F. Tensile, creep, and fatigue tests were run on smooth and notched (Kt = 2) bars under a variety of conditions. Analysis of smooth bar fatigue data, run under strain and load control with R ratios of 0 and -1, showed that a stress based Smith-Watson-Topper approach could collapse the data set. While the tensile and creep data showed substantial notch strengthening at 1300 F, the fatigue data showed a life deficit for the notch specimens. A viscoplastic finite element model, which accounted for stress relaxation at the notch tip, provided the best correlation between the notched and smooth bar behavior, although the fatigue data was not fully rationalized based on this simplified viscoplastic model of the stresses at the notch tip.Inclusion of a 90 sec dwell at peak load was found to dramatically decrease notch fatigue life. This result was shown to be consistent with a simple linear creep-fatigue damage rule, where creep damage dominated at low stresses and fatigue damage was more prevalent at higher stresses.
Shakedown Tests for Refurbished and Upgraded Frames and Initiation of Alloy 709 Creep Rupture Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Moser, Jeremy L.; Hawkins, Charles S.
This report describes the shakedown tests conducted on the upgraded frames, and initiation of creep rupture tests on refurbished frames. SS316H, a reference material for Alloy 709, was used in shakedown tests, and the tests were conducted at 816 degree C under three stress levels to accumulate 1% creep strain. 1/4” gage diameter specimen design was used. The creep rupture tests on Alloy 709 were initiated at 600 degree C under 330 MPa to target 1,500 h rupture time. 12 specimens with 3/8” gage diameter were prepared from the materials with 6 heat treatment conditions, 2 from each. The requiredmore » mechanical load under 330MPa was calculated to be 5,286 lb for the 3/8” gage diameter specimen. Among the ART frames, 7 frames are equipped with 10,000 lb load cell including #5 to 8 and #88 to 90, and can be used. 7 tests were thus started in this stage of project, and remaining 5 will be continued whenever any of the 7 tests is completed.« less
A study of creep crack growth in 2219-T851
NASA Astrophysics Data System (ADS)
Bensussan, Philippe L.; Jablonski, David A.; Pelloux, Regis M.
1984-01-01
Creep crack growth rates were measured in high strength 2219-T851 aluminum alloy with a computerized fully automated test procedure. Crack growth tests were performed on CT specimens with side grooves. The experimental set-up is described. During a test, the specimen is cyclically loaded on a servohydraulic testing machine under computer control, maintained at maximum load for a given hold time at each cycle, unloaded, and then reloaded. Crack lengths are obtained from compliance measurements recorded during each unloading. It is shown that the measured crack growth rates per cycle do represent creep crack growth rates per unit time for hold times longer than 10 seconds. The validity of LEFM concepts for side-grooved specimens is reviewed, and compliance and stress intensity factor calibrations for such specimens are reported. For the range of testing conditions of this study, 2219-T851 is shown to be creep brittle in terms of concepts of fracture mechanics of creeping solids. It is found that, under these testing conditions, a correlation exists between the creep crack growth rates under plane strain conditions and the stress intensity factor ( da/dt = A K 3.8 at 175 °C) for simple K histories in a regime of steady or quasi-steady state crack growth. The micromechanisms of fracture are determined to be of complex nature. The fracture mode is observed to be mixed inter- and transgranular, the relative amount of intergranular fracture decreasing as K and da/dt increase.
NASA Astrophysics Data System (ADS)
Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.
2018-01-01
Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).
NASA Technical Reports Server (NTRS)
Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.
1998-01-01
High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep ripture criterion However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of stress, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of this methodology and the CARES/Creep program.
Time-Dependent Behavior of High-Strength Kevlar and Vectran Webbing
NASA Technical Reports Server (NTRS)
Jones, Thomas C.; Doggett, William R.
2014-01-01
High-strength Kevlar and Vectran webbings are currently being used by both NASA and industry as the primary load-bearing structure in inflatable space habitation modules. The time-dependent behavior of high-strength webbing architectures is a vital area of research that is providing critical material data to guide a more robust design process for this class of structures. This paper details the results of a series of time-dependent tests on 1-inch wide webbing including an initial set of comparative tests between specimens that underwent realtime and accelerated creep at 65 and 70% of their ultimate tensile strength. Variability in the ultimate tensile strength of the webbings is investigated and compared with variability in the creep life response. Additional testing studied the effects of load and displacement rate, specimen length and the time-dependent effects of preconditioning the webbings. The creep test facilities, instrumentation and test procedures are also detailed. The accelerated creep tests display consistently longer times to failure than their real-time counterparts; however, several factors were identified that may contribute to the observed disparity. Test setup and instrumentation, grip type, loading scheme, thermal environment and accelerated test postprocessing along with material variability are among these factors. Their effects are discussed and future work is detailed for the exploration and elimination of some of these factors in order to achieve a higher fidelity comparison.
Nanoindentation of dry and fluid-saturated micro-porous rocks
NASA Astrophysics Data System (ADS)
Mighani, S.; Bernabe, Y.; Schwartzman, A. F.; Evans, J. B.
2017-12-01
In this report we explore the ability of nanoindentation technique to evaluate the pore-scale solid-fluid interactions in micro-porous rocks. We measure the creep deformation of a porous rock sample over a period of 3 minutes under a constant maximum force. The indentation tip is instrumented with a nano-DMA transducer which efficiently compensates for the thermal drifts. The candidate rock is a carbonate with micro-porous micritic cement. Secondary Electron (SE) images revealed a bimodal pore structure for this rock-type: regions (A) of micritic cement with micropores, and (B) with large grains and vuggy pores. The experiments were performed on dry rock samples as well as saturated with water (1 cp and buffered with 30 ppm calcite powder) and silicone oil (100 cp). Thus, the fluids presented a wide variation in viscosity and chemical reactivity. We then explored the size (maximum forces of 2, 4, and 8 mN) and loading rate (0.2-2 mN/sec) dependency of the observed creep behavior. The amount of total deformation within the 3 minutes of creep showed a uniform increase with a tendency to reach an equilibrium depth with creep rates (dh/h) below 5×10-3. The indentations in the water-saturated carbonate showed a 6-fold decrease in the Young's modulus (from 38 to 6 GPa) and 2-fold increase in creep magnitude (from 59 to 119 nm) compared with the dry indentations. We attribute these large differences to the possible chemical reaction of water and carbonate. This is further confirmed by comparing the hardness values, which showed that water softened the rock matrix by a factor of 4 (from 0.87 to 0.22 GPa). The carbonate sample saturated with oil, on the other hand, showed a higher modulus (47 GPa) and greater hardness (1.39 GPa), while the creep magnitude (31 nm) was half that observed in dry rock. We attribute this behavior to the viscous displacement of the pore fluid during consolidation of the poroelastic matrix. The loading rate-dependency and size (maximum load) sensitivity of the observed creep appear consistent with poroelasticity. We used Agbezuge and Deresiewicz's (1974) solution to derive poroelastic constants based on the recorded amount of creep. The analysis yields estimates of the diffusivity constant of the rock and the equilibrium creep depth. (We would like to acknowledge The U.S. Department of Energy (DOE) for their support)
NASA Technical Reports Server (NTRS)
1996-01-01
Solving for the displacements of free-free coupled systems acted upon by static loads is a common task in the aerospace industry. Often, these problems are solved by static analysis with inertia relief. This technique allows for a free-free static analysis by balancing the applied loads with the inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus the displacement-dependent loads. A launch vehicle being acted upon by an aerodynamic loading can have such applied loads. The final displacements of such systems are commonly determined with iterative solution techniques. Unfortunately, these techniques can be time consuming and labor intensive. Because the coupled system equations for free-free systems with displacement-dependent loads can be written in closed form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. An MSC/NASTRAN (MacNeal-Schwendler Corporation/NASA Structural Analysis) DMAP (Direct Matrix Abstraction Program) Alter was used to include displacement-dependent loads in static analysis with inertia relief. It efficiently solved a common aerospace problem that typically has been solved with an iterative technique.
Unified high-temperature behavior of thin-gauge superalloys
NASA Astrophysics Data System (ADS)
England, Raymond Oliver
This research proposes a methodology for accelerated testing in the area of high-temperature creep and oxidation resistance for thin-gauge superalloy materials. Traditional long-term creep (stress-relaxation) and oxidation tests are completed to establish a baseline. The temperature range used in this study is between 1200 and 1700°F. The alloys investigated are Incoloy MA 956, Waspaloy, Haynes 214, Haynes 242, Haynes 230, and Incoloy 718. The traditional creep test involves loading the specimens to a constant test mandrel radius of curvature, and measuring the retained radius of curvature as a function of time. The accelerated creep test uses a servohydraulic test machine to conduct single specimen, variable strain-rate load relaxation experiments. Standard metallographic evaluations are used to determine extent and morphology of attack in the traditional oxidation tests, while the accelerated oxidation test utilizes thermogravimetric analysis to obtain oxidation rate data. The traditional long-term creep testing indicates that the mechanically-alloyed material Incoloy MA 956 and Haynes alloy 214 may be suitable for long-term, high-temperature (above 1400°F) structural applications. The accelerated creep test produced a continuous linear function of log stress versus strain rate which can be used to calculate creep rate. The long-term and traditional oxidation tests indicate that Al2O3 scale formers such as Incoloy MA 956 and Haynes 214 are much more resistant to high-temperature oxidation than Cr2O3 scale formers such as Waspaloy. Both accelerated tests can be completed within roughly one day, and can evaluate multiple test temperatures using standardized single specimens. These simple experiments can be correlated with traditional long-term tests which require years to complete.
Creep rupture analysis of a beam resting on high temperature foundation
NASA Technical Reports Server (NTRS)
Gu, Randy J.; Cozzarelli, Francis A.
1988-01-01
A simplified uniaxial strain controlled creep damage law is deduced with the use of experimental observation from a more complex strain dependent law. This creep damage law correlates the creep damage, which is interpreted as the density variation in the material, directly with the accumulated creep strain. Based on the deduced uniaxial strain controlled creep damage law, a continuum mechanical creep rupture analysis is carried out for a beam resting on a high temperature elastic (Winkler) foundation. The analysis includes the determination of the nondimensional time for initial rupture, the propagation of the rupture front with the associated thinning of the beam, and the influence of creep damage on the deflection of the beam. Creep damage starts accumulating in the beam as soon as the load is applied, and a creep rupture front develops at and propagates from the point at which the creep damage first reaches its critical value. By introducing a series of fundamental assumptions within the framework of technical Euler-Bernoulli type beam theory, a governing set of integro-differential equations is derived in terms of the nondimensional bending moment and the deflection. These governing equations are subjected to a set of interface conditions at the propagating rupture front. A numerical technique is developed to solve the governing equations together with the interface equations, and the computed results are presented and discussed in detail.
NASA Astrophysics Data System (ADS)
Nguyen, Trung N.; Siegmund, Thomas; Tomar, Vikas; Kruzic, Jamie J.
2017-12-01
Size effects occur in non-uniform plastically deformed metals confined in a volume on the scale of micrometer or sub-micrometer. Such problems have been well studied using strain gradient rate-independent plasticity theories. Yet, plasticity theories describing the time-dependent behavior of metals in the presence of size effects are presently limited, and there is no consensus about how the size effects vary with strain rates or whether there is an interaction between them. This paper introduces a constitutive model which enables the analysis of complex load scenarios, including loading rate sensitivity, creep, relaxation and interactions thereof under the consideration of plastic strain gradient effects. A strain gradient viscoplasticity constitutive model based on the Kocks-Mecking theory of dislocation evolution, namely the strain gradient Kocks-Mecking (SG-KM) model, is established and allows one to capture both rate and size effects, and their interaction. A formulation of the model in the finite element analysis framework is derived. Numerical examples are presented. In a special virtual creep test with the presence of plastic strain gradients, creep rates are found to diminish with the specimen size, and are also found to depend on the loading rate in an initial ramp loading step. Stress relaxation in a solid medium containing cylindrical microvoids is predicted to increase with decreasing void radius and strain rate in a prior ramp loading step.
Deterministic Multiaxial Creep and Creep Rupture Enhancements for CARES/Creep Integrated Design Code
NASA Technical Reports Server (NTRS)
Jadaan, Osama M.
1998-01-01
High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep rupture criterion. However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of sum, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of Ns methodology and the CARES/Creep program.
Multiscale Dynamics of Aseismic Slip on Central San Andreas Fault
NASA Astrophysics Data System (ADS)
Khoshmanesh, M.; Shirzaei, M.
2018-03-01
Understanding the evolution of aseismic slip enables constraining the fault's seismic budget and provides insight into dynamics of creep. Inverting the time series of surface deformation measured along the Central San Andreas Fault obtained from interferometric synthetic aperture radar in combination with measurements of repeating earthquakes, we constrain the spatiotemporal distribution of creep during 1992-2010. We identify a new class of intermediate-term creep rate variations that evolve over decadal scale, releasing stress on the accelerating zone and loading adjacent decelerating patches. We further show that in short-term (<2 year period), creep avalanches, that is, isolated clusters of accelerated aseismic slip with velocities exceeding the long-term rate, govern the dynamics of creep. The statistical properties of these avalanches suggest existence of elevated pore pressure in the fault zone, consistent with laboratory experiments.
NASA Astrophysics Data System (ADS)
Jiang, X. T.; Wang, Y. D.; Dai, C. H.; Ding, M.
2017-08-01
The finite element model of concrete-filled steel tubular member was established by the numerical analysis software considering material nonlinearity to analyze concrete creep effect on the dynamic responses of the member under axial compression and lateral impact. In the model, the constitutive model of core concrete is the plastic damage model, that of steel is the Von Mises yield criterion and kinematic hardening model, and the creep effect at different ages is equivalent to the change of concrete elastic modulus. Then the dynamic responses of concrete-filled steel tubular member considering creep effects was simulated, and the effects of creep on contact time, impact load, deflection, stress and strain were discussed. The fruits provide a scientific basis for the design of the impact resistance of concrete filled steel tubular members.
1983-11-01
boundary sliding. As a result, the steady state creep rate will have the form: Es EDIS ÷ GBS where I DIS = strain rate from dislocation motion and 6GBS...prevent diffusion bonding between the specimen heads and grips. The test apparatus used to perform the tensile tests was an Instron- Satec furnace...testing was done utilizing leveled creep racks (12,000 lb. capacity) modified to produce constant load or constant stress. The furnaces were of the Satec
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messner, M. C.; Truster, T. J.; Cochran, K. B.
Advanced reactors designed to operate at higher temperatures than current light water reactors require structural materials with high creep strength and creep-fatigue resistance to achieve long design lives. Grade 91 is a ferritic/martensitic steel designed for long creep life at elevated temperatures. It has been selected as a candidate material for sodium fast reactor intermediate heat exchangers and other advanced reactor structural components. This report focuses on the creep deformation and rupture life of Grade 91 steel. The time required to complete an experiment limits the availability of long-life creep data for Grade 91 and other structural materials. Design methodsmore » often extrapolate the available shorter-term experimental data to longer design lives. However, extrapolation methods tacitly assume the underlying material mechanisms causing creep for long-life/low-stress conditions are the same as the mechanisms controlling creep in the short-life/high-stress experiments. A change in mechanism for long-term creep could cause design methods based on extrapolation to be non-conservative. The goal for physically-based microstructural models is to accurately predict material response in experimentally-inaccessible regions of design space. An accurate physically-based model for creep represents all the material mechanisms that contribute to creep deformation and damage and predicts the relative influence of each mechanism, which changes with loading conditions. Ideally, the individual mechanism models adhere to the material physics and not an empirical calibration to experimental data and so the model remains predictive for a wider range of loading conditions. This report describes such a physically-based microstructural model for Grade 91 at 600° C. The model explicitly represents competing dislocation and diffusional mechanisms in both the grain bulk and grain boundaries. The model accurately recovers the available experimental creep curves at higher stresses and the limited experimental data at lower stresses, predominately primary creep rates. The current model considers only one temperature. However, because the model parameters are, for the most part, directly related to the physics of fundamental material processes, the temperature dependence of the properties are known. Therefore, temperature dependence can be included in the model with limited additional effort. The model predicts a mechanism shift for 600° C at approximately 100 MPa from a dislocation- dominated regime at higher stress to a diffusion-dominated regime at lower stress. This mechanism shift impacts the creep life, notch-sensitivity, and, likely, creep ductility of Grade 91. In particular, the model predicts existing extrapolation methods for creep life may be non-conservative when attempting to extrapolate data for higher stress creep tests to low stress, long-life conditions. Furthermore, the model predicts a transition from notchstrengthening behavior at high stress to notch-weakening behavior at lower stresses. Both behaviors may affect the conservatism of existing design methods.« less
NASA Astrophysics Data System (ADS)
le Graverend, J.-B.
2018-05-01
A lattice-misfit-dependent damage density function is developed to predict the non-linear accumulation of damage when a thermal jump from 1050 °C to 1200 °C is introduced somewhere in the creep life. Furthermore, a phenomenological model aimed at describing the evolution of the constrained lattice misfit during monotonous creep load is also formulated. The response of the lattice-misfit-dependent plasticity-coupled damage model is compared with the experimental results obtained at 140 and 160 MPa on the first generation Ni-based single crystal superalloy MC2. The comparison reveals that the damage model is well suited at 160 MPa and less at 140 MPa because the transfer of stress to the γ' phase occurs for stresses above 150 MPa which leads to larger variations and, therefore, larger effects of the constrained lattice misfit on the lifetime during thermo-mechanical loading.
Flexural creep of structural flakeboards under cyclic humidity
M.C. Yeh; R.C. Tang; Chung-Yun Hse
1990-01-01
Flexural creep behavior of randomly oriented structural flakeboards under cyclic humidity is presented. Specimens fabricated with 5 and 7 percent phenol-formaldehyde resin were subjected to constant concentrated load in bending under slow and fast cyclic relative humidity (RH) between 65 and 95 percent for 100 days. The temperature was set at a constant 75°F through...
Damage mechanisms in bithermal and thermomechanical fatigue of Haynes 188
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Halford, Gary R.
1992-01-01
Post failure fractographic and metallographic studies were conducted on Haynes 188 specimens fatigued under bithermal and thermomechanical loading conditions between 316 and 760 C. Bithermal fatigue specimens examined included those tested under high strain rate in-phase and out-phase, tensile creep in-phase, and compressive creep out-of-phase loading conditions. Specimens tested under in-phase and out-of-phase thermomechanical fatigue were also examined. The nature of failure mode (transgrandular versus intergranular), the topography of the fracture surface, and the roles of oxidation and metallurgical changes were studied for each type of bithermal and thermomechanical test.
The International Space Station Assembly on Schedule
NASA Technical Reports Server (NTRS)
1997-01-01
As engineers continue to prepare the International Space Station (ISS) for in-orbit assembly in the year 2002, ANSYS software has proven instrumental in resolving a structural problem in the project's two primary station modules -- Nodes 1 and 2. Proof pressure tests performed in May revealed "low temperature, post-yield creep" in some of the Nodes' gussets, which were designed to reinforce ports for loads from station keeping and reboost motion of the entire space station. An extensive effort was undertaken to characterize the creep behavior of the 2219-T851 aluminum forging material from which the gussets were made. Engineers at Sverdrup Technology, Inc. (Huntsville, AL) were responsible for conducting a combined elastic-plastic-creep analysis of the gussets to determine the amount of residual compressive stress which existed in the gussets following the proof pressure tests, and to determine the stress-strain history in the gussets while on-orbit. Boeing, NASA's Space Station prime contractor, supplied the Finite Element Analysis (FEA) model geometry and developed the creep equations from the experimental data taken by NASA's Marshall Space Flight Center and Langley Research Center. The goal of this effort was to implement the uniaxial creep equations into a three dimensional finite element program, and to determine analytically whether or not the creep was something that the space station program could live with. The objective was to show analytically that either the creep rate was at an acceptable level, or that the node module had to be modified to lower the stress levels to where creep did not occur. The elastic-plastic-creep analysis was performed using the ANSYS finite element program of ANSYS, Inc. (Houston, PA). The analysis revealed that the gussets encountered a compressive stress of approximately 30,000 pounds per square inch (psi) when unloaded. This compressive residual stress significantly lowered the maximum tension stress in the gussets which decreased the creep strain rate. The analysis also showed that the gussets would not experience a great deal of creep from future pressure tests if braces or struts proposed by Boeing were installed to redistribute stress away from them. Subsequent analysis of on-orbit station keeping and reboost loads convinced Boeing that the gussets should be removed altogether.
NASA Astrophysics Data System (ADS)
Lokoshchenko, A. M.
2014-01-01
Basic results of experimental and theoretical research of creep processes and long-term strength of metals obtained by researchers of the Institute of Mechanics at the Lomonosov Moscow State University are presented. These results further develop and refine the kinetic theory of creep and long-duration strength proposed by Yu. N. Rabotnov. Some problems arising in formulating various types of kinetic equations and describing experimental data for materials that can be considered as statically homogeneous materials (in studying the process of deformation and rupture of such materials, there is no need to study the evolution of individual cracks) are considered. The main specific features of metal creep models at constant and variable stresses, in uniaxial and complex stress states, and with allowance for one or two damage parameters are described. Criterial and kinetic approaches used to determine long-term strength under conditions of a complex stress state are considered. Methods of modeling the metal behavior in an aggressive medium are described. A possibility of using these models for solving engineering problems is demonstrated.
Effect of crosslinking UHMWPE on its tensile and compressive creep performance.
Lewis, G; Carroll, M
2001-01-01
The in vitro quasi-static tensile and compressive creep properties of three sets of GUR 1050 ultra-high-molecular-weight polyethylene (UHMWPE) specimens were obtained. These sets were: control (as-received stock); "low-gamma" (specimens were crosslinked using gamma radiation, with a minimum dose of 5 Mrad); and "high-gamma" (specimens were crosslinked using gamma radiation, with a minimum dose of 15 Mrad). The % crystallinity (%C) and crosslink density (rho(x)) of the specimens in the three sets were also obtained. It was found that, in both tension and compression, crosslinking resulted in a significant depreciation in the creep properties, relative to control. The trend in the creep results is explained in terms of the impact of crosslinking on the polymer's %C and rho(x). The present results are in contrast to literature reports that show that crosslinking enhances the wear resistance of the polymer. The implications of the present results, taken together with the aforementioned literature results, are fully discussed vis-a-vis the use of crosslinked UHMWPE for fabricating articular components for arthroplasties.
Environmental degradation of 316 stainless steel in high temperature low cycle fatigue
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Manson, S. Stanford; Halford, Gary R.
1987-01-01
Procedures based on modification of the conventional Strainrange Partitioning method are proposed to characterize the time-dependent degradation of engineering alloys in high-temperature, low-cycle fatigue. Creep-fatigue experiments were conducted in air using different waveforms of loading on 316 stainless steel at 816 C (1500 F) to determine the effect of exposure time on cyclic life. Reductions in the partitioned cyclic lives were observed with an increase in the time of exposure (or with the corresponding decrease in the steady-state creep rate) for all the waveforms involving creep strain. Excellent correlations of the experimental data were obtained by modifying the Conventional Strainrange Partitioning life relationships involving creep strain using a power-law term of either: (1) time of exposure, or (2) steady-state creep rate of the creep-fatigue test. Environmental degradation due to oxidation, material degradation due to the precipitation of carbides along the grain boundaries and detrimental deformation modes associated with the prolonged periods of creep were observed to be the main mechanisms responsible for life reductions at long exposure times.
A simple model for indentation creep
NASA Astrophysics Data System (ADS)
Ginder, Ryan S.; Nix, William D.; Pharr, George M.
2018-03-01
A simple model for indentation creep is developed that allows one to directly convert creep parameters measured in indentation tests to those observed in uniaxial tests through simple closed-form relationships. The model is based on the expansion of a spherical cavity in a power law creeping material modified to account for indentation loading in a manner similar to that developed by Johnson for elastic-plastic indentation (Johnson, 1970). Although only approximate in nature, the simple mathematical form of the new model makes it useful for general estimation purposes or in the development of other deformation models in which a simple closed-form expression for the indentation creep rate is desirable. Comparison to a more rigorous analysis which uses finite element simulation for numerical evaluation shows that the new model predicts uniaxial creep rates within a factor of 2.5, and usually much better than this, for materials creeping with stress exponents in the range 1 ≤ n ≤ 7. The predictive capabilities of the model are evaluated by comparing it to the more rigorous analysis and several sets of experimental data in which both the indentation and uniaxial creep behavior have been measured independently.
Characterization of Time-Dependent Behavior of Ramming Paste Used in an Aluminum Electrolysis Cell
NASA Astrophysics Data System (ADS)
Orangi, Sakineh; Picard, Donald; Alamdari, Houshang; Ziegler, Donald; Fafard, Mario
2015-12-01
A new methodology was proposed for the characterization of time-dependent behavior of materials in order to develop a constitutive model. The material used for the characterization was ramming paste, a porous material used in an aluminum electrolysis cell, which is baked in place under varying loads induced by the thermal expansion of other components of the cell. In order to develop a constitutive model representing the paste mechanical behavior, it was necessary to get some insight into its behavior using samples which had been baked at different temperatures ranging from 200 to 1000 °C. Creep stages, effect of testing temperature on the creep, creep-recovery, as well as nonlinear creep were observed for designing a constitutive law. Uniaxial creep-recovery tests were carried out at two temperatures on the baked paste: ambient and higher. Results showed that the shape of creep curves was similar to a typical creep; recovery happened and the creep was shown to be nonlinear. Those experimental observations and the identification of nonlinear parameters of developed constitutive model demonstrated that the baked paste experiences nonlinear viscoelastic-viscoplastic behavior at different temperatures.
The influence of temperature on brittle creep in sandstones
NASA Astrophysics Data System (ADS)
Heap, M. J.; Baud, P.; Meredith, P. G.; Vinciguerra, S.
2009-04-01
The characterization of time-dependent brittle rock deformation is fundamental to understanding the long-term evolution and dynamics of the Earth's upper crust. The presence of water promotes time-dependent deformation through environment-dependent stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure stress. Here we report results from an experimental study of the influence of an elevated temperature on time-dependent brittle creep in water-saturated samples of Darley Dale (initial porosity of 13%), Bentheim (23%) and Crab Orchard (4%) sandstones. We present results from both conventional creep experiments (or ‘static fatigue' tests) and stress-stepping creep experiments performed under 20°C and 75°C and an effective confining pressure of 30 MPa (50 MPa confining pressure and a 20 MPa pore fluid pressure). The evolution of crack damage was monitored throughout each experiment by measuring the three proxies for damage (1) axial strain (2) pore volume change and (3) the output of AE energy. Conventional creep experiments have demonstrated that, for any given applied differential stress, the time-to-failure is dramatically reduced and the creep strain rate is significantly increased by application of an elevated temperature. Stress-stepping creep experiments have allowed us to investigate the influence of temperature in detail. Results from these experiments show that the creep strain rate for Darley Dale and Bentheim sandstones increases by approximately 3 orders of magnitude, and for Crab Orchard sandstone increases by approximately 2 orders of magnitude, as temperature is increased from 20°C to 75°C at a fixed effective differential stress. We discuss these results in the context of the different mineralogical and microstructural properties of the three rock types and the micro-mechanical and chemical processes operating on them.
Continuum Damage Mechanics Used to Predict the Creep Life of Monolithic Ceramics
NASA Technical Reports Server (NTRS)
Powers, Lynn M.; Jadaan, Osama M.
1998-01-01
Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated temperature applications. High-temperature and long-duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. An analytical methodology in the form of the integrated design program-Ceramics Analysis and Reliability Evaluation of Structures/Creep (CARES/Creep) has been developed by the NASA Lewis Research Center to predict the life of ceramic structural components subjected to creep rupture conditions. This program utilizes commercially available finite element packages and takes into account the transient state of stress and creep strain distributions (stress relaxation as well as the asymmetric response to tension and compression). The creep life of a component is discretized into short time steps, during which the stress distribution is assumed constant. Then, the damage is calculated for each time step on the basis of a modified Monkman-Grant (MMG) creep rupture criterion. The cumulative damage is subsequently calculated as time elapses in a manner similar to Miner's rule for cyclic fatigue loading. Failure is assumed to occur when the normalized cumulative damage at any point in the component reaches unity. The corresponding time is the creep rupture life for that component.
Some aspects of thermomechanical fatigue of AISI 304L stainless steel: Part I. creep- fatigue damage
NASA Astrophysics Data System (ADS)
Zauter, R.; Christ, H. J.; Mughrabi, H.
1994-02-01
Thermomechanical fatigue (TMF) tests on the austenitic stainless steel AISI 304L have been conducted under “true≓ plastic-strain control in vacuum. This report considers the damage oc-curring during TMF loading. It is shown how the temperature interval and the phasing (in-phase, out-of-phase) determine the mechanical response and the lifetime of the specimens. If creep-fatigue interaction takes place during in-phase cycling, the damage occurs inside the ma-terial, leading to intergranular cracks which reduce the lifetime considerably. Out-of-phase cy-cling inhibits creep-induced damage, and no lifetime reduction occurs, even if the material is exposed periodically to temperatures in the creep regime. A formula is proposed which allows prediction of the failure mode, depending on whether creep-fatigue damage occurs or not. At a given strain rate, the formula is able to estimate the temperature of transition between pure fatigue and creep-fatigue damage.
Slow crack growth in sintered silicon nitride
NASA Technical Reports Server (NTRS)
Khandelwal, P. K.; Chang, J.; Heitman, P. W.
1986-01-01
The strength and crack growth characteristics of a sintered silicon nitride were studied at 1000 C. Fractographic analysis of material failing in dynamic fatigue revealed the presence of slow crack growth (SCG) at stressing rates below 6 ksi/min. This material can sustain a 40-ksi flexural stress at 1000 C for 400 h or more but is susceptible to both SCG and creep deformation at higher stress levels. The crack velocity exponent (N) determined both from dynamic and static fatigue experiments lies in a range from 13 to 22. The subcritical crack growth and creep behavior at 1000 C is primarily controlled by the deformation of an intergranular glassy phase.
Creep of Posidonia Shale at Elevated Pressure and Temperature
NASA Astrophysics Data System (ADS)
Rybacki, E.; Herrmann, J.; Wirth, R.; Dresen, G.
2017-12-01
The economic production of gas and oil from shales requires repeated hydraulic fracturing operations to stimulate these tight reservoir rocks. Besides simple depletion, the often observed decay of production rate with time may arise from creep-induced fracture closure. We examined experimentally the creep behavior of an immature carbonate-rich Posidonia shale, subjected to constant stress conditions at temperatures between 50 and 200 °C and confining pressures of 50-200 MPa, simulating elevated in situ depth conditions. Samples showed transient creep in the semibrittle regime with high deformation rates at high differential stress, high temperature and low confinement. Strain was mainly accommodated by deformation of the weak organic matter and phyllosilicates and by pore space reduction. The primary decelerating creep phase observed at relatively low stress can be described by an empirical power law relation between strain and time, where the fitted parameters vary with temperature, pressure and stress. Our results suggest that healing of hydraulic fractures at low stresses by creep-induced proppant embedment is unlikely within a creep period of several years. At higher differential stress, as may be expected in situ at contact areas due to stress concentrations, the shale showed secondary creep, followed by tertiary creep until failure. In this regime, microcrack propagation and coalescence may be assisted by stress corrosion. Secondary creep rates were also described by a power law, predicting faster fracture closure rates than for primary creep, likely contributing to production rate decline. Comparison of our data with published primary creep data on other shales suggests that the long-term creep behavior of shales can be correlated with their brittleness estimated from composition. Low creep strain is supported by a high fraction of strong minerals that can build up a load-bearing framework.
Creep Behavior of Posidonia Shale at Elevated Pressure and Temperature
NASA Astrophysics Data System (ADS)
Rybacki, E.; Herrmann, J.; Wirth, R.; Dresen, G.
2017-12-01
Unconventional reservoir rocks are usually stimulated by repeated hydraulic fracturing operations. However, the production rate often decays with time that may arise from creep-induced fracture closure by proppant embedment. To examine experimentally the creep behavior of shales, we deformed immature carbonate-rich Posidonia shale at constant stress conditions and elevated temperatures between 50° and 200°C and confining pressures of 50 to 200 MPa. Samples showed transient creep in the semibrittle regime with high deformation rates at high differential stress, high temperature, and low confinement. Strain was mainly accommodated by deformation of the weak organic matter and phyllosilicates and by pore space reduction. At relatively low stress the samples deformed in the primary creep regime with continuously decelerating strain rate. The relation between strain and time can be described by an empirical power law equation, where the fitted parameters vary with temperature, pressure and stress. Our results suggest that healing of hydraulic fractures at low stresses by creep-induced proppant embedment is unlikely within a creep period of several years. At high differential stress (85-90% of the triaxial strength), as may be expected in situ at contact areas due to stress concentrations, the shale showed secondary creep, followed by tertiary creep until failure. In this regime, stress corrosion may induce microcrack propagation and coalescence. Secondary creep rates were also described by a power law that predicts faster fracture closure rates than for primary creep and likely contributes to production rate decline. Comparison of our data with published primary creep data on other shales suggest that the long-term creep behavior of shales can be correlated to their brittleness estimated from composition. Low creep strain is supported by a high fraction of strong minerals that can build up a load-bearing framework.
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.
1978-01-01
A study of the 1365 K tensile properties, creep characteristics and residual room temperature properties after creep testing of the experimental oxide dispersion strengthened iron-base alloy MA-956E (Fe-20Cr-4.5Al-0.5Ti-0.5Y2O3) was conducted. The 1365 K tensile properties, particularly ductility, are strongly dependent on strain rate. It appears that MA-956E does not easily undergo slow plastic deformation. Rather than deform under creep loading conditions, the alloy apparently fails by a crack nucleation and growth mechanism. Fortunately, there appears to be a threshold stress below which crack nucleation and/or growth does not occur.
Finite element modelling of creep crack growth in 316 stainless and 9Cr-1Mo steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnaswamy, P.; Brust, F.W.
1994-09-01
The failure behavior of steels under sustained and cyclic loads has been addressed. The constitutive behavior of the two steels have been represented by the conventional strain-hardening law and the Murakami-Ohno model for reversed and cyclic loads. The laws have been implemented into the research finite element code FVP. Post processors for FVP to calculate various path independent integral fracture parameters have been written. Compact tension C(T) specimens have been tested under sustained and cyclic loads with both the load point displacement and crack growth monitored during the tests. FE models with extremely refined meshes for the C(T) specimens weremore » prepared and the experiment simulated numerically. Results from this analysis focus on the differences between the various constitutive models as well as the fracture parameters in characterizing the creep crack growth of the two steels.« less
NASA Astrophysics Data System (ADS)
Reschka, S.; Munk, L.; Wriggers, P.; Maier, H. J.
2017-12-01
Nimonic 101 is one of the early nickel-based superalloys developed for the use in gas turbines. In such environments, the material is exposed to a combination of both high temperatures and mechanical loads for a long duration. Hence, thermal creep is of the utmost concern as it often limits service life. This study focuses on creep tests, carried out on Nimonic 101 at different temperatures under a constant tensile load of 735 MPa. To characterize the microstructural evolution, electron backscatter diffraction (EBSD) measurements were employed before and after loading. At higher temperatures, a significant change of the microstructure was observed. The grains elongated and aligned their orientation along the load axis. In parallel, a crystal plasticity material model has been set up in the classical large deformation framework. Modeling results are compared to the acquired EBSD data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya
The research built upon a prior investigation to develop a unified constitutive model for design-by-analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-fatigue and creep-ratcheting tests were conducted on the nickel-base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-controlled cycling,more » are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-fatigue and creep-ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the harmonic generation method to tubular mechanical test specimens and pipes for nondestructive evaluation. Tubular specimens and pipes act as waveguides, thus we applied the acoustic harmonic generation method to guided waves in both plates and shells. Magnetostrictive transducers were used to generate and receive guided wave modes in the shell sample and the received signals were processed to show the sensitivity of higher harmonic generation to microstructure evolution. Modeling was initiated to correlate higher harmonic generation with the microstructure that will lead to development of a life prediction model that is informed by the nonlinear acoustics measurements.« less
NASA Technical Reports Server (NTRS)
Powers, L. M.; Jadaan, O. M.; Gyekenyesi, J. P.
1998-01-01
The desirable properties of ceramics at high temperatures have generated interest in their use for structural application such as in advanced turbine engine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilizes commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life, of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the Ceramics Analysis and Reliability Evaluation of Structures/CREEP (CARES/CREEP) integrated design program, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benchmark problems and engine components are included.
NASA Technical Reports Server (NTRS)
Gyekenyesi, J. P.; Powers, L. M.; Jadaan, O. M.
1998-01-01
The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilized commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the CARES/CREEP (Ceramics Analysis and Reliability Evaluation of Structures/CREEP) integrated design programs, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benechmark problems and engine components are included.
NASA Astrophysics Data System (ADS)
Haritos, George K.; Ochoa, O. O.
Various papers on creep-fatigue interaction at high temperature are presented. Individual topics addressed include: analysis of elevated temperature fatigue crack growth mechanisms in Alloy 718, physically based microcrack propagation laws for creep-fatigue-environment interaction, in situ SEM observation of short fatigue crack growth in Waspaloy at 700 C under cyclic and dwell conditions, evolution of creep-fatigue life prediction models, TMF design considerations in turbine airfoils of advanced turbine engines. Also discussed are: high temperature fatigue life prediction computer code based on the total strain version of strainrange partitioning, atomic theory of thermodynamics of internal variables, geometrically nonlinear analysis of interlaminar stresses in unsymmetrically laminated plates subjected to uniform thermal loading, experimental investigation of creep crack tip deformation using moire interferometry. (For individual items see A93-31336 to A93-31344)
NASA Astrophysics Data System (ADS)
Shutov, A. V.; Larichkin, A. Yu
2017-10-01
A cyclic creep damage model, previously proposed by the authors, is modified for a better description of the transient creep of D16T alloy observed in the finite strain range under rapidly changing stresses. The new model encompasses the concept of kinematic hardening, which allows us to account for the creep-induced anisotropy. The model kinematics is based on the nested multiplicative split of the deformation gradient, proposed by Lion. The damage evolution is accounted for by the classical Kachanov-Rabotnov approach. The material parameters are identified using experimental data on cyclic torsion of thick-walled samples with different holding times between load reversals. For the validation of the proposed material model, an additional experiment is analyzed. Although this additional test is not involved in the identification procedure, the proposed cyclic creep damage model describes it accurately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Tasnim; Lissenden, Cliff; Carroll, Laura
The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can bemore » used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.« less
Creep Behavior of Structural Insulated Panels (SIPS): Results from a Pilot Study
Dwight McDonald; Marshall Begel; C. Adam Senalik; Robert Ross; Thomas D. Skaggs; Borjen Yeh; Thomas Williamson
2014-01-01
Structural insulated panels (SIPs) have been recognized as construction materials in the International Residential Code (IRC) since 2009. Although most SIPs are used in wall applications, they can also be used as roof or floor panels that are subjected to long-term transverse loading, for which SIP creep performance may be critical in design. However, limited...
The role of wall calcium in the extension of cell walls of soybean hypocotyls
NASA Technical Reports Server (NTRS)
Virk, S. S.; Cleland, R. E.
1990-01-01
Calcium crosslinks are load-bearing bonds in soybean (Glycine max (L.) Merr.) hypocotyl cell walls, but they are not the same load-bearing bonds that are broken during acid-mediated cell elongation. This conclusion is reached by studying the relationship between wall calcium, pH and the facilitated creep of frozen-thawed soybean hypocotyl sections. Supporting data include the following observations: 1) 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin 2) and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) caused only limited facilitated creep as compared with acid, despite removal of comparable or larger amounts of wall calcium; 2) the pH-response curves for calcium removal and acid-facilitated creep were different; 3) reversible acid-extension occurred even after removal of almost all wall calcium with Quin 2; and 4) growth of abraded sections did not involve a proportional loss of wall calcium. Removal of wall calcium, however, increased the capacity of the walls to undergo acid-facilitated creep. These data indicate that breakage of calcium crosslinks is not a major mechanism of cell-wall loosening in soybean hypocotyl tissues.
NASA Astrophysics Data System (ADS)
Sone, H.; Cheung, C.; Rivers, M. L.; Wang, Y.; Yu, T.
2016-12-01
Knowledge about the ductile time-dependent constitutive behavior of geological materials is essential when evaluating the long-term integrity of subsurface structures and predicting the long-term geomechanical response of the surrounding formations. To this end, it is not only important to measure the bulk time-dependent behavior but also essential to understand the microscale mechanism by which rocks exhibit time-dependence, because laboratory data needs to be extrapolated to time-scales much beyond laboratory experiments. We conducted long-term creep experiments using Green River shale samples and obtained synchrotron X-ray images during the tests in an attempt to capture the microscale strain-partitioning that occurs within the sample. Shale samples of few millimeter dimensions were stressed up to several tens of MPa by a spring-loaded device within an X-ray transparent load frame, and the load was held constant for up to several months to allow creep deformation. Tomographic images of about 5 micron resolution were reconstructed from images collected at different timings of the experiment, which allows us to investigate where and how much strain localized during elastic and creep deformation. Tracking the position of some outstanding features in the rock texture (e.g. pyrite grains, organic material patches) indicate that strain magnitudes expected from the sample elastic and relaxation modulus can be successfully recovered from the tomographic images. We also attempt to use digital volume correlation to track sub-voxel displacements and to characterize the spatial heterogeneity of the deformation.
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
NASA Astrophysics Data System (ADS)
Belov, Nikolay; Yugov, Nikolay; Kopanitsa, Dmitry; Kopanitsa, Georgy; Yugov, Alexey; Kaparulin, Sergey; Plyaskin, Andrey; Kalichkina, Anna; Ustinov, Artyom
2016-01-01
When designing buildings with reinforced concrete that are planned to resist dynamic loads it is necessary to calculate this structural behavior under operational static and emergency impact and blast loads. Calculations of the structures under shock-wave loads can be performed by solving dynamic equations that do not consider static loads. Due to this fact the calculation of reinforced concrete frame under a simultaneous static and dynamic load in full 3d settings becomes a very non trivial and resource consuming problem. This problem can be split into two tasks. The first one is a shock-wave problem that can be solved using software package RANET-3, which allows solving the problem using finite elements method adapted for dynamic task. This method calculates strain-stress state of the material and its dynamic destruction, which is considered as growth and consolidation of micro defects under loading. On the second step the results of the first step are taken as input parameters for quasi static calculation of simultaneous static and dynamic load using finite elements method in AMP Civil Engineering-11.
Evaluation of Geosynthetic-Reinforced Flexible Pavements using Static Plate Load Tests
DOT National Transportation Integrated Search
2010-01-01
This study focuses on the response of full-scale geogrid-reinforced flexible pavements to static surface loading. Specifically, static plate load (SPL) tests were performed on a low-volume, asphalt pavement frontage road in Eastern Arkansas, USA (the...
Study of the time varying properties of flax fiber reinforced composites
NASA Astrophysics Data System (ADS)
Stochioiu, Constantin; Chettah, Ameur; Piezel, Benoit; Fontaine, Stéphane; Gheorghiu, Horia-Miron
2018-02-01
Bio materials have seen an increase of interest from the scientific community and the industry as a possible future generation of mass produced materials, some of the main arguments being their renewability, low production costs and recyclability. The current work is focused on the experimental data required for the viscoelastic characterization of a composite material. Similar work has been conducted on different types of composite materials by Tuttle and Brinson [1] who verified for a carbon epoxy laminate the possibility of long term predicament of creep. Nordin et al [2] studied paper impregnated with phenol-formaldehyde under compression. Muliana [3] conducted experiments on E-glass/vinyl ester materials. Behavior characterization was based on a model presented by Schapery [4]. The main objective of this work is to understand the mechanical behaviors of bio-laminates structures subjected to long and severe operating conditions. The studied material is a bio composite laminate consisting in long flax fibers embedded in an epoxy resin system. The laminates were obtained from pre-impregnated unidirectional fibers, which were cured though a thermo-compression cycle followed by a post curing cycle. Test specimens were cut down to sizes, with the help of an electric saw. The concerned fiber direction was 0° with sample dimensions of 250x25x2 mm. First, testing consisted in quasi static mechanical tests. Second, to characterize linear viscoelastic behavior of the bio-laminates, creep - recovery tests with multiple load levels have been performed for the chosen fiber direction.
30 CFR 57.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall be...
30 CFR 57.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall be...
30 CFR 57.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall be...
30 CFR 57.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall be...
30 CFR 57.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall be...
NASA Technical Reports Server (NTRS)
Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)
1988-01-01
The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.
Evaluation of Inelastic Constitutive Models for Nonlinear Structural Analysis
NASA Technical Reports Server (NTRS)
Kaufman, A.
1983-01-01
The influence of inelastic material models on computed stress-strain states, and therefore predicted lives, was studied for thermomechanically loaded structures. Nonlinear structural analyses were performed on a fatigue specimen which was subjected to thermal cycling in fluidized beds and on a mechanically load cycled benchmark notch specimen. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic-kinematic, combined plus transient creep) were exercised. Of the plasticity models, kinematic hardening gave results most consistent with experimental observations. Life predictions using the computed strain histories at the critical location with a Strainrange Partitioning approach considerably overpredicted the crack initiation life of the thermal fatigue specimen.
Performance tradeoffs in static and dynamic load balancing strategies
NASA Technical Reports Server (NTRS)
Iqbal, M. A.; Saltz, J. H.; Bokhart, S. H.
1986-01-01
The problem of uniformly distributing the load of a parallel program over a multiprocessor system was considered. A program was analyzed whose structure permits the computation of the optimal static solution. Then four strategies for load balancing were described and their performance compared. The strategies are: (1) the optimal static assignment algorithm which is guaranteed to yield the best static solution, (2) the static binary dissection method which is very fast but sub-optimal, (3) the greedy algorithm, a static fully polynomial time approximation scheme, which estimates the optimal solution to arbitrary accuracy, and (4) the predictive dynamic load balancing heuristic which uses information on the precedence relationships within the program and outperforms any of the static methods. It is also shown that the overhead incurred by the dynamic heuristic is reduced considerably if it is started off with a static assignment provided by either of the other three strategies.
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2000-01-01
The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC-SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of five materials of different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have higher creep compliance and creep rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of M (bar) (sub w) 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly. The short-term creep compliance data were used in association with Struik's effective time theory to predict the long-term creep compliance behavior for the different molecular weights. At long timescales, physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested.
Accelerated Creep Testing of High Strength Aramid Webbing
NASA Technical Reports Server (NTRS)
Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar
2012-01-01
A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.
Post-seismic and interseismic fault creep I: model description
NASA Astrophysics Data System (ADS)
Hetland, E. A.; Simons, M.; Dunham, E. M.
2010-04-01
We present a model of localized, aseismic fault creep during the full interseismic period, including both transient and steady fault creep, in response to a sequence of imposed coseismic slip events and tectonic loading. We consider the behaviour of models with linear viscous, non-linear viscous, rate-dependent friction, and rate- and state-dependent friction fault rheologies. Both the transient post-seismic creep and the pattern of steady interseismic creep rates surrounding asperities depend on recent coseismic slip and fault rheologies. In these models, post-seismic fault creep is manifest as pulses of elevated creep rates that propagate from the coseismic slip, these pulses feature sharper fronts and are longer lived in models with rate-state friction compared to other models. With small characteristic slip distances in rate-state friction models, interseismic creep is similar to that in models with rate-dependent friction faults, except for the earliest periods of post-seismic creep. Our model can be used to constrain fault rheologies from geodetic observations in cases where the coseismic slip history is relatively well known. When only considering surface deformation over a short period of time, there are strong trade-offs between fault rheology and the details of the imposed coseismic slip. Geodetic observations over longer times following an earthquake will reduce these trade-offs, while simultaneous modelling of interseismic and post-seismic observations provide the strongest constraints on fault rheologies.
Long-term stability and properties of zirconia ceramics for heavy duty diesel engine components
NASA Technical Reports Server (NTRS)
Larsen, D. C.; Adams, J. W.
1985-01-01
Physical, mechanical, and thermal properties of commercially available transformation-toughened zirconia are measured. Behavior is related to the material microstructure and phase assemblage. The stability of the materials is assessed after long-term exposure appropriate for diesel engine application. Properties measured included flexure strength, elastic modulus, fracture toughness, creep, thermal shock, thermal expansion, internal friction, and thermal diffusivity. Stability is assessed by measuring the residual property after 1000 hr/1000C static exposure. Additionally static fatigue and thermal fatigue testing is performed. Both yttria-stabilized and magnesia-stabilized materials are compared and contrasted. The major limitations of these materials are short term loss of properties with increasing temperature as the metastable tetragonal phase becomes more stable. Fine grain yttria-stabilized material (TZP) is higher strength and has a more stable microstructure with respect to overaging phenomena. The long-term limitation of Y-TZP is excessive creep deformation. Magnesia-stabilized PSZ has relatively poor stability at elevated temperature. Overaging, decomposition, and/or destabilization effects are observed. The major limitation of Mg-PSZ is controlling unwanted phase changes at elevated temperature.
NASA Astrophysics Data System (ADS)
Lucas, Barry Neal
Indentation Creep. Using depth-sensing indentation techniques at both room and elevated temperatures, the dependency of the indentation hardness on the variables of indentation strain rate and temperature, and the existence of a steady state behavior in an indentation creep test with a Berkovich indenter were investigated. The indentation creep response of five materials, Pb-65 at% In (at RT), high purity indium (from RT to 75sp°C), high purity aluminum (from RT to 250sp°C), an amorphous alumina film (at RT), and sapphire (at RT), was measured. It was shown that the indentation strain rate, defined as h/h, could be held constant during an experiment using a Berkovich indenter by controlling the loading rate such that the loading rate divided by the load, P/P, remained constant. The temperature dependence of indentation creep in indium and aluminum was found to be the same as that for uniaxial creep. By performing P/P change experiments, it was shown that a steady state path independent hardness could be reached in an indentation test with a Berkovich indenter. Viscoelasticity. Using a frequency specific dynamic indentation technique, a method to measure the linear viscoelastic properties of polymers was determined. The polymer tested was poly-cis 1,4-isoprene. By imposing a small harmonic force excitation on the specimen during the indentation process and measuring the displacement response at the same frequency, the complex modulus, G*, of the polymer was determined. The portion of the displacement signal "in phase" with the excitation represents the elastic response of the contact and is related to the stiffness, S, of the contact and to the storage modulus, Gsp', of the material. The "out of phase" portion of the displacement signal represents the damping, Comega where omega = 2 pi f, of the contact, and thus the loss modulus, Gsp{''}, of the material. It was shown that both the storage, S, and loss, Comega components of the response scale as the respective component of the complex modulus multiplied by the square root of the contact area.
NASA Astrophysics Data System (ADS)
Macente, Alice; Fusseis, Florian; Butler, Ian; Tudisco, Erika; Hall, Stephen; Andò, Edward
2016-04-01
Pressure-solution creep is a common deformation mechanism in the upper crust. It represents a mass transfer via dissolution-reprecipitation that critically affects the hydraulic properties of rocks. Successful management of safe radioactive storage sites in rock-salt deposits critically depends on an accurate knowledge of the hydro-mechanical behaviour of salt deposits. Despite numerous lab experiments that have been conducted, many aspects of pressure-solution are still poorly understood. There is little knowledge about the spatio-temporal evolution of porosity and permeability during pressure-solution creep. While rates of pressure-solution creep in silicates and carbonates are slow, which makes laboratory investigations of these materials impractical, compaction experiments have demonstrated that NaCl samples deform sufficiently fast to study pressure-solution creep in a lab environment at room temperature and modest loads. We present results from novel experiments that quantify the 4-dimensional (three spatial dimensions plus time) evolution of pressure-solution processes using in-situ x-ray microtomography. Our experiments are performed in custom made x-ray transparent presses. 5 mm diameter NaCl powder samples with a grain size of 250-300 μm are loaded dry into the press and pre-compacted to produce a starting aggregated material. The sample is then flooded with saturated NaCl solution and loaded uniaxially by means of a pneumatic actuator to a constant uniaxial stress. Different sample mixtures were tested, as well as different uniaxial loads. The resulting deformation of the samples is documented in 3-dimensional microtomographic datasets, acquired at regular time intervals. Image analysis allowed characterization of the microstructural evolution of the NaCl grains and the spatio-temporal distribution of porosity during ongoing mechanical and chemical compaction. The microtomography data have also been analysed with 3D Digital Image Correlation (3D-DIC or DVC) to quantify the fields of displacements in each direction, as well as volumetric and maximum shear strain fields. Following the approach described above, we have been able to quantify and characterize in 4D the evolution of pressure-solution creep and porosity distribution in relation to different sample materials and increasing uniaxial load. The presence of phyllosilicates (biotite) and more competent materials (glass beads) allowed pressure-solution to develop in a much shorter time compared to pure halite sample. The same trend is observed in samples experiencing bigger uniaxial loads (6.6 MPa v 1.6 MPa). We also found that, in the presence of phyllosilicates (biotite), pore size distribution clearly reflects the localisation of pressure-solution processes, as for natural stylolites. In the presence of glass beads, pressure-solution has a greater effect on the pore orientations rather than pore sizes. Our results extend the current understanding of the effect of pressure-solution creep on the mechanical and hydraulic properties of rocks, with implications for natural rock-salt, salt-based repository systems (nuclear and chemical waste storage) and salt mining.
Analysis of SNL/MSU/DOE Fatigue Database Trends for Wind Turbine Blade Materials 2010-2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandell, John F.; Samborsky, Daniel D.; Miller, David A.
Wind turbine blades are designed to several major structural conditions, including tip deflection, strength and b uckling during severe loading, as well as very high numbers of fatigue cycles and various service environments. The MSU Database Program has, since 1989, addressed the broad range of properties needed for current and potential blade materials through stati c and fatigue testing and test development in cooperation with Sandia National Laboratories and wind industry and supplier partners. This report is the latest in a series, giving test results and analysis for the period 2010 - 2015. Program data are compiled in a publicmore » database [1] and other reports and publications given in the cited references. The report begins with an executive summary and introductory material including background discussion of previous related studies. Section 3 describes experimental methods including processing, test methods, instrumentation and test development. Section 4 provides static tension, compression and shear stress - strain properties in three directions using coupons sectioned from a thick infused unidirectional glass/epoxy laminate. The nonlinear, shear dominated static properties were characterized with loading - u nloading - reloading (LUR) tests in tension and compression to increasing load levels, for +-45O laminates. Section 5 explores the origins of tensile fatigue sensitivity in glass fiber dominated laminates with variations in fabric architecture including speci ally prepared fabrics and aligned strand laminates. Several types of resins are considered, with variations in resin toughness and bonding to fibers, as well as cure cycle variations for an epoxy. Conclusions are drawn as to the limits of tensile fatigue r esistance and the effects of resin type and fabric architecture, including the behavior of a commercial aligned glass strand product. Interactions between cyclic fatigue response and creep are addressed for off - axis (+-45O) glass/epoxy laminates in Sectio n 6. The nonlinear fatigue and creep stress - strain and cumulative strain response are characterized in tension and compression as a function of stress level, cycles and cumulative time, using square and sinewave loading over a broad range of frequency. The results are analyzed in terms of the cycles and cumulative time under load. A cumulative strain failure criterion is established, and used to construct shear and tension constant life diagrams (CLD's) with data for nine R - values. The effects of a more duc tile urethne resin are also explored. A previous study of thick adhesives testing is extended to mixed mode fracture mechanics testing in Section 7. Mechanisms of static and fatigue crack extension near the laminate adherend interface are reported in deta il. Data are presented for mixed mode adhesive fracture, compared to mixed mode fracture in ply delamination. Fatigue crack growth exponents are also developed for a mixed mode cracked lap shear coupon. The data for fatigue trends and relative failure stra ins and exponents are compared for various blade component materials in Section 8. The effects of temperature and seawater saturation are considered for selected materials of interest for wind and hydrokinetic turbine blades in Section 9. Section 10 gives detailed conclusions for each section. A cknowledgements The research presented in this report was carried out under Sandia National Laboratories purchase orders 1325028 an d 1543945 between 2010 and 2015, with support from the DOE Wind and Water Technologies Office . In addition to the authors listed, significant contributions were made by Patrick Flaherty, Pancastya Agastra, Michael Schuster, and Michael Voth. Industry m aterials suppliers include Vectorply, Saertex, OCV, AGY, Bayer, Ashland, 3M and Nextel. Industry suppliers with significant contributions to the study were Hexion, PPG, Reichhold, Gurit and NEPTCO. Intentionally Left Blank« less
NASA Astrophysics Data System (ADS)
Worth, Brian D.; Jones, J. Wayne; Allison, John E.
1995-11-01
The influence of microstructure on creep deformation was examined in the near-y TiAl alloy Ti-49A1-1V. Specifically, microstructures with varying volume fractions of lamellar constituent were produced through thermomechanical processing. Creep studies were conducted on these various microstructures under constant load in air at temperatures between 760 °C and 870 °C and at stresses ranging from 50 to 200 MPa. Microstructure significantly influences the creep behavior of this alloy, with a fully lamellar microstructure yielding the highest creep resistance of the microstructures examined. Creep resistance is dependent on the volume fraction of lamellar constituent, with the lowest creep resistance observed at intermediate lamellar volume fractions. Examination of the creep deformation structure revealed planar slip of dislocations in the equiaxed y microstructure, while subboundary formation was observed in the duplex microstructure. The decrease in creep resistance of the duplex microstructure, compared with the equiaxed y microstructure, is attributed to an increase in dislocation mobility within the equiaxed y constituent, that results from partitioning of oxygen from the γ phase to the α2 phase. Dislocation motion in the fully lamellar microstructure was confined to the individual lamellae, with no evidence of shearing of γ/γ or γ/α2 interfaces. This suggests that the high creep resistance of the fully lamellar microstructure is a result of the fine spacing of the lamellar structure, which results in a decreased effective slip length for dislocation motion over that found in the duplex and equiaxed y microstructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belov, Nikolay, E-mail: n.n.belov@mail.ru; Kopanitsa, Dmitry, E-mail: kopanitsa@mail.ru; Yugov, Alexey, E-mail: yugalex@mail.ru
When designing buildings with reinforced concrete that are planned to resist dynamic loads it is necessary to calculate this structural behavior under operational static and emergency impact and blast loads. Calculations of the structures under shock-wave loads can be performed by solving dynamic equations that do not consider static loads. Due to this fact the calculation of reinforced concrete frame under a simultaneous static and dynamic load in full 3d settings becomes a very non trivial and resource consuming problem. This problem can be split into two tasks. The first one is a shock-wave problem that can be solved usingmore » software package RANET-3, which allows solving the problem using finite elements method adapted for dynamic task. This method calculates strain-stress state of the material and its dynamic destruction, which is considered as growth and consolidation of micro defects under loading. On the second step the results of the first step are taken as input parameters for quasi static calculation of simultaneous static and dynamic load using finite elements method in AMP Civil Engineering-11.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yongming; Oskay, Caglar
This report outlines the research activities that were carried out for the integrated experimental and simulation investigation of creep-fatigue damage mechanism and life prediction of Nickel-based alloy, Inconel 617 at high temperatures (950° and 850°). First, a novel experimental design using a hybrid control technique is proposed. The newly developed experimental technique can generate different combinations of creep and fatigue damage by changing the experimental design parameters. Next, detailed imaging analysis and statistical data analysis are performed to quantify the failure mechanisms of the creep fatigue of alloy 617 at high temperatures. It is observed that the creep damage ismore » directly associated with the internal voids at the grain boundaries and the fatigue damage is directly related to the surface cracking. It is also observed that the classical time fraction approach does not has a good correlation with the experimental observed damage features. An effective time fraction parameter is seen to have an excellent correlation with the material microstructural damage. Thus, a new empirical damage interaction diagram is proposed based on the experimental observations. Following this, a macro level viscoplastic model coupled with damage is developed to simulate the stress/strain response under creep fatigue loadings. A damage rate function based on the hysteresis energy and creep energy is proposed to capture the softening behavior of the material and a good correlation with life prediction and material hysteresis behavior is observed. The simulation work is extended to include the microstructural heterogeneity. A crystal plasticity finite element model considering isothermal and large deformation conditions at the microstructural scale has been developed for fatigue, creep-fatigue as well as creep deformation and rupture at high temperature. The model considers collective dislocation glide and climb of the grains and progressive damage accumulation of the grain boundaries. The glide model incorporates a slip resistance evolution model that characterizes the solute-drag creep effects and can capture well the stress-strain and stress time response of fatigue and creep-fatigue tests at various strain ranges and hold times. In order to accurately capture the creep strains that accumulate particularly at relatively low stress levels, a dislocation climb model has been incorporated into the crystal plasticity modeling framework. The dislocation climb model parameters are calibrated and verified through experimental creep tests performed at 950°. In addition, a cohesive zone model has been fully implemented in the context of the crystal plasticity finite element model to capture the intergranular creep damage. The parameters of the cohesive zone model have been calibrated using available experimental data. The numerical simulations illustrate the capability of the proposed model in capturing damage initiation and growth under creep loads as compared to the experimental observations. The microscale analysis sheds light on the crack initiation sites and propagation patterns within the microstructure. The model is also utilized to investigate the hybrid-controlled creep-fatigue tests and has been found to capture reasonably well the stress-strain response with different hold times and hold stress magnitudes.« less
Hagihara, Koji; Ikenishi, Takaaki; Araki, Haruka; Nakano, Takayoshi
2017-06-21
A (Mo 0.85 Nb 0.15 )Si 2 crystal with an oriented, lamellar, C40/C11 b two-phase microstructure is a promising ultrahigh-temperature (UHT) structural material, but its low room-temperature fracture toughness and low high-temperature strength prevent its practical application. As a possibility to overcome these problems, we first found a development of unique "cross-lamellar microstructure", by the cooping of Cr and Ir. The cross-lamellar microstructure consists of a rod-like C11 b -phase grains that extend along a direction perpendicular to the lamellar interface in addition to the C40/C11 b fine lamellae. In this study, the effectiveness of the cross-lamellar microstructure for improving the high-temperature creep deformation property, being the most essential for UHT materials, was examined by using the oriented crystals. The creep rate significantly reduced along a loading orientation parallel to the lamellar interface. Furthermore, the degradation in creep strength for other loading orientation that is not parallel to the lamellar interface, which has been a serious problem up to now, was also suppressed. The results demonstrated that the simultaneous improvement of high-temperature creep strength and room temperature fracture toughness can be first accomplished by the development of unique cross-lamellar microstructure, which opens a potential avenue for the development of novel UHT materials as alternatives to existing Ni-based superalloys.
Nonlinear viscoelastic characterization of bovine trabecular bone.
Manda, Krishnagoud; Wallace, Robert J; Xie, Shuqiao; Levrero-Florencio, Francesc; Pankaj, Pankaj
2017-02-01
The time-independent elastic properties of trabecular bone have been extensively investigated, and several stiffness-density relations have been proposed. Although it is recognized that trabecular bone exhibits time-dependent mechanical behaviour, a property of viscoelastic materials, the characterization of this behaviour has received limited attention. The objective of the present study was to investigate the time-dependent behaviour of bovine trabecular bone through a series of compressive creep-recovery experiments and to identify its nonlinear constitutive viscoelastic material parameters. Uniaxial compressive creep and recovery experiments at multiple loads were performed on cylindrical bovine trabecular bone samples ([Formula: see text]). Creep response was found to be significant and always comprised of recoverable and irrecoverable strains, even at low stress/strain levels. This response was also found to vary nonlinearly with applied stress. A systematic methodology was developed to separate recoverable (nonlinear viscoelastic) and irrecoverable (permanent) strains from the total experimental strain response. We found that Schapery's nonlinear viscoelastic constitutive model describes the viscoelastic response of the trabecular bone, and parameters associated with this model were estimated from the multiple load creep-recovery (MLCR) experiments. Nonlinear viscoelastic recovery compliance was found to have a decreasing and then increasing trend with increasing stress level, indicating possible stiffening and softening behaviour of trabecular bone due to creep. The obtained parameters from MLCR tests, expressed as second-order polynomial functions of stress, showed a similar trend for all the samples, and also demonstrate stiffening-softening behaviour with increasing stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomar, Vikas
2017-03-06
DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated amore » basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potirniche, Gabriel; Barlow, Fred D.; Charit, Indrajit
2013-11-26
A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize themore » mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.« less
D’Ambrosia, Peter; King, Karen; Davidson, Bradley; Zhou, Bing He; Lu, Yun
2010-01-01
Repetitive or overuse disorders of the lumbar spine affect the lives of workers and athletes. We hypothesize that repetitive anterior lumbar flexion–extension under low or high load will result in significantly elevated pro-inflammatory cytokines expression several hours post-activity. High loads will exhibit significantly higher expression than low loads. Lumbar spine of in vivo feline was subjected to cyclic loading at 0.25 Hz for six 10-min periods with 10 min of rest in between. One group was subjected to a low peak load of 20 N, whereas the second group to a high peak load of 60 N. Following a 7-h post-loading rest, the supraspinous ligaments of L-3/4, L-4/5 and L-5/6 and the unstimulated T-10/11 were excised for mRNA analysis and IL-1β, IL-6, IL-8, TNFα and TGFβ1 pro-inflammatory cytokines expression. Creep (laxity) developed in the lumbar spine during the loading and the subsequent 7 h of rest was calculated. A two-way mixed model ANOVA was used to assess difference in each cytokines expression between the two groups and control. Tukey HSD post hoc analysis delineated specific significant effects. Significance was set at 0.05. Low and high-load groups exhibited development of creep throughout the cyclic loading period and gradual recovery throughout the 7-h rest period. Residual creep of 24.8 and 30.2% were present in the low and high-load groups, respectively, 7-h post-loading. Significant increases in expression of all cytokines measured relative to control were obtained for supraspinous ligaments from both low and high-load magnitudes. IL-6, IL-8 and TGFβ1 expression in the high-load group were significantly higher relative to the low-load group. Significant increases in cytokines expression indicating tissue inflammation are observed several hours post-repetitive lumbar flexion–extension regardless of the load magnitude applied. Repetitive occupational and athletic activity, regardless of the load applied, may be associated with the potential of developing acute inflammatory conditions that may convert to chronic inflammation if the viscoelastic tissues are further exposed to repetitive activity over long periods. Appropriate rest periods are a relevant preventive measure. PMID:20336330
On rate-dependent polycrystal deformation: the temperature sensitivity of cold dwell fatigue
Zhang, Zhen; Cuddihy, M. A.; Dunne, F. P. E.
2015-01-01
A temperature and rate-dependent crystal plasticity framework has been used to examine the temperature sensitivity of stress relaxation, creep and load shedding in model Ti-6Al polycrystal behaviour under dwell fatigue conditions. A temperature close to 120°C is found to lead to the strongest stress redistribution and load shedding, resulting from the coupling between crystallographic slip rate and slip system dislocation hardening. For temperatures in excess of about 230°C, grain-level load shedding from soft to hard grains diminishes because of the more rapid stress relaxation, leading ultimately to the diminution of the load shedding and hence, it is argued, the elimination of the dwell debit. Under conditions of cyclic stress dwell, at temperatures between 20°C and 230°C for which load shedding occurs, the rate-dependent accumulation of local slip by ratcheting is shown to lead to the progressive cycle-by-cycle redistribution of stress from soft to hard grains. This phenomenon is termed cyclic load shedding since it also depends on the material's creep response, but develops over and above the well-known dwell load shedding, thus providing an additional rationale for the incubation of facet nucleation. PMID:26528078
NASA Astrophysics Data System (ADS)
Jiang, Huifeng; Chen, Xuedong; Fan, Zhichao; Dong, Jie; Jiang, Heng; Lu, Shouxiang
2009-08-01
Stress controlled fatigue-creep tests were carried out for 316L stainless steel under different loading conditions, i.e. different loading levels at the fixed temperature (loading condition 1, LC1) and different temperatures at the fixed loading level (loading condition 2, LC2). Cyclic deformation behaviors were investigated with respect to the evolutions of strain amplitude and mean strain. Abrupt mean strain jumps were found during cyclic deformation, which was in response to the dynamic strain aging effect. Moreover, as to LC1, when the minimum stress is negative at 550 °C, abrupt mean strain jumps occur at the early stage of cyclic deformation and there are many jumps during the whole process. While the minimum stress is positive, mean strain only jumps once at the end of deformation. Similar results were also found in LC2, when the loading level is fixed at -100 to 385 MPa, at higher temperatures (560, 575 °C), abrupt mean strain jumps occur at the early stage of cyclic deformation and there are many jumps during the whole process. While at lower temperature (540 °C), mean strain only jumps once at the end of deformation.
Inferring fault rheology from low-frequency earthquakes on the San Andreas
Beeler, Nicholas M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David R.
2013-01-01
Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor (NVT) on the San Andreas fault in central California show strong sensitivity to shear stress induced by the daily tidal cycle. LFEs occur at all levels of the tidal shear stress and are in phase with the very small, ~400 Pa, stress amplitude. To quantitatively explain the correlation, we use a model from the existing literature that assumes the LFE sources are small, persistent regions that repeatedly fail during shear of a much larger scale, otherwise aseismically creeping fault zone. The LFE source patches see tectonic loading, creep of the surrounding fault which may be modulated by the tidal stress, and direct tidal loading. If the patches are small relative to the surrounding creeping fault then the stressing is dominated by fault creep, and if patch failure occurs at a threshold stress, then the resulting seismicity rate is proportional to the fault creep rate or fault zone strain rate. Using the seismicity rate as a proxy for strain rate and the tidal shear stress, we fit the data with possible fault rheologies that produce creep in laboratory experiments at temperatures of 400 to 600°C appropriate for the LFE source depth. The rheological properties of rock-forming minerals for dislocation creep and dislocation glide are not consistent with the observed fault creep because strong correlation between small stress perturbations and strain rate requires perturbation on the order of the ambient stress. The observed tidal modulation restricts ambient stress to be at most a few kilopascal, much lower than rock strength. A purely rate dependent friction is consistent with the observations only if the product of the friction rate dependence and effective normal stress is ~ 0.5 kPa. Extrapolating the friction rate strengthening dependence of phyllosilicates (talc) to depth would require the effective normal stress to be ~50 kPa, implying pore pressure is lithostatic. If the LFE source is on the order of tens of meters, as required by the model, rate-weakening friction rate dependence (e.g., olivine) at 400 to 600°C requires that the minimum effective pressure at the LFE source is ~ 2.5 MPa.
AGC-2 Specimen Post Irradiation Data Package Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windes, William Enoch; Swank, W. David; Rohrbaugh, David T.
This report documents results of the post-irradiation examination material property testing of the creep, control, and piggyback specimens from the irradiation creep capsule Advanced Graphite Creep (AGC)-2 are reported. This is the second of a series of six irradiation test trains planned as part of the AGC experiment to fully characterize the neutron irradiation effects and radiation creep behavior of current nuclear graphite grades. The AGC-2 capsule was irradiated in the Idaho National Laboratory Advanced Test Reactor at a nominal temperature of 600°C and to a peak dose of 5 dpa (displacements per atom). One-half of the creep specimens weremore » subjected to mechanical stresses (an applied stress of either 13.8, 17.2, or 20.7 MPa) to induce irradiation creep. All post-irradiation testing and measurement results are reported with the exception of the irradiation mechanical strength testing, which is the last destructive testing stage of the irradiation testing program. Material property tests were conducted on specimens from 15 nuclear graphite grades using a similar loading configuration as the first AGC capsule (AGC-1) to provide easy comparison between the two capsules. However, AGC-2 contained an increased number of specimens (i.e., 487 total specimens irradiated) and replaced specimens of the minor grade 2020 with the newer grade 2114. The data reported include specimen dimensions for both stressed and unstressed specimens to establish the irradiation creep rates, mass and volume data necessary to derive density, elastic constants (Young’s modulus, shear modulus, and Poisson’s ratio) from ultrasonic time-of-flight velocity measurements, Young’s modulus from the fundamental frequency of vibration, electrical resistivity, and thermal diffusivity and thermal expansion data from 100–500°C. No data outliers were determined after all measurements were completed. A brief statistical analysis was performed on the irradiated data and a limited comparison between pre- and post-irradiation properties is presented. A more complete evaluation of trends in the material property changes, as well as irradiation-induced creep due to irradiation, temperature, and applied load on specimens will be discussed in later AGC-2 post-irradiation examination analysis reports.« less
NASA Astrophysics Data System (ADS)
Boehlert, C. J.; Dickmann, D. S.; Eisinger, Ny. N. C.
2006-01-01
The grain size, grain boundary character distribution (GBCD), creep, and tensile behavior of INCONEL alloy 718 (IN 718) were characterized to identify processing-microstructure-property relationships. The alloy was sequentially cold rolled (CR) to 0, 10, 20, 30, 40, 60, and 80 pct followed by annealing at temperatures between 954 °C and 1050 °C and the traditional aging schedule used for this alloy. In addition, this alloy can be superplastically formed (IN 718SPF) to a significantly finer grain size and the corresponding microstructure and mechanical behavior were evaluated. The creep behavior was evaluated in the applied stress (σ a ) range of 300 to 758 MPa and the temperature range of 638 °C to 670 °C. Constant-load tensile creep experiments were used to measure the values of the steady-state creep rate and the consecutive load reduction method was used to determine the values of backstress (σ0). The values for the effective stress exponent and activation energy suggested that the transition between the rate-controlling creep mechanisms was dependent on effective stresses (σ e =σ a σ0) and the transition occurred at σ e ≅ 135 MPa. The 10 to 40 pct CR samples exhibited the greatest 650 °C strength, while IN 718SPF exhibited the greatest room-temperature (RT) tensile strength (>1550 MPa) and ductility (ɛ f >16 pct). After the 954 °C annealing treatment, the 20 pct CR and 30 pct CR microstructures exhibited the most attractive combination of elevated-temperature tensile and creep strength, while the most severely cold-rolled materials exhibited the poorest elevated-temperature properties. After the 1050 °C annealing treatment, the IN 718SPF material exhibited the greatest backstress and best creep resistance. Electron backscattered diffraction was performed to identify the GBCD as a function of CR and annealing. The data indicated that annealing above 1010 °C increased the grain size and resulted in a greater fraction of twin boundaries, which in turn increased the fraction of coincident site lattice boundaries. This result is discussed in light of the potential to grain boundary engineer this alloy.
NASA Technical Reports Server (NTRS)
Padovan, J.; Tovichakchaikul, S.
1983-01-01
This paper will develop a new solution strategy which can handle elastic-plastic-creep problems in an inherently stable manner. This is achieved by introducing a new constrained time stepping algorithm which will enable the solution of creep initiated pre/postbuckling behavior where indefinite tangent stiffnesses are encountered. Due to the generality of the scheme, both monotone and cyclic loading histories can be handled. The presentation will give a thorough overview of current solution schemes and their short comings, the development of constrained time stepping algorithms as well as illustrate the results of several numerical experiments which benchmark the new procedure.
2004-03-01
elevated temperature of 550 C. Cyclic loading of C/SiC was investigated at frequencies of 375 Hz , 10 Hz, 1 Hz, and 0.1 Hz. Creep-Rupture tests and tests that...is reduced when frequency of fatigue is increased. At high frequency fatigue (10Hz to 375 Hz ), C/SiC composites have longer cycle lives and time lives
Zinc alloy enhances strength and creep resistance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machler, M.
1996-10-01
A family of high-performance ternary zinc-copper-aluminum alloys has been developed that provides higher strength, hardness, and creep resistance than the traditional zinc-aluminum alloys Zamak 3, Zamak 5, and ZA-8. Designated ACuZinc, mechanical properties comparable to those of more expensive materials make it suitable for high-load applications and those at elevated temperatures. This article describes the alloy`s composition, properties, and historical development.
14 CFR 23.507 - Jacking loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Vertical-load factor of 1.35 times the static reactions. (2) Fore, aft, and lateral load factors of 0.4 times the vertical static reactions. (b) The horizontal loads at the jack points must be reacted by...
14 CFR 23.507 - Jacking loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Vertical-load factor of 1.35 times the static reactions. (2) Fore, aft, and lateral load factors of 0.4 times the vertical static reactions. (b) The horizontal loads at the jack points must be reacted by...
14 CFR 23.507 - Jacking loads.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Vertical-load factor of 1.35 times the static reactions. (2) Fore, aft, and lateral load factors of 0.4 times the vertical static reactions. (b) The horizontal loads at the jack points must be reacted by...
14 CFR 23.507 - Jacking loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Vertical-load factor of 1.35 times the static reactions. (2) Fore, aft, and lateral load factors of 0.4 times the vertical static reactions. (b) The horizontal loads at the jack points must be reacted by...
Physical aging effects on the compressive linear viscoelastic creep of IM7/K3B composite
NASA Technical Reports Server (NTRS)
Veazie, David R.; Gates, Thomas S.
1995-01-01
An experimental study was undertaken to establish the viscoelastic behavior of 1M7/K3B composite in compression at elevated temperature. Creep compliance, strain recovery and the effects of physical aging on the time dependent response was measured for uniaxial loading at several isothermal conditions below the glass transition temperature (T(g)). The IM7/K3B composite is a graphite reinforced thermoplastic polyimide with a T(g) of approximately 240 C. In a composite, the two matrix dominated compliance terms associated with time dependent behavior occur in the transverse and shear directions. Linear viscoelasticity was used to characterize the creep/recovery behavior and superposition techniques were used to establish the physical aging related material constants. Creep strain was converted to compliance and measured as a function of test time and aging time. Results included creep compliance master curves, physical aging shift factors and shift rates. The description of the unique experimental techniques required for compressive testing is also given.
Reliability and Creep/Fatigue Analysis of a CMC Component
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Mital, Subodh K.; Gyekenyesi, John Z.; Gyekenyesi, John P.
2007-01-01
High temperature ceramic matrix composites (CMC) are being explored as viable candidate materials for hot section gas turbine components. These advanced composites can potentially lead to reduced weight and enable higher operating temperatures requiring less cooling; thus leading to increased engine efficiencies. There is a need for convenient design tools that can accommodate various loading conditions and material data with their associated uncertainties to estimate the minimum predicted life as well as the failure probabilities of a structural component. This paper presents a review of the life prediction and probabilistic analyses performed for a CMC turbine stator vane. A computer code, NASALife, is used to predict the life of a 2-D woven silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) turbine stator vane due to a mission cycle which induces low cycle fatigue and creep. The output from this program includes damage from creep loading, damage due to cyclic loading and the combined damage due to the given loading cycle. Results indicate that the trends predicted by NASALife are as expected for the loading conditions used for this study. In addition, a combination of woven composite micromechanics, finite element structural analysis and Fast Probability Integration (FPI) techniques has been used to evaluate the maximum stress and its probabilistic distribution in a CMC turbine stator vane. Input variables causing scatter are identified and ranked based upon their sensitivity magnitude. Results indicate that reducing the scatter in proportional limit strength of the vane material has the greatest effect in improving the overall reliability of the CMC vane.
Numerical analysis of composite STEEL-CONCRETE SECTIONS using integral equation of Volterra
NASA Astrophysics Data System (ADS)
Partov, Doncho; Kantchev, Vesselin
2011-09-01
The paper presents analysis of the stress and deflections changes due to creep in statically determinate composite steel-concrete beam. The mathematical model involves the equation of equilibrium, compatibility and constitutive relationship, i.e. an elastic law for the steel part and an integral-type creep law of Boltzmann — Volterra for the concrete part. On the basis of the theory of the viscoelastic body of Arutyunian-Trost-Bažant for determining the redistribution of stresses in beam section between concrete plate and steel beam with respect to time "t", two independent Volterra integral equations of the second kind have been derived. Numerical method based on linear approximation of the singular kernal function in the integral equation is presented. Example with the model proposed is investigated. The creep functions is suggested by the model CEB MC90-99 and the "ACI 209R-92 model. The elastic modulus of concrete E c (t) is assumed to be constant in time `t'. The obtained results from the both models are compared.
Effect of storage time on the viscoelastic properties of elastomeric impression materials.
Papadogiannis, Dimitris; Lakes, Roderic; Palaghias, George; Papadogiannis, Yiannis
2012-01-01
The aim of this study was to evaluate creep and viscoelastic properties of dental impression materials after different storage times. Six commercially available impression materials (one polyether and five silicones) were tested after being stored for 30 min to 2 weeks under both static and dynamic testing. Shear and Young's moduli, dynamic viscosity, loss tangent and other viscoelastic parameters were calculated. Four of the materials were tested 1 h after setting under creep for three hours and recovery was recorder for 50 h. The tested materials showed differences among them, while storage time had significant influence on their properties. Young's modulus E ranged from 1.81 to 12.99 MPa with the polyether material being the stiffest. All of the materials showed linear viscoelastic behavior exhibiting permanent deformation after 50h of creep recovery. As storage time affects the materials' properties, pouring time should be limited in the first 48 h after impression. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Spatial fluctuations in transient creep deformation
NASA Astrophysics Data System (ADS)
Laurson, Lasse; Rosti, Jari; Koivisto, Juha; Miksic, Amandine; Alava, Mikko J.
2011-07-01
We study the spatial fluctuations of transient creep deformation of materials as a function of time, both by digital image correlation (DIC) measurements of paper samples and by numerical simulations of a crystal plasticity or discrete dislocation dynamics model. This model has a jamming or yielding phase transition, around which power law or Andrade creep is found. During primary creep, the relative strength of the strain rate fluctuations increases with time in both cases—the spatially averaged creep rate obeys the Andrade law epsilont ~ t - 0.7, while the time dependence of the spatial fluctuations of the local creep rates is given by Δepsilont ~ t - 0.5. A similar scaling for the fluctuations is found in the logarithmic creep regime that is typically observed for lower applied stresses. We review briefly some classical theories of Andrade creep from the point of view of such spatial fluctuations. We consider these phenomenological, time-dependent creep laws in terms of a description based on a non-equilibrium phase transition separating evolving and frozen states of the system when the externally applied load is varied. Such an interpretation is discussed further by the data collapse of the local deformations in the spirit of absorbing state/depinning phase transitions, as well as deformation-deformation correlations and the width of the cumulative strain distributions. The results are also compared with the order parameter fluctuations observed close to the depinning transition of the 2d linear interface model or the quenched Edwards-Wilkinson equation.
McHugh, Stuart
1976-01-01
The material in this report is concerned with the effects of a vertically oriented rectangular dislocation loop on the tilts observed at the free surface of an elastic half-space. Part I examines the effect of a spatially variable static strike-slip distribution across the slip surface. The tilt components as a function of distance parallel, or perpendicular, to the strike of the slip surface are displayed for different slip-versus-distance profiles. Part II examines the effect of spatially and temporally variable slip distributions across the dislocation loop on the quasi-static tilts at the free surface of an elastic half space. The model discussed in part II may be used to generate theoretical tilt versus time curves produced by creep events.
Indentation Size Effect on Ag Nanoparticle-Modified Graphene/Sn-Ag-Cu Solders
NASA Astrophysics Data System (ADS)
Xu, L. Y.; Zhang, S. T.; Jing, H. Y.; Wang, L. X.; Wei, J.; Kong, X. C.; Han, Y. D.
2018-01-01
This paper presents the results for the indentation size effect (ISE) on the creep stress exponent and hardness of 0.03 wt.% Ag-modified graphene nanosheet Sn-Ag-Cu solder alloys, using constant loading/holding and multi-cycle (CMC) loading methods, respectively. At each maximum load, with increasing indentation depth, the creep exponent first decreased and then increased. At the same strain rate, the stress exponent also showed the same tendency, increasing as the indentation depth (peak load) increased and then decreased. The hardness was measured continuously with increasing indentation depth by the CMC loading method. The hardness did not exhibit a decrease as the indentation depth increased, which differs from the classical description of the ISE. After an initial decrease, the hardness then increased and finally decreased as the indentation depth increased. This study reviews the existing theories and formulations describing ISE with hardening effects. The experimental results fit well with the empirical formulation. The phenomenon of ISE accompanied by hardening effects has been explained physically via the interaction between geometrically necessary dislocations and grain boundaries.
NASA Astrophysics Data System (ADS)
Yang, Di
Duplex stainless steel (DSS) is a dual-phase material with approximately equal volume amount of austenite and ferrite. It has both great mechanical properties (good ductility and high tensile/fatigue strength) and excellent corrosion resistance due to the mixture of the two phases. Cyclic loadings with high stress level and low frequency are experienced by many structures. However, the existing study on corrosion fatigue (CF) study of various metallic materials has mainly concentrated on relatively high frequency range. No systematic study has been done to understand the ultra-low frequency (˜10-5 Hz) cyclic loading effect on stress corrosion cracking (SCC) of DSSs. In this study, the ultra-low frequency cyclic loading effect on SCC of DSS 2205 was studied in acidified sodium chloride and caustic white liquor (WL) solutions. The research work focused on the environmental effect on SCC of DSS 2205, the cyclic stress effect on strain accumulation behavior of DSS 2205, and the combined environmental and cyclic stress effect on the stress corrosion crack initiation of DSS 2205 in the above environments. Potentiodynamic polarization tests were performed to investigate the electrochemical behavior of DSS 2205 in acidic NaCl solution. Series of slow strain rate tests (SSRTs) at different applied potential values were conducted to reveal the optimum applied potential value for SCC to happen. Room temperature static and cyclic creep tests were performed in air to illustrate the strain accumulation effect of cyclic stresses. Test results showed that cyclic loading could enhance strain accumulation in DSS 2205 compared to static loading. Moreover, the strain accumulation behavior of DSS 2205 was found to be controlled by the two phases of DSS 2205 with different crystal structures. The B.C.C. ferrite phase enhanced strain accumulation due to extensive cross-slips of the dislocations, whereas the F.C.C. austenite phase resisted strain accumulation due to cyclic strain hardening. Cyclic SSRTs were performed under the conditions that SCC occurs in sodium chloride and WL solutions. Test results show that cyclic stress facilitated crack initiations in DSS 2205. Stress corrosion cracks initiated from the intermetallic precipitates in acidic chloride environment, and the cracks initiated from austenite phase in WL environment. Cold-working has been found to retard the crack initiations induced by cyclic stresses.
Lee, Ji-Hye; Lee, Won; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2017-09-05
To evaluate the axial displacement of the implant-abutment assembly of different implant diameter after static and cyclic loading of overload condition. An internal conical connection system with three diameters (Ø 4.0, 4.5, and 5.0) applying identical abutment dimension and the same abutment screw was evaluated. Axial displacement of abutment and reverse torque loss of abutment screw were evaluated under static and cyclic loading conditions. Static loading test groups were subjected to vertical static loading of 250, 400, 500, 600, 700, and 800 N consecutively. Cyclic loading test groups were subjected to 500 N cyclic loading to evaluate the effect of excessive masticatory loading. After abutment screw tightening for 30 Ncm, axial displacement was measured upon 1, 3, 10, and 1,000,000 cyclic loadings of 500 N. Repeated-measure ANOVA and 2-way ANOVA were used for statistical analysis (α = 0.05). The increasing magnitude of vertical load and thinner wall thickness of implant increased axial displacement of abutment and reverse torque loss of abutment screw (p < 0.05). Implants in the Ø 5.0 diameter group demonstrated significantly low axial displacement, and reverse torque loss after static loading than Ø 4.0 and Ø 4.5 diameter groups (p < 0.05). In the cyclic loading test, all diameter groups of implant showed significant axial displacement after 1 cycle of loading of 500 N (p < 0.05). There was no significant axial displacement after 3, 10, or 1,000,000 cycles of loading (p = 0.603). Implants with Ø 5.0 diameter demonstrated significantly low axial displacement and reverse torque loss after the cyclic and static loading of overload condition. © 2017 by the American College of Prosthodontists.
Principles and practices of irradiation creep experiment using pressurized mini-bellows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byun, Thak Sang; Li, Meimei; Snead, Lance Lewis
2013-01-01
This article is to describe the key design principles and application practices of the newly developed in-reactor irradiation creep testing technology using pressurized mini-bellows. Miniature creep test frames were designed to fit into the high flux isotope reactor (HFIR) rabbit capsule whose internal diameter is slightly less than 10 mm. The most important consideration for this in-reactor creep testing technology was the ability of the small pressurized metallic bellows to survive irradiation at elevated temperatures while maintaining applied load to the specimen. Conceptual designs have been developed for inducing tension and compression stresses in specimens. Both the theoretical model andmore » the in-furnace test confirmed that a gas-pressurized bellows can produce high enough stress to induce irradiation creep in subsize specimens. Discussion focuses on the possible stress range in specimens induced by the miniature gas-pressurized bellows and the limitations imposed by the size and structure of thin-walled bellows. A brief introduction to the in-reactor creep experiment for graphite is provided to connect to the companion paper describing the application practices and irradiation creep data. An experimental and calculation procedure to obtain in-situ applied stress values from post irradiation in-furnace force measurements is also presented.« less
30 CFR 56.19021 - Minimum rope strength.
Code of Federal Regulations, 2010 CFR
2010-07-01
...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0-0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes....19021 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...
30 CFR 57.19021 - Minimum rope strength.
Code of Federal Regulations, 2011 CFR
2011-07-01
...=Static Load×4.0. (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0. (c) Tail....19021 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...
30 CFR 57.19021 - Minimum rope strength.
Code of Federal Regulations, 2010 CFR
2010-07-01
...=Static Load×4.0. (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0. (c) Tail....19021 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...
30 CFR 56.19021 - Minimum rope strength.
Code of Federal Regulations, 2011 CFR
2011-07-01
...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0-0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes....19021 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...
Probing collagen-enzyme mechanochemistry in native tissue with dynamic, enzyme-induced creep
Zareian, Ramin; Church, Kelli P.; Saeidi, Nima; Flynn, Brendan P.; Beale, John W.; Ruberti, Jeffrey W.
2012-01-01
Mechanical strain or stretch of collagen has been shown to be protective of fibrils against both thermal and enzymatic degradation. The details of this mechanochemical relationship could change our understanding of load-bearing tissue formation, growth, maintenance and disease in vertebrate animals. However, extracting a quantitative relationship between strain and the rate of enzymatic degradation is extremely difficult in bulk tissue due to confounding diffusion effects. In this investigation, we develop a dynamic, enzyme-induced creep assay and diffusion/reaction rate scaling arguments to extract a lower bound on the relationship between strain and the cutting rate of bacterial collagenase (BC) at low strains. The assay method permits continuous, forced probing of enzyme-induced strain which is very sensitive to degradation rate differences between specimens at low initial strain. The results, obtained on uniaxially-loaded strips of bovine corneal tissue (0.1, 0.25 or 0.5 N), demonstrate that small differences in strain alter the enzymatic cutting rate of the BC substantially. It was estimated that a change in tissue elongation of only 1.5% (at ~5% strain) reduces the maximum cutting-rate of the enzyme by more than half. Estimation of the average load per monomer in the tissue strips indicates that this protective “cutoff” occurs when the collagen monomers are transitioning from an entropic to an energetic mechanical regime. The continuous tracking of the enzymatic cleavage rate as a function of strain during the initial creep response indicates that the decrease in the cleavage rate of the BC is non-linear (initially-steep between 4.5 and 6.5% then flattens out from 6.5–9.5%). The high sensitivity to strain at low strain implies that even lightly-loaded collagenous tissue may exhibit significant strain-protection. The dynamic, enzyme-induced creep assay described herein has the potential to permit the rapid characterization of collagen/enzyme mechanochemistry in many different tissue types. PMID:20429513
Rate and time dependent behavior of structural adhesives. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Renieri, M. P.; Herakovich, C. T.; Brinson, H. F.
1976-01-01
Studies on two adhesives (Metlbond 1113 and 1113-2) identified as having applications in the bonding of composite materials are presented. Constitutive equations capable of describing changes in material behavior with strain rate are derived from various theoretical approaches. It is shown that certain unique relationships exist between these approaches. It is also shown that the constitutive equation derived from mechanical models can be used for creep and relaxation loading. A creep to failure phenomenon is shown to exist and is correlated with a delayed yield equation proposed by Crochet. Loading-unloading results are presented and are shown to correlate well with the proposed form of the loading-unloading equations for the modified Bingham model. Experimental results obtained for relaxation tests above and below the glass transition temperature are presented. It is shown that the adhesives obey the time-temperature superposition principle.
Durability and Damage Development in Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Haque, A.; Rahman, M.; Tyson, O. Z.; Jeelani, S.; Verrilli, Michael J. (Technical Monitor)
2001-01-01
Damage development in woven SiC/SiNC ceramic matrix composites (CMC's) under tensile and cyclic loading both at room and elevated temperatures have been investigated for the exhaust nozzle of high-efficient turbine engines. The ultimate strength, failure strain, proportional limit and modulus data at a temperature range of 23 to 1250 C are generated. The tensile strength of SiC/SiNC woven composites have been observed to increase with increased temperatures up to 1000 C. The stress/strain plot shows a pseudo-yield point at 25 percent of the failure strain (epsilon(sub r)) which indicates damage initiation in the form of matrix cracking. The evolution of damage beyond 0.25 epsilon(sub f), both at room and elevated temperature comprises multiple matrix cracking, interfacial debonding, and fiber pullout. Although the nature of the stress/strain plot shows damage-tolerant behavior under static loading both at room and elevated temperature, the life expectancy of SiC/SiNC composites degrades significantly under cyclic loading at elevated temperature. This is mostly due to the interactions of fatigue damage caused by the mechanically induced plastic strain and the damage developed by the creep strain. The in situ damage evolutions are monitored by acoustic event parameters, ultrasonic C-scan and stiffness degradation. Rate equations for modulus degradation and fatigue life prediction of ceramic matrix composites both at room and elevated temperatures are developed. These rate equations are observed to show reasonable agreement with experimental results.
NASA Astrophysics Data System (ADS)
Selles, Nathan; King, Andrew; Proudhon, Henry; Saintier, Nicolas; Laiarinandrasana, Lucien
2017-08-01
Double notched round bars made of semi-crystalline polymer polyamide 6 (PA6) were submitted to monotonic tensile and creep tests. The two notches had a root radius of 0.45 mm, which imposes a multiaxial stress state and a state of high triaxiality in the net (minimal) section of the specimens. Tests were carried out until the failure occurred from one of the notches. The other one, unbroken but deformed under steady strain rate or steady load, was inspected using the Synchrotron Radiation Computed Tomography (SRCT) technique. These 3D through thickness inspections allowed the study of microstructural evolution at the peak stress for the monotonic tensile test and at the beginning of the tertiary creep for the creep tests. Cavitation features were assessed with a micrometre resolution within the notched region. Spatial distributions of void volume fraction ( Vf) and void morphology were studied. Voiding mechanisms were similar under steady strain rates and steady loads. The maximum values of Vf were located between the axis of revolution of the specimens and the notch surface and voids were considered as flat cylinders with a circular basis perpendicular to the loading direction. A model, based on porous plasticity, was used to simulate the mechanical response of this PA6 material under high stress triaxiality. Both macroscopic behaviour (loading curves) and voiding micro-mechanisms (radial distributions of void volume fraction) were accurately predicted using finite element simulations.
Solder Creep-Fatigue Interactions with Flexible Leaded Part
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.; Wen, L. C.
1994-01-01
In most electronic packaging applications it is not a single high stress event that breaks a component solder joint; rather it is repeated or prolonged load applications that result in fatigue or creep failure of the solder. The principal strain in solder joints is caused by differential expansion between the part and its mounting environment due to hanges in temperature (thermal cycles) and/or due to temperature gradients between the part and the board.
Kim, Gun; Loreto, Giovanni; Kim, Jin-Yeon; Kurtis, Kimberly E; Wall, James J; Jacobs, Laurence J
2018-08-01
This research conducts in situ nonlinear ultrasonic (NLU) measurements for real time monitoring of load-induced damage in concrete. For the in situ measurements on a cylindrical specimen under sustained load, a previously developed second harmonic generation (SHG) technique with non-contact detection is adapted to a cylindrical specimen geometry. This new setup is validated by demonstrating that the measured nonlinear Rayleigh wave signals are equivalent to those in a flat half space, and thus the acoustic nonlinearity parameter, β can be defined and interpreted in the same way. Both the acoustic nonlinearity parameter and strain are measured to quantitatively assess the early-age damage in a set of concrete specimens subjected to either 25 days of creep, or 11 cycles of cyclic loading at room temperature. The experimental results show that the acoustic nonlinearity parameter is sensitive to early-stage microcrack formation under both loading conditions - the measured β can be directly linked to the accumulated microscale damage. This paper demonstrates the potential of NLU for the in situ monitoring of mechanical load-induced microscale damage in concrete components. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Campbell, J.; Dean, J.; Clyne, T. W.
2017-02-01
This study concerns a commonly-used procedure for evaluating the steady state creep stress exponent, n, from indentation data. The procedure involves monitoring the indenter displacement history under constant load and making the assumption that, once its velocity has stabilised, the system is in a quasi-steady state, with stage II creep dominating the behaviour. The stress and strain fields under the indenter are represented by "equivalent stress" and "equivalent strain rate" values. The estimate of n is then obtained as the gradient of a plot of the logarithm of the equivalent strain rate against the logarithm of the equivalent stress. Concerns have, however, been expressed about the reliability of this procedure, and indeed it has already been shown to be fundamentally flawed. In the present paper, it is demonstrated, using a very simple analysis, that, for a genuinely stable velocity, the procedure always leads to the same, constant value for n (either 1.0 or 0.5, depending on whether the tip shape is spherical or self-similar). This occurs irrespective of the value of the measured velocity, or indeed of any creep characteristic of the material. It is now clear that previously-measured values of n, obtained using this procedure, have varied in a more or less random fashion, depending on the functional form chosen to represent the displacement-time history and the experimental variables (tip shape and size, penetration depth, etc.), with little or no sensitivity to the true value of n.
Hannafin, J A; Arnoczky, S P
1994-05-01
This study was designed to determine the effects of various loading conditions (no load and static and cyclic tensile load) on the water content and pattern of nutrient diffusion of canine flexor tendons in vitro. Region D (designated by Okuda et al.) of the flexor digitorum profundus was subjected to a cyclic or static tensile load of 100 g for times ranging from 5 minutes to 24 hours. The results demonstrated a statistically significant loss of water in tendons subjected to both types of load as compared with the controls (no load). This loss appeared to progress with time. However, neither static nor cyclic loading appeared to alter the diffusion of 3H-glucose into the tendon over a 24-hour period compared with the controls. These results suggest that any benefit in tendon repair derived from intermittent passive motion is probably not a result of an increase in the diffusion of small nutrients in response to intermittent tensile load.
Damage Assessment of Creep Tested and Thermally Aged Udimet 520 Using Acousto-Ultrasonics
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.; Kautz, Harold E.; Cao, Wei
2001-01-01
Due to elevated temperatures and excessive stresses, turbine components may experience creep behavior. As a result, it is desirable to monitor and assess the current condition of such components. This study employed the Acousto-Ultrasonics (AU) method in an effort to monitor the state of the material at various percentages of used up creep life in the nickel base alloy, Udimet 520. A stepped specimen (i.e., varying cross sectional area) was employed which allowed for a postmortem nondestructive evaluation (NDE) analysis of the various levels of used up life. The overall objectives here were two fold: First, a user friendly, graphical interface AU system was developed, and second the new AU system was applied as an NDE tool to assess distributed damage resulting from creep. The experimental results demonstrated that the AU method shows promise as an NDE tool capable of detecting material changes as a function of used up creep life. Furthermore, the changes in the AU parameters were mainly attributed to the case of combined load and elevated temperature (i.e., creep) and not simply because of a timed exposure at elevated temperature (i.e., heat treatment or thermal aging).
NASA Astrophysics Data System (ADS)
Gao, Siwen; Wollgramm, Philip; Eggeler, Gunther; Ma, Anxin; Schreuer, Jürgen; Hartmaier, Alexander
2018-07-01
For the purpose of good reproduction and prediction of creep deformation of nickel-base single crystal superalloys at intermediate temperatures, a phenomenological creep model is developed, which accounts for the typical γ/γ‧ microstructure and the individual thermally activated elementary deformation processes in different phases. The internal stresses from γ/γ‧ lattice mismatch and deformation heterogeneity are introduced through an efficient method. The strain hardening, the Orowan stress, the softening effect due to dislocation climb along γ/γ‧ interfaces and the formation of < 112> dislocation ribbons, and the Kear–Wilsdorf-lock effect as key factors in the main flow rules are formulated properly. By taking the cube slip in < 110> \\{100\\} slip systems and < 112> \\{111\\} twinning mechanisms into account, the creep behavior for [110] and [111] loading directions are well captured. Without specific interaction and evolution of dislocations, the simulations of this model achieve a good agreement with experimental creep results and reproduce temperature, stress and crystallographic orientation dependences. It can also be used as the constitutive relation at material points in finite element calculations with complex boundary conditions in various components of superalloys to predict creep behavior and local stress distributions.
Domain wall roughness and creep in nanoscale crystalline ferroelectric polymers
NASA Astrophysics Data System (ADS)
Xiao, Z.; Poddar, Shashi; Ducharme, Stephen; Hong, X.
2013-09-01
We report piezo-response force microscopy studies of the static and dynamic properties of domain walls (DWs) in 11 to 36 nm thick films of crystalline ferroelectric poly(vinylidene-fluoride-trifluorethylene). The DW roughness exponent ζ ranges from 0.39 to 0.48 and the DW creep exponent μ varies from 0.20 to 0.28, revealing an unexpected effective dimensionality of ˜1.5 that is independent of film thickness. Our results suggest predominantly 2D ferroelectricity in the layered polymer and we attribute the fractal dimensionality to DW deroughening due to the correlations between the in-plane and out-of-plane polarization, an effect that can be exploited to achieve high lateral domain density for developing nanoscale ferroelectrics-based applications.
University Engineering Design Challenge
2015-01-02
strength its members provide. Trusses are common load - bearing structures, and are found in many modern-day applications due to their simple, strong, and...we ran simulations on was one of the member arms. We applied a bearing load on the surfaces of the holes on one side and tested it for static stress...73.24 ksi yield strength as shown figures 17 below. Figure 17: von Mises stress under static bearing load of 8750 lb. Under the static bearing load
30 CFR 77.1431 - Minimum rope strength.
Code of Federal Regulations, 2011 CFR
2011-07-01
...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH...
30 CFR 77.1431 - Minimum rope strength.
Code of Federal Regulations, 2010 CFR
2010-07-01
...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH...
Creep behaviour of a polymer-based underground support liner
NASA Astrophysics Data System (ADS)
Guner, Dogukan; Ozturk, Hasan
2017-09-01
All underground excavations (tunnels, mines, caverns, etc.) need a form of support to ensure that excavations remain safe and stable for the designed service lifetime. In the last decade, a new support material, thin spray-on liner (TSL) has started to take place of traditional underground surface supports of bolts and shotcrete. TSLs are generally cement, latex, polymer-based and also reactive or non-reactive, multi-component materials applied to the rock surface with a layer of few millimeter thickness. They have the advantages of low volume, logistics, rapid application and low operating cost. The majority of current TSLs are two-part products that are mixed on site before spraying onto excavation rock surfaces. Contrary to the traditional brittle supports, the high plastic behaviour of TSLs make them to distribute the loads on larger lining area. In literature, there is a very limited information exist on the creep behavior of TSLs. In this study, the creep behavior of a polymer-based TSL was investigated. For this purpose, 7-day cured dogbone TSL specimens were tested under room temperature and humidity conditions according to ASTM-D2990 creep testing standard. A range of dead weights (80, 60, 40, and 20 % of the tensile strength) were applied up to 1500 hours. As a result of this study, the time-dependent strain behavior of a TSL was presented for different constant load conditions. Moreover, a new equation was derived to estimate tensile failure time of the TSL for a given loading condition. If the tensile stress acting on the TSL is known, the effective permanent support time of the TSL can be estimated by the proposed relationship.
14 CFR 23.813 - Emergency exit access.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...
14 CFR 23.813 - Emergency exit access.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...
14 CFR 23.813 - Emergency exit access.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...
14 CFR 23.813 - Emergency exit access.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...
14 CFR 23.813 - Emergency exit access.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...
A simplified method for elastic-plastic-creep structural analysis
NASA Technical Reports Server (NTRS)
Kaufman, A.
1984-01-01
A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.
A simplified method for elastic-plastic-creep structural analysis
NASA Technical Reports Server (NTRS)
Kaufman, A.
1985-01-01
A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.
Finite element elastic-plastic-creep and cyclic life analysis of a cowl lip
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Melis, Matthew E.; Halford, Gary R.
1990-01-01
Results are presented of elastic, elastic-plastic, and elastic-plastic-creep analyses of a test-rig component of an actively cooled cowl lip. A cowl lip is part of the leading edge of an engine inlet of proposed hypersonic aircraft and is subject to severe thermal loadings and gradients during flight. Values of stresses calculated by elastic analysis are well above the yield strength of the cowl lip material. Such values are highly unrealistic, and thus elastic stress analyses are inappropriate. The inelastic (elastic-plastic and elastic-plastic-creep) analyses produce more reasonable and acceptable stress and strain distributions in the component. Finally, using the results from these analyses, predictions are made for the cyclic crack initiation life of a cowl lip. A comparison of predicted cyclic lives shows the cyclic life prediction from the elastic-plastic-creep analysis to be the lowest and, hence, most realistic.
Strength Design of Reinforced Concrete Hydraulic Structures; Report 3, T-Wall Design.
1982-01-01
A8 Flexure and Axial Load ..... ................ A10 Shear Strength Requirement ..... ............. A21 TABLE Al APPENDIX B: EFFECT OF...load, earthquake load, and other structural effects of differ- ential settlement, creep, shrinkage, and temperature change. Dead load (D) 10. The...considered to be equal to the depth of the plane below the ground sur- face multiplied by the average unit weight of the soil. Because of the buoyant effect
Bending creep and load duration of Douglas-fir 2 by 4s under constant load for up to 12-plus years
Charles C. Gerhards
2000-01-01
This paper finalizes research on graded Douglas-fir 2 by 4 beams subjected to constant bending loads of various levels and durations. Compared to results for testing in a controlled environment, results confirm that load duration did not appear to be shortened by tests in an uncontrolled environment, at least extending out to 12-plus years. By the same comparison,...
Effect of a solid solution on the steady-state creep behavior of an aluminum matrix composite
NASA Astrophysics Data System (ADS)
Pandey, A. B.; Mishra, R. S.; Mahajan, Y. R.
1996-02-01
The effect of an alloying element, 4 wt pct Mg, on the steady-state creep behavior of an Al-10 vol pct SiCp composite has been studied. The Al-4 wt pct Mg-10 vol pct SiCp composite has been tested under compression creep in the temperature range 573 to 673 K. The steady-state creep data of the composite show a transition in the creep behavior (regions I and II) depending on the applied stress at 623 and 673 K. The low stress range data (region I) exhibit a stress exponent of about 7 and an activation energy of 76.5 kJ mol-1. These values conform to the dislocation-climb-controlled creep model with pipe diffusion as a rate-controlling mechanism. The intermediate stress range data (region II) exhibit high and variable apparent stress exponents, 18 to 48, and activation energy, 266 kJ mol-1, at a constant stress, σ = 50 MPa, for creep of this composite. This behavior can be rationalized using a substructure-invariant model with a stress exponent of 8 and an activation energy close to the lattice self-diffusion of aluminum together with a threshold stress. The creep data of the Al-Mg-A12O3f composite reported by Dragone and Nix also conform to the substructure-invariant model. The threshold stress and the creep strength of the Al-Mg-SiCp, composite are compared with those of the Al-Mg-Al2O3f and 6061 Al-SiCp.w, composites and discussed in terms of the load-transfer mechanism. Magnesium has been found to be very effective in improving the creep resistance of the Al-SiCp composite.
Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Caskey, S. John
2014-01-01
Surface creep rate, observed along five branches of the dextral San Andreas fault system in northern California, varies considerably from one section to the next, indicating that so too may the depth at which the faults are locked. We model locking on 29 fault sections using each section’s mean long‐term creep rate and the consensus values of fault width and geologic slip rate. Surface creep rate observations from 111 short‐range alignment and trilateration arrays and 48 near‐fault, Global Positioning System station pairs are used to estimate depth of creep, assuming an elastic half‐space model and adjusting depth of creep iteratively by trial and error to match the creep observations along fault sections. Fault sections are delineated either by geometric discontinuities between them or by distinctly different creeping behaviors. We remove transient rate changes associated with five large (M≥5.5) regional earthquakes. Estimates of fraction locked, the ratio of moment accumulation rate to loading rate, on each section of the fault system provide a uniform means to inform source parameters relevant to seismic‐hazard assessment. From its mean creep rates, we infer the main branch (the San Andreas fault) ranges from only 20%±10% locked on its central creeping section to 99%–100% on the north coast. From mean accumulation rates, we infer that four urban faults appear to have accumulated enough seismic moment to produce major earthquakes: the northern Calaveras (M 6.8), Hayward (M 6.8), Rodgers Creek (M 7.1), and Green Valley (M 7.1). The latter three faults are nearing or past their mean recurrence interval.
The high temperature creep behavior of oxides and oxide fibers
NASA Technical Reports Server (NTRS)
Jones, Linda E.; Tressler, Richard E.
1991-01-01
A thorough review of the literature was conducted on the high-temperature creep behavior of single and polycrystalline oxides which potentially could serve as fiber reinforcements in ceramics or metal matrix applications. Sapphire when oriented with the basal plane perpendicular to the fiber axis (c-axis oriented) is highly creep resistant at temperatures in excess of 1600 C and applied loads of 100 MPa and higher. Pyramidal slip is preferentially activated in sapphire under these conditions and steady-state creep rates in the range of 10(exp -7) to 10 (exp -8)/s were reported. Data on the creep resistance of polycrystalline beryllia suggest that C-axiz oriented single crystal beryllia may be a viable candidate as a fiber reinforcement material; however, the issure of fabricability and moisture sensitivity must be addressed for this material. Yttrium aluminum garnet (YAG) also appears to be a fiber candidate material having a high resistance to creep which is due to it's complex crystal structure and high Peierl resistance. The high creep resistance of garnet suggests that there may be other complex ternary oxides such as single crystal mullite which may also be candidate materials for fiber reinforcements. Finally, CVD and single crystal SiC, although not oxides, do possess a high resistance to creep in the temperature range between 1550 and 1850 C and under stresses of 110 to 220 MPa. From a review of the literature, it appears that for high creep resistant applications sapphire, silicon carbide, yttrium aluminum garnet, mullite, and beryllia are desirable candidate materials which require further investigation.
Evaluation of mix ingredients on the performance of rubber-modified asphalt mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takallou, H.B.
1987-01-01
In rubber-modified asphalt pavements ground recycled tire particles are added to a gap-graded aggregate and then mixed with hot asphalt cement. In view of the significant reductions in wintertime stopping distances under icy or frosty road surface conditions, the use of coarse rubber in asphalt pavements should be seriously considered. This research project consisted of a laboratory study of mix properties as a function of variables such as rubber gradation and content, void content, aggregate graduation, mix process, temperature, and asphalt content. Twenty different mix combinations were evaluated for diametral modulus and fatigue at two different temperatures. Also, five differentmore » mix combinations were evaluated for static creep and permanent deformation. The findings of the laboratory study indicate that the rubber gradation and content, aggregate gradation, and use of surcharge during sample preparation have considerable effect on modulus and fatigue life of the mix. The results of static creep and permanent deformation tests indicate that the rubber asphalt mixes had low stability and high elasticity. Also, due to greater allowable tensile strain in rubber-modified mixtures, the thickness of the modified mixture can be reduced, using a layer equivalency of 1.4 to 1.0« less
NASA Astrophysics Data System (ADS)
Chen, Rong; Li, Kang; Xia, Kaiwen; Lin, Yuliang; Yao, Wei; Lu, Fangyun
2016-10-01
A dynamic load superposed on a static pre-load is a key problem in deep underground rock engineering projects. Based on a modified split Hopkinson pressure bar test system, the notched semi-circular bend (NSCB) method is selected to investigate the fracture initiation toughness of rocks subjected to pre-load. In this study, a two-dimensional ANSYS finite element simulation model is developed to calculate the dimensionless stress intensity factor. Three groups of NSCB specimen are tested under a pre-load of 0, 37 and 74 % of the maximum static load and with the loading rate ranging from 0 to 60 GPa m1/2 s-1. The results show that under a given pre-load, the fracture initiation toughness of rock increases with the loading rate, resembling the typical rate dependence of materials. Furthermore, the dynamic rock fracture toughness decreases with the static pre-load at a given loading rate. The total fracture toughness, defined as the sum of the dynamic fracture toughness and initial stress intensity factor calculated from the pre-load, increases with the pre-load at a given loading rate. An empirical equation is used to represent the effect of loading rate and pre-load force, and the results show that this equation can depict the trend of the experimental data.
Spectral rheology in a sphere. [for geological models
NASA Technical Reports Server (NTRS)
Caputo, M.
1984-01-01
An earth model is considered whose rheology is described by a stress train relation similar to that which seems to fit the laboratory data resulting from constant strain rate and creep experiments on polycrystalline halite and granite. The response of the model to a surface load is studied. It is found that the displacement and the creep are weakly dependent on the wavenumber and that the strain energy is concentrated in the low wavenumber and coherent over large regions.
Life prediction methodology for thermal-mechanical fatigue and elevated temperature creep design
NASA Astrophysics Data System (ADS)
Annigeri, Ravindra
Nickel-based superalloys are used for hot section components of gas turbine engines. Life prediction techniques are necessary to assess service damage in superalloy components resulting from thermal-mechanical fatigue (TMF) and elevated temperature creep. A new TMF life model based on continuum damage mechanics has been developed and applied to IN 738 LC substrate material with and without coating. The model also characterizes TMF failure in bulk NiCoCrAlY overlay and NiAl aluminide coatings. The inputs to the TMF life model are mechanical strain range, hold time, peak cycle temperatures and maximum stress measured from the stabilized or mid-life hysteresis loops. A viscoplastic model is used to predict the stress-strain hysteresis loops. A flow rule used in the viscoplastic model characterizes the inelastic strain rate as a function of the applied stress and a set of three internal stress variables known as back stress, drag stress and limit stress. Test results show that the viscoplastic model can reasonably predict time-dependent stress-strain response of the coated material and stress relaxation during hold times. In addition to the TMF life prediction methodology, a model has been developed to characterize the uniaxial and multiaxial creep behavior. An effective stress defined as the applied stress minus the back stress is used to characterize the creep recovery and primary creep behavior. The back stress has terms representing strain hardening, dynamic recovery and thermal recovery. Whenever the back stress is greater than the applied stress, the model predicts a negative creep rate observed during multiple stress and multiple temperature cyclic tests. The model also predicted the rupture time and the remaining life that are important for life assessment. The model has been applied to IN 738 LC, Mar-M247, bulk NiCoCrAlY overlay coating and 316 austenitic stainless steel. The proposed model predicts creep response with a reasonable accuracy for wide range of loading cases such as uniaxial tension, tension-torsion and tension-internal pressure loading.
Effects of Heat Generation on Nuclear Waste Disposal in Salt
NASA Astrophysics Data System (ADS)
Clayton, D. J.
2008-12-01
Disposal of nuclear waste in salt is an established technology, as evidenced by the successful operations of the Waste Isolation Pilot Plant (WIPP) since 1999. The WIPP is located in bedded salt in southeastern New Mexico and is a deep underground facility for transuranic (TRU) nuclear waste disposal. There are many advantages for placing radioactive wastes in a geologic bedded-salt environment. One desirable mechanical characteristic of salt is that it flows plastically with time ("creeps"). The rate of salt creep is a strong function of temperature and stress differences. Higher temperatures and deviatoric stresses increase the creep rate. As the salt creeps, induced fractures may be closed and eventually healed, which then effectively seals the waste in place. With a backfill of crushed salt emplaced around the waste, the salt creep can cause the crushed salt to reconsolidate and heal to a state similar to intact salt, serving as an efficient seal. Experiments in the WIPP were conducted to investigate the effects of heat generation on the important phenomena and processes in and around the repository (Munson et al. 1987; 1990; 1992a; 1992b). Brine migration towards the heaters was induced from the thermal gradient, while salt creep rates showed an exponential dependence on temperature. The project "Backfill and Material Behavior in Underground Salt Repositories, Phase II" (BAMBUS II) studied the crushed salt backfill and material behavior with heat generation at the Asse mine located near Remlingen, Germany (Bechthold et al. 2004). Increased salt creep rates and significant reconsolidation of the crushed salt were observed at the termination of the experiment. Using the data provided from both projects, exploratory modeling of the thermal-mechanical response of salt has been conducted with varying thermal loading and waste spacing. Increased thermal loading and decreased waste spacing drive the system to higher temperatures, while both factors are desired to reduce costs, as well as decrease the overall footprint of the repository. Higher temperatures increase the rate of salt creep which then effectively seals the waste quicker. Data of the thermal-mechanical response of salt at these higher temperatures is needed to further validate the exploratory modeling and provide meaningful constraints on the repository design. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000.
To be Stiff or to be Soft-the Dilemma of the Echinoid Tooth Ligament. II. Mechanical Properties.
Birenheide, R; Tsuchi, A; Motokawa, T
1996-04-01
The teeth of sea urchins are connected to jaws by means of ligaments. Their sliding along the jaw during continuous growth requires a pliant ligament, whereas scraping on rocks for feeding requires a stiff ligament for firm support. We investigated the mechanical properties of the tooth ligament of Diadema setosum to clarify how sea urchins solve this dilemma. In creep tests a load of 30 g caused a shift of the tooth that continued until the tooth was pulled out of the jaw. The creep curve had three phases: an initial phase of high creep rate, a long phase of constant creep rate, and a final phase of accelerating creep rate. The ligaments had a shear viscosity of about 550 MPa {middot} s. Viscosity increased reversibly after stimulation with seawater containing a high concentration of potassium ions or acetylcholine. Frozen and rethawed ligaments did not show an increase of viscosity after stimulation. The data indicate that sea urchins can change the stiffness of their tooth ligaments through nervous control. We suggest that the tooth ligament is a catch connective tissue.
Pal, Saikat; Lindsey, Derek P.; Besier, Thor F.; Beaupre, Gary S.
2013-01-01
Cartilage material properties provide important insights into joint health, and cartilage material models are used in whole-joint finite element models. Although the biphasic model representing experimental creep indentation tests is commonly used to characterize cartilage, cartilage short-term response to loading is generally not characterized using the biphasic model. The purpose of this study was to determine the short-term and equilibrium material properties of human patella cartilage using a viscoelastic model representation of creep indentation tests. We performed 24 experimental creep indentation tests from 14 human patellar specimens ranging in age from 20 to 90 years (median age 61 years). We used a finite element model to reproduce the experimental tests and determined cartilage material properties from viscoelastic and biphasic representations of cartilage. The viscoelastic model consistently provided excellent representation of the short-term and equilibrium creep displacements. We determined initial elastic modulus, equilibrium elastic modulus, and equilibrium Poisson’s ratio using the viscoelastic model. The viscoelastic model can represent the short-term and equilibrium response of cartilage and may easily be implemented in whole-joint finite element models. PMID:23027200
Molecular Weight Effects on the Viscoelastic Response of a Polyimide
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2000-01-01
The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC -SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of each material with different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of approximately 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly.
Effects of static tensile load on the thermal expansion of Gr/PI composite material
NASA Technical Reports Server (NTRS)
Farley, G. L.
1981-01-01
The effect of static tensile load on the thermal expansion of Gr/PI composite material was measured for seven different laminate configurations. A computer program was developed which implements laminate theory in a piecewise linear fashion to predict the coupled nonlinear thermomechanical behavior. Static tensile load significantly affected the thermal expansion characteristics of the laminates tested. This effect is attributed to a fiber instability micromechanical behavior of the constituent materials. Analytical results correlated reasonably well with free thermal expansion tests (no load applied to the specimen). However, correlation was poor for tests with an applied load.
Scaling Effects in Carbon/Epoxy Laminates Under Transverse Quasi-Static Loading
NASA Technical Reports Server (NTRS)
Nettles, Alan T.; Douglas, Michael J.; Estes, Eric E.
1999-01-01
Scaling effects were considered for 8, 16, 32, and 64 ply IM-7/8551-7 carbon/epoxy composites plates transversely loaded to the first significant load drop by means of both a quasi-static and an equivalent impact force. The resulting damage was examined by x-ray and photomicroscopy analysis. Load-deflection curves were generated for the quasi-static tests and the resulting indentation depth was measured. Results showed that the load-deflection data scaled well for most of the various thicknesses of plates. However, damage did not scale as well. No correlation could be found between dent depth and any of the other parameters measured in this study. The impact test results showed that significantly less damage was formed compared to the quasi- static results for a given maximum transverse load. The criticality of ply-level scaling (grouping plies) was also examined.
Structural Benchmark Testing for Stirling Convertor Heater Heads
NASA Technical Reports Server (NTRS)
Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.
2007-01-01
The National Aeronautics and Space Administration (NASA) has identified high efficiency Stirling technology for potential use on long duration Space Science missions such as Mars rovers, deep space missions, and lunar applications. For the long life times required, a structurally significant design limit for the Stirling convertor heater head is creep deformation induced even under relatively low stress levels at high material temperatures. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and much creep data is available for the proposed Inconel-718 (IN-718) and MarM-247 nickel-based superalloy materials of construction. However, very little experimental creep information is available that directly applies to the atypical thin walls, the specific microstructures, and the low stress levels. In addition, the geometry and loading conditions apply multiaxial stress states on the heater head components, far from the conditions of uniaxial testing. For these reasons, experimental benchmark testing is underway to aid in accurately assessing the durability of Stirling heater heads. The investigation supplements uniaxial creep testing with pneumatic testing of heater head test articles at elevated temperatures and with stress levels ranging from one to seven times design stresses. This paper presents experimental methods, results, post-test microstructural analyses, and conclusions for both accelerated and non-accelerated tests. The Stirling projects use the results to calibrate deterministic and probabilistic analytical creep models of the heater heads to predict their life times.
Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head
NASA Technical Reports Server (NTRS)
Krause, David L.; Kantzos, Pete T.
2006-01-01
For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110 W Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.
Simulations of tremor-related creep reveal a weak crustal root of the San Andreas Fault
Shelly, David R.; Bradley, Andrew M.; Johnson, Kaj M.
2013-01-01
Deep aseismic roots of faults play a critical role in transferring tectonic loads to shallower, brittle crustal faults that rupture in large earthquakes. Yet, until the recent discovery of deep tremor and creep, direct inference of the physical properties of lower-crustal fault roots has remained elusive. Observations of tremor near Parkfield, CA provide the first evidence for present-day localized slip on the deep extension of the San Andreas Fault and triggered transient creep events. We develop numerical simulations of fault slip to show that the spatiotemporal evolution of triggered tremor near Parkfield is consistent with triggered fault creep governed by laboratory-derived friction laws between depths of 20–35 km on the fault. Simulated creep and observed tremor northwest of Parkfield nearly ceased for 20–30 days in response to small coseismic stress changes of order 104 Pa from the 2003 M6.5 San Simeon Earthquake. Simulated afterslip and observed tremor following the 2004 M6.0 Parkfield earthquake show a coseismically induced pulse of rapid creep and tremor lasting for 1 day followed by a longer 30 day period of sustained accelerated rates due to propagation of shallow afterslip into the lower crust. These creep responses require very low effective normal stress of ~1 MPa on the deep San Andreas Fault and near-neutral-stability frictional properties expected for gabbroic lower-crustal rock.
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
Code of Federal Regulations, 2012 CFR
2012-01-01
... experiences the static inertia loads corresponding to the following ultimate load factors— (i) Upward, 3.0g... occupant, experience the static inertia loads corresponding to the following ultimate load factors— (i... ultimate inertia force of 3 g; and (ii) A coefficient of friction of 0.5 at the ground. (d) If it is not...
Simpson, R.W.; Schulz, S.S.; Dietz, L.D.; Burford, R.O.
1988-01-01
Rates of shallow slip on creeping sections of the San Andreas fault have been perturbed on a number of occasions by earthquakes occurring on nearby faults. One example of such perturbations occurred during the 26 January 1986 magnitude 5.3 Tres Pinos earthquake located about 10 km southeast of Hollister, California. Seven creepmeters on the San Andreas fault showed creep steps either during or soon after the shock. Both left-lateral (LL) and right-lateral (RL) steps were observed. A rectangular dislocation in an elastic half-space was used to model the coseismic fault offset at the hypocenter. For a model based on the preliminary focal mechanism, the predicted changes in static shear stress on the plane of the San Andreas fault agreed in sense (LL or RL) with the observed slip directions at all seven meters; for a model based on a refined focal mechanism, six of the seven meters showed the correct sense of motion. Two possible explanations for such coseismic and postseismic steps are (1) that slip was triggered by the earthquake shaking or (2) that slip occurred in response to the changes in static stress fields accompanying the earthquake. In the Tres Pinos example, the observed steps may have been of both the triggered and responsive kinds. A second example is provided by the 2 May 1983 magnitude 6.7 Coalinga earthquake, which profoundly altered slip rates at five creepmeters on the San Andreas fault for a period of months to years. The XMM1 meter 9 km northwest of Parkfield, California recorded LL creep for more than a year after the event. To simulate the temporal behavior of the XMM1 meter and to view the stress perturbation provided by the Coalinga earthquake in the context of steady-state deformation on the San Andreas fault, a simple time-evolving dislocation model was constructed. The model was driven by a single long vertical dislocation below 15 km in depth, that was forced to slip at 35 mm/yr in a RL sense. A dislocation element placed in the seismogenic layer under XMM1 was given a finite breaking strength of sufficient magnitude to produce a Parkfield-like earthquake every 22 years. When stress changes equivalent to a Coalinga earthquake were superposed on the model running in a steady state mode, the effect was to make a segment under XMM1, that could slip in a linear viscous fashion, creep LL and to delay the onset of the next Parkfield-like earthquake by a year or more. If static stress changes imposed by earthquakes off the San Andreas can indeed advance or delay earthquakes on the San Andreas by months or years, then such changes must be considered in intermediate-term prediction efforts. ?? 1988 Birkha??user Verlag.
Song, Gian; Sun, Zhiqian; Li, Lin; Clausen, Bjørn; Zhang, Shu Yan; Gao, Yanfei; Liaw, Peter K
2017-04-07
The ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni 2 TiAl/NiAl or single-Ni 2 TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxation behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate.
NASA Astrophysics Data System (ADS)
Chang, Haiwei; Lu, Mingyuan; Zhang, Mingxing; Atrens, Andrej; Huang, Han
2015-09-01
Nanoindentation was performed on τ-Mg32(Al, Zn)49 and β-Mg17Al12 intermetallic coatings and on a AZ91E Mg alloy substrate using loading rates of 0.03 to 30 mNs-1. Pop-in phenomenon was observed during loading in the two intermetallic coatings and in the substrate. Both the magnitude of the pop-ins and the time interval between two consecutive pop-ins increased with increasing loads. The phenomenon was attributed to plastic instability, which is known as the Portevin-Le Châtelier effect. The morphologies of the indent impressions at different strain rates on the t phase, the β phase and the substrate were also investigated using atomic force microscopy. Pile-up occurred in the τ and β phases and was found independent of the strain rate; no obvious pile-up occurred on the AZ91E substrate. The AZ91E substrate exhibited creep rates greater than those of the intermetallic phases, and all of the creep rates increased with the loading rate.
NASA Technical Reports Server (NTRS)
Blichfeldt, B.; Mccarty, J. E.
1972-01-01
Specimens representative of metal aircraft structural components reinforced with boron filamentary composites were manufactured and tested under cyclic loading, cyclic temperature, or continuously applied loading to evaluate some of the factors that affect structural integrity under cyclic conditions. Bonded, stepped joints were used throughout to provide composite-to-metal transition regions at load introduction points. Honeycomb panels with titanium or aluminum faces reinforced with unidirectional boron composite were fatigue tested at constant amplitude under completely reversed loading. Results indicated that the matrix material was the most fatigue-sensitive part of the design, with debonding initiating in the stepped joints. However, comparisons with equal weight all-metal specimens show a 10 to 50 times improved fatigue life. Fatigue crack propagation and residual strength were studied for several different stiffened panel concepts, and were found to vary considerably depending on the configuration. Composite-reinforced metal specimens were also subjected to creep and thermal cycling tests. Thermal cycling of stepped joint tensile specimens resulted in a ten percent decrease in residual strength after 4000 cycles.
Ashrafi, H; Shariyat, M
2016-06-01
Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and especially, biomechanics fields. Periodontal ligament plays an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. It is also the most accessible ligament in human body as it can be directly manipulated without any surgical intervention. From a mechanical point of view, this ligament can be considered as a thin interface made by a solid phase, consisting mainly of collagen fibers, which is immersed into a so-called ground substance. However, the viscoelastic constitutive effects of biological tissues are seldom considered rigorous during Nano-indentation tests. In the present paper, a mathematical contact approach is developed to enable determining creep compliance and relaxation modulus of distinct periodontal ligaments, using constant-rate indentation and loading time histories, respectively. An adequate curve-fitting method is presented to determine these characteristics based on the Nano-indentation of rigid Berkovich tips. Generalized Voigt-Kelvin and Wiechert models are used to model constitutive equations of periodontal ligaments, in which the relaxation and creep functions are represented by series of decaying exponential functions of time. Time-dependent creep compliance and relaxation function have been obtained for tissue specimens of periodontal ligaments. To improve accuracy, relaxation and creep moduli are measured from two tests separately. Stress relaxation effects appear more rapidly than creep in the periodontal ligaments.
Ashrafi, H.; Shariyat, M.
2016-01-01
Introduction Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and especially, biomechanics fields. Periodontal ligament plays an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. It is also the most accessible ligament in human body as it can be directly manipulated without any surgical intervention. From a mechanical point of view, this ligament can be considered as a thin interface made by a solid phase, consisting mainly of collagen fibers, which is immersed into a so-called ground substance. However, the viscoelastic constitutive effects of biological tissues are seldom considered rigorous during Nano-indentation tests. Methods In the present paper, a mathematical contact approach is developed to enable determining creep compliance and relaxation modulus of distinct periodontal ligaments, using constant–rate indentation and loading time histories, respectively. An adequate curve-fitting method is presented to determine these characteristics based on the Nano-indentation of rigid Berkovich tips. Generalized Voigt-Kelvin and Wiechert models are used to model constitutive equations of periodontal ligaments, in which the relaxation and creep functions are represented by series of decaying exponential functions of time. Results Time-dependent creep compliance and relaxation function have been obtained for tissue specimens of periodontal ligaments. Conclusion To improve accuracy, relaxation and creep moduli are measured from two tests separately. Stress relaxation effects appear more rapidly than creep in the periodontal ligaments. PMID:27672630
1982-05-01
Pugh, C. E., "Creep Studies on Type 304 Stainless Steel (Heat 8043813) Under Constant and Varying Loads," ORNL -TM- 4427 , June 1974, Oak Ridge National...34 hysteria loop predictions show. Oak Ridge ( ORNL ) [30) and combined hardening rules predict overall * 21 Stes Stress...Analysis of FFTF Components," ORNL TM-3602, Oak Ridge National Laboratory, Oak Ridge, Tenn., Sept. 1972. 31. Dafalias, Y. F., and Popov, E. P., "Plastic
NASA Technical Reports Server (NTRS)
Gates, Thomas S.
1992-01-01
In order to understand matrix dominated behavior in laminated polymer matrix composites, an elastic/viscoplastic constitutive model was developed and used to predict stress strain behavior of off-axis and angle-ply symmetric laminates under in-plane, tensile axial loading. The model was validated for short duration tests at elevated temperatures. Short term stress relaxation and short term creep, strain rate sensitivity, and material nonlinearity were accounted for. The testing times were extended for longer durations, and periods of creep and stress relaxation were used to investigate the ability of the model to account for long term behavior. The model generally underestimated the total change in strain and stress for both long term creep and long term relaxation respectively.
Acoustic Emission during Intermittent Creep in an Aluminum-Magnesium Alloy
NASA Astrophysics Data System (ADS)
Shibkov, A. A.; Zheltov, M. A.; Gasanov, M. F.; Zolotov, A. E.
2018-01-01
The use of high-speed methods to measure deformation, load, and the dynamics of deformation bands, as well as the correlation between the intermittent creep characteristics of the AlMg6 aluminum-magnesium alloy and the parameters of the acoustic emission signals, has been studied experimentally. It has been established that the emergence and rapid expansion of the primary deformation band, which generates a characteristic acoustic emission signal in the frequency range of 10-1000 Hz, is a trigger for the development of a deformation step in the creep curve. The results confirm the accuracy of the mechanism of generating an acoustic signal associated with the emergence of a dislocation band on the external surface of the specimen.
Ceramic Life Prediction Parameters
1980-05-01
preferential. A standard creep testing Satec machine with a modified load train assembly was used for tensile stress-rupture testing. The specimen is...to the standard Satec machine head which includes crossed (90°) knife edges. The assembly procedure includes hanging the load train parts from...the Satec head as influenced by gravity. At this point the lower Satec crossarm is lowered to snub the train in this position. The load train
Creep and intergranular cracking of Ni-Cr-Fe-C in 360[degree]C argon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angeliu, T.M.; Was, G.S.
1994-06-01
The influence of carbon and chromium on the creep and intergranular (IG) cracking behavior of controlled-purity Ni-xCr-9Fe-yC alloys in 360 C argon was investigated using constant extension rate tension (CERT) and constant load tension (CLT) testing. The CERT test results at 360 C show that the degree of IG cracking increases with decreasing bulk chromium or carbon content. The CLT test results at 360 C and 430 C reveal that, as the amounts of chromium and carbon in solution decrease, the steady-state creep rate increases. The occurrence of severe IG cracking correlates with a high steady-state creep rate, suggesting thatmore » creep plays a role in the IG cracking behavior in argon at 360 C. The failure mode of IG cracking and the deformation mode of creep are coupled through the formation of grain boundary voids that interlink to form grain boundary cavities, resulting in eventual failure by IG cavitation and ductile overload of the remaining ligaments. Grain boundary sliding may be enhancing grain boundary cavitation by redistributing the stress from inclined to more perpendicular boundaries and concentrating stress at discontinuities for the boundaries oriented 45 deg with respect to the tensile axis. Additions of carbon or chromium, which reduce the creep rate over all stress levels, also reduce the amount of IG fracture in CERT experiments. A damage accumulation model was formulated and applied to CERT tests to determine whether creep damage during a CERT test controls failure. Results show that, while creep plays a significant role in CERT experiments, failure is likely controlled by ductile overload caused by reduction in area resulting from grain boundary void formation and interlinkage.« less
AGC-4 Experiment Irradiation Monitoring Data Qualification Interim Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hull, Laurence Charles
2016-08-01
The Graphite Technology Development Program is running a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The fourth experiment, Advanced Graphite Creep 4 (AGC 4), began with Advanced Test Reactor (ATR) cycle 157D on May 30, 2015, and has been irradiated for two cycles. The capsule was removed from the reactor after ATR cycle 158A, which ended on January 2, 2016, due to interference with another experiment. Irradiation will resume when the interfering experiment is removed from the reactor. This report documents qualification of AGC 4 experiment irradiation monitoring data for use by themore » Advanced Reactor Technologies (ART) Technology Development Office (TDO) Program for research and development activities required to design and license the first HTR nuclear plant. Qualified data meet the requirements for use as described in the experiment planning and quality assurance documents. Failed data do not meet the requirements and provide no useable information. Trend data may not meet all requirements, but still provide some useable information. Use of Trend data requires assessment of how any deficiencies affect a particular use of the data. All thermocouples (TCs) have functioned throughout the AGC-4 experiment. All temperature data are Qualified for use by the ART TDO Program. Argon, helium, and total gas flow data were within expected ranges and are Qualified for use by the ART TDO Program. Discharge gas line moisture values were consistently low during cycle 157D. At the start of cycle 158A, gas moisture briefly spiked to over 600 ppmv and then declined throughout the cycle. Moisture values are within the measurement range of the instrument and are Qualified for use by the ART TDO Program. Graphite creep specimens were subjected to one of three loads, 393, 491, or 589 lbf. For a brief period during cycle 157D between 12:19 on June 2, 2015 and 08:23 on June 11, 2015 the load cells were wired incorrectly resulting in missing stack load data. Missing stack loads were estimated from measured ram pressures using regression equations developed from the existing data from cycle 157D. Estimated stack loads during this period are considered to be an accurate representation of actual load applied to the stacks. These loads deviate slightly from the planned loads. This deviation does not prevent the data from being Qualified for use, but must be taken into account when analyzing the effect of load on creep. Stack displacement increased consistently throughout the first two cycles with total displacement ranging from 0.4 to 0.8 in. During ATR outages, a set of pneumatic rams raised the stacks of graphite creep specimens to ensure the specimens were not stuck within the test train. This stack raising was performed twice. All stacks were raised successfully each time. The load and displacement data are Qualified for use by the ART TDO Program.« less
2011-01-01
blast and weapon fragmentation. A particular cementitious composite of interest is an inorganic polymer cement or “ geopolymer ” cement. The term...www.sciencedirect.com ICM11 Characterization and performance optimization of a cementitious composite for quasi-static and dynamic loads W.F. Hearda,b, P.K. Basub...rapid-set, high-strength geopolymer cement under quasi-static and dynamic loads. Four unique tensile experiments were conducted to characterize and
NASA Astrophysics Data System (ADS)
Grujicic, Mica; Galgalikar, R.; Snipes, J. S.; Ramaswami, S.
2016-05-01
Material constitutive models for creep deformation and creep rupture of the SiC/SiC ceramic-matrix composites (CMCs) under general three-dimensional stress states have been developed and parameterized using one set of available experimental data for the effect of stress magnitude and temperature on the time-dependent creep deformation and rupture. To validate the models developed, another set of available experimental data was utilized for each model. The models were subsequently implemented in a user-material subroutine and coupled with a commercial finite element package in order to enable computational analysis of the performance and durability of CMC components used in high-temperature high-stress applications, such as those encountered in gas-turbine engines. In the last portion of the work, the problem of creep-controlled contact of a gas-turbine engine blade with the shroud is investigated computationally. It is assumed that the blade is made of the SiC/SiC CMC, and that the creep behavior of this material can be accounted for using the material constitutive models developed in the present work. The results clearly show that the blade-tip/shroud clearance decreases and ultimately becomes zero (the condition which must be avoided) as a function of time. In addition, the analysis revealed that if the blade is trimmed at its tip to enable additional creep deformation before blade-tip/shroud contact, creep-rupture conditions can develop in the region of the blade adjacent to its attachment to the high-rotational-speed hub.
Creep and intergranular cracking behavior of nickel-chromium-iron-carbon alloys in 360 C water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angeliu, T.M.; Paraventi, D.J.; Was, G.S.
1995-11-01
Mechanical testing of controlled-purity Ni-x% Cr-9% Fe-y% C alloys at 360 C revealed an environmental enhancement in intergranular (IG) cracking and time-dependent deformation in high-purity (HP) and primary water (PW) over that exhibited in argon. Dimples on the IG facets indicated a creep void nucleation and growth failure mode. IG cracking was located primarily in the interior of the specimen and was not necessarily linked to the environment. Controlled-potential constant extension rate tensile (CERT) experiments showed increases in IG cracking as the applied potential decreased, suggesting that hydrogen was detrimental to the mechanical properties. It was proposed that the environment,more » through the presence of hydrogen, enhanced IG cracking by enhancing the matrix dislocation mobility. This conclusion was based on observations that dislocation creep controlled IG cracking of controlled-purity Ni-x% Cr-9% Fe-y% C in argon at 360 C. Grain-boundary cavitation (GBC) and sliding (GBS) results showed environmental enhancement of the creep rate primarily resulted from an increase in matrix plastic deformation. However, controlled-potential constant load tensile (CLT) experiments did not indicate a change in the creep rate as the applied potential decreased. While this result did not support hydrogen-assisted creep, the material already may have been saturated with hydrogen at these applied potentials, and thus, no effect was realized. Chromium and carbon decreased IG cracking in HP and PW by increasing the creep resistance. The surface film did not play a significant role in the creep or IG cracking behavior under the conditions investigated.« less
Tectonic stressing in California modeled from GPS observations
Parsons, T.
2006-01-01
What happens in the crust as a result of geodetically observed secular motions? In this paper we find out by distorting a finite element model of California using GPS-derived displacements. A complex model was constructed using spatially varying crustal thickness, geothermal gradient, topography, and creeping faults. GPS velocity observations were interpolated and extrapolated across the model and boundary condition areas, and the model was loaded according to 5-year displacements. Results map highest differential stressing rates in a 200-km-wide band along the Pacific-North American plate boundary, coinciding with regions of greatest seismic energy release. Away from the plate boundary, GPS-derived crustal strain reduces modeled differential stress in some places, suggesting that some crustal motions are related to topographic collapse. Calculated stressing rates can be resolved onto fault planes: useful for addressing fault interactions and necessary for calculating earthquake advances or delays. As an example, I examine seismic quiescence on the Garlock fault despite a calculated minimum 0.1-0.4 MPa static stress increase from the 1857 M???7.8 Fort Tejon earthquake. Results from finite element modeling show very low to negative secular Coulomb stress growth on the Garlock fault, suggesting that the stress state may have been too low for large earthquake triggering. Thus the Garlock fault may only be stressed by San Andreas fault slip, a loading pattern that could explain its erratic rupture history.
Elastic hysteresis phenomena in ULE and Zerodur optical glasses at elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, S.C.; Coon, D.N.; Epstein, J.S.
1988-01-01
Elastic hysteresis phenomena were observed in ULE and Zerodur glasses at elevated temperatures up to glass transition. These effects were found under load deformation testing using four-point bending. Permanent creep resulted in Zerodur at 900/degree/C and in ULE at 1000/degree/C. The deformation was monitored at mid-span of the samples with a capacitance-type transducer having 0.01 micrometer resolution. These hysteresis effects may be classified as elastic bimodulus between loading and unloading; that is, two different elastic moduli were observed between loading and unloading. Upon complete unloading, a minimal deformation state promptly returned, indicating little or no viscoelastic creep. The hysteresis effectmore » may be attributed to a change in glass structure as a function of stress state. A description of the test apparatus and procedure, test results for both glasses at several elevated temperatures, and an elementary discussion of continuum theory of constitutive behavior are included. 6 refs., 9 figs.« less
Sugiyama, Toshihiro; Price, Joanna S; Lanyon, Lance E
2010-02-01
In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC+STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static "pre-load" of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static "pre-load" alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 mum) micro-computed tomography (microCT). In the DYNAMIC+STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC+STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These microCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them. (c) 2009 Elsevier Inc. All rights reserved.
Quasi-Static Viscoelasticity Loading Measurements of an Aircraft Tire
NASA Technical Reports Server (NTRS)
Mason, Angela J.; Tanner, John A.; Johnson, Arthur R.
1997-01-01
Stair-step loading, cyclic loading, and long-term relaxation tests were performed on an aircraft tire to observe the quasi-static viscoelastic response of the tire. The data indicate that the tire continues to respond viscoelastically even after it has been softened by deformation. Load relaxation data from the stair-step test at the 15,000-lb loading was fit to a monotonically decreasing Prony series.
Portable pallet weighing apparatus
NASA Technical Reports Server (NTRS)
Day, R. M. (Inventor)
1984-01-01
An assembly for use with several like units in weighing the mass of a loaded cargo pallet supported by its trunnions has a bridge frame for positioning the assembly on a transportation frame carrying the pallet while straddling one trunnion of the pallet and its trunnion lock, and a cradle assembly for incrementally raising the trunnion. The mass at the trunnion is carried as a static load by a slidable bracket mounted upon the bridge frame for supporting the cradle assembly. The bracket applies the static loading to an electrical load cell symmetrically positioned between the bridge frame and the bracket. The static loading compresses the load cell, causing a slight deformation and a potential difference at load cell terminals which is proportional in amplitude to the mass of the pallet at the trunnion.
NASA Astrophysics Data System (ADS)
Shakhova, Ya. E.; Belyakov, A. N.; Kaibyshev, R. O.
2016-04-01
The structure and mechanical characteristics of a weld joint of 10Kh9K3V2MFBR steel (0.097 C, 0.17.Si, 0.54 Mn, 8.75 Cr, 0.21 Ni, 0.51 Mo, 0.07 Nb, 0.23 V, 0.004 N, 0.003 B, 1.6 W, 0.15 Cu, and Fe for balance, wt %) have been studied; the joint was produced by hand welding in an argon atmosphere using 03Kh20N45M7G6B welding wire (0.3 C, 20 Cr, 45 Ni, 7 Mo, 6 Mn, and 1 Nb, wt %). The weld joint is divided into the zone of the base metal, a thermal effect zone, which consists of zones that contain fine and coarse original austenitic grains, and the zone of seam metal. It has been shown that the weld joint of 10Kh9K3V2MFBR steel possesses high strength characteristics at the room temperature under static loading and a satisfactorily impact toughness, which has the minimum value of 30 J/cm2 in the zone of the seam metal and does not depend on the temperature. With a decrease in the temperature from the room temperature to 253 K, a ductile-brittle transition occurs in the thermal effect zone. Creep tests carried out at the temperature of 923 K have shown that the long-term strength of the weld seam is lower than that of the base material in the entire stress range being tested. At stresses of 140 MPa or higher, the acceleration of creep in the weld seam is observed, while at low stresses of about 120 MPa, the rates of creep in the weld seam and in the base metal remain similar until the transition to the stage of accelerated fracture occurs. The difference in the values of the long-term strength is due to premature fracture, which occurs in the thermal effect zone with the finegrained structure.
Modeling of slow crack propagation in heterogeneous rocks
NASA Astrophysics Data System (ADS)
Lengliné, Olivier; Stormo, Arne; Hansen, Alex; Schmittbuhl, Jean
2015-04-01
Crack propagation in heterogeneous media is a rich problem which involves the interplay of various physical processes. The problem has been intensively investigated theoretically, numerically, and experimentally, but a unifying model capturing all the experimental features has not been entirely achieved despite its broad range of implications in Earth sciences problems. The slow propagation of a crack front where long range elastic interactions are dominant, is of crucial importance to fill the gap between experiments and models. Several theoretical and numerical works have been devoted to quasi-static models. Such models give rise to an intermittent local activity characterized by a depinning transition and can be viewed as a critical phenomenon. However these models fail to reproduce all experimental conditions, notably the front morphology does not display any cross-over length with two different roughness exponents above and below the cross-over as observed experimentally. Here, we compare experimental observations of a slow interfacial crack propagation along an heterogeneous interface to numerical simulations from a cantilever fiber bundle model. The model consists of a planar set of brittle fibers between an elastic half-space and a rigid square root shaped plate which loads the system in a cantilever configuration. The latter is shown to provide an improved opening and stress field in the process zone around the crack tip. The model shares a similar scale invariant roughening of the crack front both at small and large scales and a similar power law distribution of the local velocity of the crack front to experiments. Implications for induced seismicity at the brittle-creep transition are discussed. We show that a creep route for induced seismicity is possible when heterogeneities exist along the fault. Indeed, seismic event occurrences in time and space are in strong relation with the development of the aseismic motion recorded during the experiment and the model. We also infer the statistical properties of the organization of the seismicity that shows strong space-time clustering. We conclude that aseismic processes might drive seismicity in the brittle-creep regime.
Profile extrusion and mechanical properties of crosslinked wood–thermoplastic composites
Magnus Bengtsson; Kristiina Oksman; Stark Nicole M.
2006-01-01
Challenges for wood-thermoplastic composites to be utilized in structural applications are to lower product weight and to improve the long-term load performance. Silane crosslinking of the composites is one way to reduce the creep during long-term loading and to improve the mechanical properties. In this study, silane crosslinked wood-polyethylene composites were...
Structural composite panel performance under long-term load
Theodore L. Laufenberg
1988-01-01
Information on the performance of wood-based structural composite panels under long-term load is currently needed to permit their use in engineered assemblies and systems. A broad assessment of the time-dependent properties of panels is critical for creating databases and models of the creep-rupture phenomenon that lead to reliability-based design procedures. This...
Numerical Simulations of Mechanical Erosion from below by Creep on Rate-State Faults
NASA Astrophysics Data System (ADS)
Werner, M. J.; Rubin, A. M.
2012-04-01
The aim of this study is to increase our understanding of how earthquakes nucleate on frictionally-locked fault patches that are loaded by the growing stress concentrations at their boundaries due to aseismic creep. Such mechanical erosion from below of locked patches has previously been invoked by Gillard et al. (1996) to explain accelerating seismicity and increases in maximum earthquake magnitude on a strike-slip streak (a narrow ribbon of tightly clustered seismicity) in Kilauea's East rift, and it might also play a role in the loading of major locked strike-slip faults by creep from below the seismogenic zone. Gillard et al. (1996) provided simple analytical estimates of the size of and moment release within the eroding edge of the locked zone that matched the observed seismicity in Kilauea's East rift. However, an obvious, similar signal has not consistently been found before major strike-slip earthquakes. Here, we use simulations to determine to what extent the simple estimates by Gillard et al. survive a wider range of geometric configurations and slip histories. The boundary between the locked and creeping sections at the base of the seismogenic zone is modeled as a gradual, continuous transition between steady-state velocity-strengthening at greater depth to velocity-weakening surroundings at shallow depth, qualitatively consistent with laboratory estimates of the temperature dependence of (a-b). The goal is to expand the range of possible outcomes to broaden our range of expectations for the behavior of the eroding edge of the locked zones.
Experimental characterization of composites. [load test methods
NASA Technical Reports Server (NTRS)
Bert, C. W.
1975-01-01
The experimental characterization for composite materials is generally more complicated than for ordinary homogeneous, isotropic materials because composites behave in a much more complex fashion, due to macroscopic anisotropic effects and lamination effects. Problems concerning the static uniaxial tension test for composite materials are considered along with approaches for conducting static uniaxial compression tests and static uniaxial bending tests. Studies of static shear properties are discussed, taking into account in-plane shear, twisting shear, and thickness shear. Attention is given to static multiaxial loading, systematized experimental programs for the complete characterization of static properties, and dynamic properties.
Code of Federal Regulations, 2010 CFR
2010-01-01
... occupant experiences the static inertia loads corresponding to the following ultimate load factors— (i... could injure an occupant, experience the static inertia loads corresponding to the following ultimate...) A downward ultimate inertia force of 3 g; and (ii) A coefficient of friction of 0.5 at the ground...
Embedded data collector (EDC) phase II load and resistance factor design (LRFD).
DOT National Transportation Integrated Search
2015-09-01
A total of 16 static load test results was collected in Florida and Louisiana. New static load tests on five test piles : in Florida (four of which were voided) were monitored with Embedded Data Collector (EDC) instrumentation and : contributed to th...
Code of Federal Regulations, 2011 CFR
2011-01-01
... occupant experiences the static inertia loads corresponding to the following ultimate load factors— (i... could injure an occupant, experience the static inertia loads corresponding to the following ultimate...) A downward ultimate inertia force of 3 g; and (ii) A coefficient of friction of 0.5 at the ground...
Code of Federal Regulations, 2014 CFR
2014-01-01
... occupant experiences the static inertia loads corresponding to the following ultimate load factors— (i... could injure an occupant, experience the static inertia loads corresponding to the following ultimate...) A downward ultimate inertia force of 3 g; and (ii) A coefficient of friction of 0.5 at the ground...
Code of Federal Regulations, 2013 CFR
2013-01-01
... occupant experiences the static inertia loads corresponding to the following ultimate load factors— (i... could injure an occupant, experience the static inertia loads corresponding to the following ultimate...) A downward ultimate inertia force of 3 g; and (ii) A coefficient of friction of 0.5 at the ground...
Static behaviour of 3x3 pile group in sand under lateral loading
NASA Astrophysics Data System (ADS)
SureshKumar, R.; BharathKumar, R.; MohanKumar, L.; Visuvasam, J.; Sairam, V.
2017-11-01
This paper presents the static lateral load behaviour of single pile in comparison with 3x3 pile group in sand. The piled raft system is modelled using PLAXIS3D. Parametric studies of varying length to diameter (L/D) and spacing of piles in a group and diameter of piles (S/D) have been performed. The behaviour of group piles in terms of static lateral load capacity and group efficiency has been discussed.
Onset of sediment transport is a continuous transition driven by fluid shear and granular creep
Houssais, Morgane; Ortiz, Carlos P.; Durian, Douglas J.; Jerolmack, Douglas J.
2015-01-01
Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain–grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow. This transition occurs inside the dense granular bed at a critical viscous number, similar to granular flows and colloidal suspensions and inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment transport, where ‘bed load’ is a dense granular flow bounded by creep below and suspension above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on hillslopes. Results provide new predictions for the onset and dynamics of sediment transport that challenge existing models. PMID:25751296
SiC Fibers and SiCf/SiC Ceramic Matrix Minicomposites Damage Behavior
NASA Technical Reports Server (NTRS)
Almansour, Amjad S.
2017-01-01
Silicon Carbide based Ceramic Matrix Composites (CMCs) are attractive materials for use in high-temperature applications in the aerospace industry. Performance and durability of CMCs depend on the properties of its constituents such as fibers and matrix. Therefore, CMCs constituents limitations and damage mechanisms are discussed and characterized in representative simulated application conditions and dominant damage mechanisms are identified at elevated temperatures. In this work, the initiation and evolution of damage in Hi-Nicalon type S fiber-reinforced minicomposites with different interphases thicknesses from different manufacturers were investigated employing several nondestructive evaluation techniques such as acoustic emission, electrical resistance and microscopy. Moreover, the tensile creep behavior of single Hi-Nicalon Type S SiC fibers were tested and characterized and creep parameters were extracted. Fibers creep tests were performed in air or vacuum at 1200-1482 C under high stresses. Creep parameters was then used in understanding load sharing and lifing of ceramic matrix minicomposites. Future work plans will be reviewed.
Computational simulation of the creep-rupture process in filamentary composite materials
NASA Technical Reports Server (NTRS)
Slattery, Kerry T.; Hackett, Robert M.
1991-01-01
A computational simulation of the internal damage accumulation which causes the creep-rupture phenomenon in filamentary composite materials is developed. The creep-rupture process involves complex interactions between several damage mechanisms. A statistically-based computational simulation using a time-differencing approach is employed to model these progressive interactions. The finite element method is used to calculate the internal stresses. The fibers are modeled as a series of bar elements which are connected transversely by matrix elements. Flaws are distributed randomly throughout the elements in the model. Load is applied, and the properties of the individual elements are updated at the end of each time step as a function of the stress history. The simulation is continued until failure occurs. Several cases, with different initial flaw dispersions, are run to establish a statistical distribution of the time-to-failure. The calculations are performed on a supercomputer. The simulation results compare favorably with the results of creep-rupture experiments conducted at the Lawrence Livermore National Laboratory.
Pedrazzoli, D; Dorigato, A; Pegoretti, A
2012-05-01
Various amounts of carbon black (CB) and carbon nanofibres (CNF) were dispersed in an epoxy resin to prepare nanocomposites whose mechanical behaviour, under ramp and creep conditions, was monitored by electrical measurements. The electrical resistivity of the epoxy resin was dramatically reduced by both nanofillers after the percolation threshold (1 wt% for CB and 0.5 wt% for CNF), reaching values in the range of 10(3)-10(4) omega . cm for filler loadings higher than 2 wt%. Due to the synergistic effects between the nanofillers, an epoxy system containing a total nanofiller amount of 2 wt%, with a relative CB/CNF ratio of 90/10 was selected for the specific applications. A direct correlation between the tensile strain and the increase of the electrical resistance was observed over the whole experimental range, and also the final failure of the samples was clearly detected. Creep tests confirmed the possibility to monitor the various deformational stages under constant loads, with a strong dependency from the temperature and the applied stress. The obtained results are encouraging for a possible application of nanomodified epoxy resin as a matrix for the preparation of structural composites with sensing (i.e., damage-monitoring) capabilities.
Ultrasonic measurements of breast viscoelasticity.
Sridhar, Mallika; Insana, Michael F
2007-12-01
In vivo measurements of the viscoelastic properties of breast tissue are described. Ultrasonic echo frames were recorded from volunteers at 5 fps while applying a uniaxial compressive force (1-20 N) within a 1 s ramp time and holding the force constant for up to 200 s. A time series of strain images was formed from the echo data, spatially averaged viscous creep curves were computed, and viscoelastic strain parameters were estimated by fitting creep curves to a second-order Voigt model. The useful strain bandwidth from this quasi-static ramp stimulus was 10(-2) < or = omega < or = 10(0) rad/s (0.0016-0.16 Hz). The stress-strain curves for normal glandular tissues are linear when the surface force applied is between 2 and 5 N. In this range, the creep response was characteristic of biphasic viscoelastic polymers, settling to a constant strain (arrheodictic) after 100 s. The average model-based retardance time constants for the viscoelastic response were 3.2 +/- 0.8 and 42.0 +/- 28 s. Also, the viscoelastic strain amplitude was approximately equal to that of the elastic strain. Above 5 N of applied force, however, the response of glandular tissue became increasingly nonlinear and rheodictic, i.e., tissue creep never reached a plateau. Contrasting in vivo breast measurements with those in gelatin hydrogels, preliminary ideas regarding the mechanisms for viscoelastic contrast are emerging.
Ultrasonic measurements of breast viscoelasticity
Sridhar, Mallika; Insana, Michael F.
2009-01-01
In vivo measurements of the viscoelastic properties of breast tissue are described. Ultrasonic echo frames were recorded from volunteers at 5 fps while applying a uniaxial compressive force (1–20 N) within a 1 s ramp time and holding the force constant for up to 200 s. A time series of strain images was formed from the echo data, spatially averaged viscous creep curves were computed, and viscoelastic strain parameters were estimated by fitting creep curves to a second-order Voigt model. The useful strain bandwidth from this quasi-static ramp stimulus was 10−2 ≤ ω ≤ 100 rad/s (0.0016–0.16 Hz). The stress-strain curves for normal glandular tissues are linear when the surface force applied is between 2 and 5 N. In this range, the creep response was characteristic of biphasic viscoelastic polymers, settling to a constant strain (arrheodictic) after 100 s. The average model-based retardance time constants for the viscoelastic response were 3.2±0.8 and 42.0±28 s. Also, the viscoelastic strain amplitude was approximately equal to that of the elastic strain. Above 5 N of applied force, however, the response of glandular tissue became increasingly nonlinear and rheodictic, i.e., tissue creep never reached a plateau. Contrasting in vivo breast measurements with those in gelatin hydrogels, preliminary ideas regarding the mechanisms for viscoelastic contrast are emerging. PMID:18196803
Improved bridge joint materials and design details.
DOT National Transportation Integrated Search
2017-06-01
Expansion joints accommodate bridge movements that result from factors such as thermal expansion and contraction, concrete shrinkage, creep effects, live loading, settlement of the foundation and substructure, and environmental stressors. Expansion j...
Superplastic Creep of Metal Nanowires From Rate-Dependent Plasticity Transition
Tao, Weiwei; Cao, Penghui; Park, Harold S.
2018-04-30
Understanding the time-dependent mechanical behavior of nanomaterials such as nanowires is essential to predict their reliability in nanomechanical devices. This understanding is typically obtained using creep tests, which are the most fundamental loading mechanism by which the time dependent deformation of materials is characterized. However, due to existing challenges facing both experimentalists and theorists, the time dependent mechanical response of nanowires is not well-understood. Here, we use atomistic simulations that can access experimental time scales to examine the creep of single-crystal face-centered cubic metal (Cu, Ag, Pt) nanowires. Here, we report that both Cu and Ag nanowires show significantly increasedmore » ductility and superplasticity under low creep stresses, where the superplasticity is driven by a rate-dependent transition in defect nucleation from twinning to trailing partial dislocations at the micro- or millisecond time scale. The transition in the deformation mechanism also governs a corresponding transition in the stress-dependent creep time at the microsecond (Ag) and millisecond (Cu) time scales. Overall, this work demonstrates the necessity of accessing time scales that far exceed those seen in conventional atomistic modeling for accurate insights into the time-dependent mechanical behavior and properties of nanomaterials.« less
Creep and stress rupture of oxide dispersion strengthened mechanically alloyed Inconel alloy MA 754
NASA Technical Reports Server (NTRS)
Howson, T. E.; Tien, J. K.; Stulga, J. E.
1980-01-01
The creep and stress rupture behavior of the mechanically alloyed oxide dispersion strengthened nickel-base alloy MA 754 was studied at 760, 982 and 1093 C. Tensile specimens with a fine, highly elongated grain structure, oriented parallel and perpendicular to the longitudinal grain direction were tested at various stresses in air under constant load. It was found that the apparent stress dependence was large, with power law exponents ranging from 19 to 33 over the temperature range studied. The creep activation energy, after correction for the temperature dependence of the elastic modulus, was close to but slightly larger than the activation energy for self diffusion. Rupture was intergranular and the rupture ductility as measured by percentage elongation was generally low, with values ranging from 0.5 to 16 pct. The creep properties are rationalized by describing the creep rates in terms of an effective stress which is the applied stress minus a resisting stress consistent with the alloy microstructure. Values of the resisting stress obtained through a curve fitting procedure are found to be close to the values of the particle by-pass stress for this oxide dispersion strengthened alloy, as calculated from the measured oxide particle distribution.
Superplastic Creep of Metal Nanowires from Rate-Dependent Plasticity Transition.
Tao, Weiwei; Cao, Penghui; Park, Harold S
2018-05-22
Understanding the time-dependent mechanical behavior of nanomaterials such as nanowires is essential to predict their reliability in nanomechanical devices. This understanding is typically obtained using creep tests, which are the most fundamental loading mechanism by which the time-dependent deformation of materials is characterized. However, due to existing challenges facing both experimentalists and theorists, the time-dependent mechanical response of nanowires is not well-understood. Here, we use atomistic simulations that can access experimental time scales to examine the creep of single-crystal face-centered cubic metal (Cu, Ag, Pt) nanowires. We report that both Cu and Ag nanowires show significantly increased ductility and superplasticity under low creep stresses, where the superplasticity is driven by a rate-dependent transition in defect nucleation from twinning to trailing partial dislocations at the micro- or millisecond time scale. The transition in the deformation mechanism also governs a corresponding transition in the stress-dependent creep time at the microsecond (Ag) and millisecond (Cu) time scales. Overall, this work demonstrates the necessity of accessing time scales that far exceed those seen in conventional atomistic modeling for accurate insights into the time-dependent mechanical behavior and properties of nanomaterials.
Bareño, Jorge O.; Parra Vargas, Carlos A.; Gutierrez Velásquez, Elkin I.
2017-01-01
Force Sensing Resistors (FSRs) are manufactured by sandwiching a Conductive Polymer Composite (CPC) between metal electrodes. The piezoresistive property of FSRs has been exploited to perform stress and strain measurements, but the rheological property of polymers has undermined the repeatability of measurements causing creep in the electrical resistance of FSRs. With the aim of understanding the creep phenomenon, the drift response of thirty two specimens of FSRs was studied using a statistical approach. Similarly, a theoretical model for the creep response was developed by combining the Burger’s rheological model with the equations for the quantum tunneling conduction through thin insulating films. The proposed model and the experimental observations showed that the sourcing voltage has a strong influence on the creep response; this observation—and the corresponding model—is an important contribution that has not been previously accounted. The phenomenon of sensitivity degradation was also studied. It was found that sensitivity degradation is a voltage-related phenomenon that can be avoided by choosing an appropriate sourcing voltage in the driving circuit. The models and experimental observations from this study are key aspects to enhance the repeatability of measurements and the accuracy of FSRs. PMID:29160834
Superplastic Creep of Metal Nanowires From Rate-Dependent Plasticity Transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Weiwei; Cao, Penghui; Park, Harold S.
Understanding the time-dependent mechanical behavior of nanomaterials such as nanowires is essential to predict their reliability in nanomechanical devices. This understanding is typically obtained using creep tests, which are the most fundamental loading mechanism by which the time dependent deformation of materials is characterized. However, due to existing challenges facing both experimentalists and theorists, the time dependent mechanical response of nanowires is not well-understood. Here, we use atomistic simulations that can access experimental time scales to examine the creep of single-crystal face-centered cubic metal (Cu, Ag, Pt) nanowires. Here, we report that both Cu and Ag nanowires show significantly increasedmore » ductility and superplasticity under low creep stresses, where the superplasticity is driven by a rate-dependent transition in defect nucleation from twinning to trailing partial dislocations at the micro- or millisecond time scale. The transition in the deformation mechanism also governs a corresponding transition in the stress-dependent creep time at the microsecond (Ag) and millisecond (Cu) time scales. Overall, this work demonstrates the necessity of accessing time scales that far exceed those seen in conventional atomistic modeling for accurate insights into the time-dependent mechanical behavior and properties of nanomaterials.« less
Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions
NASA Technical Reports Server (NTRS)
Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming
2013-01-01
Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.
Materials constitutive models for nonlinear analysis of thermally cycled structures
NASA Technical Reports Server (NTRS)
Kaufman, A.; Hunt, L. E.
1982-01-01
Effects of inelastic materials models on computed stress-strain solutions for thermally loaded structures were studied by performing nonlinear (elastoplastic creep) and elastic structural analyses on a prismatic, double edge wedge specimen of IN 100 alloy that was subjected to thermal cycling in fluidized beds. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic kinematic, and combined plus transient creep) were exercised for the problem by using the MARC nonlinear, finite element computer program. Maximum total strain ranges computed from the elastic and nonlinear analyses agreed within 5 percent. Mean cyclic stresses, inelastic strain ranges, and inelastic work were significantly affected by the choice of inelastic constitutive model. The computing time per cycle for the nonlinear analyses was more than five times that required for the elastic analysis.
Fragility and hysteretic creep in frictional granular jamming.
Bandi, M M; Rivera, M K; Krzakala, F; Ecke, R E
2013-04-01
The granular jamming transition is experimentally investigated in a two-dimensional system of frictional, bidispersed disks subject to quasistatic, uniaxial compression without vibrational disturbances (zero granular temperature). Three primary results are presented in this experimental study. First, using disks with different static friction coefficients (μ), we experimentally verify numerical results that predict jamming onset at progressively lower packing fractions with increasing friction. Second, we show that the first compression cycle measurably differs from subsequent cycles. The first cycle is fragile-a metastable configuration with simultaneous jammed and unjammed clusters-over a small packing fraction interval (φ(1)<φ<φ(2)) and exhibits simultaneous exponential rise in pressure and exponential decrease in disk displacements over the same packing fraction interval. This fragile behavior is explained through a percolation mechanism of stressed contacts where cluster growth exhibits spatial correlation with disk displacements and contributes to recent results emphasizing fragility in frictional jamming. Control experiments show that the fragile state results from the experimental incompatibility between the requirements for zero friction and zero granular temperature. Measurements with several disk materials of varying elastic moduli E and friction coefficients μ show that friction directly controls the start of the fragile state but indirectly controls the exponential pressure rise. Finally, under repetitive loading (compression) and unloading (decompression), we find the system exhibits pressure hysteresis, and the critical packing fraction φ(c) increases slowly with repetition number. This friction-induced hysteretic creep is interpreted as the granular pack's evolution from a metastable to an eventual structurally stable configuration. It is shown to depend on the quasistatic step size Δφ, which provides the only perturbative mechanism in the experimental protocol, and the friction coefficient μ, which acts to stabilize the pack.
Time-dependent friction and the mechanics of stick-slip
Dieterich, J.H.
1978-01-01
Time-dependent increase of static friction is characteristic of rock friction undera variety of experimental circumstances. Data presented here show an analogous velocity-dependent effect. A theor of friction is proposed that establishes a common basis for static and sliding friction. Creep at points of contact causes increases in friction that are proportional to the logarithm of the time that the population of points of contact exist. For static friction that time is the time of stationary contact. For sliding friction the time of contact is determined by the critical displacement required to change the population of contacts and the slip velocity. An analysis of a one-dimensional spring and slider system shows that experimental observations establishing the transition from stable sliding to stick-slip to be a function of normal stress, stiffness and surface finish are a consequence of time-dependent friction. ?? 1978 Birkha??user Verlag.
Chemical origins of frictional aging.
Liu, Yun; Szlufarska, Izabela
2012-11-02
Although the basic laws of friction are simple enough to be taught in elementary physics classes and although friction has been widely studied for centuries, in the current state of knowledge it is still not possible to predict a friction force from fundamental principles. One of the highly debated topics in this field is the origin of static friction. For most macroscopic contacts between two solids, static friction will increase logarithmically with time, a phenomenon that is referred to as aging of the interface. One known reason for the logarithmic growth of static friction is the deformation creep in plastic contacts. However, this mechanism cannot explain frictional aging observed in the absence of roughness and plasticity. Here, we discover molecular mechanisms that can lead to a logarithmic increase of friction based purely on interfacial chemistry. Predictions of our model are consistent with published experimental data on the friction of silica.
Hoogeslag, Roy A G; Brouwer, Reinoud W; Huis In 't Veld, Rianne; Stephen, Joanna M; Amis, Andrew A
2018-02-03
There is a lack of objective evidence investigating how previous non-augmented ACL suture repair techniques and contemporary augmentation techniques in ACL suture repair restrain anterior tibial translation (ATT) across the arc of flexion, and after cyclic loading of the knee. The purpose of this work was to test the null hypotheses that there would be no statistically significant difference in ATT after non-, static- and dynamic-augmented ACL suture repair, and they will not restore ATT to normal values across the arc of flexion of the knee after cyclic loading. Eleven human cadaveric knees were mounted in a test rig, and knee kinematics from 0° to 90° of flexion were recorded by use of an optical tracking system. Measurements were recorded without load and with 89-N tibial anterior force. The knees were tested in the following states: ACL-intact, ACL-deficient, non-augmented suture repair, static tape augmentation and dynamic augmentation after 10 and 300 loading cycles. Only static tape augmentation and dynamic augmentation restored ATT to values similar to the ACL-intact state directly postoperation, and maintained this after cyclic loading. However, contrary to dynamic augmentation, the ATT after static tape augmentation failed to remain statistically less than for the ACL-deficient state after cyclic loading. Moreover, after cyclic loading, ATT was significantly less with dynamic augmentation when compared to static tape augmentation. In contrast to non-augmented ACL suture repair and static tape augmentation, only dynamic augmentation resulted in restoration of ATT values similar to the ACL-intact knee and decreased ATT values when compared to the ACL-deficient knee immediately post-operation and also after cyclic loading, across the arc of flexion, thus allowing the null hypotheses to be rejected. This may assist healing of the ruptured ACL. Therefore, this study would support further clinical evaluation of dynamic augmentation of ACL repair.
Creep fatigue life prediction for engine hot section materials (ISOTROPIC)
NASA Technical Reports Server (NTRS)
Nelson, R. S.; Schoendorf, J. F.; Lin, L. S.
1986-01-01
The specific activities summarized include: verification experiments (base program); thermomechanical cycling model; multiaxial stress state model; cumulative loading model; screening of potential environmental and protective coating models; and environmental attack model.
Size distribution of Parkfield’s microearthquakes reflects changes in surface creep rate
Tormann, Theresa; Wiemer, Stefan; Metzger, Sabrina; Michael, Andrew J.; Hardebeck, Jeanne L.
2013-01-01
The nucleation area of the series of M6 events in Parkfield has been shown to be characterized by low b-values throughout the seismic cycle. Since low b-values represent high differential stresses, the asperity structure seems to be always stably stressed and even unaffected by the latest main shock in 2004. However, because fault loading rates and applied shear stress vary with time, some degree of temporal variability of the b-value within stable blocks is to be expected. We discuss in this study adequate techniques and uncertainty treatment for a detailed analysis of the temporal evolution of b-values. We show that the derived signal for the Parkfield asperity correlates with changes in surface creep, suggesting a sensitive time resolution of the b-value stress meter, and confirming near-critical loading conditions within the Parkfield asperity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Gian; Sun, Zhiqian; Li, Lin
Here, the ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni 2TiAl/NiAl or single-Ni 2TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxationmore » behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate.« less
Song, Gian; Sun, Zhiqian; Li, Lin; Clausen, Bjørn; Zhang, Shu Yan; Gao, Yanfei; Liaw, Peter K.
2017-01-01
The ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni2TiAl/NiAl or single-Ni2TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxation behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate. PMID:28387230
Song, Gian; Sun, Zhiqian; Li, Lin; ...
2017-04-07
Here, the ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni 2TiAl/NiAl or single-Ni 2TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxationmore » behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate.« less
Fogel, Guy R; Li, Zhenyu; Liu, Weiqiang; Liao, Zhenhua; Wu, Jia; Zhou, Wenyu
2010-05-01
Anterior cervical plating has been accepted in corpectomy and fusion of the cervical spine. Constrained plates were criticized for stress shielding that may lead to subsidence and pseudarthrosis. A dynamic plate allows load sharing as the graft subsides. Ideally, the dynamic plate design should maintain adequate stiffness of the construct while providing a reasonable load sharing with the strut graft. The purpose of the study was to compare dynamic and static plate kinematics with graft subsidence. The study designed was an in vitro biomechanical study in a porcine cervical spine model. Twelve spines were initially tested in intact condition with 20-N axial load in 15 degrees of flexion and extension range of motion (ROM). Then, a two-level corpectomy was created in all specimens with spines randomized to receive either a static or dynamic plate. The spines were retested under identical conditions with optimal length and undersized graft. Range of motion and graft loading were analyzed with a one-way analysis of variance (p<.05). Both plates significantly limited ROM compared with the intact spine in both graft length conditions. In extension graft, load was significantly higher (p=.001) in the static plate with optimal length, and in flexion, there was a significant loss of graft load (p=.0004). In flexion, the dynamic plate with undersized graft demonstrated significantly more load sustained (p=.0004). Both plates reasonably limited the ROM of the corpectomy. The static plate had significantly higher graft loads in extension and significant loss of graft load in flexion, whereas the dynamic plate maintained a reasonable graft load in ROM even when graft contact was imperfect. Copyright 2010 Elsevier Inc. All rights reserved.
Creep Measurement Video Extensometer
NASA Technical Reports Server (NTRS)
Jaster, Mark; Vickerman, Mary; Padula, Santo, II; Juhas, John
2011-01-01
Understanding material behavior under load is critical to the efficient and accurate design of advanced aircraft and spacecraft. Technologies such as the one disclosed here allow accurate creep measurements to be taken automatically, reducing error. The goal was to develop a non-contact, automated system capable of capturing images that could subsequently be processed to obtain the strain characteristics of these materials during deformation, while maintaining adequate resolution to capture the true deformation response of the material. The measurement system comprises a high-resolution digital camera, computer, and software that work collectively to interpret the image.
A Study of the Use of Contact Loading to Simulate Low Velocity Impact
NASA Technical Reports Server (NTRS)
Highsmith, Alton L.
1997-01-01
Although numerous studies on the impact response of laminated composites have been conducted, there is as yet no agreement within the composites community on what parameter or parameters are adequate for quantifying the severity of an impact event. One of the more interesting approaches that has been proposed uses the maximum contact force during impact to "quantify" the severity of the impact event, provided that the impact velocity is sufficiently low. A significant advantage of this approach, should it prove to be reliable, is that quasi-static contact loading could be used to simulate low velocity impact. In principle, a single specimen, loaded quasi-statically to successively increasing contact loads could be used to map the entire spectrum of damage as a function of maximum contact force. The present study had as its objective assessing whether or not the maximum contact force during impact is a suitable parameter for characterizing an impact. The response of [+/-60/0(sub 4)/+/-60/0(sub 2)](sub s) laminates fabricated from Fiberite T300/934 graphite epoxy and subjected to quasi-static contact loading and to low velocity impact was studied. Three quasi-static contact load levels - 525 lb., 600 lb., and 675 lb. - were selected. Three impact energy levels - 1.14 ft.-lb., 2.0 ft.-lb., and 2.60 ft.-lb. - were chosen in an effort to produce impact events in which the maximum contact forces during the impact events were 525 lb., 600 lb., and 625 lb., respectively. Damage development was documented using dye-penetrant enhanced x-ray radiography. A digital image processing technique was used to obtain quantitative information about the damage zone. Although it was intended that the impact load levels produce maximum contact forces equal to those used in the quasi-static contact experiments, larger contact forces were developed during impact loading. In spite of this, the damage zones developed in impacted specimens were smaller than the damage zones developed in specimens subjected to the corresponding quasi-static contact loading. The impacted specimens may have a greater tendency to develop fiber fracture, but, at present, a quantitative assessment of fiber fracture is not available. In addressing whether or not contact force is an adequate metric for describing the severity of an impact event, the results of this study suggest that it is not. In cases where the quasi-static load level and the maximum contact force during impact were comparable, the quasi-statically loaded specimens consistently developed larger damage zones. It should be noted, however, that using quasi-static damage data to forecast the behavior of impacted material may give conservative estimates of the residual strength of impacted composites.
Transient rolling friction model for discrete element simulations of sphere assemblies
NASA Astrophysics Data System (ADS)
Kuhn, Matthew R.
2014-03-01
The rolling resistance between a pair of contacting particles can be modeled with two mechanisms. The first mechanism, already widely addressed in the DEM literature, involves a contact moment between the particles. The second mechanism involves a reduction of the tangential contact force, but without a contact moment. This type of rotational resistance, termed creep-friction, is the subject of the paper. Within the creep-friction literature, the term “creep” does not mean a viscous mechanism, but rather connotes a slight slip that accompanies rolling. Two extremes of particle motions bound the range of creep-friction behaviors: a pure tangential translation is modeled as a Cattaneo-Mindlin interaction, whereas prolonged steady-state rolling corresponds to the traditional wheel-rail problem described by Carter, Poritsky, and others. DEM simulations, however, are dominated by the transient creep-friction rolling conditions that lie between these two extremes. A simplified model is proposed for the three-dimensional transient creep-friction rolling of two spheres. The model is an extension of the work of Dahlberg and Alfredsson, who studied the two-dimensional interactions of disks. The proposed model is applied to two different systems: a pair of spheres and a large dense assembly of spheres. Although creep-friction can reduce the tangential contact force that would otherwise be predicted with Cattaneo-Mindlin theory, a significant force reduction occurs only when the rate of rolling is much greater than the rate of translational sliding and only after a sustained period of rolling. When applied to the deviatoric loading of an assembly of spheres, the proposed creep-friction model has minimal effect on macroscopic strength or stiffness. At the micro-scale of individual contacts, creep-friction does have a modest influence on the incremental contact behavior, although the aggregate effect on the assembly's behavior is minimal.
NASA Astrophysics Data System (ADS)
Andrews, Benjamin J.
The phenomena of creep and fatigue have each been thoroughly studied. More recently, attempts have been made to predict the damage evolution in engineering materials due to combined creep and fatigue loading, but these formulations have been strictly empirical and have not been used successfully outside of a narrow set of conditions. This work proposes a new creep-fatigue crack growth model based on constitutive creep equations (adjusted to experimental data) and Paris law fatigue crack growth. Predictions from this model are compared to experimental data in two steels: modified 9Cr-1Mo steel and AISI 316L stainless steel. Modified 9Cr-1Mo steel is a high-strength steel used in the construction of pressure vessels and piping for nuclear and conventional power plants, especially for high temperature applications. Creep-fatigue and pure creep experimental data from the literature are compared to model predictions, and they show good agreement. Material constants for the constitutive creep model are obtained for AISI 316L stainless steel, an alloy steel widely used for temperature and corrosion resistance for such components as exhaust manifolds, furnace parts, heat exchangers and jet engine parts. Model predictions are compared to pure creep experimental data, with satisfactory results. Assumptions and constraints inherent in the implementation of the present model are examined. They include: spatial discretization, similitude, plane stress constraint and linear elasticity. It is shown that the implementation of the present model had a non-trivial impact on the model solutions in 316L stainless steel, especially the spatial discretization. Based on these studies, the following conclusions are drawn: 1. The constitutive creep model consistently performs better than the Nikbin, Smith and Webster (NSW) model for predicting creep and creep-fatigue crack extension. 2. Given a database of uniaxial creep test data, a constitutive material model such as the one developed for modified 9Cr-1Mo can be developed for other materials. 3. Due to the assumptions used to develop the strip-yield model, model predictions are expected to show some scatter, especially in some situations. Several areas of future research are proposed from these conclusions: 1. Alternative methods for predicting fatigue crack growth, especially a constitutive fatigue crack growth model, 2. Continued development of new material models and refinement the existing ones, and 3. Implementation of the present creep-fatigue model as a user-defined subroutine in a finite element solver.
Creep behavior of flakeboards made with a mixture of southern species
Eddie W. Price
1985-01-01
Deftection of oriented flakeboards, random flakeboards, and southern pine plywood was evaluated for small size bending specimens and concentrated loads applied to panels nailed on framing lumber. The flakeboards contained a mixture of southern hardwoods and pine; the plywood was 3-ply l/2-inch and 4-ply 5/8-inch construction. Tests of both panel directions, all load...
NASA Astrophysics Data System (ADS)
Schilder, Constanze; Kohlhoff, Harald; Hofmann, Detlef; Basedau, Frank; Habel, Wolfgang R.; Baeßler, Matthias; Niederleithinger, Ernst; Georgi, Steven; Herten, Markus
2013-05-01
Static and dynamic pile tests are carried out to determine the load bearing capacity and the quality of reinforced concrete piles. As part of a round robin test to evaluate dynamic load tests, structure integrated fibre optic strain sensors were used to receive more detailed information about the strains along the pile length compared to conventional measurements at the pile head. This paper shows the instrumentation of the pile with extrinsic Fabry-Perot interferometers sensors and fibre Bragg gratings sensors together with the results of the conducted static load test as well as the dynamic load tests and pile integrity tests.
Progress Report on Alloy 617 Time Dependent Allowables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Julie Knibloe
2015-06-01
Time dependent allowable stresses are required in the ASME Boiler and Pressure Vessel Code for design of components in the temperature range where time dependent deformation (i.e., creep) is expected to become significant. There are time dependent allowable stresses in Section IID of the Code for use in the non-nuclear construction codes, however, there are additional criteria that must be considered in developing time dependent allowables for nuclear components. These criteria are specified in Section III NH. St is defined as the lesser of three quantities: 100% of the average stress required to obtain a total (elastic, plastic, primary andmore » secondary creep) strain of 1%; 67% of the minimum stress to cause rupture; and 80% of the minimum stress to cause the initiation of tertiary creep. The values are reported for a range of temperatures and for time increments up to 100,000 hours. These values are determined from uniaxial creep tests, which involve the elevated temperature application of a constant load which is relatively small, resulting in deformation over a long time period prior to rupture. The stress which is the minimum resulting from these criteria is the time dependent allowable stress St. In this report data from a large number of creep and creep-rupture tests on Alloy 617 are analyzed using the ASME Section III NH criteria. Data which are used in the analysis are from the ongoing DOE sponsored high temperature materials program, form Korea Atomic Energy Institute through the Generation IV VHTR Materials Program and historical data from previous HTR research and vendor data generated in developing the alloy. It is found that the tertiary creep criterion determines St at highest temperatures, while the stress to cause 1% total strain controls at low temperatures. The ASME Section III Working Group on Allowable Stress Criteria has recommended that the uncertainties associated with determining the onset of tertiary creep and the lack of significant cavitation associated with early tertiary creep strain suggest that the tertiary creep criteria is not appropriate for this material. If the tertiary creep criterion is dropped from consideration, the stress to rupture criteria determines St at all but the lowest temperatures.« less
Elevated temperature biaxial fatigue
NASA Technical Reports Server (NTRS)
Jordan, E. H.
1983-01-01
Biaxial fatigue is often encountered in the complex thermo-mechanical loadings present in gas turbine engines. Engine strain histories can involve non-constant temperature, mean stress, creep, environmental effects, both isotropic and anisotropic materials and non-proportional loading. Life prediction for the general case involving all the above factors is not a practicable research project. The current research program is limited to isothermal fatigue at room temperature and 1200 F of Hastalloy-X for both proportional and non-proportional loading. An improved method for predicting the fatigue life and deformation response under biaxial cycle loading is sought.
NASA Astrophysics Data System (ADS)
Awwaluddin, Muhammad; Kristedjo, K.; Handono, Khairul; Ahmad, H.
2018-02-01
This analysis is conducted to determine the effects of static and dynamic loads of the structure of mechanical system of Ultrasonic Scanner i.e., arm, column, and connection systems for inservice inspection of research reactors. The analysis is performed using the finite element method with 520 N static load. The correction factor of dynamic loads used is the Gerber mean stress correction (stress life). The results of the analysis show that the value of maximum equivalent von Mises stress is 1.3698E8 Pa for static loading and value of the maximum equivalent alternating stress is 1.4758E7 Pa for dynamic loading. These values are below the upper limit allowed according to ASTM A240 standards i.e. 2.05E8 Pa. The result analysis of fatigue life cycle are at least 1E6 cycle, so it can be concluded that the structure is in the high life cycle category.
FY16 Status Report on Development of Integrated EPP and SMT Design Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jetter, R. I.; Sham, T. -L.; Wang, Y.
2016-08-01
The goal of the Elastic-Perfectly Plastic (EPP) combined integrated creep-fatigue damage evaluation approach is to incorporate a Simplified Model Test (SMT) data based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and eliminate the requirement for stress classification in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. The EPP methodology is based on the idea that creep damage and strain accumulation can be bounded by a properly chosen “pseudo” yield strength used in an elastic-perfectly plastic analysis, thus avoiding the need for stress classification. The originalmore » SMT approach is based on the use of elastic analysis. The experimental data, cycles to failure, is correlated using the elastically calculated strain range in the test specimen and the corresponding component strain is also calculated elastically. The advantage of this approach is that it is no longer necessary to use the damage interaction, or D-diagram, because the damage due to the combined effects of creep and fatigue are accounted in the test data by means of a specimen that is designed to replicate or bound the stress and strain redistribution that occurs in actual components when loaded in the creep regime. The reference approach to combining the two methodologies and the corresponding uncertainties and validation plans are presented. Results from recent key feature tests are discussed to illustrate the applicability of the EPP methodology and the behavior of materials at elevated temperature when undergoing stress and strain redistribution due to plasticity and creep.« less
The Effect of Pre-Stressing on the Static Indentation Load Capacity of the Superelastic 60NiTi
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.
2013-01-01
Superelastic nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt.%), are under development for use in mechanical components like rolling element bearings and gears. Compared to traditional bearing steels, these intermetallic alloys, when properly heat-treated, are hard but exhibit much lower elastic modulus (approx.100 GPa) and a much broader elastic deformation range (approx.3 percent or more). These material characteristics lead to high indentation static load capacity, which is important for certain applications especially space mechanisms. To ensure the maximum degree of elastic behavior, superelastic materials must be pre-stressed, a process referred to as "training" in shape memory effect (SME) terminology, at loads and stresses beyond expected use conditions. In this paper, static indentation load capacity tests are employed to assess the effects of pre-stressing on elastic response behavior of 60NiTi. The static load capacity is measured by pressing 12.7 mm diameter ceramic Si3N4 balls into highly polished, hardened 60NiTi flat plates that have previously been exposed to varying levels of pre-stress (up to 2.7 GPa) to determine the load that results in shallow but measurable (0.6 m, 25 in. deep) permanent dents. Hertz stress calculations are used to estimate contact stress. Without exposure to pre-stress, the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.4 m deep) occurs. When pre-stressed to 2.7 GPa, a static load of 4900 kN is required to achieve a comparable dent, a 30 percent increase. These results suggest that stressing contact surfaces prior to use enhances the static indentation load capacity of the superelastic 60NiTi. This approach may be adaptable to the engineering and manufacture of highly resilient mechanical components such as rolling element bearings.
NASA Astrophysics Data System (ADS)
David, C.; Dautriat, J. D.; Sarout, J.; Macault, R.; Bertauld, D.
2014-12-01
Water weakening is a well-known phenomenon which can lead to subsidence during the production of hydrocarbon reservoirs. The example of the Ekofisk oil field in the North Sea has been well documented for years. In order to assess water weakening effects in reservoir rocks, previous studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks saturated either with water or with inert fluids. However, little attention has been paid so far on the mechanical behaviour during the fluid injection stage, like in enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behaviour of Sherwood sandstone, a weakly-consolidated sandstone sampled at Ladram Bay in UK. In order to highlight possible weakening effects, water and inert oil have been injected into critically-loaded samples to assess their effect on strength and elastic properties and to derive the acoustic signature of the saturation front for each fluid. The specimens were instrumented with 16 ultrasonic P-wave transducers for both passive and active acoustic monitoring during fluid injection and loading. After conducting standard triaxial tests on three samples saturated with air, water and oil respectively, mechanical creep tests were conducted on dry samples loaded at 80% of the compressive strength of the dry rock. While these conditions are kept constant, a fluid is injected at the bottom end of the sample with a low back pressure (0.5 MPa) to minimize effective stress variations during injection. Both water and oil were used as the injected pore fluid in two experiments. As soon as the fluids start to flow into the samples, creep is taking place with a much higher strain rate for water injection compared to oil injection. A transition from secondary creep to tertiary creep is observed in the water injection test whereas in the oil injection test no significant creep acceleration is observed after one pore volume of oil was injected. The most remarkable difference is that water injection induces mechanical instability and failure, whereas oil injection does not. This was confirmed by the analysis of acoustic emissions activity and post-mortem sample imaging using CT scan. Contrasting evolutions of the P wave velocity during the fluid front propagation were also observed in both experiments.
The Role of Deep Creep in the Timing of Large Earthquakes
NASA Astrophysics Data System (ADS)
Sammis, C. G.; Smith, S. W.
2012-12-01
The observed temporal clustering of the world's largest earthquakes has been largely discounted for two reasons: a) it is consistent with Poisson clustering, and b) no physical mechanism leading to such clustering has been proposed. This lack of a mechanism arises primarily because the static stress transfer mechanism, commonly used to explain aftershocks and the clustering of large events on localized fault networks, does not work at global distances. However, there is recent observational evidence that the surface waves from large earthquakes trigger non-volcanic tremor at the base of distant fault zones at global distances. Based on these observations, we develop a simple non-linear coupled oscillator model that shows how the triggering of such tremor can lead to the synchronization of large earthquakes on a global scale. A basic assumption of the model is that induced tremor is a proxy for deep creep that advances the seismic cycle of the fault. We support this hypothesis by demonstrating that the 2010 Maule Chile and the 2011 Fukushima Japan earthquakes, which have been shown to induce tremor on the Parkfield segment of the San Andreas Fault, also produce changes in off-fault seismicity that are spatially and temporally consistent with episodes of deep creep on the fault. The observed spatial pattern can be simulated using an Okada dislocation model for deep creep (below 20 km) on the fault plane in which the slip rate decreases from North to South consistent with surface creep measurements and deepens south of the "Parkfield asperity" as indicated by recent tremor locations. The model predicts the off-fault events should have reverse mechanism consistent with observed topography.
Accelerated Stress-Corrosion Testing
NASA Technical Reports Server (NTRS)
1986-01-01
Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.
The effects of confining pressure and stress difference on static fatigue of granite
NASA Technical Reports Server (NTRS)
Kranz, R. L.
1980-01-01
Samples of Barre granite have been creep tested at room temperature at confining pressures up to 2 kbar. Experimental procedures are described and the results of observations and analysis are presented. It is noted that the effect of pressure is to increase the amount of inelastic deformation the rock can sustain before becoming unstable. It is also shown that this increased deformation is due to longer and more numerous microcracks.
NASA Technical Reports Server (NTRS)
Mackay, R. A.; Maier, R. D.
1982-01-01
Constant load creep rupture tests were performed on MAR-M247 single crystals at 724 MPa and 774 C where the effect of anisotropy is prominent. The initial orientations of the specimens as well as the final orientations of selected crystals after stress rupture testing were determined by the Laue back-reflection X-ray technique. The stress rupture lives of the MAR-M247 single crystals were found to be largely determined by the lattice rotations required to produce intersecting slip, because second-stage creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited the shortest stress rupture lives, whereas crystals requiring little or no rotations exhibited the lowest minimum creep rates, and consequently, the longest stress rupture lives.
Overview of the 6 Meter HIAD Inflatable Structure and Flexible TPS Static Load Test Series
NASA Technical Reports Server (NTRS)
Swanson, Greg; Kazemba, Cole; Johnson, Keith; Calomino, Anthony; Hughes, Steve; Cassell, Alan; Cheatwood, Neil
2014-01-01
To support NASAs long term goal of landing humans on Mars, technologies which enable the landing of heavy payloads are being developed. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current launch vehicle fairing limitations. Therefore, past and present technologies are now being explored to provide a mass and volume efficient solution to atmospheric entry, including Hypersonic Inflatable Aerodynamic Decelerators (HIADs). At the beginning of 2014, a 6m HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify the designs structural performance. The 6m HIAD structure was constructed in a stacked toroid configuration using nine inflatable torus segments composed of fiber reinforced thin films, which were joined together using adhesives and high strength textile woven structural straps to help distribute the loads throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials to protect the inflatable structure from heat loads that would be seen during atmospheric entry. To perform the static load test series, a custom test fixture was constructed. The fixture consisted of a structural tub rim with enough height to allow for displacement of the inflatable structure as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The centerbody of the inflatable structure was attached to a pedestal mount as seen in Figure 1. Using an impermeable membrane seal draped over the test article, partial vacuum was pulled beneath the HIAD, resulting in a uniform static pressure load applied to the outer surface. During the test series an extensive amount of instrumentation was used to provide many data sets including: deformed shape, shoulder deflection, strap loads, cord loads, inflation pressures, and applied static load.In this overview, the 6m HIAD static load test series will be discussed in detail, including the 6m HIAD inflatable structure and flexible TPS design, test setup and execution, and finally initial results and conclusions from the test series.
NASA Astrophysics Data System (ADS)
Liu, J. X.; Deng, S. C.; Liang, N. G.
2008-02-01
Concrete is heterogeneous and usually described as a three-phase material, where matrix, aggregate and interface are distinguished. To take this heterogeneity into consideration, the Generalized Beam (GB) lattice model is adopted. The GB lattice model is much more computationally efficient than the beam lattice model. Numerical procedures of both quasi-static method and dynamic method are developed to simulate fracture processes in uniaxial tensile tests conducted on a concrete panel. Cases of different loading rates are compared with the quasi-static case. It is found that the inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, an unrealistic result will be obtained if a fracture process including unstable cracking is simulated by the quasi-static procedure.
NASA Astrophysics Data System (ADS)
Nepsha, Fedor; Efremenko, Vladimir
2017-11-01
The task of determining the static load characteristics is one of the most important tasks, the solution of which is necessary for the correct development of measures to increase the energy efficiency of the Kuzbass coal mines. At present, the influence of electric receivers on the level of consumption of active and reactive power is not taken into account, therefore, the proposed measures to increase the energy efficiency are not optimal. The article analyzes the L-shaped and T-shaped circuit for the replacement of an asynchronous motor (AM), according to the results of which it is determined that the T-shaped replacement scheme is the most accurate for determination of static load characteristics. The authors proposed and implemented in the MATLAB Simulink environment an algorithm for determining the static voltage characteristics of the motor load.
Static and yawed-rolling mechanical properties of two type 7 aircraft tires
NASA Technical Reports Server (NTRS)
Tanner, J. A.; Stubbs, S. M.; Mccarty, J. L.
1981-01-01
Selected mechanical properties of 18 x 5.5 and 49 x 17 size, type 7 aircraft tires were evaluated. The tires were subjected to pure vertical loads and to combined vertical and lateral loads under both static and rolling conditions. Parameters for the static tests consisted of tire load in the vertical and lateral directions, and parameters for the rolling tests included tire vertical load, yaw angle, and ground speed. Effects of each of these parameters on the measured tire characteristics are discussed and, where possible, compared with previous work. Results indicate that dynamic tire properties under investigation were generally insensitive to speed variations and therefore tend to support the conclusion that many tire dynamic characteristics can be obtained from static and low speed rolling tests. Furthermore, many of the tire mechanical properties are in good agreement with empirical predictions based on earlier research.
The primary creep behavior of single crystal, nickel base superalloys PWA 1480 and PWA 1484
NASA Astrophysics Data System (ADS)
Wilson, Brandon Charles
Primary creep occurring at intermediate temperatures (650°C to 850°C) and loads greater than 500 MPa has been shown to result in severe creep strain, often exceeding 5-10%, during the first few hours of creep testing. This investigation examines how the addition of rhenium and changes in aging heat treatment affect the primary creep behavior of PWA 1480 and PWA 1484. To aid in the understanding of rhenium's role in primary creep, 3wt% Re was added to PWA 1480 to create a second generation version of PWA 1480. The age heat treatments used for creep testing were either 704°C/24 hr. or 871°C/32hr. All three alloys exhibited the presence of secondary gamma' confirmed by scanning electron microscopy and local electrode atom probe techniques. These aging heat treatments resulted in the reduction of the primary creep strain produced in PWA 1484 from 24% to 16% at 704°C/862 MPa and produced a slight dependence of the tensile properties of PWA 1480 on aging heat treatment temperature. For all test temperatures, the high temperature age resulted in a significant decrease in primary creep behavior of PWA 1484 and a longer lifetime for all but the lowest test temperature. The primary creep behavior of PWA 1480 and PWA 1480+Re did not display any significant dependence on age heat treatment. The creep rupture life of PWA 1480 is greater than PWA 1484 at 704°C, but significantly shorter at 760°C and 815°C. PWA 1480+Re, however, displayed the longest lifetime of all three alloys at both 704°C and 815°C (PWA 1480+Re was not tested at 760°C). Qualitative TEM analysis revealed that PWA 1484 deformed by large dislocation "ribbons" spanning large regions of material. PWA 1480, however, deformed primarily due to matrix dislocations and the creation of interfacial dislocation networks between the gamma and gamma' phases. PWA 1480+ contained stacking faults as well, though they acted on multiple slip systems generating work hardening and forcing the onset of secondary creep. X-ray diffraction and JMatPro calculations were also used to gain insight into the cause of the differences in behaviors.
Experimental Creep Life Assessment for the Advanced Stirling Convertor Heater Head
NASA Technical Reports Server (NTRS)
Krause, David L.; Kalluri, Sreeramesh; Shah, Ashwin R.; Korovaichuk, Igor
2010-01-01
The United States Department of Energy is planning to develop the Advanced Stirling Radioisotope Generator (ASRG) for the National Aeronautics and Space Administration (NASA) for potential use on future space missions. The ASRG provides substantial efficiency and specific power improvements over radioisotope power systems of heritage designs. The ASRG would use General Purpose Heat Source modules as energy sources and the free-piston Advanced Stirling Convertor (ASC) to convert heat into electrical energy. Lockheed Martin Corporation of Valley Forge, Pennsylvania, is integrating the ASRG systems, and Sunpower, Inc., of Athens, Ohio, is designing and building the ASC. NASA Glenn Research Center of Cleveland, Ohio, manages the Sunpower contract and provides technology development in several areas for the ASC. One area is reliability assessment for the ASC heater head, a critical pressure vessel within which heat is converted into mechanical oscillation of a displacer piston. For high system efficiency, the ASC heater head operates at very high temperature (850 C) and therefore is fabricated from an advanced heat-resistant nickel-based superalloy Microcast MarM-247. Since use of MarM-247 in a thin-walled pressure vessel is atypical, much effort is required to assure that the system will operate reliably for its design life of 17 years. One life-limiting structural response for this application is creep; creep deformation is the accumulation of time-dependent inelastic strain under sustained loading over time. If allowed to progress, the deformation eventually results in creep rupture. Since creep material properties are not available in the open literature, a detailed creep life assessment of the ASC heater head effort is underway. This paper presents an overview of that creep life assessment approach, including the reliability-based creep criteria developed from coupon testing, and the associated heater head deterministic and probabilistic analyses. The approach also includes direct benchmark experimental creep assessment. This element provides high-fidelity creep testing of prototypical heater head test articles to investigate the relevant material issues and multiaxial stress state. Benchmark testing provides required data to evaluate the complex life assessment methodology and to validate that analysis. Results from current benchmark heater head tests and newly developed experimental methods are presented. In the concluding remarks, the test results are shown to compare favorably with the creep strain predictions and are the first experimental evidence for a robust ASC heater head creep life.
Effects of elevated temperature on the viscoplastic modeling of graphite/polymeric composites
NASA Technical Reports Server (NTRS)
Gates, Thomas S.
1991-01-01
To support the development of new materials for the design of next generation supersonic transports, a research program is underway at NASA to assess the long term durability of advanced polymer matrix composites (PMC's). One of main objectives of the program was to explore the effects of elevated temperature (23 to 200 C) on the constitutive model's material parameters. To achieve this goal, test data on the observed nonlinear, stress-strain behavior of IM7/5260 and IM7/8320 composites under tension and compression loading were collected and correlated against temperature. These tests, conducted under isothermal conditions using variable strain rates, included such phenomena as stress relaxation and short term creep. The second major goal was the verification of the model by comparison of analytical predictions and test results for off axis and angle ply laminates. Correlation between test and predicted behavior was performed for specimens of both material systems over a range of temperatures. Results indicated that the model provided reasonable predictions of material behavior in load or strain controlled tests. Periods of loading, unloading, stress relaxation, and creep were accounted for.
14 CFR 25.519 - Jacking and tie-down provisions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...
14 CFR 25.519 - Jacking and tie-down provisions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...
14 CFR 25.519 - Jacking and tie-down provisions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...
Design criteria for portable timber bridge systems : static versus dynamic loads
John M. Franklin; S. E. Taylor; Paul A. Morgan; M. A. Ritter
1999-01-01
Design criteria are needed specifically for portable bridges to insure that they are safe and cost effective. This paper discusses different portable bridge categories and their general design criteria. Specific emphasis is given to quantifying the effects of dynamic live loads on portable bridge design. Results from static and dynamic load tests of two portable timber...
14 CFR 25.519 - Jacking and tie-down provisions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...
14 CFR 25.519 - Jacking and tie-down provisions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...
Relation of cyclic loading pattern to microstructural fracture in creep fatigue
NASA Technical Reports Server (NTRS)
Manson, S. S.; Halford, G. R.; Oldrieve, R. E.
1983-01-01
Creep-fatigue-environment interaction is discussed using the 'strainrange partitioning' (SRP) framework as a basis. The four generic SRP strainrange types are studied with a view of revealing differences in micromechanisms of deformation and fatigue degradation. Each combines in a different manner the degradation associated with slip-plane sliding, grain-boundary sliding, migration, cavitation, void development and environmental interaction; hence the approch is useful in delineating the relative importance of these mechanisms in the different loadings. Micromechanistic results are shown for a number of materials, including 316 SS, wrought heat resistant alloys, several nickel-base superalloys, and a tantalum base alloy, T-111. Although there is a commonality of basic behavior, the differences are useful in delineation several important principles of interpretation. Some quantitative results are presented for 316 SS, involving crack initiation and early crack growth, as well as the interaction of low-cycle fatigue with high-cycle fatigue.
1982-09-01
installing the NRT test coupon into a Satec 12-Kip sustained load creep frame with a very light load. The saltwater solution was inserted into the Lucite...Stop 207-5, Moffett Field, CA 94035 1 ATTN: SAVDL-AS-X, F. H. Immen NASA - Johnson Spacecraft Center, Houston, TX 77058 1 ATTN: JM6 1 ES -5
NASA Astrophysics Data System (ADS)
Zhang, Yun; Richardson, Derek C.; Barnouin, Olivier S.; Maurel, Clara; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis; Benner, Lance A. M.; Naidu, Shantanu P.; Li, Junfeng
2017-09-01
As the target of the proposed Asteroid Impact & Deflection Assessment (AIDA) mission, the near-Earth binary asteroid 65803 Didymos represents a special class of binary asteroids, those whose primaries are at risk of rotational disruption. To gain a better understanding of these binary systems and to support the AIDA mission, this paper investigates the creep stability of the Didymos primary by representing it as a cohesionless self-gravitating granular aggregate subject to rotational acceleration. To achieve this goal, a soft-sphere discrete element model (SSDEM) capable of simulating granular systems in quasi-static states is implemented and a quasi-static spin-up procedure is carried out. We devise three critical spin limits for the simulated aggregates to indicate their critical states triggered by reshaping and surface shedding, internal structural deformation, and shear failure, respectively. The failure condition and mode, and shear strength of an aggregate can all be inferred from the three critical spin limits. The effects of arrangement and size distribution of constituent particles, bulk density, spin-up path, and interparticle friction are numerically explored. The results show that the shear strength of a spinning self-gravitating aggregate depends strongly on both its internal configuration and material parameters, while its failure mode and mechanism are mainly affected by its internal configuration. Additionally, this study provides some constraints on the possible physical properties of the Didymos primary based on observational data and proposes a plausible formation mechanism for this binary system. With a bulk density consistent with observational uncertainty and close to the maximum density allowed for the asteroid, the Didymos primary in certain configurations can remain geo-statically stable without requiring cohesion.
Dynamic Breaking Tests of Airplane Parts
NASA Technical Reports Server (NTRS)
Hertel, Heinrich
1933-01-01
The static stresses of airplane parts, the magnitude of which can be determined with the aid of static load assumptions, are mostly superposed by dynamic stresses, the magnitude of which has been but little explored. The object of the present investigation is to show how the strength of airplane parts can best be tested with respect to dynamic stresses with and without superposed static loading, and to what extent the dynamic strength of the parts depends on their structural design. Experimental apparatus and evaluation methods were developed and tried for the execution of vibration-strength tests with entire structural parts both with and without superposed static loading. Altogether ten metal spars and spar pieces and two wooden spars were subjected to vibration breaking tests.
Integrated Design Software Predicts the Creep Life of Monolithic Ceramic Components
NASA Technical Reports Server (NTRS)
1996-01-01
Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated-temperature applications. As design protocols emerge for these material systems, designers must be aware of several innate features, including the degrading ability of ceramics to carry sustained load. Usually, time-dependent failure in ceramics occurs because of two different, delayedfailure mechanisms: slow crack growth and creep rupture. Slow crack growth initiates at a preexisting flaw and continues until a critical crack length is reached, causing catastrophic failure. Creep rupture, on the other hand, occurs because of bulk damage in the material: void nucleation and coalescence that eventually leads to macrocracks which then propagate to failure. Successful application of advanced ceramics depends on proper characterization of material behavior and the use of an appropriate design methodology. The life of a ceramic component can be predicted with the NASA Lewis Research Center's Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design programs. CARES/CREEP determines the expected life of a component under creep conditions, and CARES/LIFE predicts the component life due to fast fracture and subcritical crack growth. The previously developed CARES/LIFE program has been used in numerous industrial and Government applications.
Creep and stress relaxation modeling of polycrystalline ceramic fibers
NASA Technical Reports Server (NTRS)
Dicarlo, James A.; Morscher, Gregory N.
1994-01-01
A variety of high performance polycrystalline ceramic fibers are currently being considered as reinforcement for high temperature ceramic matrix composites. However, under mechanical loading about 800 C, these fibers display creep related instabilities which can result in detrimental changes in composite dimensions, strength, and internal stress distributions. As a first step toward understanding these effects, this study examines the validity of a mechanism-based empirical model which describes primary stage tensile creep and stress relaxation of polycrystalline ceramic fibers as independent functions of time, temperature, and applied stress or strain. To verify these functional dependencies, a simple bend test is used to measure stress relaxation for four types of commercial ceramic fibers for which direct tensile creep data are available. These fibers include both nonoxide (SCS-6, Nicalon) and oxide (PRD-166, FP) compositions. The results of the Bend Stress Relaxation (BSR) test not only confirm the stress, time, and temperature dependencies predicted by the model, but also allow measurement of model empirical parameters for the four fiber types. In addition, comparison of model tensile creep predictions based on the BSR test results with the literature data show good agreement, supporting both the predictive capability of the model and the use of the BSR text as a simple method for parameter determination for other fibers.
Creep and stress relaxation modeling of polycrystalline ceramic fibers
NASA Technical Reports Server (NTRS)
Dicarlo, James A.; Morscher, Gregory N.
1991-01-01
A variety of high performance polycrystalline ceramic fibers are currently being considered as reinforcement for high temperature ceramic matrix composites. However, under mechanical loading above 800 C, these fibers display creep-related instabilities which can result in detrimental changes in composite dimensions, strength, and internal stress distributions. As a first step toward understanding these effects, this study examines the validity of mechanistic-based empirical model which describes primary stage tensile creep and stress relaxation of polycrystalline ceramic fibers as independent functions of time, temperature, and applied stress or strain. To verify these functional dependencies, a simple bend test is used to measure stress relaxation for four types of commercial ceramic fibers for which direct tensile creep data are available. These fibers include both nonoxide (SCS-6, Nicalon) and oxide (PRD-166, FP) compositions. The results of the bend stress relaxation (BSR) test not only confirm the stress, time, and temperature dependencies predicted by the model but also allow measurement of model empirical parameters for the four fiber types. In addition, comparison of model predictions and BSR test results with the literature tensile creep data show good agreement, supporting both the predictive capability of the model and the use of the BSR test as a simple method for parameter determination for other fibers.
Fundamental considerations in ski binding analysis.
Mote, C D; Hull, M L
1976-01-01
1. The static adjustment of a ski binding by hand or by available machines is only an adjustment and is neither a static nor a dynamic evaluation of the binding design. Bindings of different design with identical static adjustments will perform differently in environments in which the forces are static or dynamic. 2. The concept of binding release force is a useful measure of binding adjustment, but it is inappropriate as a criterion for binding evaluation. First, it does not direct attention toward the injury causing mechanism, strain, or displacement in the leg. Second, it is only part of the evaluation in dynamic problems. 3. The binding release decision in present bindings is displacement controlled. The relative displacement of the boot and ski is the system variable. For any specified relative displacement the binding force can be any of an infinite number of possibilities determined by the loading path. 4. The response of the leg-ski system to external impulses applied to the ski is independent of the boot-ski relative motion as long as the boot recenters quickly in the binding. Response is dependent upon the external impulse plus system inertia, damping and stiffness. 5. When tested under half sinusoidal forces applied to a test ski, all bindings will demonstrate static and impulse loading regions. In the static region the force drives the binding to a relative release displacement. In the impulse region the initial velocity of the ski drives the binding to a release displacement. 6. The transition between the static and impulse loading regions is determined by the binding's capacity to store and dissipate energy along the principal loading path. Increased energy capacity necessitates larger external impulses to produce release. 7. In all bindings examined to date, the transmitted leg displacement or strain at release under static loading exceeds leg strain under dynamic or impact loading. Because static loading is responsible for many injuries, a skier should be able to release his bindings in every mode by simply pulling or twisting his foot outward. If that cannot be done without injury, the skier has identified for himself one type of fall that will result in injury. 8. And lastly, a little advice from Ben Franklin--"Carelessness does more harm than a want of knowledge."
Large Deformation Dynamic Bending of Composite Beams
NASA Technical Reports Server (NTRS)
Derian, E. J.; Hyer, M. W.
1986-01-01
Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.
Chagnon, Amélie; Aubin, Carl-Eric; Villemure, Isabelle
2010-11-01
Spine degeneration is a pathology that will affect 80% of the population. Since the intervertebral disks play an important role in transmitting loads through the spine, the aim of this study was to evaluate the biomechanical impact of disk properties on the load carried by healthy (Thompson grade I) and degenerated (Thompson grades III and IV) disks. A three-dimensional parametric poroelastic finite element model of the L4/L5 motion segment was developed. Grade I, grade II, and grade IV disks were modeled by altering the biomechanical properties of both the annulus and nucleus. Models were validated using published creep experiments, in which a constant compressive axial stress of 0.35 MPa was applied for 4 h. Pore pressure (PP) and effective stress (S(E)) were analyzed as a function of time following loading application (1 min, 5 min, 45 min, 125 min, and 245 min) and discal region along the midsagittal profile for each disk grade. A design of experiments was further implemented to analyze the influence of six disk parameters (disk height (H), fiber proportion (%F), drained Young's modulus (E(a),E(n)), and initial permeability (k(a),k(n)) of both the annulus and nucleus) on load-sharing for disk grades I and IV. Simulations of grade I, grade III, and grade IV disks agreed well with the available published experimental data. Disk height (H) had a significant influence (p<0.05) on the PP and S(E) during the entire loading history for both healthy and degenerated disk models. Young's modulus of the annulus (E(a)) significantly affected not only S(E) in the annular region for both disk grades in the initial creep response but also S(E) in the nucleus zone for degenerated disks with further creep response. The nucleus and annulus permeabilities had a significant influence on the PP distribution for both disk grades, but this effect occurred at earlier stages of loading for degenerated than for healthy disk models. This is the first study that investigates the biomechanical influence of both geometrical and material disk properties on the load transfer of healthy and degenerated disks. Disk height is a significant parameter for both healthy and degenerated disks during the entire loading. Changes in the annulus stiffness, as well as in the annulus and nucleus permeability, control load-sharing in different ways for healthy and degenerated disks.
NASA Astrophysics Data System (ADS)
Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal
2017-03-01
The resistance of polymeric materials to time-dependent plastic deformation is an important requirement of the fused deposition modeling (FDM) design process, its processed products, and their application for long-term loading, durability, and reliability. The creep performance of the material and part processed by FDM is the fundamental criterion for many applications with strict dimensional stability requirements, including medical implants, electrical and electronic products, and various automotive applications. Herein, the effect of FDM fabrication conditions on the flexural creep stiffness behavior of polycarbonate-acrylonitrile-butadiene-styrene processed parts was investigated. A relatively new class of experimental design called "definitive screening design" was adopted for this investigation. The effects of process variables on flexural creep stiffness behavior were monitored, and the best suited quadratic polynomial model with high coefficient of determination ( R 2) value was developed. This study highlights the value of response surface definitive screening design in optimizing properties for the products and materials, and it demonstrates its role and potential application in material processing and additive manufacturing.
NASA Astrophysics Data System (ADS)
Sayyidmousavi, Alireza; Bougherara, Habiba; Fawaz, Zouheir
2015-06-01
A micromechanical approach is adopted to study the role of viscoelasticity on the fatigue behavior of polymer matrix composites. In particular, the study examines the interaction of fatigue and creep in angle ply carbon/epoxy at 25 and 114 °C. The matrix phase is modeled as a vicoelastic material using Schapery's single integral constitutive equation. Taking viscoelsticity into account allows the study of creep strain evolution during the fatigue loading. The fatigue failure criterion is expressed in terms of the fatigue failure functions of the constituent materials. The micromechanical model is also used to calculate these fatigue failure functions from the knowledge of the S-N diagrams of the composite material in longitudinal, transverse and shear loadings thus eliminating the need for any further experimentation. Unlike the previous works, the present study can distinguish between the strain evolution due to fatigue and creep. The results can clearly show the contribution made by the effect of viscoelasticity to the total strain evolution during the fatigue life of the specimen. Although the effect of viscoelsticity is found to increase with temperature, its contribution to strain development during fatigue is compromised by the shorter life of the specimen when compared to lower temperatures.
Deformation behavior of welded steel sandwich panels under quasi-static loading
DOT National Transportation Integrated Search
2011-03-01
This report describes engineering studies that were conducted to examine the deformation behavior of flat, welded steel sandwich panels under two quasi-static loading conditions: (1) uniaxial compression; and (2) bending with an indenter. Testing and...
Pile Driving Analysis for Pile Design and Quality Assurance
DOT National Transportation Integrated Search
2017-08-01
Driven piles are commonly used in foundation engineering. The most accurate measurement of pile capacity is achieved from measurements made during static load tests. Static load tests, however, may be too expensive for certain projects. In these case...
Rached, Rodrigo Nunes; de Souza, Evelise Machado; Dyer, Scott R; Ferracane, Jack Liborio
2011-11-01
Fractures of overdentures occur in the denture base through the abutments. The purpose of this study was to evaluate the effect of reinforcements and the space available for their placement on the dynamic and static loading capacity of a simulated implant-supported overdenture model. Rhomboidal (6 × 6 × 25 mm) test specimens (n=8), made with an acrylic resin and containing 2 metal O-ring capsules, were reinforced with braided stainless steel bar (BS), stainless steel mesh (SM), unidirectional E-glass fiber (GF), E-glass mesh (GM), woven polyethylene braids (PE), or polyaramid fibers (PA). Two distinct spaces for reinforcement placement were investigated: a 2.5 mm and a 1 mm space. Control groups consisted of nonreinforced specimens. Specimens were thermocycled (5°C and 55°C, 5,000 cycles) and then subjected to a 100,000 cyclic load regime. Unbroken specimens were then loaded until failure. The number of failures under fatigue (f) and static load (s) were compared with the Chi-Square test, while static load means were compared with the Kruskal-Wallis test (α=.05). The number of failures (f:s) of GF (0:16), PE (0:16), and PA (0:16) differed significantly from the control group (8:8) and SM (4:12) (P=.037 and P=.025, respectively). For the 2.5 mm space group, these same reinforcements also exhibited higher static load means than the control (P=.016, P=.003, and P=.003, respectively); under static load, no significant differences were detected between the reinforced groups and the control for the 1.0 mm space group (P=1.0). E-glass fibers, woven polyethylene braids, and polyaramid fibers withstood the fatigue regime and increased the flexural strength of the implant-supported overdenture model. The spaces available for reinforcement did not affect the dynamic strength or the static loading capacity of the implant-supported overdenture model. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Monakhov, A. A.; Chernyavski, V. M.; Shtemler, Yu.
2013-09-01
Bounds of cavitation inception are experimentally determined in a creeping flow between eccentric cylinders, the inner one being static and the outer rotating at a constant angular velocity, Ω. The geometric configuration is additionally specified by a small minimum gap between cylinders, H, as compared with the radii of the inner and outer cylinders. For some values H and Ω, cavitation bubbles are observed, which are collected on the surface of the inner cylinder and equally distributed over the line parallel to its axis near the downstream minimum gap position. Cavitation occurs for the parameters {H,Ω} within a region bounded on the right by the cavitation inception curve that passes through the plane origin and cannot exceed the asymptotic threshold value of the minimum gap, Ha, in whose vicinity cavitation may occur at H < Ha only for high angular rotation velocities.
NASA Technical Reports Server (NTRS)
Reed, K. W.; Stonesifer, R. B.; Atluri, S. N.
1983-01-01
A new hybrid-stress finite element algorith, suitable for analyses of large quasi-static deformations of inelastic solids, is presented. Principal variables in the formulation are the nominal stress-rate and spin. A such, a consistent reformulation of the constitutive equation is necessary, and is discussed. The finite element equations give rise to an initial value problem. Time integration has been accomplished by Euler and Runge-Kutta schemes and the superior accuracy of the higher order schemes is noted. In the course of integration of stress in time, it has been demonstrated that classical schemes such as Euler's and Runge-Kutta may lead to strong frame-dependence. As a remedy, modified integration schemes are proposed and the potential of the new schemes for suppressing frame dependence of numerically integrated stress is demonstrated. The topic of the development of valid creep fracture criteria is also addressed.
Mechanisms of High-Temperature Fatigue Failure in Alloy 800H
NASA Technical Reports Server (NTRS)
BhanuSankaraRao, K.; Schuster, H.; Halford, G. R.
1996-01-01
The damage mechanisms influencing the axial strain-controlled Low-Cycle Fatigue (LCF) behavior of alloy 800H at 850 C have been evaluated under conditions of equal tension/compression ramp rates (Fast-Fast (F-F): 4 X 10(sup -3)/s and Slow-Slow (S-S): 4 X 10(sup -5)/s) and asymmetrical ramp rates (Fast-Slow (F-S): 4 x 10(sup -3)/s / 4 X 10(sup -5/s and Slow-Fast (S-F): 4 X 10(sup -5) / 4 X 10(sup -3)/s) in tension and compression. The fatigue life, cyclic stress response, and fracture modes were significantly influenced by the waveform shape. The fatigue lives displayed by different loading conditions were in the following order: F-F greater than S-S greater than F-S greater than S-F. The fracture mode was dictated by the ramp rate adopted in the tensile direction. The fast ramp rate in the tensile direction led to the occurrence of transgranular crack initiation and propagation, whereas the slow ramp rate caused intergranular initiation and propagation. The time-dependent processes and their synergistic interactions, which were at the basis of observed changes in cyclic stress response and fatigue life, were identified. Oxidation, creep damage, dynamic strain aging, massive carbide precipitation, time-dependent creep deformation, and deformation ratcheting were among the several factors influencing cyclic life. Irrespective of the loading condition, the largest effect on life was exerted by oxidation processes. Deformation ratcheting had its greatest influence on life under asymmetrical loading conditions. Creep damage accumulated the greatest amount during the slow tensile ramp under S-F conditions.
Thermo-mechanical Properties of Upper Jurassic (Malm) Carbonate Rock Under Drained Conditions
NASA Astrophysics Data System (ADS)
Pei, Liang; Blöcher, Guido; Milsch, Harald; Zimmermann, Günter; Sass, Ingo; Huenges, Ernst
2018-01-01
The present study aims to quantify the thermo-mechanical properties of Neuburger Bankkalk limestone, an outcrop analog of the Upper Jurassic carbonate formation (Germany), and to provide a reference for reservoir rock deformation within future enhanced geothermal systems located in the Southern German Molasse Basin. Experiments deriving the drained bulk compressibility C were performed by cycling confining pressure p c between 2 and 50 MPa at a constant pore pressure p p of 0.5 MPa after heating the samples to defined temperatures between 30 and 90 °C. Creep strain was then measured after each loading and unloading stage, and permeability k was obtained after each creep strain measurement. The drained bulk compressibility increased with increasing temperature and decreased with increasing differential pressure p d = p c - p p showing hysteresis between the loading and unloading stages above 30 °C. The apparent values of the indirectly calculated Biot coefficient α ind containing contributions from inelastic deformation displayed the same temperature and pressure dependencies. The permeability k increased immediately after heating and the creep rates were also temperature dependent. It is inferred that the alteration of the void space caused by temperature changes leads to the variation of rock properties measured under isothermal conditions while the load cycles applied under isothermal conditions yield additional changes in pore space microstructure. The experimental results were applied to a geothermal fluid production scenario to constrain drawdown and time-dependent effects on the reservoir, overall, to provide a reference for the hydromechanical behavior of geothermal systems in carbonate, and more specifically, in Upper Jurassic lithologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao,J.; Yang, L.; Grashow, J.
2007-01-01
We have recently demonstrated that the mitral valve anterior leaflet (MVAL) exhibited minimal hysteresis, no strain rate sensitivity, stress relaxation but not creep (Grashow et al., 2006, Ann Biomed Eng., 34(2), pp. 315-325; Grashow et al., 2006, Ann Biomed. Eng., 34(10), pp. 1509-1518). However, the underlying structural basis for this unique quasi-elastic mechanical behavior is presently unknown. As collagen is the major structural component of the MVAL, we investigated the relation between collagen fibril kinematics (rotation and stretch) and tissue-level mechanical properties in the MVAL under biaxial loading using small angle X-ray scattering. A novel device was developed and utilizedmore » to perform simultaneous measurements of tissue level forces and strain under a planar biaxial loading state. Collagen fibril D-period strain ({epsilon}{sub D}) and the fibrillar angular distribution were measured under equibiaxial tension, creep, and stress relaxation to a peak tension of 90 N/m. Results indicated that, under equibiaxial tension, collagen fibril straining did not initiate until the end of the nonlinear region of the tissue-level stress-strain curve. At higher tissue tension levels, {epsilon}{sub D} increased linearly with increasing tension. Changes in the angular distribution of the collagen fibrils mainly occurred in the tissue toe region. Using {epsilon}{sub D}, the tangent modulus of collagen fibrils was estimated to be 95.5{+-}25.5 MPa, which was {approx}27 times higher than the tissue tensile tangent modulus of 3.58{+-}1.83 MPa. In creep tests performed at 90 N/m equibiaxial tension for 60 min, both tissue strain and D remained constant with no observable changes over the test length. In contrast, in stress relaxation tests performed for 90 min {epsilon}{sub D} was found to rapidly decrease in the first 10 min followed by a slower decay rate for the remainder of the test. Using a single exponential model, the time constant for the reduction in collagen fibril strain was 8.3 min, which was smaller than the tissue-level stress relaxation time constants of 22.0 and 16.9 min in the circumferential and radial directions, respectively. Moreover, there was no change in the fibril angular distribution under both creep and stress relaxation over the test period. Our results suggest that (1) the MVAL collagen fibrils do not exhibit intrinsic viscoelastic behavior, (2) tissue relaxation results from the removal of stress from the fibrils, possibly by a slipping mechanism modulated by noncollagenous components (e.g. proteoglycans), and (3) the lack of creep but the occurrence of stress relaxation suggests a 'load-locking' behavior under maintained loading conditions. These unique mechanical characteristics are likely necessary for normal valvular function.« less
NASA Technical Reports Server (NTRS)
Wilson, D. J.
1972-01-01
Time-dependent notch sensitivity of Inconel 718 sheet occurred at 900 to 1200 F when notched specimens were loaded below the yield strength, and tests on smooth specimens showed that small amounts of creep consumed large fractions of creep-rupture life. The severity of the notch sensitivity decreased with decreasing solution treatment temperature and increasing time and/or temperature of the aging treatment. Elimination of the notch sensitivity was correlated with a change in the dislocation mechanism from shearing to by-passing precipitate particles.
Environmental effects on long term behavior of composite laminates
NASA Astrophysics Data System (ADS)
Singhal, S. N.; Chamis, C. C.
Model equations are presented for approximate methods simulating the long-term behavior of composite materials and structures in hot/humid service environments. These equations allow laminate property upgradings with time, and can account for the effects of service environments on creep response. These methodologies are illustrated for various individual and coupled temperature/moisture, longitudinal/transverse, and composite material type cases. Creep deformation is noted to rise dramatically for cases of matrix-borne, but not of fiber-borne, loading in hot, humid environments; the coupled influence of temperature and moisture is greater than a mere combination of their individual influences.
Environmental effects on long term behavior of composite laminates
NASA Technical Reports Server (NTRS)
Singhal, S. N.; Chamis, C. C.
1992-01-01
Model equations are presented for approximate methods simulating the long-term behavior of composite materials and structures in hot/humid service environments. These equations allow laminate property upgradings with time, and can account for the effects of service environments on creep response. These methodologies are illustrated for various individual and coupled temperature/moisture, longitudinal/transverse, and composite material type cases. Creep deformation is noted to rise dramatically for cases of matrix-borne, but not of fiber-borne, loading in hot, humid environments; the coupled influence of temperature and moisture is greater than a mere combination of their individual influences.
SSME structural computer program development. Volume 2: BOPACE users manual
NASA Technical Reports Server (NTRS)
Vos, R. G.
1973-01-01
A computer program for use with a thermal-elastic-plastic-creep structural analyzer is presented. The following functions of the computer program are discussed: (1) analysis of very high temperature and large plastic-creep effects, (2) treatment of cyclic thermal and mechanical loads, (3) development of constitutive theory which closely follows actual behavior under variable temperature conditions, (4) stable numerical solution approach which avoids cumulative errors, and (5) capability of handling up to 1000 degrees of freedom. The computer program is written in FORTRAN IV and has been run on the IBM 360 and UNIVAC 1108 computer systems.
Development of an experimental setup for testing the properties of γ/γ' superalloys
NASA Astrophysics Data System (ADS)
Christophe, Siret; Bernard, Viguier; Claude, Salabura Jean; Eric, Andrieu; Sandrine, Lesterlin
2010-07-01
Certification tests on turboshaft engines for helicopters can expose components as high pressure turbine blades to very high temperature during short time periods. To simulate these complex temperature and mechanical stress loadings and to study dimensional and microstructural stability under severe testing conditions, an experimental set-up has been recently developed. In this paper, we first present this new device and describe its performances. Then, the device is used to study the effect of heating procedure on creep results at 1200°C and rafting during primary creep on the single crystal nickel-based superalloy MC2.
Fatigue of cord-rubber composites for tires
NASA Astrophysics Data System (ADS)
Song, Jaehoon
Fatigue behaviors of cord-rubber composite materials forming the belt region of radial pneumatic tires have been characterized to assess their dependence on stress, strain and temperature history as well as materials composition and construction . Using actual tires, it was found that interply shear strain is one of the crucial parameters for damage assessment from the result that higher levels of interply shear strain of actual tires reduce the fatigue lifetime. Estimated at various levels of load amplitude were the fatigue life, the extent and rate of resultant strain increase ("dynamic creep"), cyclic strains at failure, and specimen temperature. The interply shear strain of 2-ply 'tire belt' composite laminate under circumferential tension was affected by twisting of specimen due to tension-bending coupling. However, a critical level of interply shear strain, which governs the gross failure of composite laminate due to the delamination, appeared to be independent of different lay-up of 2-ply vs. symmetric 4-ply configuration. Reflecting their matrix-dominated failure modes such as cord-matrix debonding and delamination, composite laminates with different cord reinforcements showed the same S-N relationship as long as they were constructed with the same rubber matrix, the same cord angle, similar cord volume, and the same ply lay-up. Because of much lower values of single cycle strength (in terms of gross fracture load per unit width), the composite laminates with larger cord angle and the 2-ply laminates exhibited exponentially shorter fatigue lifetime, at a given stress amplitude, than the composite laminates with smaller cord angle and 4-ply symmetric laminates, respectively. The increase of interply rubber thickness lengthens their fatigue lifetime at an intermediate level of stress amplitude. However, the increase in the fatigue lifetime of the composite laminate becomes less noticeable at very low stress amplitude. Even with small compressive cyclic stresses, the fatigue life of belt composites is predominantly influenced by the magnitude of maximum stress. Maximum cyclic strain of composite laminates at failure, which measures the total strain accumulation for gross failure, was independent of stress amplitude and close to the level of static failure strain. For all composite laminates under study, a linear correlation could be established between the temperature rise rate and dynamic creep rate which was, in turn, inversely proportional to the fatigue lifetime. Using the acoustic emission (AE) initiation stress value, better prediction of fatigue life was available for the fiber-reinforced composites having fatigue limit. The accumulation rate of AE activities during cyclic loading was linearly proportional to the maximum applied load and to the inverse of the fatigue life of cord-rubber composite laminates. Finally, a modified fatigue modulus model based on combination of power-law and logarithmic relation was proposed to predict the fatigue lifetime profile of cord-rubber composite laminates.
Deformation behavior of welded steel sandwich panels under quasi-static loading
DOT National Transportation Integrated Search
2011-03-16
This paper summarizes basic research (i.e., testing and analysis) : conducted to examine the deformation behavior of flat-welded : steel sandwich panels under two types of quasi-static loading: : (1) uniaxial compression; and (2) bending through an i...
Commuter rail seat testing and analysis of facing seats
DOT National Transportation Integrated Search
2003-12-01
Tests have been conducted on the Bombardier back-to-back commuter rail car seat in a facing-seat configuration to evaluate its performance under static and dynamic loading conditions. Quasi-static tests have been conducted to establish the load defle...
Benoit, A.; Mustafy, T.; Londono, I.; Grimard, G.; Aubin, C-E.; Villemure, I.
2016-01-01
Fusionless devices are currently designed to treat spinal deformities such as scoliosis by the application of a controlled mechanical loading. Growth modulation by dynamic compression was shown to preserve soft tissues. The objective of this in vivo study was to characterize the effect of static vs. dynamic loading on the bone formed during growth modulation. Controlled compression was applied during 15 days on the 7th caudal vertebra (Cd7) of rats during growth spurt. The load was sustained in the “static” group and sinusoidally oscillating in the “dynamic” group. The effect of surgery and of the device was investigated using control and sham (operated on but no load applied) groups. A high resolution CT-scan of Cd7 was acquired at days 2, 8 and 15 of compression. Growth rates, histomorphometric parameters and mineral density of the newly formed bone were quantified and compared. Static and dynamic loadings significantly reduced the growth rate by 20% compared to the sham group. Dynamic loading preserved newly formed bone histomorphometry and mineral density whereas static loading induced thicker (+31%) and more mineralized (+12%) trabeculae. A significant sham effect was observed. Growth modulation by dynamic compression constitutes a promising way to develop new treatment for skeletal deformities. PMID:27609036
Role of load history in intervertebral disc mechanics and intradiscal pressure generation.
Hwang, David; Gabai, Adam S; Yu, Miao; Yew, Alvin G; Hsieh, Adam H
2012-01-01
Solid-fluid interactions play an important role in mediating viscoelastic behaviour of biological tissues. In the intervertebral disc, water content is governed by a number of factors, including age, disease and mechanical loads, leading to changes in stiffness characteristics. We hypothesized that zonal stress distributions depend on load history, or the prior stresses experienced by the disc. To investigate these effects, rat caudal motion segments were subjected to compressive creep biomechanical testing in vitro using a protocol that consisted of two phases: a Prestress Phase (varied to represent different histories of load) followed immediately by an Exertion Phase, identical across all Prestress groups. Three analytical models were used to fit the experimental data in order to evaluate load history effects on gross and zonal disc mechanics. Model results indicated that while gross transient response was insensitive to load history, there may be changes in the internal mechanics of the disc. In particular, a fluid transport model suggested that the role of the nucleus pulposus in resisting creep during Exertion depended on Prestress conditions. Separate experiments using similarly defined load history regimens were performed to verify these predictions by measuring intradiscal pressure with a fibre optic sensor. We found that the ability for intradiscal pressure generation was load history-dependent and exhibited even greater sensitivity than predicted by analytical models. A 0.5 MPa Exertion load resulted in 537.2 kPa IDP for low magnitude Prestress compared with 373.7 kPa for high magnitude Prestress. Based on these measurements, we developed a simple model that may describe the pressure-shear environment in the nucleus pulposus. These findings may have important implications on our understanding of how mechanical stress contributes to disc health and disease etiology.
MSC/NASTRAN Stress Analysis of Complete Models Subjected to Random and Quasi-Static Loads
NASA Technical Reports Server (NTRS)
Hampton, Roy W.
2000-01-01
Space payloads, such as those which fly on the Space Shuttle in Spacelab, are designed to withstand dynamic loads which consist of combined acoustic random loads and quasi-static acceleration loads. Methods for computing the payload stresses due to these loads are well known and appear in texts and NASA documents, but typically involve approximations such as the Miles' equation, as well as possible adjustments based on "modal participation factors." Alternatively, an existing capability in MSC/NASTRAN may be used to output exact root mean square [rms] stresses due to the random loads for any specified elements in the Finite Element Model. However, it is time consuming to use this methodology to obtain the rms stresses for the complete structural model and then combine them with the quasi-static loading induced stresses. Special processing was developed as described here to perform the stress analysis of all elements in the model using existing MSC/NASTRAN and MSC/PATRAN and UNIX utilities. Fail-safe and buckling analyses applications are also described.
Nonlinear resonance of the rotating circular plate under static loads in magnetic field
NASA Astrophysics Data System (ADS)
Hu, Yuda; Wang, Tong
2015-11-01
The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.
NASA Astrophysics Data System (ADS)
Nihei, Tatsuya; Nishioka, Hidetoshi; Kawamura, Chikara; Nishimura, Masahiro; Edamatsu, Masayuki; Koda, Masayuki
In order to introduce the performance based design of pile foundation, vertical stiffness of pile is one of the important design factors. Although it had been es timated the vertical stiffness of pile had the displacement-level dependency, it had been not clarified. We compared the vertical stiffness of pile measured by two loading conditions at pile foundation of the railway viaduct. Firstly, we measured the vertical stiffness at static loading test under construction of the viaduct. Secondly, we measured the vertical stiffness at the time of train passing. So, we recognized that the extrapolation of the displacement level dependency in static loading test could evaluate the vertical stiffness of pile during train passing.
A potential drop strain sensor for in-situ power station creep monitoring
NASA Astrophysics Data System (ADS)
Corcoran, Joseph; Cawley, Peter; Nagy, Peter B.
2014-02-01
Creep is a high temperature damage mechanism of interest to the power industry and at present lacks a satisfactory inspection technique. Existing material inspection techniques are extremely laborious while strain measurements rely on often infrequent off-load measurements. A quasi-DC directional potential drop technique has been suggested that is able to suppress the effects of permeability and is primarily sensitive to changes in resistivity and also the geometry that will develop through strain. The change in creep related resistivity is shown by an equivalent effective resistivity approach to be small at <2% change when compared to the >100% change in transfer resistance that occurs due to strain as observed in laboratory tests. A biaxial inversion is then presented and demonstrated on in-lab samples showing good performance. The result is a sensor that performs as a very robust high temperature strain gauge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Weiju
2010-01-01
Alloy 617 is currently considered as a leading candidate material for high temperature components in the Gen IV Nuclear Reactor Systems. Because of the unprecedented severe working conditions beyond its commercial service experience required by the Gen IV systems, the alloy faces various challenges in both mechanical and metallurgical properties. This paper, as Part I of the discussion, is focused on the challenges and issues in the mechanical properties of Alloy 617 for the intended nuclear application. Considerations are given in details in its mechanical property data scatter, low creep strength in the desired high temperature range, lack of longtermmore » creep curves, high loading rate dependency, and preponderant tertiary creep. Some research and development activities are suggested with discussions on their viability to satisfy the Gen IV Nuclear Reactor System needs in near future and in the long run.« less
NASA Technical Reports Server (NTRS)
Almansour, Amjad; Kiser, Doug; Smith, Craig; Bhatt, Ram; Gorican, Dan; Phillips, Ron; McCue, Terry R.
2017-01-01
Silicon Carbide based Ceramic Matrix Composites (CMCs) are attractive materials for use in high-temperature structural applications in the aerospace and nuclear industries. Under high stresses and temperatures, creep degradation is the dominant damage mechanism in CMCs. Consequently, chemical vapor infiltration (CVI) SiCf/SiC ceramic matrix composites (CMC) incorporating SylramicTM-iBN SiC fibers coated with boron nitride (BN) interphase and CVI-SiC matrix were tested to examine creep behavior in air at a range of elevated temperatures of (2200 - 2700 F). Samples that survived creep tests were evaluated via RT fast fracture tensile tests to determine residual properties, with the use of acoustic emission (AE) to assess stress dependent damage initiation and progression. Microscopy of regions within the gage section of the tested specimens was performed. Observed material degradation mechanisms are discussed.
Data requirements to model creep in 9Cr-1Mo-V steel
NASA Technical Reports Server (NTRS)
Swindeman, R. W.
1988-01-01
Models for creep behavior are helpful in predicting response of components experiencing stress redistributions due to cyclic loads, and often the analyst would like information that correlates strain rate with history assuming simple hardening rules such as those based on time or strain. On the one hand, much progress has been made in the development of unified constitutive equations that include both hardening and softening through the introduction of state variables whose evolutions are history dependent. Although it is difficult to estimate specific data requirements for general application, there are several simple measurements that can be made in the course of creep testing and results reported in data bases. The issue is whether or not such data could be helpful in developing unified equations, and, if so, how should such data be reported. Data produced on a martensitic 9Cr-1Mo-V-Nb steel were examined with these issues in mind.
Earthquake triggering by transient and static deformations
Gomberg, J.; Beeler, N.M.; Blanpied, M.L.; Bodin, P.
1998-01-01
Observational evidence for both static and transient near-field and far-field triggered seismicity are explained in terms of a frictional instability model, based on a single degree of freedom spring-slider system and rate- and state-dependent frictional constitutive equations. In this study a triggered earthquake is one whose failure time has been advanced by ??t (clock advance) due to a stress perturbation. Triggering stress perturbations considered include square-wave transients and step functions, analogous to seismic waves and coseismic static stress changes, respectively. Perturbations are superimposed on a constant background stressing rate which represents the tectonic stressing rate. The normal stress is assumed to be constant. Approximate, closed-form solutions of the rate-and-state equations are derived for these triggering and background loads, building on the work of Dieterich [1992, 1994]. These solutions can be used to simulate the effects of static and transient stresses as a function of amplitude, onset time t0, and in the case of square waves, duration. The accuracies of the approximate closed-form solutions are also evaluated with respect to the full numerical solution and t0. The approximate solutions underpredict the full solutions, although the difference decreases as t0, approaches the end of the earthquake cycle. The relationship between ??t and t0 differs for transient and static loads: a static stress step imposed late in the cycle causes less clock advance than an equal step imposed earlier, whereas a later applied transient causes greater clock advance than an equal one imposed earlier. For equal ??t, transient amplitudes must be greater than static loads by factors of several tens to hundreds depending on t0. We show that the rate-and-state model requires that the total slip at failure is a constant, regardless of the loading history. Thus a static load applied early in the cycle, or a transient applied at any time, reduces the stress at the initiation of failure, whereas static loads that are applied sufficiently late raise it. Rate-and-state friction predictions differ markedly from those based on Coulomb failure stress changes (??CFS) in which ??t equals the amplitude of the static stress change divided by the background stressing rate. The ??CFS model assumes a stress failure threshold, while the rate-and-state equations require a slip failure threshold. The complete rale-and-state equations predict larger ??t than the ??CFS model does for static stress steps at small t0, and smaller ??t than the ??CFS model for stress steps at large t0. The ??CFS model predicts nonzero ??t only for transient loads that raise the stress to failure stress levels during the transient. In contrast, the rate-and-state model predicts nonzero ??t for smaller loads, and triggered failure may occur well after the transient is finished. We consider heuristically the effects of triggering on a population of faults, as these effects might be evident in seismicity data. Triggering is manifest as an initial increase in seismicity rate that may be followed by a quiescence or by a return to the background rate. Available seismicity data are insufficient to discriminate whether triggered earthquakes are "new" or clock advanced. However, if triggering indeed results from advancing the failure time of inevitable earthquakes, then our modeling suggests that a quiescence always follows transient triggering and that the duration of increased seismicity also cannot exceed the duration of a triggering transient load. Quiescence follows static triggering only if the population of available faults is finite.
Analysis for lateral deflection of railroad track under quasi-static loading
DOT National Transportation Integrated Search
2013-10-15
This paper describes analyses to examine the lateral : deflection of railroad track subjected to quasi-static loading. : Rails are assumed to behave as beams in bending. Movement : of the track in the lateral plane is constrained by idealized : resis...
NASA Technical Reports Server (NTRS)
Bently, D. E.; Muszynska, A.
1984-01-01
The complex behavior of cylindrical bearings and seals that are statically loaded to eccentricities in excess of 0.7 are examined. The stiffness algorithms as a function of static load are developed from perturbation methodology by empirical modeling.
DOT National Transportation Integrated Search
1996-10-01
Tests have been conducted on Amtrak's traditional passenger seat to evaluate its performance under static and dynamic loading conditions. Quasi-static tests have been conducted to establish the load-deflection characteristics of the seat. Dynamic tes...