Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina
2014-12-01
Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p < 0.001). An interaction effect between strength and static postural control was found with narrow surface walking and talking while walking (change of β 0.980, p < 0.001 in strength for 1 SD improvements in static postural control for narrow walking, and [Formula: see text] -0.730, p < 0.01 in talking while walking). These results indicate that good static postural control facilitates the utilisation of lower limb strength to better perform complex, dynamic functional balance tasks. Practical implications for assessment and training are discussed.
Static postural control among school-aged youth with Down syndrome: A systematic review.
Maïano, Christophe; Hue, Olivier; Tracey, Danielle; Lepage, Geneviève; Morin, Alexandre J S; Moullec, Grégory
2018-05-01
Youth with Down syndrome are characterized by motor delays when compared to typically developing (TD) youth, which may be explained by a lower postural control or reduced postural tone. In the present article, we summarize research comparing the static postural control, assessed by posturography, between youth with Down syndrome and TD youth. A systematic literature search was performed in 10 databases and seven studies, published between 2001 and 2017, met our inclusion criteria. Based on the present reviewed findings, it is impossible to conclude that children with Down syndrome present significantly lower static postural control compared to TD children. In contrast, findings showed that adolescents with Down syndrome tended to present significantly lower static postural control compared to TD adolescents when visual and plantar cutaneous inputs were disturbed separately or simultaneously. The present findings should be interpreted with caution given the limitations of the small number of reviewed studies. Therefore, the static postural control among youth with Down syndrome should be further investigated in future rigorous studies examining the contribution of a range of sensory information. Copyright © 2018 Elsevier B.V. All rights reserved.
Relationship between antigravity control and postural control in young children.
Sellers, J S
1988-04-01
The purposes of this study were 1) to determine the relationship between antigravity control (supine flexion and prone extension) and postural control (static and dynamic balance), 2) to determine the quality of antigravity and postural control, and 3) to determine whether sex and ethnic group differences correlate with differences in antigravity control and postural control in young children. I tested 107 black, Hispanic, and Caucasian children in a Head Start program, with a mean age of 61 months. The study results showed significant relationships between antigravity control and postural control. Subjects' supine flexion performance was significantly related to the quantity and quality of their static and dynamic balance performance, whereas prone extension performance was related only to the quality of dynamic balance performance. Quality scale measurements (r = .90) indicated that the children in this study had not yet developed full antigravity or postural control. The study results revealed differences between sexes in the quality of static balance and prone extension performance and ethnic differences in static balance, dynamic balance, and prone extension performance.
Age-related effects on postural control under multi-task conditions.
Granacher, Urs; Bridenbaugh, Stephanie A; Muehlbauer, Thomas; Wehrle, Anja; Kressig, Reto W
2011-01-01
Changes in postural sway and gait patterns due to simultaneously performed cognitive (CI) and/or motor interference (MI) tasks have previously been reported and are associated with an increased risk of falling in older adults. The objectives of this study were to investigate the effects of a CI and/or MI task on static and dynamic postural control in young and elderly subjects, and to find out whether there is an association between measures of static and dynamic postural control while concurrently performing the CI and/or MI task. A total of 36 healthy young (n = 18; age: 22.3 ± 3.0 years; BMI: 21.0 ± 1.6 kg/m(2)) and elderly adults (n = 18; age: 73.5 ± 5.5 years; BMI: 24.2 ± 2.9 kg/m(2)) participated in this study. Static postural control was measured during bipedal stance, and dynamic postural control was obtained while walking on an instrumented walkway. Irrespective of the task condition, i.e. single-task or multiple tasks, elderly participants showed larger center-of-pressure displacements and greater stride-to-stride variability than younger participants. Associations between measures of static and dynamic postural control were found only under the single-task condition in the elderly. Age-related deficits in the postural control system seem to be primarily responsible for the observed results. The weak correlations detected between static and dynamic measures could indicate that fall-risk assessment should incorporate dynamic measures under multi-task conditions, and that skills like erect standing and walking are independent of each other and may have to be trained complementarily. Copyright © 2010 S. Karger AG, Basel.
Hogan, Kathleen K; Powden, Cameron J; Hoch, Matthew C
2016-10-01
To investigate the effect of foot posture on postural control and dorsiflexion range of motion in individuals with chronic ankle instability. The study employed a cross-sectional, single-blinded design. Twenty-one individuals with self-reported chronic ankle instability (male=5; age=23.76(4.18)years; height=169.27(11.46)cm; weight=73.65(13.37)kg; number of past ankle sprains=4.71(4.10); episode of giving way=17.00(18.20); Cumberland Ankle Instability Score=18.24(4.52); Ankle Instability Index=5.86(1.39)) participated. The foot posture index was used to categorize subjects into pronated (n=8; Foot Posture Index=7.50(0.93)) and neutral (n=13; Foot Posture Index=3.08(1.93)) groups. The dependent variables of dorsiflexion ROM and dynamic and static postural control were collected for both groups at a single session. There were no significant differences in dorsiflexion range of motion between groups (p=0.22) or any of the eyes open time-to-boundary variables (p>0.13). The pronated group had significantly less dynamic postural control than the neutral group as assessed by the anterior direction of the Star Excursion Balance Test (p<0.04). However, the pronated group had significantly higher time-to-boundary values than the neutral group for all eyes closed time-to-boundary variables (p≤0.05), which indicates better eyes closed static postural control. Foot posture had a significant effect on dynamic postural control and eyes closed static postural control in individuals with chronic ankle instability. These findings suggest that foot posture may influence postural control in those with chronic ankle instability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Illusory visual motion stimulus elicits postural sway in migraine patients
Imaizumi, Shu; Honma, Motoyasu; Hibino, Haruo; Koyama, Shinichi
2015-01-01
Although the perception of visual motion modulates postural control, it is unknown whether illusory visual motion elicits postural sway. The present study examined the effect of illusory motion on postural sway in patients with migraine, who tend to be sensitive to it. We measured postural sway for both migraine patients and controls while they viewed static visual stimuli with and without illusory motion. The participants’ postural sway was measured when they closed their eyes either immediately after (Experiment 1), or 30 s after (Experiment 2), viewing the stimuli. The patients swayed more than the controls when they closed their eyes immediately after viewing the illusory motion (Experiment 1), and they swayed less than the controls when they closed their eyes 30 s after viewing it (Experiment 2). These results suggest that static visual stimuli with illusory motion can induce postural sway that may last for at least 30 s in patients with migraine. PMID:25972832
Wang, Zheng; Hallac, Rami R; Conroy, Kaitlin C; White, Stormi P; Kane, Alex A; Collinsworth, Amy L; Sweeney, John A; Mosconi, Matthew W
2016-01-01
Increased postural sway has been repeatedly documented in children with autism spectrum disorder (ASD). Characterizing the control processes underlying this deficit, including postural orientation and equilibrium, may provide key insights into neurophysiological mechanisms associated with ASD. Postural orientation refers to children's ability to actively align their trunk and head with respect to their base of support, while postural equilibrium is an active process whereby children coordinate ankle dorsi-/plantar-flexion and hip abduction/adduction movements to stabilize their upper body. Dynamic engagement of each of these control processes is important for maintaining postural stability, though neither postural orientation nor equilibrium has been studied in ASD. Twenty-two children with ASD and 21 age and performance IQ-matched typically developing (TD) controls completed three standing tests. During static stance, participants were instructed to stand as still as possible. During dynamic stances, participants swayed at a comfortable speed and magnitude in either anterior-posterior (AP) or mediolateral (ML) directions. The center of pressure (COP) standard deviation and trajectory length were examined to determine if children with ASD showed increased postural sway. Postural orientation was assessed using a novel virtual time-to-contact (VTC) approach that characterized spatiotemporal dimensions of children's postural sway (i.e., body alignment) relative to their postural limitation boundary, defined as the maximum extent to which each child could sway in each direction. Postural equilibrium was quantified by evaluating the amount of shared or mutual information of COP time series measured along the AP and ML directions. Consistent with prior studies, children with ASD showed increased postural sway during both static and dynamic stances relative to TD children. In regard to postural orientation processes, children with ASD demonstrated reduced spatial perception of their postural limitation boundary towards target directions and reduced time to correct this error during dynamic postural sways but not during static stance. Regarding postural equilibrium, they showed a compromised ability to decouple ankle dorsi-/plantar-flexion and hip abduction/adduction processes during dynamic stances. These results suggest that deficits in both postural orientation and equilibrium processes contribute to reduced postural stability in ASD. Specifically, increased postural sway in ASD appears to reflect patients' impaired perception of their body movement relative to their own postural limitation boundary as well as a reduced ability to decouple distinct ankle and hip movements to align their body during standing. Our findings that deficits in postural orientation and equilibrium are more pronounced during dynamic compared to static stances suggests that the increased demands of everyday activities in which children must dynamically shift their COP involve more severe postural control deficits in ASD relative to static stance conditions that often are studied. Systematic assessment of dynamic postural control processes in ASD may provide important insights into new treatment targets and neurodevelopmental mechanisms.
Effects of a salsa dance training on balance and strength performance in older adults.
Granacher, Urs; Muehlbauer, Thomas; Bridenbaugh, Stephanie A; Wolf, Madeleine; Roth, Ralf; Gschwind, Yves; Wolf, Irene; Mata, Rui; Kressig, Reto W
2012-01-01
Deficits in static and particularly dynamic postural control and force production have frequently been associated with an increased risk of falling in older adults. The objectives of this study were to investigate the effects of salsa dancing on measures of static/dynamic postural control and leg extensor power in seniors. Twenty-eight healthy older adults were randomly assigned to an intervention group (INT, n = 14, age 71.6 ± 5.3 years) to conduct an 8-week progressive salsa dancing programme or a control group (CON, n = 14, age 68.9 ± 4.7 years). Static postural control was measured during one-legged stance on a balance platform and dynamic postural control was obtained while walking on an instrumented walkway. Leg extensor power was assessed during a countermovement jump on a force plate. Programme compliance was excellent with participants of the INT group completing 92.5% of the dancing sessions. A tendency towards an improvement in the selected measures of static postural control was observed in the INT group as compared to the CON group. Significant group × test interactions were found for stride velocity, length and time. Post hoc analyses revealed significant increases in stride velocity and length, and concomitant decreases in stride time. However, salsa dancing did not have significant effects on various measures of gait variability and leg extensor power. Salsa proved to be a safe and feasible exercise programme for older adults accompanied with a high adherence rate. Age-related deficits in measures of static and particularly dynamic postural control can be mitigated by salsa dancing in older adults. High physical activity and fitness/mobility levels of our participants could be responsible for the nonsignificant findings in gait variability and leg extensor power. Copyright © 2012 S. Karger AG, Basel.
Personality traits and individual differences predict threat-induced changes in postural control.
Zaback, Martin; Cleworth, Taylor W; Carpenter, Mark G; Adkin, Allan L
2015-04-01
This study explored whether specific personality traits and individual differences could predict changes in postural control when presented with a height-induced postural threat. Eighty-two healthy young adults completed questionnaires to assess trait anxiety, trait movement reinvestment (conscious motor processing, movement self-consciousness), physical risk-taking, and previous experience with height-related activities. Tests of static (quiet standing) and anticipatory (rise to toes) postural control were completed under low and high postural threat conditions. Personality traits and individual differences significantly predicted height-induced changes in static, but not anticipatory postural control. Individuals less prone to taking physical risks were more likely to lean further away from the platform edge and sway at higher frequencies and smaller amplitudes. Individuals more prone to conscious motor processing were more likely to lean further away from the platform edge and sway at larger amplitudes. Individuals more self-conscious about their movement appearance were more likely to sway at smaller amplitudes. Evidence is also provided that relationships between physical risk-taking and changes in static postural control are mediated through changes in fear of falling and physiological arousal. Results from this study may have indirect implications for balance assessment and treatment; however, further work exploring these factors in patient populations is necessary. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Fisher, Janet M.
Selected electromyographic parameters underlying static postural control in 4, 6, and 8 year old normally and slowly developing children during performance of selected arm movements were studied. Developmental delays in balance control were assessed by the Cashin Test of Motor Development (1974) and/or the Williams Gross Motor Coordination Test…
ERIC Educational Resources Information Center
Lim, Yi Huey; Partridge, Katie; Girdler, Sonya; Morris, Susan L.
2017-01-01
Impairments in postural control affect the development of motor and social skills in individuals with autism spectrum disorder (ASD). This review compared the effect of different sensory conditions on static standing postural control between ASD and neurotypical individuals. Results from 19 studies indicated a large difference in postural control…
Static Postural Control in Youth With Osteogenesis Imperfecta Type I.
Pouliot-Laforte, Annie; Lemay, Martin; Rauch, Frank; Veilleux, Louis-Nicolas
2017-10-01
To assess static postural control in eyes-open and eyes-closed conditions in individuals with osteogenesis imperfecta (OI) type I as compared with typically developing (TD) individuals and to explore the relation between postural control and lower limb muscle function. Cross-sectional study. Outpatient department of a pediatric orthopedic hospital. A convenience sample (N=38) of individuals with OI type I (n=22; mean age, 13.1y; range, 6-21y) and TD individuals (n=16; mean age, 13.1y; range, 6-20y) was selected. Participants were eligible if they were between 6 and 21 years and if they did not have any fracture or surgery in the lower limb in the 12 months before testing. Not applicable. Postural control was assessed through static balance tests and muscle function through mechanographic tests on a force platform. Selected postural parameters were path length, velocity, 90% confidence ellipse area, and the ellipse's length of the mediolateral and anteroposterior axes. Mechanographic parameters were peak force and peak power as measured using the multiple two-legged hopping and the single two-legged jump test, respectively. Individuals with OI type I had poorer postural control than did TD individuals as indicated by longer and faster displacements and a larger ellipse area. Muscle function was unrelated to postural control in the OI group. Removing visual information resulted in a larger increase in postural control parameters in the OI group than in the TD group. A proprioceptive deficit could explain poorer postural control in individuals with OI type I. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Destabilization of Human Balance Control by Static and Dynamic Head Tilts
NASA Technical Reports Server (NTRS)
Paloski, William H.; Wood, Scott J.; Feiveson, Alan H.; Black, F. Owen; Hwang, Emma Y.; Reschke, Millard F.
2004-01-01
To better understand the effects of varying head movement frequencies on human balance control, 12 healthy adult humans were studied during static and dynamic (0.14,0.33,0.6 Hz) head tilts of +/-30deg in the pitch and roll planes. Postural sway was measured during upright stance with eyes closed and altered somatosensory inputs provided by a computerized dynamic posturography (CDP) system. Subjects were able to maintain upright stance with static head tilts, although postural sway was increased during neck extension. Postural stability was decreased during dynamic head tilts, and the degree of destabilization varied directly with increasing frequency of head tilt. In the absence of vision and accurate foot support surface inputs, postural stability may be compromised during dynamic head tilts due to a decreased ability of the vestibular system to discern the orientation of gravity.
Negahban, Hossein; Aryan, Najmolhoda; Mazaheri, Masood; Norasteh, Ali Asghar; Sanjari, Mohammad Ali
2013-06-01
It was hypothesized that training in 'static balance' or 'dynamic balance' sports has differential effects on postural control and its attention demands during quiet standing. In order to test this hypothesis, two groups of female athletes practicing shooting, as a 'static balance' sport, and Taekwondo, as a 'dynamic balance' sport, and a control group of non-physically active females voluntarily participated in this study. Postural control was assessed during bipedal and unipedal stance with and without performing a Go/No-go reaction time task. Visual and/or support surface conditions were manipulated in bipedal and unipedal stances in order to modify postural difficulty. Mixed model analysis of variance was used to determine the effects of dual tasking on postural and cognitive performance. Similar pattern of results were found in bipedal and unipedal stances, with Taekwondo practitioners displaying larger sway, shooters displaying lower sway and non-athletes displaying sway characteristics intermediate to Taekwondo and shooting athletes. Larger effect was found in bipedal stance. Single to dual-task comparison of postural control showed no significant effect of mental task on sway velocity in shooters, indicating less cognitive effort invested in balance control during bipedal stance. We suggest that expertise in shooting has a more pronounced effect on decreased sway in static balance conditions. Furthermore, shooters invest less attention in postures that are more specific to their training, i.e. bipedal stance. Copyright © 2012 Elsevier B.V. All rights reserved.
Oyarzo, Claudio A; Villagrán, Claudio R; Silvestre, Rony E; Carpintero, Pedro; Berral, Francisco J
2014-01-01
Although current research findings suggest that postural control or static balance is impaired in subjects with low back pain, few studies have specifically addressed the effect of low back pain on static balance in elite athletes. Forty-four athletes belonging to Chilean national teams took part in this study; 20 had low back pain and the remaining 24 were healthy controls. Displacement of the centre of pressure was analyzed by computerized platform posturography, using a standardized protocol; subjects were required to stand upright on both feet, with eyes first open then closed. The results showed that, athletes with low back pain used significantly more energy (p< 0.0182) and had a greater displacement of the centre of pressure (p< 0.005) with open eyes to control posture than healthy athletes. It may be concluded that static balance is impaired in elite athletes with low back pain and that analysis of two-footed stance provides a sensitive assessment of static balance in athletes.
The effects of vestibular stimulation and fatigue on postural control in classical ballet dancers.
Hopper, Diana M; Grisbrook, Tiffany L; Newnham, Prudence J; Edwards, Dylan J
2014-01-01
This study aimed to investigate the effects of ballet-specific vestibular stimulation and fatigue on static postural control in ballet dancers and to establish whether these effects differ across varying levels of ballet training. Dancers were divided into three groups: professional, pre-professional, and recreational. Static postural control of 23 dancers was measured on a force platform at baseline and then immediately, 30 seconds, and 60 seconds after vestibular stimulation (pirouettes) and induction of fatigue (repetitive jumps). The professional dancers' balance was unaffected by both the vestibular stimulation and the fatigue task. The pre-professional and recreational dancers' static sway increased following both perturbations. It is concluded that professional dancers are able to compensate for vestibular and fatiguing perturbations due to a higher level of skill-specific motor training.
Herrera-Rangel, Aline; Aranda-Moreno, Catalina; Mantilla-Ochoa, Teresa; Zainos-Saucedo, Lylia; Jáuregui-Renaud, Kathrine
2014-01-01
To assess the influence of peripheral neuropathy, gender, and obesity on the postural stability of patients with type 2 diabetes mellitus. 151 patients with no history of otology, neurology, or orthopaedic or balance disorders accepted to participate in the study. After a clinical interview and neuropathy assessment, postural stability was evaluated by static posturography (eyes open/closed on hard/soft surface) and the "Up & Go" test. During static posturography, on hard surface, the length of sway was related to peripheral neuropathy, gender, age, and obesity; on soft surface, the length of sway was related to peripheral neuropathy, gender, and age, the influence of neuropathy was larger in males than in females, and closing the eyes increased further the difference between genders. The mean time to perform the "Up & Go" test was 11.6 ± 2.2 sec, with influence of peripheral neuropathy, gender, and age. In order to preserve the control of static upright posture during conditions with deficient sensory input, male patients with type 2 diabetes mellitus with no history of balance disorders may be more vulnerable than females, and obesity may decrease the static postural control in both males and females.
Madeleine, Pascal; Nielsen, Mogens; Arendt-Nielsen, Lars
2011-04-01
The ability to maintain balance is diminished in patients suffering from a whiplash injury. The aim of this study was to characterize the variability of postural control in patients with chronic whiplash injury. For this purpose, we analyzed static postural recordings from 11 whiplash patients and sex- and age-matched asymptomatic healthy volunteers. Static postural recordings were performed randomly with eyes open, eyes closed, and eyes open and speaking (dual task). Spatial-temporal changes of the center of pressure displacement were analyzed to assess the amplitude and structure of postural variability by computing, respectively, the standard deviation/coefficient of variation and sample entropy/fractal dimension of the time series. The amplitude of variability of the center of pressure was larger among whiplash patients compared with controls (P<0.001) while fractal dimension was lower (P<0.001). The sample entropy increased during both eyes closed and a simple dual task compared with eyes open (P<0.05). The analysis of postural control dynamics revealed increased amplitude of postural variability and decreased signal dimensionality related to the deficit in postural stability found in whiplash patients. Linear and nonlinear analyses can thus be helpful for the quantification of postural control in normal and pathological conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.
Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel
2014-01-01
Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older. PMID:24474907
Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel
2013-01-01
Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older.
Hassan, B; Mockett, S; Doherty, M
2001-01-01
OBJECTIVES—To investigate whether subjects with knee osteoarthritis (OA) have reduced static postural control, knee proprioceptive acuity, and maximal voluntary contraction (MVC) of the quadriceps compared with normal controls, and to determine possible independent predictors of static postural sway. METHODS—77 subjects with symptomatic and radiographic knee OA (58 women, 19 men; mean age 63.4 years, range 36-82) and 63 controls with asymptomatic and clinically normal knees (45 women, 18 men; mean age 63 years, range 46-85) underwent assessment of static postural sway. 108 subjects (59 patients, 49 controls) also underwent assessment of knee proprioceptive activity and MVC (including calculation of quadriceps activation). In patients with knee OA knee pain, stiffness, and functional disability were assessed using the WOMAC Index. The height (m) and weight (kg) of all subjects was assessed. RESULTS—Compared with controls, patients with knee OA were heavier (mean difference 15.3 kg, p<0.001), had increased postural lateral sway (controls: median 2.3, interquartile (IQ) range 1.8-2.9; patients: median 4.7, IQ range 1.9-4.7, p<0.001), reduced proprioceptive acuity (controls: mean 7.9, 95% CI 6.9 to 8.9; patients: mean 12.0, 95% CI 10.5 to 13.6, p<0.001), weaker quadriceps strength (controls: mean 22.5, 95% CI 19.9 to 24.6; patients: mean 14.7, 95% CI 12.5 to 16.9, p<0.001), and less percentage activation of quadriceps (controls: mean 87.4, 95% CI 80.7 to 94.2; patients: mean 66.0, 95% CI 58.8 to 73.2, p<0.001). The significant predictors of postural sway were knee pain and the ratio of MVC/body weight. CONCLUSIONS—Compared with age and sex matched controls, subjects with symptomatic knee OA have quadriceps weakness, reduced knee proprioception, and increased postural sway. Pain and muscle strength may particularly influence postural sway. The interaction between physiological, structural, and functional abnormalities in knee OA deserves further study. PMID:11350851
Computerized dynamic posturography: the influence of platform stability on postural control.
Palm, Hans-Georg; Lang, Patricia; Strobel, Johannes; Riesner, Hans-Joachim; Friemert, Benedikt
2014-01-01
Postural stability can be quantified using posturography systems, which allow different foot platform stability settings to be selected. It is unclear, however, how platform stability and postural control are mathematically correlated. Twenty subjects performed tests on the Biodex Stability System at all 13 stability levels. Overall stability index, medial-lateral stability index, and anterior-posterior stability index scores were calculated, and data were analyzed using analysis of variance and linear regression analysis. A decrease in platform stability from the static level to the second least stable level was associated with a linear decrease in postural control. The overall stability index scores were 1.5 ± 0.8 degrees (static), 2.2 ± 0.9 degrees (level 8), and 3.6 ± 1.7 degrees (level 2). The slope of the regression lines was 0.17 for the men and 0.10 for the women. A linear correlation was demonstrated between platform stability and postural control. The influence of stability levels seems to be almost twice as high in men as in women.
Coordination exercise and postural stability in elderly people: Effect of Tai Chi Chuan.
Wong, A M; Lin, Y C; Chou, S W; Tang, F T; Wong, P Y
2001-05-01
To evaluate the effects of coordination exercise on postural stability in older individuals by Chinese shadow boxing, Tai Chi Chuan (TCC). Cross-sectional study. Research project in a hospital-based biomechanical laboratory. The TCC group (n = 25) had been practicing TCC regularly for 2 to 35 years. The control group (n = 14) included healthy and active older subjects. Static postural stability test: progressively harder sequential tests with 6 combinations of vision (eyes open, eyes closed, sway-referenced) and support (fixed, sway-referenced); and dynamic balance test: 3 tests of weight shifting (left to right, forward-backward, multidirectional) at 3 speeds. Static and dynamic balance of Sensory Organization Testing (SOT) of the Smart Balance Master System. In static postural control, the results showed no differences between the TCC or control group in the more simple conditions, but in the more complicated SOT (eyes closed with sway surface, sway vision with sway surface), the TCC group had significantly better results than the control group. The TCC group also had significantly better results in the rhythmic forward-backward weight-shifting test. Duration of practice did not seem to affect the stability of elder people. The elderly people who regularly practiced TCC showed better postural stability in the more challenged conditions than those who do not (eg, the condition with simultaneous disturbance of vision and proprioception). TCC as a coordination exercise may reduce the risk of a fall through maintaining the ability of posture control.
THE RELATIONSHIP BETWEEN VARIOUS MODES OF SINGLE LEG POSTURAL CONTROL ASSESSMENT
Schmitz, Randy
2012-01-01
Purpose/Background: While various techniques have been developed to assess the postural control system, little is known about the relationship between single leg static and functional balance. The purpose of the current study was to determine the relationship between the performance measures of several single leg postural stability tests. Methods: Forty six recreationally active college students (17 males, 29 females, 21±3 yrs, 173±10 cm) performed six single leg tests in a counterbalanced order: 1) Firm Surface-Eyes Open, 2) Firm Surface-Eyes Closed, 3) Multiaxial Surface-Eyes Open, 4) Multiaxial Surface-Eyes Closed, 5) Star Excursion Balance Test (posterior medial reach), 6) Single leg Hop-Stabilization Test. Bivariate correlations were conducted between the six outcome variables. Results: Mild to moderate correlations existed between the static tests. No significant correlations existed involving either of the functional tests. Conclusions: The results indicate that while performance of static balance tasks are mildly to moderately related, they appear to be unrelated to functional reaching or hopping movements, supporting the utilization of a battery of tests to determine overall postural control performance. Level of Evidence: 3b PMID:22666640
The effects of deuterium on static posture control
NASA Technical Reports Server (NTRS)
Layne, Charles S.
1990-01-01
A significant operational problem impacting upon the Space Shuttle program involves the astronaut's ability to safely egress from the Orbiter during an emergency situation. Following space flight, astronauts display significant movement problems. One variable which may contribute to increased movement ataxia is deuterium (D2O). Deuterium is present in low levels within the Orbiter's water supply but may accumulate to significant physiological levels during lengthy missions. Deuterium was linked to a number of negative physiological responses, including motion sickness, decreased metabolism, and slowing of neural conduction velocity. The effects of D2O on static postural control in response to a range of dosage levels were investigated. Nine sugjects were divided into three groups of three subjects each. The groups were divided into a low, medium, and a high D2O dosage group. The subjects static posture was assessed with the use of the EquiTest systems, a commercially available postural control evaluation system featuring movable force plates and a visual surround that can be servoed to the subject's sway. In addition to the force plate information, data about the degree of subject sway about the hips and shoulders was obtained. Additionally, surface electromyographic (EMG) data from the selected lower limb muscles were collected along with saliva samples used to determine the amount of deuterium enrichment following D2O ingestion. Two baseline testing sessions were performed using the EquiTest testing protocol prior to ingestion of the D2O. Thirty minutes after dosing, subjects again performed the tests. Two more post-dosing tests were run with an interest interval of one hour. Preliminary data anlaysis indicates that only subjects in the igh dose group displayed any significant static postural problems. Future analyses of the sway and EMG is expected to reveal significant variations in the subject's postural control strategy following D2O dosing. While functionally significant static postural problems were not commonly observed, subjects in both the medium and high dosage groups displayed significant, and in some cases, severe voluntary movement problems.
Romero-Franco, Natalia; Párraga-Montilla, Juan Antonio; Molina-Flores, Enrique M; Jiménez-Reyes, Pedro
2018-06-01
Romero-Franco, N, Párraga-Montilla, JA, Molina-Flores, EM, and Jiménez-Reyes, P. Effects of combining running and practical duration stretching on proprioceptive skills of national sprinters. J Strength Cond Res XX(X): 000-000, 2018-Practical duration stretching after aerobic activities is a recommended component of the first part of warm-up because of its effects on performance. However, its effects on proprioceptive skills are unknown. This study aimed to analyze the effects of running and practical duration static stretching (SS) and dynamic stretching (DS) on postural balance and the joint position sense (JPS) of national sprinters. Thirty-two national sprinters were randomly classified into a SS group (n = 11), DS group (n = 11), or control group (n = 10). Static stretching performed 5 minutes of running and short-duration (20 seconds) static stretches; DS performed 5 minutes of running and short-duration dynamic (20 seconds) stretches; and the control group performed 5 minutes of running. Before and after the intervention, unipedal static postural balance and knee JPS were evaluated. Static stretching exhibited a more centralized center of pressure in the medial-lateral plane for unipedal static postural balance in right-leg support after stretching (p = 0.005, d = 1.24), whereas DS showed values further from the center after stretching for the same unipedal support compared with baseline (p = 0.042, d = 0.49), and the control group remained stable (p > 0.05). Joint position sense did not show significant differences in any group (p > 0.05). In conclusion, combining running and practical duration SS may be beneficial for right-leg postural stabilization, whereas DS may be partly and slightly deleterious. Both SS and DS combined with running and running alone have neutral effects on knee JPS. Sports professionals should consider running and practical duration SS as part of the warm-up of sprinters to partly improve unipedal static postural balance.
Lemay, Jean-François; Gagnon, Dany; Duclos, Cyril; Grangeon, Murielle; Gauthier, Cindy; Nadeau, Sylvie
2013-06-01
Postural steadiness while standing is impaired in individuals with spinal cord injury (SCI) and could be potentially associated with increased reliance on visual inputs. The purpose of this study was to compare individuals with SCI and able-bodied participants on their use of visual inputs to maintain standing postural steadiness. Another aim was to quantify the association between visual contribution to achieve postural steadiness and a clinical balance scale. Individuals with SCI (n = 15) and able-bodied controls (n = 14) performed quasi-static stance, with eyes open or closed, on force plates for two 45 s trials. Measurements of the centre of pressure (COP) included the mean value of the root mean square (RMS), mean COP velocity (MV) and COP sway area (SA). Individuals with SCI were also evaluated with the Mini-Balance Evaluation Systems Test (Mini BESTest), a clinical outcome measure of postural steadiness. Individuals with SCI were significantly less stable than able-bodied controls in both conditions. The Romberg ratios (eyes open/eyes closed) for COP MV and SA were significantly higher for individuals with SCI, indicating a higher contribution of visual inputs for postural steadiness in that population. Romberg ratios for RMS and SA were significantly associated with the Mini-BESTest. This study highlights the contribution of visual inputs in individuals with SCI when maintaining quasi-static standing posture. Copyright © 2012 Elsevier B.V. All rights reserved.
Zeinalzadeh, Afsaneh; Talebian, Saeed; Naghdi, Soofia; Salavati, Mahyar; Nazary-Moghadam, Salman; Zeynalzadeh Ghoochani, Bahareh
2018-04-01
To compare the effects of vision and cognitive load on static postural control in subjects with and without patellofemoral pain syndrome (PFPS). Twenty-eight PFPS patients and 28 controls participated in the study. Postural control was assessed in isolation as well as with visual manipulation and cognitive loading on symptomatic limb. The outcome measures of postural control were quantified in terms of area, anterior-posterior (AP), medial-lateral (ML), and mean velocity (MV) of the displacements of center of pressure (COP). In addition, cognitive performance (auditory Stroop task) was measured in the forms of average reaction time and error ratio in baseline (sitting) and different postural conditions. PFPS subjects showed greater increases in area (p = 0.01), AP (p = 0.01), and ML (p = 0.05) displacements of COP in the blindfolded tasks as compared to control group. However, cognitive load did not differently affect postural control in the two groups. Although PFPS and control group had similar reaction times in the sitting position (p = 0.29), PFPS subjects had longer reaction times than healthy subjects in dual task conditions (p = 0.04). Visual inputs seem to be essential for discriminating postural control between PFPS and healthy individuals. PFPS patients biased toward decreasing cognitive performance more than healthy subjects when they perform the single leg stance and cognitive task concurrently.
Wikstrom, Erik A; Song, Kyeongtak; Lea, Ashley; Brown, Nastassia
2017-07-01
One of the major concerns after an acute lateral ankle sprain is the potential for development of chronic ankle instability (CAI). The existing research has determined that clinician-delivered plantar massage improves postural control in those with CAI. However, the effectiveness of self-administered treatments and the underlying cause of any improvements remain unclear. To determine (1) the effectiveness of a self-administered plantar-massage treatment in those with CAI and (2) whether the postural-control improvements were due to the stimulation of the plantar cutaneous receptors. Crossover study. University setting. A total of 20 physically active individuals (6 men and 14 women) with self-reported CAI. All participants completed 3 test sessions involving 3 treatments: a clinician-delivered manual plantar massage, a patient-delivered self-massage with a ball, and a clinician-delivered sensory brush massage. Postural control was assessed using single-legged balance with eyes open and the Star Excursion Balance Test. Static postural control improved (P ≤ .014) after each of the interventions. However, no changes in dynamic postural control after any of the interventions were observed (P > .05). No differences were observed between a clinician-delivered manual plantar massage and either a patient-delivered self-massage with a ball or a clinician-delivered sensory brush massage in any postural-control outcome. In those with CAI, single 5-minute sessions of traditional plantar massage, self-administered massage, and sensory brush massage each resulted in comparable static postural-control improvements. The results also provide empirical evidence suggesting that the mechanism for the postural-control improvements is the stimulation of the plantar cutaneous receptors.
Diurnal changes in postural control in normal children: Computerized static and dynamic assessments.
Bourelle, Sophie; Taiar, Redha; Berge, Benoit; Gautheron, Vincent; Cottalorda, Jerome
2014-01-01
Mild traumatic brain injury (mTBI) causes postural control deficits and accordingly comparison of aberrant postural control against normal postural control may help diagnose mTBI. However, in the current literature, little is known regarding the normal pattern of postural control in young children. This study was therefore conducted as an effort to fill this knowledge gap. Eight normal school-aged children participated. Posture assessment was conducted before (7-8 a.m. in the morning) and after (4-7 p.m. in the afternoon) school on regular school days using the Balance Master® evaluation system composed of 3 static tests and 2 dynamic balance tests. A significant difference in the weight-bearing squats was detected between morning hours and afternoon hours (P < 0.05). By end of afternoon, the body weight was borne mainly on the left side with the knee fully extended and at various degrees of knee flexion. A significantly better directional control of the lateral rhythmic weight shifts was observed at the end of the afternoon than at morning hours (P < 0.05). In summary, most of our findings are inconsistent with results from previous studies in adults, suggesting age-related differences in posture control in humans. On a regular school day, the capacity of postural control and laterality or medio-lateral balance in children varies between morning and afternoon hours. We suggest that posturographic assessment in children, either in normal (e.g., physical education and sports training) or in abnormal conditions (e.g., mTBI-associated balance disorders), be better performed late in the afternoon.
The internal representation of head orientation differs for conscious perception and balance control
Dalton, Brian H.; Rasman, Brandon G.; Inglis, J. Timothy
2017-01-01
Key points We tested perceived head‐on‐feet orientation and the direction of vestibular‐evoked balance responses in passively and actively held head‐turned postures.The direction of vestibular‐evoked balance responses was not aligned with perceived head‐on‐feet orientation while maintaining prolonged passively held head‐turned postures. Furthermore, static visual cues of head‐on‐feet orientation did not update the estimate of head posture for the balance controller.A prolonged actively held head‐turned posture did not elicit a rotation in the direction of the vestibular‐evoked balance response despite a significant rotation in perceived angular head posture.It is proposed that conscious perception of head posture and the transformation of vestibular signals for standing balance relying on this head posture are not dependent on the same internal representation. Rather, the balance system may operate under its own sensorimotor principles, which are partly independent from perception. Abstract Vestibular signals used for balance control must be integrated with other sensorimotor cues to allow transformation of descending signals according to an internal representation of body configuration. We explored two alternative models of sensorimotor integration that propose (1) a single internal representation of head‐on‐feet orientation is responsible for perceived postural orientation and standing balance or (2) conscious perception and balance control are driven by separate internal representations. During three experiments, participants stood quietly while passively or actively maintaining a prolonged head‐turned posture (>10 min). Throughout the trials, participants intermittently reported their perceived head angular position, and subsequently electrical vestibular stimuli were delivered to elicit whole‐body balance responses. Visual recalibration of head‐on‐feet posture was used to determine whether static visual cues are used to update the internal representation of body configuration for perceived orientation and standing balance. All three experiments involved situations in which the vestibular‐evoked balance response was not orthogonal to perceived head‐on‐feet orientation, regardless of the visual information provided. For prolonged head‐turned postures, balance responses consistent with actual head‐on‐feet posture occurred only during the active condition. Our results indicate that conscious perception of head‐on‐feet posture and vestibular control of balance do not rely on the same internal representation, but instead treat sensorimotor cues in parallel and may arrive at different conclusions regarding head‐on‐feet posture. The balance system appears to bypass static visual cues of postural orientation and mainly use other sensorimotor signals of head‐on‐feet position to transform vestibular signals of head motion, a mechanism appropriate for most daily activities. PMID:28035656
Funk, Shany; Jacob, T; Ben-Dov, D; Yanovich, E; Tirosh, O; Steinberg, N
2018-02-01
Optimal functioning of the lower extremities under repeated movements on unstable surfaces is essential for military effectiveness. Intervention training to promote proprioceptive ability should be considered in order to limit the risk for musculoskeletal injuries. The aim of this study was to assess the effect of a proprioceptive intervention programme on static and dynamic postural balance among Israel Defense Forces combat soldiers. Twenty-seven male soldiers, aged 18-20 years, from a physical fitness instructor's course, were randomly divided into two groups matched by age and army unit. The intervention group (INT) underwent 4 weeks of proprioceptive exercises for 10 min daily; the control group underwent 4 weeks of upper body stretching exercises for 10 min daily. All participants were tested pre and postintervention for both static and dynamic postural balance. Significant interaction (condition*pre-post-test*group) was found for static postural balance, indicating that for the INT group, in condition 3 (on an unstable surface-BOSU), the post-test result was significantly better compared with the pretest result (p<0.05). Following intervention, the INT group showed significant correlations between static postural stability in condition 2 (eyes closed) and the dynamic postural stability (length of time walked on the beam following fatigue) ( r ranged from 0.647 to 0.822; p<0.05). The proprioceptive intervention programme for combat soldiers improved static postural balance on unstable surfaces, and improved the correlation between static postural balance in the eyes closed condition and dynamic postural balance following fatigue. Further longitudinal studies are needed to verify the relationship between proprioception programmes, additional weight bearing and the reduction of subsequent injuries in combat soldiers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
2013-01-01
Background The current experiment investigated the impact of two potential confounding variables on the postural balance in young participants: the induced-experimental activity prior to the static postural measurements and the well-documented time-of-day effects. We mainly hypothesized that an exhaustive exercise and a high attention-demanding task should result in alterations of postural control. Methods Ten participants performed three experimental sessions (differentiated by the activity – none, cognitive or physical – prior of the assessment of postural stability), separated by one day at least. Each session included postural balance assessments around 8 a.m., 12.00 p.m. and 5 p.m. ± 30 min. The physical and cognitive activities were performed only before the 12 o’clock assessment. The postural tests consisted of four conditions of quiet stance: stance on a firm surface with eyes open; stance on a firm surface with eyes closed; stance on a foam surface with eyes open and stance on a foam surface with eyes closed. Postural performance was assessed by various center of pressure (COP) parameters. Results Overall, the COP findings indicated activity-related postural impairment, with an increase in body sway in the most difficult conditions (with foam surface), especially when postural measurements are recorded just after the running exercise (physical session) or the psychomotor vigilance test (cognitive session). Conclusions Even if no specific influence of time-of-day on static postural control is demonstrated, our results clearly suggest that the activities prior to balance tests could be a potential confounding variable to be taken into account and controlled when assessing clinical postural balance. PMID:23452958
Postural Stability in Cigarette Smokers and During Abstinence from Alcohol
Schmidt, Thomas Paul; Pennington, David Louis; Durazzo, Timothy Craig; Meyerhoff, Dieter Johannes
2014-01-01
Background Static postural instability is common in alcohol dependent individuals (ALC). Chronic alcohol consumption has deleterious effects on the neural and perceptual systems subserving postural stability. However, little is known about the effects of chronic cigarette smoking on postural stability and its changes during abstinence from alcohol. Methods A modified Fregly ataxia battery was administered to a total of 115 smoking (sALC) and non-smoking ALC (nsALC) and to 74 smoking (sCON) and non-smoking light/non-drinking controls (nsCON). Subgroups of abstinent ALC were assessed at 3 time points (approximately 1 week, 5 weeks, 34 weeks of abstinence from alcohol); a subset of nsCON was re-tested at 40 weeks. We tested if cigarette smoking affects postural stability in CON and in ALC during extended abstinence from alcohol, and we used linear mixed effects modeling to measure change across time points within ALC. Results Chronic smoking was associated with reduced performance on the Sharpened Romberg eyes-closed task in abstinent ALC at all three time points and in CON. The test performance of nsALC increased significantly between 1 and 32 weeks of abstinence, whereas the corresponding increases for sALC between 1 and 35 weeks was non-significant. With long-term abstinence from alcohol, nsALC recovered into the range of nsCON and sALC recovered into the range of sCON. Static postural stability decreased with age and correlated with smoking variables but not with drinking measures. Conclusions Chronic smoking was associated with reduced static postural stability with eyes closed and with lower increases of postural stability during abstinence from alcohol. Smoking cessation in alcohol dependence treatment may facilitate recovery from static postural instability during abstinence. PMID:24721012
Postural stability in cigarette smokers and during abstinence from alcohol.
Schmidt, Thomas P; Pennington, David L; Durazzo, Timothy C; Meyerhoff, Dieter J
2014-06-01
Static postural instability is common in alcohol-dependent individuals (ALC). Chronic alcohol consumption has deleterious effects on the neural and perceptual systems subserving postural stability. However, little is known about the effects of chronic cigarette smoking on postural stability and its changes during abstinence from alcohol. A modified Fregly ataxia battery was administered to a total of 115 smoking (sALC) and nonsmoking ALC (nsALC) and to 71 smoking (sCON) and nonsmoking light/nondrinking controls (nsCON). Subgroups of abstinent ALC were assessed at 3 time points (TPs; approximately 1, 5, 34 weeks of abstinence from alcohol); a subset of nsCON was retested at 40 weeks. We tested whether cigarette smoking affects postural stability in CON and in ALC during extended abstinence from alcohol, and we used linear mixed effects modeling to measure change across TPs within ALC. Chronic smoking was associated with reduced performance on the Sharpened Romberg eyes-closed task in abstinent ALC at all 3 TPs and in CON. The test performance of nsALC increased significantly between 1 and 32 weeks of abstinence, whereas the corresponding increases for sALC between 1 and 35 weeks were nonsignificant. With long-term abstinence from alcohol, nsALC recovered into the range of nsCON and sALC recovered into the range of sCON. Static postural stability decreased with age and correlated with smoking variables but not with drinking measures. Chronic smoking was associated with reduced static postural stability with eyes closed and with lower increases of postural stability during abstinence from alcohol. Smoking cessation in alcohol dependence treatment may facilitate recovery from static postural instability during abstinence. Copyright © 2014 by the Research Society on Alcoholism.
Harris, Dale M; Rantalainen, Timo; Muthalib, Makii; Johnson, Liam; Teo, Wei-Peng
2015-01-01
The use of virtual reality games (known as "exergaming") as a neurorehabilitation tool is gaining interest. Therefore, we aim to collate evidence for the effects of exergaming on the balance and postural control of older adults and people with idiopathic Parkinson's disease (IPD). Six electronic databases were searched, from inception to April 2015, to identify relevant studies. Standardized mean differences (SMDs) and 95% confidence intervals (CI) were used to calculate effect sizes between experimental and control groups. I (2) statistics were used to determine levels of heterogeneity. 325 older adults and 56 people with IPD who were assessed across 11 -studies. The results showed that exergaming improved static balance (SMD 1.069, 95% CI 0.563-1.576), postural control (SMD 0.826, 95% CI 0.481-1.170), and dynamic balance (SMD -0.808, 95% CI -1.192 to -0.424) in healthy older adults. Two IPD studies showed an improvement in static balance (SMD 0.124, 95% CI -0.581 to 0.828) and postural control (SMD 2.576, 95% CI 1.534-3.599). Our findings suggest that exergaming might be an appropriate therapeutic tool for improving balance and postural control in older adults, but more -large-scale trials are needed to determine if the same is true for people with IPD.
Static Postural Stability Is Normal in Dyslexic Children.
ERIC Educational Resources Information Center
Brown, Brian; And Others
1985-01-01
An experiment on 15 dyslexic and 23 carefully matched control subjects (10- to 12-year-old males), examining their ability to maintain standing posture with eyes open and closed and with standard and tandem foot placement, revealed no differences under any condition tested and no differences in use of visual information to maintain their posture.…
Hadadi, Mohammad; Ebrahimi, Ismaeil; Mousavi, Mohammad Ebrahim; Aminian, Gholamreza; Esteki, Ali; Rahgozar, Mehdi
2017-02-01
Chronic ankle instability is associated with neuromechanical changes and poor postural stability. Despite variety of mechanisms of foot and ankle orthoses, almost none apply comprehensive mechanisms to improve postural control in all subgroups of chronic ankle instability patients. The purpose of this study was to investigate the effect of an ankle support implementing combined mechanisms to improve postural control in chronic ankle instability patients. Cross-sectional study. An ankle support with combined mechanism was designed based on most effective action mechanisms of foot and ankle orthoses. The effect of this orthosis on postural control was evaluated in 20 participants with chronic ankle instability and 20 matched healthy participants. The single-limb stance balance test was measured in both groups with and without the new orthosis using a force platform. The results showed that application of combined mechanism ankle support significantly improved all postural sway parameters in chronic ankle instability patients. There were no differences in means of investigated parameters with and without the orthosis in the healthy group. No statistically significant differences were found in postural sway between chronic ankle instability patients and healthy participants after applying the combined mechanism ankle support. The combined mechanism ankle support is effective in improving static postural control of chronic ankle instability patients to close to the postural sway of healthy individual. the orthosis had no adverse effects on balance performance of healthy individuals. Clinical relevance Application of the combined mechanism ankle support for patients with chronic ankle instability is effective in improving static balance. This may be helpful in reduction of recurrence of ankle sprain although further research about dynamic conditions is needed.
El-Bestar, Sohair Fouad; El-Mitwalli, Ashraf Abdel-Moniem; Khashaba, Eman Omar
2011-01-01
This study was to determine the prevalence and work-related risk factors of neck-upper extremity musculoskeletal disorders (MSDs) among video display terminal (VDT) users. A comparative cross-sectional study was conducted; there were 60 VDT users and 35 controls. The participants filled in a structured questionnaire, had electrophysiological tests and an X-ray of the neck. The prevalence of MSDs was higher (28.3%) among VDTs users compared to controls (14.3%) with no statistically significant difference. The prevalence of cervical disorders with or without radiculopathy (18.3%) was the most common disorder followed by carpal tunnel syndrome (6.6%). The mean (SD) age of MSD cases (51 ± 7.2 years) was statistically significantly higher than of the controls (42.8 ± 9). Physical exposure to prolonged static posture (OR: 6.9; 95% CI: 0.83-57.9), awkward posture (OR: 5.5; 95% CI: 0.6-46.4) and repetitive movements (OR: 5.5; 95% CI: 0.65-46.4) increased risk of MSDs with a statistically significant difference for static posture only (p < .05). VDT users experienced more job dissatisfaction, work-overload and limited social support from supervisors and colleagues. VDT use did not increase the risk of neck-upper extremity MSDs. The risk increased with older age and static posture.
Dalton, Brian H; Rasman, Brandon G; Inglis, J Timothy; Blouin, Jean-Sébastien
2017-04-15
We tested perceived head-on-feet orientation and the direction of vestibular-evoked balance responses in passively and actively held head-turned postures. The direction of vestibular-evoked balance responses was not aligned with perceived head-on-feet orientation while maintaining prolonged passively held head-turned postures. Furthermore, static visual cues of head-on-feet orientation did not update the estimate of head posture for the balance controller. A prolonged actively held head-turned posture did not elicit a rotation in the direction of the vestibular-evoked balance response despite a significant rotation in perceived angular head posture. It is proposed that conscious perception of head posture and the transformation of vestibular signals for standing balance relying on this head posture are not dependent on the same internal representation. Rather, the balance system may operate under its own sensorimotor principles, which are partly independent from perception. Vestibular signals used for balance control must be integrated with other sensorimotor cues to allow transformation of descending signals according to an internal representation of body configuration. We explored two alternative models of sensorimotor integration that propose (1) a single internal representation of head-on-feet orientation is responsible for perceived postural orientation and standing balance or (2) conscious perception and balance control are driven by separate internal representations. During three experiments, participants stood quietly while passively or actively maintaining a prolonged head-turned posture (>10 min). Throughout the trials, participants intermittently reported their perceived head angular position, and subsequently electrical vestibular stimuli were delivered to elicit whole-body balance responses. Visual recalibration of head-on-feet posture was used to determine whether static visual cues are used to update the internal representation of body configuration for perceived orientation and standing balance. All three experiments involved situations in which the vestibular-evoked balance response was not orthogonal to perceived head-on-feet orientation, regardless of the visual information provided. For prolonged head-turned postures, balance responses consistent with actual head-on-feet posture occurred only during the active condition. Our results indicate that conscious perception of head-on-feet posture and vestibular control of balance do not rely on the same internal representation, but instead treat sensorimotor cues in parallel and may arrive at different conclusions regarding head-on-feet posture. The balance system appears to bypass static visual cues of postural orientation and mainly use other sensorimotor signals of head-on-feet position to transform vestibular signals of head motion, a mechanism appropriate for most daily activities. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Amaral, Gabriela; Martins, Helena; Silva, Anabela G
2018-04-25
This study investigated whether young university students with neck pain (NP) have postural control deficits when compared to sex and age-matched asymptomatic subjects. Centre of pressure (COP) sway area, velocity, anterior-posterior and mediolateral distances were measured in participants with (n=27) and without (n=27) neck pain for different combinations of static standing (narrow stance, tandem stance and single leg stance) and measurement time (90, 60, 30 and 15 s) with eyes closed using a force plate. Additionally, static and dynamic clinical tests of postural control were used. No significant between group differences were found for the COP measurements (p>0.05). However, individuals with subclinical NP were more likely to fail the 90 s tandem test (p<0.05) in the force plate and univariate comparisons revealed significant between group differences in the tandem and single leg stance clinical test measurements. Taken together, the inconsistent results might suggest an emerging postural control deficit in university students with low disability and low intensity chronic idiopathic NP.
[Craniomandibular relations and anti-gravity posture: stabilometric study disclusion wedges].
Decocq, Philippe; Honoré, Jacques; Auclair-Assaad, Catherine; Sequeira, Henrique; Bocquet, Emmanuelle
2015-06-01
Cephalometric parameters are thought to influence static posture. The present work evaluates the relationships between skeletal class or facial divergency, on one hand, and body posture, on the other hand. ANB and FMA angles were measured from profile cephalograms in twenty healthy adults. From each, stabilograms were recorded, with eyes open or shut, and with or without disclusion splints. Without splints, ANB and FMA proved to correlate with the accuracy of postural control. Adding splints changes the average position of the center of pressure exerted on the ground by the body, the anterior-posterior axis, and this effect is consistent with that of the typology. It also alters the displacement of the center of pressure on the same axis. These effects depend on whether the eyes are open or closed. The data reinforces the notion of the impact of cephalometric parameters and their mechanical changes on the static posture. They invite us to take greater account of postural impact of splints used in orthodontic practice. © EDP Sciences, SFODF, 2015.
Harris, Dale M.; Rantalainen, Timo; Muthalib, Makii; Johnson, Liam; Teo, Wei-Peng
2015-01-01
The use of virtual reality games (known as “exergaming”) as a neurorehabilitation tool is gaining interest. Therefore, we aim to collate evidence for the effects of exergaming on the balance and postural control of older adults and people with idiopathic Parkinson’s disease (IPD). Six electronic databases were searched, from inception to April 2015, to identify relevant studies. Standardized mean differences (SMDs) and 95% confidence intervals (CI) were used to calculate effect sizes between experimental and control groups. I2 statistics were used to determine levels of heterogeneity. 325 older adults and 56 people with IPD who were assessed across 11 studies. The results showed that exergaming improved static balance (SMD 1.069, 95% CI 0.563–1.576), postural control (SMD 0.826, 95% CI 0.481–1.170), and dynamic balance (SMD −0.808, 95% CI −1.192 to −0.424) in healthy older adults. Two IPD studies showed an improvement in static balance (SMD 0.124, 95% CI −0.581 to 0.828) and postural control (SMD 2.576, 95% CI 1.534–3.599). Our findings suggest that exergaming might be an appropriate therapeutic tool for improving balance and postural control in older adults, but more large-scale trials are needed to determine if the same is true for people with IPD. PMID:26441634
do Nascimento, J A; Silva, C C; Dos Santos, H H; de Almeida Ferreira, J J; de Andrade, P R
2017-12-01
The aim of this study was to evaluate the postural control of obese young adults with normal body mass index during different static (bipedic and unipedic support) and dynamic postural conditions (gait velocity and limits of stability) in order to compare the static and dynamic balance of these individuals. A cross-sectional quantitative study was carried out to evaluate static and dynamic balance in 25 sedentary individuals. The sample was divided into two groups, 10 in the normal-weight group (24.70 ± 3.89 years and 21.5 ± 1.66 kg m -2 ) and 15 in the obese group (26.80 ± 5.16 years and 35.66 ± 4.29 kg m -2 ). Postural evaluation was performed through visual inspection, and balance analyses were performed using the Timed Up & Go test (TUGT) and Balance System (Biodex). Descriptive analyses, Fisher's exact test and Mann Whitney U-tests were performed using the Statistical Package for Social Sciences (SPSS - 20.0, Armonk, NY) software. Most of the obese volunteers presented postural alterations, such as head protrusion (47.6%), hyperkyphosis (46.7%) and hyperlordosis (26.7%). Medial-lateral dynamic displacement, risk of falls and mean time to perform the limits of stability test and TUGT were higher for obese subjects (P < 0.05), while there were no significant differences between the groups (P > 0.05) for static balance tests for either bipedal or unipedal tasks. The disadvantage presented by the young obese subjects occurs in dynamic activities, representing worse balance and an increase in time needed to accomplish these activities. © 2017 World Obesity Federation.
Best, Christoph; Tschan, Regine; Stieber, Nikola; Beutel, Manfred E.; Eckhardt-Henn, Annegret; Dieterich, Marianne
2015-01-01
Patients with somatoform vertigo and dizziness (SVD) disorders often report instability of stance or gait and fear of falling. Posturographic measurements indeed indicated a pathological postural strategy. Our goal was to evaluate the effectiveness of a psychotherapeutic and psychoeducational short-term intervention (PTI) using static posturography and psychometric examination. Seventeen SVD patients took part in the study. The effects of PTI on SVD were evaluated with quantitative static posturography. As primary endpoint a quotient characterizing the relation between horizontal and vertical sway was calculated (Q H/V), reflecting the individual postural strategy. Results of static posturography were compared to those of age- and gender-matched healthy volunteers (n = 28); baseline measurements were compared to results after PTI. The secondary endpoint was the participation-limiting consequences of SVD as measured by the Vertigo Handicap Questionnaire (VHQ). Compared to the healthy volunteers, the patients with SVD showed a postural strategy characterized by stiffening-up that resulted in a significantly reduced body sway quotient before PTI (patients: Q H/V = 0.31 versus controls: Q H/V = 0.38; p = 0.022). After PTI the postural behavior normalized, and psychological distress was reduced. PTI therefore appears to modify pathological balance behaviour. The postural strategy of patients with SVD possibly results from anxious anticipatory cocontraction of the antigravity muscles. PMID:26843786
Best, Christoph; Tschan, Regine; Stieber, Nikola; Beutel, Manfred E; Eckhardt-Henn, Annegret; Dieterich, Marianne
2015-01-01
Patients with somatoform vertigo and dizziness (SVD) disorders often report instability of stance or gait and fear of falling. Posturographic measurements indeed indicated a pathological postural strategy. Our goal was to evaluate the effectiveness of a psychotherapeutic and psychoeducational short-term intervention (PTI) using static posturography and psychometric examination. Seventeen SVD patients took part in the study. The effects of PTI on SVD were evaluated with quantitative static posturography. As primary endpoint a quotient characterizing the relation between horizontal and vertical sway was calculated (Q H/V ), reflecting the individual postural strategy. Results of static posturography were compared to those of age- and gender-matched healthy volunteers (n = 28); baseline measurements were compared to results after PTI. The secondary endpoint was the participation-limiting consequences of SVD as measured by the Vertigo Handicap Questionnaire (VHQ). Compared to the healthy volunteers, the patients with SVD showed a postural strategy characterized by stiffening-up that resulted in a significantly reduced body sway quotient before PTI (patients: Q H/V = 0.31 versus controls: Q H/V = 0.38; p = 0.022). After PTI the postural behavior normalized, and psychological distress was reduced. PTI therefore appears to modify pathological balance behaviour. The postural strategy of patients with SVD possibly results from anxious anticipatory cocontraction of the antigravity muscles.
Gauchard, Gérome C; Gangloff, Pierre; Jeandel, Claude; Perrin, Philippe P
2003-09-01
Balance disorders increase considerably with age due to a decrease in posture regulation quality, and are accompanied by a higher risk of falling. Conversely, physical activities have been shown to improve the quality of postural control in elderly individuals and decrease the number of falls. The aim of this study was to evaluate the impact of two types of exercise on the visual afferent and on the different parameters of static balance regulation. Static postural control was evaluated in 44 healthy women aged over 60 years. Among them, 15 regularly practiced proprioceptive physical activities (Group I), 12 regularly practiced bioenergetic physical activities (Group II), and 18 controls walked on a regular basis (Group III). Group I participants displayed lower sway path and area values, whereas Group III participants displayed the highest, both in eyes-open and eyes-closed conditions. Group II participants displayed intermediate values, close to those of Group I in the eyes-open condition and those of Group III in the eyes-closed condition. Visual afferent contribution was more pronounced for Group II and III participants than for Group I participants. Proprioceptive exercise appears to have the best impact on balance regulation and precision. Besides, even if bioenergetic activity improves postural control in simple postural tasks, more difficult postural tasks show that this type of activity does not develop a neurosensorial proprioceptive input threshold as well, probably on account of the higher contribution of visual afferent.
Song, Kyeongtak; Kang, Tae Kyu; Wikstrom, Erik A; Jun, Hyung-Pil; Lee, Sae Yong
2017-10-01
The purpose of this study was to determine how reduced plantar cutaneous sensation influences static postural control in individuals with and without CAI. A case-control study design. Twenty-six individuals with self-reported CAI and 26 matched healthy controls participated in this study. The plantar aspect of the participants' foot was then submersed in ice water (0°C) for 10min to reduce plantar sensation. Before and after the cooling procedure, plantar cutaneous sensation thresholds and single leg balance with eyes open and closed were assessed. Significantly, higher scores were observed in both groups after ice water submersion (p<0.001) indicating a significant reduction in the plantar cutaneous sensitivity after the cooling procedure. In single limb balance with eyes open, there were significant intervention main effects for the TTB ML mean (p<0.001), TTB AP mean (p=0.035) and TTB ML SD (p=0.021); indicating postural control improvement in both groups post-cooling. In single limb balance with eyes closed, Group×Intervention interactions were observed for the TTB AP mean (p=0.003) and TTB AP SD (p=0.017); indicating postural control deficits in CAI group post-cooling, but no changes in the control group. The main finding of this study was that reduced plantar cutaneous sensation induced by an ice submersion procedure caused eyes closed postural control impairments in those with CAI but not healthy controls. The present investigation demonstrated that the ability to dynamically reweight among sensory inputs to maintain postural stability appears to be diminished in CAI patients compared to healthy controls. Copyright © 2016. Published by Elsevier Ltd.
The addition of body armor diminishes dynamic postural stability in military soldiers.
Sell, Timothy C; Pederson, Jonathan J; Abt, John P; Nagai, Takashi; Deluzio, Jennifer; Wirt, Michael D; McCord, Larry J; Lephart, Scott M
2013-01-01
Poor postural stability has been identified as a risk factor for lower extremity musculoskeletal injury. The additional weight of body armor carried by Soldiers alters static postural stability and may predispose Soldiers to lower extremity musculoskeletal injuries. However, static postural stability tasks poorly replicate the dynamic military environment, which places considerable stress on the postural control system during tactical training and combat. Therefore, the purpose of this study was to examine the effects of body armor on dynamic postural stability during single-leg jump landings. Thirty-six 101st Airborne Division (Air Assault) Soldiers performed single-leg jump landings in the anterior direction with and without wearing body armor. The dynamic postural stability index and the individual stability indices (medial-lateral stability index, anterior-posterior stability index, and vertical stability index) were calculated for each condition. Paired sample t-tests were performed to determine differences between conditions. Significant differences existed for the medial-lateral stability index, anterior-posterior stability index, vertical stability index, and dynamic postural stability index (p < 0.05). The addition of body armor resulted in diminished dynamic postural stability, which may result in increased lower extremity injuries. Training programs should address the altered dynamic postural stability while wearing body armor in attempts to promote adaptations that will result in safer performance during dynamic tasks.
NASA Astrophysics Data System (ADS)
d'Avella, Andrea
2016-07-01
Santello et al. [1] review an impressive amount of work on the control of biological and artificial hands that demonstrates how the concept of synergies can lead to a successful integration of robotics and neuroscience. Is it possible to generalize the same approach to the control of biological and artificial limbs and bodies beyond the hand? The human hand synergies that appear most relevant for robotic hands are those defined at the kinematic level, i.e. postural synergies [2]. Postural synergies capture the geometric relations among the many joints of the hand and allow for a low dimensional characterization and synthesis of the static hand postures involved in grasping and manipulating a large set of objects. However, many other complex motor skills such as walking, reaching, throwing, and catching require controlling multi-articular time-varying trajectories rather than static postures. Dynamic control of biological and artificial limbs and bodies, especially when geometric and inertial parameters are uncertain and the joints are compliant, poses great challenges. What kind of synergies might simplify the dynamic control of motor skills involving upper and lower limbs as well as the whole body?
Static and dynamic single leg postural control performance during dual-task paradigms.
Talarico, Maria K; Lynall, Robert C; Mauntel, Timothy C; Weinhold, Paul S; Padua, Darin A; Mihalik, Jason P
2017-06-01
Combining dynamic postural control assessments and cognitive tasks may give clinicians a more accurate indication of postural control under sport-like conditions compared to single-task assessments. We examined postural control, cognitive and squatting performance of healthy individuals during static and dynamic postural control assessments in single- and dual-task paradigms. Thirty participants (female = 22, male = 8; age = 20.8 ± 1.6 years, height = 157.9 ± 13.0 cm, mass = 67.8 ± 20.6 kg) completed single-leg stance and single-leg squat assessments on a force plate individually (single-task) and concurrently (dual-task) with two cognitive assessments, a modified Stroop test and the Brooks Spatial Memory Test. Outcomes included centre of pressure speed, 95% confidence ellipse, squat depth and speed and cognitive test measures (percentage of correct answers and reaction time). Postural control performance varied between postural control assessments and testing paradigms. Participants did not squat as deep and squatted slower (P < 0.001) during dual-task paradigms (≤12.69 ± 3.4 cm squat depth, ≤16.20 ± 4.6 cm · s -1 squat speed) compared to single-task paradigms (14.57 ± 3.6 cm squat depth, 19.65 ± 5.5 cm · s -1 squat speed). The percentage of correct answers did not change across testing conditions, but Stroop reaction time (725.81 ± 59.2 ms; F 2,58 = 7.725, P = 0.001) was slowest during single-leg squats compared to baseline (691.64 ± 80.1 ms; P = 0.038) and single-task paradigms (681.33 ± 51.5 ms; P < 0.001). Dynamic dual-task assessments may be more challenging to the postural control system and may better represent postural control performance during dynamic activities.
Mogk, Jeremy P M; Rogers, Lynn M; Murray, Wendy M; Perreault, Eric J; Stinear, James W
2014-10-01
We investigated how multi-joint changes in static upper limb posture impact the corticomotor excitability of the posterior deltoid (PD) and biceps brachii (BIC), and evaluated whether postural variations in excitability related directly to changes in target muscle length. The amplitude of individual motor evoked potentials (MEPs) was evaluated in each of thirteen different static postures. Four functional postures were investigated that varied in shoulder and elbow angle, while the forearm was positioned in each of three orientations. Posture-related changes in muscle lengths were assessed using a biomechanical arm model. Additionally, M-waves were evoked in the BIC in each of three forearm orientations to assess the impact of posture on recorded signal characteristics. BIC-MEP amplitudes were altered by shoulder and elbow posture, and demonstrated robust changes according to forearm orientation. Observed changes in BIC-MEP amplitudes exceeded those of the M-waves. PD-MEP amplitudes changed predominantly with shoulder posture, but were not completely independent of influence from forearm orientation. Results provide evidence that overall corticomotor excitability can be modulated according to multi-joint upper limb posture. The ability to alter motor pathway excitability using static limb posture suggests the importance of posture selection during rehabilitation aimed at retraining individual muscle recruitment and/or overall coordination patterns. Published by Elsevier Ireland Ltd.
The relationship between perceived discomfort of static posture holding and posture holding time.
Ogutu, Jack; Park, Woojin
2015-01-01
Few studies have investigated mathematical characteristics of the discomfort-time relationship during prolonged static posture holding (SPH) on an individual basis. Consequently, the discomfort-time relationship is not clearly understood at individual trial level. The objective of this study was to examine discomfort-time sequence data obtained from a large number of maximum-duration SPH trials to understand the perceived discomfort-posture holding time relationship at the individual SPH trial level. Thirty subjects (15 male, 15 female) participated in this study as paid volunteers. The subjects performed maximum-duration SPH trials employing 12 different wholebody static postures. The hand-held load for all the task trials was a ``generic'' box weighing 2 kg. Three mathematical functions, that is, linear, logarithmic and power functions were examined as possible mathematical models for representing individual discomfort-time profiles of SPH trials. Three different time increase patterns (negatively accelerated, linear and positively accelerated) were observed in the discomfort-time sequences data. The power function model with an additive constant term was found to adequately fit most (96.4%) of the observed discomfort-time sequences, and thus, was recommended as a general mathematical representation of the perceived discomfort-posture holding time relationship in SPH. The new knowledge on the nature of the discomfort-time relationship in SPH and the power function representation found in this study will facilitate analyzing discomfort-time data of SPH and developing future posture analysis tools for work-related discomfort control.
Palmer, Ty B; Agu-Udemba, Chinonye C; Palmer, Bailey M
2018-02-01
This study aimed to examine the acute effects of straight-leg raise (SLR) static stretching on passive stiffness and postural balance in healthy, elderly men. An additional aim of this study was to examine the relationships between stiffness and balance at baseline (prior to stretching) and the relationships between the stretch-induced changes in these variables. Eleven elderly men (age = 69 ± 6 years; height = 177 ± 7 cm; mass = 83 ± 13 kg) underwent postural balance and passive stiffness assessments before and after: 1) a stretching treatment consisting of four, 15-s SLR static stretches performed by the primary investigator and 2) a control treatment consisting of no static stretching. Passive stiffness was calculated from the slopes of the initial (phase 1) and final (phase 2) portions of the angle-torque curve. Unilateral postural balance was assessed on the right leg using a commercially designed balance testing device, which provides a measurement of static stability based on the overall stability index (OSI). The slope coefficients and OSI values decreased from pre- to post-treatment for the stretching intervention (P = 0.015 and 0.018, respectively); however, there were no changes for the control (P = 0.654 and 0.920). For the stretching intervention, a significant positive relationship was observed between OSI and the slope coefficient of phase 1 at baseline (r = 0.619; P = 0.042). A significant positive relationship was also observed between the stretched-induced changes in OSI and the slope coefficient of phase 1 (r = 0.731; P = 0.011). No relationship was observed between OSI and the slope coefficient of phase 2 at baseline (r = 0.262; P = 0.437) nor was there a relationship between the changes in these variables (r = 0.419; P = 0.200). A short, practical bout of SLR static stretching may be an effective intervention for reducing passive stiffness and improving postural balance in healthy, elderly men.
Should Ballet Dancers Vary Postures and Underfoot Surfaces When Practicing Postural Balance?
Steinberg, Nili; Waddington, Gordon; Adams, Roger; Karin, Janet; Tirosh, Oren
2018-01-01
Postural balance (PB) is an important component skill for professional dancers. However, the effects of different types of postures and different underfoot surfaces on PB have not adequately been addressed. The main aim of this study was to investigate the effect of different conditions of footwear, surfaces, and standing positions on static and dynamic PB ability of young ballet dancers. A total of 36 male and female young professional ballet dancers (aged 14-19 years) completed static and dynamic balance testing, measured by head and lumbar accelerometers, while standing on one leg in the turnout position, under six different conditions: (1) "relaxed" posture; (2) "ballet" posture; (3) barefoot; (4) ballet shoes with textured insoles; (5) barefoot on a textured mat; and (6) barefoot on a spiky mat. A condition effect was found for static and dynamic PB. Static PB was reduced when dancers stood in the ballet posture compared with standing in the relaxed posture and when standing on a textured mat and on a spiky mat (p < .05), and static PB in the relaxed posture was significantly better than PB in all the other five conditions tested. Dynamic PB was significantly better while standing in ballet shoes with textured insoles and when standing on a spiky mat compared with all other conditions (p < .05). The practical implications derived from this study are that both male and female dancers should try to be relaxed in their postural muscles when practicing a ballet aligned position, including dance practice on different types of floors and on different types of textured/spiky materials may result in skill transfer to practice on normal floor surfaces, and both static and dynamic PB exercises should be assessed and generalized into practical dance routines.
Relationship between static foot posture and foot mobility
2011-01-01
Background It is not uncommon for a person's foot posture and/or mobility to be assessed during a clinical examination. The exact relationship, however, between static posture and mobility is not known. Objective The purpose of this study was to determine the degree of association between static foot posture and mobility. Method The static foot posture and foot mobility of 203 healthy individuals was assessed and then analyzed to determine if low arched or "pronated" feet are more mobile than high arched or "supinated" feet. Results The study demonstrated that those individuals with a lower standing dorsal arch height and/or a wider standing midfoot width had greater mobility in their foot. In addition, those individuals with higher Foot Posture Index (FPI) values demonstrated greater mobility and those with lower FPI values demonstrated less mobility. Finally, the amount of foot mobility that an individual has can be predicted reasonably well using either a 3 or 4 variable linear regression model. Conclusions Because of the relationship between static foot posture and mobility, it is recommended that both be assessed as part of a comprehensive evaluation of a individual with foot problems. PMID:21244705
Spatial Cues Provided by Sound Improve Postural Stabilization: Evidence of a Spatial Auditory Map?
Gandemer, Lennie; Parseihian, Gaetan; Kronland-Martinet, Richard; Bourdin, Christophe
2017-01-01
It has long been suggested that sound plays a role in the postural control process. Few studies however have explored sound and posture interactions. The present paper focuses on the specific impact of audition on posture, seeking to determine the attributes of sound that may be useful for postural purposes. We investigated the postural sway of young, healthy blindfolded subjects in two experiments involving different static auditory environments. In the first experiment, we compared effect on sway in a simple environment built from three static sound sources in two different rooms: a normal vs. an anechoic room. In the second experiment, the same auditory environment was enriched in various ways, including the ambisonics synthesis of a immersive environment, and subjects stood on two different surfaces: a foam vs. a normal surface. The results of both experiments suggest that the spatial cues provided by sound can be used to improve postural stability. The richer the auditory environment, the better this stabilization. We interpret these results by invoking the “spatial hearing map” theory: listeners build their own mental representation of their surrounding environment, which provides them with spatial landmarks that help them to better stabilize. PMID:28694770
Chaves, Thaís C.; Turci, Aline M.; Pinheiro, Carina F.; Sousa, Letícia M.; Grossi, Débora B.
2014-01-01
BACKGROUND: The association between body postural changes and temporomandibular disorders (TMD) has been widely discussed in the literature, however, there is little evidence to support this association. OBJECTIVES: The aim of the present study was to conduct a systematic review to assess the evidence concerning the association between static body postural misalignment and TMD. METHOD: A search was conducted in the PubMed/Medline, Embase, Lilacs, Scielo, Cochrane, and Scopus databases including studies published in English between 1950 and March 2012. Cross-sectional, cohort, case control, and survey studies that assessed body posture in TMD patients were selected. Two reviewers performed each step independently. A methodological checklist was used to evaluate the quality of the selected articles. RESULTS: Twenty studies were analyzed for their methodological quality. Only one study was classified as a moderate quality study and two were classified as strong quality studies. Among all studies considered, only 12 included craniocervical postural assessment, 2 included assessment of craniocervical and shoulder postures,, and 6 included global assessment of body posture. CONCLUSION: There is strong evidence of craniocervical postural changes in myogenous TMD, moderate evidence of cervical postural misalignment in arthrogenous TMD, and no evidence of absence of craniocervical postural misalignment in mixed TMD patients or of global body postural misalignment in patients with TMD. It is important to note the poor methodological quality of the studies, particularly those regarding global body postural misalignment in TMD patients. PMID:25590441
[Postural control disorders in initial phases of whiplash].
Pleguezuelos Cobo, Eulogio; García-Alsina, Joan; García Almazán, Concepción; Ortiz Fandiño, Javier; Pérez Mesquida, M Engracia; Guirao Cano, Lluis; Samitier Pastor, Beatriz; Perucho Pont, Cristina; Coll Serra, Estel; Matarrubias, Carlos; Reveron, Genoveva
2009-05-02
Dizziness of variable intensity is a frequent complaint in patients who suffered whiplash and largely documented balance disturbances. The objective of the study was to identify balance disorders in early stage of whiplash after road traffic accidents. Ninety nine women were included in the study. Fifty four women had suffered whiplash within two weeks and 45 were included in a healthy control group. Static posturography on a force platform was carried out in all study participants, by means of the Romberg test in four sequential phases, using the postural sway area (SA) as a dependent variable. Visual Analogic Scale (VAS) and Northwick Park Neck Pain Questionnaire (NPH) were used to evaluate pain and function. Postural sway area increased significantly in each of the consecutive phases in both groups. The differences of the means of the postural sway area were statistically significant in all Romberg phases (p=.009 to P=.000). No correlation was found between SA and VAS or NPH scores. There was a positive correlation between the postural sway area standing on a thick foam cushion placed over the plate with closed eyes and the number of days of transitory incapacity (r=0.414; P=.009). Patients with recent whiplash show a postural control disturbance revealed trough a sequential static posturography analysis. This suggests that the balance disorder is not only a consequence of late whiplash syndrome evolution. Therefore, we should promote early instauration of a specific therapeutic approach if and when the patient refers dizziness and related symptoms.
Horak, Fay B
2006-09-01
Postural control is no longer considered simply a summation of static reflexes but, rather, a complex skill based on the interaction of dynamic sensorimotor processes. The two main functional goals of postural behaviour are postural orientation and postural equilibrium. Postural orientation involves the active alignment of the trunk and head with respect to gravity, support surfaces, the visual surround and internal references. Sensory information from somatosensory, vestibular and visual systems is integrated, and the relative weights placed on each of these inputs are dependent on the goals of the movement task and the environmental context. Postural equilibrium involves the coordination of movement strategies to stabilise the centre of body mass during both self-initiated and externally triggered disturbances of stability. The specific response strategy selected depends not only on the characteristics of the external postural displacement but also on the individual's expectations, goals and prior experience. Anticipatory postural adjustments, prior to voluntary limb movement, serve to maintain postural stability by compensating for destabilising forces associated with moving a limb. The amount of cognitive processing required for postural control depends both on the complexity of the postural task and on the capability of the subject's postural control system. The control of posture involves many different underlying physiological systems that can be affected by pathology or sub-clinical constraints. Damage to any of the underlying systems will result in different, context-specific instabilities. The effective rehabilitation of balance to improve mobility and to prevent falls requires a better understanding of the multiple mechanisms underlying postural control.
Piponnier, Jean-Claude; Hanssens, Jean-Marie; Faubert, Jocelyn
2009-01-14
To examine the respective roles of central and peripheral vision in the control of posture, body sway amplitude (BSA) and postural perturbations (given by velocity root mean square or vRMS) were calculated in a group of 19 healthy young adults. The stimulus was a 3D tunnel, either static or moving sinusoidally in the anterior-posterior direction. There were nine visual field conditions: four central conditions (4, 7, 15, and 30 degrees); four peripheral conditions (central occlusions of 4, 7, 15, and 30 degrees); and a full visual field condition (FF). The virtual tunnel respected all the aspects of a real physical tunnel (i.e., stereoscopy and size increase with proximity). The results show that, under static conditions, central and peripheral visual fields appear to have equal importance for the control of stance. In the presence of an optic flow, peripheral vision plays a crucial role in the control of stance, since it is responsible for a compensatory sway, whereas central vision has an accessory role that seems to be related to spatial orientation.
Effect of textured foot orthotics on static and dynamic postural stability in middle-aged females.
Wilson, Marjorie L; Rome, Keith; Hodgson, David; Ball, Peter
2008-01-01
Foot orthotics (FO) may be prescribed for a range of lower limb and foot conditions. Prior studies report use of FO in enhancing postural stability in healthy younger adults, and do not control for footwear type. Currently, interest in the effects of FO on postural stability in older adults has increased. Limited reports exist of the effects on postural stability of FO made of combinations of materials, thicknesses and surface textures. In this study 40 healthy females (51.1+/-5.8 years) recruited into a within subject test-retest randomised clinical trial were provided with identical footwear and randomised into four FO conditions (control, grid, dimple and plain, n=10 for each condition). Participants wore the footwear for 4 weeks, a minimum of 6h/day. A Kistler force plate was used to determine postural stability variables (anterior-posterior displacements and medial-lateral displacements) for each participant in a static position, with eyes open and eyes closed. Base of support was evaluated using the GAITRite system. Each outcome measure was measured at baseline and 4 weeks. Postural stability variables demonstrated no significant differences between the four FO conditions. No significant differences were observed with base of support between the four conditions. We have demonstrated no detrimental effects on postural stability in older females after 4 weeks. This is regardless of orthotic texture and is independent of footwear. Biomechanical or sensory effects of FO on postural stability are still to be determined. These may be dependent on the geometry and texture of the orthotic.
Lelard, Thierry; Doutrellot, Pierre-Louis; David, Pascal; Ahmaidi, Said
2010-01-01
Lelard T, Doutrellot P-L, David P, Ahmaidi S. Effects of a 12-week Tai Chi Chuan program versus a balance training program on postural control and walking ability in older people. To compare the respective effects of 2 balance training programs: a Tai Chi (TC) program and a balance training program on static postural control and walking ability. Randomized controlled trial. General community. Older subjects (N=28) participated in the study. The TC group (n=14; mean age +/- SD, 76.8+/-5.1y) and the balance training group (n=14; 77.0+/-4.5y) were both trained for 12 weeks. Static postural control was assessed via measurement of center of pressure sway under eyes open (EO) and eyes closed (EC) conditions. Walking speed over a 10-meter course was also assessed. After the 12-week training period, there were no significant differences in walking speed or postural parameters in either the EO or EC conditions for the TC and balance training groups. Performance in the EC condition was lower than in the EO condition in pretest and posttest for the balance training and TC groups. The Romberg quotient (EO/EC ratio) was significantly higher after the balance training program than the TC program (P<.05). We cannot conclude that the balance training program has better effects than the TC program on postural control or walking ability. None of the outcome measures showed significant change posttraining in either the TC or the balance training groups. However, the differences described in the Romberg quotient after the training period between the TC and the balance training groups suggest that TC should be helpful to limit the deleterious effects of eye closure on postural balance. Copyright (c) 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
The effect of spinal curvature on the photogrammetric assessment on static balance in elderly women.
Drzał-Grabiec, Justyna; Rachwał, Maciej; Podgórska-Bednarz, Justyna; Rykała, Justyna; Snela, Sławomir; Truszczyńska, Aleksandra; Trzaskoma, Zbigniew
2014-05-29
Involutional changes to the body in elderly patients affect the shape of the spine and the activity of postural muscles. The purpose of this study was to assess the influence of age-related changes in spinal curvature on postural balance in elderly women. The study population consisted of 90 women, with a mean age of 70 ± 8.01 years. Static balance assessments were conducted on a tensometric platform, and posturographic assessments of body posture were performed using a photogrammetric method based on the Projection Moiré method. The results obtained were analysed using the Spearman's rank correlation coefficient test. We found a statistically significant correlation between body posture and the quality of the balance system response based on the corrective function of the visual system. The shape of the spinal curvature influenced postural stability, as measured by static posturography. Improvement in the quality of the balance system response depended on corrective information from the visual system and proprioceptive information from the paraspinal muscles. The sensitivity of the balance system to the change of centre of pressure location was influenced by the direction of the change in rotation of the shoulder girdle and spine. Development of spinal curvature in the sagittal plane and maintenance of symmetry in the coronal and transverse planes are essential for correct balance control, which in turn is essential for the development of a properly proportioned locomotor system.
van der Spek, Jaap H; Veltink, Peter H; Hermens, Hermie J; Koopman, Bart F J M; Boom, Herman B K
2003-12-01
The prerequisites for stable crutch supported standing were analyzed in this paper. For this purpose, a biomechanical model of crutch supported paraplegic stance was developed assuming the patient was standing with extended knees. When using crutches during stance, the crutches will put a position constraint on the shoulder, thus reducing the number of degrees of freedom. Additional hip-joint stiffness was applied to stabilize the hip joint and, therefore, to stabilize stance. The required hip-joint stiffness for changing crutch placement and hip-joint offset angle was studied under static and dynamic conditions. Modeling results indicate that, by using additional hip-joint stiffness, stable crutch supported paraplegic standing can be achieved, both under static as well as dynamic situations. The static equilibrium postures and the stability under perturbations were calculated to be dependent on crutch placement and stiffness applied. However, postures in which the hip joint was in extension (C postures) appeared to the most stable postures. Applying at least 60 N x m/rad hip-joint stiffness gave stable equilibrium postures in all cases. Choosing appropriate hip-joint offset angles, the static equilibrium postures changed to more erect postures, without causing instability or excessive arm forces to occur.
Keshner, E A; Kenyon, R V
2000-01-01
We examined the effect of a 3-dimensional stereoscopic scene on segmental stabilization. Eight subjects participated in static sway and locomotion experiments with a visual scene that moved sinusoidally or at constant velocity about the pitch or roll axes. Segmental displacements, Fast Fourier Transforms, and Root Mean Square values were calculated. In both pitch and roll, subjects exhibited greater magnitudes of motion in head and trunk than ankle. Smaller amplitudes and frequent phase reversals suggested control of the ankle by segmental proprioceptive inputs and ground reaction forces rather than by the visual-vestibular signals. Postural controllers may set limits of motion at each body segment rather than be governed solely by a perception of the visual vertical. Two locomotor strategies were also exhibited, implying that some subjects could override the effect of the roll axis optic flow field. Our results demonstrate task dependent differences that argue against using static postural responses to moving visual fields when assessing more dynamic tasks.
Zech, Astrid; Argubi-Wollesen, Andreas; Rahlf, Anna-Lina
2015-01-01
In recreational sports, uncushioned, light-weight and minimalist shoes are increasingly used to imitate barefoot situations. Uncertainty exists whether these shoes provide sufficient stability during challenging movements. In this randomised crossover study, 35 healthy distance runners performed jump landing stabilisation and single-leg stance tests on a force plate, using four conditions in random order: barefoot, uncushioned minimalist shoes, cushioned ultraflexible shoes and standard running shoes. Ground reaction force (GRF) and centre of pressure (COP) data were used to determine unilateral jump landing stabilisation time and COP sway velocity during single-leg stance. Repeated measures analysis of variance revealed significant footwear interactions for medial-lateral (p < 0.001) and anterior-posterior COP sway velocity during standing (p < 0.001). The barefoot condition produced significantly greater postural sway velocities (p < 0.001) compared to all footwear conditions. No significant effects were found for jump landing stabilisation time. In conclusion, the results of this study indicate that increased shoe flexibility and reduced sole support have no, or only minor influence on static and dynamic postural control, and therefore, may not increase the risk of traumatic events during sports activities. However, barefoot conditions should be considered carefully when adequate postural control is needed.
Li, Xiaodi; Wang, Yuzhou; Wang, Zhanhang; Xu, Yan; Zheng, Wenhua
2018-01-01
The objective of the study is to evaluate postural dysfunction of multiple system atrophy-parkinsonian type (MSA-P) and cerebellar type (MSA-C) by static posturography exam. A total of 29 MSA-P patients, 40 MSA-C patients, and 23 healthy controls (HC) were recruited and engaged in a sensory organization test (SOT). The amplitude of the postural sway was measured and transformed into energy value by Fourier analyzer. SOT scores, frequency of falls and typical 3-Hz postural tremors during the four stance tasks, and energy value in three different frequency bands were recorded and compared. Compared with HC, SOT scores were significantly lower in MSA groups (P < 0.01). Compared with MSA-P, the vestibular scores were further reduced in MSA-C patients (P < 0.05). Falls were more frequent in MSA groups, especially in SOT4 task (foam surface with eyes closed) or in MSA-C group (P < 0.05). Typical 3-Hz postural tremor was observed in 97.5% MSA-C patients, in 24.1% MSA-P patients but in none of the HC (P < 0.05). Compared with HC, much more energy was consumed in every task, every direction, and nearly every frequency band in MSA groups. Energy value of MSA-C group was significantly higher than that of MSA-P, especially in higher frequency band (2 ~ 20 Hz) or in more difficult stance tasks (SOT 3 ~ 4, foam surface with eyes open or closed) (P < 0.05). Both MSA-P and MSA-C were characterized by severe static postural dysfunction. However, typical 3-Hz postural tremor was predominant in MSA-C and was very useful in the differential diagnosis between MSA-P and MSA-C.
Evaluation of Postural Control in Patients with Glaucoma Using a Virtual Reality Environment.
Diniz-Filho, Alberto; Boer, Erwin R; Gracitelli, Carolina P B; Abe, Ricardo Y; van Driel, Nienke; Yang, Zhiyong; Medeiros, Felipe A
2015-06-01
To evaluate postural control using a dynamic virtual reality environment and the relationship between postural metrics and history of falls in patients with glaucoma. Cross-sectional study. The study involved 42 patients with glaucoma with repeatable visual field defects on standard automated perimetry (SAP) and 38 control healthy subjects. Patients underwent evaluation of postural stability by a force platform during presentation of static and dynamic visual stimuli on stereoscopic head-mounted goggles. The dynamic visual stimuli presented rotational and translational ecologically valid peripheral background perturbations. Postural stability was also tested in a completely dark field to assess somatosensory and vestibular contributions to postural control. History of falls was evaluated by a standard questionnaire. Torque moments around the center of foot pressure on the force platform were measured, and the standard deviations of the torque moments (STD) were calculated as a measurement of postural stability and reported in Newton meters (Nm). The association with history of falls was investigated using Poisson regression models. Age, gender, body mass index, severity of visual field defect, best-corrected visual acuity, and STD on dark field condition were included as confounding factors. Patients with glaucoma had larger overall STD than controls during both translational (5.12 ± 2.39 Nm vs. 3.85 ± 1.82 Nm, respectively; P = 0.005) and rotational stimuli (5.60 ± 3.82 Nm vs. 3.93 ± 2.07 Nm, respectively; P = 0.022). Postural metrics obtained during dynamic visual stimuli performed better in explaining history of falls compared with those obtained in static and dark field condition. In the multivariable model, STD values in the mediolateral direction during translational stimulus were significantly associated with a history of falls in patients with glaucoma (incidence rate ratio, 1.85; 95% confidence interval, 1.30-2.63; P = 0.001). The study presented and validated a novel paradigm for evaluation of balance control in patients with glaucoma on the basis of the assessment of postural reactivity to dynamic visual stimuli using a virtual reality environment. The newly developed metrics were associated with a history of falls and may help to provide a better understanding of balance control in patients with glaucoma. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Evaluation of Postural Control in Glaucoma Patients Using a Virtual 1 Reality Environment
Diniz-Filho, Alberto; Boer, Erwin R.; Gracitelli, Carolina P. B.; Abe, Ricardo Y.; van Driel, Nienke; Yang, Zhiyong; Medeiros, Felipe A.
2015-01-01
Purpose To evaluate postural control using a dynamic virtual reality environment and the relationship between postural metrics and history of falls in glaucoma patients. Design Cross-sectional study. Participants The study involved 42 glaucoma patients with repeatable visual field defects on standard automated perimetry (SAP) and 38 control healthy subjects. Methods Patients underwent evaluation of postural stability by a force platform during presentation of static and dynamic visual stimuli on stereoscopic head-mounted goggles. The dynamic visual stimuli presented rotational and translational ecologically valid peripheral background perturbations. Postural stability was also tested in a completely dark field to assess somatosensory and vestibular contributions to postural control. History of falls was evaluated by a standard questionnaire. Main Outcome Measures Torque moments around the center of foot pressure on the force platform were measured and the standard deviations (STD) of these torque moments were calculated as a measurement of postural stability and reported in Newton meter (Nm). The association with history of falls was investigated using Poisson regression models. Age, gender, body mass index, severity of visual field defect, best-corrected visual acuity, and STD on dark field condition were included as confounding factors. Results Glaucoma patients had larger overall STD than controls during both translational (5.12 ± 2.39 Nm vs. 3.85 ± 1.82 Nm, respectively; P = 0.005) as well as rotational stimuli (5.60 ± 3.82 Nm vs. 3.93 ± 2.07 Nm, respectively; P = 0.022). Postural metrics obtained during dynamic visual stimuli performed better in explaining history of falls compared to those obtained in static and dark field condition. In the multivariable model, STD values in the mediolateral direction during translational stimulus were significantly associated with history of falls in glaucoma patients (incidence-rate ratio = 1.85; 95% CI: 1.30 – 2.63; P = 0.001). Conclusions The study presented and validated a novel paradigm for evaluation of balance control in glaucoma patients based on the assessment of postural reactivity to dynamic visual stimuli using a virtual reality environment. The newly developed metrics were associated with history of falls and may help to provide a better understanding of balance control in glaucoma patients. PMID:25892017
Fear of falling and postural reactivity in patients with glaucoma.
Daga, Fábio B; Diniz-Filho, Alberto; Boer, Erwin R; Gracitelli, Carolina P B; Abe, Ricardo Y; Medeiros, Felipe A
2017-01-01
To investigate the relationship between postural metrics obtained by dynamic visual stimulation in a virtual reality environment and the presence of fear of falling in glaucoma patients. This cross-sectional study included 35 glaucoma patients and 26 controls that underwent evaluation of postural balance by a force platform during presentation of static and dynamic visual stimuli with head-mounted goggles (Oculus Rift). In dynamic condition, a peripheral translational stimulus was used to induce vection and assess postural reactivity. Standard deviations of torque moments (SDTM) were calculated as indicative of postural stability. Fear of falling was assessed by a standardized questionnaire. The relationship between a summary score of fear of falling and postural metrics was investigated using linear regression models, adjusting for potentially confounding factors. Subjects with glaucoma reported greater fear of falling compared to controls (-0.21 vs. 0.27; P = 0.039). In glaucoma patients, postural metrics during dynamic visual stimulus were more associated with fear of falling (R2 = 18.8%; P = 0.001) than static (R2 = 3.0%; P = 0.005) and dark field (R2 = 5.7%; P = 0.007) conditions. In the univariable model, fear of falling was not significantly associated with binocular standard perimetry mean sensitivity (P = 0.855). In the multivariable model, each 1 Nm larger SDTM in anteroposterior direction during dynamic stimulus was associated with a worsening of 0.42 units in the fear of falling questionnaire score (P = 0.001). In glaucoma patients, postural reactivity to a dynamic visual stimulus using a virtual reality environment was more strongly associated with fear of falling than visual field testing and traditional balance assessment.
Fear of falling and postural reactivity in patients with glaucoma
Daga, Fábio B.; Diniz-Filho, Alberto; Boer, Erwin R.; Gracitelli, Carolina P. B.; Abe, Ricardo Y.; Medeiros, Felipe A.
2017-01-01
Purpose To investigate the relationship between postural metrics obtained by dynamic visual stimulation in a virtual reality environment and the presence of fear of falling in glaucoma patients. Methods This cross-sectional study included 35 glaucoma patients and 26 controls that underwent evaluation of postural balance by a force platform during presentation of static and dynamic visual stimuli with head-mounted goggles (Oculus Rift). In dynamic condition, a peripheral translational stimulus was used to induce vection and assess postural reactivity. Standard deviations of torque moments (SDTM) were calculated as indicative of postural stability. Fear of falling was assessed by a standardized questionnaire. The relationship between a summary score of fear of falling and postural metrics was investigated using linear regression models, adjusting for potentially confounding factors. Results Subjects with glaucoma reported greater fear of falling compared to controls (-0.21 vs. 0.27; P = 0.039). In glaucoma patients, postural metrics during dynamic visual stimulus were more associated with fear of falling (R2 = 18.8%; P = 0.001) than static (R2 = 3.0%; P = 0.005) and dark field (R2 = 5.7%; P = 0.007) conditions. In the univariable model, fear of falling was not significantly associated with binocular standard perimetry mean sensitivity (P = 0.855). In the multivariable model, each 1 Nm larger SDTM in anteroposterior direction during dynamic stimulus was associated with a worsening of 0.42 units in the fear of falling questionnaire score (P = 0.001). Conclusion In glaucoma patients, postural reactivity to a dynamic visual stimulus using a virtual reality environment was more strongly associated with fear of falling than visual field testing and traditional balance assessment. PMID:29211742
Jassi, F J; Del Antônio, T; Moraes, R; George, S Z; Chaves, T C
2017-06-01
To investigate the immediate and 1-month effects of functional taping to lumbar spine for pain intensity and postural control in patients with chronic non-specific low back pain. Randomised clinical trial. One hundred and twenty participants aged 18 to 50 years. Participants will be allocated at random to receive one of three interventions: functional star-shape taping for 7 days, sham functional taping for 7 days or minimal intervention, one session. The primary outcomes will be pain intensity and postural control. Four measurements of static posturography will be conducted: pre-intervention, immediately after application of the tape, 7 days post-intervention (after removal of the tape) and 1-month follow-up. The secondary outcomes will be low-back-pain-related disability, global perceived effect of treatment and fear avoidance beliefs. Primary and secondary outcomes will be assessed on three occasions: pre-intervention, 7 days post-intervention and at 1-month follow-up. All statistical analyses will be conducted following intention-to-treat principles, and the treatment effects will be calculated using linear mixed models. The results of this study will determine the effects of functional taping on pain intensity and postural control compared with sham taping and minimal intervention. NCT02546466. Copyright © 2016 Chartered Society of Physiotherapy. All rights reserved.
Jørgensen, Martin Grønbech
2014-01-01
The overall purpose of this thesis was to examine selected methodological aspects and novel approaches for measuring postural balance older adults, and to examine the effects of biofeedback-based Nintendo Wii training on selected physiological, psychological and functional outcome variables in community-dwelling older adults. In Study I balance control was investigated using force plate analysis of Centre of Pressure (COP) excursion during static bilateral standing in 32 community-dwelling older adults at three different time-points (09:00, 12:30, and 16:00) throughout the day. An overall significant time-of-day effect was observed for all selected COP variables. The greatest change in all COP variables was observed (on average ~15%) between midday (12:30) and the afternoon (16:00), indicating that a systematic time-of-day influence on static postural balance exists in community-dwelling older adults. Consequently, longitudinal (i.e. pre-to-post training) comparisons of postural balance in in older adults with repeated assessments should be conducted at the same time-of-day. In Study II a novel approach for measuring postural balance (using the Nintendo Wii Stillness and Agility tests) was examined for reproducibility and concurrent validity in 30 community-dwelling older adults. While the Nintendo Wii Stillness test showed a high reproducibility, a systematic learning effect between successive sessions was observed for the Agility test. Moderate-to-excellent concurrent validity was seen for the Stillness test. In contrast, the Agility test revealed a poor concurrent validity. In conclusion, the Wii Stillness test seems to represent a low-cost objective reproducible test of postural balance in community-dwelling older adults and appears feasible in various clinical settings. A habituation (familiarization) period is necessary for the Wii Agility test to avoid a systematic learning effect between successive test sessions. Study III investigated the effect of ten weeks of biofeedback-based Nintendo Wii training on static postural balance, mechanical lower limb muscle function, and functional performance in 58 community-dwelling older adults. Additionally, the study investigated the participant motivation for this type of training (Exergaming). Marked improvements in maximal leg muscle strength, rapid force capacity and functional performance were observed following the period of biofeedback-based Nintendo Wii training. Unexpectedly, static bilateral postural balance remained unaltered following the period of intervention. The study participants perceived the Nintendo Wii training as enjoyable and highly motivating, which suggests that this type of exercise may be successfully implemented at senior citizens' centers and/or in the home of the elderly. The results presented in this thesis suggest that strict control of time-of-day is an important methodological aspect when evaluating postural balance in older adults, and an assessment protocol using the Nintendo Wii-Balance Board is reproducible and valid. Biofeedback-based Nintendo Wii exercise intervention appeared unsuccessful in improving static bilateral postural balance, most likely due to a test ceiling effect in the selected outcome measures, but the intervention elicited marked positive changes in various key risk factors associated to fall accidents. Notably, Wii based biofeedback exercise was perceived by the older adults as a highly motivating type of training.
Colnat-Coulbois, S; Gauchard, G C; Maillard, L; Barroche, G; Vespignani, H; Auque, J; Perrin, P P
2011-10-13
Parkinson's disease (PD) is known to affect postural control, especially in situations needing a change in balance strategy or when a concurrent task is simultaneously performed. However, few studies assessing postural control in patients with PD included homogeneous population in late stage of the disease. Thus, this study aimed to analyse postural control and strategies in a homogeneous population of patients with idiopathic advanced (late-stage) PD, and to determine the contribution of peripheral inputs in simple and more complex postural tasks, such as sensory conflicting and dynamic tasks. Twenty-four subjects with advanced PD (duration: median (M)=11.0 years, interquartile range (IQR)=4.3 years; Unified Parkinson's Disease Rating Scale (UPDRS): M "on-dopa"=13.5, IQR=7.8; UPDRS: M "off-dopa"=48.5, IQR=16.8; Hoehn and Yahr stage IV in all patients) and 48 age-matched healthy controls underwent static (SPT) and dynamic posturographic (DPT) tests and a sensory organization test (SOT). In SPT, patients with PD showed reduced postural control precision with increased oscillations in both anterior-posterior and medial-lateral planes. In SOT, patients with PD displayed reduced postural performances especially in situations in which visual and vestibular cues became predominant to organize balance control, as was the ability to manage balance in situations for which visual or proprioceptive inputs are disrupted. In DPT, postural restabilization strategies were often inefficient to maintain equilibrium resulting in falls. Postural strategies were often precarious, postural regulation involving more hip joint than ankle joint in patients with advanced PD than in controls. Difficulties in managing complex postural situations, such as sensory conflicting and dynamic situations might reflect an inadequate sensory organization suggesting impairment in central information processing. Copyright © 2011. Published by Elsevier Ltd.
Static and dynamic postural control in low-vision and normal-vision adults.
Tomomitsu, Mônica S V; Alonso, Angelica Castilho; Morimoto, Eurica; Bobbio, Tatiana G; Greve, Julia M D
2013-04-01
This study aimed to evaluate the influence of reduced visual information on postural control by comparing low-vision and normal-vision adults in static and dynamic conditions. Twenty-five low-vision subjects and twenty-five normal sighted adults were evaluated for static and dynamic balance using four protocols: 1) the Modified Clinical Test of Sensory Interaction on Balance on firm and foam surfaces with eyes opened and closed; 2) Unilateral Stance with eyes opened and closed; 3) Tandem Walk; and 4) Step Up/Over. The results showed that the low-vision group presented greater body sway compared with the normal vision during balance on a foam surface (p≤0.001), the Unilateral Stance test for both limbs (p≤0.001), and the Tandem Walk test. The low-vision group showed greater step width (p≤0.001) and slower gait speed (p≤0.004). In the Step Up/Over task, low-vision participants were more cautious in stepping up (right p≤0.005 and left p≤0.009) and in executing the movement (p≤0.001). These findings suggest that visual feedback is crucial for determining balance, especially for dynamic tasks and on foam surfaces. Low-vision individuals had worse postural stability than normal-vision adults in terms of dynamic tests and balance on foam surfaces.
Reliability and validity of the Microsoft Kinect for evaluating static foot posture
2013-01-01
Background The evaluation of foot posture in a clinical setting is useful to screen for potential injury, however disagreement remains as to which method has the greatest clinical utility. An inexpensive and widely available imaging system, the Microsoft Kinect™, may possess the characteristics to objectively evaluate static foot posture in a clinical setting with high accuracy. The aim of this study was to assess the intra-rater reliability and validity of this system for assessing static foot posture. Methods Three measures were used to assess static foot posture; traditional visual observation using the Foot Posture Index (FPI), a 3D motion analysis (3DMA) system and software designed to collect and analyse image and depth data from the Kinect. Spearman’s rho was used to assess intra-rater reliability and concurrent validity of the Kinect to evaluate foot posture, and a linear regression was used to examine the ability of the Kinect to predict total visual FPI score. Results The Kinect demonstrated moderate to good intra-rater reliability for four FPI items of foot posture (ρ = 0.62 to 0.78) and moderate to good correlations with the 3DMA system for four items of foot posture (ρ = 0.51 to 0.85). In contrast, intra-rater reliability of visual FPI items was poor to moderate (ρ = 0.17 to 0.63), and correlations with the Kinect and 3DMA systems were poor (absolute ρ = 0.01 to 0.44). Kinect FPI items with moderate to good reliability predicted 61% of the variance in total visual FPI score. Conclusions The majority of the foot posture items derived using the Kinect were more reliable than the traditional visual assessment of FPI, and were valid when compared to a 3DMA system. Individual foot posture items recorded using the Kinect were also shown to predict a moderate degree of variance in the total visual FPI score. Combined, these results support the future potential of the Kinect to accurately evaluate static foot posture in a clinical setting. PMID:23566934
Park, Sun Wook; Son, Sung Min; Lee, Na Kyung
2017-05-01
This study aimed to investigate the effects of exercise-induced muscle fatigue in the unaffected knee joint on postural control and kinematic changes in stroke patients. Forty participants (20 stroke patients, 20 age-matched healthy participants) were recruited. To induce fatigue, maximum voluntary isometric contractions were performed in the unaffected knee joint in a Leg Extension Rehab exercise machine using the pneumatic resistance. We measured static and dynamic balance and lower-limb kinematics during gait. Changes in postural control parameters anteroposterior sway speed and total center of pressure distance differed significantly between the stroke and control groups. In addition, changes in gait kinematic parameters knee and ankle angles of initial contact differed significantly between stroke (paretic and non-paretic) and control groups. Muscle fatigue in the unaffected knee and ankle impaired postural control and debilitates kinematic movement of ipsilateral and contralateral lower limbs, and may place the fatigued stroke patients at greater risk for falls.
Posture and equilibrium in orthopedic and rheumatologic diseases.
Missaoui, B; Portero, P; Bendaya, S; Hanktie, O; Thoumie, P
2008-12-01
Posture and balance may be affected in many spine or lower-limb disorders. An extensive evaluation including clinical tests and movement analysis techniques may be necessary to characterize how rheumatologic or orthopedic diseases are related to static or dynamic changes in postural control. In lower limbs, unbalance may be related to a decreased stability following arthrosis or ligament injuries at knee or ankle levels, while hip lesions appear less associated with such troubles. Spinal diseases at cervical level are frequently associated with postural changes and impaired balance control, related to the major role of sensory inputs during stance and gait. At lower levels, changes are noticed in major scoliosis and may be related to pain intensity in patients with chronic low-back pain. Whatever the initial lesion and the affected level, improvement in clinical or instrumental tests following rehabilitation or brace wearing provides argument for a close relationship between rheumatologic or orthopedic diseases and related impairments in posture and balance control.
Palmgren, Per J; Andreasson, Daniel; Eriksson, Magnus; Hägglund, Andreas
2009-06-30
Although cervical pain is widespread, most victims are only mildly and occasionally affected. A minority, however, suffer chronic pain and/or functional impairments. Although there is abundant literature regarding nontraumatic neck pain, little focuses on diagnostic criteria. During the last decade, research on neck pain has been designed to evaluate underlying pathophysiological mechanisms, without noteworthy success. Independent researchers have investigated postural balance and cervicocephalic kinesthetic sensibility among patients with chronic neck pain, and have (in most cases) concluded the source of the problem is a reduced ability in the neck's proprioceptive system. Here, we investigated cervicocephalic kinesthetic sensibility and postural balance among patients with nontraumatic chronic neck pain. Ours was a two-group, observational pilot study of patients with complaints of continuous neck pain during the 3 months prior to recruitment. Thirteen patients with chronic neck pain of nontraumatic origin were recruited from an institutional outpatient clinic. Sixteen healthy persons were recruited as a control group. Cervicocephalic kinesthetic sensibility was assessed by exploring head repositioning accuracy and postural balance was measured with computerized static posturography. Parameters of cervicocephalic kinesthetic sensibility were not reduced. However, in one of six test movements (flexion), global repositioning errors were significantly larger in the experimental group than in the control group (p < .05). Measurements did not demonstrate any general impaired postural balance, and varied substantially among participants in both groups. In patients with nontraumatic chronic neck pain, we found statistically significant global repositioning errors in only one of six test movements. In this cohort, we found no evidence of impaired postural balance.Head repositioning accuracy and computerized static posturography are imperfect measures of functional proprioceptive impairments. Validity of (and procedures for using) these instruments demand further investigation. Current Controlled Trials ISRCTN96873990.
Drijkoningen, David; Leunissen, Inge; Caeyenberghs, Karen; Hoogkamer, Wouter; Sunaert, Stefan; Duysens, Jacques; Swinnen, Stephan P
2015-12-01
Many patients with traumatic brain injury (TBI) suffer from postural control impairments that can profoundly affect daily life. The cerebellum and brain stem are crucial for the neural control of posture and have been shown to be vulnerable to primary and secondary structural consequences of TBI. The aim of this study was to investigate whether morphometric differences in the brain stem and cerebellum can account for impairments in static and dynamic postural control in TBI. TBI patients (n = 18) and healthy controls (n = 30) completed three challenging postural control tasks on the EquiTest® system (Neurocom). Infratentorial grey matter (GM) and white matter (WM) volumes were analyzed with cerebellum-optimized voxel-based morphometry using the spatially unbiased infratentorial toolbox. Volume loss in TBI patients was revealed in global cerebellar GM, global infratentorial WM, middle cerebellar peduncles, pons and midbrain. In the TBI group and across both groups, lower postural control performance was associated with reduced GM volume in the vermal/paravermal regions of lobules I-IV, V and VI. Moreover, across all participants, worse postural control performance was associated with lower WM volume in the pons, medulla, midbrain, superior and middle cerebellar peduncles and cerebellum. This is the first study in TBI patients to demonstrate an association between postural impairments and reduced volume in specific infratentorial brain areas. Volumetric measures of the brain stem and cerebellum may be valuable prognostic markers of the chronic neural pathology, which complicates rehabilitation of postural control in TBI. © 2015 Wiley Periodicals, Inc.
Wong, Kelvin C H; Lee, Raymond Y W; Yeung, Simon S
2009-04-29
The present study aims to determine the time spent in different static trunk postures during a typical working day of workers in a special school for the severe handicaps. Eighteen workers with low back pain (LBP) and fifteen asymptomatic workers were recruited. A cross-sectional design was employed to study the time spent in different static trunk postures which was recorded by a biaxial accelerometer attached to the T12 level of the back of the subjects. The results of ANCOVA revealed that subjects with LBP spent significantly longer percentage of time in static trunk posture when compared to normal (p < 0.05). It was also shown that they spent significantly longer time in trunk flexion for more than 10 degrees (p < 0.0125). An innovative method has been developed for continuous tracking of spinal posture, and this has potential for widespread applications in the workplace. The findings of the present investigation suggest that teachers in special schools are at increased risk of getting LBP. In order to minimise such risk, frequent postural change and awareness of work posture are recommended.
Ice skating promotes postural control in children.
Keller, M; Röttger, K; Taube, W
2014-12-01
High fall rates causing injury and enormous financial costs are reported for children. However, only few studies investigated the effects of balance training in children and these studies did not find enhanced balance performance in postural (transfer) tests. Consequently, it was previously speculated that classical balance training might not be stimulating enough for children to adequately perform these exercises. Therefore, the aim of this study is to evaluate the influence of ice skating as an alternative form of balance training. Volunteers of an intervention (n = 17; INT: 13.1 ± 0.4 years) and a control group (n = 13; CON: 13.2 ± 0.3 years) were tested before and after training in static and dynamic postural transfer tests. INT participated in eight sessions of ice skating during education lessons, whereas CON participated in normal physical education. Enhanced balance performance was observed in INT but not in CON when tested on an unstable free-swinging platform (P < 0.05) or when performing a functional reach test (P < 0.001). This is the first study showing significantly enhanced balance performance after ice skating in children. More importantly, participating children improved static and dynamic balance control in postural tasks that were not part of the training. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kim, Seong-Gil
2018-01-01
Background The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. Material/Methods This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. Results In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). Conclusions Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement. PMID:29760375
Kim, Seong-Gil; Kim, Wan-Soo
2018-05-15
BACKGROUND The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. MATERIAL AND METHODS This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. RESULTS In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). CONCLUSIONS Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement.
Effects of visual motion consistent or inconsistent with gravity on postural sway.
Balestrucci, Priscilla; Daprati, Elena; Lacquaniti, Francesco; Maffei, Vincenzo
2017-07-01
Vision plays an important role in postural control, and visual perception of the gravity-defined vertical helps maintaining upright stance. In addition, the influence of the gravity field on objects' motion is known to provide a reference for motor and non-motor behavior. However, the role of dynamic visual cues related to gravity in the control of postural balance has been little investigated. In order to understand whether visual cues about gravitational acceleration are relevant for postural control, we assessed the relation between postural sway and visual motion congruent or incongruent with gravity acceleration. Postural sway of 44 healthy volunteers was recorded by means of force platforms while they watched virtual targets moving in different directions and with different accelerations. Small but significant differences emerged in sway parameters with respect to the characteristics of target motion. Namely, for vertically accelerated targets, gravitational motion (GM) was associated with smaller oscillations of the center of pressure than anti-GM. The present findings support the hypothesis that not only static, but also dynamic visual cues about direction and magnitude of the gravitational field are relevant for balance control during upright stance.
Chmielewska, Daria; Stania, Magdalena; Słomka, Kajetan; Błaszczak, Edward; Taradaj, Jakub; Dolibog, Patrycja; Juras, Grzegorz
2017-11-01
This case-control study was designed to compare static postural stability between women with stress urinary incontinence and continent women and it was hypothesized that women with incontinence aged around 50 years also have balance disorders. Eighteen women with incontinence and twelve women without incontinence aged 50-55 years participated in two 60-s trials of each of four different testing conditions: eyes open/full bladder, eyes open/empty bladder, eyes closed/full bladder, eyes closed/empty bladder. The center of foot pressure (COP): sway range, root mean square, velocity (in the antero-posterior and medio-lateral directions), and COP area were recorded. The stabilograms were decomposed into rambling and trembling components. The groups of women with and without incontinence differed during the full bladder condition in antero-posterior COP sway range, COP area, and rambling trajectory (range in the antero-posterior and medio-lateral directions, root mean square in the antero-posterior and medio-lateral directions and velocity in the antero-posterior direction). The women with incontinence had more difficulty controlling their postural balance than continent women while standing with a full bladder. Therefore, developing therapeutic management focused on strengthening the women's core muscles and improving their postural balance seems advisable. © 2017 Wiley Periodicals, Inc.
Chronic Low Quality Sleep Impairs Postural Control in Healthy Adults.
Furtado, Fabianne; Gonçalves, Bruno da Silva B; Abranches, Isabela Lopes Laguardia; Abrantes, Ana Flávia; Forner-Cordero, Arturo
2016-01-01
The lack of sleep, both in quality and quantity, is an increasing problem in modern society, often related to workload and stress. A number of studies have addressed the effects of acute (total) sleep deprivation on postural control. However, up to date, the effects of chronic sleep deficits, either in quantity or quality, have not been analyzed. Thirty healthy adults participated in the study that consisted of registering activity with a wrist actigraph for more than a week before performing a series of postural control tests. Sleep and circadian rhythm variables were correlated and the sum of activity of the least active 5-h period, L5, a rhythm variable, obtained the greater coefficient value with sleep quality variables (wake after sleep onset WASO and efficiency sleep). Cluster analysis was performed to classify subjects into two groups based on L5 (low and high). The balance tests scores used to asses postural control were measured using Biodex Balance System and were compared between the two groups with different sleep quality. The postural tests were divided into dynamic (platform tilt with eyes open, closed and cursor) and static (clinical test of sensory integration). The results showed that during the tests with eyes closed, the group with worse sleep quality had also worse postural control performance. Lack of vision impairs postural balance more deeply in subjects with chronic sleep inefficiency. Chronic poor sleep quality impairs postural control similarly to total sleep deprivation.
Chronic Low Quality Sleep Impairs Postural Control in Healthy Adults
Gonçalves, Bruno da Silva B.; Abranches, Isabela Lopes Laguardia; Abrantes, Ana Flávia
2016-01-01
The lack of sleep, both in quality and quantity, is an increasing problem in modern society, often related to workload and stress. A number of studies have addressed the effects of acute (total) sleep deprivation on postural control. However, up to date, the effects of chronic sleep deficits, either in quantity or quality, have not been analyzed. Thirty healthy adults participated in the study that consisted of registering activity with a wrist actigraph for more than a week before performing a series of postural control tests. Sleep and circadian rhythm variables were correlated and the sum of activity of the least active 5-h period, L5, a rhythm variable, obtained the greater coefficient value with sleep quality variables (wake after sleep onset WASO and efficiency sleep). Cluster analysis was performed to classify subjects into two groups based on L5 (low and high). The balance tests scores used to asses postural control were measured using Biodex Balance System and were compared between the two groups with different sleep quality. The postural tests were divided into dynamic (platform tilt with eyes open, closed and cursor) and static (clinical test of sensory integration). The results showed that during the tests with eyes closed, the group with worse sleep quality had also worse postural control performance. Lack of vision impairs postural balance more deeply in subjects with chronic sleep inefficiency. Chronic poor sleep quality impairs postural control similarly to total sleep deprivation. PMID:27732604
Postural Instability Induced by Visual Motion Stimuli in Patients With Vestibular Migraine
Lim, Yong-Hyun; Kim, Ji-Soo; Lee, Ho-Won; Kim, Sung-Hee
2018-01-01
Patients with vestibular migraine are susceptible to motion sickness. This study aimed to determine whether the severity of posture instability is related to the susceptibility to motion sickness. We used a visual motion paradigm with two conditions of the stimulated retinal field and the head posture to quantify postural stability while maintaining a static stance in 18 patients with vestibular migraine and in 13 age-matched healthy subjects. Three parameters of postural stability showed differences between VM patients and controls: RMS velocity (0.34 ± 0.02 cm/s vs. 0.28 ± 0.02 cm/s), RMS acceleration (8.94 ± 0.74 cm/s2 vs. 6.69 ± 0.87 cm/s2), and sway area (1.77 ± 0.22 cm2 vs. 1.04 ± 0.25 cm2). Patients with vestibular migraine showed marked postural instability of the head and neck when visual stimuli were presented in the retinal periphery. The pseudo-Coriolis effect induced by head roll tilt was not responsible for the main differences in postural instability between patients and controls. Patients with vestibular migraine showed a higher visual dependency and low stability of the postural control system when maintaining quiet standing, which may be related to susceptibility to motion sickness. PMID:29930534
Postural Instability Induced by Visual Motion Stimuli in Patients With Vestibular Migraine.
Lim, Yong-Hyun; Kim, Ji-Soo; Lee, Ho-Won; Kim, Sung-Hee
2018-01-01
Patients with vestibular migraine are susceptible to motion sickness. This study aimed to determine whether the severity of posture instability is related to the susceptibility to motion sickness. We used a visual motion paradigm with two conditions of the stimulated retinal field and the head posture to quantify postural stability while maintaining a static stance in 18 patients with vestibular migraine and in 13 age-matched healthy subjects. Three parameters of postural stability showed differences between VM patients and controls: RMS velocity (0.34 ± 0.02 cm/s vs. 0.28 ± 0.02 cm/s), RMS acceleration (8.94 ± 0.74 cm/s 2 vs. 6.69 ± 0.87 cm/s 2 ), and sway area (1.77 ± 0.22 cm 2 vs. 1.04 ± 0.25 cm 2 ). Patients with vestibular migraine showed marked postural instability of the head and neck when visual stimuli were presented in the retinal periphery. The pseudo-Coriolis effect induced by head roll tilt was not responsible for the main differences in postural instability between patients and controls. Patients with vestibular migraine showed a higher visual dependency and low stability of the postural control system when maintaining quiet standing, which may be related to susceptibility to motion sickness.
The impact of posture and prolonged cyclic compressive loading on vertebral joint mechanics.
Gooyers, Chad E; McMillan, Robert D; Howarth, Samuel J; Callaghan, Jack P
2012-08-01
An in vitro biomechanics investigation exposing porcine functional spinal units (FSUs) to submaximal cyclic or static compressive forces while in a flexed, neutral, or extended posture. To investigate the combined effect of cyclically applied compressive force (e.g., vibration) and postural deviation on intervertebral joint mechanics. Independently, prolonged vibration exposure and non-neutral postures are known risk factors for development of low back pain and injury. However, there is limited basic scientific evidence to explain how the risk of low back injury from vibration exposure is modified by other mechanical factors. This work examined the influence of static postural deviation on vertebral joint height loss and compressive stiffness under cyclically applied compressive force. Forty-eight FSUs, consisting of 2 adjacent vertebrae, ligaments, and the intervening intervertebral disc were included in the study. Each specimen was randomized to 1 of 3 experimental posture conditions (neutral, flexed, or extended) and assigned to 1 of 2 loading protocols, consisting of (1) cyclic (1500 ± 1200 N applied at 5 Hz using a sinusoidal waveform, resulting in 0.2 g rms acceleration) or (2) 1500 N of static compressive force. RESULTS.: As expected, FSU height loss followed a typical first-order response in both the static and cyclic loading protocols, with the majority (~50%) of the loss occurring in the first 20 minutes of testing. A significant interaction between posture and loading protocol (P < 0.001) was noted in the magnitude of FSU height loss. Subsequent analysis of simple effects revealed significant differences between cyclic and static loading protocols in both a neutral (P = 0.016) and a flexed posture (P < 0.0001). No significant differences (P = 0.320) were noted between pre/postmeasurements of FSU compressive stiffness. Posture is an important mechanical factor to consider when assessing the risk of injury from cyclic loading to the lumbar spine.
The balance effect of acupuncture therapy among stroke patients.
Huang, Shih-Wei; Wang, Wei-Te; Yang, Tsung-Hsien; Liou, Tsan-Hon; Chen, Guan-Yu; Lin, Li-Fong
2014-08-01
To analyze how acupuncture therapy affects balance in patients experiencing their first stroke and to identify the stroke group with greatest improvement in balance after acupuncture intervention. Retrospective case-control study. Ward of a medical university hospital. A total of 629 stroke patients were enrolled initially; 345 patients met the study criteria and 132 were analyzed (66 each in the study and control groups). The study group received physiotherapy combined with acupuncture and the control group received only physiotherapy. The Postural Assessment Scale for Stroke patients (PASS) was used to evaluate balance. This balance scale system can be subdivided into static balance (PASS-MP, maintain posture) and dynamic balance (PASS-CP, change posture). This study revealed no statistically significant improvement of balance in the study group (t test). When patients with high Brunnstrom stage (Br stage) and low Br stage were analyzed separately, once again no statistical difference was detected between the study and control groups of those with high Br stage. However, among low-Br stage patients, the study group showed significant improvement in static balance (mean PASS-MP score±standard deviation: 4.7±3.7) compared with the control group (PASS-MP score: 2.8±2.7) (p<0.05). In first-ever stroke patients with a low Br stage, acupuncture therapy can improve static balance during rehabilitation. However, the effect on balance was limited among high-Br stage patients. This study provides information valuable to patients with hemiplegic stroke because it suggests that acupuncture can be used to improve balance. A prospective double-blind, randomized, controlled study design is recommended for future studies in patients with hemiplegic stroke.
Sit Up Straight! It's Good Physics
ERIC Educational Resources Information Center
Colicchia, Giuseppe
2005-01-01
A simplified model has been developed that shows forces and torques involved in maintaining static posture in the cervical spine. The model provides a biomechanical basis to estimate loadings on the cervical discs under various postures. Thus it makes a biological context for teaching statics.
Gauchard, G C; Jeandel, C; Perrin, P P
2001-01-01
Ageing is associated with a reduction in balance, in particular through dysfunction of each level of postural control, which results in an increased risk of falling. Conversely, the practice of physical activities has been shown to modulate postural control in elderly people. This study examined the potential positive effects of two types of regular physical and sporting activities on vestibular information and their relation to posture. Gaze and postural stabilisation was evaluated by caloric and rotational vestibular tests on 18 healthy subjects over the age of 60 who regularly practised low-energy or bioenergetic physical activities and on 18 controls of a similar age who only walked on a regular basis. These subjects were also submitted to static and dynamic posturographic tests. The control group displayed less balance control, with a lower vestibular sensitivity and a relatively high dependency on vision compared to the group practising low-energy physical activities, which had better postural control with good vestibular sensitivity and less dependency on vision. The postural control and vestibular sensitivity of subjects practising bioenergetic activities was average, and required higher visual afferent contribution. Low-energy exercises, already shown to have the most positive impact on balance control by relying more on proprioception, also appear to develop or maintain a high level of vestibular sensitivity allowing elderly people practising such exercises to reduce the weight of vision. Copyright 2001 S. Karger AG, Basel
Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik
2016-02-01
Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training-progression styles. To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Randomized controlled trial. Research laboratory. A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults.
Ross, Scott E; Arnold, Brent L; Blackburn, J Troy; Brown, Cathleen N; Guskiewicz, Kevin M
2007-12-17
Ankle sprains are common injuries that often lead to functional ankle instability (FAI), which is a pathology defined by sensations of instability at the ankle and recurrent ankle sprain injury. Poor postural stability has been associated with FAI, and sports medicine clinicians rehabilitate balance deficits to prevent ankle sprains. Subsensory electrical noise known as stochastic resonance (SR) stimulation has been used in conjunction with coordination training to improve dynamic postural instabilities associated with FAI. However, unlike static postural deficits, dynamic impairments have not been indicative of ankle sprain injury. Therefore, the purpose of this study was to examine the effects of coordination training with or without SR stimulation on static postural stability. Improving postural instabilities associated with FAI has implications for increasing ankle joint stability and decreasing recurrent ankle sprains. This study was conducted in a research laboratory. Thirty subjects with FAI were randomly assigned to either a: 1) conventional coordination training group (CCT); 2) SR stimulation coordination training group (SCT); or 3) control group. Training groups performed coordination exercises for six weeks. The SCT group received SR stimulation during training, while the CCT group only performed coordination training. Single leg postural stability was measured after the completion of balance training. Static postural stability was quantified on a force plate using anterior/posterior (A/P) and medial/lateral (M/L) center-of-pressure velocity (COPvel), M/L COP standard deviation (COPsd), M/L COP maximum excursion (COPmax), and COP area (COParea). Treatment effects comparing posttest to pretest COP measures were highest for the SCT group. At posttest, the SCT group had reduced A/P COPvel (2.3 +/- 0.4 cm/s vs. 2.7 +/- 0.6 cm/s), M/L COPvel (2.6 +/- 0.5 cm/s vs. 2.9 +/- 0.5 cm/s), M/L COPsd (0.63 +/- 0.12 cm vs. 0.73 +/- 0.11 cm), M/L COPmax (1.76 +/- 0.25 cm vs. 1.98 +/- 0.25 cm), and COParea (0.13 +/- 0.03 cm2 vs. 0.16 +/- 0.04 cm2) than the pooled means of the CCT and control groups (P < 0.05). Reduced values in COP measures indicated postural stability improvements. Thus, six weeks of coordination training with SR stimulation enhanced postural stability. Future research should examine the use of SR stimulation for decreasing recurrent ankle sprain injury in physically active individuals with FAI.
Ross, Scott E; Arnold, Brent L; Blackburn, J Troy; Brown, Cathleen N; Guskiewicz, Kevin M
2007-01-01
Background Ankle sprains are common injuries that often lead to functional ankle instability (FAI), which is a pathology defined by sensations of instability at the ankle and recurrent ankle sprain injury. Poor postural stability has been associated with FAI, and sports medicine clinicians rehabilitate balance deficits to prevent ankle sprains. Subsensory electrical noise known as stochastic resonance (SR) stimulation has been used in conjunction with coordination training to improve dynamic postural instabilities associated with FAI. However, unlike static postural deficits, dynamic impairments have not been indicative of ankle sprain injury. Therefore, the purpose of this study was to examine the effects of coordination training with or without SR stimulation on static postural stability. Improving postural instabilities associated with FAI has implications for increasing ankle joint stability and decreasing recurrent ankle sprains. Methods This study was conducted in a research laboratory. Thirty subjects with FAI were randomly assigned to either a: 1) conventional coordination training group (CCT); 2) SR stimulation coordination training group (SCT); or 3) control group. Training groups performed coordination exercises for six weeks. The SCT group received SR stimulation during training, while the CCT group only performed coordination training. Single leg postural stability was measured after the completion of balance training. Static postural stability was quantified on a force plate using anterior/posterior (A/P) and medial/lateral (M/L) center-of-pressure velocity (COPvel), M/L COP standard deviation (COPsd), M/L COP maximum excursion (COPmax), and COP area (COParea). Results Treatment effects comparing posttest to pretest COP measures were highest for the SCT group. At posttest, the SCT group had reduced A/P COPvel (2.3 ± 0.4 cm/s vs. 2.7 ± 0.6 cm/s), M/L COPvel (2.6 ± 0.5 cm/s vs. 2.9 ± 0.5 cm/s), M/L COPsd (0.63 ± 0.12 cm vs. 0.73 ± 0.11 cm), M/L COPmax (1.76 ± 0.25 cm vs. 1.98 ± 0.25 cm), and COParea (0.13 ± 0.03 cm2 vs. 0.16 ± 0.04 cm2) than the pooled means of the CCT and control groups (P < 0.05). Conclusion Reduced values in COP measures indicated postural stability improvements. Thus, six weeks of coordination training with SR stimulation enhanced postural stability. Future research should examine the use of SR stimulation for decreasing recurrent ankle sprain injury in physically active individuals with FAI. PMID:18086314
Pelosin, Elisa; Bisio, Ambra; Pozzo, Thierry; Lagravinese, Giovanna; Crisafulli, Oscar; Marchese, Roberta; Abbruzzese, Giovanni; Avanzino, Laura
2018-01-01
Postural reactions can be influenced by concomitant tasks or different contexts and are modulated by a higher order motor control. Recent studies investigated postural changes determined by motor contagion induced by action observation (chameleon effect) showing that observing a model in postural disequilibrium induces an increase in healthy subjects’ body sway. Parkinson’s disease (PD) is associated with postural instability and impairments in cognitively controlled balance tasks. However, no studies investigated if viewing postural imbalance might influence postural stability in PD and if patients are able to inhibit a visual postural perturbation. In this study, an action observation paradigm for assessing postural reaction to motor contagion in PD subjects and healthy older adults was used. Postural stability changes were measured during the observation of a static stimulus (control condition) and during a point-light display of a gymnast balancing on a rope (biological stimulus). Our results showed that, during the observation of the biological stimulus, sway area and antero-posterior and medio-lateral displacements of center of pressure significantly increased only in PD participants, whereas correct stabilization reactions were present in elderly subjects. These results demonstrate that PD leads to a decreased capacity to control automatic imitative tendencies induced by motor contagion. This behavior could be the consequence either of an inability to inhibit automatic imitative tendencies or of the cognitive load requested by the task. Whatever the case, the issue about the ability to inhibit automatic imitative tendencies could be crucial for PD patients since it might increase falls risk and injuries. PMID:29545771
Static postural sway of women with and without fibromyalgia syndrome: A cross-sectional study.
Trevisan, Deborah Colucci; Driusso, Patricia; Avila, Mariana Arias; Gramani-Say, Karina; Moreira, Fernando Manuel Araujo; Parizotto, Nivaldo Antonio
2017-05-01
There is a frequent complaint about balance problems among fibromyalgia syndrome patients; however, there are not enough studies that have shown static postural sway of women with fibromyalgia syndrome. This study aimed to compare static postural sway of women with and without fibromyalgia syndrome. This is a cross-sectional study in which twenty-nine women with fibromyalgia syndrome and 20 without took part. A posturography evaluation was performed in six different situations (bipedal, right tandem and left tandem, with eyes opened and closed), and questionnaires for clinical depression symptoms, clinical anxiety symptoms, sleep quality, and Visual Analogue Scales for Pain and Fatigue were applied. Mann-Whitney U test was used to check differences among groups; Wilcoxon matched-pair test was used to check differences intragroup; Cohen d coefficient was used to measure effect sizes and Pearson Correlation Coefficient was used for correlations among variables. Level of significance adopted was 5%. Women with fibromyalgia syndrome have presented worse postural sway than women without fibromyalgia syndrome in all situations (P<0.05), and worse scores in all questionnaires (P<0.05). In the eyes closed situations, women with fibromyalgia syndrome presented worse postural sway than women without in the same conditions. Women with fibromyalgia syndrome have worse performance in the static posture test, more prominent in reduced support bases with eyes closed. Pain, fatigue, depression and anxiety may have directly influenced postural sway in fibromyalgia syndrome patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Results from the balance rehabilitation unit in benign paroxysmal positional vertigo.
Kasse, Cristiane Akemi; Santana, Graziela Gaspar; Scharlach, Renata Coelho; Gazzola, Juliana Maria; Branco, Fátima Cristina Barreiro; Doná, Flávia
2010-01-01
Posturography is a useful new tool to study the influence of vestibular diseases on balance. to compare the results from the Balance Rehabilitation Unit (BRU) static posturography in elderly patients with Benign Paroxysmal Positional Vertigo (BPPV), before and after Epley's maneuver. a prospective study of 20 elderly patients with a diagnosis of BPPV. The patients underwent static posturography and the limit of stability (LE) and ellipse area were measured. We also applied the Dizziness Handicap Inventory (DHI) questionnaire to study treatment effectiveness. 80% were females, with a mean age of 68.15 years. After the maneuver, the LE increased significantly (p=0.001). The elliptical area of somatosensory, visual and vestibular conflicts (2,7,8,9 situations) in BRU and the DHI scores decreased significantly (p<0.05) after treatment. the study suggests that elderly patients with BPPV may present static postural control impairment and that the maneuver is effective for the remission of symptoms, to increase in the stability and improvement in postural control in situations of visual, somatosensory and vestibular conflicts.
Wiesmeier, Isabella K.; Dalin, Daniela; Wehrle, Anja; Granacher, Urs; Muehlbauer, Thomas; Dietterle, Joerg; Weiller, Cornelius; Gollhofer, Albert; Maurer, Christoph
2017-01-01
Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training program on these postural control impairments using a brain network model based on system identification techniques. Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model. Results: With balance training, the elderly subjects significantly reduced their overly large postural reactions and approximated those of younger subjects. Less significant differences between elderly and young subjects' postural control, namely larger spontaneous sway amplitudes, velocities, and frequencies, larger overall time delays and a weaker motor feedback compared to young subjects were not significantly affected by the balance training. Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits. PMID:28848430
The influence of the aquatic environment on the control of postural sway.
Marinho-Buzelli, Andresa R; Rouhani, Hossein; Masani, Kei; Verrier, Mary C; Popovic, Milos R
2017-01-01
Balance training in the aquatic environment is often used in rehabilitation practice to improve static and dynamic balance. Although aquatic therapy is widely used in clinical practice, we still lack evidence on how immersion in water actually impacts postural control. We examined how postural sway measured using centre of pressure and trunk acceleration parameters are influenced by the aquatic environment along with the effects of visual information. Our results suggest that the aquatic environment increases postural instability, measured by the centre of pressure parameters in the time-domain. The mean velocity and area were more significantly affected when individuals stood with eyes closed in the aquatic environment. In addition, a more forward posture was assumed in water with eyes closed in comparison to standing on land. In water, the low frequencies of sway were more dominant compared to standing on dry land. Trunk acceleration differed in water and dry land only for the larger upper trunk acceleration in mediolateral direction during standing in water. This finding shows that the study participants potentially resorted to using their upper trunk to compensate for postural instability in mediolateral direction. Only the lower trunk seemed to change acceleration pattern in anteroposterior and mediolateral directions when the eyes were closed, and it did so depending on the environment conditions. The increased postural instability and the change in postural control strategies that the aquatic environment offers may be a beneficial stimulus for improving balance control. Copyright © 2016 Elsevier B.V. All rights reserved.
Mouthon, A; Ruffieux, J; Mouthon, M; Hoogewoud, H-M; Annoni, J-M; Taube, W
2018-01-01
Age-related changes in brain activation other than in the primary motor cortex are not well known with respect to dynamic balance control. Therefore, the current study aimed to explore age-related differences in the control of static and dynamic postural tasks using fMRI during mental simulation of balance tasks. For this purpose, 16 elderly (72 ± 5 years) and 16 young adults (27 ± 5 years) were asked to mentally simulate a static and a dynamic balance task by motor imagery (MI), action observation (AO), or the combination of AO and MI (AO + MI). Age-related differences were detected in the form of larger brain activations in elderly compared to young participants, especially in the challenging dynamic task when applying AO + MI. Interestingly, when MI (no visual input) was contrasted to AO (visual input), elderly participants revealed deactivation of subcortical areas. The finding that the elderly demonstrated overactivation in mostly cortical areas in challenging postural conditions with visual input (AO + MI and AO) but deactivation in subcortical areas during MI (no vision) may indicate that elderly individuals allocate more cortical resources to the internal representation of dynamic postural tasks. Furthermore, it might be assumed that they depend more strongly on visual input to activate subcortical internal representations.
Ruffieux, J.; Mouthon, M.; Hoogewoud, H.-M.; Taube, W.
2018-01-01
Age-related changes in brain activation other than in the primary motor cortex are not well known with respect to dynamic balance control. Therefore, the current study aimed to explore age-related differences in the control of static and dynamic postural tasks using fMRI during mental simulation of balance tasks. For this purpose, 16 elderly (72 ± 5 years) and 16 young adults (27 ± 5 years) were asked to mentally simulate a static and a dynamic balance task by motor imagery (MI), action observation (AO), or the combination of AO and MI (AO + MI). Age-related differences were detected in the form of larger brain activations in elderly compared to young participants, especially in the challenging dynamic task when applying AO + MI. Interestingly, when MI (no visual input) was contrasted to AO (visual input), elderly participants revealed deactivation of subcortical areas. The finding that the elderly demonstrated overactivation in mostly cortical areas in challenging postural conditions with visual input (AO + MI and AO) but deactivation in subcortical areas during MI (no vision) may indicate that elderly individuals allocate more cortical resources to the internal representation of dynamic postural tasks. Furthermore, it might be assumed that they depend more strongly on visual input to activate subcortical internal representations. PMID:29675037
Frih, Bechir; Mkacher, Wajdi; Jaafar, Hamdi; Frih, Ameur; Ben Salah, Zohra; El May, Mezry; Hammami, Mohamed
2018-04-01
The purpose of this study was to evaluate the effects of 6 months of specific balance training included in endurance-resistance program on postural balance in haemodialysis (HD) patients. Forty-nine male patients undergoing HD were randomly assigned to an intervention group (balance training included in an endurance-resistance training, n = 26) or a control group (resistance-endurance training only, n = 23). Postural control was assessed using six clinical tests; Timed Up and Go test, Tinetti Mobility Test, Berg Balance Scale, Unipodal Stance test, Mini-Balance Evaluation Systems Test and Activities Balance Confidence scale. All balance measures increased significantly after the period of rehabilitation training in the intervention group. Only the Timed Up and Go, Berg Balance Scale, Mini-Balance Evaluation Systems Test and Activities Balance Confidence scores were improved in the control group. The ranges of change in these tests were greater in the balance training group. In HD patients, specific balance training included in a usual endurance-resistance training program improves static and dynamic balance better than endurance-resistance training only. Implications for rehabilitation Rehabilitation using exercise in haemodialysis patients improved global mobility and functional abilities. Specific balance training included in usual endurance resistance training program could lead to improved static and dynamic balance.
Viguier, Marion; Dupui, Philippe; Montoya, Richard
2009-02-01
Twenty-four women divided into three groups: control, exercise and nutrition, have been involved in a -6 degrees head down bed rest (HDBR) experiment for 60 days. The objective was to analyse the effects of microgravity on balance function regulation. Group comparisons assessed the efficiency of countermeasures (specific exercises and in particular diet) on the deleterious effects of simulated microgravity. Measurements of orthostatic and dynamic balance were taken 9 and 2 days prior to the experiment, on the first day of getting up, the following day and 4 and 10 days after, under two visual conditions: eyes open and eyes closed. The results confirmed that, as in any other test performed with ordinary subjects, the postural balance performances are better with eyes open than with eyes closed. The static and dynamic postural performances were impaired on the first day of recovery (R0) following HDBR. This impairment lasted up to 4 days after getting up and, afterwards the volunteers recovered their initial performances. The exercise group recovered static postural performances more quickly than the other groups whereas there were no differences in the recovery of the dynamic balance performances.
Palmgren, Per J; Andreasson, Daniel; Eriksson, Magnus; Hägglund, Andreas
2009-01-01
Background Although cervical pain is widespread, most victims are only mildly and occasionally affected. A minority, however, suffer chronic pain and/or functional impairments. Although there is abundant literature regarding nontraumatic neck pain, little focuses on diagnostic criteria. During the last decade, research on neck pain has been designed to evaluate underlying pathophysiological mechanisms, without noteworthy success. Independent researchers have investigated postural balance and cervicocephalic kinesthetic sensibility among patients with chronic neck pain, and have (in most cases) concluded the source of the problem is a reduced ability in the neck's proprioceptive system. Here, we investigated cervicocephalic kinesthetic sensibility and postural balance among patients with nontraumatic chronic neck pain. Methods Ours was a two-group, observational pilot study of patients with complaints of continuous neck pain during the 3 months prior to recruitment. Thirteen patients with chronic neck pain of nontraumatic origin were recruited from an institutional outpatient clinic. Sixteen healthy persons were recruited as a control group. Cervicocephalic kinesthetic sensibility was assessed by exploring head repositioning accuracy and postural balance was measured with computerized static posturography. Results Parameters of cervicocephalic kinesthetic sensibility were not reduced. However, in one of six test movements (flexion), global repositioning errors were significantly larger in the experimental group than in the control group (p < .05). Measurements did not demonstrate any general impaired postural balance, and varied substantially among participants in both groups. Conclusion In patients with nontraumatic chronic neck pain, we found statistically significant global repositioning errors in only one of six test movements. In this cohort, we found no evidence of impaired postural balance. Head repositioning accuracy and computerized static posturography are imperfect measures of functional proprioceptive impairments. Validity of (and procedures for using) these instruments demand further investigation. Trial registration Current Controlled Trials ISRCTN96873990 PMID:19566929
Kadri, Mohamed Abdelhafid; Noé, Frederic; Nouar, Merbouha Boulahbel; Paillard, Thierry
2017-09-01
To compare the effects of unilateral strength training by stimulated and voluntary contractions on muscle strength and monopedal postural control of the contralateral limb. 36 non-active healthy male subjects were recruited and split randomly into three groups. Two groups of 12 subjects took part in a strength-training program (3 sessions a week over 8 weeks) comprising 43 contractions of the quadriceps femoris of the ipsilateral limb (at 20% of the MVC). One group carried out voluntary contractions exclusively (VOL group), while the other group benefited exclusively from electro-induced contractions (NMES group). The other 12 subjects formed the control (CON) group. Assessments of MVC and monopedal postural control in static and dynamic postural tasks were performed with the ipsilateral (ISPI) and contralateral (CONTRA) limbs before (PRE) and after (POST) completion of the training program. After the training program, the MVC of the IPSI and CONTRA limbs increased similarly for both experimental groups (VOL and NMES). There were no significant improvements of monopedal postural control for the IPSI or CONTRA limbs in either the VOL or NMES experimental group. No change was observed for the CON group over the protocol period. The purposed training program with NMES vs VOL contractions induced strength gains but did not permit any improvement of contralateral monopedal postural control in healthy young subjects. This has potential for therapeutic application and allows clinicians to focus their training programs on dynamic and poly-articular exercises to improve the postural control in young subjects.
Postural Stability in Older Adults With Alzheimer Disease.
Mesbah, Normala; Perry, Meredith; Hill, Keith D; Kaur, Mandeep; Hale, Leigh
2017-03-01
The prevalence of adults with Alzheimer disease (AD) aged >65 years is increasing and estimated to quadruple by 2051. The aim of this study was to investigate postural stability in people with mild to moderate AD and factors contributing to postural instability compared with healthy peers (controls). A computerized systematic search of databases and a hand search of reference lists for articles published from 1984 onward (English-language articles only) were conducted on June 2, 2015, using the main key words "postural stability" and "Alzheimer's disease." Sixty-seven studies were assessed for eligibility (a confirmed diagnosis of AD, comparison of measured postural stability between participants with AD and controls, measured factors potentially contributing to postural instability). Data were extracted, and Downs and Black criteria were applied to evaluate study quality. Eighteen articles were analyzed using qualitative synthesis and reported based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Strength of evidence was guided by the Grading of Recommendations Assessment, Development and Evaluation. Strong evidence was found that: (1) older adults with mild to moderate AD have reduced static and functional postural stability compared with healthy peers (controls) and (2) attentional demand during dual-task activity and loss of visual input were key factors contributing to postural instability. Deta-analysis was not possible due to heterogeneity of the data. Postural stability is impaired in older adults with mild to moderate AD. Decreasing visual input and concentrating on multiple tasks decrease postural stability. To reduce falls risk, more research discerning appropriate strategies for the early identification of impairment of postural stability is needed. Standardization of population description and consensus on outcome measures and the variables used to measure postural -instability and its contributing factors are necessary to ensure meaningful synthesis of data. © 2017 American Physical Therapy Association
Ngomo, Suzy; Messing, Karen; Perrault, Hélène; Comtois, Alain
2008-11-01
North American workers usually stand while working, and prolonged standing is associated with discomfort and cardiovascular problems. Moving may alleviate the problems, but optimum mobility is unknown. The effects of variations in mobility were explored among (1) 34 health care workers whose symptoms of orthostatic intolerance (OI) were recorded after work; (2) 45 factory and laundry workers. Postures were observed over a workday and blood pressure (BP) and heart rate (HR) of both groups were recorded before and after work. Among health care workers, 65% manifested OI symptoms. In a multiple logistic regression, presence of >or= 1 symptom of OI was associated with static postures and being female (p=0.001). More static standing was associated with a larger drop in BP (p=0.04) in both populations. The results suggest that more static standing postures are associated with OI and musculoskeletal symptoms and with a subclinical drop in BP.
Effect of static foot posture on the dynamic stiffness of foot joints during walking.
Sanchis-Sales, E; Sancho-Bru, J L; Roda-Sales, A; Pascual-Huerta, J
2018-05-01
The static foot posture has been related to the development of lower limb injuries. This study aimed to investigate the dynamic stiffness of foot joints during gait in the sagittal plane to understand the role of the static foot posture in the development of injuries. Seventy healthy adult male subjects with different static postures, assessed by the Foot Posture Index (FPI) (30 normal, 20 highly pronated and 20 highly supinated), were recruited. Kinematic and kinetic data were recorded using an optical motion capture system and a pressure platform, and dynamic stiffness at the different stages of the stance was calculated from the slopes of the linear regression on the flexion moment-angle curves. The effect of foot type on dynamic stiffness and on ranges of motion and moments was analysed using ANOVAs and post-hoc tests, and linear correlation between dynamic stiffness and FPI was also tested. Highly pronated feet showed a significantly smaller range of motion at the ankle and metatarsophalangeal joints and also a larger range of moments at the metatarsophalangeal joint than highly supinated feet. Dynamic stiffness during propulsion was significantly greater at all foot joints for highly pronated feet, with positive significant correlations with the squared FPI. Highly supinated feet showed greater dynamic stiffness than normal feet, although to a lesser extent. Highly pronated feet during normal gait experienced the greatest decrease in the dorsiflexor moments during propulsion, normal feet being the most balanced regarding work generated and absorbed. Extreme static foot postures show greater dynamic stiffness during propulsion and greater absorbed work, which increases the risk of developing injuries. The data presented may be used when designing orthotics or prostheses, and also when planning surgery that modifies joint stiffness. Copyright © 2018 Elsevier B.V. All rights reserved.
Components of Standing Postural Control Evaluated in Pediatric Balance Measures: A Scoping Review.
Sibley, Kathryn M; Beauchamp, Marla K; Van Ooteghem, Karen; Paterson, Marie; Wittmeier, Kristy D
2017-10-01
To identify measures of standing balance validated in pediatric populations, and to determine the components of postural control captured in each tool. Electronic searches of MEDLINE, Embase, and CINAHL databases using key word combinations of postural balance/equilibrium, psychometrics/reproducibility of results/predictive value of tests, and child/pediatrics; gray literature; and hand searches. Inclusion criteria were measures with a stated objective to assess balance, with pediatric (≤18y) populations, with at least 1 psychometric evaluation, with at least 1 standing task, with a standardized protocol and evaluation criteria, and published in English. Two reviewers independently identified studies for inclusion. There were 21 measures included. Two reviewers extracted descriptive characteristics, and 2 investigators independently coded components of balance in each measure using a systems perspective for postural control, an established framework for balance in pediatric populations. Components of balance evaluated in measures were underlying motor systems (100% of measures), anticipatory postural control (72%), static stability (62%), sensory integration (52%), dynamic stability (48%), functional stability limits (24%), cognitive influences (24%), verticality (9%), and reactive postural control (0%). Assessing children's balance with valid and comprehensive measures is important for ensuring development of safe mobility and independence with functional tasks. Balance measures validated in pediatric populations to date do not comprehensively assess standing postural control and omit some key components for safe mobility and independence. Existing balance measures, that have been validated in adult populations and address some of the existing gaps in pediatric measures, warrant consideration for validation in children. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Static Postural Stability in Chronic Ankle Instability, An Ankle Sprain and Healthy Ankles.
Kwon, Yong Ung
2018-05-18
To identify the single leg balance (SLB) test that discriminates among healthy, coper, and chronic ankle instability (CAI) groups and to determine effects of ankle muscles on the balance error scoring system (BESS) among the three populations. 60 subjects (20 per group) performed the SLB test with eyes open (EO) and eyes closed (EC). Normalized mean amplitude (NMA) of the tibia anterior (TA), fibularis longus (FL), and medial gastrocnemius (MG) muscles and BESS were measured while performing the SLB test. The coper group had a lower error score than the CAI group in the EC. NMA was greater in the CAI group compared to in the healthy and coper groups regardless of muscle type. NMA of the TA was less than the PL and MG regardless of the group in the EO. The CAI group demonstrated greater NMAs of the PL and MG than the healthy and coper groups in the EC. The CAI group demonstrated greater NMA of the PL and MG by compensating their ankle muscles in the EO and EC. BESS suggests that the coper group may have coping mechanisms to stabilize static postural control compared to the CAI group. The EC may be better to detect static postural instability in the CAI or coper group. © Georg Thieme Verlag KG Stuttgart · New York.
Effects of Kinesio taping and exercise on forward head posture.
Shih, Hsu-Sheng; Chen, Shu-Shi; Cheng, Su-Chun; Chang, Hsun-Wen; Wu, Pei-Rong; Yang, Jin-Shiou; Lee, Yi-Shuang; Tsou, Jui-Yi
2017-01-01
Little is known about the effects of Kinesio taping and therapeutic exercise on correcting forward head posture. To compare Kinesio taping versus therapeutic exercise for forward head posture on static posture, dynamic mobility and functional outcomes. Sixty subjects (31 women, 29 men) with forward head postures participated in this study. They were randomly assigned to either one of the three groups: (1) exercise group (n = 20), (2) taping group (n = 20), and (3) control groups (n = 20). The horizontal forward displacement (HFD) between ear lobe and acromion process, upper cervical and lower cervical angle (UCA, LCA), active range of motion (AROM) of cervical spine, and neck disability index (NDI) were measured before and after a 5-week intervention, and a 2-week follow-up. Data were analyzed by means of a mixed design repeated-measures ANOVA. Both taping and exercise groups showed significant improvements in HFD compared with the control group at post-treatment and follow-up. Compared with the control group, the exercise group exhibited significant improvements in the LCA and the side bending AROM at post-treatment. Both Kinesio taping and therapeutic exercise improve forward head posture after intervention and a 2-week follow-up. The effectiveness of therapeutic exercise is better than taping.
Balance evaluation in haemophilic preadolescent patients using Nintendo Wii Balance Board®.
Pérez-Alenda, S; Carrasco, J J; Aguilar-Rodríguez, M; Martínez-Gómez, L; Querol-Giner, M; Cuesta-Barriuso, R; Torres-Ortuño, A; Querol, F
2017-01-01
Alterations in the musculoskeletal system, especially in the lower limbs, limit physical activity and affect balance and walking. Postural impairments in haemophilic preteens could increase the risk of bleeding events and deteriorate the physical condition, promoting the progression of haemophilic arthropathy. This study aims to evaluate static postural balance in haemophilic children, assessed by means of the Wii Balance Board ® (WBB). Nineteen children with haemophilia and 19 without haemophilia aged 9-10 years, have participated in this study. Postural balance was assessed by performing four tests, each one lasting 15 s: bipodal eyes open (BEO), bipodal eyes closed (BEC), monopodal dominant leg (MD) and monopodal non-dominant leg (MND). Two balance indices, standard deviation of amplitude (SDA) and standard deviation of velocity (SDV) were calculated in the anterior-posterior (AP) and medial-lateral (ML) directions. Index values were higher in haemophilic group and the differences were statistically significant (P < 0.05) in only six (SDAAP in BEO, BEC and MD conditions, SDAML in BEO, SDVAP in BEO and SDVML in MND condition) of 16 parameters analysed. Tests performed indicate a poorer static postural balance in the haemophilic cohort compared to the control group. Accordingly, physiotherapy programmes, physical activity and sports should be designed to improve the postural balance with the aim of preventing joint deterioration and improving quality of life. © 2016 John Wiley & Sons Ltd.
Effects of Levodopa on Postural Strategies in Parkinson’s disease
Mancini, Martina; Rocchi, Laura; Horak, Fay
2017-01-01
Altered postural control and balance are major disabling issues of Parkinson’s disease (PD). Static and dynamic posturography have provided insight into PD’s postural deficits; however, little is known about impairments in postural coordination. We hypothesized that subjects with PD would show more ankle strategy during quiet stance than healthy control subjects, who would include some hip strategy, and this stiffer postural strategy would increase with disease progression. We quantified postural strategy and sway dispersion with inertial sensors (one placed on the shank and one on the posterior trunk at L5 level) while subjects were standing still with their eyes open. A total of 70 subjects with PD, including a mild group (H&Y≤2, N=33) and a more severe group (H&Y≥3, N=37), were assessed while OFF and while ON levodopa medication. We also included a healthy control group (N=21). Results showed an overall preference of ankle strategy in all groups while maintaining balance. Postural strategy was significantly lower ON compared to OFF medication (indicating more hip strategy), but no effect of disease stage was found. Instead, sway dispersion was significantly larger in ON compared to OFF medication, and significantly larger in the more severe PD group compared to the mild. In addition, increased hip strategy during stance was associated with poorer self-perception of balance. PMID:27131172
Effects of Levodopa on Postural Strategies in Parkinson's disease.
Baston, Chiara; Mancini, Martina; Rocchi, Laura; Horak, Fay
2016-05-01
Altered postural control and balance are major disabling issues of Parkinson's disease (PD). Static and dynamic posturography have provided insight into PD's postural deficits; however, little is known about impairments in postural coordination. We hypothesized that subjects with PD would show more ankle strategy during quiet stance than healthy control subjects, who would include some hip strategy, and this stiffer postural strategy would increase with disease progression. We quantified postural strategy and sway dispersion with inertial sensors (one placed on the shank and one on the posterior trunk at L5 level) while subjects were standing still with their eyes open. A total of 70 subjects with PD, including a mild group (H&Y≤2, N=33) and a more severe group (H&Y≥3, N=37), were assessed while OFF and while ON levodopa medication. We also included a healthy control group (N=21). Results showed an overall preference of ankle strategy in all groups while maintaining balance. Postural strategy was significantly lower ON compared to OFF medication (indicating more hip strategy), but no effect of disease stage was found. Instead, sway dispersion was significantly larger in ON compared to OFF medication, and significantly larger in the more severe PD group compared to the mild. In addition, increased hip strategy during stance was associated with poorer self-perception of balance. Copyright © 2016 Elsevier B.V. All rights reserved.
Remaud, Anthony; Thuong-Cong, Cécile; Bilodeau, Martin
2016-01-01
Normal aging results in alterations in the visual, vestibular and somtaosensory systems, which in turn modify the control of balance. Muscle fatigue may exacerbate these age-related changes in sensory and motor functions, and also increase the attentional demands associated with dynamic postural control. The purpose of this study was to investigate the effect of aging on dynamic postural control and posture-related attentional demands before and after a plantar flexor fatigue protocol. Participants (young adults: n = 15; healthy seniors: n = 13) performed a dynamic postural task along the antero-posterior (AP) and the medio-lateral (ML) axes, with and without the addition of a simple reaction time (RT) task. The dynamic postural task consisted in following a moving circle on a computer screen with the representation of the center of pressure (COP). This protocol was repeated before and after a fatigue task where ankle plantar flexor muscles were targeted. The mean COP-target distance and the mean COP velocity were calculated for each trial. Cross-correlation analyses between the COP and target displacements were also performed. RTs were recorded during dual-task trials. Results showed that while young adults adopted an anticipatory control mode to move their COP as close as possible to the target center, seniors adopted a reactive control mode, lagging behind the target center. This resulted in longer COP-target distance and higher COP velocity in the latter group. Concurrently, RT increased more in seniors when switching from static stance to dynamic postural conditions, suggesting potential alterations in the central nervous system (CNS) functions. Finally, plantar flexor muscle fatigue and dual-tasking had only minor effects on dynamic postural control of both young adults and seniors. Future studies should investigate why the fatigue-induced changes in quiet standing postural control do not seem to transfer to dynamic balance tasks. PMID:26834626
Jorgensen, Martin G; Laessoe, Uffe; Hendriksen, Carsten; Nielsen, Ole Bruno Faurholt; Aagaard, Per
2013-07-01
Older adults show increased risk of falling and major risk factors include impaired lower extremity muscle strength and postural balance. However, the potential positive effect of biofeedback-based Nintendo Wii training on muscle strength and postural balance in older adults is unknown. This randomized controlled trial examined postural balance and muscle strength in community-dwelling older adults (75±6 years) pre- and post-10 weeks of biofeedback-based Nintendo Wii training (WII, n = 28) or daily use of ethylene vinyl acetate copolymer insoles (controls [CON], n = 30). Primary end points were maximal muscle strength (maximal voluntary contraction) and center of pressure velocity moment during bilateral static stance. Intention-to-treat analysis with adjustment for age, sex, and baseline level showed that the WII group had higher maximal voluntary contraction strength (18%) than the control group at follow up (between-group difference = 269 N, 95% CI = 122; 416, and p = .001). In contrast, the center of pressure velocity moment did not differ (1%) between WII and CON at follow-up (between-group difference = 0.23 mm(2)/s, 95% CI = -4.1; 4.6, and p = .92). For secondary end points, pre-to-post changes favoring the WII group were evident in the rate of force development (p = .03), Timed Up and Go test (p = .01), short Falls Efficacy Scale-International (p = .03), and 30-second repeated Chair Stand Test (p = .01). Finally, participants rated the Wii training highly motivating at 5 and 10 weeks into the intervention. Biofeedback-based Wii training led to marked improvements in maximal leg muscle strength (maximal voluntary contraction; rate of force development) and overall functional performance in community-dwelling older adults. Unexpectedly, static bilateral postural balance remained unaltered with Wii training. The high level of participant motivation suggests that biofeedback-based Wii exercise may ensure a high degree of compliance to home- and/or community-based training in community-dwelling older adults.
Analyses of balance and flexibility of obese patients undergoing bariatric surgery
Benetti, Fernanda Antico; Bacha, Ivan Leo; Junior, Arthur Belarmino Garrido; Greve, Júlia Maria D'Andréa
2016-01-01
OBJECTIVE: To assess the postural control and flexibility of obese subjects before and both six and 12 months after bariatric surgery. To verify whether postural control is related to flexibility following weight reductions resulting from bariatric surgery. METHODS: The sample consisted of 16 subjects who had undergone bariatric surgery. All assessments were performed before and six and 12 months after bariatric surgery. Postural balance was assessed using an Accusuway® portable force platform, and flexibility was assessed using a standard chair sit and reach test (Wells' chair). RESULTS: With the force platform, no differences were observed in the displacement area or velocity from the center of pressure in the mediolateral and anteroposterior directions. The displacement speed from the center of pressure was decreased at the six month after the surgery; however, unchanged from baseline at 12 months post-surgery. Flexibility increased over time according to the three measurements tested. CONCLUSIONS: Static postural balance did not change. The velocity of postural adjustment responses were increased at six months after surgery. Therefore, weight loss promotes increased flexibility. Yet, improvements in flexibility are not related to improvements in balance. PMID:26934236
Static and dynamic balance performance in patients with osteoporotic vertebral compression fracture.
Wang, Ling-Yi; Liaw, Mei-Yun; Huang, Yu-Chi; Lau, Yiu-Chung; Leong, Chau-Peng; Pong, Ya-Ping; Chen, Chia-Lin
2013-01-01
Patients with osteoporotic vertebral compression fracture (OVCF) have postural changes and increased risk of falling. The aim of this study is to compare balance characteristics between patients with OVCF and healthy control subjects. Patients with severe OVCF and control subjects underwent computerised dynamic posturography (CDP) in this case-control study. Forty-seven OVCF patients and 45 controls were recruited. Compared with the control group, the OVCF group had significantly decreased average stability; maximal stability under the `eye open with swayed support surface' (CDP subtest 4) and 'eye closed with swayed support surface' conditions (subtest 5); and decreased ankle strategy during subtests 4 and 5 and under the `swayed vision with swayed support surface' condition (subtest 6). The OVCF group fell more frequently during subtests 5 and 6 and had longer overall reaction time and longer reaction time when moving backward during the directional control test. OVCF patients had poorer static and dynamic balance performance compared with normal control. They had decreased postural stability and ankle strategy with increased fall frequency on a swayed surface; they also had longer reaction times overall and in the backward direction. Therefore, we suggest balance rehabilitation for patients with OVCF to prevent fall.
Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik
2016-01-01
Context: Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training–progression styles. Objective: To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Design: Randomized controlled trial. Setting: Research laboratory. Patients or Other Participants: A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). Intervention(s): All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Main Outcome Measure(s): Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Results: Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. Conclusions: A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults. PMID:26878257
Impact of soft and hard insole density on postural stability in older adults.
Losa Iglesias, Marta Elena; Becerro de Bengoa Vallejo, Ricardo; Palacios Peña, Domingo
2012-01-01
A significant predictor of falls in the elderly population is attributed to postural instability. Thus, it is important to identify and implement practical clinical interventions to enhance postural stability in older adults. Shoe insoles have been identified as a mechanism to enhance postural control, and our study aimed to evaluate the impact of 2 shoe insoles on static standing balance in healthy, older adults compared with standing posture while barefoot. We hypothesized that both hard and soft shoe insoles would decrease postural sway compared with the barefoot condition. Indeed, excursion distances and sway areas were reduced, and sway velocity was decreased when wearing insoles. The hard insole was also effective when visual feedback was removed, suggesting that the more rigid an insole, the greater potential reduction in fall risk. Thus, shoe insoles may be a cost-effective, clinical intervention that is easy to implement to reduce the risk of falling in the elderly population. Copyright © 2012 Mosby, Inc. All rights reserved.
Alves, Yanina; Ribeiro, Fernando; Silva, Anabela G
2017-07-05
Chronic ankle instability presents a high incidence and prevalence in basketbal players. It's important to develop strategies to reduce the functional and mechanical limitations resulting from this condition. To compare the effect of Mulligan ́s fibular repositioning taping with a placebo taping immediatly after application and after a running test (Yo-Yo IRT). 16 adult basketball players (10 male, 6 female) with chronic ankle instability and mean age 21.50 ± 2.76 years old. Assessment of static postural control (15 seconds of unipedal stance test with eyes closed in a force platform), functional performance (figure 8 hop test and lateral hop test) and neuromuscular control (peroneus longus latency time in sudden inversion) in two conditions: Mulligan and Placebo. No significant effect was found for the intervantion factor in both hop tests (p>0.170), but there was a significant effect for the time factor (p<0.03). For the peroneus longus latency time, there was a significant interaction between factors (p=0.028) and also for time (p=0.042). No significant effect was found for any of the static postural control variables (area, speed and total displacement) (p≥0.10). There was no differences between Mulligan's fibular repositioning taping and Placebo taping in postural control and functional performance in basketball players with chronic ankle instability. However, Mulligan's taping appears to reduce peroneus longus latency time after a running when compared with a placebo taping.
Constrained posture in dentistry - a kinematic analysis of dentists.
Ohlendorf, Daniela; Erbe, Christina; Nowak, Jennifer; Hauck, Imke; Hermanns, Ingo; Ditchen, Dirk; Ellegast, Rolf; Groneberg, David A
2017-07-05
How a dentist works, such as the patterns of movements performed daily, is also largely affected by the workstation Dental tasks are often executed in awkward body positions, thereby causing a very high degree of strain on the corresponding muscles. The objective of this study is to detect those dental tasks, during which awkward postures occur most frequently. The isolated analysis of static postures will examine the duration for which these postures are maintained during the corresponding dental, respectively non-dental, activities. 21 (11f/10 m) dentists (age: 40.1 ± 10.4 years) participated in this study. An average dental workday was collected for every subject. To collect kinematic data of all activities, the CUELA system was used. Parallel to the kinematic examination, a detailed computer-based task analysis was conducted. Afterwards, both data sets were synchronized based on the chronological order of the postures assumed in the trunk and the head region. All tasks performed were assigned to the categories "treatment" (I), "office" (II) and "other activities" (III). The angle values of each body region (evaluation parameter) were examined and assessed corresponding to ergonomic standards. Moreover, this study placed a particular focus on static positions, which are held statically for 4 s and longer. For "treatment" (I), the entire head and trunk area is anteriorly tilted while the back is twisted to the right, in (II) and (III) the back is anteriorly tilted and twisted to the right (non-neutral position). Static positions in (I) last for 4-10s, static postures (approx. 60%) can be observed while in (II) and (III) in the back area static positions for more than 30 s are most common. Moreover, in (II) the back is twisted to the right for more than 60 s in 26.8%. Awkward positions are a major part of a dentists' work. This mainly pertains to static positions of the trunk and head in contrast to "office work." These insights facilitate the quantitative description of the dentist profession with regard to the related physical load along with the health hazards to the musculoskeletal system. Moreover, the results allow for a selective extraction of the most unfavorable static body positions that dentists assume for each of the activities performed.
Hoffman, Scott E; Peltz, Cathryn D; Haladik, Jeffrey A; Divine, George; Nurse, Matthew A; Bey, Michael J
2015-03-01
Running-related injuries are common and previous research has suggested that the magnitude and/or rate of pronation may contribute to the development of these injuries. Accurately and directly measuring pronation can be challenging, and therefore previous research has often relied on navicular drop (under both static and dynamic conditions) as an indirect assessment of pronation. The objectives of this study were to use dynamic, biplane X-ray imaging to assess the effects of three footwear conditions (barefoot, minimalist shoes, motion control shoes) on the magnitude and rate of navicular drop during running, and to determine the association between static and dynamic measures of navicular drop. Twelve healthy distance runners participated in this study. The magnitude and rate of navicular drop were determined by tracking the 3D position of the navicular from biplane radiographic images acquired at 60Hz during the stance phase of overground running. Static assessments of navicular drop and foot posture were also recorded in each subject. Footwear condition was not found to have a significant effect on the magnitude of navicular drop (p=0.22), but motion control shoes had a slower navicular drop rate than running barefoot (p=0.05) or in minimalist shoes (p=0.05). In an exploratory analysis, static assessments of navicular drop and foot posture were found to be poor predictors of dynamic navicular drop in all footwear conditions (p>0.18). Copyright © 2015 Elsevier B.V. All rights reserved.
Olesh, Erienne V; Pollard, Bradley S; Gritsenko, Valeriya
2017-01-01
Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques.
Olesh, Erienne V.; Pollard, Bradley S.; Gritsenko, Valeriya
2017-01-01
Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques. PMID:29018339
Lee, Yongwoo; Choi, Wonjae; Lee, Kyeongjin; Song, Changho; Lee, Seungwon
2017-10-01
Avatar-based three-dimensional technology is a new approach to improve physical function in older adults. The aim of this study was to use three-dimensional video gaming technology in virtual reality training to improve postural balance and lower extremity strength in a population of community-dwelling older adults. The experimental group participated in the virtual reality training program for 60 min, twice a week, for 6 weeks. Both experimental and control groups were given three times for falls prevention education at the first, third, and fifth weeks. The experimental group showed significant improvements not only in static and dynamic postural balance but also lower extremity strength (p < .05). Furthermore, the experimental group was improved to overall parameters compared with the control group (p < .05). Therefore, three-dimensional video gaming technology might be beneficial for improving postural balance and lower extremity strength in community-dwelling older adults.
Effects of physical training on age-related balance and postural control.
Lelard, T; Ahmaidi, S
2015-11-01
In this paper, we review the effects of physical activity on balance performance in the elderly. The increase in the incidence of falls with age reflects the disorders of balance-related to aging. We are particularly interested in age-related changes in the balance control system as reflected in different static and dynamic balance tests. We report the results of studies demonstrating the beneficial effects of physical activity on postural balance. By comparing groups of practitioners of different physical activities, it appears that these effects on postural control depend on the type of activity and the time of practice. Thus, we have focused in the present review on "proprioceptive" and "strength" activities. Training programs offering a combination of several activities have demonstrated beneficial effects on the incidence of falls, and we present and compare the effects of these two types of training activities. It emerges that there are differential effects of programs of activities: while all activities improve participants' confidence in their ability, the "proprioceptive" activities rather improve performance in static tasks, while "strength" activities tend to improve performance in dynamic tasks. These effects depend on the targeted population and will have a greater impact on the frailest subjects. The use of new technologies in the form of "exergames" may also be proposed in home-based exercises. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Perrin, P P; Jeandel, C; Perrin, C A; Béné, M C
1997-01-01
Aging is associated with decreased balance abilities, resulting in an increased risk of fall. In order to appreciate the visual, somatosensory, and central signals involved in balance control, sophisticated methods of posturography assessment have been developed, using static and dynamic tests, eventually associated with electromyographic measurements. We applied such methods to a population of healthy older adults in order to appreciate the respective importance of each of these sensorial inputs in aging individuals. Posture control parameters were recorded on a force-measuring platform in 41 healthy young (age 28.5 +/- 5.9 years) and 50 older (age 69.8 +/- 5.9 years) adults, using a static test and two dynamic tests performed by all individuals first with eyes open, then with eyes closed. The distance covered by the center of foot pressure, sway area, and anteroposterior oscillations were significantly higher, with eyes open or closed, in older people than in young subjects. Significant differences were noted in dynamic tests with longer latency responses in the group of old people. Dynamic recordings in a sinusoidal test had a more regular pattern when performed eyes open in both groups and evidenced significantly greater instability in old people. These data suggest that vision remains important in maintaining postural control while conduction and central integration become less efficient with age.
ERIC Educational Resources Information Center
Ehresman, Paul
1995-01-01
A precane device, called the "free-standing cane," was developed to help children with blindness along with other disabilities. The cane detects obstacles; guides the user's hands into a relaxed, static position in front of the hips; facilitates postural security and control; and offers tactile and kinesthetic feedback. (JDD)
Sibley, Kathryn M; Beauchamp, Marla K; Van Ooteghem, Karen; Straus, Sharon E; Jaglal, Susan B
2015-01-01
To identify components of postural control included in standardized balance measures for adult populations. Electronic searches of MEDLINE, EMBASE, and CINAHL databases using keyword combinations of postural balance/equilibrium, psychometrics/reproducibility of results/predictive value of tests/validation studies, instrument construction/instrument validation, geriatric assessment/disability evaluation, gray literature, and hand searches. Inclusion criteria were measures with a stated objective to assess balance, adult populations (18y and older), at least 1 psychometric evaluation, 1 standing task, a standardized protocol and evaluation criteria, and published in English. Two reviewers independently identified studies for inclusion. Sixty-six measures were included. A research assistant extracted descriptive characteristics and 2 reviewers independently coded components of balance in each measure using the Systems Framework for Postural Control, a widely recognized model of balance. Components of balance evaluated in these measures were underlying motor systems (100% of measures), anticipatory postural control (71%), dynamic stability (67%), static stability (64%), sensory integration (48%), functional stability limits (27%), reactive postural control (23%), cognitive influences (17%), and verticality (8%). Thirty-four measures evaluated 3 or fewer components of balance, and 1 measure-the Balance Evaluation Systems Test-evaluated all components of balance. Several standardized balance measures provide only partial information on postural control and omit important components of balance related to avoiding falls. As such, the choice of measure(s) may limit the overall interpretation of an individual's balance ability. Continued work is necessary to increase the implementation of comprehensive balance assessment in research and practice. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Howells, Brooke E; Clark, Ross A; Ardern, Clare L; Bryant, Adam L; Feller, Julian A; Whitehead, Timothy S; Webster, Kate E
2013-09-01
Postural control impairments may persist following anterior cruciate ligament (ACL) reconstruction. The effect of a secondary task on postural control has, however, not been determined. The purpose of this case-control study was to compare postural control in patients following ACL reconstruction with healthy individuals with and without a secondary task. 45 patients (30 men and 15 women) participated at least 6 months following primary ACL reconstruction surgery. Participants were individually matched by age, gender and sports activity to healthy controls. Postural control was measured using a Nintendo Wii Balance Board and customised software during static single-leg stance and with the addition of a secondary task. The secondary task required participants to match the movement of an oscillating marker by adducting and abducting their arm. Centre of pressure (CoP) path length in both medial-lateral and anterior-posterior directions, and CoP total path length. When compared with the control group, the anterior-posterior path length significantly increased in the ACL reconstruction patients' operated (12.3%, p=0.02) and non-operated limbs (12.8%, p=0.02) for the single-task condition, and the non-operated limb (11.5%, p=0.006) for the secondary task condition. The addition of a secondary task significantly increased CoP path lengths in all measures (p<0.001), although the magnitude of the increase was similar in both the ACL reconstruction and control groups. ACL reconstruction patients showed a reduced ability in both limbs to control the movement of the body in the anterior-posterior direction. The secondary task affected postural control by comparable amounts in patients after ACL reconstruction and healthy controls. Devices for the objective measurement of postural control, such as the one used in this study, may help clinicians to more accurately identify patients with deficits who may benefit from targeted neuromuscular training programs.
Contributions of foot muscles and plantar fascia morphology to foot posture.
Angin, Salih; Mickle, Karen J; Nester, Christopher J
2018-03-01
The plantar foot muscles and plantar fascia differ between different foot postures. However, how each individual plantar structure contribute to foot posture has not been explored. The purpose of this study was to investigate the associations between static foot posture and morphology of plantar foot muscles and plantar fascia and thus the contributions of these structures to static foot posture. A total of 111 participants were recruited, 43 were classified as having pes planus and 68 as having normal foot posture using Foot Posture Index assessment tool. Images from the flexor digitorum longus (FDL), flexor hallucis longus (FHL), peroneus longus and brevis (PER), flexor hallucis brevis (FHB), flexor digitorum brevis (FDB) and abductor hallucis (AbH) muscles, and the calcaneal (PF1), middle (PF2) and metatarsal (PF3) regions of the plantar fascia were obtained using a Venue 40 ultrasound system with a 5-13 MHz transducer. In order of decreasing contribution, PF3 > FHB > FHL > PER > FDB were all associated with FPI and able to explain 69% of the change in FPI scores. PF3 was the highest contributor explaining 52% of increases in FPI score. Decreased thickness was associated with increased FPI score. Smaller cross sectional area (CSA) in FHB and PER muscles explained 20% and 8% of increase in FPI score. Larger CSA of FDB and FHL muscles explained 4% and 14% increase in FPI score respectively. The medial plantar structures and the plantar fascia appear to be the major contributors to static foot posture. Elucidating the individual contribution of multiple muscles of the foot could provide insight about their role in the foot posture. Copyright © 2018. Published by Elsevier B.V.
High, Carleigh M; McHugh, Hannah F; Mills, Stephen C; Amano, Shinichi; Freund, Jane E; Vallabhajosula, Srikant
2018-06-01
Aging and Parkinson's disease are often associated with impaired postural control. Providing extrinsic feedback via vibrotactile sensation could supplement intrinsic feedback to maintain postural control. We investigated the postural control response to vibrotactile feedback provided at the trunk during challenging stance conditions in older adults at high fall risk and individuals with Parkinson's disease compared to healthy older adults. Nine older adults at high fall risk, 9 persons with Parkinson's disease and 10 healthy older adults performed 30s quiet standing on a force platform under five challenging stance conditions with eyes open/closed and standing on firm/foam surface with feet together, each with and without vibrotactile feedback. During vibrotactile feedback trials, feedback was provided when participants swayed >10% over the center of their base of support. Participants were instructed vibrations would be in response to their movement. Magnitude of postural sway was estimated using center of pressure path length, velocity, and sway area. Dynamics of individuals' postural control was evaluated using detrended fluctuation analysis. Results showed that vibrotactile feedback induced a change in postural control dynamics among persons with Parkinson's disease when standing with intact intrinsic visual input and altered intrinsic somatosensory input, but there was no change in sway magnitude. However, use of vibrotactile feedback did not significantly alter dynamics of postural control in older adults with high risk of falling or reduce the magnitude of sway. Considering the effects of vibrotactile feedback were dependent on the population and stance condition, designing an optimal therapeutic regimen for balance training should be carefully considered and be specific to a target population. Furthermore, our results suggest that explicit instructions on how to respond to the vibrotactile feedback could affect training outcome. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Increased dynamic regulation of postural tone through Alexander Technique training
Cacciatore, TW; Gurfinkel, VS; Horak, FB; Cordo, PJ; Ames, KE
2010-01-01
Gurfinkel and colleagues (2006) recently found that healthy adults dynamically modulate postural muscle tone in the body axis during anti-gravity postural maintenance and that this modulation is inversely correlated with axial stiffness. Our objective in the present study was to investigate whether dynamic modulation of axial postural tone can change through training. We examined whether teachers of the Alexander Technique (AT), who undergo “long-term” (3-year) training, have greater modulation of axial postural tone than matched control subjects. In addition, we performed a longitudinal study on the effect of “short-term” (10-week) AT training on the axial postural tone of individuals with low back pain (LBP), since short term AT training has previously been shown to reduce LBP. Axial postural tone was quantified by measuring the resistance of the neck, trunk and hips to small (±10°), slow (1°/s) torsional rotation during stance. Modulation of tone was determined by the torsional resistance to rotation (peak-to-peak, phase-advance, and variability of torque) and axial muscle activity (EMG). Peak-to-peak torque was lower (~50%), while phase-advance and cycle-to-cycle variability were enhanced for AT teachers compared to matched control subjects at all levels of the axis. In addition, LBP subjects decreased trunk and hip stiffness following short-term AT training compared to a control intervention. While changes in static levels of postural tone may have contributed to the reduced stiffness observed with the AT, our results suggest that dynamic modulation of postural tone can be enhanced through long-term training in the AT, which may constitute an important direction for therapeutic intervention. PMID:21185100
Increased dynamic regulation of postural tone through Alexander Technique training.
Cacciatore, T W; Gurfinkel, V S; Horak, F B; Cordo, P J; Ames, K E
2011-02-01
Gurfinkel and colleagues (2006) recently found that healthy adults dynamically modulate postural muscle tone in the body axis during anti-gravity postural maintenance and that this modulation is inversely correlated with axial stiffness. Our objective in the present study was to investigate whether dynamic modulation of axial postural tone can change through training. We examined whether teachers of the Alexander Technique (AT), who undergo "long-term" (3-year) training, have greater modulation of axial postural tone than matched control subjects. In addition, we performed a longitudinal study on the effect of "short-term" (10-week) AT training on the axial postural tone of individuals with low back pain (LBP), since short term AT training has previously been shown to reduce LBP. Axial postural tone was quantified by measuring the resistance of the neck, trunk and hips to small (±10°), slow (1°/s) torsional rotation during stance. Modulation of tone was determined by the torsional resistance to rotation (peak-to-peak, phase-advance, and variability of torque) and axial muscle activity (EMG). Peak-to-peak torque was lower (∼50%), while phase-advance and cycle-to-cycle variability were enhanced for AT teachers compared to matched control subjects at all levels of the axis. In addition, LBP subjects decreased trunk and hip stiffness following short-term AT training compared to a control intervention. While changes in static levels of postural tone may have contributed to the reduced stiffness observed with the AT, our results suggest that dynamic modulation of postural tone can be enhanced through long-term training in the AT, which may constitute an important direction for therapeutic intervention. Copyright © 2010 Elsevier B.V. All rights reserved.
Paillard, Thierry
2017-01-01
Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers. PMID:28861000
Paillard, Thierry
2017-01-01
Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers.
Side-alternating vibration training for balance and ankle muscle strength in untrained women.
Spiliopoulou, Styliani I; Amiridis, Ioannis G; Tsigganos, Georgios; Hatzitaki, Vassilia
2013-01-01
Side-alternating vibration (SAV) may help reduce the risk of falling by improving body balance control. Such training has been promoted as a strength-training intervention because it can increase muscle activation through an augmented excitatory input from the muscle spindles. To determine the effect of SAV training on static balance during 3 postural tasks of increasing difficulty and lower limb strength. Randomized controlled clinical trial. Laboratory. A total of 21 healthy women were divided into training (n = 11; age = 43.35 ± 4.12 years, height = 169 ± 6.60 cm, mass = 68.33 ± 11.90 kg) and control (n = 10; age = 42.31 ± 3.73 years, height = 167 ± 4.32 cm, mass = 66.29 ± 10.74 kg) groups. The training group completed a 9-week program during which participants performed 3 sessions per week of ten 15-second isometric contractions with a 30-second active rest of 3 exercises (half-squat, wide-stance squat, 1-legged half-squat) on an SAV plate (acceleration = 0.91-16.3g). The control group did not participate in any form of exercise over the 9-week period. We evaluated isokinetic and isometric strength of the knee extensors and flexors and ankle plantar flexors, dorsiflexors, and evertors. Static balance was assessed using 3 tasks of increasing difficulty (quiet bipedal stance, tandem stance, 1-legged stance). The electromyographic activity of the vastus lateralis, semitendinosus, medial gastrocnemius, tibialis anterior, and peroneus longus was recorded during postural task performance, baseline and pretraining, immediately posttraining, and 15 days posttraining. After training in the training group, ankle muscle strength improved (P = .03), whereas knee muscle strength remained unaltered (P = .13). Improved ankle-evertor strength was observed at all angular velocities (P = .001). Postural sway decreased in both directions but was greater in the mediolateral (P < .001) than anteroposterior (P = .02) direction. The electromyographic activity of the peroneus longus increased during the sharpened tandem (P = .001) and 1-legged tasks (P = .007). No changes were seen in the control group for any measures. The SAV training could enhance ankle muscle strength and reduce postural sway during static balance performance. The reduction in mediolateral sway could be associated with the greater use of ankle evertors due to their strength improvement.
Frevel, D; Mäurer, M
2015-02-01
Balance disorders are common in multiple sclerosis. Aim of the study is to investigate the effectiveness of an Internet-based home training program (e-Training) to improve balance in patients with multiple sclerosis. A randomized, controlled study. Academic teaching hospital in cooperation with the therapeutic riding center Gut Üttingshof, Bad Mergentheim. Eighteen multiple sclerosis patients (mean EDSS 3,5) took part in the trial. Outcome of patients using e-Training (N.=9) was compared to the outcome of patients receiving hippotherapy (N.=9), which can be considered as an advanced concept for the improvement of balance and postural control in multiple sclerosis. After simple random allocation patients received hippotherapy or Internet-based home training (balance, postural control and strength training) twice a week for 12 weeks. Assessments were done before and after the intervention and included static and dynamic balance (primary outcome). Isometric muscle strength of the knee and trunk extension/flexion (dynamometer), walking capacity, fatigue and quality of life served as secondary outcome parameters. Both intervention groups showed comparable and highly significant improvement in static and dynamic balance capacity, no difference was seen between the both intervention groups. However looking at fatigue and quality of life only the group receiving hippotherapy improved significantly. Since e-Training shows even comparable effects to hippotherapy to improve balance, we believe that the established Internet-based home training program, specialized on balance and postural control training, is feasible for a balance and strength training in persons with multiple sclerosis. We demonstrated that Internet-based home training is possible in patients with multiple sclerosis.
Mikó, Ibolya; Szerb, Imre; Szerb, Anna; Poor, Gyula
2017-02-01
To investigate the effect of a 12-month sensomotor balance exercise programme on postural control and the frequency of falling in women with established osteoporosis. Randomized controlled trial where the intervention group was assigned the 12-month Balance Training Programme and the control group did not undertake any intervention beyond regular osteoporosis treatment. A total of 100 osteoporotic women - at least with one osteoporotic fracture - aged 65 years old and above. Balance was assessed in static and dynamic posture both with performance-based measures of balance, such as the Berg Balance Scale and the Timed Up and Go Test, and with a stabilometric computerized platform. Patients in the intervention group completed the 12-month sensomotor Balance Training Programme in an outpatient setting, guided by physical therapists, three times a week, for 30 minutes. The Berg Balance Scale and the Timed Up and Go Test showed a statistically significant improvement of balance in the intervention group ( p = 0.001 and p = 0.005, respectively). Balance tests using the stabilometer also showed a statistically significant improvement in static and dynamic postural balance for osteoporotic women after the completion of the Balance Training Programme. As a consequence, the one-year exercise programme significantly decreased the number of falls in the exercise group compared with the control group. The Balance Training Programme significantly improved the balance parameters and reduced the number of falls in postmenopausal women who have already had at least one fracture in the past.
Ringhof, Steffen; Leibold, Timo; Hellmann, Daniel; Stein, Thorsten
2015-10-01
Recent studies reported on the potential benefits of submaximum clenching of the jaw on human postural control in upright unperturbed stance. However, it remained unclear whether these effects might also be observed among active controls. The purpose of the present study, therefore, was to comparatively examine the influence of concurrent muscle activation in terms of submaximum clenching of the jaw and submaximum clenching of the fists on postural stability. Posturographic analyses were conducted with 17 healthy young adults on firm and foam surfaces while either clenching the jaw (JAW) or clenching the fists (FIST), whereas habitual standing served as the control condition (CON). Both submaximum tasks were performed at 25% maximum voluntary contraction, assessed, and visualized in real time by means of electromyography. Statistical analyses revealed that center of pressure (COP) displacements were significantly reduced during JAW and FIST, but with no differences between both concurrent clenching activities. Further, a significant increase in COP displacements was observed for the foam as compared to the firm condition. The results showed that concurrent muscle activation significantly improved postural stability compared with habitual standing, and thus emphasize the beneficial effects of jaw and fist clenching for static postural control. It is suggested that concurrent activities contribute to the facilitation of human motor excitability, finally increasing the neural drive to the distal muscles. Future studies should evaluate whether elderly or patients with compromised postural control might benefit from these physiological responses, e.g., in the form of a reduced risk of falling. Copyright © 2015 Elsevier B.V. All rights reserved.
Challenging Postural Tasks Increase Asymmetry in Patients with Parkinson’s Disease
Beretta, Victor Spiandor; Gobbi, Lilian Teresa Bucken; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Barbieri, Fabio Augusto
2015-01-01
The unilateral predominance of Parkinson’s disease (PD) symptoms suggests that balance control could be asymmetrical during static tasks. Although studies have shown that balance control asymmetries exist in patients with PD, these analyses were performed using only simple bipedal standing tasks. Challenging postural tasks, such as unipedal or tandem standing, could exacerbate balance control asymmetries. To address this, we studied the impact of challenging standing tasks on postural control asymmetry in patients with PD. Twenty patients with PD and twenty neurologically healthy individuals (control group) participated in this study. Participants performed three 30s trials for each postural task: bipedal, tandem adapted and unipedal standing. The center of pressure parameter was calculated for both limbs in each of these conditions, and the asymmetry between limbs was assessed using the symmetric index. A significant effect of condition was observed, with unipedal standing and tandem standing showing greater asymmetry than bipedal standing for the mediolateral root mean square (RMS) and area of sway parameters, respectively. In addition, a group*condition interaction indicated that, only for patients with PD, the unipedal condition showed greater asymmetry in the mediolateral RMS and area of sway than the bipedal condition and the tandem condition showed greater asymmetry in the area of sway than the bipedal condition. Patients with PD exhibited greater asymmetry while performing tasks requiring postural control when compared to neurologically healthy individuals, especially for challenging tasks such as tandem and unipedal standing. PMID:26367032
Fractal dimension approach in postural control of subjects with Prader-Willi Syndrome
2011-01-01
Background Static posturography is user-friendly technique suitable for the study of the centre of pressure (CoP) trajectory. However, the utility of static posturography in clinical practice is somehow limited and there is a need for reliable approaches to extract physiologically meaningful information from stabilograms. The aim of this study was to quantify the postural strategy of Prader-Willi patients with the fractal dimension technique in addition to the CoP trajectory analysis in time and frequency domain. Methods 11 adult patients affected by Prader-Willi Syndrome (PWS) and 20 age-matched individuals (Control group: CG) were included in this study. Postural acquisitions were conducted by means of a force platform and the participants were required to stand barefoot on the platform with eyes open and heels at standardized distance and position for 30 seconds. Platform data were analysed in time and frequency domain. Fractal Dimension (FD) was also computed. Results The analysis of CoP vs. time showed that in PWS participants all the parameters were statistically different from CG, with greater displacements along both the antero-posterior and medio-lateral direction and longer CoP tracks. As for frequency analysis, our data showed no significant differences between PWS and CG. FD evidenced that PWS individuals were characterized by greater value in comparison with CG. Conclusions Our data showed that while the analysis in the frequency domain did not seem to explain the postural deficit in PWS, the FD method appears to provide a more informative description of it and to complement and integrate the time domain analysis. PMID:21854639
Directional measures of postural sway as predictors of balance instability and accidental falls
Janusz, Błaszczyk W.; Beck, Monika; Szczepańska, Justyna; Sadowska, Dorota; Bacik, Bogdan; Juras, Grzegorz
2016-01-01
Abstract Despite the obvious advantages and popularity of static posturography, universal standards for posturographic tests have not been developed thus far. Most of the center-of-foot pressure (COP) indices are strongly dependent on an individual experimental design, and are susceptible to distortions, which makes results of their analysis incomparable. In this research, we present a novel approach to the analysis of the COP trajectory based on the directional features of postural sway. Our novel output measures: the sway directional indices (DI) and sway vector (SV) were applied to assess the postural stability in the group of young able-bodied subjects. Towards this aim, the COP trajectories were recorded in 100 students standing still for 60 s, with eyes open (EO) and then, with eyes closed (EC). Each record was subdivided then into 20, 30 and 60 s samples. Interclass correlation coefficients were calculated from the samples. The controlled variables (visual conditions) uniquely affected the output measures, but only in case of proper signal pretreatment (low-pass filtering). In filtering below 6 Hz, the DI and SV provided a unique set of descriptors for postural control. Both sway measures were highly independent of the trial length and the sampling frequency, and were unaffected by the sampling noise. Directional indices of COP filtered at 6 Hz showed high to very high reliability, with ICC range of 0.7-0.9. Results of a single 60 s trial are sufficient to reach acceptable reliability for both DI and SV. In conclusion, the directional sway measures may be recommended as the primary standard in static posturography. PMID:28149395
Posturography and risk of recurrent falls in healthy non-institutionalized persons aged over 65.
Buatois, Séverine; Gueguen, René; Gauchard, Gérome C; Benetos, Athanase; Perrin, Philippe P
2006-01-01
A poor postural stability in older people is associated with an increased risk of falling. The posturographic tool has widely been used to assess balance control; however, its value in predicting falls remains unclear. The purpose of this prospective study was to determine the predictive value of posturography in the estimation of the risk of recurrent falls, including a comparison with standard clinical balance tests, in healthy non-institutionalized persons aged over 65. Two hundred and six healthy non-institutionalized volunteers aged over 65 were tested. Postural control was evaluated by posturographic tests, performed on static, dynamic and dynamized platforms (static test, slow dynamic test and Sensory Organization Test [SOT]) and clinical balance tests (Timed 'Up & Go' test, One-Leg Balance, Sit-to-Stand-test). Subsequent falls were monitored prospectively with self-questionnaire sent every 4 months for a period of 16 months after the balance testing. Subjects were classified prospectively in three groups of Non-Fallers (0 fall), Single-Fallers (1 fall) and Multi-Fallers (more than 2 falls). Loss of balance during the last trial of the SOT sensory conflicting condition, when visual and somatosensory inputs were distorted, was the best factor to predict the risk of recurrent falls (OR = 3.6, 95% CI = 1.3-10.11). Multi-Fallers showed no postural adaptation during the repetitive trials of this sensory condition, contrary to Non-Fallers and Single-Fallers. The Multi-Fallers showed significantly more sway when visual inputs were occluded. The clinical balance tests, the static test and the slow dynamic test revealed no significant differences between the groups. In a sample of non-institutionalized older persons aged over 65, posturographic evaluation by the SOT, especially with repetition of the same task in sensory conflicting condition, compared to the clinical tests and the static and dynamic posturographic test, appears to be a more sensitive tool to identify those at high-risk of recurrent falls. Copyright (c) 2006 S. Karger AG, Basel.
Mental imagery. Effects on static balance and attentional demands of the elderly.
Hamel, M F; Lajoie, Yves
2005-06-01
Several studies have demonstrated the effectiveness of mental imagery in improving motor performance. However, no research has studied the effectiveness of such a technique on static balance in the elderly. This study evaluated the efficiency of a mental imagery technique, aimed at improving static balance by reducing postural oscillations and attentional demands in the elderly. Twenty subjects aged 65 to 90 years old, divided into two groups (8 in Control group and 12 in Experimental group) participated in the study. The experimental participants underwent daily mental imagery training for a period of six weeks. Antero-posterior and lateral oscillations, reaction times during the use of the double-task paradigm were measured, and the Berg Balance Scale, Activities-specific Balance Confidence Scale, and VMIQ questionnaire were answered during both pre-test and post-test. Attentional demands and postural oscillations (antero-posterior) decreased significantly in the group with mental imagery training compared with those of the Control group. Subjects in the mental imagery group became significantly better in their aptitudes to generate clear vivid mental images, as indicated by the VMIQ questionnaire, whereas no significant difference was observed for the Activities-specific Balance Confidence Scale or Berg Scale. The results support psychoneuromuscular and motor coding theories associated with mental imagery.
Body posture changes in women with migraine with or without temporomandibular disorders
Ferreira, Mariana C.; Bevilaqua-Grossi, Débora; Dach, Fabíola É.; Speciali, José G.; Gonçalves, Maria C.; Chaves, Thais C.
2014-01-01
Background Migraine and temporomandibular disorders (TMDs) are reported to be associated. However, there are no reports on the association among migraines, TMDs and changes in body posture. Objectives To assess changes in body posture in women suffering migraines with or without TMD compared with a control group. Method Sixty-six women with a mean age of 18 to 45 years participated in this study. The groups were composed of 22 volunteers with migraine and TMD (MTMD), 22 volunteers with migraines without TMD (MG) and 22 women in the control group (CG). Static posture was assessed by photogrammetry, and 19 angles were measured. Results Postural asymmetry was observed in the face for 4 angles measured on the frontal plane in the MG group and for 4 angles of the trunk in the MG and MTMD groups with respect to CG. However, for comparisons between MTMD and CG, clinical relevance was identified for two angles of the sagittal plane (Cervical and Lumbar Lordosis, Effect Size - ES - moderate: 0.53 and 0.60). For comparisons between the MG and CG, the clinical relevance/potential was verified for three angles with moderate ES (ES>0.42). The clinical relevance when comparing MTMD and CG was identified for four angles of facial symmetry head inclination (ES>0.54) and for two angles between MG and CG (ES>0.48). Conclusion The results demonstrated the presence of postural changes compared with a control group in women with migraines with or without TMD, and there were similar clinically relevant postural changes among the patients with migraines with and without TMD. PMID:24675909
Body posture changes in women with migraine with or without temporomandibular disorders.
Ferreira, Mariana C; Bevilaqua-Grossi, Débora; Dach, Fabíola E; Speciali, José G; Gonçalves, Maria C; Chaves, Thais C
2014-01-01
Migraine and temporomandibular disorders (TMDs) are reported to be associated. However, there are no reports on the association among migraines, TMDs and changes in body posture. To assess changes in body posture in women suffering migraines with or without TMD compared with a control group. Sixty-six women with a mean age of 18 to 45 years participated in this study. The groups were composed of 22 volunteers with migraine and TMD (MTMD), 22 volunteers with migraines without TMD (MG) and 22 women in the control group (CG). Static posture was assessed by photogrammetry, and 19 angles were measured. Postural asymmetry was observed in the face for 4 angles measured on the frontal plane in the MG group and for 4 angles of the trunk in the MG and MTMD groups with respect to CG. However, for comparisons between MTMD and CG, clinical relevance was identified for two angles of the sagittal plane (Cervical and Lumbar Lordosis, Effect Size - ES - moderate: 0.53 and 0.60). For comparisons between the MG and CG, the clinical relevance/potential was verified for three angles with moderate ES (ES>0.42). The clinical relevance when comparing MTMD and CG was identified for four angles of facial symmetry head inclination (ES>0.54) and for two angles between MG and CG (ES>0.48). The results demonstrated the presence of postural changes compared with a control group in women with migraines with or without TMD, and there were similar clinically relevant postural changes among the patients with migraines with and without TMD.
Body measurements of Chinese males in dynamic postures and application.
Wang, Y J; Mok, P Y; Li, Y; Kwok, Y L
2011-11-01
It is generally accepted that there is a relationship between body dimensions, body movement and clothing wearing ease design, and yet previous research in this area has been neither sufficient nor systematic. This paper proposes a method to measure the human body in the static state and in 17 dynamic postures, so as to understand dimensional changes of different body parts during dynamic movements. Experimental work is carried out to collect 30 measurements of 10 male Chinese subjects in both static and dynamic states. Factor analysis is used to analyse body measurement data in a static state, and such key measurements describe the characteristics of different body figures. Moreover, one-way ANOVA is used to analyse how dynamic postures affect these key body measurements. Finally, an application of the research results is suggested: a dynamic block patternmaking method for high-performance clothing design. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Yoshida, Tomoe; Tanaka, Toshitake; Tamura, Yuya; Yamamoto, Masahiko; Suzuki, Mitsuya
2018-01-01
During attacks of vestibular neuritis (VN), patients typically lose postural balance, with resultant postural inclination, gait deviation toward the lesion side, and tendency to fall. In this study, we examined and analyzed static and dynamic postural control during attacks of VN to characterize differences in postural control between right and left VN. Subjects were patients diagnosed with VN at the Department of Otolaryngology, Toho University Sakura Medical Center, and underwent in-patient treatment. Twenty-five patients who had spontaneous nystagmus were assessed within 3days after the onset; all were right-foot dominant. Right VN was detected in nine patients (men: 4, women: 5; mean age: 57.6±17.08years [range: 23-82]) and left VN in 16 patients (men: 10, women: 6; mean age: 58.4±14.08years [range: 23-85 years]); the percentages of canal paresis of right and left VN were 86.88±18.1% and 86.02±15.0%, respectively. Statistical comparisons were conducted using the independent t-test. In stabilometry, with eyes opened, no significant differences were found between patients with right and left VN. However, with eyes closed, the center of horizontal movement significantly shifted ipsilateral (p<0.01). The differences in the lateral and anteroposterior body tracking test (BTT) were statistically significant (p=0.0039 and p=0.0376, respectively), with greater changes in cases with right VN. Thus, the dominant foot might contribute to the postural control mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.
Emotional and movement-related body postures modulate visual processing
Borhani, Khatereh; Làdavas, Elisabetta; Maier, Martin E.; Avenanti, Alessio
2015-01-01
Human body postures convey useful information for understanding others’ emotions and intentions. To investigate at which stage of visual processing emotional and movement-related information conveyed by bodies is discriminated, we examined event-related potentials elicited by laterally presented images of bodies with static postures and implied-motion body images with neutral, fearful or happy expressions. At the early stage of visual structural encoding (N190), we found a difference in the sensitivity of the two hemispheres to observed body postures. Specifically, the right hemisphere showed a N190 modulation both for the motion content (i.e. all the observed postures implying body movements elicited greater N190 amplitudes compared with static postures) and for the emotional content (i.e. fearful postures elicited the largest N190 amplitude), while the left hemisphere showed a modulation only for the motion content. In contrast, at a later stage of perceptual representation, reflecting selective attention to salient stimuli, an increased early posterior negativity was observed for fearful stimuli in both hemispheres, suggesting an enhanced processing of motivationally relevant stimuli. The observed modulations, both at the early stage of structural encoding and at the later processing stage, suggest the existence of a specialized perceptual mechanism tuned to emotion- and action-related information conveyed by human body postures. PMID:25556213
Improved postural control after dynamic balance training in older overweight women.
Bellafiore, Marianna; Battaglia, Giuseppe; Bianco, Antonino; Paoli, Antonio; Farina, Felicia; Palma, Antonio
2011-01-01
Many studies have reported a greater frequency of falls among older women than men in conditions which stress balance. Previously, we found an improvement in static balance in older women with an increased support surface area and equal load redistribution on both feet, in response to a dynamic balance training protocol. The aim of the present study was to examine whether the same training program and body composition would have effects on the postural control of older overweight women. Ten healthy women (68.67 ± 5.50 yrs; 28.17 ± 3.35 BMI) participated in a five-week physical activity program. This included dynamic balance exercises, such as heel-to-toe walking in different directions, putting their hands on their hips, eyes open (EO) or closed (EC), with a tablet on their heads, going up and down one step, and walking on a mat. Postural stability was assessed before and after training with an optoelectronic platform and a uni-pedal balance performance test. Body composition of the trunk, upper limbs and lower limbs was measured by bio-impedance analysis. The mean speed (MS), medial-lateral MS (MS-x), anterior-posterior MS (MS-y), sway path (SP) and ellipse surface area (ESA) of the pressure center was reduced after training in older women. However, only MS, MS-x, MS-y and SP significantly decreased in bipodalic conditions with EO and MS-y also with EC (p<0.05). Instead, in monopodalic conditions, we found a significant reduction in the ESA of both feet with EO and EC. These data were associated with a significant increase in the lean mass of lower limbs and a higher number of participants who improved their ability to maintain unipedal static balance. Our dynamic balance training protocol appears to be feasible, safe and repeatable for older overweight women and to have positive effects in improving their lateral and anterior-posterior postural control, mainly acting on the visual and skeletal muscle components of the balance control system.
The contribution of postural balance analysis in older adult fallers: A narrative review.
Pizzigalli, L; Micheletti Cremasco, M; Mulasso, A; Rainoldi, A
2016-04-01
Falls are a serious health problem for older adults. Several studies have identified the decline of postural balance as one of the main risk factors for falls. Contrary to what may be believed, the capability of force platform measurements to predict falls remains uncertain. The focus of this narrative review is the identification of postural characteristics of older adults at risk of falling using both static and dynamic postural balance assessments. The literature analysis was conducted on Medline/PubMed. The search ended in May 2015. Centre of pressure (CoP) path length, CoP velocity and sway in medial lateral and anterior-posterior are the variables that distinguish older adult fallers from non-fallers. Recommendations to medical personnel on how to provide efficient balance training for older adults are offered, discussing the relevance and limitations of postural stability on static and dynamic board in falling risk prevention. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vibratory noise to the fingertip enhances balance improvement associated with light touch.
Magalhães, Fernando Henrique; Kohn, André Fabio
2011-03-01
Light touch of a fingertip on an external stable surface greatly improves the postural stability of standing subjects. The hypothesis of the present work was that a vibrating surface could increase the effectiveness of fingertip signaling to the central nervous system (e.g., by a stochastic resonance mechanism) and hence improve postural stability beyond that achieved by light touch. Subjects stood quietly over a force plate while touching with their right index fingertip a surface that could be either quiescent or randomly vibrated at two low-level noise intensities. The vibratory noise of the contact surface caused a significant decrease in postural sway, as assessed by center of pressure measures in both time and frequency domains. Complementary experiments were designed to test whether postural control improvements were associated with a stochastic resonance mechanism or whether attentional mechanisms could be contributing. A full curve relating body sway parameters and different levels of vibratory noise resulted in a U-like function, suggesting that the improvement in sway relied on a stochastic resonance mechanism. Additionally, no decrease in postural sway was observed when the vibrating contact surface was attached to the subject's body, suggesting that no attentional mechanisms were involved. These results indicate that sensory cues obtained from the fingertip need not necessarily be associated with static contact surfaces to cause improvement in postural stability. A low-level noisy vibration applied to the contact surface could lead to a better performance of the postural control system.
Effects of physical and sporting activities on balance control in elderly people
Perrin, P. P.; Gauchard, G. C.; Perrot, C.; Jeandel, C.
1999-01-01
OBJECTIVE: Balance disorders increase with aging and raise the risk of accidental falls in the elderly. It has been suggested that the practice of physical and sporting activities (PSA) efficiently counteracts these age related disorders, reducing the risk of falling significantly. METHODS: This study, principally based on a period during which the subjects were engaged in PSA, included 65 healthy subjects, aged over 60, who were living at home. Three series of posturographic tests (static, dynamic with a single and fast upward tilt, and dynamic with slow sinusoidal oscillations) analysing the centre of foot pressure displacements or electromyographic responses were conducted to determine the effects of PSA practice on balance control. RESULTS: The major variables of postural control were best in subjects who had always practised PSA (AA group). Those who did not take part in PSA at all (II group) had the worst postural performances, whatever the test. Subjects having lately begun PSA practice (IA group) had good postural performances, close to those of the AA group, whereas the subjects who had stopped the practice of PSA at an early age (AI group) did not perform as well. Overall, the postural control in the group studied decreased in the order AA > IA > AI > II. CONCLUSIONS: The period during which PSA are practised seems to be of major importance, having a positive bearing on postural control. It seems that recent periods of practice have greater beneficial effects on the subject's postural stability than PSA practice only at an early age. These data are compatible with the fact that PSA are extremely useful for elderly people even if it has not been a lifelong habit. PMID:10205695
Visuo-proprioceptive interactions in degenerative cervical spine diseases requiring surgery.
Freppel, S; Bisdorff, A; Colnat-Coulbois, S; Ceyte, H; Cian, C; Gauchard, G; Auque, J; Perrin, P
2013-01-01
Cervical proprioception plays a key role in postural control, but its specific contribution is controversial. Postural impairment was shown in whiplash injuries without demonstrating the sole involvement of the cervical spine. The consequences of degenerative cervical spine diseases are underreported in posture-related scientific literature in spite of their high prevalence. No report has focused on the two different mechanisms underlying cervicobrachial pain: herniated discs and spondylosis. This study aimed to evaluate postural control of two groups of patients with degenerative cervical spine diseases with or without optokinetic stimulation before and after surgical treatment. Seventeen patients with radiculopathy were recruited and divided into two groups according to the spondylotic or discal origin of the nerve compression. All patients and a control population of 31 healthy individuals underwent a static posturographic test with 12 recordings; the first four recordings with the head in 0° position: eyes closed, eyes open without optokinetic stimulation, with clockwise and counter clockwise optokinetic stimulations. These four sensorial situations were repeated with the head rotated 30° to the left and to the right. Patients repeated these 12 recordings 6weeks postoperatively. None of the patients reported vertigo or balance disorders before or after surgery. Prior to surgery, in the eyes closed condition, the herniated disc group was more stable than the spondylosis group. After surgery, the contribution of visual input to postural control in a dynamic visual environment was reduced in both cervical spine diseases whereas in a stable visual environment visual contribution was reduced only in the spondylosis group. The relative importance of visual and proprioceptive inputs to postural control varies according to the type of pathology and surgery tends to reduce visual contribution mostly in the spondylosis group. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Exergaming and Static Postural Control in Individuals With a History of Lower Limb Injury
Sims, Jennifer; Cosby, Nicole; Saliba, Ethan N.; Hertel, Jay; Saliba, Susan A.
2013-01-01
Context: Therapeutic exercise programs that incorporate real-time feedback have been reported to enhance outcomes in patients with lower extremity joint injuries. The Wii Fit has been purported to improve balance, strength, flexibility, and fitness. Objective: To determine the effects of Wii Fit rehabilitation on postural control and self-reported function in patients with a history of lower limb injury. Design: Single-blinded, randomized controlled trial. Setting: Laboratory. Patients or Other Participants: Twenty-eight physically active participants with a history of lower limb injuries were randomly assigned to 1 of 3 groups (9 Wii Fit, 10 traditional, 9 control). Intervention(s): Intervention groups performed supervised rehabilitation 3 d/wk for a total of 12 sessions. Main Outcome Measure(s): Time to boundary (TTB) and the Star Excursion Balance Test (SEBT) were conducted at baseline, 2 weeks, and 4 weeks. Self-reported function was measured at baseline and 4-week follow-up. Between-groups differences were compared using repeated-measures multivariate analysis of variance. Results: With the eyes open, both intervention groups improved (P < .05) in the mean and the SD of the TTB anterior-posterior minima. In the eyes-closed condition, a time main effect (P < .05) for absolute TTB medial-lateral minima was observed. A time main effect was also noted in the posteromedial and posterolateral reach directions of the SEBT. When the scores for each group were pooled, improvement (P < .05) in self-reported function was demonstrated at 4-week follow-up. Conclusions: Rehabilitation using the Wii Fit and traditional exercises improved static postural control in patients with a history of lower extremity injury. PMID:23675790
Chisholm, Amanda E; Alamro, Raed A; Williams, Alison M M; Lam, Tania
2017-04-11
Robotic overground gait training devices, such as the Ekso, require users to actively participate in triggering steps through weight-shifting movements. It remains unknown how much the trunk muscles are activated during these movements, and if it is possible to transfer training effects to seated balance control. This study was conducted to compare the activity of postural control muscles of the trunk during overground (Ekso) vs. treadmill-based (Lokomat) robotic gait training, and evaluate changes in seated balance control in people with high-thoracic motor-complete spinal cord injury (SCI). Three individuals with motor-complete SCI from C7-T4, assumed to have no voluntary motor function below the chest, underwent robotic gait training. The participants were randomly assigned to Ekso-Lokomat-Ekso or Lokomat-Ekso-Lokomat for 10 sessions within each intervention phase for a total of 30 sessions. We evaluated static and dynamic balance control through analysis of center of pressure (COP) movements after each intervention phase. Surface electromyography was used to compare activity of the abdominal and erector spinae muscles during Ekso and Lokomat walking. We observed improved postural stability after training with Ekso compared to Lokomat during static balance tasks, indicated by reduced COP root mean square distance and ellipse area. In addition, Ekso training increased total distance of COP movements during a dynamic balance task. The trunk muscles showed increased activation during Ekso overground walking compared to Lokomat walking. Our findings suggest that the Ekso actively recruits trunk muscles through postural control mechanisms, which may lead to improved balance during sitting. Developing effective training strategies to reactivate the trunk muscles is important to facilitate independence during seated balance activity in people with SCI.
Specific Stimuli Induce Specific Adaptations: Sensorimotor Training vs. Reactive Balance Training
Freyler, Kathrin; Krause, Anne; Gollhofer, Albert; Ritzmann, Ramona
2016-01-01
Typically, balance training has been used as an intervention paradigm either as static or as reactive balance training. Possible differences in functional outcomes between the two modalities have not been profoundly studied. The objective of the study was to investigate the specificity of neuromuscular adaptations in response to two balance intervention modalities within test and intervention paradigms containing characteristics of both profiles: classical sensorimotor training (SMT) referring to a static ledger pivoting around the ankle joint vs. reactive balance training (RBT) using externally applied perturbations to deteriorate body equilibrium. Thirty-eight subjects were assigned to either SMT or RBT. Before and after four weeks of intervention training, postural sway and electromyographic activities of shank and thigh muscles were recorded and co-contraction indices (CCI) were calculated. We argue that specificity of training interventions could be transferred into corresponding test settings containing properties of SMT and RBT, respectively. The results revealed that i) postural sway was reduced in both intervention groups in all test paradigms; magnitude of changes and effect sizes differed dependent on the paradigm: when training and paradigm coincided most, effects were augmented (P<0.05). ii) These specificities were accompanied by segmental modulations in the amount of CCI, with a greater reduction within the CCI of thigh muscles after RBT compared to the shank muscles after SMT (P<0.05). The results clearly indicate the relationship between test and intervention specificity in balance performance. Hence, specific training modalities of postural control cause multi-segmental and context-specific adaptations, depending upon the characteristics of the trained postural strategy. In relation to fall prevention, perturbation training could serve as an extension to SMT to include the proximal segment, and thus the control of structures near to the body’s centre of mass, into training. PMID:27911944
Szeto, Grace Pui Yuk; Straker, Leon Melville; O'Sullivan, Peter Bruce
2005-12-01
The problem of work-related neck and upper limb disorders among computer users has been reported extensively in the literature, and commonly cited risk factors include static posture, speed and force of keyboard operation. The present study examined changes in median frequency (MF) of the neck-shoulder muscles in symptomatic and asymptomatic office workers when they were exposed to these three physical stressors. A quasi-experimental Case-Control design was used to examine MF changes in two groups of female office workers when they were subjected to controlled doses of computer work involving prolonged static posture, increased typing speed and increased typing force. The MF of four major neck-shoulder muscles were examined bilaterally and compared between groups. The MF changes over time-at-task did not clearly illustrate any muscle fatigue mechanism. However, Case Group consistently showed trends for higher MF than the Control Group, and this pattern was observed in response to all three physical stressors. The consistent group differences in MF suggest different muscle recruitment strategies between symptomatic and asymptomatic office workers. These results implied that symptomatic individuals had altered motor control, which may have important implications in understanding the etiology of work-related musculoskeletal disorders.
Differential approach to strategies of segmental stabilisation in postural control.
Isableu, Brice; Ohlmann, Théophile; Crémieux, Jacques; Amblard, Bernard
2003-05-01
The present paper attempts to clarify the between-subjects variability exhibited in both segmental stabilisation strategies and their subordinated or associated sensory contribution. Previous data have emphasised close relationships between the interindividual variability in both the visual control of posture and the spatial visual perception. In this study, we focused on the possible relationships that might link perceptual visual field dependence-independence and the visual contribution to segmental stabilisation strategies. Visual field dependent (FD) and field independent (FI) subjects were selected on the basis of their extreme score in a static rod and frame test where an estimation of the subjective vertical was required. In the postural test, the subjects stood in the sharpened Romberg position in darkness or under normal or stroboscopic illumination, in front of either a vertical or a tilted frame. Strategies of segmental stabilisation of the head, shoulders and hip in the roll plane were analysed by means of their anchoring index (AI). Our hypothesis was that FD subjects might use mainly visual cues for calibrating not only their spatial perception but also their strategies of segmental stabilisation. In the case of visual cue disturbances, a greater visual dependency to the strategies of segmental stabilisation in FD subjects should be validated by observing more systematic "en bloc" functioning (i.e. negative AI) between two adjacent segments. The main results are the following: 1. Strategies of segmental stabilisation differed between both groups and differences were amplified with the deprivation of either total vision and/or static visual cues. 2. In the absence of total vision and/or static visual cues, FD subjects have shown an increased efficiency of the hip stabilisation in space strategy and an "en bloc" operation of the shoulder-hip unit (whole trunk). The last "en bloc" operation was extended to the whole head-trunk unit in darkness, associated with a hip stabilisation in space. 3. The FI subjects have adopted neither a strategy of segmental stabilisation in space nor on the underlying segment, whatever the body segment considered and the visual condition. Thus, in this group, head, shoulder and hip moved independently from each other during stance control, roughly without taking into account the visual condition. The results, emphasising a differential weighting of sensory input involved in both perceptual and postural control, are discussed in terms of the differential choice and/or ability to select the adequate frame of reference common to both cognitive and motor spatial activities. We assumed that a motor-somesthetics "neglect" or a lack of mastering of these inputs/outputs rather than a mere visual dependence in FD subjects would generate these interindividual differences in both spatial perception and postural balance. This proprioceptive "neglect" is assumed to lead FD subjects to sensory reweighting, whereas proprioceptive dominance would lead FI subjects to a greater ability in selecting the adequate frame of reference in the case of intersensory disturbances. Finally, this study also provides evidence for a new interpretation of the visual field dependence-independence dimension in both spatial perception and postural control.
Neuromuscular training in construction workers: a longitudinal controlled pilot study.
Faude, Oliver; Donath, Lars; Bopp, Micha; Hofmann, Sara; Erlacher, Daniel; Zahner, Lukas
2015-08-01
Many accidents at construction sites are due to falls. An exercise-based workplace intervention may improve intrinsic fall risk factors. In this pilot study, we aimed at evaluating the effects of neuromuscular exercise on static and functional balance performance as well as on lower limb explosive power in construction workers. Healthy middle-aged construction workers were non-randomly assigned to an intervention [N = 20, age = 40.3 (SD 8.3) years] or a control group [N = 20, age = 41.8 (9.9) years]. The intervention group performed static and dynamic balance and strength exercises (13 weeks, 15 min each day). Before and after the intervention and after an 8-week follow-up, unilateral postural sway, backward balancing (on 3- and 4.5-cm-wide beams) as well as vertical jump height were assessed. We observed a group × time interaction for postural sway (p = 0.002) with a reduction in the intervention group and no relevant change in the control group. Similarly, the number of successful steps while walking backwards on the 3-cm beam increased only in the intervention group (p = 0.047). These effects were likely to most likely practically beneficial from pretest to posttest and to follow-up test for postural sway (+12%, standardized mean difference (SMD) = 0.65 and 17%, SMD = 0.92) and backward balancing on the 3-cm beam (+58%, SMD = 0.59 and 37%, SMD = 0.40). Fifteen minutes of neuromuscular training each day can improve balance performance in construction workers and, thus, may contribute to a decreased fall risk.
ERIC Educational Resources Information Center
Irez, Gonul Babayigit
2014-01-01
The aim of this study is to investigate the relationship of foot posture and foot size with balance. A hundred and thirteen healthy volunteers were recruited from undergraduate students (Male = 74, Female = 37, age range 18-22). The Foot Posture Index (FPI-6), anthropometric measurements, dynamic balance and static balance measurements were done…
Postural Stability Assessment of University Marching Musicians Using Force Platform Measures.
Magnotti, Trevor D; McElhiney, Danielle; Russell, Jeffrey A
2016-09-01
Lower extremity injury is prevalent in marching musicians, and poor postural stability is a possible risk factor for this. The external load of an instrument may predispose these performers to injury by decreasing postural stability. The purpose of this study was to determine the relationship between instrument load and static and dynamic postural stability in this population. Fourteen university marching musicians were recruited and completed a balance assessment protocol on a force platform with and without their instrument. Mean center of pressure (CoP) displacement was then calculated for each exercise in the anterior/posterior and medial/lateral planes. Mean anterior/posterior CoP displacement significantly increased in the instrument condition for the static surface, eyes closed, 2 feet condition (p≤0.005; d=0.89). No significant differences were found in the medial/lateral plane between non-instrument and instrument conditions. Significant differences were not found between test stance conditions independent of group. Comparisons between the non-instrument-loaded and instrument-loaded conditions revealed possible significance of instrument load on postural stability in the anterior/posterior plane. Mean differences indicated that an unstable surface created a greater destabilizing effect on postural stability than instrument load.
Zech, Astrid; Klahn, Philipp; Hoeft, Jon; zu Eulenburg, Christine; Steib, Simon
2014-02-01
Injury prevention effects of neuromuscular training have been partly attributed to postural control adaptations. Uncertainty exists regarding the magnitude of these adaptations and on how they can be adequately monitored. The objective was to determine the time course of neuromuscular training effects on functional, dynamic and static balance measures. Thirty youth (14.9 ± 3 years) field hockey athletes were randomised to an intervention or control group. The intervention included a 20-min neuromuscular warm-up program performed twice weekly for 10 weeks. Balance assessments were performed at baseline, week three, week six and post-intervention. They included the star excursion balance test (SEBT), balance error scoring system (BESS), jump-landing time to stabilization (TTS) and center of pressure (COP) sway velocity during single-leg standing. No baseline differences were found between groups in demographic data and balance measures. Adherence was at 86%. All balance measures except the medial-lateral TTS improved significantly over time (p < 0.05) in both groups. Significant group by time interactions were found for the BESS score (p < 0.001). The intervention group showed greater improvements (69.3 ± 10.3%) after 10 weeks in comparison to controls (31.8 ± 22.1%). There were no significant group by time interactions in the SEBT, TTS and COP sway velocity. Neuromuscular training was effective in improving postural control in youth team athletes. However, this effect was not reflected in all balance measures suggesting that the neuromuscular training did not influence all dimensions of postural control. Further studies are needed to confirm the potential of specific warm-up programs to improve postural control.
Martínez-Amat, Antonio; Hita-Contreras, Fidel; Lomas-Vega, Rafael; Caballero-Martínez, Isabel; Alvarez, Pablo J; Martínez-López, Emilio
2013-08-01
The purpose of this study was to evaluate the effect of a 12-week-specific proprioceptive training program on postural stability, gait, balance, and fall prevention in adults older than 65 years. The present study was a controlled clinical trial. Forty-four community dwelling elderly subjects (61-90 years; mean age, 78.07 ± 5.7 years) divided into experimental (n = 20) and control (n = 24) groups. The participants performed the Berg balance test before and after the training program, and we assessed participants' gait, balance, and the risk of falling, using the Tinetti scale. Medial-lateral plane and anterior-posterior plane displacements of the center of pressure, Sway area, length and speed, and the Romberg quotient about surface, speed, and distance were calculated in static posturography analysis (EPS pressure platform) under 2 conditions: eyes open and eyes closed. After a first clinical evaluation, patients were submitted to 12 weeks proprioception training program, 2 sessions of 50 minutes every week. This program includes 6 exercises with the BOSU and Swiss ball as unstable training tools that were designed to program proprioceptive training. The training program improved postural balance of older adults in mediolateral plane with eyes open (p < 0.05) and anterior-posterior plane with eyes closed (p < 0.01). Significant improvements were observed in Romberg quotient about surface (p < 0.05) and speed (p < 0.01) but not about distance (p > 0.05). After proprioception training, gait (Tinetti), and balance (Berg) test scores improved 14.66% and 11.47% respectively. These results show that 12 weeks proprioception training program in older adults is effective in postural stability, static, and dynamic balance and could lead to an improvement in gait and balance capacity, and to a decrease in the risk of falling in adults aged 65 years and older.
DeShaw, Jonathan; Rahmatalla, Salam
2014-08-01
The aim of this study was to develop a predictive discomfort model in single-axis, 3-D, and 6-D combined-axis whole-body vibrations of seated occupants considering different postures. Non-neutral postures in seated whole-body vibration play a significant role in the resulting level of perceived discomfort and potential long-term injury. The current international standards address contact points but not postures. The proposed model computes discomfort on the basis of static deviation of human joints from their neutral positions and how fast humans rotate their joints under vibration. Four seated postures were investigated. For practical implications, the coefficients of the predictive discomfort model were changed into the Borg scale with psychophysical data from 12 volunteers in different vibration conditions (single-axis random fore-aft, lateral, and vertical and two magnitudes of 3-D). The model was tested under two magnitudes of 6-D vibration. Significant correlations (R = .93) were found between the predictive discomfort model and the reported discomfort with different postures and vibrations. The ISO 2631-1 correlated very well with discomfort (R2 = .89) but was not able to predict the effect of posture. Human discomfort in seated whole-body vibration with different non-neutral postures can be closely predicted by a combination of static posture and the angular velocities of the joint. The predictive discomfort model can assist ergonomists and human factors researchers design safer environments for seated operators under vibration. The model can be integrated with advanced computer biomechanical models to investigate the complex interaction between posture and vibration.
Liu, Bo; Leng, Yangming; Zhou, Renhong; Liu, Jingjing; Liu, Dongdong; Liu, Jia; Zhang, Su-Lin; Kong, Wei-Jia
2018-04-01
The present study investigated the effect of foam thickness on postural stability in patients with unilateral vestibular hypofunction (UVH) during foam posturography. Static and foam posturography were performed in 33 patients (UVH group) and 30 healthy subjects (control group) with eyes open (EO) and closed (EC) on firm surface and on 1-5 foam pad(s). Sway velocity (SV) of center of pressure, standing time before falling (STBF) and falls reaction were recorded and analyzed. (1) SVs had an increasing tendency in both groups as the foam pads were added under EO and EC conditions. (2) STBFs, only in UVH group with EC, decreased with foam thickness increasing. (3) Significant differences in SV were found between the control and UVH group with EO (except for standing on firm surface, on 1 and 2 foam pad(s)) and with EC (all surface conditions). (4) Receiver operating characteristic curve analysis showed that the SV could better reflect the difference in postural stability between the two groups while standing on the 4 foam pads with EC. Our study showed that diagnostic value of foam posturography in detecting postural instability might be enhanced by using foam pad of right thickness.
Characterization of static balance abilities in elite soccer players by playing position and age.
Pau, Massimiliano; Ibba, Gianfranco; Leban, Bruno; Scorcu, Marco
2014-01-01
In this study, we investigated the static balance of adult and adolescent elite soccer players to understand how expertise and playing position influence postural control. Seventy-one national level players were tested using a force platform to acquire Center-of-Pressure (COP) data in uni- and bipedal stance and calculate sway area (SA), COP path length, velocity and displacements. The results show significant differences in postural sway related to age and playing position only for single-limb stance. In particular, midfielders exhibited significantly lower values of SA with respect to defenders (-48%, p = 0.001) and the under-15 players exhibited SA 42-64% higher than all the others (p = 0.001). In the light of planning training or rehabilitation programs specific for each player's role and age, sway measurements may supply useful, objective and reliable information only for the unipedal test as the bipedal standing appears not challenging enough to let differences in balance abilities emerge.
Automatic recognition of postural allocations.
Sazonov, Edward; Krishnamurthy, Vidya; Makeyev, Oleksandr; Browning, Ray; Schutz, Yves; Hill, James
2007-01-01
A significant part of daily energy expenditure may be attributed to non-exercise activity thermogenesis and exercise activity thermogenesis. Automatic recognition of postural allocations such as standing or sitting can be used in behavioral modification programs aimed at minimizing static postures. In this paper we propose a shoe-based device and related pattern recognition methodology for recognition of postural allocations. Inexpensive technology allows implementation of this methodology as a part of footwear. The experimental results suggest high efficiency and reliability of the proposed approach.
Effect of ankle-foot orthosis on postural control after stroke: a systematic review.
Guerra Padilla, M; Molina Rueda, F; Alguacil Diego, I M
2014-09-01
Stroke is currently the main cause of permanent disability in adults. The impairments are a combination of sensory, motor, cognitive and emotional changes that result in restrictions on the ability to perform basic activities of daily living (BADL). Postural control is affected and causes problems with static and dynamic balance, thus increasing the risk of falls and secondary injuries. The purpose of this review was to compile the literature to date, and assess the impact of ankle-foot orthosis (AFO) on postural control and gait in individuals who have suffered a stroke. The review included randomised and controlled trials that examined the effects of AFO in stroke patients between 18 and 80 years old, with acute or chronic evolution. No search limits on the date of the studies were included, and the search lasted until April 2011. The following databases were used: Pubmed, Trip Database, Cochrane library, Embase, ISI Web Knowledge, CINHAL and PEDro. Intervention succeeded in improving some gait parameters, such as speed and cadence. However it is not clear if there was improvement in the symmetry, postural sway or balance. Because of the limitations of this systematic review, due to the clinical diversity of the studies and the methodological limitations, 0these results should be considered with caution. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Mentzelopoulos, Spyros D; Zakynthinos, Spyros G; Roussos, Charris; Tzoufi, Maria J; Michalopoulos, Argyris S
2003-06-01
Pronation might favorably affect respiratory system (rs) mechanics and function in volume-controlled, mode-ventilated chronic obstructive pulmonary disease (COPD) patients. We studied 10 COPD patients, initially positioned supine (baseline supine [supine(BAS)]) and then randomly and consecutively changed to protocol supine (supine(PROT)), semirecumbent, and prone positions. Rs mechanics and inspiratory work (W(I)) were assessed at baseline (0.6 L) (all postures) and sigh (1.2 L) (supine(BAS) excluded) tidal volume (V(T)) with rapid airway occlusion during constant-flow inflation. Hemodynamics and gas exchange were assessed in all postures. There were no complications. Prone positioning resulted in (a) increased dynamic-static chest wall (cw) elastance (at both V(Ts)) and improved oxygenation versus supine(BAS), supine(PROT), and semirecumbent, (b) decreased additional lung (L) resistance-elastance versus supine(PROT) and semirecumbent at sigh V(T), (c) decreased L-static elastance (at both V(Ts)) and improved CO(2) elimination versus supine(BAS) and supine(PROT), and (d) improved oxygenation versus all other postures. Semirecumbent positioning increased mainly additional cw-resistance versus supine(BAS) and supine(PROT) at baseline. V(T) W(I)-sub-component changes were consistent with changes in rs, cw, and L mechanical properties. Total rs-W(I) and hemodynamics were unaffected by posture change. After pronation, five patients were repositioned supine (supine(POSTPRO)). In supine(POSTPRO), static rs-L elastance were lower, and oxygenation was still improved versus supine(BAS). Pronation of mechanically ventilated COPD patients exhibits applicability and effectiveness and improves oxygenation and sigh-L mechanics versus semirecumbent ("gold standard") positioning. By assessing respiratory mechanics, inspiratory work, hemodynamics, and gas exchange, we showed that prone positioning of mechanically ventilated chronic obstructed pulmonary disease patients improves oxygenation and lung mechanics during sigh versus semirecumbent positioning. Furthermore, certain pronation-related benefits versus preprone-supine positioning (reduced lung elastance and improved oxygenation) are maintained in the postprone supine position.
Tommasino, Paolo; Campolo, Domenico
2017-02-03
In this work, we address human-like motor planning in redundant manipulators. Specifically, we want to capture postural synergies such as Donders' law, experimentally observed in humans during kinematically redundant tasks, and infer a minimal set of parameters to implement similar postural synergies in a kinematic model. For the model itself, although the focus of this paper is to solve redundancy by implementing postural strategies derived from experimental data, we also want to ensure that such postural control strategies do not interfere with other possible forms of motion control (in the task-space), i.e. solving the posture/movement problem. The redundancy problem is framed as a constrained optimization problem, traditionally solved via the method of Lagrange multipliers. The posture/movement problem can be tackled via the separation principle which, derived from experimental evidence, posits that the brain processes static torques (i.e. posture-dependent, such as gravitational torques) separately from dynamic torques (i.e. velocity-dependent). The separation principle has traditionally been applied at a joint torque level. Our main contribution is to apply the separation principle to Lagrange multipliers, which act as task-space force fields, leading to a task-space separation principle. In this way, we can separate postural control (implementing Donders' law) from various types of tasks-space movement planners. As an example, the proposed framework is applied to the (redundant) task of pointing with the human wrist. Nonlinear inverse optimization (NIO) is used to fit the model parameters and to capture motor strategies displayed by six human subjects during pointing tasks. The novelty of our NIO approach is that (i) the fitted motor strategy, rather than raw data, is used to filter and down-sample human behaviours; (ii) our framework is used to efficiently simulate model behaviour iteratively, until it converges towards the experimental human strategies.
Morrone, Michelangelo; Miccinilli, Sandra; Bravi, Marco; Paolucci, Teresa; Melgari, Jean M; Salomone, Gaetano; Picelli, Alessandro; Spadini, Ennio; Ranavolo, Alberto; Saraceni, Vincenzo M; DI Lazzaro, Vincenzo; Sterzi, Silvia
2016-12-01
Recent studies aimed to evaluate the potential effects of perceptive rehabilitation in Parkinson Disease reporting promising preliminary results for postural balance and pain symptoms. To date, no randomized controlled trial was carried out to compare the effects of perceptive rehabilitation and conventional treatment in patients with Parkinson Disease. To evaluate whether a perceptive rehabilitation treatment could be more effective than a conventional physical therapy program in improving postural control and gait pattern in patients with Parkinson Disease. Single blind, randomized controlled trial. Department of Physical and Rehabilitation Medicine of a University Hospital. Twenty outpatients affected by idiopathic Parkinson Disease at Hoehn and Yahr stage ≤3. Recruited patients were divided into two groups: the first one underwent individual treatment with Surfaces for Perceptive Rehabilitation (Su-Per), consisting of rigid wood surfaces supporting deformable latex cones of various dimensions, and the second one received conventional group physical therapy treatment. Each patient underwent a training program consisting of ten, 45-minute sessions, three days a week for 4 consecutive weeks. Each subject was evaluated before treatment, immediately after treatment and at one month of follow-up, by an optoelectronic stereophotogrammetric system for gait and posture analysis, and by a computerized platform for stabilometric assessment. Kyphosis angle decreased after ten sessions of perceptive rehabilitation, thus showing a substantial difference with respect to the control group. No significant differences were found as for gait parameters (cadence, gait speed and stride length) within Su-Per group and between groups. Parameters of static and dynamic evaluation on stabilometric platform failed to demonstrate any statistically relevant difference both within-groups and between-groups. Perceptive training may help patients affected by Parkinson Disease into restoring a correct midline perception and, in turn, to improve postural control. Perceptive surfaces represent an alternative to conventional rehabilitation of postural disorders in Parkinson Disease. Further studies are needed to determine if the association of perceptive treatment and active motor training would be useful in improving also gait dexterity.
di Cagno, Alessandra; Giombini, Arrigo; Iuliano, Enzo; Moffa, Stefano; Caliandro, Tiziana; Parisi, Attilio; Borrione, Paolo; Calcagno, Giuseppe; Fiorilli, Giovanni
2017-07-11
The purpose of this study was to investigate the acute effects of whole body vibration at optimal frequency, on postural control in blind subjects. Twenty-four participants, 12 congenital blind males (Experimental Group), and 12 non-disabled males with no visual impairment (Control Groups) were recruited. The area of the ellipse and the total distance of the center of pressure displacements, as postural control parameters, were evaluated at baseline (T0), immediately after the vibration (T1), after 10 min (T10) and after 20 min (T20). Whole body vibration protocol consisted into 5 sets of 1 min for each vibration, with 1 min rest between each set on a vibrating platform. The total distance of center of pressure showed a significant difference (p < 0.05) amongst groups, while the area remained constant. No significant differences were detected among times of assessments, or in the interaction group × time. No impairments in static balance were found after an acute bout of whole body vibration at optimal frequency in blind subjects and, consequently, whole body vibration may be considered as a safe application in individuals who are blind.
Ruhe, Alexander; Fejer, René; Walker, Bruce
2011-07-15
Increased center of pressure excursions are well documented in patients suffering from non-specific low back pain, whereby the altered postural sway includes both higher mean sway velocities and larger sway area. No investigation has been conducted to evaluate a relationship between pain intensity and postural sway in adults (aged 50 or less) with non-specific low back pain. Seventy-seven patients with non-specific low back pain and a matching number of healthy controls were enrolled. Center of pressure parameters were measured by three static bipedal standing tasks of 90 sec duration with eyes closed in narrow stance on a firm surface. The perceived pain intensity was assessed by a numeric rating scale (NRS-11), an equal number of patients (n = 11) was enrolled per pain score. Generally, our results confirmed increased postural instability in pain sufferers compared to healthy controls. In addition, regression analysis revealed a significant and linear increase in postural sway with higher pain ratings for all included COP parameters. Statistically significant changes in mean sway velocity in antero-posterior and medio-lateral direction and sway area were reached with an incremental change in NRS scores of two to three points. COP mean velocity and sway area are closely related to self-reported pain scores. This relationship may be of clinical use as an objective monitoring tool for patients under treatment or rehabilitation.
Meyer, Georg F.; Shao, Fei; White, Mark D.; Hopkins, Carl; Robotham, Antony J.
2013-01-01
Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR. PMID:23840760
Jorrakate, Chaiyong; Kongsuk, Jutaluk; Pongduang, Chiraprapa; Sadsee, Boontiwa; Chanthorn, Phatchari
2015-01-01
[Purpose] The aim of the present study was to investigate the effect of yoga training on static and dynamic standing balance in obese individuals with poor standing balance. [Subjects and Methods] Sixteen obese volunteers were randomly assigned into yoga and control groups. The yoga training program was performed for 45 minutes per day, 3 times per week, for 4 weeks. Static and dynamic balance were assessed in volunteers with one leg standing and functional reach tests. Outcome measures were tested before training and after a single week of training. Two-way repeated measure analysis of variance with Tukey’s honestly significant difference post hoc statistics was used to analyze the data. [Results] Obese individuals showed significantly increased static standing balance in the yoga training group, but there was no significant improvement of static or dynamic standing balance in the control group after 4 weeks. In the yoga group, significant increases in static standing balance was found after the 2nd, 3rd, and 4th weeks. Compared with the control group, static standing balance in the yoga group was significantly different after the 2nd week, and dynamic standing balance was significantly different after the 4th week. [Conclusion] Yoga training would be beneficial for improving standing balance in obese individuals with poor standing balance. PMID:25642038
NASA Astrophysics Data System (ADS)
Peultier, Laetitia; Lion, Alexis; Chary-Valckenaere, Isabelle; Loeuille, Damien; Zhang, Zheng; Rat, Anne-Christine; Gueguen, René; Paysant, Jean; Perrin, Philippe P.
2017-05-01
This study aimed to determine if pain and balance control are related to meteorological modifications in patients with knee osteoarthritis (OA). One hundred and thirteen patients with knee OA (mean age = 65 ± 9 years old, 78 women) participated in this study. Static posturography was performed, sway area covered and sway path traveled by the center of foot pressure being recorded under six standing postural conditions that combine three visual situations (eyes open, eyes closed, vision altered) with two platform situations (firm and foam supports). Knee pain score was assessed using a visual analog scale. Balance control and pain measurements recorded in the morning were correlated with the meteorological data. Morning and daily values for temperature, precipitation, sunshine, height of rain in 1 h, wind speed, humidity, and atmospheric pressure were obtained from the nearest data collecting weather station. The relationship between postural control, pain, and weather variations were assessed for each patient on a given day with multiple linear regressions. A decrease of postural stability was observed when atmospheric pressure and maximum humidity decreased in the morning ( p < 0.05) and when atmospheric pressure decreased within a day ( p < 0.05). Patient's knee pain was more enhanced when it is warmer in the morning ( p < 0.05) and when it is wetter and warmer within a day ( p < 0.05). The relationship between weather, pain, and postural control can help patients and health professionals to better manage daily activities.
Bulbulian, R; Hargan, M L
2000-01-01
The purpose of this study was to investigate the effects of former athleticism and current activity status on static and dynamic postural balance in older adults. Fifty-six subjects participated in four study groups including former athletes, currently active (AA; n = 15; 69.1+/-4.4 years.; 77.8+/-9.8 kg), former athletes, currently inactive (AI; n = 12; 66.7 years.; 87.2+/-15.1 kg), controls currently active (CA; n = 14; 68.6 +/- 4.5 years.; 73.9+/-15 kg), and controls currently inactive (CI; n = 15; 72.8+/-4.8 years; 81.1+/-14.8). All subjects were tested for height, weight, flexibility, thigh circumference, and static (sharpened Romberg/unipedal stance), and dynamic (step length and width) balance tests. The sharpened Romberg (eyes open) test showed that AA (60.0+/-0 s) and CA (59.4+/- 0.5 s) balanced significantly longer than AI (41.5+/-7.2 s), and CI (41.8+/-6.1 s) (p<0.05). The unipedal (eyes open) test balance scores for AA, CA, AI, and CI were respectively 40.0+/-4.5, 55.1+/- 3.4, 33.0+/-7.1, and 27.5+/-6.1 s, with CA significantly better than CI (p<0.05). In dynamic balance AA and CA (746.1+/-28.0 and 724.6+/-24.3 mm) showed significantly longer step lengths (p<0.05) than CI (643.7+/-26.5 mm). The eyes closed test results for relative group comparisons were similar. Overall, two-way analysis of variance showed a significant activity main effect for all dependent variables measured (p<0.05). The results indicated that current activity status plays a key role on balance performance in older adults. Furthermore, former athletic activity history provides no protection for the age related onset of postural imbalance.
Investigation of postural hypotension due to static prolonged standing in female workers.
Kabe, Isamu; Tsuruoka, Hiroko; Tokujitani, Yoko; Endo, Yuichi; Furusawa, Mami; Takebayashi, Toru
2007-07-01
The "Just-in-Time system" improves productivity and efficiency through cost reduction while it makes workers work in a standing posture. The aim of this study was to investigate the prevalence of postural hypotension in females during prolonged standing work, and to discuss preventive methods. Twelve female static standing workers (mean age+/-standard deviation; 32+/-14 yr old), 6 male static standing workers (30+/-4 yr old), 10 female walking workers (27+/-7 yr old) and 9 female desk workers (31+/-5 yr old) in a certain telecommunications equipment manufacturing factory agreed to participate in this study. All participants received an interview with an occupational physician, and performed the standing up test before working and ambulatory blood pressure monitoring (ABPM) while working. Although the blood pressure of the standing up test did not differ among the groups, mean pulse rates on standing up significantly increased in every group. Hypotension rates in the female standing workers' group by ABPM were 9 persons of 12 participants (75%) for systolic blood pressure (SBP), and were 11 persons of 12 participants (92%) for diastolic blood pressure (DBP). There were significantly higher than those in the female desk workers' group, none of 9 participants (0%) for SBP and 2 of 9 participants (22%) for DBP. The hypotension rates both male standing and female walking worker groups did not differ. Because all 8 workers who were found to have postural hypotension by the standing up test had decreased SBP and/or DBP by ABPM, it is suggested that persons at high risk of postural hypotension during standing work could be screened by the standing up test. The mechanism of postural hypotension may be a decrease of venous return due to leg swelling, and neurocardiogenic or vasovagal response. Preventing the congestion of the lower limbs by walking, managing standing time and wearing elastic hose to keep the amount of the venous return could prevent postural hypotension during prolonged standing work.
Paillard, Thierry; Noé, Frédéric; Rivière, Terence; Marion, Vincent; Montoya, Richard; Dupui, Philippe
2006-01-01
Context: Sport training enhances the ability to use somatosensory and otolithic information, which improves postural capabilities. Postural changes are different according to the sport practiced, but few authors have analyzed subjects' postural performances to discriminate the expertise level among highly skilled athletes within a specific discipline. Objective: To compare the postural performance and the postural strategy between soccer players at different levels of competition (national and regional). Design: Repeated measures with 1 between-groups factor (level of competition: national or regional) and 1 within-groups factor (vision: eyes open or eyes closed). Dependent variables were center-of-pressure surface area and velocity; total spectral energy; and percentage of low-, medium-, and high-frequency band. Setting: Sports performance laboratory. Patients or Other Participants: Fifteen national male soccer players (age = 24 ± 3 years, height = 179 ± 5 cm, mass = 72 ± 3 kg) and 15 regional male soccer players (age = 23 ± 3 years, height = 174 ± 4 cm, mass = 68 ± 5 kg) participated in the study. Intervention(s): The subjects performed posturographic tests with eyes open and closed. Main Outcome Measure(s): While subjects performed static and dynamic posturographic tests, we measured the center of foot pressure on a force platform. Spatiotemporal center-of-pressure measurements were used to evaluate the postural performance, and a frequency analysis of the center-of-pressure excursions (fast Fourier transform) was conducted to estimate the postural strategy. Results: Within a laboratory task, national soccer players produced better postural performances than regional players and had a different postural strategy. The national players were more stable than the regional players and used proprioception and vision information differently. Conclusions: In the test conditions specific to playing soccer, level of playing experience influenced postural control performance measures and strategies. PMID:16791302
Paillard, Thierry; Noé, Frédéric; Rivière, Terence; Marion, Vincent; Montoya, Richard; Dupui, Philippe
2006-01-01
Sport training enhances the ability to use somatosensory and otolithic information, which improves postural capabilities. Postural changes are different according to the sport practiced, but few authors have analyzed subjects' postural performances to discriminate the expertise level among highly skilled athletes within a specific discipline. To compare the postural performance and the postural strategy between soccer players at different levels of competition (national and regional). Repeated measures with 1 between-groups factor (level of competition: national or regional) and 1 within-groups factor (vision: eyes open or eyes closed). Dependent variables were center-of-pressure surface area and velocity; total spectral energy; and percentage of low-, medium-, and high-frequency band. Sports performance laboratory. Fifteen national male soccer players (age = 24 +/- 3 years, height = 179 +/- 5 cm, mass = 72 +/- 3 kg) and 15 regional male soccer players (age = 23 +/- 3 years, height = 174 +/- 4 cm, mass = 68 +/- 5 kg) participated in the study. The subjects performed posturographic tests with eyes open and closed. While subjects performed static and dynamic posturographic tests, we measured the center of foot pressure on a force platform. Spatiotemporal center-of-pressure measurements were used to evaluate the postural performance, and a frequency analysis of the center-of-pressure excursions (fast Fourier transform) was conducted to estimate the postural strategy. Within a laboratory task, national soccer players produced better postural performances than regional players and had a different postural strategy. The national players were more stable than the regional players and used proprioception and vision information differently. In the test conditions specific to playing soccer, level of playing experience influenced postural control performance measures and strategies.
Kim, Kyung-Min; Hart, Joseph M; Saliba, Susan A; Hertel, Jay
2015-01-01
Application of cryotherapy over an injured joint has been shown to improve muscle function, yet it is unknown how ankle cryotherapy affects postural control. Our purpose was to determine the effects of a 20-min focal ankle joint cooling on unipedal static stance in individuals with and without chronic ankle instability (CAI). Fifteen young subjects with CAI (9 males, 6 females) and 15 healthy gender-matched controls participated. All subjects underwent two intervention sessions on different days in which they had a 1.5L plastic bag filled with either crushed ice (active treatment) or candy corn (sham) applied to the ankle. Unipedal stance with eyes closed for 10s were assessed with a forceplate before and after each intervention. Center of pressure (COP) data were used to compute 10 specific dependent measures including velocity, area, standard deviation (SD), and percent range of COP excursions, and mean and SD of time-to-boundary (TTB) minima in the anterior-posterior (AP) and mediolateral directions. For each measure a three-way (Group-Intervention-Time) repeated ANOVAs found no significant interactions and main effects involving intervention (all Ps > 0.05). There were group main effects found for mean velocity (F(1,28) = 6.46, P = .017), area (F(1,28) = 12.83, P = .001), and mean of TTB minima in the AP direction (F(1,28) = 5.19, P = .031) indicating that the CAI group demonstrated greater postural instability compared to the healthy group. Postural control of unipedal stance was not significantly altered following focal ankle joint cooling in groups both with and without CAI. Ankle joint cryotherapy was neither beneficial nor harmful to single leg balance. Copyright © 2014 Elsevier B.V. All rights reserved.
Landing Biomechanics in Participants With Different Static Lower Extremity Alignment Profiles
Nguyen, Anh-Dung; Shultz, Sandra J.; Schmitz, Randy J.
2015-01-01
Context: Whereas static lower extremity alignment (LEA) has been identified as a risk factor for anterior cruciate ligament injury, little is known about its influence on joint motion and moments commonly associated with anterior cruciate ligament injury. Objective: To cluster participants according to combinations of LEA variables and compare these clusters in hip- and knee-joint kinematics and kinetics during the landing phase of a drop-jump task. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: A total of 141 participants (50 men: age = 22.2 ± 2.8 years, height = 177.9 ± 9.3 cm, weight = 80.9 ± 13.3 kg; 91 women: age = 21.2 ± 2.6 years, height = 163.9 ± 6.6 cm, weight = 61.1 ± 8.7 kg). Main Outcome Measure(s): Static LEA included pelvic angle, femoral anteversion, quadriceps angle, tibiofemoral angle, genu recurvatum, tibial torsion, and navicular drop. Cluster analysis grouped participants according to their static LEA profiles, and these groups were compared on their hip- and knee-joint kinematics and external moments during the landing phase of a double-legged drop jump. Results: Three distinct clusters (C1–C3) were identified based on their static LEAs. Participants in clusters characterized with static internally rotated hip and valgus knee posture (C1) and externally rotated knee and valgus knee posture (C3) alignments demonstrated greater knee-valgus motion and smaller hip-flexion moments than the cluster with more neutral static alignment (C2). Participants in C1 also experienced greater hip internal-rotation and knee external-rotation moments than those in C2 and C3. Conclusions: Static LEA clusters that are positioned anatomically with a more rotated and valgus knee posture experienced greater dynamic valgus along with hip and knee moments during landing. Whereas static LEA contributes to differences in hip and knee rotational moments, sex may influence the differences in frontal-plane knee kinematics and sagittal-plane hip moments. PMID:25658815
Posture recognition based on fuzzy logic for home monitoring of the elderly.
Brulin, Damien; Benezeth, Yannick; Courtial, Estelle
2012-09-01
We propose in this paper a computer vision-based posture recognition method for home monitoring of the elderly. The proposed system performs human detection prior to the posture analysis; posture recognition is performed only on a human silhouette. The human detection approach has been designed to be robust to different environmental stimuli. Thus, posture is analyzed with simple and efficient features that are not designed to manage constraints related to the environment but only designed to describe human silhouettes. The posture recognition method, based on fuzzy logic, identifies four static postures and is robust to variation in the distance between the camera and the person, and to the person's morphology. With an accuracy of 74.29% of satisfactory posture recognition, this approach can detect emergency situations such as a fall within a health smart home.
Rasouli, Omid; Stensdotter, Ann-Katrin; Van der Meer, Audrey L H
2016-08-01
Impaired postural control has been reported in static conditions in chronic fatigue syndrome and fibromyalgia, but postural control in dynamic tasks have not yet been investigated. Thus, we investigated measurements from a force plate to evaluate dynamic balance control during gait initiation in patients with chronic fatigue syndrome and fibromyalgia compared to matched healthy controls. Thirty female participants (10 per group) performed five trials of gait initiation. Center of pressure (CoP) trajectory of the initial weight shift onto the supporting foot in the mediolateral direction (CoPX) was analyzed using General Tau Theory. We investigated the hypothesis that tau of the CoPX motion-gap (τCoPx) is coupled onto an intrinsic tauG-guide (τG) by keeping the relation τCoPx=KτG, where K is a scaling factor that determines the relevant kinematics of a movement. Mean K values were 0.57, 0.55, and 0.50 in fibromyalgia, chronic fatigue syndrome, and healthy controls, respectively. Both patient groups showed K values significantly higher than 0.50 (P<0.05), indicating that patients showed poorer dynamic balance control, CoPX colliding with the boundaries of the base of support (K>0.5). The findings revealed a lower level of dynamic postural control in both fibromyalgia and chronic fatigue syndrome compared to controls. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Shengqian; Liu, Peng; Fu, Danni; Xue, Yiming; Luo, Wentao; Wang, Mingjie
2017-04-01
As an effective survey method of upper limb disorder, rapid upper limb assessment (RULA) has a wide application in industry period. However, it is very difficult to rapidly evaluate operator's postures in real complex work place. In this paper, a real-time RULA method is proposed to accurately assess the potential risk of operator's postures based on the somatosensory data collected from Kinect sensor, which is a line of motion sensing input devices by Microsoft. First, the static position information of each bone point is collected to obtain the effective angles of body parts based on the calculating methods based on joints angles. Second, a whole RULA score of body is obtained to assess the risk level of current posture in real time. Third, those RULA scores are compared with the results provided by a group of ergonomic practitionerswho were asked to observe the same static postures. All the experiments were carried out in an ergonomic lab. The results show that the proposed method can detect operator's postures more accurately. What's more, this method is applied in a real-time condition which can improve the evaluating efficiency.
Gesture-Controlled Interfaces for Self-Service Machines
NASA Technical Reports Server (NTRS)
Cohen, Charles J.; Beach, Glenn
2006-01-01
Gesture-controlled interfaces are software- driven systems that facilitate device control by translating visual hand and body signals into commands. Such interfaces could be especially attractive for controlling self-service machines (SSMs) for example, public information kiosks, ticket dispensers, gasoline pumps, and automated teller machines (see figure). A gesture-controlled interface would include a vision subsystem comprising one or more charge-coupled-device video cameras (at least two would be needed to acquire three-dimensional images of gestures). The output of the vision system would be processed by a pure software gesture-recognition subsystem. Then a translator subsystem would convert a sequence of recognized gestures into commands for the SSM to be controlled; these could include, for example, a command to display requested information, change control settings, or actuate a ticket- or cash-dispensing mechanism. Depending on the design and operational requirements of the SSM to be controlled, the gesture-controlled interface could be designed to respond to specific static gestures, dynamic gestures, or both. Static and dynamic gestures can include stationary or moving hand signals, arm poses or motions, and/or whole-body postures or motions. Static gestures would be recognized on the basis of their shapes; dynamic gestures would be recognized on the basis of both their shapes and their motions. Because dynamic gestures include temporal as well as spatial content, this gesture- controlled interface can extract more information from dynamic than it can from static gestures.
Schroeder, Jan; Hollander, Karsten
2018-01-01
There is still conflicting evidence about the effect of high-heeled footwear on posture, especially if methodological confounders are taken into account. The purpose of this study was to investigate the effect of high-heeled footwear on lumbopelvic parameters in experienced younger and middle-aged women while standing and walking. Thirty-seven experienced younger (n=19:18-25 years) and middle-aged (n=18:26-56 years) women were included in this randomized crossover study. Using a non-invasive back shape reconstruction device (rasterstereography), static (pelvic tilt and lumbar lordosis angle) and dynamic (pelvic rotation, median lumbar lordosis angle and range of motion) parameters representing pelvis position and lumbar curvature were measured. In order to analyse standing and walking on a treadmill (0.83m/s), the effects of high-heels (7-11cm) were compared to standard control shoes. There were no effects on the lumbar lordosis angle or range of motion under static or dynamic conditions (p>0.05, d≤0.06). But there was a small effect for a reduced pelvic tilt (p=0.003, d=0.24) and a moderate effect for an increased transversal pelvic rotation (p=0.001, d=0.63) due to high heel shoed standing or walking, respectively. There were no significant age-group or interaction effects (p>0.05). Altered pelvic parameters may be interpreted as compensatory adaptations to high-heeled footwear rather than lumbar lordosis adaptations in experienced wearers. The impact of these findings on back complaints should be revisited carefully, because muscular overuse as well as postural load relieving may contribute to chronic consequences. Further research is necessary to examine clinically relevant outcomes corresponding to postural alterations. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluation of ergonomic factors and postures that cause muscle pains in dentistry students' bodies.
Shirzaei, Masoumeh; Mirzaei, Ramazan; Khaje-Alizade, Ali; Mohammadi, Mahdi
2015-07-01
Work-related musculoskeletal disorders commonly experienced by dental professionals are one of the main occupational health problem affecting their health and well-being.This study was conducted to evaluate ergonomic factors and profession-related postures and also investigate relationship between demographic factors and work condition with pain in dental students. 60 freshman and sophomore dentistry students were randomly chosen as the subjects of control group, and 60 of 5th and 6th-year students were selected as the members of exposure group. Data related to the subjects such as sex, doing exercise, severity of musculoskeletal pain were obtained through questionnaire. Students' postures were directly observed while treating patients and they were scored by REBA method. Data were analyzed by SPSS software using Man-Whitney, Kruskal-Wallis, Spearman and Kendall correlation tests. 80.8% of the subjects were not aware of the correct ergonomic postures for dental procedures. Severity of musculoskeletal pain in the exposure group (15.9± 4.2) was significantly higher than the control group (10.5 ±3.2), (p <0.001). Risk of the most subjects (84%) was at the medium level. Students who were more involved in clinical activities experienced more muscular pains. The musculoskeletal disorders are probable prolonged in working hours in static positions, incorrect work postures, implying more force and even tools and instruments. Therefore, students who are aware of ergonomic principals of their own profession would be able to maintain their health through activities and lifelong. Key words:Posture, dentistry, students, musculoskeletal pain.
Evaluation of ergonomic factors and postures that cause muscle pains in dentistry students’ bodies
Shirzaei, Masoumeh; Khaje-Alizade, Ali; Mohammadi, Mahdi
2015-01-01
Background Work-related musculoskeletal disorders commonly experienced by dental professionals are one of the main occupational health problem affecting their health and well-being.This study was conducted to evaluate ergonomic factors and profession-related postures and also investigate relationship between demographic factors and work condition with pain in dental students. Material and Methods 60 freshman and sophomore dentistry students were randomly chosen as the subjects of control group, and 60 of 5th and 6th-year students were selected as the members of exposure group. Data related to the subjects such as sex, doing exercise, severity of musculoskeletal pain were obtained through questionnaire. Students’ postures were directly observed while treating patients and they were scored by REBA method. Data were analyzed by SPSS software using Man-Whitney, Kruskal-Wallis, Spearman and Kendall correlation tests. Results 80.8% of the subjects were not aware of the correct ergonomic postures for dental procedures. Severity of musculoskeletal pain in the exposure group (15.9± 4.2) was significantly higher than the control group (10.5 ±3.2), (p <0.001). Risk of the most subjects (84%) was at the medium level. Students who were more involved in clinical activities experienced more muscular pains. Conclusions The musculoskeletal disorders are probable prolonged in working hours in static positions, incorrect work postures, implying more force and even tools and instruments. Therefore, students who are aware of ergonomic principals of their own profession would be able to maintain their health through activities and lifelong. Key words:Posture, dentistry, students, musculoskeletal pain. PMID:26330941
Volovets, S A; Sergeenko, E Y; Darinskaya, L Y; Polyaev, B A; Yashinina, Y A; Isaeva, M A; Zhitareva, I V; Lobov, A N; Panova, T I
2018-05-21
the most frequent and severe consequences of an acute cerebrovascular accident (CVA) are locomotor and coordination disorders which significantly increase the risk of falling in a static position and when walking. The methods used for the rehabilitation of the affected patients are designed in the first place to enable the patients to acquire the skills necessary for maintaining the static balance. The modern equipment allows to carry out coordination training in the static position and also during walking. The objective of the present study was to evaluate, based on the results of our original research, the feasibility and effectiveness of the application of the «Balance tutor» system developed for the restoration of static and dynamic balance in the framework of the combined rehabilitation treatment of the patients suffering from impaired postural balance as a consequence of acute cerebrovascular accident (CVA). A total of 56 patients presenting with impaired postural balance following CVA were available for the examination. All of them underwent functional testing to assess the static and dynamic balance, walking abilities, and the risk of falling down including the study with the use of computer-assisted stabilometry. The study has demonstrated that the inclusion of the «Balance tutor» system for the restoration of the static and dynamic balance in the combined rehabilitative treatment of the patients having postural balance disorders after the CVA reduces the risk of fall for a walking patient, improves his (her) static and dynamic balance, increases the patient's ability to move without exterior help. The patients comprising the main study group were found to experience a decrease of statokinesiogram space in the «eyes are open» position (p = 0.0576, the Mann-Whitney U test) as well as a reliable decrease of the statokinesiogram space in the «eyes are closed» position (p=0.0063, the Mann-Whitney U test). Similar changes occurred in speed of pressure center relocation. By the end of the rehabilitation course, the patients of the main group exhibited a reliable enhancement in the dynamic balance rates estimated with the use of the Berg Balance Scale (p=0.028, Tukey's criterion), an increase in stability based at the Tinneti scale, p=0.0291; Tukey's criterion), and a decrease of the risk of falling during walk assessed with the application of Dynamic Gait Index scale (p = 0.0001, Tukey's criterion). The results of the present study with the inclusion of the «Balance tutor» system in the program of combined rehabilitation of the patients suffering from the consequences of CVA in the form of the postural balance impairment give evidence of the feasibility and effectiveness of this approach. There is reason to believe that its application is likely to reduce the risk of falling down and to improve characteristics of static and dynamic balance. The inclusion of the «Balance tutor» system in the program of combined rehabilitation of the patients suffering from the consequences of CVA in the form of the postural balance impairment is both feasible and effective.
Batista, Wagner Oliveira; Alves Junior, Edmundo de Drummond; Porto, Flávia; Pereira, Fabio Dutra; Santana, Rosimere Ferreira; Gurgel, Jonas Lírio
2014-01-01
to ascertain the influence of the length of institutionalization on older adults' balance and risk of falls. to evaluate the risk of falls, the Berg Balance Scale and the Timed Get Up and Go test were used; and for measuring postural balance, static stabilometry was used, with acquisition of the elliptical area of 95% and mean velocities on the x and y axes of center of pressure displacement. Parametric and nonparametric measures of association and comparison (α<0.05) were used. there was no significant correlation between the length of institutionalization and the tests for evaluation of risk of falling, neither was there difference between groups and within subgroups, stratified by length of institutionalization and age. In the stabilometric measurements, there was a negative correlation between the parameters analyzed and the length of institutionalization, and difference between groups and within subgroups. this study's results point to the difficulty of undertaking postural control tasks, showing a leveling below the clinical tests' reference scores. In the stabilometric behavior, one should note the reduction of the parameters as the length of institutionalization increases, contradicting the assumptions. This study's results offer support for the development of a multi-professional model for intervention with the postural control and balance of older adults living in homes for the aged.
Steenstrup, B; Giralte, F; Bakker, E; Grise, P
2014-12-01
The aim of this work was to evaluate the effect of postural awareness by using the Wii Fit Plus© on the quality of the baseline (automatic) activity of the pelvic floor muscles (PFM) measured by intravaginal surface electromyography (sEMG). Four healthy continent female subjects, all able to perform a voluntary contraction, undertook 2 sets of 3 various exercises offered by the software Wii Fit Plus© using the Wii balance board© (WBB): one set without any visual control and the second set with postural control and sEMG visual feedback. Simultaneously, we recorded the sEMG activity of the PFM. Mean baseline activity of PFM in standing position at start was 2.87 mV, at submaximal voluntary contraction the sEMG activity raised at a mean of 14.43 mV (7.87-21.89). In the first set of exercises on the WBB without any visual feedback, the automatic activity of the PFM increased from 2.87 mV to 8.75 mV (7.96-9.59). In the second set, with visual postural and sEMG control, mean baseline sEMG activity even raised at 11.39 mV (10.17-11.58). Among women able of a voluntary contraction of PFM, visualisation of posture with the help of the WBB and of sEMG activity of the PFM during static and dynamic Wii Fit Plus© activities, may improve the automatic activation of the PFMs. 4. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Preliminary results of dancing exercise on postural stability in adolescent females.
Cheng, Hsu-Sheng; Law, Cheung-Lun; Pan, Hui-Fang; Hsiao, Yueh-Ping; Hu, Jeng-Ho; Chuang, Fu-Kai; Huang, Mao-Hsiung
2011-12-01
Twenty-six female student dancers of Chung-hua school of Art (mean age 17.5 ± 0.5 years) and twenty-five healthy active female collegiate students (mean age 18.1 ± 1.0 years) participated in this study to investigate the effects of dancing exercise on postural stability of adolescent female through a comparison study of two cohorts. The groups were matched in height and weight. Participants were excluded for left-side dominance, sustained lower extremity injury, any known vestibular system dysfunction, uncorrected visual problems, and other neurological conditions. Static and dynamic standing balances were measured by means of Biodex Stability System in six conditions include bilateral, dominant, and nondominant single leg stances with eye-open and eye-closed conditions. To investigate the difference between static and dynamic stabilities, two protocols were performed: the first protocol consisted of four positions including static position, Level 8, Level 4, and Level 1, respectively. They were instructed to maintain a level platform as stably as possible for a period of 30 seconds for each test and given a 30-second rest between tests. The second protocol was descending stability level that was gradually changed from Level 12 to Level 1 for 60 seconds. Balance indices included overall stability index, anterior-posterior stability index (APSI), and medial-lateral stability index. The results of first protocol showed that there were significant differences in overall stability index score between study and control groups at Level 8 with dominant single leg standing in the eye-open condition and the APSI score at Level 8 and at Level 4 with dominant single-leg standing in the eye-closed condition. There was no significant difference in the second protocol. The possible explanation is loss of familiarization adaptation because of level change consequently in both the groups, not step-by-step as in the first protocol study. Furthermore, a positive correlation was found between the dancing experience and the APSI at Level 8 and Level 4 with dominant single-leg standing in the eye-closed condition. In conclusion the findings implied that dancing exercise results in better postural stability and less visual dependence on postural control in adolescent females. Copyright © 2011. Published by Elsevier B.V.
Zhang, Di; Sessa, Salvatore; Kong, Weisheng; Cosentino, Sarah; Magistro, Daniele; Ishii, Hiroyuki; Zecca, Massimiliano; Takanishi, Atsuo
2015-11-01
Current training for laparoscopy focuses only on the enhancement of manual skill and does not give advice on improving trainees' posture. However, a poor posture can result in increased static muscle loading, faster fatigue, and impaired psychomotor task performance. In this paper, the authors propose a method, named subliminal persuasion, which gives the trainee real-time advice for correcting the upper limb posture during laparoscopic training like the expert but leads to a lower increment in the workload. A 9-axis inertial measurement unit was used to compute the upper limb posture, and a Detection Reaction Time device was developed and used to measure the workload. A monitor displayed not only images from laparoscope, but also a visual stimulus, a transparent red cross superimposed to the laparoscopic images, when the trainee had incorrect upper limb posture. One group was exposed, when their posture was not correct during training, to a short (about 33 ms) subliminal visual stimulus. The control group instead was exposed to longer (about 660 ms) supraliminal visual stimuli. We found that subliminal visual stimulation is a valid method to improve trainees' upper limb posture during laparoscopic training. Moreover, the additional workload required for subconscious processing of subliminal visual stimuli is less than the one required for supraliminal visual stimuli, which is processed instead at the conscious level. We propose subliminal persuasion as a method to give subconscious real-time stimuli to improve upper limb posture during laparoscopic training. Its effectiveness and efficiency were confirmed against supraliminal stimuli transmitted at the conscious level: Subliminal persuasion improved upper limb posture of trainees, with a smaller increase on the overall workload.
Peigneux, P; Salmon, E; van der Linden, M; Garraux, G; Aerts, J; Delfiore, G; Degueldre, C; Luxen, A; Orban, G; Franck, G
2000-06-01
Humans, like numerous other species, strongly rely on the observation of gestures of other individuals in their everyday life. It is hypothesized that the visual processing of human gestures is sustained by a specific functional architecture, even at an early prelexical cognitive stage, different from that required for the processing of other visual entities. In the present PET study, the neural basis of visual gesture analysis was investigated with functional neuroimaging of brain activity during naming and orientation tasks performed on pictures of either static gestures (upper-limb postures) or tridimensional objects. To prevent automatic object-related cerebral activation during the visual processing of postures, only intransitive postures were selected, i. e., symbolic or meaningless postures which do not imply the handling of objects. Conversely, only intransitive objects which cannot be handled were selected to prevent gesture-related activation during their visual processing. Results clearly demonstrate a significant functional segregation between the processing of static intransitive postures and the processing of intransitive tridimensional objects. Visual processing of objects elicited mainly occipital and fusiform gyrus activity, while visual processing of postures strongly activated the lateral occipitotemporal junction, encroaching upon area MT/V5, involved in motion analysis. These findings suggest that the lateral occipitotemporal junction, working in association with area MT/V5, plays a prominent role in the high-level perceptual analysis of gesture, namely the construction of its visual representation, available for subsequent recognition or imitation. Copyright 2000 Academic Press.
Vision, visuo-cognition and postural control in Parkinson's disease: An associative pilot study.
Hill, E; Stuart, S; Lord, S; Del Din, S; Rochester, L
2016-07-01
Impaired postural control (PC) is common in patients with Parkinson's disease (PD) and is a major contributor to falls, with significant consequences. Mechanisms underpinning PC are complex and include motor and non-motor features. Research has focused predominantly on motor and sensory inputs. Vision and visuo-cognitive function are also integral to PC but have largely been ignored to date. The aim of this observational cross-sectional pilot study was to explore the relationship of vision and visuo-cognition with PC in PD. Twelve people with PD and ten age-matched healthy controls (HC) underwent detailed assessments for vision, visuo-cognition and postural control. Vision assessments included visual acuity and contrast sensitivity. Visuo-cognition was measured by visuo-perception (object identification), visuo-construction (ability to copy a figure) and visuo-spatial ability (judge distances and location of object within environment). PC was measured by an accelerometer for a range of outcomes during a 2-min static stance. Spearman's correlations identified significant associations. Contrast sensitivity, visuo-spatial ability and postural control (ellipsis) were significantly impaired in PD (p=0.017; p=0.001; and p=0.017, respectively). For PD only, significant correlations were found for higher visuo-spatial function and larger ellipsis (r=0.64; p=0.024) and impaired attention and reduced visuo-spatial function (r=-0.62; p=0.028). Visuo-spatial ability is associated with PC deficit in PD, but in an unexpected direction. This suggests a non-linear pattern of response. Further research is required to examine this novel and important finding. Copyright © 2016 Elsevier B.V. All rights reserved.
Effectiveness of Wii-based rehabilitation in stroke: A randomized controlled study.
Karasu, Ayça Utkan; Batur, Elif Balevi; Karataş, Gülçin Kaymak
2018-05-08
To investigate the efficacy of Nintendo Wii Fit®-based balance rehabilitation as an adjunc-tive therapy to conventional rehabilitation in stroke patients. During the study period, 70 stroke patients were evaluated. Of these, 23 who met the study criteria were randomly assigned to either the experimental group (n = 12) or the control group (n = 11) by block randomization. Primary outcome measures were Berg Balance Scale, Functional Reach Test, Postural Assessment Scale for Stroke Patients, Timed Up and Go Test and Static Balance Index. Secondary outcome measures were postural sway, as assessed with Emed-X, Functional Independence Measure Transfer and Ambulation Scores. An evaluator who was blinded to the groups made assessments immediately before (baseline), immediately after (post-treatment), and 4 weeks after completion of the study (follow-up). Group-time interaction was significant in the Berg Balance Scale, Functional Reach Test, anteroposterior and mediolateral centre of pressure displacement with eyes open, anteroposterior centre of pressure displacement with eyes closed, centre of pressure displacement during weight shifting to affected side, to unaffected side and total centre of pressure displacement during weight shifting. Demonstrating significant group-time interaction in those parameters suggests that, while both groups exhibited significant improvement, the experimental group showed greater improvement than the control group. Virtual reality exercises with the Nintendo Wii system could represent a useful adjunctive therapy to traditional treatment to improve static and dynamic balance in stroke patients.
Parus, K; Lisiński, P; Huber, J
2015-11-01
Proprioception makes a critical contribution to body balance. The objective of this study was to evaluate static postural control after anterior cruciate ligament (ACL) reconstruction combined with medial meniscus (MM) suture, comparatively to healthy controls. Body balance is adversely affected 2 months after ACL reconstruction combined with MM suture. Fifteen patients (12 males and 3 females) aged 20 to 35 years (mean, 26.4 ± 6.0 years) who underwent ACL reconstruction with MM suture were compared to 20 healthy, physically active controls (16 females and 4 males) aged 19 to 23 years (mean, 21.1 ± 1.8 years), most of whom were physiotherapy students. Mean age was not significantly different between the patients and controls. A balance platform was used to estimate static postural control parameters. Each participant performed four tests, two in normal bipedal stance and two in tandem stance; in each stance, one test was done with the eyes open and the other with the eyes closed. We analysed global scores on a standardised 100-point scale and mean centre of pressure (COP) displacement velocity in the sagittal and frontal planes. Body balance was impaired 2 months after ACL reconstruction with MM suture. Thus, the patients had lower global scores and higher mean COP velocities in both the coronal and sagittal planes. Proprioception is impaired after ACL reconstruction with MM suture. Lack of visual control significantly decreases the ability to maintain balance. A balance platform is a useful diagnostic tool for patients with ACL reconstruction and MM suture. Level II. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Song, Kyeongtak; Rhodes, Evan; Wikstrom, Erik A
2018-04-01
Visual, vestibular, and somatosensory systems contribute to postural control. Chronic ankle instability (CAI) patients have been observed to have a reduced ability to dynamically shift their reliance among sources of sensory information and rely more heavily on visual information during a single-limb stance relative to uninjured controls. Balance training is proven to improve postural control but there is a lack of evidence regarding the ability of balance training programs to alter the reliance on visual information in CAI patients. Our objective was to determine if balance training alters the reliance on visual information during static stance in CAI patients. The PubMed, CINAHL, and SPORTDiscus databases were searched from their earliest available date to October 2017 using a combination of keywords. Study inclusion criteria consisted of (1) using participants with CAI; (2) use of a balance training intervention; and (3) calculation of an objective measure of static postural control during single-limb stance with eyes open and eyes closed. Sample sizes, means, and standard deviations of single-leg balance measures for eyes-open and eyes-closed testing conditions before and after balance training were extracted from the included studies. Eyes-open to eyes-closed effect sizes [Hedges' g and 95% confidence intervals (CI)] before and after balance training were calculated, and between-study variability for heterogeneity and potential risks of publication bias were examined. Six studies were identified. The overall eyes-open to eyes-closed effect size difference between pre- and post-intervention assessments was not significant (Hedges' g effect size = 0.151, 95% CI = - 0.151 to 0.453, p = 0.26). This result indicates that the utilization of visual information in individuals with CAI during the single-leg balance is not altered after balance training. Low heterogeneity (Q(5) = 2.96, p = 0.71, I 2 = 0%) of the included studies and no publication bias were found. On the basis of our systematic review with meta-analysis, it appears that traditional balance training protocols do not alter the reliance on visual information used by CAI patients during a single-leg stance.
Weaver, Tyler B; Glinka, Michal N; Laing, Andrew C
2014-11-07
Currently, it is unknown whether the inverted pendulum model is applicable to stooping or crouching postures. Therefore, the aim of this study was to determine the degree of applicability of the inverted pendulum model to these postures, via examination of the relationship between the centre of mass (COM) acceleration and centre of pressure (COP)-COM difference. Ten young adults held static standing, stooping and crouching postures, each for 20s. For both the anterior-posterior (AP) and medio-lateral (ML) directions, the time-varying COM acceleration and the COP-COM were computed, and the relationship between these two variables was determined using Pearson's correlation coefficients. Additionally, in both directions, the average absolute COM acceleration, average absolute COP-COM signal, and the inertial component (i.e., -I/Wh) were compared across postures. Pearson correlation coefficients revealed a significant negative relationship between the COM acceleration and COP-COM signal for all comparisons, regardless of the direction (p<0.001). While no effect of posture was observed in the AP direction (p=0.463), in the ML direction, the correlation coefficients for stooping were different (i.e., stronger) than standing (p=0.008). Regardless of direction, the average absolute COM acceleration for both the stooping and crouching postures was greater than standing (p<0.002). The high correlations indicate that the inverted pendulum model is applicable to stooping and crouching postures. Due to their importance in completing activities of daily living, there is merit in determining what type of motor strategies are used to control such postures and whether these strategies change with age. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Pain relief is associated with decreasing postural sway in patients with non-specific low back pain.
Ruhe, Alexander; Fejer, René; Walker, Bruce
2012-03-21
Increased postural sway is well documented in patients suffering from non-specific low back pain, whereby a linear relationship between higher pain intensities and increasing postural sway has been described. No investigation has been conducted to evaluate whether this relationship is maintained if pain levels change in adults with non-specific low back pain. Thirty-eight patients with non-specific low back pain and a matching number of healthy controls were enrolled. Postural sway was measured by three identical static bipedal standing tasks of 90 sec duration with eyes closed in narrow stance on a firm surface. The perceived pain intensity was assessed by a numeric rating scale (NRS-11). The patients received three manual interventions (e.g. manipulation, mobilization or soft tissue techniques) at 3-4 day intervals, postural sway measures were obtained at each occasion. A clinically relevant decrease of four NRS scores in associated with manual interventions correlated with a significant decrease in postural sway. In contrast, if no clinically relevant change in intensity occurred (≤ 1 level), postural sway remained similar compared to baseline. The postural sway measures obtained at follow-up sessions 2 and 3 associated with specific NRS level showed no significant differences compared to reference values for the same pain score. Alterations in self-reported pain intensities are closely related to changes in postural sway. The previously reported linear relationship between the two variables is maintained as pain levels change. Pain interference appears responsible for the altered sway in pain sufferers. This underlines the clinical use of sway measures as an objective monitoring tool during treatment or rehabilitation.
Azarpaikan, Atefeh; Taheri Torbati, Hamidreza
2017-10-23
The aim of this study was to assess the effectiveness of balance training with somatosensory and neurofeedback training on dynamic and static balance in healthy, elderly adults. The sample group consisted of 45 healthy adults randomly assigned to one of the three test groups: somatosensory, neurofeedback, and a control. Individualization of the balance program started with pre-tests for static and dynamic balances. Each group had 15- and 30-min training sessions. All groups were tested for static (postural stability) and dynamic balances (Berg Balance Scale) in acquisition and transfer tests (fall risk of stability and timed up and go). Improvements in static and dynamic balances were assessed by somatosensory and neurofeedback groups and then compared with the control group. Results indicated significant improvements in static and dynamic balances in both test groups in the acquisition test. Results revealed a significant improvement in the transfer test in the neurofeedback and somatosensory groups, in static and dynamic conditions, respectively. The findings suggest that these methods of balance training had a significant influence on balance. Both the methods are appropriate to prevent falling in adults. Neurofeedback training helped the participants to learn static balance, while somatosensory training was effective on dynamic balance learning. Further research is needed to assess the effects of longer and discontinuous stimulation with somatosensory and neurofeedback training on balance in elderly adults.
Kim, Mi-Kyoung; Lee, Jung Chul; Yoo, Kyung-Tae
2018-03-01
[Purpose] The purpose of this study was to analyze the effects of pectoralis minor stretching and shoulder strengthening with an elastic band on balance and maximal shoulder muscle strength in young adults with rounded shoulder posture. [Subjects and Methods] Nineteen subjects with rounded shoulder posture were randomly divided into 2 groups: a shoulder stabilization exercise group and a stretching exercise group. The groups performed each exercise for 40 minutes, 3 times a week, for 4 weeks. Static balance (eyes open and closed), dynamic balance (the limits of stability in 4 directions) and shoulder muscle strength in 5 directions were measure before and after the exercises. [Results] The stretching exercise demonstrated a significant difference between the pre- and post-exercise in the static balance with eyes closed and extension and horizontal abduction strength while the stabilization exercise demonstrated significant difference in the left and right directions between the pre- and post-exercise of the dynamic balance and flexion strength. The stabilization exercise demonstrated significant differences shown in the flexion between the pre- and post-test. [Conclusion] The shoulder stabilization and stretching exercises improved the static balance, dynamic balance, and muscle strength.
Adaptive Gait Control for a Quadruped Robot on 3D Path Planning
NASA Astrophysics Data System (ADS)
Igarashi, Hiroshi; Kakikura, Masayoshi
A legged walking robot is able to not only move on irregular terrain but also change its posture. For example, the robot can pass under overhead obstacles by crouching. The purpose of our research is to realize efficient path planning with a quadruped robot. Therefore, the path planning is expected to extended in three dimensions because of the mobility. However, some issues of the quadruped robot, which are instability, workspace limitation, deadlock and slippage, complicate realizing such application. In order to improve these issues and reinforce the mobility, a new static gait pattern for a quadruped robot, called TFG: Trajectory Following Gait, is proposed. The TFG intends to obtain high controllability like a wheel robot. Additionally, the TFG allows to change it posture during the walk. In this paper, some experimental results show that the TFG improves the issues and it is available for efficient locomotion in three dimensional environment.
Granacher, Urs; Muehlbauer, Thomas; Gollhofer, Albert; Kressig, Reto W; Zahner, Lukas
2011-01-01
The risk of sustaining a fall is particularly high in children and seniors. Deficits in postural control and muscle strength either due to maturation, secular declines or biologic aging are two important intrinsic risk factors for falls. During life span, performance in variables of static postural control follows a U-shaped curve with children and seniors showing larger postural sway than healthy adults. Measures of dynamic postural control (i.e. gait speed) as well as isometric (i.e. maximal strength) and dynamic muscle strength (i.e. muscular power) follow an inverted U-shaped curve during life span, again with children and seniors showing deficits compared to adults. There is evidence that particularly balance and resistance training are effective in counteracting these neuromuscular constraints in both children and seniors. Further, these training regimens are able to reduce the rate of sustaining injuries and falls in these age groups. An intergenerational intervention approach is suggested to enhance the effectiveness of these training programs by improving compliance and increasing motivation of children and seniors exercising together. Thus, the objectives of this mini-review are: (1) to describe the epidemiology and etiology of falls in children and seniors; (2) to discuss training programs that counteract intrinsic fall risk factors by reducing the rate of falling, and (3) to present an intergenerational approach that has the potential to make training programs even more effective by including children and seniors together in one exercise group. Copyright © 2010 S. Karger AG, Basel.
Attention is associated with postural control in those with chronic ankle instability.
Rosen, Adam B; Than, Nicholas T; Smith, William Z; Yentes, Jennifer M; McGrath, Melanie L; Mukherjee, Mukul; Myers, Sara A; Maerlender, Arthur C
2017-05-01
Chronic ankle instability (CAI) is often debilitating and may be affected by a number of intrinsic and environmental factors. Alterations in neurocognitive function and attention may contribute to repetitive injury in those with CAI and influence postural control strategies. Thus, the purpose of this study was to determine if there was a difference in attentional functioning and static postural control among groups of Comparison, Coper and CAI participants and assess the relationship between them within each of the groups. Recruited participants performed single-limb balance trials and completed the CNS Vital Signs (CNSVS) computer-based assessment to assess their attentional function. Center of pressure (COP) velocity (COPv) and maximum range (COPr), in both the anteroposterior (AP) and mediolateral (ML) directions were calculated from force plate data. Simple attention (SA), which measures self-regulation and attention control was extracted from the CNSVS. Data from 45 participants (15 in each group, 27=female, 18=male) was analyzed for this study. No significant differences were observed between attention or COP variables among each of the groups. However, significant relationships were present between attention and COP variables within the CAI group. CAI participants displayed significant moderate to large correlations between SA and AP COPr (r=-0.59, p=0.010), AP COPv (r=-0.48, p=0.038) and ML COPr (r=-0.47, p=0.034). The results suggest a linear relationship of stability and attention in the CAI group. Attentional self-regulation may moderate how those with CAI control postural stability. Incorporating neurocognitive training focused on attentional control may improve outcomes in those with CAI. Copyright © 2017 Elsevier B.V. All rights reserved.
The effects of dance training program on the postural stability of middle aged women.
Kostić, Radmila; Uzunović, Slavoljub; Purenović-Ivanović, Tijana; Miletić, Đurđica; Katsora, Georgija; Pantelić, Saša; Milanović, Zoran
2015-11-01
The aim of the study was to determine the effects of Greek folk dancing on postural stability in middle age women. Sixty-three women aged from 47-53 participated in this study. All participants were randomly divided into the experimental group - 33 participants (mean ± SD; body height=160.13 ± 12.07 cm, body mass=63.81 ± 10.56 kg), and the control group - 30 participants (mean ± SD; body height=160.63 ± 6.22 cm, body mass=64.79 ± 8.19 kg). The following tests were used to evaluate the motor balance and posture stability of participants; the double-leg stance along the length of a balance beam (eyes open), the double-leg stance along the width of a balance beam (eyes open), the single-leg stance (eyes open) and the double-leg stance on one's toes (eyes closed). The Functional Reach Test for balance and the Star Excursion Balance Test were used to evaluate dynamic balance. The multivariate analysis of covariance of static and dynamic balance between participants of the experimental and control group at the final measuring, with neutralized differences at the initial measuring (Wilks' λ=0.45), revealed a significant difference (p<0.05). The intergroup difference at the final measuring was also found to be significant (p<0.05) for the following variables; the double-leg stance on one's toes, the Functional Reach Test, balance of the right anterolateral, balance of the right posterolateral and balance of the left posteromedial. An organized dance activity programme does lead to the improvement of static and dynamic balance in middle aged women. Copyright© by the National Institute of Public Health, Prague 2015.
Batista, Wagner Oliveira; Alves, Edmundo de Drummond; Porto, Flávia; Pereira, Fabio Dutra; Santana, Rosimere Ferreira; Gurgel, Jonas Lírio
2014-01-01
OBJECTIVE: to ascertain the influence of the length of institutionalization on older adults' balance and risk of falls. METHOD: to evaluate the risk of falls, the Berg Balance Scale and the Timed Get Up and Go test were used; and for measuring postural balance, static stabilometry was used, with acquisition of the elliptical area of 95% and mean velocities on the x and y axes of center of pressure displacement. Parametric and nonparametric measures of association and comparison (α<0.05) were used. RESULTS: there was no significant correlation between the length of institutionalization and the tests for evaluation of risk of falling, neither was there difference between groups and within subgroups, stratified by length of institutionalization and age. In the stabilometric measurements, there was a negative correlation between the parameters analyzed and the length of institutionalization, and difference between groups and within subgroups. CONCLUSION: this study's results point to the difficulty of undertaking postural control tasks, showing a leveling below the clinical tests' reference scores. In the stabilometric behavior, one should note the reduction of the parameters as the length of institutionalization increases, contradicting the assumptions. This study's results offer support for the development of a multi-professional model for intervention with the postural control and balance of older adults living in homes for the aged. PMID:25296149
Vestibular function in patients with Niemann-Pick type C disease.
Bremova, Tatiana; Krafczyk, Siegbert; Bardins, Stanislavs; Reinke, Jörg; Strupp, Michael
2016-11-01
We investigated whether vestibular dysfunction may cause or contribute to postural imbalance and falls in patients with Niemann-Pick type C disease (NP-C). Eight patients with NP-C disease and 20 healthy controls were examined using the video-based head impulse test (vHIT) and caloric irrigation to investigate horizontal canal function as well as ocular- and cervical vestibular evoked myogenic potentials (o- and cVEMP), and binocular subjective visual vertical estimation (SVV) for otolith function, and static posturography. There were no significant differences in vestibulo-ocular gain, caloric excitability, o-/cVEMP measures or SVV between the two groups. Posturographic total sway path (tSP) and root mean square (RMS) were significantly higher in NP-C than in controls in 3 out of 4 conditions. The Romberg quotient (RQ) to assess the amount of visual stabilization was significantly lower in the NP-C than in the HC group. In contrast to other inherited metabolic disorders, such as Morbus Gaucher type 3, we did not find any evidence for an impairment of canal or otolith function in patients with NP-C as their cause of postural imbalance. Since RQ was low in NP-C patients, indicating proper sensory input, the observed increased postural sway is most likely due to a cerebellar dysfunction in NP-C, which may therefore, explain postural imbalance.
Potentially risky postural behaviors during worksite keyboard use
Baker, Nancy A.; Redfern, Mark
2016-01-01
Objective This study describes the frequency and distribution of potentially risky postural behaviors of keyboard users. Method Forty-three subjects’ keyboard postural behaviors were rated with the Keyboard – Personal Computer Style instrument (K-PeCS) while they worked at their own workstations. The frequency and distribution of keyboard postural behaviors, and the associations and differences between the right and left sides were assessed. Results Generally, each static body posture had a single criterion that occurred most frequently, (e.g. elbow flexion posture 80 – 120 degrees), while dynamic postures of the wrists and hands were distributed throughout their criteria. Right and left side postural behaviors were significantly associated for shoulder flexion, elbow flexion, hand displacement, wrist extension, forearm rotation, isolated 5th digit, MCP hyperextension, and wrist support use, and significantly different for hand displacement, isolated thumb, number of digits used, and MCP hyperextension. Conclusion Potentially problematic keyboard postural behaviors are common among keyboard users. Our results suggest that occupational therapists must systematically assess body, arm, wrist, and hand postures on both the right and left sides to be able to develop the most effective intervention strategies. PMID:19708467
Predictors of vertigo in patients with untreated vestibular schwannoma.
Andersen, Jan Fredrik; Nilsen, Kathrin Skorpa; Vassbotn, Flemming Slinning; Møller, Per; Myrseth, Erling; Lund-Johansen, Morten; Goplen, Frederik Kragerud
2015-04-01
Previous studies have shown that vertigo is the most powerful negative predictor of quality of life in patients with vestibular schwannomas, but the variability in vertigo symptom severity is still poorly understood. We wanted to find out whether vertigo could be related to objective parameters such as tumor size, location, vestibular nerve function, hearing, and postural stability in patients with untreated vestibular schwannomas. Baseline data from prospective cohort study. Tertiary referral center. Four hundred thirty-four consecutive patients with unilateral VS diagnosed on MRI. Mean age 56 years (range 16-84 yr). Fifty-three percent women. Diagnostic, with a medical history, otolaryngological examination, pure-tone and speech audiometry, MRI, posturography, and videonystagmography with bithermal caloric tests. Dizziness measured on a 100-mm visual analog scale (VAS). Secondary outcome measures were canal paresis and postural imbalance (static and dynamic posturography). Three hundred three patients (70%) completed the VAS. Severe dizziness, defined as VAS 75 or greater, was reported by 9% of the patients. Larger tumors were associated with higher risk of postural instability and canal paresis. Moderate to severe dizziness was associated with postural imbalance and canal paresis, and possibly with small to medium-sized tumors. Postural instability was related to tumor size and canal paresis when measured by dynamic, but not with static, posturography. A minority of VS patients experience severe vestibular symptoms related to canal paresis and postural instability. A curvilinear relationship is hypothesized between tumor size and dizziness.
Qin, D L; Jin, X N; Wang, S J; Wang, J J; Mamat, N; Wang, F J; Wang, Y; Shen, Z A; Sheng, L G; Forsman, M; Yang, L Y; Wang, S; Zhang, Z B; He, L H
2018-06-18
To form a new assessment method to evaluate postural workload comprehensively analyzing the dynamic and static postural workload for workers during their work process to analyze the reliability and validity, and to study the relation between workers' postural workload and work-related musculoskeletal disorders (WMSDs). In the study, 844 workers from electronic and railway vehicle manufacturing factories were selected as subjects investigated by using the China Musculoskeletal Questionnaire (CMQ) to form the postural workload comprehensive assessment method. The Cronbach's α, cluster analysis and factor analysis were used to assess the reliability and validity of the new assessment method. Non-conditional Logistic regression was used to analyze the relation between workers' postural workload and WMSDs. Reliability of the assessment method for postural workload: internal consistency analysis results showed that Cronbach's α was 0.934 and the results of split-half reliability indicated that Spearman-Brown coefficient was 0.881 and the correlation coefficient between the first part and the second was 0.787. Validity of the assessment method for postural workload: the results of cluster analysis indicated that square Euclidean distance between dynamic and static postural workload assessment in the same part or work posture was the shortest. The results of factor analysis showed that 2 components were extracted and the cumulative percentage of variance achieved 65.604%. The postural workload score of the different occupational workers showed significant difference (P<0.05) by covariance analysis. The results of nonconditional Logistic regression indicated that alcohol intake (OR=2.141, 95%CI 1.337-3.428) and obesity (OR=3.408, 95%CI 1.629-7.130) were risk factors for WMSDs. The risk for WMSDs would rise as workers' postural workload rose (OR=1.035, 95%CI 1.022-1.048). There was significant different risk for WMSDs in the different groups of workers distinguished by work type, gender and age. Female workers exhibited a higher prevalence for WMSDs (OR=2.626, 95%CI 1.414-4.879) and workers between 30-40 years of age (OR=1.909, 95%CI 1.237-2.946) as compared with those under 30. This method for comprehensively assessing postural workload is reliable and effective when used in assembling workers, and there is certain relation between the postural workload and WMSDs.
Chiropractic biophysics technique: a linear algebra approach to posture in chiropractic.
Harrison, D D; Janik, T J; Harrison, G R; Troyanovich, S; Harrison, D E; Harrison, S O
1996-10-01
This paper discusses linear algebra as applied to human posture in chiropractic, specifically chiropractic biophysics technique (CBP). Rotations, reflections and translations are geometric functions studied in vector spaces in linear algebra. These mathematical functions are termed rigid body transformations and are applied to segmental spinal movement in the literature. Review of the literature indicates that these linear algebra concepts have been used to describe vertebral motion. However, these rigid body movers are presented here as applying to the global postural movements of the head, thoracic cage and pelvis. The unique inverse functions of rotations, reflections and translations provide a theoretical basis for making postural corrections in neutral static resting posture. Chiropractic biophysics technique (CBP) uses these concepts in examination procedures, manual spinal manipulation, instrument assisted spinal manipulation, postural exercises, extension traction and clinical outcome measures.
Wong, M S; Mak, A F T; Luk, K D K; Evans, J H; Brown, B
2002-08-01
This is a preliminary investigation to detect the body sway and postural changes of patients with AIS under different spatial images. Two pairs of low-power prismatic eye lenses (Fresnel prisms) with 5 dioptre and 10 dioptre were used. In the experiment, the apices of the prisms were orientated randomly at every 22.5 degrees from 0 degrees to 360 degrees to test changes. Four patients with mean age of 11 and Cobb's angle of 30 degrees were recruited and the results showed that the low-power prisms at specific orientations (157.5 degrees and 180 degrees) could cause positive postural changes (2.1 degrees-2.7 degrees reduction of angle of trunk mis-alignment) measured by 3-D motion analysis. This might be used for controlling their scoliotic curves by induced visual bio-feedback. Apart from this laboratory test, a longitudinal study is necessary to investigate the long-term effect of the prisms at different powers and orientations (under both static and dynamic situations) on the patient's posture, spinal muscular activities, vision, eye-hand coordination, psychological state and other daily activities before it becomes an alternative management of AIS.
Campos de Oliveira, Laís; Gonçalves de Oliveira, Raphael; Pires-Oliveira, Deise Aparecida de Almeida
2015-01-01
[Purpose] The aim of the present study was to determine the effects of Pilates on lower leg strength, postural balance and the health-related quality of life (HRQoL) of older adults. [Subjects and Methods] Thirty-two older adults were randomly allocated either to the experimental group (EG, n = 16; mean age, 63.62 ± 1.02 years), which performed two sessions of Pilates per week for 12 weeks, or to the control group (CG, n = 16; mean age, 64.21 ± 0.80), which performed two sessions of static stretching per week for 12 weeks. The following evaluations were performed before and after the interventions: isokinetic torque of knee extensors and flexors at 300°/s, the Timed Up and Go (TUG) test, the Berg Balance Scale, and the Health Survey assessment (SF-36). [Results] In the intra-group analysis, the EG demonstrated significant improvement in all variables. In the inter-group analysis, the EG demonstrated significant improvement in most variables. [Conclusion] Pilates exercises led to significant improvement in isokinetic torque of the knee extensors and flexors, postural balance and aspects of the health-related quality of life of older adults. PMID:25931749
Yu, JaeHo; Lee, SoYeon; Kim, HyongJo; Seo, DongKwon; Hong, JiHeon; Lee, DongYeop
2014-01-01
The application of transcutaneous electrical nerve stimulation (TENS) enhances muscle weakness and static balance by muscle fatigue. It was said that TENS affects decrease of the postural sway. On the other hand, the applications of TENS to separate dorsi-plantar flexor and the comparison with and without visual input have not been studied. Thus, the aim of this study was to compare the effects of TENS on fatigued dorsi-plantar flexor with and without visual input. 13 healthy adult males and 12 females were recruited and agreed to participate as the subject (mean age 20.5 ± 1.4, total 25) in this study after a preliminary research. This experiment was a single group repeated measurements design in three days. The first day, after exercise-induced fatigue, the standing position was maintained for 30 minutes and then the postural sway was measured on eyes open(EO) and eyes closed(EC). The second, TENS was applied to dorsi flexor in standing position for 30 minutes after conducting exercise-induced fatigue. On the last day, plantar flexor applied by TENS was measured to the postural sway on EO and EC after same exercise-induced fatigue. The visual input was not statistically difference between the groups. However, when compared of dorsi-plantar flexor after applied to TENS without visual input, the postural sway of plantar flexor was lower than the dorsi flexor (p< 0.05). As the result, the application of TENS in GCM clinically decreases the postural sway with visual input it helps to stable posture control and prevent to falling down.
Balance Performance Is Task Specific in Older Adults.
Dunsky, Ayelet; Zeev, Aviva; Netz, Yael
2017-01-01
Balance ability among the elderly is a key component in the activities of daily living and is divided into two types: static and dynamic. For clinicians who wish to assess the risk of falling among their elderly patients, it is unclear if more than one type of balance test can be used to measure their balance impairment. In this study, we examined the association between static balance measures and two dynamic balance field tests. One hundred and twelve community-dwelling older adults (mean age 74.6) participated in the study. They underwent the Tetrax static postural assessment and then performed the Timed Up and Go (TUG) and the Functional Reach (FR) Test as dynamic balance tests. In general, low-moderate correlations were found between the two types of balance tests. For women, age and static balance parameters explained 28.1-40.4% of the variance of TUG scores and 14.6-24% of the variance of FR scores. For men, age and static balance parameters explained 9.5-31.2% of the variance of TUG scores and 23.9-41.7% of the variance of FR scores. Based on our findings, it is suggested that a combination of both static and dynamic tests be used for assessing postural balance ability.
Human posture in microgravity: An experiment on EUROMIR '95 to verify and improve a simulation tool
NASA Astrophysics Data System (ADS)
Colford, Nicholas; Giorgi, Pier Luigi; Gaia, Enrico; Cotronei, Vittorio
1995-10-01
An anthropometric mannequin implemented in robotic modelling software has proved very useful in the simulation of static and semi-dynamic reachability envelopes. Its prediction of working postures has been verified to some extent during neutral buoyancy trials. While a robotic solution is useful for static analyses or rough estimates of simple movements, more realistic movement strategies need to be identified directly measuring astronauts' in-orbit behaviour. A set of experiments is to be performed as part of the EUROMIR '95 mission to the MIR orbiting station in which dynamic posture (i.e. posture and movement) measurements will be taken using the ELITE system. The data and analyses of the data will be used to animate the Alenia anthopometric mannequin and to develop movement algorithms more similar to those of a person in microgravity than the robotic solutions currently employed. This paper presents the experiments to be performed and the changes to Alenia's mannequin that will allow the model to effect movements according to the experimental results. It is aimed at expanding the dialog between the biomechanical and human factors disciplines started in this experiment to other potential end-users of the experimental results.
The lumbosacral segment as a vulnerable region in various postures
NASA Technical Reports Server (NTRS)
Rosemeyer, B.
1978-01-01
The lumbosacral region in man is exposed to special static and dynamic load. In a supine position, the disc size increases because of the absence of axial load. In a standing position, with physiological posture of the spine, strain discomfort occurs which is increased even more in the sitting position due to the curvature of the lumbar region of the spine and the irregular distribution of pressure in the discs as a result of this. This special problem of sitting posture can be confirmed by examinations.
Kalron, Alon; Givon, Uri; Frid, Lior; Dolev, Mark; Achiron, Anat
2016-01-01
Balance impairment is common in people with multiple sclerosis (PwMS) and frequently impacts quality of life by decreasing mobility and increasing the risk of falling. However, there are only scarce data examining the contribution of specific neurological functional systems on balance measures in MS. Therefore, the primary aim of our study was to examine the differences in posturography parameters and fall incidence according to the pyramidal, cerebellar and sensory systems functional systems in PwMS. The study included 342 PwMS, 211 women and mean disease duration of 8.2 (S.D = 8.3) years. The study sample was divided into six groups according to the pyramidal, cerebellar and sensory functional system scores, derived from the Expanded Disability Status Scale (EDSS) data. Static postural control parameters were obtained from the Zebris FDM-T Treadmill (zebris® Medical GmbH, Germany). Participants were defined as "fallers" and "non-fallers" based on their fall history. Our findings revealed a trend that PwMS affected solely in the pyramidal system, have reduced stability compared to patients with cerebellar and sensory dysfunctions. Moreover, the addition of sensory impairments to pyramidal dysfunction does not exacerbate postural control. The patients in the pure sensory group demonstrated increased stability compared to each of the three combined groups; pyramidal-cerebellar, pyramidal-sensory and pyramidal-cerebellar-sensory groups. As for fall status, the percentage of fallers in the pure pyramidal, cerebellar and sensory groups were 44.3%, 33.3% and 19.5%, respectively. As for the combined functional system groups, the percentage of fallers in the pyramidal-cerebellar, pyramidal-sensory and pyramidal-cerebellar-sensory groups were 59.7%, 40.7% and 65%, respectively. This study confirms that disorders in neurological functional systems generate different effects on postural control and incidence of falls in the MS population. From a clinical standpoint, the present information can benefit all those engaged in physical rehabilitation of PwMS. PMID:27741268
2013-01-01
Background The stomatognathic system and dysfunction in this system may be related to postural control. The proposal of the present study is to assess the effect of mandibular mobilization in individuals with temporomandibular disorder using surface electromyography of the muscles of mastication and stabilometric variables. Methods/Design A randomized, controlled, blind, clinical trial will be carried out, with the participants divided into three groups: 1) facial massage therapy (control group), 2) nonspecific mandibular mobilization and 3) specific mandibular mobilization. All groups will be assessed before and after treatment using the Research Diagnostic Criteria for Temporomandibular Disorders, surface electromyography of the masseter and temporal muscles and stabilometry. This study is registered with the Brazilian Registry of Clinical Trials (RBR9x8ssz). Discussion A large number of studies have employed surface electromyography to investigate the function/dysfunction of the muscles of mastication and associations with signs and symptoms of temporomandibular disorders. However, it has not yet been determined whether stabilometric variables offer adequate reliability in patients with this disorder. The results of the proposed study will help determine whether specific and/or nonspecific mandibular mobilization exerts an effect on the muscles of mastication and postural control. Moreover, if an effect is detected, the methodology defined in the proposed study will allow identifying whether the effect is local (found only in the muscles of mastication), global (found only in postural control) or generalized. PMID:24083628
Slow changing postural cues cancel visual field dependence on self-tilt detection.
Scotto Di Cesare, C; Macaluso, T; Mestre, D R; Bringoux, L
2015-01-01
Interindividual differences influence the multisensory integration process involved in spatial perception. Here, we assessed the effect of visual field dependence on self-tilt detection relative to upright, as a function of static vs. slow changing visual or postural cues. To that aim, we manipulated slow rotations (i.e., 0.05° s(-1)) of the body and/or the visual scene in pitch. Participants had to indicate whether they felt being tilted forward at successive angles. Results show that thresholds for self-tilt detection substantially differed between visual field dependent/independent subjects, when only the visual scene was rotated. This difference was no longer present when the body was actually rotated, whatever the visual scene condition (i.e., absent, static or rotated relative to the observer). These results suggest that the cancellation of visual field dependence by dynamic postural cues may rely on a multisensory reweighting process, where slow changing vestibular/somatosensory inputs may prevail over visual inputs. Copyright © 2014 Elsevier B.V. All rights reserved.
Gestural interaction in a virtual environment
NASA Astrophysics Data System (ADS)
Jacoby, Richard H.; Ferneau, Mark; Humphries, Jim
1994-04-01
This paper discusses the use of hand gestures (i.e., changing finger flexion) within a virtual environment (VE). Many systems now employ static hand postures (i.e., static finger flexion), often coupled with hand translations and rotations, as a method of interacting with a VE. However, few systems are currently using dynamically changing finger flexion for interacting with VEs. In our system, the user wears an electronically instrumented glove. We have developed a simple algorithm for recognizing gestures for use in two applications: automotive design and visualization of atmospheric data. In addition to recognizing the gestures, we also calculate the rate at which the gestures are made and the rate and direction of hand movement while making the gestures. We report on our experiences with the algorithm design and implementation, and the use of the gestures in our applications. We also talk about our background work in user calibration of the glove, as well as learned and innate posture recognition (postures recognized with and without training, respectively).
La Porta, F; Giordano, A; Caselli, S; Foti, C; Franchignoni, F
2015-12-01
It is unclear whether the BBS is an effective tool for the measurement of early postural control impairments in patients with Parkinson's disease (PD). The aim of this paper was to evaluate BBS' content validity, internal construct validity, reliability and targeting in patients with PD within the Rasch analysis framework. Observational, cross-sectional study. Outpatient Rehabilitation Unit. A sample of 285 outpatients with PD. The content validity of the BBS was assessed using standard linking techniques. The BBS was administered by trained physiotherapists. The data collected then underwent Rasch analysis. Content validity analysis showed a lack of items assessing postural responses to tripping and slips and stability during walking. On Rasch analysis, the BBS failed the requirements of monotonicity, local independence, unidimensionality and invariance. After rescoring 7 items, grouping of locally dependent items into testlets, and deletion of the static sitting balance item because mistargeted and underdiscriminating, the Rasch-modified BBS for PD (BBS-PD) showed adequate internal construct validity (χ(2)24=39.693; P=0.023), including absence of differential item functioning (DIF) across gender and age, and was, as a whole, sufficiently precise for individual person measurement (PSI=0.894). However, the scale was not well targeted to the sample in view of the prevalence of higher scores. This study demonstrated the internal construct validity and reliability of the BBS-PD as a measurement tool for patients with PD within the Rasch analysis framework. However, the lack of items critical to the assessment of postural control impairments typical of PD, affected negatively the targeting, so that a significant percentage of patients was located in the higher ability range of the measurement continuum, where precision of measurement is reduced. These findings suggest that the BBS, even if modified, may not be an effective tool for the measurement of early postural control in patients with PD.
Clark, Ross A; Pua, Yong-Hao; Oliveira, Cristino C; Bower, Kelly J; Thilarajah, Shamala; McGaw, Rebekah; Hasanki, Ksaniel; Mentiplay, Benjamin F
2015-07-01
The Microsoft Kinect V2 for Windows, also known as the Xbox One Kinect, includes new and potentially far improved depth and image sensors which may increase its accuracy for assessing postural control and balance. The aim of this study was to assess the concurrent validity and reliability of kinematic data recorded using a marker-based three dimensional motion analysis (3DMA) system and the Kinect V2 during a variety of static and dynamic balance assessments. Thirty healthy adults performed two sessions, separated by one week, consisting of static standing balance tests under different visual (eyes open vs. closed) and supportive (single limb vs. double limb) conditions, and dynamic balance tests consisting of forward and lateral reach and an assessment of limits of stability. Marker coordinate and joint angle data were concurrently recorded using the Kinect V2 skeletal tracking algorithm and the 3DMA system. Task-specific outcome measures from each system on Day 1 and 2 were compared. Concurrent validity of trunk angle data during the dynamic tasks and anterior-posterior range and path length in the static balance tasks was excellent (Pearson's r>0.75). In contrast, concurrent validity for medial-lateral range and path length was poor to modest for all trials except single leg eyes closed balance. Within device test-retest reliability was variable; however, the results were generally comparable between devices. In conclusion, the Kinect V2 has the potential to be used as a reliable and valid tool for the assessment of some aspects of balance performance. Copyright © 2015 Elsevier B.V. All rights reserved.
Hubble, Ryan P; Naughton, Geraldine A; Silburn, Peter A; Cole, Michael H
2014-12-31
Exercise has been shown to improve clinical measures of strength, balance and mobility, and in some cases, has improved symptoms of tremor and rigidity in people with Parkinson's disease (PD). However, to date, no research has examined whether improvements in trunk control can remedy deficits in dynamic postural stability in this population. The proposed randomised controlled trial aims to establish whether a 12-week exercise programme aimed at improving dynamic postural stability in people with PD; (1) is more effective than education; (2) is more effective when training frequency is increased; and (3) provides greater long-term benefits than education. Forty-five community-dwelling individuals diagnosed with idiopathic PD with a falls history will be recruited. Participants will complete baseline assessments including tests of cognition, vision, disease severity, fear of falling, mobility and quality of life. Additionally, participants will complete a series of standing balance tasks to evaluate static postural stability, while dynamic postural control will be measured during walking using head and trunk-mounted three-dimensional accelerometers. Following baseline testing, participants will be randomly-assigned to one of three intervention groups, who will receive either exercise once per week, exercise 3 days/week, or education. Participants will repeat the same battery of tests conducted at baseline after the 12-week intervention and again following a further 12-week sustainability period. This study has the potential to show that low-intensity and progressive trunk exercises can provide a non-invasive and effective means for maintaining or improving postural stability for people with PD. Importantly, if the programme is noted to be effective, it could be easily performed by patients within their home environment or under the guidance of available allied health professionals. The protocol for this study is registered with the Australian New Zealand Clinical Trials Registry (ACTRN12613001175763). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Vibration perception threshold in relation to postural control and fall risk assessment in elderly.
de Mettelinge, Tine Roman; Calders, Patrick; Palmans, Tanneke; Vanden Bossche, Luc; Van Den Noortgate, Nele; Cambier, Dirk
2013-09-01
This study investigates (i) the potential discriminative role of a clinical measure of peripheral neuropathy (PN) in assessing postural performance and fall risk and (ii) whether the integration of a simple screening vibration perception threshold (VPT) for PN in any physical (fall risk) assessment among elderly should be recommended, even if they do not suffer from DM. One hundred and ninety-five elderly were entered in a four-group model: DM with PN (D+; n = 75), DM without PN (D-; n = 28), non-diabetic elderly with idiopathic PN (C+; n = 31) and non-diabetic elderly without PN (C-; n = 61). Posturographic sway parameters were captured during different static balance conditions (AMTI AccuGait, Watertown, MA). VPT, fall data, Mini-Mental State Examination and Clock Drawing Test were registered. Two-factor repeated-measures ANOVA was used to compare between groups and across balance conditions. The groups with PN demonstrated a strikingly comparable, though bigger sway, and a higher prospective fall incidence than their peers without PN. The indication of PN, irrespective of its cause, interferes with postural control and fall incidence. The integration of a simple screening for PN (like bio-thesiometry) in any fall risk assessment among elderly is highly recommended. Implications for Rehabilitation The indication of peripheral neuropathy (PN), irrespective of its cause, interferes with postural control and fall incidence. Therefore, the integration of a simple screening for PN (like bio-thesiometry) in any fall risk assessment among elderly is highly recommended. It might be useful to integrate somatosensory stimulation in rehabilitation programs designed for fall prevention.
Context and hand posture modulate the neural dynamics of tool-object perception.
Natraj, Nikhilesh; Poole, Victoria; Mizelle, J C; Flumini, Andrea; Borghi, Anna M; Wheaton, Lewis A
2013-02-01
Prior research has linked visual perception of tools with plausible motor strategies. Thus, observing a tool activates the putative action-stream, including the left posterior parietal cortex. Observing a hand functionally grasping a tool involves the inferior frontal cortex. However, tool-use movements are performed in a contextual and grasp specific manner, rather than relative isolation. Our prior behavioral data has demonstrated that the context of tool-use (by pairing the tool with different objects) and varying hand grasp postures of the tool can interact to modulate subjects' reaction times while evaluating tool-object content. Specifically, perceptual judgment was delayed in the evaluation of functional tool-object pairings (Correct context) when the tool was non-functionally (Manipulative) grasped. Here, we hypothesized that this behavioral interference seen with the Manipulative posture would be due to increased and extended left parietofrontal activity possibly underlying motor simulations when resolving action conflict due to this particular grasp at time scales relevant to the behavioral data. Further, we hypothesized that this neural effect will be restricted to the Correct tool-object context wherein action affordances are at a maximum. 64-channel electroencephalography (EEG) was recorded from 16 right-handed subjects while viewing images depicting three classes of tool-object contexts: functionally Correct (e.g. coffee pot-coffee mug), functionally Incorrect (e.g. coffee pot-marker) and Spatial (coffee pot-milk). The Spatial context pairs a tool and object that would not functionally match, but may commonly appear in the same scene. These three contexts were modified by hand interaction: No Hand, Static Hand near the tool, Functional Hand posture and Manipulative Hand posture. The Manipulative posture is convenient for relocating a tool but does not afford a functional engagement of the tool on the target object. Subjects were instructed to visually assess whether the pictures displayed correct tool-object associations. EEG data was analyzed in time-voltage and time-frequency domains. Overall, Static Hand, Functional and Manipulative postures cause early activation (100-400ms post image onset) of parietofrontal areas, to varying intensity in each context, when compared to the No Hand control condition. However, when context is Correct, only the Manipulative Posture significantly induces extended neural responses, predominantly over right parietal and right frontal areas [400-600ms post image onset]. Significant power increase was observed in the theta band [4-8Hz] over the right frontal area, [0-500ms]. In addition, when context is Spatial, Manipulative posture alone significantly induces extended neural responses, over bilateral parietofrontal and left motor areas [400-600ms]. Significant power decrease occurred primarily in beta bands [12-16, 20-25Hz] over the aforementioned brain areas [400-600ms]. Here, we demonstrate that the neural processing of tool-object perception is sensitive to several factors. While both Functional and Manipulative postures in Correct context engage predominantly an early left parietofrontal circuit, the Manipulative posture alone extends the neural response and transitions to a late right parietofrontal network. This suggests engagement of a right neural system to evaluate action affordances when hand posture does not support action (Manipulative). Additionally, when tool-use context is ambiguous (Spatial context), there is increased bilateral parietofrontal activation and, extended neural response for the Manipulative posture. These results point to the existence of other networks evaluating tool-object associations when motoric affordances are not readily apparent and underlie corresponding delayed perceptual judgment in our prior behavioral data wherein Manipulative postures had exclusively interfered in judging tool-object content. Copyright © 2012 Elsevier Ltd. All rights reserved.
Niekerk, Sjan-Mari van; Louw, Quinette Abigail; Grimmer-Sommers, Karen
2014-01-01
Dynamic movement whilst sitting is advocated as a way to reduce musculoskeletal symptoms from seated activities. Conventionally, in ergonomics research, only a 'snapshot' of static sitting posture is captured, which does not provide information on the number or type of movements over a period of time. A novel approach to analyse the number of postural changes whist sitting was employed in order to describe the sitting behaviour of adolescents whilst undertaking computing activities. A repeated-measures observational study was conducted. A total of 12 high school students were randomly selected from a conveniently selected school. Fifteen minutes of 3D posture measurements were recorded to determine the number of postural changes whilst using computers. Data of 11 students were able to be analysed. Large intra-subject variation of the median and IQR was observed, indicating frequent postural changes whilst sitting. Better understanding of usual dynamic postural movements whilst sitting will provide new insights into causes of musculoskeletal symptoms experienced by computer users.
Evangelista, Dennis; Cardona, Griselda; Guenther-Gleason, Eric; Huynh, Tony; Kwong, Austin; Marks, Dylan; Ray, Neil; Tisbe, Adrian; Tse, Kyle; Koehl, Mimi
2014-01-01
We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur, Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements). Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. While M. gui lived after Archaeopteryx and likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies are tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver. PMID:24454820
Gaffney, Brecca M; Maluf, Katrina S; Curran-Everett, Douglas; Davidson, Bradley S
2014-08-01
The first aim of this investigation was to quantify the distribution of trapezius muscle activity with different scapular postures while seated. The second aim of this investigation was to examine the association between changes in cervical and scapular posture when attempting to recruit different subdivisions of the trapezius muscle. Cervical posture, scapular posture, and trapezius muscle activity were recorded from 20 healthy participants during three directed shoulder postures. Planar angles formed by reflective markers placed on the acromion process, C7, and tragus were used to quantify cervical and scapular posture. Distribution of trapezius muscle activity was recorded using two high-density surface electromyography (HDsEMG) electrodes positioned over the upper, middle, and lower trapezius. Results validated the assumption that directed scapular postures preferentially activate different subdivisions of the trapezius muscle. In particular, scapular depression was associated with a more inferior location of trapezius muscle activity (r=0.53). Scapular elevation was coupled with scapular abduction (r=0.52). Scapular adduction was coupled with cervical extension (r=0.35); all other changes in cervical posture were independent of changes in scapular posture. This investigation provides empirical support for reductions in static loading of the upper trapezius and improvements in neck posture through verbal cueing of scapular posture. Copyright © 2014 Elsevier Ltd. All rights reserved.
Serial Testing of Postural Control After Acute Lateral Ankle Sprain
Buckley, W. E.; Denegar, Craig R.
2001-01-01
Objective: To identify subjects' changes in postural control during single-leg stance in the 4 weeks after acute lateral ankle sprain. Design and Setting: We used a 2 × 2 × 3 (side-by-plane-by-session) within-subjects design with repeated measures on all 3 factors. All tests were performed in a university laboratory. Subjects: Seventeen young adults (9 men, 8 women; age, 21.8 ± 5.9 years; mass, 74.9 ± 10.5 kg; height, 176.9 ± 7.1 cm) who had sustained unilateral acute mild or moderate lateral ankle sprains. Measurements: Measures of center-of-pressure excursion length, root mean square velocity of center-of-pressure excursions (VEL), and range of center-of-pressure excursions (RANGE) were calculated separately in the frontal and sagittal planes during 5-second trials of static single-leg stance. Results: We noted significant side-by-plane-by-session interactions for magnitude of center-of-pressure excursions in a given trial (PSL) (P = .004), VEL (P = .011), and RANGE (P = .009). Both PSL and VEL in the frontal plane were greater in the injured limbs compared with the uninjured limbs on day 1 and during week 2 but not during week 4, whereas sagittal-plane differences existed during all 3 testing sessions. Injured-limb, frontal-plane RANGE scores were greater than uninjured values at day 1 but not during weeks 2 or 4. No significant differences in sagittal-plane RANGE scores were seen. Conclusions: Postural control was significantly impaired in the injured limbs at day 1 and during week 2 after lateral ankle sprain but not during week 4. Consistent improvement in postural control measures on both injured and uninjured limbs was seen throughout the 4 weeks after ankle sprain. PMID:12937477
ERIC Educational Resources Information Center
Cherng, Rong-Ju; Lin, Hui-Chen; Ju, Yun-Huei; Ho, Chin-Shan
2009-01-01
The purpose of this study was to examine the effect of seat surface inclination on postural stability and forward reaching efficiency in 10 children with spastic cerebral palsy (CP) and 16 typically developing (TD) children. The children performed a static sitting and a forward reaching task while sitting on a height- and inclination-adjustable…
Spatial orientation and balance control changes induced by altered gravitoinertial force vectors
NASA Technical Reports Server (NTRS)
Kaufman, G. D.; Wood, S. J.; Gianna, C. C.; Black, F. O.; Paloski, W. H.
2001-01-01
To better understand the mechanisms of human adaptation to rotating environments, we exposed 19 healthy subjects and 8 vestibular-deficient subjects ("abnormal"; four bilateral and four unilateral lesions) to an interaural centripetal acceleration of 1 g (resultant 45 degrees roll-tilt of 1.4 g) on a 0.8-m-radius centrifuge for periods of 90 min. The subjects sat upright (body z-axis parallel to centrifuge rotation axis) in the dark with head stationary, except during 4 min of every 10 min, when they performed head saccades toward visual targets switched on at 3- to 5-s intervals at random locations (within +/- 30 degrees) in the earth-horizontal plane. Eight of the normal subjects also performed the head saccade protocol in a stationary chair adjusted to a static roll-tilt angle of 45 degrees for 90 min (reproducing the change in orientation but not the magnitude of the gravitoinertial force on the centrifuge). Eye movements, including voluntary saccades directed along perceived earth- and head-referenced planes, were recorded before, during, and immediately after centrifugation. Postural center of pressure (COP) and multisegment body kinematics were also gathered before and within 10 min after centrifugation. Normal subjects overestimated roll-tilt during centrifugation and revealed errors in perception of head-vertical provided by directed saccades. Errors in this perceptual response tended to increase with time and became significant after approximately 30 min. Motion-sickness symptoms caused approximately 25% of normal subjects to limit their head movements during centrifugation and led three normal subjects to stop the test early. Immediately after centrifugation, subjects reported feeling tilted 10 degrees in the opposite direction, which was in agreement with the direction of their earth-referenced directed saccades. Postural COP, segmental body motion amplitude, and hip-sway frequency increased significantly after centrifugation. These postural effects were short-lived, however, with a recovery time of several postural test trials (minutes). There were also asymmetries in the direction of postcentrifugation COP and head tilt which depended on the subject's orientation during the centrifugation adaptation period (left ear or right ear out). The amount of total head movements during centrifugation correlated poorly or inversely with postcentrifugation postural stability, and the most unstable subject made no head movements. There was no decrease in postural stability after static tilt, although these subjects also reported a perceived tilt briefly after return to upright, and they also had COP asymmetries. Abnormal subjects underestimated roll-tilt during centrifugation, and their directed saccades revealed permanent spatial distortions. Bilateral abnormal subjects started out with poor postural control, but showed no postural decrements after centrifugation, while unilateral abnormal subjects had varying degrees of postural decrement, both in their everyday function and as a result of experiencing the centrifugation. In addition, three unilateral, abnormal subjects, who rode twice in opposite orientations, revealed a consistent orthogonal pattern of COP offsets after centrifugation. These results suggest that both orientation and magnitude of the gravitoinertial vector are used by the central nervous system for calibration of multiple orientation systems. A change in the background gravitoinertial force (otolith input) can rapidly initiate postural and perceptual adaptation in several sensorimotor systems, independent of a structured visual surround.
Spatial orientation and balance control changes induced by altered gravitoinertial force vectors.
Kaufman, G D; Wood, S J; Gianna, C C; Black, F O; Paloski, W H
2001-04-01
To better understand the mechanisms of human adaptation to rotating environments, we exposed 19 healthy subjects and 8 vestibular-deficient subjects ("abnormal"; four bilateral and four unilateral lesions) to an interaural centripetal acceleration of 1 g (resultant 45 degrees roll-tilt of 1.4 g) on a 0.8-m-radius centrifuge for periods of 90 min. The subjects sat upright (body z-axis parallel to centrifuge rotation axis) in the dark with head stationary, except during 4 min of every 10 min, when they performed head saccades toward visual targets switched on at 3- to 5-s intervals at random locations (within +/- 30 degrees) in the earth-horizontal plane. Eight of the normal subjects also performed the head saccade protocol in a stationary chair adjusted to a static roll-tilt angle of 45 degrees for 90 min (reproducing the change in orientation but not the magnitude of the gravitoinertial force on the centrifuge). Eye movements, including voluntary saccades directed along perceived earth- and head-referenced planes, were recorded before, during, and immediately after centrifugation. Postural center of pressure (COP) and multisegment body kinematics were also gathered before and within 10 min after centrifugation. Normal subjects overestimated roll-tilt during centrifugation and revealed errors in perception of head-vertical provided by directed saccades. Errors in this perceptual response tended to increase with time and became significant after approximately 30 min. Motion-sickness symptoms caused approximately 25% of normal subjects to limit their head movements during centrifugation and led three normal subjects to stop the test early. Immediately after centrifugation, subjects reported feeling tilted 10 degrees in the opposite direction, which was in agreement with the direction of their earth-referenced directed saccades. Postural COP, segmental body motion amplitude, and hip-sway frequency increased significantly after centrifugation. These postural effects were short-lived, however, with a recovery time of several postural test trials (minutes). There were also asymmetries in the direction of postcentrifugation COP and head tilt which depended on the subject's orientation during the centrifugation adaptation period (left ear or right ear out). The amount of total head movements during centrifugation correlated poorly or inversely with postcentrifugation postural stability, and the most unstable subject made no head movements. There was no decrease in postural stability after static tilt, although these subjects also reported a perceived tilt briefly after return to upright, and they also had COP asymmetries. Abnormal subjects underestimated roll-tilt during centrifugation, and their directed saccades revealed permanent spatial distortions. Bilateral abnormal subjects started out with poor postural control, but showed no postural decrements after centrifugation, while unilateral abnormal subjects had varying degrees of postural decrement, both in their everyday function and as a result of experiencing the centrifugation. In addition, three unilateral, abnormal subjects, who rode twice in opposite orientations, revealed a consistent orthogonal pattern of COP offsets after centrifugation. These results suggest that both orientation and magnitude of the gravitoinertial vector are used by the central nervous system for calibration of multiple orientation systems. A change in the background gravitoinertial force (otolith input) can rapidly initiate postural and perceptual adaptation in several sensorimotor systems, independent of a structured visual surround.
Does structural leg-length discrepancy affect postural control? Preliminary study.
Eliks, Małgorzata; Ostiak-Tomaszewska, Wioleta; Lisiński, Przemysław; Koczewski, Paweł
2017-08-09
Leg-length inequality results in an altered position of the spine and pelvis. Previous studies on the influence of leg asymmetry on postural control have been inconclusive. The purpose of this paper was to investigate the effect of structural leg-length discrepancy (LLD) on the control of posture. We studied 38 individuals (19 patients with structural LLD, 19 healthy subjects). The examination included measurement of the length of the lower limbs and weight distribution as well as a static posturography. All statistical analyses were performed with Statistica software version 10.0. Non-parametrical Kruskal-Wallis with Dunn's post test and Spearman test were used. Differences between the groups and correlation between mean COP sway velocity and the value of LLD as well as the value of LLD and weight distribution were assumed as statistically significant at p < 0.05. There was a significant difference in the asymmetry of weight distribution between the group of patients and the healthy subjects (p = 0.0005). Differences in a posturographic examination between the groups were not statistically significant (p > 0.05). Meaningful differences in mean COP velocity in mediolateral direction between tandem stance with eyes open and closed were detected in both groups (in controls p = 0.000134, in patients both with the shorter leg in a front and rear position, p = 0.029, p = 0.026 respectively). There was a positive moderate correlation between the value of LLD and the value of mean COP velocity in normal standing in mediolateral direction with eyes open (r = 0.47) and closed (r = 0.54) and in anterioposterior plane with eyes closed (r = 0.05). The fact that there were no significant differences in posturography between the groups might indicate compensations to the altered posture and neuromuscular adaptations in patients with structural leg-length inequality. LLD causes an increased asymmetry of weight distribution. This study confirmed a fundamental role of the sight in postural control, especially in unstable conditions. The analysis of mean COP sway velocity may suggest a proportional deterioration of postural control with the increase of the value of leg-length asymmetry. Trial registry: ClinicalTrials.gov NCT03048656 , 8 February 2017 (retrospectively registered).
Dominant side in single-leg stance stability during floor oscillations at various frequencies
2014-01-01
Background We investigated lateral dominance in the postural stability of single-leg stance with anteroposterior floor oscillations at various frequencies. Methods Thirty adults maintained a single-leg stance on a force platform for 20 seconds per trial. Trials were performed with no oscillation (static condition) and with anteroposterior floor oscillations (2.5-cm amplitude) at six frequencies: 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5 Hz (dynamic condition). A set of three trials was performed on each leg in each oscillation frequency in random order. The mean speed of the center of pressure in the anteroposterior direction (CoPap) was calculated as an index of postural stability, and frequency analysis of CoPap sway was performed. Footedness for carrying out mobilizing activities was assessed with a questionnaire. Results CoPap speed exponentially increased as oscillation frequency increased in both legs. The frequency analysis of CoPap showed a peak <0.3 Hz at no oscillation. The frequency components at 0.25-Hz oscillation included common components with no oscillation and those at 1.5-Hz oscillation showed the maximum amplitude among all conditions. Postural stability showed no significant difference between left- and right-leg stance at no oscillation and oscillations ≤1.25 Hz, but at 1.5-Hz oscillation was significantly higher in the right-leg stance than in the left-leg stance. For the lateral dominance of postural stability at individual levels, the lateral difference in postural stability at no oscillation was positively correlated with that at 0.25-Hz oscillation (r = 0.51) and negatively correlated with that at 1.5-Hz oscillation (r = -0.53). For 70% of subjects, the dominant side of postural stability was different at no oscillation and 1.5-Hz oscillation. In the subjects with left- or right-side dominance at no oscillation, 94% or 38% changed their dominant side at 1.5-Hz oscillation, with a significant difference between these percentages. In the 1.5-Hz oscillation, 73% of subjects had concordance between the dominant side of postural stability and that of mobilizing footedness. Conclusion In static conditions, there was no lateral dominance of stability during single-leg stance. At 1.5-Hz oscillation, the highest frequency, right-side dominance of postural stability was recognized. Functional role in supporting leg may be divided between left and right legs according to the change of balance condition from static to dynamic. PMID:25127541
Shan, Chow Li; Bin Adon, Mohd Yusoff; Rahman, Anita Binti Abd; Hassan, Syed Tajuddin Syed; Ismail, Kamal Bin
2011-12-29
Rubber tapping processes posed potential risk of various health problems among rubber workers. It ranges from simple musculoskeletal aches to more serious and complicated structural damage to bone, muscles, tendons and nerves of musculoskeletal system. These health problems might be linked directly to the arduous demands of farm labor. A cross-sectional study was conducted to determine the prevalence of neck pain (NP) and musculoskeletal symptoms (MSS) and its association with personal characteristics, physical workloads and psychosocial factors among rubber workers. Stratified random sampling method was adopted and a total of 419 rubber workers in FELDA's scheme Malaysia participated in this study. Data was collected through face to face interview using modified Standardized Nordic Questionnaire (SNQ) and Job Content Questionnaire (JCQ). The results revealed the prevalence of NP was 59.9% and weak correlation with age (?= -0.184, p= 0.001) and a positive weak correlation with working hours per day (?= 0.099, p= 0.043) significantly. All physical workloads (neck flexion or rotation, awkward postures, repetitive motion and static postures) had significant weak to moderate positive correlation with NP (p<0.05). Job insecurity was found to have weak and positive correlation with NP (p<0.05). Binary logistic regression analysis showed risk factors for NP were decreased with age (OR= 3.92, 95% CI 1.61 - 9.58, p=0.003), increase in neck flexion or rotation (OR= 9.52, 95% CI 5.55 - 16.32, p= 0.001), awkward postures (OR=2.23, 95% CI 1.29 - 3.86, p= 0.004) and static postures (OR= 1.86, 95% CI 1.10 - 3.14, p= 0.021). This study showed that high prevalence of NP was associated with neck flexion or rotation, awkward and static postures.
Shan, Chow Li; Adon, Mohd Yusoff Bin; Rahman, Anita Binti Abd; Hassan, Syed Tajuddin Syed; Ismail, Kamal Bin
2012-01-01
Rubber tapping processes posed potential risk of various health problems among rubber workers. It ranges from simple musculoskeletal aches to more serious and complicated structural damage to bone, muscles, tendons and nerves of musculoskeletal system. These health problems might be linked directly to the arduous demands of farm labor. Objectives: A cross-sectional study was conducted to determine the prevalence of neck pain (NP) and musculoskeletal symptoms (MSS) and its association with personal characteristics, physical workloads and psychosocial factors among rubber workers. Methods: Stratified random sampling method was adopted and a total of 419 rubber workers in FELDA’s scheme Malaysia participated in this study. Data was collected through face to face interview using modified Standardized Nordic Questionnaire (SNQ) and Job Content Questionnaire (JCQ). Results: The results revealed the prevalence of NP was 59.9% and weak correlation with age (ρ= -0.184, p= 0.001) and a positive weak correlation with working hours per day (ρ= 0.099, p= 0.043) significantly. All physical workloads (neck flexion or rotation, awkward postures, repetitive motion and static postures) had significant weak to moderate positive correlation with NP (p<0.05). Job insecurity was found to have weak and positive correlation with NP (p<0.05). Binary logistic regression analysis showed risk factors for NP were decreased with age (OR= 3.92, 95% CI 1.61 – 9.58, p=0.003), increase in neck flexion or rotation (OR= 9.52, 95% CI 5.55 – 16.32, p= 0.001), awkward postures (OR=2.23, 95% CI 1.29 – 3.86, p= 0.004) and static postures (OR= 1.86, 95% CI 1.10 – 3.14, p= 0.021). Conclusion: This study showed that high prevalence of NP was associated with neck flexion or rotation, awkward and static postures. PMID:22980103
Wright, W Geoffrey; Handy, Justin D; Avcu, Pelin; Ortiz, Alejandro; Haran, F Jay; Doria, Michael; Servatius, Richard J
2018-03-01
Postural control and stress reactivity were investigated in active duty coast guard personnel to determine whether they are sensitive to lifetime effects of mild traumatic brain injury (mTBI). A custom-designed and validated virtual reality-based computerized posturography device was used to assess postural stability, whereas emotional reactivity was assessed using the acoustic startle response (ASR), and neurocognitive performance was assessed using the defense-automated neurobehavioral assessment (DANA). It was hypothesized that residual and subtle postural control imbalance and deficits in cognitive and sensory reactivity would be evident in those reporting multiple lifetime mTBI. Active duty military personnel (N = 36; 7 females and 29 males) with no Deployment Limiting Medical Condition were recruited and tested on all assessments. Medical history information provided a history of head injury. Thirty-nine percent of participants reported having a previous mTBI (nine reporting one and five reporting more than one incident). No participant had experienced a head injury within the past year and all were symptom free. A significant effect of number of mTBI was found in the postural assessment (p = 0.002). Lifetime mTBI was associated with suppressed ASR magnitude (p = 0.03) but did not affect neurocognitive performance. The current findings provide new insight into ongoing controversies concerning sensitivity to functional deficits following mTBI and when the window for treatment or restoration ends.
Temporal changes in postural sway caused by ultrashort-acting hypnotics: triazolam and zolpidem.
Nakamura, M; Ishii, M; Niwa, Y; Yamazaki, M; Ito, H
2005-01-01
Two ultrashort-acting hypnotics, triazolam 0.25 mg and zolpidem 10 mg, were studied for their effects on equilibrium function in humans. Eight healthy male subjects participated in a double-blind, placebo-controlled study after informed consent. They subjected to static equilibrium tests, oculomotor tests and an assay of drug concentrations in the blood. Zolpidem was statistically significant in postural sway in tandem stance test, as defined by parametric values of tracing sum length and polygonal area of foot pressure center measured by a gait analysis system. In the tandem stance test, triazolam was statistically significant in postural sway only as defined by the polygonal area. However, in the Romberg test, the only statistically significant difference in zolpidem use was observed in polygonal area values. Blood concentrations of triazolam and zolpidem were found to closely correlate with the extent of postural sway in both tandem stance and Romberg tests. In this study, zolpidem with minimal muscle-relaxant effect incurred imbalance more extensively than triazolam, which is known for its effect of muscle relaxation. In addition, gaze deviation nystagmus was observed only in zolpidem use in 5 of 8 subjects (62.5%). From these results, it is suggested that in the use of hypnotics, sway derives from the suppression of the central nervous system relevant to awakening rather than from muscle relaxation. The prior reference to blood concentrations of hypnotics should help improve safety care in minimizing loss of balance control and possible fall. Copyright 2005 S. Karger AG, Basel.
Cheng, Chih-Hsiu; Chien, Andy; Hsu, Wei-Li; Chen, Carl Pai-Chu; Cheng, Hsin-Yi Kathy
2016-01-01
Cervical spinal loads are predominately influenced by activities of cervical muscles. However, the coordination between deep and superficial muscles and their influence on the spinal loads is not well understood. This study aims to document the changes of cervical spinal loads and the differential contributions of superficial and deep muscles with varying head postures. Electromyography (EMG) of cervical muscles from seventeen healthy adults were measured during maximal isometric exertions for lateral flexion (at 10°, 20° and terminal position) as well as flexion/extension (at 10°, 20°, 30°, and terminal position) neck postures. An EMG-assisted optimization approach was used to estimate the muscle forces and subsequent spinal loads. The results showed that compressive and anterior-posterior shear loads increased significantly with neck flexion. In particular, deep muscle forces increased significantly with increasing flexion. It was also determined that in all different static head postures, the deep muscle forces were greater than those of the superficial muscle forces, however, such pattern was reversed during peak efforts where greater superficial muscle forces were identified with increasing angle of inclination. In summary, the identification of significantly increased spinal loads associated with increased deep muscle activation during flexion postures, implies higher risks in predisposing the neck to occupationally related disorders. The results also explicitly supported that deep muscles play a greater role in maintaining stable head postures where superficial muscles are responsible for peak exertions and reinforcing the spinal stability at terminal head postures. This study provided quantitative data of normal cervical spinal loads and revealed motor control strategies in coordinating the superficial and deep muscles during physical tasks. PMID:26938773
Cheng, Chih-Hsiu; Chien, Andy; Hsu, Wei-Li; Chen, Carl Pai-Chu; Cheng, Hsin-Yi Kathy
2016-01-01
Cervical spinal loads are predominately influenced by activities of cervical muscles. However, the coordination between deep and superficial muscles and their influence on the spinal loads is not well understood. This study aims to document the changes of cervical spinal loads and the differential contributions of superficial and deep muscles with varying head postures. Electromyography (EMG) of cervical muscles from seventeen healthy adults were measured during maximal isometric exertions for lateral flexion (at 10°, 20° and terminal position) as well as flexion/extension (at 10°, 20°, 30°, and terminal position) neck postures. An EMG-assisted optimization approach was used to estimate the muscle forces and subsequent spinal loads. The results showed that compressive and anterior-posterior shear loads increased significantly with neck flexion. In particular, deep muscle forces increased significantly with increasing flexion. It was also determined that in all different static head postures, the deep muscle forces were greater than those of the superficial muscle forces, however, such pattern was reversed during peak efforts where greater superficial muscle forces were identified with increasing angle of inclination. In summary, the identification of significantly increased spinal loads associated with increased deep muscle activation during flexion postures, implies higher risks in predisposing the neck to occupationally related disorders. The results also explicitly supported that deep muscles play a greater role in maintaining stable head postures where superficial muscles are responsible for peak exertions and reinforcing the spinal stability at terminal head postures. This study provided quantitative data of normal cervical spinal loads and revealed motor control strategies in coordinating the superficial and deep muscles during physical tasks.
Stabilisation times after transitions to standing from different working postures.
DiDomenico, Angela; McGorry, Raymond W; Banks, Jacob J
2016-10-01
Transitioning to standing after maintaining working postures may result in imbalance and could elicit a fall. The objective of this study was to quantify the magnitude of imbalance using a stabilisation time metric. Forty-five male participants completed three replications of conditions created by one of four working postures (bent at waist, squat, forward kneel, reclined kneel) and three durations within posture. Participants transitioned to quiet standing at a self-selected pace. Stabilisation time, based on changes in centre of pressure velocity, was used to indicate the initiation of steady state while standing. Stabilisation time was significantly affected by static postures but not duration within posture. The largest stabilisation times resulted from transitions initiated from a bent at waist posture. The smallest were associated with the kneeling postures, which were not significantly different from each other. Findings may lead to recommendations for redesign of tasks, particularly in high-risk environments such as construction. Statement of Relevance: Task performance on the jobsite often requires individuals to maintain non-erect postures. This study suggests that working posture affects stabilisation during transition to a standing position. Bending at the waist and squatting resulted in longer stabilisation times, whereas both kneeling postures evaluated resulted in greater imbalance but for a shorter duration.
Slow Movements of Bio-Inspired Limbs
NASA Astrophysics Data System (ADS)
Babikian, Sarine; Valero-Cuevas, Francisco J.; Kanso, Eva
2016-10-01
Slow and accurate finger and limb movements are essential to daily activities, but the underlying mechanics is relatively unexplored. Here, we develop a mathematical framework to examine slow movements of tendon-driven limbs that are produced by modulating the tendons' stiffness parameters. Slow limb movements are driftless in the sense that movement stops when actuations stop. We demonstrate, in the context of a planar tendon-driven system representing a finger, that the control of stiffness suffices to produce stable and accurate limb postures and quasi-static (slow) transitions among them. We prove, however, that stable postures are achievable only when tendons are pretensioned, i.e., they cannot become slack. Our results further indicate that a non-smoothness in slow movements arises because the precision with which individual stiffnesses need to be altered changes substantially throughout the limb's motion.
Pierobon, Alberto; DiZio, Paul; Lackner, James R.
2013-01-01
We tested an innovative method to estimate joint stiffness and damping during multijoint unfettered arm movements. The technique employs impulsive perturbations and a time-frequency analysis to estimate the arm's mechanical properties along a reaching trajectory. Each single impulsive perturbation provides a continuous estimation on a single-reach basis, making our method ideal to investigate motor adaptation in the presence of force fields and to study the control of movement in impaired individuals with limited kinematic repeatability. In contrast with previous dynamic stiffness studies, we found that stiffness varies during movement, achieving levels higher than during static postural control. High stiffness was associated with elevated reflexive activity. We observed a decrease in stiffness and a marked reduction in long-latency reflexes around the reaching movement velocity peak. This pattern could partly explain the difference between the high stiffness reported in postural studies and the low stiffness measured in dynamic estimation studies, where perturbations are typically applied near the peak velocity point. PMID:23945781
Alptekin, Kerem; Karan, Ayse; Dıracoglu, Demirhan; Yildiz, Aysel; Baskent, Akin; Eskiyurt, Nurten
2016-01-01
Deterioration associated with aging in the erect posture and balance to change the location of the center increased the rate of fall in older age is one of the reasons. Loss of muscle strength is one of the major factors affecting the posture. In this prospective, randomized and controlled study, it was aimed to investigate the effectiveness of strengthening postural muscles through electrostimulation or by applying biofeedback exercises with static posturography in patients aged 60 years and over with balance disorder. Patients aged between 60-80 years, who applied to Istanbul Faculty of Medicine Physical Medicine and Rehabilitation Department outpatient clinic and had been diagnosed with balance disorder using the Timed Up and Go (TUG) test, were included. 250 patients were screened, from them 67 patients were enrolled and 57 of them completed the study. Patients were randomized to three groups. The patients in Tetrax® group (TG) group (n:18) participated in a 15-minute exercise with Tetrax® which consisted of 15 minutes exercise session 3 times weekly for 4 weeks. The patients in EG group (n:19) received an electrostimulation program of postural muscles of 40 minutes per session 3 times weekly for 4 weeks. Patients in the control group (n:20) did 6-week balance exercises which were performed by other groups as well. 48 out of 57 patients attended the 6th-month control. As determinants of balance status Timed Up and Go Test (TUG), Berg Balance Scale (BBS) and Fall Index measured by Tetrax® were calculated at baseline, 1-month and 6-month follw up assesments. The patient's quality of life was assesed by Turkish version of World Health Organisation Quality of Life Questionnaire in Older Adults (WHOQOL-OLD.TR) at baseline and 6-month follow up assesments. TUG values in both EG and TG decreased significantly between baseline assesment and 1-month (mean differences for TG: -4,00 ± 1,309 and EG -2,588 ± 1,839 p= 0,002 for the each of groups) and baseline assesment and 6-month (mean differences for TG: -2,933± 1,223 and EG -2,058 ± 1,477 p= 0,003 for the each of groups). A significant increase was determined in BBS values between baseline and 1-month (mean differences for TG: 4.000 ± 2,360 and EG: 3,529 ± 2,672 p= 0,031 for the each of groups). Fall Index (FI) measured by Tetrax® decreased between baseline assesment and 1-month (p= 0,185), and 6-month (p= 0,086) respectively, also between 1-month and 6-month follow up assesments (p= 0,627), but all of them were not significant changes. In all three groups the quality of life (p= 0,951) improved. Exercises conducted with Tetrax® were more effective than electrostimulation of postural muscles in increasing TUG values and decreasing BBS values. Even though applying electrostimulation to postural muscles affected patients positively compared to pre-treatment, exercises performed with Tetrax® were more effective than the electrostimulation protocol to postural muscles in reducing balance disorder and this well-being continued even in the 6th month.
The effect of cap lamp lighting on postural control and stability
Sammarco, John J.; Pollard, Jonisha P.; Porter, William L.; Dempsey, Patrick G.; Moore, Caitlin T.
2015-01-01
Researchers at the National Institute for Occupational Safety and Health (NIOSH) are conducting mine illumination research with the objective of improving miner safety. Slips, trips, and falls (STFs) are the second leading accident class (18.1%, n = 2,374) of nonfatal lost-time injuries at underground mines (MSHA, 2005–2009). Factors contributing to STFs include recognition of hazards as well as postural balance and age. Improved lighting may enable better hazard recognition and reduce the impact of postural balance and age. Previous research has shown that cap lamp technology that used light-emitting diodes (LEDs) has improved hazard detection. This study was an initial investigation to determine if cap lamp lighting significantly influences measures of static postural stability (displacement and velocity of center of pressure). Results of this investigation showed no significant differences in the balance measures of interest between cap lamps tested. However, balance was shown to significantly decline (p < 0.05) when tested in an underground coal mine compared to the laboratory testing condition. Relevance to industry: Underground coal mine workers wear cap lamps on their hard hats as their primary light source to illuminate nearby areas where their vision is directed. Proper illumination may improve miner safety by improving their STF hazard recognition and balance. PMID:26472917
Kim, Nara; Park, YuHyung; Lee, Byoung-Hee
2015-03-01
[Purpose] We aimed to examine the effectiveness of a community-based virtual reality treadmill training (CVRTT) program on static balance abilities in patients with stroke. [Subjects and Methods] Patients (n = 20) who suffered a stroke at least 6 months prior to the study were recruited. All subjects underwent conventional physical therapy for 60 min/day, 5 days/week, for 4 weeks. Additionally, the CVRTT group underwent community-based virtual reality scene exposure combined with treadmill training for 30 min/day, 3 days/week, for 4 weeks, whereas the control group underwent conventional physical therapy, including muscle strengthening, balance training, and indoor and outdoor gait training, for 30 min/day, 3 days/week, for 4 weeks. Outcome measurements included the anteroposterior, mediolateral, and total postural sway path lengths and speed, which were recorded using the Balancia Software on a Wii Fit(™) balance board. [Results] The postural sway speed and anteroposterior and total postural sway path lengths were significantly decreased in the CVRTT group. Overall, the CVRTT group showed significantly greater improvement than the control group. [Conclusions] The present study results can be used to support the use of CVRTT for effectively improving balance in stroke patients. Moreover, we determined that a CVRTT program for stroke patients is both feasible and suitable.
Tankisheva, Ekaterina; Bogaerts, An; Boonen, Steven; Feys, Hilde; Verschueren, Sabine
2014-03-01
To investigate the effects of a 6-week whole body vibration (WBV) training program in patients with chronic stroke. Randomized controlled pilot trial with 6 weeks' follow-up. University hospital. Adults with chronic stroke (N=15) were randomly assigned to an intervention (n=7) or a control group (n=8). Supervised, intensive WBV training. The vibration group performed a variety of static and dynamic squat exercises on a vibration platform with vibration amplitudes of 1.7 and 2.5mm and frequencies of 35 and 40Hz. The vibration lasted 30 to 60 seconds, with 5 to 17 repetitions per exercise 3 times weekly for 6 weeks. Participants in the control group continued their usual activities and were not involved in any additional training program. The primary outcome variable was the isometric and isokinetic muscle strength of the quadriceps (isokinetic dynamometer). Additionally, hamstrings muscle strength, static and dynamic postural control (dynamic posturography), and muscle spasticity (Ashworth Scale) were assessed. Compliance with the vibration intervention was excellent, and the participants completed all 18 training sessions. Vibration frequencies of both 35 and 40Hz were well tolerated by the patients, and no adverse effects resulting from the vibration were noted. Overall, the effect of intensive WBV intervention resulted in significant between-group differences in favor of the vibration group only in isometric knee extension strength (knee angle, 60°) (P=.022) after 6 weeks of intervention and in isokinetic knee extension strength (velocity, 240°/s) after a 6-week follow-up period (P=.005), both for the paretic leg. Postural control improved after 6 weeks of vibration in the intervention group when the patients had normal vision and a sway-referenced support surface (P<.05). Muscle spasticity was not affected by vibration (P>.05). These preliminary results suggest that intensive WBV might potentially be a safe and feasible way to increase some aspect of lower limb muscle strength and postural control in adults with chronic stroke. Further studies should focus on evaluating how the training protocol should be administered to achieve the best possible outcome, as well as comparing this training protocol to other interventions. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
A comparison of different postures for scaffold end-frame disassembly.
Cutlip, R; Hsiao, H; Garcia, R; Becker, E; Mayeux, B
2000-10-01
Overexertion and fall injuries comprise the largest category of nonfatal injuries among scaffold workers. This study was conducted to identify the most favourable scaffold end-frame disassembly techniques and evaluate the associated slip potential by measuring whole-body isometric strength capability and required coefficient of friction (RCOF) to reduce the incidence of injury. Forty-six male construction workers were used to study seven typical postures associated with scaffold end-frame disassembly. An analysis of variance (ANOVA) showed that the isometric forces (334.4-676.3 N) resulting from the seven postures were significantly different (p < 0.05). Three of the disassembly postures resulted in considerable biomechanical stress to workers. The symmetric front-lift method with hand locations at knuckle height would be the most favourable posture; at least 93% of the male construction worker population could handle the end frame with minimum overexertion risk. The static RCOF value resulting from this posture during the disassembly phase was less than 0.2, thus the likelihood of a slip should be low.
Chen, Ling; Lo, Wai Leung Ambrose; Mao, Yu Rong; Ding, Ming Hui; Lin, Qiang; Li, Hai; Zhao, Jiang Li; Xu, Zhi Qin; Bian, Rui Hao; Huang, Dong Feng
2016-01-01
Objective . To critically evaluate the studies that were conducted over the past 10 years and to assess the impact of virtual reality on static and dynamic balance control in the stroke population. Method . A systematic review of randomized controlled trials published between January 2006 and December 2015 was conducted. Databases searched were PubMed, Scopus, and Web of Science. Studies must have involved adult patients with stroke during acute, subacute, or chronic phase. All included studies must have assessed the impact of virtual reality programme on either static or dynamic balance ability and compared it with a control group. The Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies. Results . Nine studies were included in this systematic review. The PEDro scores ranged from 4 to 9 points. All studies, except one, showed significant improvement in static or dynamic balance outcomes group. Conclusions . This review provided moderate evidence to support the fact that virtual reality training is an effective adjunct to standard rehabilitation programme to improve balance for patients with chronic stroke. The effect of VR training in balance recovery is less clear in patients with acute or subacute stroke. Further research is required to investigate the optimum training intensity and frequency to achieve the desired outcome.
Cho, Ki Hun; Lee, Kyoung Jin; Song, Chang Ho
2012-09-01
Stroke is one of the most serious healthcare problems and a major cause of impairment of cognition and physical functions. Virtual rehabilitation approaches to postural control have been used for enhancing functional recovery that may lead to a decrease in the risk of falling. In the present study, we investigated the effects of virtual reality balance training (VRBT) with a balance board game system on balance of chronic stroke patients. Participants were randomly assigned to 2 groups: VRBT group (11 subjects including 3 women, 65.26 years old) and control group (11 subjects including 5 women, 63.13 years old). Both groups participated in a standard rehabilitation program (physical and occupational therapy) for 60 min a day, 5 times a week for 6 weeks. In addition, the VRBT group participated in VRBT for 30 min a day, 3 times a week for 6 weeks. Static balance (postural sway velocity with eyes open or closed) was evaluated with the posturography. Dynamic balance was evaluated with the Berg Balance Scale (BBS) and Timed Up and Go test (TUG) that measures balance and mobility in dynamic balance. There was greater improvement on BBS (4.00 vs. 2.81 scores) and TUG (-1.33 vs. -0.52 sec) in the VRBT group compared with the control group (P < 0.05), but not on static balance in both groups. In conclusion, we demonstrate a significant improvement in dynamic balance in chronic stroke patients with VRBT. VRBT is feasible and suitable for chronic stroke patients with balance deficit in clinical settings.
An open-source model and solution method to predict co-contraction in the finger.
MacIntosh, Alexander R; Keir, Peter J
2017-10-01
A novel open-source biomechanical model of the index finger with an electromyography (EMG)-constrained static optimization solution method are developed with the goal of improving co-contraction estimates and providing means to assess tendon tension distribution through the finger. The Intrinsic model has four degrees of freedom and seven muscles (with a 14 component extensor mechanism). A novel plugin developed for the OpenSim modelling software applied the EMG-constrained static optimization solution method. Ten participants performed static pressing in three finger postures and five dynamic free motion tasks. Index finger 3D kinematics, force (5, 15, 30 N), and EMG (4 extrinsic muscles and first dorsal interosseous) were used in the analysis. The Intrinsic model predicted co-contraction increased by 29% during static pressing over the existing model. Further, tendon tension distribution patterns and forces, known to be essential to produce finger action, were determined by the model across all postures. The Intrinsic model and custom solution method improved co-contraction estimates to facilitate force propagation through the finger. These tools improve our interpretation of loads in the finger to develop better rehabilitation and workplace injury risk reduction strategies.
Do dental students have a neutral working posture?
Movahhed, Taraneh; Dehghani, Mahboobe; Arghami, Shirazeh; Arghami, Afarin
2016-11-21
Dentists are susceptible to Musculoskeletal Disorders (MSDs) due to prolonged static postures. To prevent MSDs, working postures of dental students should be assessed and corrected in early career life. This study estimated the risk of developing musculoskeletal disorders in dental students using Rapid Upper Limb Assessment (RULA) tool. A number of 103 undergraduate dental students from fourth and fifth academic years participated. Postures of these students were assessed using RULA tool while working in the dental clinic. They also answered a questionnaire regarding their knowledge about postural dental ergonomic principles. The majority of the students (66%) were at intermediate and high risk levels to develop MSDs and their postures needed to be corrected. There was no significant correlation between RULA score and gender, academic year and different wards of dental clinics. There was no significant correlation between knowledge and RULA scores. Dental students did not have favorable working postures. They were at an intermediate to high risk for developing MSDs which calls for a change in their working postures. Therefore students should be trained with ergonomic principles and to achieve the best results, ergonomic lessons should be accompanied by practice and periodical evaluations.
Holmes' tremor as a delayed complication of thalamic stroke.
Martins, William Alves; Marrone, Luiz Carlos Porcello; Fussiger, Helena; Vedana, Viviane Maria; Cristovam, Rafael do Amaral; Taietti, Marjorye Z; Marrone, Antonio Carlos Huf
2016-04-01
Movement disorders are not commonly associated with stroke. Accordingly, thalamic strokes have rarely been associated with tremor, pseudo-athetosis and dystonic postures. We present a 75-year-old man who developed a disabling tremor 1 year after a posterolateral thalamic stroke. This tremor had low frequency (3-4 Hz), did not disappear on focus and was exacerbated by maintaining a static posture and on target pursuit, which made it very difficult to perform basic functions. MRI demonstrated an old ischemic lesion at the left posterolateral thalamus. Treatment with levodopa led to symptom control. Lesions in the midbrain, cerebellum and thalamus may cause Holmes' tremor. Delayed onset of symptoms is usually seen, sometimes appearing 2 years after the original injury. This may be due to maturation of a complex neuronal network, leading to slow dopaminergic denervation. Further studies are needed to improve our understanding of this unique disconnection syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.
Children with autism spectrum disorder are skilled at reading emotion body language.
Peterson, Candida C; Slaughter, Virginia; Brownell, Celia
2015-11-01
Autism is commonly believed to impair the ability to perceive emotions, yet empirical evidence is mixed. Because face processing may be difficult for those with autism spectrum disorder (ASD), we developed a novel test of recognizing emotion via static body postures (Body-Emotion test) and evaluated it with children aged 5 to 12 years in two studies. In Study 1, 34 children with ASD and 41 typically developing (TD) controls matched for age and verbal intelligence (VIQ [verbal IQ]) were tested on (a) our new Body-Emotion test, (b) a widely used test of emotion recognition using photos of eyes as stimuli (Baron-Cohen et al.'s "Reading Mind in the Eyes: Child" or RMEC [Journal of Developmental and Learning Disorders, 2001, Vol. 5, pp. 47-78]), (c) a well-validated theory of mind (ToM) battery, and (d) a teacher-rated empathy scale. In Study 2 (33 children with ASD and 31 TD controls), the RMEC test was simplified to the six basic human emotions. Results of both studies showed that children with ASD performed as well as their TD peers on the Body-Emotion test. Yet TD children outperformed the ASD group on ToM and on both the standard RMEC test and the simplified version. VIQ was not related to perceiving emotions via either body posture or eyes for either group. However, recognizing emotions from body posture was correlated with ToM, especially for children with ASD. Finally, reading emotions from body posture was easier than reading emotions from eyes for both groups. Copyright © 2015 Elsevier Inc. All rights reserved.
Balaguer García, Ramón; Pitarch Corresa, Salvador; Baydal Bertomeu, José María; Morales Suárez-Varela, María M
2012-01-01
Posturography allows evaluating postural control. This study showed the posturographic parameters that were useful for assessing the functional ability to maintain balance in our sample of vestibular patients. Of a total of 89 patients, 59 were healthy subjects and 30 had a peripheral vestibular disorder. The subjects were studied using the posturographic NedSVE/IBV system, combining static (Romberg) and dynamic (stability limits and rhythmic weight shifts) tests. We then compared the measurements found in the groups. Normal subjects showed significantly lower oscillations than our patients in all of the posturographic parameters studied (except the displacement angle). In testing the limits of stability, although normal subjects achieved maximum displacements greater than the subjects with the disorder, the differences found were not significant. In rhythmic weight shift tests, normal subjects showed more favourable results than did the vestibular patients, with significant differences in 3 of the 4 parameters studied: 1) anteroposterior ability, 2) mediolateral ability, and 3) anteroposterior control and efficiency. Rhythmic weight shift tests and the static posturography test parameters used were useful in discriminating among the normal and pathological subjects in this study. Copyright © 2011 Elsevier España, S.L. All rights reserved.
Osypiuk, Kamila; Thompson, Evan; Wayne, Peter M.
2018-01-01
Dynamic and static body postures are a defining characteristic of mind-body practices such as Tai Chi and Qigong (TCQ). A growing body of evidence supports the hypothesis that TCQ may be beneficial for psychological health, including management and prevention of depression and anxiety. Although a variety of causal factors have been identified as potential mediators of such health benefits, physical posture, despite its visible prominence, has been largely overlooked. We hypothesize that body posture while standing and/or moving may be a key therapeutic element mediating the influence of TCQ on psychological health. In the present paper, we summarize existing experimental and observational evidence that suggests a bi-directional relationship between body posture and mental states. Drawing from embodied cognitive science, we provide a theoretical framework for further investigation into this interrelationship. We discuss the challenges involved in such an investigation and propose suggestions for future studies. Despite theoretical and practical challenges, we propose that the role of posture in mind-body exercises such as TCQ should be considered in future research. PMID:29765313
Osypiuk, Kamila; Thompson, Evan; Wayne, Peter M
2018-01-01
Dynamic and static body postures are a defining characteristic of mind-body practices such as Tai Chi and Qigong (TCQ). A growing body of evidence supports the hypothesis that TCQ may be beneficial for psychological health, including management and prevention of depression and anxiety. Although a variety of causal factors have been identified as potential mediators of such health benefits, physical posture, despite its visible prominence, has been largely overlooked. We hypothesize that body posture while standing and/or moving may be a key therapeutic element mediating the influence of TCQ on psychological health. In the present paper, we summarize existing experimental and observational evidence that suggests a bi-directional relationship between body posture and mental states. Drawing from embodied cognitive science, we provide a theoretical framework for further investigation into this interrelationship. We discuss the challenges involved in such an investigation and propose suggestions for future studies. Despite theoretical and practical challenges, we propose that the role of posture in mind-body exercises such as TCQ should be considered in future research.
In, Taesung; Lee, Kyeongjin; Song, Changho
2016-10-28
BACKGROUND Virtual reality reflection therapy (VRRT) is a technically enhanced version of the mirror therapy concept. The aim of this study was to investigate whether VRRT could improve the postural balance and gait ability of patients with chronic stroke. MATERIAL AND METHODS Twenty-five patients with chronic stroke were randomly allocated into the VRRT group (n=13) and the control group (n=12). The participants in both groups performed a conventional rehabilitation program for 30 minutes. The VRRT group also performed a VRRT program for 30 minutes, five times a week for 4 weeks. The control group performed conventional rehabilitation program and a placebo VRRT program. Outcome measures included Berg Balance Scale (BBS), the Functional Reaching Test (FRT), and the Timed Up and Go (TUG) test (for dynamic balance ability), postural sway (for static balance ability), and 10 meter walking velocity (10 mWV) for gait ability. RESULTS There were statistically significant improvements in the VRRT group compared with the control group for BBS, FRT, TUG, postural sway (mediolateral sway distance with eyes open and eyes closed, anteroposterior and total sway distance with eyes open but not with eyes closed), and 10 mWV (p<0.05). CONCLUSIONS Applying VRRT (even as a home treatment) along with a conventional rehabilitation program for patients with chronic stroke might be even more beneficial than conventional rehabilitation program alone in improving affected lower limb function. Future studies should investigate the effectiveness of VRRT with optimal patient selection, and duration and intensity of training.
Mechanisms of Sensorimotor Adaptation to Centrifugation
NASA Technical Reports Server (NTRS)
Paloski, W. H.; Wood, S. J.; Kaufman, G. D.
1999-01-01
We postulate that centripetal acceleration induced by centrifugation can be used as an inflight sensorimotor countermeasure to retain and/or promote appropriate crewmember responses to sustained changes in gravito-inertial force conditions. Active voluntary motion is required to promote vestibular system conditioning, and both visual and graviceptor sensory feedback are critical for evaluating internal representations of spatial orientation. The goal of our investigation is to use centrifugation to develop an analog to the conflicting visual/gravito-inertial force environment experienced during space flight, and to use voluntary head movements during centrifugation to study mechanisms of adaptation to altered gravity environments. We address the following two hypotheses: (1) Discordant canal-otolith feedback during head movements in a hypergravity tilted environment will cause a reorganization of the spatial processing required for multisensory integration and motor control, resulting in decreased postural stability upon return to normal gravity environment. (2) Adaptation to this "gravito-inertial tilt distortion" will result in a negative after-effect, and readaptation will be expressed by return of postural stability to baseline conditions. During the third year of our grant we concentrated on examining changes in balance control following 90-180 min of centrifugation at 1.4 9. We also began a control study in which we exposed subjects to 90 min of sustained roll tilt in a static (non-rotating) chair. This allowed us to examine adaptation to roll tilt without the hypergravity induced by centrifugation. To these ends, we addressed the question: Is gravity an internal calibration reference for postural control? The remainder of this report is limited to presenting preliminary findings from this study.
In, Taesung; Lee, Kyeongjin; Song, Changho
2016-01-01
Background Virtual reality reflection therapy (VRRT) is a technically enhanced version of the mirror therapy concept. The aim of this study was to investigate whether VRRT could improve the postural balance and gait ability of patients with chronic stroke. Material/Methods Twenty-five patients with chronic stroke were randomly allocated into the VRRT group (n=13) and the control group (n=12). The participants in both groups performed a conventional rehabilitation program for 30 minutes. The VRRT group also performed a VRRT program for 30 minutes, five times a week for 4 weeks. The control group performed conventional rehabilitation program and a placebo VRRT program. Outcome measures included Berg Balance Scale (BBS), the Functional Reaching Test (FRT), and the Timed Up and Go (TUG) test (for dynamic balance ability), postural sway (for static balance ability), and 10 meter walking velocity (10 mWV) for gait ability. Results There were statistically significant improvements in the VRRT group compared with the control group for BBS, FRT, TUG, postural sway (mediolateral sway distance with eyes open and eyes closed, anteroposterior and total sway distance with eyes open but not with eyes closed), and 10 mWV (p<0.05). Conclusions Applying VRRT (even as a home treatment) along with a conventional rehabilitation program for patients with chronic stroke might be even more beneficial than conventional rehabilitation program alone in improving affected lower limb function. Future studies should investigate the effectiveness of VRRT with optimal patient selection, and duration and intensity of training. PMID:27791207
Tommasino, Paolo; Campolo, Domenico
2017-01-01
A major challenge in robotics and computational neuroscience is relative to the posture/movement problem in presence of kinematic redundancy. We recently addressed this issue using a principled approach which, in conjunction with nonlinear inverse optimization, allowed capturing postural strategies such as Donders' law. In this work, after presenting this general model specifying it as an extension of the Passive Motion Paradigm, we show how, once fitted to capture experimental postural strategies, the model is actually able to also predict movements. More specifically, the passive motion paradigm embeds two main intrinsic components: joint damping and joint stiffness. In previous work we showed that joint stiffness is responsible for static postures and, in this sense, its parameters are regressed to fit to experimental postural strategies. Here, we show how joint damping, in particular its anisotropy, directly affects task-space movements. Rather than using damping parameters to fit a posteriori task-space motions, we make the a priori hypothesis that damping is proportional to stiffness. This remarkably allows a postural-fitted model to also capture dynamic performance such as curvature and hysteresis of task-space trajectories during wrist pointing tasks, confirming and extending previous findings in literature. PMID:29249954
Steffen, Kathrin; Nilstad, Agnethe; Krosshaug, Tron; Pasanen, Kati; Killingmo, Aleksander; Bahr, Roald
2017-02-01
Research on balance measures as potential risk factors for ACL injury is limited. To assess whether postural control was associated with an increased risk for ACL injuries in female elite handball and football players. Premier league players were tested in the preseason and followed prospectively for ACL injury risk from 2007 through 2015. At baseline, we recorded player demographics, playing experience, ACL and ankle injury history. We measured centre of pressure velocity in single-leg stabilisation tests and reach distances in the Star Excursion Balance Test. To examine the stability of postural control measures over time, we examined their short-term and long-term reproducibility. We generated logistic regression models, 1 for each of the proposed risk factors. A total of 55 (6.6%) out of 838 players (age 21±4 years; height 170±6 cm; body mass 66±8 kg) sustained a non-contact ACL injury after baseline testing (1.8±1.8 years). When comparing normalised balance measures between injured and uninjured players in univariate analyses, none of the variables were statistically associated with ACL injury risk. Short-term and long-term reproducibility of the selected variables was poor. Players with a previous ACL injury had a 3-fold higher risk of sustaining a new ACL injury compared with previously uninjured players (OR 2.9, CI 1.4 to 5.7). None of postural control measures examined were associated with increased ACL injury risk among female elite handball and football players. Hence, as measured in the current investigation, the variables included cannot be used to predict ACL injury risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Transmission of whole body vibration to the lower body in static and dynamic half-squat exercises.
Munera, Marcela; Bertucci, William; Duc, Sebastien; Chiementin, Xavier
2016-11-01
Whole body vibration (WBV) is used as a training method but its physical risk is not yet clear. Hence, the aim of this study is to assess the exposure to WBV by a measure of acceleration at the lower limb under dynamic and static postural conditions. The hypothesis of this paper is that this assessment is influenced by the frequency, position, and movement of the body. Fifteen healthy males are exposed to vertical sinusoidal vibration at different frequencies (20-60 Hz), while adopting three different static postures (knee extension angle: 180°, 120° and 90°) or performing a dynamic half-squat exercise. Accelerations at input source and at three joints of the lower limb (ankle, knee, and hip) are measured using skin-mounted accelerometers. Acceleration values (g) in static conditions show a decrease in the vibrational dose when it is measured at a more proximal location in the lower extremity. The results of the performed statistical test show statistically significant differences (p < 0.05) in the transmissibility values caused by the frequency, the position, and to the presence of the movement and its direction at the different conditions. The results confirm the initial hypothesis and justify the importance of a vibration assessment in dynamic conditions.
Arifin, Nooranida; Abu Osman, Noor Azuan; Wan Abas, Wan Abu Bakar
2014-04-01
The measurements of postural balance often involve measurement error, which affects the analysis and interpretation of the outcomes. In most of the existing clinical rehabilitation research, the ability to produce reliable measures is a prerequisite for an accurate assessment of an intervention after a period of time. Although clinical balance assessment has been performed in previous study, none has determined the intrarater test-retest reliability of static and dynamic stability indexes during dominant single stance. In this study, one rater examined 20 healthy university students (female=12, male=8) in two sessions separated by 7 day intervals. Three stability indexes--the overall stability index (OSI), anterior/posterior stability index (APSI), and medial/ lateral stability index (MLSI) in static and dynamic conditions--were measured during single dominant stance. Intraclass correlation coefficient (ICC), standard error measurement (SEM) and 95% confidence interval (95% CI) were calculated. Test-retest ICCs for OSI, APSI, and MLSI were 0.85, 0.78, and 0.84 during static condition and were 0.77, 0.77, and 0.65 during dynamic condition, respectively. We concluded that the postural stability assessment using Biodex stability system demonstrates good-to-excellent test-retest reliability over a 1 week time interval.
Rater reliability and construct validity of a mobile application for posture analysis
Szucs, Kimberly A.; Brown, Elena V. Donoso
2018-01-01
[Purpose] Measurement of posture is important for those with a clinical diagnosis as well as researchers aiming to understand the impact of faulty postures on the development of musculoskeletal disorders. A reliable, cost-effective and low tech posture measure may be beneficial for research and clinical applications. The purpose of this study was to determine rater reliability and construct validity of a posture screening mobile application in healthy young adults. [Subjects and Methods] Pictures of subjects were taken in three standing positions. Two raters independently digitized the static standing posture image twice. The app calculated posture variables, including sagittal and coronal plane translations and angulations. Intra- and inter-rater reliability were calculated using the appropriate ICC models for complete agreement. Construct validity was determined through comparison of known groups using repeated measures ANOVA. [Results] Intra-rater reliability ranged from 0.71 to 0.99. Inter-rater reliability was good to excellent for all translations. ICCs were stronger for translations versus angulations. The construct validity analysis found that the app was able to detect the change in the four variables selected. [Conclusion] The posture mobile application has demonstrated strong rater reliability and preliminary evidence of construct validity. This application may have utility in clinical and research settings. PMID:29410561
Rater reliability and construct validity of a mobile application for posture analysis.
Szucs, Kimberly A; Brown, Elena V Donoso
2018-01-01
[Purpose] Measurement of posture is important for those with a clinical diagnosis as well as researchers aiming to understand the impact of faulty postures on the development of musculoskeletal disorders. A reliable, cost-effective and low tech posture measure may be beneficial for research and clinical applications. The purpose of this study was to determine rater reliability and construct validity of a posture screening mobile application in healthy young adults. [Subjects and Methods] Pictures of subjects were taken in three standing positions. Two raters independently digitized the static standing posture image twice. The app calculated posture variables, including sagittal and coronal plane translations and angulations. Intra- and inter-rater reliability were calculated using the appropriate ICC models for complete agreement. Construct validity was determined through comparison of known groups using repeated measures ANOVA. [Results] Intra-rater reliability ranged from 0.71 to 0.99. Inter-rater reliability was good to excellent for all translations. ICCs were stronger for translations versus angulations. The construct validity analysis found that the app was able to detect the change in the four variables selected. [Conclusion] The posture mobile application has demonstrated strong rater reliability and preliminary evidence of construct validity. This application may have utility in clinical and research settings.
Kittusamy, N Kumar; Buchholz, Bryan
2004-01-01
Operators of construction equipment perform various duties at work that expose them to a variety of risk factors that may lead to health problems. A few of the health hazards among operators of construction equipment are: (a) whole-body vibration, (b) awkward postural requirements (including static sitting), (c) dust, (d) noise, (e) temperature extremes, and (f) shift work. It has been suggested that operating engineers (OEs) are exposed to two important risk factors for the development of musculoskeletal disorders: whole-body vibration and non-neutral body postures. This review evaluates selected papers that have studied exposure to whole-body vibration and awkward posture among operators of mobile equipment. There have been only few studies that have specifically examined exposure of these risk factors among operators of construction equipment. Thus other studies from related industry and equipment were reviewed as applicable. In order to better understand whole-body vibration and postural stress among OEs, it is recommended that future studies are needed in evaluating these risk factors among OEs.
Lopes, Paula Born; Pereira, Gleber; Lodovico, Angélica; Bento, Paulo C B; Rodacki, André L F
2016-03-03
It has been proposed that muscle power is more effective to prevent falls than muscle force production capacity, as rapid reactions are required to allow the postural control. This study aimed to compare the effects of strength and power training on lower limb force, functional capacity, and static and dynamic balance in older female adults. Thirty-seven volunteered healthy women had been allocated into the strength-training group (n = 14; 69 ± 7.3 years, 155 ± 5.6 cm, 72 ± 9.7 kg), the power-training group (n = 12; 67 ± 7.4 years, 153 ± 5.5 cm, 67.2 ± 7 kg), and control group (n = 11; 65 ± 3.1 years, 154 ± 5.6 cm, 70.9 ± 3 kg). After 12 weeks of training, the strength-training and power-training groups increased significantly maximum dynamic strength (29% and 27%), isometric strength (26% and 37%), and step total time (13% and 14%, dynamic balance), respectively. However, only the power-training group increased the rate of torque development (55%) and the functional capacity in 30-second chair stand (22%) and in time up and go tests (-10%). Empirically, power training may reduce the risk of injuries due to lower loads compared to strength training, and consequently, the physical effort demand during the training session is lower. Therefore, power training should be recommended as attractive training stimuli to improve lower limb force, functional capacity, and postural control of older female adults.
Regional differences in lumbar spinal posture and the influence of low back pain
Mitchell, Tim; O'Sullivan, Peter B; Burnett, Angus F; Straker, Leon; Smith, Anne
2008-01-01
Background Spinal posture is commonly a focus in the assessment and clinical management of low back pain (LBP) patients. However, the link between spinal posture and LBP is not fully understood. Recent evidence suggests that considering regional, rather than total lumbar spine posture is important. The purpose of this study was to determine; if there are regional differences in habitual lumbar spine posture and movement, and if these findings are influenced by LBP. Methods One hundred and seventy female undergraduate nursing students, with and without LBP, participated in this cross-sectional study. Lower lumbar (LLx), Upper lumbar (ULx) and total lumbar (TLx) spine angles were measured using an electromagnetic tracking system in static postures and across a range of functional tasks. Results Regional differences in lumbar posture and movement were found. Mean LLx posture did not correlate with ULx posture in sitting (r = 0.036, p = 0.638), but showed a moderate inverse correlation with ULx posture in usual standing (r = -0.505, p < 0.001). Regional differences in range of motion from reference postures in sitting and standing were evident. BMI accounted for regional differences found in all sitting and some standing measures. LBP was not associated with differences in regional lumbar spine angles or range of motion, with the exception of maximal backward bending range of motion (F = 5.18, p = 0.007). Conclusion This study supports the concept of regional differences within the lumbar spine during common postures and movements. Global lumbar spine kinematics do not reflect regional lumbar spine kinematics, which has implications for interpretation of measures of spinal posture, motion and loading. BMI influenced regional lumbar posture and movement, possibly representing adaptation due to load. PMID:19014712
Chen, Ling; Ding, Ming Hui; Lin, Qiang; Li, Hai; Zhao, Jiang Li; Xu, Zhi Qin; Bian, Rui Hao
2016-01-01
Objective. To critically evaluate the studies that were conducted over the past 10 years and to assess the impact of virtual reality on static and dynamic balance control in the stroke population. Method. A systematic review of randomized controlled trials published between January 2006 and December 2015 was conducted. Databases searched were PubMed, Scopus, and Web of Science. Studies must have involved adult patients with stroke during acute, subacute, or chronic phase. All included studies must have assessed the impact of virtual reality programme on either static or dynamic balance ability and compared it with a control group. The Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies. Results. Nine studies were included in this systematic review. The PEDro scores ranged from 4 to 9 points. All studies, except one, showed significant improvement in static or dynamic balance outcomes group. Conclusions. This review provided moderate evidence to support the fact that virtual reality training is an effective adjunct to standard rehabilitation programme to improve balance for patients with chronic stroke. The effect of VR training in balance recovery is less clear in patients with acute or subacute stroke. Further research is required to investigate the optimum training intensity and frequency to achieve the desired outcome. PMID:28053988
The influence of commercial-grade carpet on postural sway and balance strategy among older adults.
Dickinson, Joan I; Shroyer, JoAnn L; Elias, Jeffrey W
2002-08-01
The purpose of this research study was to examine the effect of a selected commercial-grade carpet on the static balance of healthy, older adults who had not fallen more than twice in the last 6 months. We tested a total of 45 participants. Each participant stood on a computerized balance machine and was subjected to a carpeted versus a noncarpeted condition while exposed to various sensory limitations. We measured both postural sway and balance strategy. The selected commercial-grade carpet did not affect postural sway. The participants were able to adapt to the sensory limitations regardless of whether they were standing on the carpet. Although balance strategy scores were significantly lower during the carpeted conditions, the clinical significance was questionable as the difference between the means was small for practical purposes. Healthy, older adults did not have difficulty maintaining static balance on the carpeted surface; however, the results could be different if participants who had a history of falling had been included. The results from this study are important and provide a basis of comparison for those individuals who have experienced more than two falls in the last 6 months or who have a history of falling.
Testing postural control among various osteoporotic patient groups: a literature review.
de Groot, Maartje H; van der Jagt-Willems, Hanna C; van Campen, Jos P C M; Lems, Willem F; Lamoth, Claudine J C
2012-10-01
Osteoporosis can cause vertebral fractures, which might lead to a flexed posture, impaired postural control and consequently increased fall risk. Therefore, the aim of the present review was to examine whether postural control of patients with osteoporosis, vertebral fractures, thoracic kyphosis and flexed posture is affected. Furthermore, instruments measuring postural control were evaluated and examined for sensitivity and easy clinical use. Until February 2011, electronic databases were systematically searched for cross-sectional studies. Methodological quality was assessed with a modified Downs & Black scale. Of the 518 found studies, 18 studies were included. Postural control was generally affected for patients with vertebral fractures, thoracic kyphosis and flexed posture. Patients with osteoporosis had impaired postural control when assessed with computerized instruments. Easy performance-based tests did not show any impairments. There is evidence for an impaired postural control in all patient groups included. Impaired postural control is an important risk factor for falls. Functional performance tests are not sensitive and specific enough to detect affected postural control in patients with osteoporosis. To detect impaired postural control among osteoporotic patients and to obtain more insight into the underlying mechanisms of postural control, computerized instruments are recommended, such as easy-to-use ambulant motion-sensing (accelerometry) technology. © 2012 Japan Geriatrics Society.
Voluntarily controlled but not merely observed visual feedback affects postural sway
Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi
2018-01-01
Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421
Mikolajczyk, Edyta; Jankowicz-Szymanska, Agnieszka
2015-03-01
Maintaining postural balance, overcoming visual and motor coordination disorders and experiencing problems with low general fitness - typical of intellectually disabled individuals - adversely affect the performance quality of their activities of daily living (ADLs). Physical fitness and postural balance can be improved by taking part in special intervention programs. Our study was designed to test whether extending the dual-task intervention program (combining ADLs with balance exercises on unstable surfaces) from 12 to 24 weeks additionally improved postural balance in individuals with intellectual disability (ID). We also attempted to assess whether the effects of the above intervention program were still noticeable after 8 weeks of holidays, in which participants did not take any rehabilitation exercises. A total of 34 adolescents, aged 14-16 years (15.06±0.9), with moderate ID took part in our study. The experimental group (E) consisted of 17 individuals, who continued the intervention program originated 3 months earlier, and the control group (C) comprised the same number of participants. Postural balance was assessed on a stabilometric platform Alfa. Having extended the workout period by another 12 weeks, we noticed that the path length of the center of pressure (COP) covered by participants on tests with their eyes open and closed significantly shortened. After a lapse of 8 weeks from the completion of the program, the experimental group revealed a statistically significant decrease in the velocity along the medio-lateral (M/L) and anterior-posterior (A/P) axes. The remaining variables stayed at the same level and the control group did not demonstrate any statistically significant changes. Dual-task exercises, in which enhancing functional tasks of daily living is combined with a parallel stimulation of balance reactions, may improve static balance in persons with ID. Copyright © 2014 Elsevier Ltd. All rights reserved.
Simulation of the effects of different pilot helmets on neck loading during air combat.
Mathys, R; Ferguson, S J
2012-09-21
New generation pilot helmets with mounted devices enhance the capabilities of pilots substantially. However, the additional equipment increases the helmet weight and shifts its center of mass forward. Two helmets with different mass properties were modeled to simulate their effects on the pilot's neck. A musculoskeletal computer model was used, with the methods of inverse dynamics and static optimization, to compute the muscle activations and joint reaction forces for a given range of quasi-static postures at various accelerations experienced during air combat. Head postures which induce much higher loads on the cervical spine than encountered in a neutral position could be identified. The increased weight and the forward shift of the center of mass of a new generation helmet lead to higher muscle activations and higher joint reaction loads over a wide range of head and neck movements. The muscle activations required to balance the head and neck in extreme postures increased the compressive force at the T1-C7 level substantially, while in a neutral posture the muscle activations remained low. The lateral neck muscles can reach activations of 100% and cause compressive joint forces up to 1100N during extensive rotations and extensions at high 'vertical' accelerations (Gz). The calculated values have to be interpreted with care as the model has not been validated. Nevertheless, this systematic analysis could separate the effects of head posture, acceleration and helmet mass on neck loading. More reliable data about mass properties and muscle morphometry with a more detailed motion analysis would help to refine the existing model. Copyright © 2012 Elsevier Ltd. All rights reserved.
The relationship between hippocampal volume and static postural sway: results from the GAIT study.
Beauchet, Olivier; Barden, John; Liu-Ambrose, Teresa; Chester, Victoria L; Szturm, Tony; Allali, Gilles
2016-02-01
The role of the hippocampus in postural control, in particular in maintaining upright stance, has not been fully examined in normal aging. This study aims to examine the association of postural sway with hippocampal volume while maintaining upright stance in healthy older individuals. Seventy healthy individuals (mean age 69.7 ± 3.4 years; 41.4 % women) were recruited in this study based on cross-sectional design. Hippocampal volume (quantified from a three-dimensional T1-weighted MRI using semi-automated software), three center of pressure (COP) motion parameters (sway area, path length of anterior-posterior (AP) and medial-lateral (ML) displacement) while maintaining upright stance (eyes open and closed), and the relative difference between open and closed eye conditions were used as outcome measures. Age, sex, body mass index, lower limb proprioception, distance vision, 15-item geriatric depression scale score, total cranial volume, and white matter abnormalities were used as covariates. The sway area decreased from open to closed eye condition but this variation was non-significant (P = 0.244), whereas path length of AP and ML displacement increased significantly (P < 0.003). Increase in sway area from open to closed eyes was associated with greater hippocampal volume (β -18.21; P = 0.044), and a trend for an association of increase in path length of AP displacement (P = 0.075 for open eyes and P = 0.071 for closed eyes) with greater hippocampal volume was reported. The hippocampus is involved in upright postural control in normal aging, such that an increase in sway area of COP motion from open to closed eyes is associated with greater hippocampal volume in healthy older adults.
Context-dependent arm pointing adaptation
NASA Technical Reports Server (NTRS)
Seidler, R. D.; Bloomberg, J. J.; Stelmach, G. E.
2001-01-01
We sought to determine the effectiveness of head posture as a contextual cue to facilitate adaptive transitions in manual control during visuomotor distortions. Subjects performed arm pointing movements by drawing on a digitizing tablet, with targets and movement trajectories displayed in real time on a computer monitor. Adaptation was induced by presenting the trajectories in an altered gain format on the monitor. The subjects were shown visual displays of their movements that corresponded to either 0.5 or 1.5 scaling of the movements made. Subjects were assigned to three groups: the head orientation group tilted the head towards the right shoulder when drawing under a 0.5 gain of display and towards the left shoulder when drawing under a 1.5 gain of display; the target orientation group had the home and target positions rotated counterclockwise when drawing under the 0.5 gain and clockwise for the 1.5 gain; the arm posture group changed the elbow angle of the arm they were not drawing with from full flexion to full extension with 0.5 and 1.5 gain display changes. To determine if contextual cues were associated with display alternations, the gain changes were returned to the standard (1.0) display. Aftereffects were assessed to determine the efficacy of the head orientation contextual cue compared to the two control cues. The head orientation cue was effectively associated with the multiple gains. The target orientation cue also demonstrated some effectiveness while the arm posture cue did not. The results demonstrate that contextual cues can be used to switch between multiple adaptive states. These data provide support for the idea that static head orientation information is a crucial component to the arm adaptation process. These data further define the functional linkage between head posture and arm pointing movements.
Context-Dependent Arm Pointing Adaptation
NASA Technical Reports Server (NTRS)
Seidler, R. D.; Bloomberg, J. J.; Stelmach, G. E.
2000-01-01
We sought to determine the effectiveness of head posture as a contextual cue to facilitate adaptive transitions in manual control during visuomotor distortions. Subjects performed arm pointing movements by drawing on a digitizing tablet, with targets and movement trajectories displayed in real time on a computer monitor. Adaptation was induced by presenting the trajectories in an altered gain format on the monitor. The subjects were shown visual displays of their movements that corresponded to either 0.5 or 1.5 scaling of the movements made. Subjects were assigned to three groups: the head orientation group tilted the head towards the right shoulder when drawing under a 0.5 gain of display and towards the left shoulder when drawing under a 1.5 gain of display, the target orientation group had the home & target positions rotated counterclockwise when drawing under the 0.5 gain and clockwise for the 1.5 gain, the arm posture group changed the elbow angle of the arm they were not drawing with from full flexion to full extension with 0.5 and 1.5 gain display changes. To determine if contextual cues were associated with display alternations, the gain changes were returned to the standard (1.0) display. Aftereffects were assessed to determine the efficacy of the head orientation contextual cue. . compared to the two control cues. The head orientation cue was effectively associated with the multiple gains. The target orientation cue also demonstrated some effectiveness while the.arm posture cue did not. The results demonstrate that contextual cues can be used to switch between multiple adaptive states. These data provide support for the idea that static head orientation information is a crucial component to the arm adaptation process. These data further define the functional linkage between head posture and arm pointing movements.
NASA Technical Reports Server (NTRS)
Kim, Kyu-Jung
2005-01-01
Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.
Posture-based processing in visual short-term memory for actions.
Vicary, Staci A; Stevens, Catherine J
2014-01-01
Visual perception of human action involves both form and motion processing, which may rely on partially dissociable neural networks. If form and motion are dissociable during visual perception, then they may also be dissociable during their retention in visual short-term memory (VSTM). To elicit form-plus-motion and form-only processing of dance-like actions, individual action frames can be presented in the correct or incorrect order. The former appears coherent and should elicit action perception, engaging both form and motion pathways, whereas the latter appears incoherent and should elicit posture perception, engaging form pathways alone. It was hypothesized that, if form and motion are dissociable in VSTM, then recognition of static body posture should be better after viewing incoherent than after viewing coherent actions. However, as VSTM is capacity limited, posture-based encoding of actions may be ineffective with increased number of items or frames. Using a behavioural change detection task, recognition of a single test posture was significantly more likely after studying incoherent than after studying coherent stimuli. However, this effect only occurred for spans of two (but not three) items and for stimuli with five (but not nine) frames. As in perception, posture and motion are dissociable in VSTM.
Huang, Pi-Yin; Chen, Wen-Ling; Lin, Cheng-Feng; Lee, Heng-Ju
2014-01-01
Context: Plyometric exercise has been recommended to prevent lower limb injury, but its feasibility in and effects on those with functional ankle instability (FAI) are unclear. Objective: To investigate the effect of integrated plyometric and balance training in participants with FAI during a single-legged drop landing and single-legged standing position. Design: Randomized controlled clinical trial. Setting: University motion-analysis laboratory. Patients or Other Participants: Thirty athletes with FAI were divided into 3 groups: plyometric group (8 men, 2 women, age = 23.20 ± 2.82 years; 10 unstable ankles), plyometric-balance (integrated)–training group (8 men, 2 women, age = 23.80 ± 4.13 years; 10 unstable ankles), and control group (7 men, 3 women, age = 23.50 ± 3.00 years; 10 unstable ankles). Intervention(s): A 6-week plyometric-training program versus a 6-week integrated-training program. Main Outcome Measure(s): Postural sway during single-legged standing with eyes open and closed was measured before and after training. Kinematic data were recorded during medial and lateral single-legged drop landings after a 5-second single-legged stance. Results: Reduced postural sway in the medial-lateral direction and reduced sway area occurred in the plyometric- and integrated-training groups. Generally, the plyometric training and integrated training increased the maximum angles at the hip and knee in the sagittal plane, reduced the maximum angles at the hip and ankle in the frontal and transverse planes in the lateral drop landing, and reduced the time to stabilization for knee flexion in the medial drop landing. Conclusions: After 6 weeks of plyometric training or integrated training, individuals with FAI used a softer landing strategy during drop landings and decreased their postural sway during the single-legged stance. Plyometric training improved static and dynamic postural control and should be incorporated into rehabilitation programs for those with FAI. PMID:24568224
Tetra-ataxiometric Posturography in Patients with Migrainous Vertigo.
Ongun, Nedim; Atalay, Nilgun S; Degirmenci, Eylem; Sahin, Fusun; Bir, Levent Sinan
2016-01-01
Migraine is a common disorder characterized by headache attacks frequently accompanied by vestibular symptoms like dizziness, vertigo, and balance disorders. Clinical studies support a strong link between migraine and vertigo rather than between other headache types and vertigo or nonvertiginous dizziness. There is a lack of consensus regarding the pathophysiology of migrainous vertigo. Activation of central vestibular processing during migraine attacks and vasospasm-induced ischemia of the labyrinth are reported as the probable responsible mechanisms. Because vestibular examination alone does not provide enough information for diagnosis of migrainous vertigo, posturography systems which provide objective assessment of somatosensory, vestibular, and visual information would be very helpful to show concomitant involvement of the vestibular and somato-sensorial systems. There are few posturographic studies on patients with migraine but it seems that how balance is affected in patients with migraine and/or migrainous vertigo is still not clear. We want to investigate balance function in migraineurs with and without vertigo with a tetra-ataxiometric posturography system and our study is the first study in which tetra-ataxiometric static posturography was used to evaluate postural abnormalities in a well-defined population of patients with migrainous vertigo. To investigate balance functions in migraineurs with and without vertigo with a tetra-ataxiometric posturography system. Prospective, nonrandomized, controlled study. Pamukkale University Hospital, Neurology and Physical Therapy and Rehabilitation outpatient clinics. Sixteen patients with migrainous vertigo, 16 patients with migraine without aura and no vestibular symptoms, and 16 controls were included in the study. Computerized static posturography system was performed and statistical analyses of fall, Fourier, Stability, and Weight distribution indexes were performed. The tetra-ataxiometric posturography device measures vertical pressure fluctuations on 4 independent stable platforms, each placed beneath 2 heels and toe parts of the patient; inputs from these platforms are integrated and processed by a computer digitally. Four separate plates are used and perpendicular pressures of the anterior and posterior feet are measured. Pressure of each force plate is measured and data was analyzed by the software program. A very small, non-randomized, and controlled study with the inability to find an answer to the mechanism of involvement of the somatosensorial system and vestibular system in migrainous headaches. The distribution of patients with posturographical abnormalities in the migrainous vertigo group was significantly different than the control group. Distribution of the patients with posturographical abnormalities in the high frequencies of the head-right position was significantly different in the migrainous vertigo group than in the control group and distribution of the patients with posturographical abnormalities in high frequencies of the head-right position was significantly different in the migraine group than in the controls groups. The stability index of the migrainous vertigo group was significantly higher than in the control group when tested on in the neutral-head position with open eyes. In this first study of tetra-ataxiometric static posturography evaluating postural abnormalities in a well-defined population of patients with migrainous vertigo, the central part of the vestibular apparatus would be responsible of postural abnormalities in patients with migraine and migrainous vertigo.
Sanjaya, Kadek Heri; Lee, Soomin; Sriwarno, Andar Bagus; Shimomura, Yoshihito; Katsuura, Tetsuo
2014-06-01
In order to reconcile contradictory results from previous studies on manual pushing, a study was conducted to examine the effect of trunk inclination on muscular activities, centre of pressure (COP) and force exertion during static pushing. Ten subjects pushed at 0 degrees, 15 degrees, 30 degrees, and 45 degrees body inclinations in parallel and staggered feet stances. Wall and ground force plates measured pushing force, wall COP, vertical ground reaction force (GRF) and ground COP. Electromyogram data were recorded at 10 trunk muscle sites. Pushing force was found to increase with body inclination. GRF peaked at 15 degrees and reached its lowest level at the 45 degrees inclination. The lowest wall force plate standard deviation of COP displacement was found at the 30 degrees inclination. The lowest low back muscular activity was found at the 15 degrees and 30 degrees inclinations. Based on force exertion, muscular load, and stability, the 30 degrees body inclination was found to be the best posture for static pushing. This study also showed asymmetry in muscular activity and force exertion which has been received less attention in manual pushing studies. These findings will require further study.
Effect of stance width on multidirectional postural responses
NASA Technical Reports Server (NTRS)
Henry, S. M.; Fung, J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)
2001-01-01
The effect of stance width on postural responses to 12 different directions of surface translations was examined. Postural responses were characterized by recording 11 lower limb and trunk muscles, body kinematics, and forces exerted under each foot of 7 healthy subjects while they were subjected to horizontal surface translations in 12 different, randomly presented directions. A quasi-static approach of force analysis was done, examining force integrals in three different epochs (background, passive, and active periods). The latency and amplitude of muscle responses were quantified for each direction, and muscle tuning curves were used to determine the spatial activation patterns for each muscle. The results demonstrate that the horizontal force constraint exerted at the ground was lessened in the wide, compared with narrow, stance for humans, a similar finding to that reported by Macpherson for cats. Despite more trunk displacement in narrow stance, there were no significant changes in body center of mass (CoM) displacement due to large changes in center of pressure (CoP), especially in response to lateral translations. Electromyographic (EMG) magnitude decreased for all directions in wide stance, particularly for the more proximal muscles, whereas latencies remained the same from narrow to wide stance. Equilibrium control in narrow stance was more of an active postural strategy that included regulating the loading/unloading of the limbs and the direction of horizontal force vectors. In wide stance, equilibrium control relied more on an increase in passive stiffness resulting from changes in limb geometry. The selective latency modulation of the proximal muscles with translation direction suggests that the trunk was being actively controlled in all directions. The similar EMG latencies for both narrow and wide stance, with modulation of only the muscle activation magnitude as stance width changed, suggest that the same postural synergy was only slightly modified for a change in stance width. Nevertheless, the magnitude of the trunk displacement, as well as of CoP displacement, was modified based on the degree of passive stiffness in the musculoskeletal system, which increased with stance width. The change from a more passive to an active horizontal force constraint, to larger EMG magnitudes especially in the trunk muscles and larger trunk and CoP excursions in narrow stance are consistent with a more effortful response for equilibrium control in narrow stance to perturbations in all directions.
A method to quantify the "cone of economy".
Haddas, Ram; Lieberman, Isador H
2018-05-01
A non-randomized, prospective, concurrent control cohort study. The purpose of this study is to develop and evaluate a method to quantify the dimensions of the cone of economy (COE) and the energy expenditure associated with maintaining a balanced posture within the COE, scoliosis patients and compare them to matched non-scoliotic controls in a group of adult degenerative. Balance is defined as the ability of the human body to maintain its center of mass (COM) within the base of support with minimal postural sway. The cone of economy refers to the stable region of upright standing posture. The underlying assumption is that deviating outside one's individual cone challenges the balance mechanisms. Adult degenerative scoliosis (ADS) patients exhibit a variety of postural changes within their COE, involving the spine, pelvis and lower extremities, in their effort to compensate for the altered posture. Ten ADS patients and ten non-scoliotic volunteers performed a series of functional balance tests. The dimensions of the COE and the energy expenditure related to maintaining balance within the COE were measured using a human motion video capture system and dynamic surface electromyography. ADS patients presented more COM sway in the sagittal (ADS: 1.59 cm vs. H: 0.61 cm; p = 0.049) and coronal (ADS: 2.84 cm vs. H: 1.72 cm; p = 0.046) directions in comparison to the non-scoliotic control. ADS patients presented with more COM (ADS: 33.30 cm vs. H: 19.13 cm; p = 0.039) and head (ADS: 31.06 cm vs. H: 19.13 cm; p = 0.013) displacements in comparison to the non-scoliotic controls. Scoliosis patients expended more muscle activity to maintain static standing, as manifest by increased muscle activity in their erector spinae (ADS: 37.16 mV vs. H: 20.31 mV; p = 0.050), and gluteus maximus (ADS: 33.12 mV vs. H: 12.09 mV; p = 0.001) muscles. We were able to develop and evaluate a method that quantifies the COE boundaries, COM displacement, and amount of sway within the COE along with the energy expenditure for a specific patient. This method of COE measurement will enable spine care practitioners to objectively evaluate their patients in an effort to determine the most appropriate treatment options, and in objectively documenting the effectiveness of their intervention.
The effect of unilateral osteoarthritis of the hip on postural balance disorders.
Truszczyńska, Aleksandra; Trzaskoma, Zbigniew; Białecki, Jerzy; Drzał-Grabiec, Justyna; Dadura, Emilia; Rąpała, Kazimierz; Tarnowski, Adam
2016-11-10
Postural stability is of great importance because imbalances and muscle weakness are significant risk factors for falls experienced by the elderly. Hip arthrosis, which causes pain and gait disorders that affect balance control, is common in the ageing population. The aim of this study was to assess postural stability in patients with unilateral hip arthrosis before total hip arthroplasty. The study population consisted of 52 patients with hip arthrosis (study group) and 47 subjects with no history of clinical symptoms of hip pain. The groups did not differ statistically in terms of age and BMI. Static balance was assessed by conducting a quantitative analysis of balance reaction parameters in a quiet standing position with the eyes open and closed. Analysis of the collected data revealed numerous statistically significant differences between patients with unilateral hip arthrosis before total hip arthoplasty and the asymptomatic group for parameters tested with eyes closed (p<0.05). We observed higher values of total length of centre of pressure (COP), sway path (SP), length of COP path in the medial-lateral plane (SPML), maximal amplitude between the 2 most distant points in the medial-lateral plane (MaxML), mean COP velocity (MV), and mean COP velocity in medial-lateral (MVML) in the study group.
Hugues, A; Di Marco, J; Janiaud, P; Xue, Y; Pires, J; Khademi, H; Cucherat, M; Bonan, I; Gueyffier, F; Rode, G
2017-01-01
Introduction Stroke frequently results in balance disorders, leading to lower levels of activity and a diminution in autonomy. Current physical therapies (PT) aiming to reduce postural imbalance have shown a large variety of effects with low levels of evidence. The objectives are to determine the efficiency of PT in recovering from postural imbalance in patients after a stroke and to assess which PT is more effective. Methods and analysis We will search several databases from inception to October 2015. Only randomised controlled trials assessing PT to recover from poststroke postural imbalance in adults will be considered. Outcome measures will be the Berg Balance Scale (BBS), the Postural Assessment Scale for Stroke (PASS), the ‘weight-bearing asymmetry’ (WBA), the ‘centre of pressure’ (COP) and the ‘limit of stability’ (LOS). WBA, COP and LOS are measured by a (sitting or standing) static evaluation on force plate or another device. Two independent reviewers will screen titles, abstracts and full-text articles, evaluate the risk of bias and will perform data extraction. In addition to the outcomes, measures of independence will be analysed. This study will aim at determining the effects of PT on the function (WBA, COP, LOS), the activity (BBS, PASS) and the independence of patients. Subgroup analyses will be planned according to the location of brain lesion (hemispheric, brainstem or cerebellum), the time since stroke (early, late, chronic), the PT (type, main aim (direct effect or generalisation), overall duration), the type of approaches (top-down or bottom-up) and the methodological quality of studies. Ethics and dissemination No ethical statement will be required. The results will be published in a peer-reviewed journal. This meta-analysis aims at managing the rehabilitation after postural imbalance by PT after a stroke. Trial registration number Prospero CRD42016037966;Pre-results. PMID:28137928
Hugues, A; Di Marco, J; Janiaud, P; Xue, Y; Pires, J; Khademi, H; Cucherat, M; Bonan, I; Gueyffier, F; Rode, G
2017-01-30
Stroke frequently results in balance disorders, leading to lower levels of activity and a diminution in autonomy. Current physical therapies (PT) aiming to reduce postural imbalance have shown a large variety of effects with low levels of evidence. The objectives are to determine the efficiency of PT in recovering from postural imbalance in patients after a stroke and to assess which PT is more effective. We will search several databases from inception to October 2015. Only randomised controlled trials assessing PT to recover from poststroke postural imbalance in adults will be considered.Outcome measures will be the Berg Balance Scale (BBS), the Postural Assessment Scale for Stroke (PASS), the 'weight-bearing asymmetry' (WBA), the 'centre of pressure' (COP) and the 'limit of stability' (LOS). WBA, COP and LOS are measured by a (sitting or standing) static evaluation on force plate or another device.Two independent reviewers will screen titles, abstracts and full-text articles, evaluate the risk of bias and will perform data extraction. In addition to the outcomes, measures of independence will be analysed. This study will aim at determining the effects of PT on the function (WBA, COP, LOS), the activity (BBS, PASS) and the independence of patients. Subgroup analyses will be planned according to the location of brain lesion (hemispheric, brainstem or cerebellum), the time since stroke (early, late, chronic), the PT (type, main aim (direct effect or generalisation), overall duration), the type of approaches (top-down or bottom-up) and the methodological quality of studies. No ethical statement will be required. The results will be published in a peer-reviewed journal. This meta-analysis aims at managing the rehabilitation after postural imbalance by PT after a stroke. Prospero CRD42016037966;Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Does increased postural threat lead to more conscious control of posture?
Huffman, J L; Horslen, B C; Carpenter, M G; Adkin, A L
2009-11-01
Although it is well established that postural threat modifies postural control, little is known regarding the underlying mechanism(s) responsible for these changes. It is possible that changes in postural control under conditions of elevated postural threat result from a shift to a more conscious control of posture. The purpose of this study was to determine the influence of elevated postural threat on conscious control of posture and to determine the relationship between conscious control and postural control measures. Forty-eight healthy young adults stood on a force plate at two different surface heights: ground level (LOW) and 3.2-m above ground level (HIGH). Centre of pressure measures calculated in the anterior-posterior (AP) direction were mean position (AP-MP), root mean square (AP-RMS) and mean power frequency (AP-MPF). A modified state-specific version of the Movement Specific Reinvestment Scale was used to measure conscious motor processing (CMP) and movement self-consciousness (MSC). Balance confidence, fear of falling, perceived stability, and perceived and actual anxiety indicators were also collected. A significant effect of postural threat was found for movement reinvestment as participants reported more conscious control and a greater concern about their posture at the HIGH height. Significant correlations between CMP and MSC with AP-MP were observed as participants who consciously controlled and were more concerned for their posture leaned further away from the platform edge. It is possible that changes in movement reinvestment can influence specific aspects of posture (leaning) but other aspects may be immune to these changes (amplitude and frequency).
Xie, Yanjun J; Liu, Elizabeth Y; Anson, Eric R; Agrawal, Yuri
Walking speed is an important dimension of gait function and is known to decline with age. Gait function is a process of dynamic balance and motor control that relies on multiple sensory inputs (eg, visual, proprioceptive, and vestibular) and motor outputs. These sensory and motor physiologic systems also play a role in static postural control, which has been shown to decline with age. In this study, we evaluated whether imbalance that occurs as part of healthy aging is associated with slower walking speed in a nationally representative sample of older adults. We performed a cross-sectional analysis of the previously collected 1999 to 2002 National Health and Nutrition Examination Survey (NHANES) data to evaluate whether age-related imbalance is associated with slower walking speed in older adults aged 50 to 85 years (n = 2116). Balance was assessed on a pass/fail basis during a challenging postural task-condition 4 of the modified Romberg Test-and walking speed was determined using a 20-ft (6.10 m) timed walk. Multivariable linear regression was used to evaluate the association between imbalance and walking speed, adjusting for demographic and health-related covariates. A structural equation model was developed to estimate the extent to which imbalance mediates the association between age and slower walking speed. In the unadjusted regression model, inability to perform the NHANES balance task was significantly associated with 0.10 m/s slower walking speed (95% confidence interval: -0.13 to -0.07; P < .01). In the multivariable regression analysis, inability to perform the balance task was significantly associated with 0.06 m/s slower walking speed (95% confidence interval: -0.09 to -0.03; P < .01), an effect size equivalent to 12 years of age. The structural equation model estimated that age-related imbalance mediates 12.2% of the association between age and slower walking speed in older adults. In a nationally representative sample, age-related balance limitation was associated with slower walking speed. Balance impairment may lead to walking speed declines. In addition, reduced static postural control and dynamic walking speed that occur with aging may share common etiologic origins, including the decline in visual, proprioceptive, and vestibular sensory and motor functions.
McKeon, Patrick O; Hertel, Jay
2008-01-01
To answer the following clinical questions: (1) Is poor postural control associated with increased risk of a lateral ankle sprain? (2) Is postural control adversely affected after acute lateral ankle sprain? (3) Is postural control adversely affected in those with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing postural control measures in participants on a stable force plate performing the modified Romberg test were included. To be included, a study had to address at least 1 of the 3 clinical questions stated above and provide adequate results for calculation of effect sizes or odds ratios where applicable. We calculated odds ratios with 95% confidence intervals for studies assessing postural control as a risk factor for lateral ankle sprains. Effect sizes were estimated with the Cohen d and associated 95% confidence intervals for comparisons of postural control performance between healthy and injured groups, or healthy and injured limbs, respectively. Poor postural control is most likely associated with an increased risk of sustaining an acute ankle sprain. Postural control is impaired after acute lateral ankle sprain, with deficits identified in both the injured and uninjured sides compared with controls. Although chronic ankle instability has been purported to be associated with altered postural control, these impairments have not been detected consistently with the use of traditional instrumented measures. Instrumented postural control testing on stable force plates is better at identifying deficits that are associated with an increased risk of ankle sprain and that occur after acute ankle sprains than at detecting deficits related to chronic ankle instability.
NASA Astrophysics Data System (ADS)
Huang, Ya; Griffin, Michael J.
2008-04-01
Nonlinear biodynamic responses are evident in many studies of the apparent masses of sitting and standing subjects in static postures that require muscle activity for postural control. In the present study, 12 male subjects adopted a relaxed semi-supine posture assumed to involve less muscle activity than during static sitting and standing. The supine subjects were exposed to two types of vertical vibration (in the x-axis of the semi-supine body): (i) continuous random vibration (0.25-20 Hz) at five magnitudes (0.125, 0.25, 0.5, 0.75, and 1.0 m s -2 rms); (ii) intermittent random vibration (0.25-20 Hz) alternately at 0.25 and 1.0 m s -2 rms. With continuous random vibration, the dominant primary resonance frequency in the median normalised apparent mass decreased from 10.35 to 7.32 Hz as the vibration magnitude increased from 0.125 to 1.0 m s -2 rms. This nonlinear response was apparent in both the vertical ( x-axis) apparent mass and in the horizontal ( z-axis) cross-axis apparent mass. As the vibration magnitude increased from 0.25 to 1.0 m s -2 rms, the median resonance frequency of the apparent mass with intermittent random vibration decreased from 9.28 to 8.06 Hz whereas, over the same range of magnitudes with continuous random vibration, the resonance frequency decreased from 9.62 to 7.81 Hz. The median change in the resonance frequency (between 0.25 and 1.0 m s -2 rms) was 1.37 Hz with the intermittent random vibration and 1.71 with the continuous random vibration. With the intermittent vibration, the resonance frequency was higher at the high magnitude and lower at the low magnitude than with continuous vibration of the same magnitudes. The response was typical of thixotropy that may be a primary cause of the nonlinear biodynamic responses to whole-body vibration.
Review on risk factors related to lower back disorders at workplace
NASA Astrophysics Data System (ADS)
A' Tifah Jaffar, Nur; Nasrull Abdol Rahman, Mohd
2017-08-01
This review examines the evidence of the occurrence of risk exposure on work-related lower back disorders in the workplace. This review also investigates potential interactions between the risk factors in the workplace which include heavy physical work risk factor, static work postures risk factor, frequent bending and twisting risk factor, lifting risk factor, pushing and pulling risk factor, repetitive work risk factor, vibration risk factor, psychological and psychosocial risk factor that may be associated with symptoms of musculoskeletal disorders of lower back. These risk factors can reinforce each other and their influence can also be mediated by cultural or social factors. A systematic review of the literature was carried out by searching using databases and the searching strategy was used combined keyword for risk factors, work-related lower back disorders, heavy physical work, static work postures, frequent bending and twisting, lifting, pushing and pulling, repetitive work, vibration, psychological and psychosocial risk factor. A total of 67 articles were identified and reviewed. The risk factors identified that related for low back disorder are seven which are heavy physical work, static work postures, frequent bending and twisting, lifting, pushing and pulling, repetitive work, vibration, psychological and psychosocial risk factor and the level of evidence supporting the relationship with lower back disorders also described such as strong, moderate, insufficient, limited and no evidence. This result confirms that, existing of higher physical and psychosocial demand related to reported risk factors of low back disorders. The result also showed that previous reviews had evaluated relationship between risk factors of low back disorders and specific types of musculoskeletal disorders. This review also highlights the scarves evidence regarding some of the frequently reported risk factors for work related lower back disorders.
Fatigue-induced balance impairment in young soccer players.
Pau, Massimiliano; Ibba, Gianfranco; Attene, Giuseppe
2014-01-01
Although balance is generally recognized to be an important feature in ensuring good performance in soccer, its link with functional performance remains mostly unexplored, especially in young athletes. To investigate changes in balance induced by fatigue for unipedal and bipedal static stances in young soccer players. Crossover study. Biomechanics laboratory and outdoor soccer field. Twenty-one male soccer players (age = 14.5 ± 0.2 years, height = 164.5 ± 5.6 cm, mass = 56.8 ± 6.8 kg). Static balance was assessed with postural-sway analysis in unipedal and bipedal upright stance before and after a fatigue protocol consisting of a repeated sprint ability (RSA) test (2 × 15-m shuttle sprint interspersed with 20 seconds of passive recovery, repeated 6 times). On the basis of the center-of-pressure (COP) time series acquired during the experimental tests, we measured sway area, COP path length, and COP maximum displacement and velocity in the anteroposterior and mediolateral directions. Fatigue increased all sway values in bipedal stance and all values except COP velocity in the mediolateral direction in unipedal stance. Fatigue index (calculated on the basis of RSA performance) was positively correlated with fatigue/rest sway ratio for COP path length and COP velocity in the anteroposterior and mediolateral directions for nondominant single-legged stance. Fatigued players exhibited reduced performance of the postural-control system. Participants with better performance in the RSA test appeared less affected by balance impairment, especially in single-legged stance.
Motor mapping of implied actions during perception of emotional body language.
Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio
2012-04-01
Perceiving and understanding emotional cues is critical for survival. Using the International Affective Picture System (IAPS) previous TMS studies have found that watching humans in emotional pictures increases motor excitability relative to seeing landscapes or household objects, suggesting that emotional cues may prime the body for action. Here we tested whether motor facilitation to emotional pictures may reflect the simulation of the human motor behavior implied in the pictures occurring independently of its emotional valence. Motor-evoked potentials (MEPs) to single-pulse TMS of the left motor cortex were recorded from hand muscles during observation and categorization of emotional and neutral pictures. In experiment 1 participants watched neutral, positive and negative IAPS stimuli, while in experiment 2, they watched pictures depicting human emotional (joyful, fearful), neutral body movements and neutral static postures. Experiment 1 confirms the increase in excitability for emotional IAPS stimuli found in previous research and shows, however, that more implied motion is perceived in emotional relative to neutral scenes. Experiment 2 shows that motor excitability and implied motion scores for emotional and neutral body actions were comparable and greater than for static body postures. In keeping with embodied simulation theories, motor response to emotional pictures may reflect the simulation of the action implied in the emotional scenes. Action simulation may occur independently of whether the observed implied action carries emotional or neutral meanings. Our study suggests the need of controlling implied motion when exploring motor response to emotional pictures of humans. Copyright © 2012 Elsevier Inc. All rights reserved.
Repetitive head impacts do not affect postural control following a competitive athletic season.
Murray, Nicholas G; Grimes, Katelyn E; Shiflett, Eric D; Munkasy, Barry A; D'Amico, Nathan R; Mormile, Megan E; Powell, Douglas W; Buckley, Thomas A
2017-10-03
Evidence suggests that Repetitive Head Impacts (RHI) directly influence the brain over the course of a single contact collision season yet do not significantly impact a player's performance on the standard clinical concussion assessment battery. The purpose of this study was to investigate changes in static postural control after a season of RHI in Division I football athletes using more sensitive measures of postural control as compared to a non-head contact sports. Fourteen Division I football players (CON) (age=20.4±1.12years) and fourteen non-contact athletes (NON) (2 male, 11 female; age=19.85±1.21years) completed a single trial of two minutes of eyes open quiet upright stance on a force platform (1000Hz) prior to athletic participation (PRE) and at the end of the athletic season (POST). All CON athletes wore helmets outfitted with Head Impact Telemetry (HIT) sensors and total number of RHI and linear accelerations forces of each RHI were recorded. Center of pressure root mean square (RMS), peak excursion velocity (PEV), and sample entropy (SampEn) in the anteroposterior (AP) and mediolateral (ML) directions were calculated. CON group experienced 649.5±496.8 mean number of impacts, 27.1±3.0 mean linear accelerations, with ≈1% of total player impacts exceeded 98g over the course of the season. There were no significant interactions for group x time RMS in the AP (p=0.434) and ML (p=0.114) directions, PEV in the AP (p=0.262) and ML (p=0.977) directions, and SampEn in the AP (p=0.499) and ML (p=0.984) directions. In addition, no significant interactions for group were observed for RMS in the AP (p=0.105) and ML (p=0.272) directions, PEV in the AP (p=0.081) and ML (p=0.143) directions, and SampEn in the AP (p=0.583) and ML (p=0.129) directions. These results suggest that over the course of a single competitive season, RHI do not negatively impact postural control even when measured with sensitive non-linear metrics. Copyright © 2017 Elsevier B.V. All rights reserved.
Prins, Yolandi; Crous, Lynette; Louw, Q A
2008-01-01
Musculoskeletal pain has become a major symptomatic complaint among children and adolescents and is increasingly occurring at a younger age. This systematic review was done to evaluate the evidence for the contribution of posture and psychosocial factors to the development of upper quadrant musculoskeletal pain in children and adolescents. The review describes the measurement tools used to assess musculoskeletal pain, sitting posture, and psychosocial factors. Two independent reviewers searched seven databases for observational studies that included prospective and cross-sectional study designs. Ten studies were extracted and assessed by two reviewers using the Critical Appraisal Form-Quantitative Studies (Law et al, 1998). The studies measured upper quadrant musculoskeletal pain as an outcome measure. Five studies evaluated sitting posture and found an association between the duration of static sitting and upper quadrant musculoskeletal pain. Six studies measured psychosocial factors of which depression, stress, and psychosomatic symptoms were the factors most commonly found to influence the development of upper quadrant musculoskeletal pain. The eligible studies used different pain measurement tools and different measurement tools to assess sitting posture and psychosocial factors. This review concludes that the duration of sitting posture and psychosocial factors may influence the experience of musculoskeletal pain among children and adolescents.
Dong, Rui-Chun; Guo, Li-Xin
2017-11-01
The aim of this study is to model the computational model of seated whole human body including skeleton, muscle, viscera, ligament, intervertebral disc, and skin to predict effect of the factors (sitting postures, muscle and skin, buttocks, viscera, arms, gravity, and boundary conditions) on the biodynamic characteristics of spine. Two finite element models of seated whole body and a large number of finite element models of different ligamentous motion segments were developed and validated. Static, modal, and transient dynamic analyses were performed. The predicted vertical resonant frequency of seated body model was in the range of vertical natural frequency of 4 to 7 Hz. Muscle, buttocks, viscera, and the boundary conditions of buttocks have influence on the vertical resonant frequency of spine. Muscle played a very important role in biodynamic response of spine. Compared with the vertical posture, the posture of lean forward or backward led to an increase in stress on anterior or lateral posterior of lumbar intervertebral discs. This indicated that keeping correct posture could reduce the injury of vibration on lumbar intervertebral disc under whole-body vibration. The driving posture not only reduced the load of spine but also increased the resonant frequency of spine. Copyright © 2017 John Wiley & Sons, Ltd.
Postural Control in Children: Implications for Pediatric Practice
ERIC Educational Resources Information Center
Westcott, Sarah L.; Burtner, Patricia
2004-01-01
Based on a systems theory of motor control, reactive postural control (RPA) and anticipatory postural control (APA) in children are reviewed from several perspectives in order to develop an evidence-based intervention strategy for improving postural control in children with limitations in motor function. Research on development of postural…
A daily living activity remote monitoring system for solitary elderly people.
Maki, Hiromichi; Ogawa, Hidekuni; Matsuoka, Shingo; Yonezawa, Yoshiharu; Caldwell, W Morton
2011-01-01
A daily living activity remote monitoring system has been developed for supporting solitary elderly people. The monitoring system consists of a tri-axis accelerometer, six low-power active filters, a low-power 8-bit microcontroller (MC), a 1GB SD memory card (SDMC) and a 2.4 GHz low transmitting power mobile phone (PHS). The tri-axis accelerometer attached to the subject's chest can simultaneously measure dynamic and static acceleration forces produced by heart sound, respiration, posture and behavior. The heart rate, respiration rate, activity, posture and behavior are detected from the dynamic and static acceleration forces. These data are stored in the SD. The MC sends the data to the server computer every hour. The server computer stores the data and makes a graphic chart from the data. When the caregiver calls from his/her mobile phone to the server computer, the server computer sends the graphical chart via the PHS. The caregiver's mobile phone displays the chart to the monitor graphically.
The effects of brief swaying on postural control.
Pagé, Sara; Maheu, Maxime; Landry, Simon P; Champoux, François
2017-12-06
Postural control can be improved with balance training. However, the nature and duration of the training required to enhance posture remains unclear. We studied the effects of 5 min of a self-initiated balance exercise along a single axis on postural control in healthy individuals. Postural control was measured before and after a 5-min period where members of the experimental group were asked to lean their entire body forward and backward and members of the control group were asked to remain seated. A significant improvement for sway velocity, a postural control variable significantly associated with an increased risk of falls, was found in the experimental group following the body sway exercise. These data suggest that a basic exercise can rapidly improve postural control and reduce the risk of falls.
Tanaka, Erika H.; Santos, Paulo F.; Reis, Júlia G.; Rodrigues, Natalia C.; Moraes, Renato; Abreu, Daniela C. C.
2015-01-01
Background: Risk of falls increases as age advances. Complaints of impaired balance are very common in the elderly age group. Objectives: The objective of this study was to investigate whether the subjective perception of impaired balance was associated with deficits in postural control (objective analysis) in elderly community-dwelling women. Method: Static posturography was used in two groups: elderly women with (WC group) and without (NC group) complaints of impaired balance. The area, mean sway amplitude and mean speed of the center of pressure (COP) in the anterior-posterior (AP) and medial-lateral (ML) directions were analyzed in three stances: single-leg stance, double-leg stance and tandem stance, with eyes open or closed on two different surfaces: stable (firm) and unstable (foam). A digital chronometer was activated to measure the time limit (Tlimit) in the single-leg stance. Kruskal-Wallis tests followed by Mann-Whitney tests, Friedman analyses followed by post hoc Wilcoxon tests and Bonferroni corrections, and Spearman statistical tests were used in the data analysis. Differences of p<0.05 were considered statistically significant. Results: The results of posturography variables revealed no differences between groups. The timed single-leg stance test revealed a shorter Tlimit in the left single-leg stance (p=0.01) in WC group compared to NC group. A negative correlation between posturography variables and Tlimit was detected. Conclusions: Posturography did not show any differences between the groups; however, the timed single-leg stance allowed the authors to observe differences in postural control performance between elderly women with and those without complaints of impaired balance. PMID:26083602
Tanaka, Erika H; Santos, Paulo F; Reis, Júlia G; Rodrigues, Natalia C; Moraes, Renato; Abreu, Daniela C C
2015-01-01
Risk of falls increases as age advances. Complaints of impaired balance are very common in the elderly age group. The objective of this study was to investigate whether the subjective perception of impaired balance was associated with deficits in postural control (objective analysis) in elderly community-dwelling women. Static posturography was used in two groups: elderly women with (WC group) and without (NC group) complaints of impaired balance. The area, mean sway amplitude and mean speed of the center of pressure (COP) in the anterior-posterior (AP) and medial-lateral (ML) directions were analyzed in three stances: single-leg stance, double-leg stance and tandem stance, with eyes open or closed on two different surfaces: stable (firm) and unstable (foam). A digital chronometer was activated to measure the time limit (Tlimit) in the single-leg stance. Kruskal-Wallis tests followed by Mann-Whitney tests, Friedman analyses followed by post hoc Wilcoxon tests and Bonferroni corrections, and Spearman statistical tests were used in the data analysis. Differences of p<0.05 were considered statistically significant. The results of posturography variables revealed no differences between groups. The timed single-leg stance test revealed a shorter Tlimit in the left single-leg stance (p=0.01) in WC group compared to NC group. A negative correlation between posturography variables and Tlimit was detected. Posturography did not show any differences between the groups; however, the timed single-leg stance allowed the authors to observe differences in postural control performance between elderly women with and those without complaints of impaired balance.
The effect of saccular function on static balance ability of profound hearing-impaired children.
Jafari, Zahra; Asad Malayeri, Saeed
2011-07-01
Researches have shown that in clinical practice, balance disorders in children with congenital or early acquired severe to profound hearing loss are probable. The purposes of present study were to specify the percentage of vestibular evoked myogenic potential (VEMP) and an acoustically evoked, short latency negative response (ASNR) recordings and the relation between their presence and static balance ability and postural control of children with profound sensorineural hearing loss (SNHL). Thirty children with profound SNHL, with an average age of 6.93 years, underwent the VEMP and auditory brainstem response (ABR) tests. Both VEMP and ABR were recorded at the threshold level through air-conduction stimulation via an insert receiver. The static balance performance of the hearing-impaired children was tested with six exercises and compared with that of 30 age- and sex-matched normal-hearing children as controls. VEMP was recorded in 53.3% of ears and ASNR in 40.0%. VEMP was revealed in all ears with ASNR, and a significant correlation was shown between their presence (p=0.005) and also between the ASNR wave latency and P1 (p=0.0001) and N1 (p=0.004) wave amplitude of VEMP. There was a significant correlation between the presence of VEMP and ASNR with the performance of the children in two static balance skills, namely standing on one leg with eyes open on a line and the same practice on the balance beam (p≤0.008). There was a close relation between the presence of VEMP and ASNR. Additionally, when ASNR was present, the recording of VEMP could be expected. Successful performance in the static balance exercises with reduced vestibular and somatosensory inputs increased the possibility of the recording of ASNR and VEMP. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
McKeon, Patrick O; Hertel, Jay
2008-01-01
Objective: To answer the following clinical questions: (1) Is poor postural control associated with increased risk of a lateral ankle sprain? (2) Is postural control adversely affected after acute lateral ankle sprain? (3) Is postural control adversely affected in those with chronic ankle instability? Data Sources: PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Study Selection: Only studies assessing postural control measures in participants on a stable force plate performing the modified Romberg test were included. To be included, a study had to address at least 1 of the 3 clinical questions stated above and provide adequate results for calculation of effect sizes or odds ratios where applicable. Data Extraction: We calculated odds ratios with 95% confidence intervals for studies assessing postural control as a risk factor for lateral ankle sprains. Effect sizes were estimated with the Cohen d and associated 95% confidence intervals for comparisons of postural control performance between healthy and injured groups, or healthy and injured limbs, respectively. Data Synthesis: Poor postural control is most likely associated with an increased risk of sustaining an acute ankle sprain. Postural control is impaired after acute lateral ankle sprain, with deficits identified in both the injured and uninjured sides compared with controls. Although chronic ankle instability has been purported to be associated with altered postural control, these impairments have not been detected consistently with the use of traditional instrumented measures. Conclusions: Instrumented postural control testing on stable force plates is better at identifying deficits that are associated with an increased risk of ankle sprain and that occur after acute ankle sprains than at detecting deficits related to chronic ankle instability. PMID:18523566
Dusing, Stacey C; Izzo, Theresa A.; Thacker, Leroy R.; Galloway, James C
2014-01-01
Background and Aims Postural control differs between infants born preterm and full term at 1–3 weeks of age. It is unclear if differences persist or alter the development of early behaviors. The aim of this longitudinal study was to compare changes in postural control variability during development of head control and reaching in infants born preterm and full term. Methods Eighteen infants born preterm (mean gestational age 28.3±3.1 weeks) were included in this study and compared to existing data from 22 infants born full term. Postural variability was assessed longitudinally using root mean squared displacement and approximate entropy of the center of pressure displacement from birth to 6 months as measures of the magnitude of the variability and complexity of postural control. Behavioral coding was used to quantify development of head control and reaching. Results Group differences were identified in postural complexity during the development of head control and reaching. Infants born preterm used more repetitive and less adaptive postural control strategies than infants born full term. Both groups changed their postural complexity utilized during the development of head control and reaching. Discussion Early postural complexity was decreased in infants born preterm, compared to infants born full term. Commonly used clinical assessments did not identify these early differences in postural control. Altered postural control in infants born preterm influenced ongoing skill development in the first six months of life. PMID:24485170
Objective Integrated Assessment of Functional Outcomes in Reduction Mammaplasty
Passaro, Ilaria; Malovini, Alberto; Faga, Angela; Toffola, Elena Dalla
2013-01-01
Background: The aim of our study was an objective integrated assessment of the functional outcomes of reduction mammaplasty. Methods: The study involved 17 women undergoing reduction mammaplasty from March 2009 to June 2011. Each patient was assessed before surgery and 2 months postoperatively with the original association of 4 subjective and objective assessment methods: a physiatric clinical examination, the Roland Morris Disability Questionnaire, the Berg Balance Scale, and a static force platform analysis. Results: All of the tests proved multiple statistically significant associated outcomes demonstrating a significant improvement in the functional status following reduction mammaplasty. Surgical correction of breast hypertrophy could achieve both spinal pain relief and recovery of performance status in everyday life tasks, owing to a muscular postural functional rearrangement with a consistent antigravity muscle activity sparing. Pain reduction in turn could reduce the antalgic stiffness and improved the spinal range of motion. In our sample, the improvement of the spinal range of motion in flexion matched a similar improvement in extension. Recovery of a more favorable postural pattern with reduction of the anterior imbalance was demonstrated by the static force stabilometry. Therefore, postoperatively, all of our patients narrowed the gap between the actual body barycenter and the ideal one. The static force platform assessment also consistently confirmed the effectiveness of an accurate clinical examination of functional impairment from breast hypertrophy. Conclusions: The static force platform assessment might help the clinician to support the diagnosis of functional impairment from a breast hypertrophy with objectively based data. PMID:25289256
Olivier, Agnès; Faugloire, Elise; Lejeune, Laure; Biau, Sophie; Isableu, Brice
2017-01-01
Maintaining equilibrium while riding a horse is a challenging task that involves complex sensorimotor processes. We evaluated the relative contribution of visual information (static or dynamic) to horseback riders' postural stability (measured from the variability of segment position in space) and the coordination modes they adopted to regulate balance according to their level of expertise. Riders' perceptual typologies and their possible relation to postural stability were also assessed. Our main assumption was that the contribution of visual information to postural control would be reduced among expert riders in favor of vestibular and somesthetic reliance. Twelve Professional riders and 13 Club riders rode an equestrian simulator at a gallop under four visual conditions: (1) with the projection of a simulated scene reproducing what a rider sees in the real context of a ride in an outdoor arena, (2) under stroboscopic illumination, preventing access to dynamic visual cues, (3) in normal lighting but without the projected scene (i.e., without the visual consequences of displacement) and (4) with no visual cues. The variability of the position of the head, upper trunk and lower trunk was measured along the anteroposterior (AP), mediolateral (ML), and vertical (V) axes. We computed discrete relative phase to assess the coordination between pairs of segments in the anteroposterior axis. Visual field dependence-independence was evaluated using the Rod and Frame Test (RFT). The results showed that the Professional riders exhibited greater overall postural stability than the Club riders, revealed mainly in the AP axis. In particular, head variability was lower in the Professional riders than in the Club riders in visually altered conditions, suggesting a greater ability to use vestibular and somesthetic information according to task constraints with expertise. In accordance with this result, RFT perceptual scores revealed that the Professional riders were less dependent on the visual field than were the Club riders. Finally, the Professional riders exhibited specific coordination modes that, unlike the Club riders, departed from pure in-phase and anti-phase patterns and depended on visual conditions. The present findings provide evidence of major differences in the sensorimotor processes contributing to postural control with expertise in horseback riding. PMID:28194100
Hegeman, Judith; Nienhuis, Bart; van den Bemt, Bart; Weerdesteyn, Vivian; van Limbeek, Jacques; Duysens, Jacques
2011-04-01
Accidental falls in older individuals are a major health and research topic. Increased reaction time and impaired postural balance have been determined as reliable predictors for those at risk of falling and are important functions of the central nervous system (CNS). An essential risk factor for falls is medication exposure. Amongst the medications related to accidental falls are the non-steroidal anti-inflammatory drugs (NSAIDs). About 1-10% of all users experience CNS side effects. These side effects, such as dizziness, headaches, drowsiness, mood alteration, and confusion, seem to be more common during treatment with indomethacin. Hence, it is possible that maintenance of (static) postural balance and swift reactions to stimuli are affected by exposure to NSAIDs, indomethacin in particular, consequently putting older individuals at a greater risk for accidental falls. The present study investigated the effect of a high indomethacin dose in healthy middle-aged individuals on two important predictors of falls: postural balance and reaction time. Twenty-two healthy middle-aged individuals (59.5 ± 4.7 years) participated in this double-blind, placebo-controlled, randomized crossover trial. Three measurements were conducted with a week interval each. A measurement consisted of postural balance as a single task and while concurrently performing a secondary cognitive task and reaction time tasks. For the first measurement indomethacin 75 mg (slow-release) or a visually identical placebo was randomly assigned. In total, five capsules were taken orally in the 2.5 days preceding assessment. The second measurement was without intervention, for the final one the first placebo group got indomethacin and vice versa. Repeated measures GLM revealed no significant differences between indomethacin, placebo, and baseline in any of the balance tasks. No differences in postural balance were found between the single and dual task conditions, or on the performance of the dual task itself. Similarly, no differences were found on the manual reaction time tasks. The present study showed that a high indomethacin dose does not negatively affect postural balance and manual reaction time in this healthy middle-aged population. Although the relatively small and young sample limits the direct ability to generalize the results to a population at risk of falling, the results indicate that indomethacin alone is not likely to increase fall risk, as far as this risk is related to above mentioned important functions of the CNS, and not affected by comorbidities. Copyright © 2010 Elsevier B.V. All rights reserved.
Smooth-pursuit eye movements without head movement disrupt the static body balance.
Kim, Sang-Yeob; Moon, Byeong-Yeon; Cho, Hyun Gug
2016-04-01
[Purpose] To investigate the changes of body balance in static posture in smooth-pursuit eye movements (SPEMs) without head movement. [Subjects and Methods] Forty subjects (24 males, 16 females) aged 23.24 ± 2.58 years participated. SPEMs were activated in three directions (horizontal, vertical, and diagonal movements); the target speed was set at three conditions (10°/s, 20°/s, and 30°/s); and the binocular visual field was limited to 50°. To compare the body balance changes, the general stability (ST) and the fall risk index (FI) were measured with TETRAX. The subjects wore a head-neck collar and stood on a balance plate for 32 s during each measurement in three directions. SPEMs were induced to each subject with nine target speeds and directions. All measured values were compared with those in stationary fixation. [Results] The ST and FI increased significantly in all SPEMs directions, with an increased target speed than that in stationary fixation. In the same condition of the target speed, the FI had the highest value relative to diagonal SPEMs. [Conclusion] SPEMs without head movement disrupt the stability of body balance in a static posture, and diagonal SPEMs may have a more negative effect in maintaining body balance than horizontal or vertical SPEMs.
Villarrasa-Sapiña, Israel; Álvarez-Pitti, Julio; Cabeza-Ruiz, Ruth; Redón, Pau; Lurbe, Empar; García-Massó, Xavier
2018-02-01
Excess body weight during childhood causes reduced motor functionality and problems in postural control, a negative influence which has been reported in the literature. Nevertheless, no information regarding the effect of body composition on the postural control of overweight and obese children is available. The objective of this study was therefore to establish these relationships. A cross-sectional design was used to establish relationships between body composition and postural control variables obtained in bipedal eyes-open and eyes-closed conditions in twenty-two children. Centre of pressure signals were analysed in the temporal and frequency domains. Pearson correlations were applied to establish relationships between variables. Principal component analysis was applied to the body composition variables to avoid potential multicollinearity in the regression models. These principal components were used to perform a multiple linear regression analysis, from which regression models were obtained to predict postural control. Height and leg mass were the body composition variables that showed the highest correlation with postural control. Multiple regression models were also obtained and several of these models showed a higher correlation coefficient in predicting postural control than simple correlations. These models revealed that leg and trunk mass were good predictors of postural control. More equations were found in the eyes-open than eyes-closed condition. Body weight and height are negatively correlated with postural control. However, leg and trunk mass are better postural control predictors than arm or body mass. Finally, body composition variables are more useful in predicting postural control when the eyes are open. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of the Coordination between Posture and Manual Control
ERIC Educational Resources Information Center
Haddad, Jeffrey M.; Claxton, Laura J.; Keen, Rachel; Berthier, Neil E.; Riccio, Gary E.; Hamill, Joseph; Van Emmerik, Richard E. A.
2012-01-01
Studies have suggested that proper postural control is essential for the development of reaching. However, little research has examined the development of the coordination between posture and manual control throughout childhood. We investigated the coordination between posture and manual control in children (7- and 10-year-olds) and adults during…
Toth, Tibor Istvan; Schmidt, Joachim; Büschges, Ansgar; Daun-Gruhn, Silvia
2013-01-01
In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1) positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2) the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3) there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.
Interference between oculomotor and postural tasks in 7-8-year-old children and adults.
Legrand, Agathe; Doré Mazars, Karine; Lemoine, Christelle; Nougier, Vincent; Olivier, Isabelle
2016-06-01
Several studies in adults having observed the effect of eye movements on postural control provided contradictory results. In the present study, we explored the effect of various oculomotor tasks on postural control and the effect of different postural tasks on eye movements in eleven children (7.8 ± 0.5 years) and nine adults (30.4 ± 6.3 years). To vary the difficulty of the oculomotor task, three conditions were tested: fixation, prosaccades (reactive saccades made toward the target) and antisaccades (voluntary saccades made in the direction opposite to the visual target). To vary the difficulty of postural control, two postural tasks were tested: Standard Romberg (SR) and Tandem Romberg (TR). Postural difficulty did not affect oculomotor behavior, except by lengthening adults' latencies in the prosaccade task. For both groups, postural control was altered in the antisaccade task as compared to fixation and prosaccade tasks. Moreover, a ceiling effect was found in the more complex postural task. This study highlighted a cortical interference between oculomotor and postural control systems.
Ohnishi, K; Yamamoto, T; Takahashi, A; Tanaka, H; Koyama, M; Ohnishi, T
1999-08-01
The catfish (Synodontis nigriventris) has a unique habitat of keeping an upside-down posture under normal gravity. We examined its postural control under pseudomicrogravity generated artificially, and the effect of unilateral labyrinthectomy on the postural control. The stable swimming posture under pseudomicrogravity was observed in the upside-down swimming catfish but not in the catfish (Corydoras paleatus), which has normal swimming habitat. Furthermore, although S. nigriventris but not C. paleatus could keep the stable swimming posture under normal gravity condition after unilateral labyrinthectomy, the labyrinthectomized fishes could not keep it under pseudomicrogravity. Seven days after the operation, S. nigriventris alone partially recovered the ability to keep an upside-down swimming posture, and did completely, to the control level, 25 days after the operation. Furthermore, when S. nigriventris was under pseudomicrogravity in dark conditions, it showed disturbed swimming postures. These results suggest that the upside-down swimming catfish has superior ability of postural control depending on the labyrinth.
In Vivo Spinal Posture during Upright and Reclined Sitting in an Office Chair
Zemp, Roland; Taylor, William R.; Lorenzetti, Silvio
2013-01-01
Increasing numbers of people spend the majority of their working lives seated in an office chair. Musculoskeletal disorders, in particular low back pain, resulting from prolonged static sitting are ubiquitous, but regularly changing sitting position throughout the day is thought to reduce back problems. Nearly all currently available office chairs offer the possibility to alter the backrest reclination angles, but the influence of changing seating positions on the spinal column remains unknown. In an attempt to better understand the potential to adjust or correct spine posture using adjustable seating, five healthy subjects were analysed in an upright and reclined sitting position conducted in an open, upright MRI scanner. The shape of the spine, as described using the vertebral bodies' coordinates, wedge angles, and curvature angles, showed high inter-subject variability between the two seating positions. The mean lumbar, thoracic, and cervical curvature angles were 29 ± 15°, −29 ± 4°, and 13 ± 8° for the upright and 33 ± 12°, −31 ± 7°, and 7 ± 7° for the reclined sitting positions. Thus, a wide range of seating adaptation is possible through modification of chair posture, and dynamic seating options may therefore provide a key feature in reducing or even preventing back pain caused by prolonged static sitting. PMID:24175307
Rahal, Miguel Antônio; Alonso, Angélica Castilho; Andrusaitis, Felix Ricardo; Rodrigues, Thuam Silva; Speciali, Danielli Souza; Greve, Júlia Maria D′Andréa; Leme, Luiz Eugênio Garcez
2015-01-01
OBJECTIVE: To determine whether Tai Chi Chuan or ballroom dancing promotes better performance with respect to postural balance, gait, and postural transfer among elderly people. METHODS: We evaluated 76 elderly individuals who were divided into two groups: the Tai Chi Chuan Group and the Dance Group. The subjects were tested using the NeuroCom Balance Master® force platform system with the following protocols: static balance tests (the Modified Clinical Tests of Sensory Interaction on Balance and Unilateral Stance) and dynamic balance tests (the Walk Across Test and Sit-to-stand Transfer Test). RESULTS: In the Modified Clinical Test of Sensory Interaction on Balance, the Tai Chi Chuan Group presented a lower sway velocity on a firm surface with open and closed eyes, as well as on a foam surface with closed eyes. In the Modified Clinical Test of Sensory Interaction on Unilateral Stance, the Tai Chi Chuan Group presented a lower sway velocity with open eyes, whereas the Dance Group presented a lower sway velocity with closed eyes. In the Walk Across Test, the Tai Chi Chuan Group presented faster walking speeds than those of the Dance Group. In the Sit-to-stand Transfer Test, the Tai Chi Chuan Group presented shorter transfer times from the sitting to the standing position, with less sway in the final standing position. CONCLUSION: The elderly individuals who practiced Tai Chi Chuan had better bilateral balance with eyes open on both types of surfaces compared with the Dance Group. The Dance Group had better unilateral postural balance with eyes closed. The Tai Chi Chuan Group had faster walking speeds, shorter transfer times, and better postural balance in the final standing position during the Sit-to-stand Test. PMID:26017644
Rahal, Miguel Antônio; Alonso, Angélica Castilho; Andrusaitis, Felix Ricardo; Rodrigues, Thuam Silva; Speciali, Danielli Souza; Greve, Júlia Maria D Andréa; Leme, Luiz Eugênio Garcez
2015-03-01
To determine whether Tai Chi Chuan or ballroom dancing promotes better performance with respect to postural balance, gait, and postural transfer among elderly people. We evaluated 76 elderly individuals who were divided into two groups: the Tai Chi Chuan Group and the Dance Group. The subjects were tested using the NeuroCom Balance Master¯ force platform system with the following protocols: static balance tests (the Modified Clinical Tests of Sensory Interaction on Balance and Unilateral Stance) and dynamic balance tests (the Walk Across Test and Sit-to-stand Transfer Test). In the Modified Clinical Test of Sensory Interaction on Balance, the Tai Chi Chuan Group presented a lower sway velocity on a firm surface with open and closed eyes, as well as on a foam surface with closed eyes. In the Modified Clinical Test of Sensory Interaction on Unilateral Stance, the Tai Chi Chuan Group presented a lower sway velocity with open eyes, whereas the Dance Group presented a lower sway velocity with closed eyes. In the Walk Across Test, the Tai Chi Chuan Group presented faster walking speeds than those of the Dance Group. In the Sit-to-stand Transfer Test, the Tai Chi Chuan Group presented shorter transfer times from the sitting to the standing position, with less sway in the final standing position. The elderly individuals who practiced Tai Chi Chuan had better bilateral balance with eyes open on both types of surfaces compared with the Dance Group. The Dance Group had better unilateral postural balance with eyes closed. The Tai Chi Chuan Group had faster walking speeds, shorter transfer times, and better postural balance in the final standing position during the Sit-to-stand Test.
Arazpour, M; Bani, M A; Hutchins, S W; Curran, S; Javanshir, M A
2013-10-01
Perceived risk of falling is an important factor for people with spinal cord injury (SCI). This study investigated the influence of ankle joint motion on postural stability and walking in people with SCI when using an orthosis. Volunteer subjects with SCI (n=5) participated in this study. Each subject was fitted with an advanced reciprocating gait orthosis (ARGO) equipped with either solid or dorsiflexion-assist type ankle-foot orthosis (AFOs) and walked at their self-selected speed along a flat walkway to enable the comparison of walking speed, cadence and endurance. A force plate system and a modified Falls Efficacy Scale (MFES) were utilized to measure postural sway and the perceived fear of falling, respectively. There were significant differences in the mean MFES scores between two types of orthosis (P=0.023). When using two crutches, there was no significant difference in static standing postural sway in the medio-lateral (M/L) direction (P=0.799), but significant difference in the antero-posterior (A/P) direction (P=0.014). However, during single crutch support, there was a significant difference in both M/L (P=0.019) and A/P (P=0.022) directions. Walking speed (7%) and endurance (5%) significantly increased when using the ARGO with dorsi flexion assisted AFOs. There was no significant deference between two types of orthoses in cadence (P=0.54). Using an ARGO with dorsiflexion-assisted AFOs increased the fear of falling, but improved static postural stability and increased walking speed and endurance, and should therefore be considered as an effective orthosis during the rehabilitation of people with SCI.
Construct Validity and Reliability of the SARA Gait and Posture Sub-scale in Early Onset Ataxia
Lawerman, Tjitske F.; Brandsma, Rick; Verbeek, Renate J.; van der Hoeven, Johannes H.; Lunsing, Roelineke J.; Kremer, Hubertus P. H.; Sival, Deborah A.
2017-01-01
Aim: In children, gait and posture assessment provides a crucial marker for the early characterization, surveillance and treatment evaluation of early onset ataxia (EOA). For reliable data entry of studies targeting at gait and posture improvement, uniform quantitative biomarkers are necessary. Until now, the pediatric test construct of gait and posture scores of the Scale for Assessment and Rating of Ataxia sub-scale (SARA) is still unclear. In the present study, we aimed to validate the construct validity and reliability of the pediatric (SARAGAIT/POSTURE) sub-scale. Methods: We included 28 EOA patients [15.5 (6–34) years; median (range)]. For inter-observer reliability, we determined the ICC on EOA SARAGAIT/POSTURE sub-scores by three independent pediatric neurologists. For convergent validity, we associated SARAGAIT/POSTURE sub-scores with: (1) Ataxic gait Severity Measurement by Klockgether (ASMK; dynamic balance), (2) Pediatric Balance Scale (PBS; static balance), (3) Gross Motor Function Classification Scale -extended and revised version (GMFCS-E&R), (4) SARA-kinetic scores (SARAKINETIC; kinetic function of the upper and lower limbs), (5) Archimedes Spiral (AS; kinetic function of the upper limbs), and (6) total SARA scores (SARATOTAL; i.e., summed SARAGAIT/POSTURE, SARAKINETIC, and SARASPEECH sub-scores). For discriminant validity, we investigated whether EOA co-morbidity factors (myopathy and myoclonus) could influence SARAGAIT/POSTURE sub-scores. Results: The inter-observer agreement (ICC) on EOA SARAGAIT/POSTURE sub-scores was high (0.97). SARAGAIT/POSTURE was strongly correlated with the other ataxia and functional scales [ASMK (rs = -0.819; p < 0.001); PBS (rs = -0.943; p < 0.001); GMFCS-E&R (rs = -0.862; p < 0.001); SARAKINETIC (rs = 0.726; p < 0.001); AS (rs = 0.609; p = 0.002); and SARATOTAL (rs = 0.935; p < 0.001)]. Comorbid myopathy influenced SARAGAIT/POSTURE scores by concurrent muscle weakness, whereas comorbid myoclonus predominantly influenced SARAKINETIC scores. Conclusion: In young EOA patients, separate SARAGAIT/POSTURE parameters reveal a good inter-observer agreement and convergent validity, implicating the reliability of the scale. In perspective of incomplete discriminant validity, it is advisable to interpret SARAGAIT/POSTURE scores for comorbid muscle weakness. PMID:29326569
Perrochon, A; Holtzer, R; Laidet, M; Armand, S; Assal, F; Lalive, P H; Allali, G
2017-04-01
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease affecting various neurological domains, such as postural control, cognition, fear of falling, depression-anxiety, and fatigue. This study examined the associations of cognitive functions, fear of falling, depression-anxiety, and fatigue with postural control in patients with MS. Postural control (sway velocity) of 63 patients with MS (age 39.0 ± 8.9 years; %female 57%; Expanded Disability Status Scale score median (interquartile range) 2.0 (1.5)) was recorded on two platforms at stable and unstable conditions. Cognition, fear of falling, depression-anxiety, and fatigue were evaluated by a comprehensive neuropsychological assessment. The associations between these domains and postural control have been measured by multivariable linear regression (adjusted for age, gender, disability, and education). In stable condition, only working memory was associated with postural control (p < 0.05). In unstable condition, working memory, executive functions, attention/processing speed, and fear of falling were associated with postural control (p < 0.05). Specific cognitive domains and fear of falling were associated with postural control in MS patients, particularly in unstable condition. These findings highlight the association of cognitive functions and fear of falling with postural control in MS.
Denommé, Luke T; Mandalfino, Patricia; Cinelli, Michael E
2014-06-01
A major presenting symptom in 'individuals with multiple sclerosis with mild balance disability' (IwMS) is poor postural control, resulting from slowed spinal somatosensory conduction. Postural control deficits in IwMS are most apparent when vision is removed and the base of support is reduced such is the case during tandem and single support stances. The current study used center of pressure (COP) measurements to determine whether postural control differences exist between IwMS and either 'healthy age-matched individuals' (HAMI) or 'community-dwelling older adults' (OA). Postural control was evaluated using a Romberg standing task, which required participants to stand with their feet together and hands by their sides for 45 s with either their eyes open or closed. Results revealed that COP velocity root mean square was greater in IwMS and their COP position was closer to their self-selected maximum stability limits (e.g., greater Standing Index proportion) when vision was removed compared to HAMI. Conversely, IwMS displayed similar postural control characteristics to OA. The current study highlights two novel findings: (1) the utility of novel COP measurements to assess differences in the level of postural control in IwMS; and (2) the benefit of assessing postural control levels in IwMS to not only a population with a fully intact and functional postural control system (HAMI) but also to another population that is thought to experience postural control deficits (OA).
Evaluation of Motor Skills in Children with Rubinstein-Taybi Syndrome
ERIC Educational Resources Information Center
Cazalets, Jean René; Bestaven, Emma; Doat, Emilie; Baudier, Marie Pierre; Gallot, Cécile; Amestoy, Anouck; Bouvard, Manuel; Guillaud, Etienne; Guillain, Isabelle; Grech, Emelyne; Van-gils, Julien; Fergelot, Patricia; Fraisse, Sonia; Taupiac, Emmanuelle; Arveiler, Benoit; Lacombe, Didier
2017-01-01
Rubinstein-Taybi syndrome (RTS) is a rare genetic disease that associates intellectual disability with somatic characteristics. We have conducted a study of the overall motor abilities of RTS participants. Static postural performance as well as gait parameters were somewhat decreased, although not significantly compared to typically developing…
The effect of instructions on postural-suprapostural interactions in three working memory tasks.
Burcal, Christopher J; Drabik, Evan C; Wikstrom, Erik A
2014-06-01
Examining postural control while simultaneously performing a cognitive, or suprapostural task, has shown a fairly consistent trend of improving postural control in young healthy adults and provides insight into postural control mechanisms used in everyday life. However, the role of attention driven by explicit verbal instructions while dual-tasking is less understood. Therefore, the purpose of this investigation is to determine the effects of explicit verbal instructions on the postural-suprapostural interactions among various domains of working memory. A total of 22 healthy young adults with a heterogeneous history of ankle sprains volunteered to participate (age: 22.2±5.1 years; n=10 history of ankle sprains, n=12 no history). Participants were asked to perform single-limb balance trials while performing three suprapostural tasks: backwards counting, random number generation, and the manikin test. In addition, each suprapostural task was completed under three conditions of instruction: no instructions, focus on the postural control task, focus on the suprapostural task. The results indicate a significant effect of instructions on postural control outcomes, with postural performance improving in the presence of instructions across all three cognitive tasks which each stress different aspects of working memory. Further, postural-suprapostural interactions appear to be related to the direction or focus of an individual's attention as instructions to focus on the suprapostural task resulted in the greatest postural control improvements.Thus, attention driven by explicit verbal instructions influence postural-suprapostural interactions as measured by a temporal-spatial postural control outcome, time-to-boundary, regardless of the suprapostural task performed. Copyright © 2014 Elsevier B.V. All rights reserved.
Assessment of Postural Control in Children with Cerebral Palsy: A Review
ERIC Educational Resources Information Center
Pavao, Silvia Leticia; dos Santos, Adriana Neves; Woollacott, Marjorie Hines; Rocha, Nelci Adriana Cicuto Ferreira
2013-01-01
This paper aimed to review studies that assessed postural control (PC) in children with cerebral palsy (CP) and describe the methods used to investigate postural control in this population. It also intended to describe the performance of children with CP in postural control. An extensive database search was performed using the keywords: postural…
Nafati, Gilel; Vuillerme, Nicolas
2011-12-01
This experiment was designed to investigate whether and how decreasing the amount of attentional focus invested in postural control could affect bipedal postural control. Twelve participants were asked to stand upright as immobile as possible on a force platform in one control condition and one cognitive condition. In the latter condition, they performed a short-term digit-span memory task. Decreased center-of-gravity displacements and decreased center-of-foot-pressure displacements minus center-of-gravity displacements were observed in the cognitive condition relative to the control condition. These results suggest that shifting the attentional focus away from postural control by executing a concurrent attention-demanding task could increase postural performance and postural efficiency.
Jazaeri, Seyede Zohreh; Azad, Akram; Mehdizadeh, Hajar; Habibi, Seyed Amirhassan; Mandehgary Najafabadi, Mahbubeh; Saberi, Zakieh Sadat; Rahimzadegan, Hawre; Moradi, Saeed; Behzadipour, Saeed; Parnianpour, Mohamad; Khalaf, Kinda
2018-01-01
Background Although anxiety is a common non-motor outcome of Parkinson's disease (PD) affecting 40% of patients, little attention has been paid so far to its effects on balance impairment and postural control. Improvement of postural control through focusing on the environment (i.e. external focus) has been reported, but the role of anxiety, as a confounding variable, remains unclear. Objectives This study aimed to investigate the influence of anxiety and attentional focus instruction on the standing postural control of PD patients. Methods Thirty-four patients with PD (17 with high anxiety (HA-PD) and 17 with low anxiety (LA-PD)), as well as 17 gender- and age-matched healthy control subjects (HC) participated in the study. Postural control was evaluated using a combination of two levels of postural difficulty (standing on a rigid force plate surface with open eyes (RO) and standing on a foam surface with open eyes (FO)), as well as three attentional focus instructions (internal, external and no focus). Results Only the HA-PD group demonstrated significant postural control impairment as compared to the control, as indicated by significantly greater postural sway measures. Moreover, external focus significantly reduced postural sway in all participants especially during the FO condition. Conclusion The results of the current study provide evidence that anxiety influences balance control and postural stability in patients with PD, particularly those with high levels of anxiety. The results also confirmed that external focus is a potential strategy that significantly improves the postural control of these patients. Further investigation of clinical applicability is warranted towards developing effective therapeutic and rehabilitative treatment plans. PMID:29390029
Postural control system influences intrinsic alerting state.
Barra, Julien; Auclair, Laurent; Charvillat, Agnès; Vidal, Manuel; Pérennou, Dominic
2015-03-01
Numerous studies using dual-task paradigms (postural and cognitive) have shown that postural control requires cognitive resources. However, the influence of postural control on attention components has never been directly addressed. Using the attention network test (ANT), which assesses specifically each of the 3 components of attention-alertness, orientation, and executive control-within a single paradigm, we investigated the effect of postural balance demand on these 3 components. Forty-two participants completed the ANT in 3 postural conditions: (a) supine, a very stable position; (b) sitting on a chair, an intermediate position; and (c) standing with feet lined up heel to toe, a very instable position known as the Romberg position. Our results revealed that the difficulty of postural control does modulate alerting in such a way that it improves with the level of instability of the position. Regarding the orienting and executive control components of attention, performance was not different when participants were standing upright or seated, whereas in the supine position, performance dropped. The strong and specific interaction between postural control and the alerting system suggests that these mechanisms may share parts of the underlying neural circuits. We discuss the possible implication of the locus coeruleus, known to be involved in both postural balance and alerting. Also, our findings concerning orienting and executive control systems suggest that supine posture could have a specific effect on cognitive activities. These effects are discussed in terms of particularities resulting from the supine position. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Shih, Ching-Hsiang; Yeh, Jui-Chi; Shih, Ching-Tien; Chang, Man-Ling
2011-01-01
The latest studies have adopted software technology which turns the Wii Remote Controller into a high-performance limb action detector, we assessed whether two persons with multiple disabilities would be able to control an environmental stimulus through limb action. This study extends the functionality of the Wii Remote Controller to the correction of limb hyperactive behavior to assess whether two children with Attention Deficit Hyperactivity Disorder (ADHD) would be able to actively reduce their limb hyperactive behavior through controlling their favorite stimuli by turning them on/off using a Wii Remote Controller. An ABAB design, in which A represented the baseline and B represented intervention phases, was adopted in this study. Result showed that both participants significantly increased their time duration of maintaining a static limb posture (TDMSLP) to activate the control system in order to produce environmental stimulation in the intervention phases. Practical and developmental implications of the findings are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Single- and Dual-Task Balance Training Are Equally Effective in Youth
Lüder, Benjamin; Kiss, Rainer; Granacher, Urs
2018-01-01
Due to maturation of the postural control system and secular declines in motor performance, adolescents experience deficits in postural control during standing and walking while concurrently performing cognitive interference tasks. Thus, adequately designed balance training programs may help to counteract these deficits. While the general effectiveness of youth balance training is well-documented, there is hardly any information available on the specific effects of single-task (ST) versus dual-task (DT) balance training. Therefore, the objectives of this study were (i) to examine static/dynamic balance performance under ST and DT conditions in adolescents and (ii) to study the effects of ST versus DT balance training on static/dynamic balance under ST and DT conditions in adolescents. Twenty-eight healthy girls and boys aged 12–13 years were randomly assigned to either 8 weeks of ST or DT balance training. Before and after training, postural sway and spatio-temporal gait parameters were registered under ST (standing/walking only) and DT conditions (standing/walking while concurrently performing an arithmetic task). At baseline, significantly slower gait speed (p < 0.001, d = 5.1), shorter stride length (p < 0.001, d = 4.8), and longer stride time (p < 0.001, d = 3.8) were found for DT compared to ST walking but not standing. Training resulted in significant pre–post decreases in DT costs for gait velocity (p < 0.001, d = 3.1), stride length (-45%, p < 0.001, d = 2.4), and stride time (-44%, p < 0.01, d = 1.9). Training did not induce any significant changes (p > 0.05, d = 0–0.1) in DT costs for all parameters of secondary task performance during standing and walking. Training produced significant pre–post increases (p = 0.001; d = 1.47) in secondary task performance while sitting. The observed increase was significantly greater for the ST training group (p = 0.04; d = 0.81). For standing, no significant changes were found over time irrespective of the experimental group. We conclude that adolescents showed impaired DT compared to ST walking but not standing. ST and DT balance training resulted in significant and similar changes in DT costs during walking. Thus, there appears to be no preference for either ST or DT balance training in adolescents. PMID:29928248
Single- and Dual-Task Balance Training Are Equally Effective in Youth.
Lüder, Benjamin; Kiss, Rainer; Granacher, Urs
2018-01-01
Due to maturation of the postural control system and secular declines in motor performance, adolescents experience deficits in postural control during standing and walking while concurrently performing cognitive interference tasks. Thus, adequately designed balance training programs may help to counteract these deficits. While the general effectiveness of youth balance training is well-documented, there is hardly any information available on the specific effects of single-task (ST) versus dual-task (DT) balance training. Therefore, the objectives of this study were (i) to examine static/dynamic balance performance under ST and DT conditions in adolescents and (ii) to study the effects of ST versus DT balance training on static/dynamic balance under ST and DT conditions in adolescents. Twenty-eight healthy girls and boys aged 12-13 years were randomly assigned to either 8 weeks of ST or DT balance training. Before and after training, postural sway and spatio-temporal gait parameters were registered under ST (standing/walking only) and DT conditions (standing/walking while concurrently performing an arithmetic task). At baseline, significantly slower gait speed ( p < 0.001, d = 5.1), shorter stride length ( p < 0.001, d = 4.8), and longer stride time ( p < 0.001, d = 3.8) were found for DT compared to ST walking but not standing. Training resulted in significant pre-post decreases in DT costs for gait velocity ( p < 0.001, d = 3.1), stride length (-45%, p < 0.001, d = 2.4), and stride time (-44%, p < 0.01, d = 1.9). Training did not induce any significant changes ( p > 0.05, d = 0-0.1) in DT costs for all parameters of secondary task performance during standing and walking. Training produced significant pre-post increases ( p = 0.001; d = 1.47) in secondary task performance while sitting. The observed increase was significantly greater for the ST training group ( p = 0.04; d = 0.81). For standing, no significant changes were found over time irrespective of the experimental group. We conclude that adolescents showed impaired DT compared to ST walking but not standing. ST and DT balance training resulted in significant and similar changes in DT costs during walking. Thus, there appears to be no preference for either ST or DT balance training in adolescents.
Fatigue-Induced Balance Impairment in Young Soccer Players
Pau, Massimiliano; Ibba, Gianfranco; Attene, Giuseppe
2014-01-01
Context: Although balance is generally recognized to be an important feature in ensuring good performance in soccer, its link with functional performance remains mostly unexplored, especially in young athletes. Objective: To investigate changes in balance induced by fatigue for unipedal and bipedal static stances in young soccer players. Design: Crossover study. Setting: Biomechanics laboratory and outdoor soccer field. Patients or Other Participants: Twenty-one male soccer players (age = 14.5 ± 0.2 years, height = 164.5 ± 5.6 cm, mass = 56.8 ± 6.8 kg). Intervention(s): Static balance was assessed with postural-sway analysis in unipedal and bipedal upright stance before and after a fatigue protocol consisting of a repeated sprint ability (RSA) test (2 × 15-m shuttle sprint interspersed with 20 seconds of passive recovery, repeated 6 times). Main Outcome Measure(s): On the basis of the center-of-pressure (COP) time series acquired during the experimental tests, we measured sway area, COP path length, and COP maximum displacement and velocity in the anteroposterior and mediolateral directions. Results: Fatigue increased all sway values in bipedal stance and all values except COP velocity in the mediolateral direction in unipedal stance. Fatigue index (calculated on the basis of RSA performance) was positively correlated with fatigue/rest sway ratio for COP path length and COP velocity in the anteroposterior and mediolateral directions for nondominant single-legged stance. Conclusions: Fatigued players exhibited reduced performance of the postural-control system. Participants with better performance in the RSA test appeared less affected by balance impairment, especially in single-legged stance. PMID:24568227
An evaluation of 3D head pose estimation using the Microsoft Kinect v2.
Darby, John; Sánchez, María B; Butler, Penelope B; Loram, Ian D
2016-07-01
The Kinect v2 sensor supports real-time non-invasive 3D head pose estimation. Because the sensor is small, widely available and relatively cheap it has great potential as a tool for groups interested in measuring head posture. In this paper we compare the Kinect's head pose estimates with a marker-based record of ground truth in order to establish its accuracy. During movement of the head and neck alone (with static torso), we find average errors in absolute yaw, pitch and roll angles of 2.0±1.2°, 7.3±3.2° and 2.6±0.7°, and in rotations relative to the rest pose of 1.4±0.5°, 2.1±0.4° and 2.0±0.8°. Larger head rotations where it becomes difficult to see facial features can cause estimation to fail (10.2±6.1% of all poses in our static torso range of motion tests) but we found no significant changes in performance with the participant standing further away from Kinect - additionally enabling full-body pose estimation - or without performing face shape calibration, something which is not always possible for younger or disabled participants. Where facial features remain visible, the sensor has applications in the non-invasive assessment of postural control, e.g. during a programme of physical therapy. In particular, a multi-Kinect setup covering the full range of head (and body) movement would appear to be a promising way forward. Copyright © 2016 Elsevier B.V. All rights reserved.
Patla, Aftab E; Greig, Michael
In the two experiments discussed in this paper we quantified obstacle avoidance performance characteristics carried out open loop (without vision) but with different initial visual sampling conditions and compared it to the full vision condition. The initial visual sampling conditions included: static vision (SV), vision during forward walking for three steps and stopping (FW), vision during forward walking for three steps and not stopping (FW-NS), and vision during backward walking for three steps and stopping (BW). In experiment 1, we compared performance during SV, FW and BW with full vision condition, while in the second experiment we compared performance during FW and FW-NS conditions. The questions we wanted to address are: Is ecologically valid dynamic visual sampling of the environment superior to static visual sampling for open loop obstacle avoidance task? What are the reasons for failure in performing open loop obstacle avoidance task? The results showed that irrespective of the initial visual sampling condition when open loop control is initiated from a standing posture, the success rate was only approximately 50%. The main reason for the high failure rates was not inappropriate limb elevation, but incorrect foot placement before the obstacle. The second experiment showed that it is not the nature of visual sampling per se that influences success rate, but the fact that the open loop obstacle avoidance task is initiated from a standing posture. The results of these two experiments clearly demonstrate the importance of on-line visual information for adaptive human locomotion.
Howard, Charla L; Perry, Bonnie; Chow, John W; Wallace, Chris; Stokic, Dobrivoje S
2017-11-01
Sensorimotor impairments after limb amputation impose a threat to stability. Commonly described strategies for maintaining stability are the posture first strategy (prioritization of balance) and posture second strategy (prioritization of concurrent tasks). The existence of these strategies was examined in 13 below-knee prosthesis users and 15 controls during dual-task standing under increasing postural and cognitive challenge by evaluating path length, 95% sway area, and anterior-posterior and medial-lateral amplitudes of the center of pressure. The subjects stood on two force platforms under usual (hard surface/eyes open) and difficult (soft surface/eyes closed) conditions, first alone and while performing a cognitive task without and then with instruction on cognitive prioritization. During standing alone, sway was not significantly different between groups. After adding the cognitive task without prioritization instruction, prosthesis users increased sway more under the dual-task than single-task standing (p ≤ 0.028) during both usual and difficult conditions, favoring the posture second strategy. Controls, however, reduced dual-task sway under a greater postural challenge (p ≤ 0.017), suggesting the posture first strategy. With prioritization of the cognitive task, sway was unchanged or reduced in prosthesis users, suggesting departure from the posture second strategy, whereas controls maintained the posture first strategy. Individual analysis of dual tasking revealed that greater postural demand in controls and greater cognitive challenge in prosthesis users led to both reduced sway and improved cognitive performance, suggesting cognitive-motor facilitation. Thus, activation of additional resources through increased alertness, rather than posture prioritization, may explain dual-task performance in both prosthesis users and controls under increasing postural and cognitive challenge.
Huang, Cheng-Ya; Zhao, Chen-Guang; Hwang, Ing-Shiou
2014-11-01
Dual-task performance is strongly affected by the direction of attentional focus. This study investigated neural control of a postural-suprapostural procedure when postural focus strategy varied. Twelve adults concurrently conducted force-matching and maintained stabilometer stance with visual feedback on ankle movement (visual internal focus, VIF) and on stabilometer movement (visual external focus, VEF). Force-matching error, dynamics of ankle and stabilometer movements, and event-related potentials (ERPs) were registered. Postural control with VEF caused superior force-matching performance, more complex ankle movement, and stronger kinematic coupling between the ankle and stabilometer movements than postural control with VIF. The postural focus strategy also altered ERP temporal-spatial patterns. Postural control with VEF resulted in later N1 with less negativity around the bilateral fronto-central and contralateral sensorimotor areas, earlier P2 deflection with more positivity around the bilateral fronto-central and ipsilateral temporal areas, and late movement-related potential commencing in the left frontal-central area, as compared with postural control with VIF. The time-frequency distribution of the ERP principal component revealed phase-locked neural oscillations in the delta (1-4Hz), theta (4-7Hz), and beta (13-35Hz) rhythms. The delta and theta rhythms were more pronounced prior to the timing of P2 positive deflection, and beta rebound was greater after the completion of force-matching in VEF condition than VIF condition. This study is the first to reveal the neural correlation of postural focusing effect on a postural-suprapostural task. Postural control with VEF takes advantage of efficient task-switching to facilitate autonomous postural response, in agreement with the "constrained-action" hypothesis. Copyright © 2014 Elsevier B.V. All rights reserved.
[Evaluation of postural control systems in elderly patients with repeated falls].
González Ramírez, Alfonso; Lázaro del Nogal, Montserrat; Ribera Casado, José Manuel
2008-01-01
a) to describe postural control disorders in elderly patients with recurrent falls; b) to analyze the influence of sensory deficits on centre of gravity control mechanisms; and c) to assess the functional consequences of balance disorders and falls in this group of patients. patients aged more than 65 years old referred to a falls unit with two or more falls in the previous 6 months were included in this study. The protocol included posturographic studies with a Neurocom Balance Master. To evaluate motor control, Rhythmic Weight Shift (RWS test) was performed. To assess sensorial control, Modified Clinical Test of Sensory Interaction on Balance (MCT test) was used. Other tests performed were the Sit to Stand (SS test), Walk across (WA test) and Step up over (SO test). a total of 109 patients (85.3% women) were studied. Mean age was 78.01 years (SD: 5.38). Disorders in one or more afferent sensorial systems were found in 51.7% of the patients (27.5% visual deficiencies, 17.6% vestibular alterations, and 6.6% somatosensorial deficits). Two afferent systems were compromised in 25.3%, and all three were compromised in 11.1% of the patients. No significant differences were found in directional control (RWS) when compared with the number of altered systems. posturographic studies provide sensitive information on static and dynamic centre of gravity control systems, eventual sensory deficits, and patients' ability to carry out basic activities of daily living. In our sample, the most frequent deficit was visual impairment. This information is essential to establish a correct management programme.
Postural perturbations: new insights for treatment of balance disorders
NASA Technical Reports Server (NTRS)
Horak, F. B.; Henry, S. M.; Shumway-Cook, A.; Peterson, B. W. (Principal Investigator)
1997-01-01
This article reviews the neural control of posture as understood through studies of automatic responses to mechanical perturbations. Recent studies of responses to postural perturbations have provided a new view of how postural stability is controlled, and this view has profound implications for physical therapy practice. We discuss the implications for rehabilitation of balance disorders and demonstrate how an understanding of the specific systems underlying postural control can help to focus and enrich our therapeutic approaches. By understanding the basic systems underlying control of balance, such as strategy selection, rapid latencies, coordinated temporal spatial patterns, force control, and context-specific adaptations, therapists can focus their treatment on each patient's specific impairments. Research on postural responses to surface translations has shown that balance is not based on a fixed set of equilibrium reflexes but on a flexible, functional motor skill that can adapt with training and experience. More research is needed to determine the extent to which quantification of automatic postural responses has practical implications for predicting falls in patients with constraints in their postural control system.
Electro-tactile stimulation of the posterior neck induces body anteropulsion during upright stance.
De Nunzio, A M; Yavuz, U S; Martinez-Valdes, E; Farina, D; Falla, D
2018-05-01
Sensory information conveyed along afferent fibers from muscle and joint proprioceptors play an important role in the control of posture and gait in humans. In particular, proprioceptive information from the neck is fundamental in supplying the central nervous system with information about the orientation and movement of the head relative to the rest of the body. The previous studies have confirmed that proprioceptive afferences originating from the neck region, evoked via muscle vibration, lead to strong body-orienting effects during static conditions (e.g., leaning of the body forwards or backwards, depending on location of vibration). However, it is not yet certain in humans, whether the somatosensory receptors located in the deep skin (cutaneous mechanoreceptors) have a substantive contribution to postural control, as vibratory stimulation encompasses the receptive field of all the somatosensory receptors from the skin to the muscles. The aim of this study was to investigate the postural effect of cutaneous mechanoreceptor afferences using electro-tactile stimulation applied to the neck. Ten healthy volunteers (8M, 2F) were evaluated. The average position of their centre of foot pressure (CoP) was acquired before, during, and after a subtle electro-tactile stimulation over their posterior neck (mean ± SD = 5.1 ± 2.3 mA at 100 Hz-140% of the perception threshold) during upright stance with their eyes closed. The electro-tactile stimulation led to a body-orienting effect with the subjects consistently leaning forward. An average shift of the CoP of 12.1 ± 11.9 mm (mean ± SD) was reported, which significantly (p < 0.05) differed from its average position under a control condition (no stimulation). These results indicate that cutaneous mechanoreceptive inflow from the neck is integrated to control stance. The findings are relevant for the exploitation of electro-tactile stimulation for rehabilitation interventions where induced anteropulsion of the body is desired.
Nepocatych, Svetlana; Ketcham, Caroline J; Vallabhajosula, Srikant; Balilionis, Gytis
2018-01-01
This study examined the effects of balance training routine, using both sides utilized balance trainer (BOSU) and aerobic step (STEP) on postural sway and functional ability in middle-aged women. Twenty-seven females participated in the study, age 40.6±12.0 years, body mass 72.0±14.0 kg, height 164.0±7.7 cm, BMI 26.5±4.5 kg/m2, and relative body fat 33.1±7.4%. Participants were divided into two groups and performed progressive exercise routine on either STEP or BOSU for three weeks. Pre- and post-test consisted of Postural Sway Test performed on the Biodex Balance System, Functional Ability Test, Sit and Reach Test and Plank. A significant time effect was observed for both groups for sway index(P=0.029) and center of pressure antero-posterior (AP) displacement (P=0.038) but not for sway area or medio-lateral (ML) displacement (P>0.05). In addition, BOSU group had significantly lower Sway Index(P=0.048) and ML range (P=0.035) scores when vision and surface was altered compared to STEP group. A significant time effect was observed in walking-up the stairs (P=0.020), sit and reach test (P=0.035), and plank (P<0.001), but not for walking down the stairs. However, no other significant interactions were observed. Programs that incorporate multisensory balance training have a potential to induce adaptive responses in neuromuscular system that enhances postural control, balance and functional ability of women. The training using BOSU may help improve static balance and functional ability in women.
Sullivan, Edith V; Rose, Jessica; Pfefferbaum, Adolf
2006-08-01
Postural balance is impaired in individuals with pathology of the anterior superior vermis of the cerebellum. Chronic alcoholism, with its known vermian pathology, provides a viable model for studying the relationship between cerebellar pathology and postural stability. Decades of separate study of recovering alcoholics and post-mortem neuroanatomical analysis have demonstrated vermian pathology but few studies have used quantitative posturography, acquired concurrently with quantitative neuroimaging, to establish whether this brain structure-function relationship is selective in vivo. Here, 30 healthy men and 39 chronic alcoholic men, abstinent from alcohol for several months, underwent MRI for volumetric quantitation of the cerebellar vermis and three comparison brain regions, the cerebellar hemispheres, supratentorial cortex and corpus callosum. All subjects also participated in an experiment involving a force platform that measured sway path length and tremor during static standing balance under four sensory conditions and two stance conditions. Three novel findings emerged: (i) sway path length, a physiological index of postural control, was selectively related to volume of the cerebellar vermis and not to any comparison brain region in the alcoholics; (ii) spectral analysis revealed sway prominence in the 2-5 Hz band, another physiological sign of vermian lesions and also selectively related to vermian volume in the alcoholics; and (iii) despite substantial postural sway in the patients, they successfully used vision, touch and stance to normalize sway and reduce tremor. The selective relationship of sway path to vermian but not lateral cerebellar volume provides correlational evidence for functional differentiation of these cerebellar regions. Improvement to virtual normal levels in balance and reduction in sway and tremor with changes in vision, touch and stance provide evidence that adaptive mechanisms recruiting sensorimotor integration can be invoked to compensate for underlying cerebellar vermian-related dysfunction.
Postural balance and falls in elderly nursing home residents enrolled in a ballroom dancing program.
da Silva Borges, Eliane Gomes; de Souza Vale, Rodrigo Gomes; Cader, Samária Ali; Leal, Silvania; Miguel, Francisco; Pernambuco, Carlos Soares; Dantas, Estélio H M
2014-01-01
The aim of this study was to investigate the influence of a ballroom dancing program on the postural balance of institutionalized elderly residents. The sample consisted of 59 sedentary elderly residents of long-stay institutions who were randomly assigned to a ballroom dancing experimental group (EG, n=30) or a control group (CG, n=29). The ballroom dancing program consisted of three 50-min sessions each week on alternate days over a 12-week period. The dances included the foxtrot, waltz, rumba, swing, samba and bolero. The medical records of the subjects were reviewed to determine the number of falls they experienced in the three months prior to the intervention. Postural static balance was assessed using a Lizard (Med. EU., Italy, 2010) stabilometric and posturometric platform. Only patients in the EG lost a significant amount of weight (Δ=-2.85 kg) when comparing the pre- and post-test postural balance assessments. The intergroup comparison revealed a reduced lower limb weight distribution difference in the EG post-test compared to the CG post-test (p=0.012). In the intragroup comparison, the EG patients experienced significantly fewer falls post-test relative to pre-test (p<0.0001). This improvement was not observed for patients in the CG. In the intergroup analysis, we observed fewer falls in the EG post-test compared to the CG post-test (p<0.0001). Therefore it was conclude that sedentary elderly people living in long-term institutions can improve their balance via a ballroom dancing program. This activity improved balance and reduced the number of falls in this elderly population. Copyright © 2014. Published by Elsevier Ireland Ltd.
Rabin, Ely; DiZio, Paul; Ventura, Joel; Lackner, James R
2008-02-01
Lightly touching a stable surface with one fingertip strongly stabilizes standing posture. The three main features of this phenomenon are fingertip contact forces maintained at levels too low to provide mechanical support, attenuation of postural sway relative to conditions without fingertip touch, and center of pressure (CP) lags changes in fingertip shear forces by approximately 250 ms. In the experiments presented here, we tested whether accurate arm proprioception and also whether the precision fingertip contact afforded by the arm's many degrees of freedom are necessary for postural stabilization by finger contact. In our first experiment, we perturbed arm proprioception and control with biceps brachii vibration (120-Hz, 2-mm amplitude). This degraded postural control, resulting in greater postural sway amplitudes. In a second study, we immobilized the touching arm with a splint. This prevented precision fingertip contact but had no effect on postural sway amplitude. In both experiments, the correlation and latency of fingertip contact forces to postural sway were unaffected. We conclude that postural control is executed based on information about arm orientation as well as tactile feedback from light touch, although precision fingertip contact is not essential. The consistent correlation and timing of CP movement and fingertip forces across conditions in which postural sway amplitude and fingertip contact are differentially disrupted suggests posture and the fingertip are controlled in parallel with feedback from the fingertip in this task.
Freund, Jane E; Stetts, Deborah M; Vallabhajosula, Srikant
2016-06-30
Multiple sclerosis (MS) is a chronic progressive disease of the central nervous system. Compared to healthy individuals, persons with multiple sclerosis (PwMS) have increased postural sway in quiet stance, decreased gait speed and increased fall incidence. Trunk performance has been implicated in postural control, gait dysfunction, and fall prevention in older adults. However, the relationship of trunk performance to postural control and gait has not been adequately studied in PwMS. To compare trunk muscle structure and performance in PwMS to healthy age and gendered-matched controls (HC); to determine the effects of isometric trunk endurance testing on postural control in both populations; and to determine the relationship of trunk performance with postural control, gait and step activity in PwMS. Fifteen PwMS and HC completed ultrasound imaging of trunk muscles, 10 m walk test, isometric trunk endurance tests, and postural sway test. Participants wore a step activity monitor for 7 days. PwMS had worse isometric trunk endurance compared to HC. PwMS trunk flexion endurance negatively correlated to several postural control measures and positively correlated to gait speed and step activity. Clinicians should consider evaluation and interventions directed at impaired trunk endurance in PwMS.
Boisgontier, Matthieu P; Cheval, Boris; Chalavi, Sima; van Ruitenbeek, Peter; Leunissen, Inge; Levin, Oron; Nieuwboer, Alice; Swinnen, Stephan P
2017-02-01
It remains unclear which specific brain regions are the most critical for human postural control and balance, and whether they mediate the effect of age. Here, associations between postural performance and corticosubcortical brain regions were examined in young and older adults using multiple structural imaging and linear mixed models. Results showed that of the regions involved in posture, the brainstem was the strongest predictor of postural control and balance: lower brainstem volume predicted larger center of pressure deviation and higher odds of balance loss. Analyses of white and gray matter in the brainstem showed that the pedunculopontine nucleus area appeared to be critical for postural control in both young and older adults. In addition, the brainstem mediated the effect of age on postural control, underscoring the brainstem's fundamental role in aging. Conversely, lower basal ganglia volume predicted better postural performance, suggesting an association between greater neural resources in the basal ganglia and greater movement vigor, resulting in exaggerated postural adjustments. Finally, results showed that practice, shorter height and heavier weight (i.e., higher body mass index), higher total physical activity, and larger ankle active (but not passive) range of motion were predictive of more stable posture, irrespective of age. Copyright © 2016 Elsevier Inc. All rights reserved.
Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O
2017-01-01
The use of dual-task training paradigm to enhance postural stability in patients with balance impairments is an emerging area of interest. The differential effects of dual tasks and dual-task training on postural stability still remain unclear. A systematic review and meta-analysis were conducted to analyze the effects of dual task and training application on static and dynamic postural stability among various population groups. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, from inception until June 2016, on the online databases Scopus, PEDro, MEDLINE, EMBASE, and SportDiscus. Experimental studies analyzing the effects of dual task and dual-task training on postural stability were extracted, critically appraised using PEDro scale, and then summarized according to modified PEDro level of evidence. Of 1,284 records, 42 studies involving 1,480 participants met the review’s inclusion criteria. Of the studies evaluating the effects of dual-task training on postural stability, 87.5% of the studies reported significant enhancements, whereas 30% of the studies evaluating acute effects of dual tasks on posture reported significant enhancements, 50% reported significant decrements, and 20% reported no effects. Meta-analysis of the pooled studies revealed moderate but significant enhancements of dual-task training in elderly participants (95% CI: 1.16–2.10) and in patients suffering from chronic stroke (−0.22 to 0.86). The adverse effects of complexity of dual tasks on postural stability were also revealed among patients with multiple sclerosis (−0.74 to 0.05). The review also discusses the significance of verbalization in a dual-task setting for increasing cognitive–motor interference. Clinical implications are discussed with respect to practical applications in rehabilitation settings. PMID:28356727
Menz, Hylton B.; Dufour, Alyssa B.; Riskowski, Jody L.; Hillstrom, Howard J.; Hannan, Marian T.
2014-01-01
Objective To examine the associations of foot posture and foot function to foot pain. Methods Data were collected on 3,378 members of the Framingham Study who completed foot examinations in 2002–2008. Foot pain (generalized and at six locations) was based on the response to the question “On most days, do you have pain, aching or stiffness in either foot?” Foot posture was categorized as normal, planus or cavus using static pressure measurements of the arch index. Foot function was categorized as normal, pronated or supinated using the center of pressure excursion index from dynamic pressure measurements. Sex-specific multivariate logistic regression models were used to examine the effect of foot posture and function on generalized and location-specific foot pain, adjusting for age and weight. Results Planus foot posture was significantly associated with an increased likelihood of arch pain in men (odds ratio [OR] 1.38, 95% confidence interval [CI] 1.01 – 1.90), while cavus foot posture was protective against ball of foot pain (OR 0.74, 95% CI 0.55 – 1.00) and arch pain (OR 0.64, 95% CI 0.48 – 0.85) in women. Pronated foot function was significantly associated with an increased likelihood of generalized foot pain (OR 1.28, 95% CI 1.04 – 1.56) and heel pain (OR 1.54, 95% CI 1.04 – 2.27) in men, while supinated foot function was protective against hindfoot pain in women (OR 0.74, 95% CI 0.55 – 1.00). Conclusion Planus foot posture and pronated foot function are associated with foot symptoms. Interventions that modify abnormal foot posture and function may therefore have a role in the prevention and treatment of foot pain. PMID:23861176
Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O
2017-01-01
The use of dual-task training paradigm to enhance postural stability in patients with balance impairments is an emerging area of interest. The differential effects of dual tasks and dual-task training on postural stability still remain unclear. A systematic review and meta-analysis were conducted to analyze the effects of dual task and training application on static and dynamic postural stability among various population groups. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, from inception until June 2016, on the online databases Scopus, PEDro, MEDLINE, EMBASE, and SportDiscus. Experimental studies analyzing the effects of dual task and dual-task training on postural stability were extracted, critically appraised using PEDro scale, and then summarized according to modified PEDro level of evidence. Of 1,284 records, 42 studies involving 1,480 participants met the review's inclusion criteria. Of the studies evaluating the effects of dual-task training on postural stability, 87.5% of the studies reported significant enhancements, whereas 30% of the studies evaluating acute effects of dual tasks on posture reported significant enhancements, 50% reported significant decrements, and 20% reported no effects. Meta-analysis of the pooled studies revealed moderate but significant enhancements of dual-task training in elderly participants (95% CI: 1.16-2.10) and in patients suffering from chronic stroke (-0.22 to 0.86). The adverse effects of complexity of dual tasks on postural stability were also revealed among patients with multiple sclerosis (-0.74 to 0.05). The review also discusses the significance of verbalization in a dual-task setting for increasing cognitive-motor interference. Clinical implications are discussed with respect to practical applications in rehabilitation settings.
Gabriner, Michael L; Braun, Brittany A; Houston, Megan N; Hoch, Matthew C
2015-02-01
Chronic ankle instability (CAI) is a condition commonly experienced by physically active individuals. It has been suggested that foot orthotics may increase a CAI patient's postural control. For patients with CAI, is there evidence to suggest that an orthotic intervention will help improve postural control? The literature was searched for studies of level 2 evidence or higher that investigated the effects of foot orthotics on postural control in patients with CAI. The search of the literature produced 5 possible studies for inclusion; 2 studies met the inclusion criteria and were included. One randomized controlled trial and 1 outcomes study were included. Foot orthotics appear to be effective at improving postural control in patients with CAI. There is moderate evidence to support the use of foot orthotics in the treatment of CAI to help improve postural control. There is grade B evidence that foot orthotics help improve postural control in people with CAI. The Centre of Evidence Based Medicine recommends a grade of B for level 2 evidence with consistent findings.
The Physics of a Gymnastics Flight Element
ERIC Educational Resources Information Center
Contakos, Jonas; Carlton, Les G.; Thompson, Bruce; Suddaby, Rick
2009-01-01
From its inception, performance in the sport of gymnastics has relied on the laws of physics to create movement patterns and static postures that appear almost impossible. In general, gymnastics is physics in motion and can provide an ideal framework for studying basic human modeling techniques and physical principles. Using low-end technology and…
Agmon, Maayan; Lavie, Limor; Doumas, Michail
2017-06-01
Degraded hearing in older adults has been associated with reduced postural control and higher risk of falls. Both hearing loss (HL) and falls have dramatic effects on older persons' quality of life (QoL). A large body of research explored the comorbidity between the two domains. The aim of the current review is to describe the comorbidity between HL and objective measures of postural control, to offer potential mechanisms underlying this relationship, and to discuss the clinical implications of this comorbidity. PubMed and Google Scholar were systematically searched for articles published in English up until October 15, 2015, using combinations of the following strings and search words: for hearing: Hearing loss, "Hearing loss," hearing, presbycusis; for postural control: postural control, gait, postural balance, fall, walking; and for age: elderly, older adults. Of 211 screened articles, 7 were included in the systematic review. A significant, positive association between HL and several objective measures of postural control was found in all seven studies, even after controlling for major covariates. Severity of hearing impairment was connected to higher prevalence of difficulties in walking and falls. Physiological, cognitive, and behavioral processes that may influence auditory system and postural control were suggested as potential explanations for the association between HL and postural control. There is evidence for the independent relationship between HL and objective measures of postural control in the elderly. However, a more comprehensive understanding of the mechanisms underlying this relationship is yet to be elucidated. Concurrent diagnosis, treatment, and rehabilitation of these two modalities may reduce falls and increase QoL in older adults. American Academy of Audiology
Relative effects of posture and activity on human height estimation from surveillance footage.
Ramstrand, Nerrolyn; Ramstrand, Simon; Brolund, Per; Norell, Kristin; Bergström, Peter
2011-10-10
Height estimations based on security camera footage are often requested by law enforcement authorities. While valid and reliable techniques have been established to determine vertical distances from video frames, there is a discrepancy between a person's true static height and their height as measured when assuming different postures or when in motion (e.g., walking). The aim of the research presented in this report was to accurately record the height of subjects as they performed a variety of activities typically observed in security camera footage and compare results to height recorded using a standard height measuring device. Forty-six able bodied adults participated in this study and were recorded using a 3D motion analysis system while performing eight different tasks. Height measurements captured using the 3D motion analysis system were compared to static height measurements in order to determine relative differences. It is anticipated that results presented in this report can be used by forensic image analysis experts as a basis for correcting height estimations of people captured on surveillance footage. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Effects of Hand Proximity and Movement Direction in Spatial and Temporal Gap Discrimination.
Wiemers, Michael; Fischer, Martin H
2016-01-01
Previous research on the interplay between static manual postures and visual attention revealed enhanced visual selection near the hands (near-hand effect). During active movements there is also superior visual performance when moving toward compared to away from the stimulus (direction effect). The "modulated visual pathways" hypothesis argues that differential involvement of magno- and parvocellular visual processing streams causes the near-hand effect. The key finding supporting this hypothesis is an increase in temporal and a reduction in spatial processing in near-hand space (Gozli et al., 2012). Since this hypothesis has, so far, only been tested with static hand postures, we provide a conceptual replication of Gozli et al.'s (2012) result with moving hands, thus also probing the generality of the direction effect. Participants performed temporal or spatial gap discriminations while their right hand was moving below the display. In contrast to Gozli et al. (2012), temporal gap discrimination was superior at intermediate and not near hand proximity. In spatial gap discrimination, a direction effect without hand proximity effect suggests that pragmatic attentional maps overshadowed temporal/spatial processing biases for far/near-hand space.
Obesity Impact on the Attentional Cost for Controlling Posture
Mignardot, Jean-Baptiste; Olivier, Isabelle; Promayon, Emmanuel; Nougier, Vincent
2010-01-01
Background This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing. Methods Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials. Findings (1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity. Interpretation Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities. PMID:21187914
Characterization of postural control impairment in women with fibromyalgia
Sempere-Rubio, Núria; López-Pascual, Juan; Aguilar-Rodríguez, Marta; Cortés-Amador, Sara; Espí-López, Gemma; Villarrasa-Sapiña, Israel
2018-01-01
The main goal of this cross-sectional study was to detect whether women with fibromyalgia syndrome (FMS) have altered postural control and to study the sensory contribution to postural control. We also explored the possibility that self-induced anxiety and lower limb strength may be related to postural control. For this purpose, 129 women within an age range of 40 to 70 years were enrolled. Eighty of the enrolled women had FMS. Postural control variables, such as Ellipse, Root mean square (RMS) and Sample entropy (SampEn), in both directions (i.e. mediolateral and anteroposterior), were calculated under five different conditions. A force plate was used to register the center of pressure shifts. Furthermore, isometric lower limb strength was recorded with a portable dynamometer and normalized by lean body mass. The results showed that women with FMS have impaired postural control compared with healthy people, as they presented a significant increase in Ellipse and RMS values (p<0.05) and a significant decrease in SampEn in both directions (p<0.05). Postural control also worsens with the gradual alteration of sensory inputs in this population (p<0.05). Performing a stressor dual task only impacts Ellipse in women with FMS (p>0.05). There were no significant correlations between postural control and lower limb strength (p>0.05). Therefore, women with FMS have impaired postural control that is worse when sensory inputs are altered but is not correlated with their lower limb strength. PMID:29723223
Effects of Tai Chi intervention on dual-task ability in older adults: a pilot study.
Hall, Courtney D; Miszko, Tanya; Wolf, Steven L
2009-03-01
To determine if a 12-week program of Tai Chi that has been shown to reduce falls incidence in older adults would improve the ability to allocate attention to balance under dual-task conditions. Pre-/posttest experimental research design. Movement studies research laboratory. Community dwelling older adults (N=15; range, 62-85y) participated in either Tai Chi training or health education classes (controls) for 12 weeks. Participants in the Tai Chi group attended a twice-weekly, 1.5-hour class taught by an experienced instructor. The control group attended a biweekly, 1-hour class for lectures on health-related topics. Two cognitive tasks (responding to auditory or visual stimulus as quickly as possible) were performed concurrently while maintaining static balance during the Sensory Organization Test (SOT) and while avoiding obstacles while walking. The percent change in performance relative to the single-task condition was calculated and defined as the dual-task cost. The dual-task cost was calculated for both the postural and cognitive measures. There was no improvement in the performance of postural stability or cognitive task under dual-task conditions for the SOT for Tai Chi versus controls. There was no improvement in avoiding obstacles under dual-task conditions for Tai Chi versus controls. Contrary to our hypothesis, the findings of this study did not support a benefit of Tai Chi on the ability to allocate attention to balance under dual-task conditions.
Nishiike, Suetaka; Okazaki, Suzuyo; Watanabe, Hiroshi; Akizuki, Hironori; Imai, Takao; Uno, Atsuhiko; Kitahara, Tadashi; Horii, Arata; Takeda, Noriaki; Inohara, Hidenori
2013-01-01
In this study, we examined the effects of sensory inputs of visual-vestibulosomatosensory conflict induced by virtual reality (VR) on subjective dizziness, posture stability and visual dependency on postural control in humans. Eleven healthy young volunteers were immersed in two different VR conditions. In the control condition, subjects walked voluntarily with the background images of interactive computer graphics proportionally synchronized to their walking pace. In the visual-vestibulosomatosensory conflict condition, subjects kept still, but the background images that subjects experienced in the control condition were presented. The scores of both Graybiel's and Hamilton's criteria, postural instability and Romberg ratio were measured before and after the two conditions. After immersion in the conflict condition, both subjective dizziness and objective postural instability were significantly increased, and Romberg ratio, an index of the visual dependency on postural control, was slightly decreased. These findings suggest that sensory inputs of visual-vestibulosomatosensory conflict induced by VR induced motion sickness, resulting in subjective dizziness and postural instability. They also suggest that adaptation to the conflict condition decreases the contribution of visual inputs to postural control with re-weighing of vestibulosomatosensory inputs. VR may be used as a rehabilitation tool for dizzy patients by its ability to induce sensory re-weighing of postural control.
Cimelli, Sonja N; Curran, Sarah A
2012-01-01
The angle of turnout is thought to predispose professional dancers to overuse musculoskeletal injuries of the lower limb; yet, the influence of angle of turnout on foot posture is currently unknown. Twelve professional contemporary dancers (five women and seven men; mean age, 26.8 years) were recruited. The angle of gait and angle of turnout were measured using a quasi-static clinical tracing method. Foot posture was assessed in the base of gait and angle of turnout using the Foot Posture Index. Each dancer completed a dance history and injury questionnaire. The results show a tendency toward a pronated foot posture (mean, 9°) in the angle of turnout position. A significant relationship was noted between the Foot Posture Index and angle of turnout (ρ = 0.933-0.968, P < .01) and between the number of reported injuries and change in foot posture in the angle of turnout (ρ = 0.789, P < .01) (right foot only). Twenty-eight injuries were reported; male dancers experienced a mean of 2.8 injuries and females a mean of 1.6 injuries. An inverse relationship was noted between age at training initiation and total reported injuries (r =-0.867, P < .01). All of the dancers reported a history of injury to the spine or lower limb, and 9 of the 12 reported an injury within the previous 12 months. Turnout is one of the most fundamental aspects of dance technique. This study suggests a trend toward pronation in angle of turnout and a link to lower-limb musculoskeletal injury.
Effects of orthopedic insoles on static balance of older adults wearing thick socks.
Ma, Christina Zong-Hao; Wong, Duo Wai-Chi; Wan, Anson Hong-Ping; Lee, Winson Chiu-Chun
2018-06-01
The wearing of socks and insoles may affect the ability of the foot to detect tactile input influencing postural balance. The aim of this study was to investigate whether (1) thick socks adversely affected the elderly postural balance and (2) orthopedic insoles could improve the elderly postural balance while wearing thick socks. Repeated-measures study design. In total, 14 healthy older adults were recruited. A monofilament test was conducted to evaluate foot plantar sensation with and without thick socks. Subjects then performed the Romberg tests under three conditions: (1) barefoot, (2) with socks only, and (3) with both socks and insoles. Postural balance was assessed by measuring the center of pressure movement during standing in each experimental condition. Thick socks significantly decreased the monofilament score ( p < 0.001), suggesting reduction in ability to detect external forces. All center of pressure parameters increased significantly while wearing thick socks ( p < 0.017), implying reduction of postural stability. They then decreased significantly with the additional use of insoles ( p < 0.017). Previous studies have documented the changes in plantar pressure distribution with the use of orthopedic insoles. This study further suggests that such changes in contact mechanics could produce some balance-improving effects, which appears not to have been reported earlier. Clinical relevance Wearing thick socks reduces plantar pressure sensitivity and increases postural sway which may increase risk of falls. Orthopedic insoles and footwear with similar design could potentially be a cost-effective method in maintaining postural balance when wearing thick socks.
Hägg, Mary; Tibbling, Lita
2016-07-01
Conclusion All patients with dysphagia after stroke have impaired postural control. IQoro® screen (IQS) training gives a significant and lasting improvement of postural control running parallel with significant improvement of oropharyngeal motor dysfunction (OPMD). Objectives The present investigation aimed at studying the frequency of impaired postural control in patients with stroke-related dysphagia and if IQS training has any effect on impaired postural control in parallel with effect on OPMD. Method A prospective clinical study was carried out with 26 adult patients with stroke-related dysphagia. The training effect was compared between patients consecutively investigated at two different time periods, the first period with 15 patients included in the study more than half a year after stroke, the second period with 11 patients included within 1 month after stroke. Postural control tests and different oropharyngeal motor tests were performed before and after 3 months of oropharyngeal sensorimotor training with an IQS, and at a late follow-up (median 59 weeks after end of training). Result All patients had impaired postural control at baseline. Significant improvement in postural control and OPMD was observed after the completion of IQS training in both intervention groups. The improvements were still present at the late follow-up.
NASA Technical Reports Server (NTRS)
Collins, J. J.; De Luca, C. J.; Pavlik, A. E.; Roy, S. H.; Emley, M. S.; Young, L. R. (Principal Investigator)
1995-01-01
Stabilogram-diffusion analysis was used to examine how prolonged periods in microgravity affect the open-loop and closed-loop postural control mechanisms. It was hypothesized that following spaceflight: (1) the effective stochastic activity of the open-loop postural control schemes in astronauts is increased; (2) the effective stochastic activity and uncorrelated behavior, respectively, of the closed-loop postural control mechanisms in astronauts are increased; and (3) astronauts utilized open-loop postural controls schemes for shorter time intervals and smaller displacements. Four crew members and two alternates from the 14-day Spacelab Life Sciences 2 Mission were included in the study. Each subject was tested under eyes-open, quiet-standing conditions on multiple preflight and postflight days. The subjects' center-of-pressure trajectories were measured with a force platform and analyzed according to stabilogram-diffusion analysis. It was found that the effective stochastic activity of the open-loop postural control schemes in three of the four crew members was increased following spaceflight. This result is interpreted as an indication that there may be in-flight adaptations to higher-level descending postural control pathways, e.g., a postflight increase in the tonic activation of postural muscles. This change may also be the consequence of a compensatory (e.g., "stiffening") postural control strategy that is adopted by astronauts to account for general feeling of postflight unsteadiness. The crew members, as a group, did not exhibit any consistent preflight/postflight differences in the steady-state behavior of their closed-loop postural control mechanisms or in the functional interaction of their open-loop and closed-loop postural control mechanisms. These results are interpreted as indications that although there may be in-flight adaptations to the vestibular system and/or proprioceptive system, input from the visual system can compensate for such changes during undisturbed stance.
NASA Astrophysics Data System (ADS)
Goto, Akifumi; Ishida, Mizuri; Sagawa, Koichi
2010-01-01
The purpose of this study is to derive quantitative assessment indicators of the human postural control ability. An inverted pendulum is applied to standing human body and is controlled by ankle joint torque according to PD control method in sagittal plane. Torque control parameters (KP: proportional gain, KD: derivative gain) and pole placements of postural control system are estimated with time from inclination angle variation using fixed trace method as recursive least square method. Eight young healthy volunteers are participated in the experiment, in which volunteers are asked to incline forward as far as and as fast as possible 10 times over 10 [s] stationary intervals with their neck joint, hip joint and knee joint fixed, and then return to initial upright posture. The inclination angle is measured by an optical motion capture system. Three conditions are introduced to simulate unstable standing posture; 1) eyes-opened posture for healthy condition, 2) eyes-closed posture for visual impaired and 3) one-legged posture for lower-extremity muscle weakness. The estimated parameters Kp, KD and pole placements are applied to multiple comparison test among all stability conditions. The test results indicate that Kp, KD and real pole reflect effect of lower-extremity muscle weakness and KD also represents effect of visual impairment. It is suggested that the proposed method is valid for quantitative assessment of standing postural control ability.
Alsalaheen, Bara; Haines, Jamie; Yorke, Amy; Broglio, Steven P
2015-12-01
To examine the reliability, convergent, and discriminant validity of the limits of stability (LOS) test to assess dynamic postural stability in adolescents using a portable forceplate system. Cross-sectional reliability observational study. School setting. Adolescents (N=36) completed all measures during the first session. To examine the reliability of the LOS test, a subset of 15 participants repeated the LOS test after 1 week. Not applicable. Outcome measurements included the LOS test, Balance Error Scoring System, Instrumented Balance Error Scoring System, and Modified Clinical Test for Sensory Interaction on Balance. A significant relation was observed among LOS composite scores (r=.36-.87, P<.05). However, no relation was observed between LOS and static balance outcome measurements. The reliability of the LOS composite scores ranged from moderate to good (intraclass correlation coefficient model 2,1=.73-.96). The results suggest that the LOS composite scores provide unique information about dynamic postural stability, and the LOS test completed at 100% of the theoretical limit appeared to be a reliable test of dynamic postural stability in adolescents. Clinicians should use dynamic balance measurement as part of their balance assessment and should not use static balance testing (eg, Balance Error Scoring System) to make inferences about dynamic balance, especially when balance assessment is used to determine rehabilitation outcomes, or when making return to play decisions after injury. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Postural stability of biped robots and the foot-rotation indicator (FRI) point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goswami, A.
1999-06-01
The focus of this paper is the problem of foot rotation in biped robots during the single-support phase. Foot rotation is an indication of postural instability, which should be carefully treated in a dynamically stable walk and avoided altogether in a statically stable walk. The author introduces the foot-rotation indicator (FRI) point, which is a point on the foot/ground-contact surface where the net ground-reaction force would have to act to keep the foot stationary. To ensure no foot rotation, the FRI point must remain within the convex hull of the foot-support area. In contrast with the ground projection of themore » center of mass (GCoM), which is a static criterion, the FRI point incorporates robot dynamics. As opposed to the center of pressure (CoP) -- better known as the zero-moment point (ZMP) in the robotics literature -- which may not leave the support area, the FRI point may leave the area. In fact, the position of the FRI point outside the footprint indicates the direction of the impending rotation and the magnitude of rotational moment acting on the foot. Owing to these important properties, the FRI point helps not only to monitor the state of postural stability of a biped robot during the entire gait cycle, but indicates the severity of instability of the gait as well. In response to a recent need, the paper also resolves the misconceptions surrounding the CoP/ZMP equivalence.« less
[Temporal Analysis of Body Sway during Reciprocator Motion Movie Viewing].
Sugiura, Akihiro; Tanaka, Kunihiko; Wakatabe, Shun; Matsumoto, Chika; Miyao, Masaru
2016-01-01
We aimed to investigate the effect of stereoscopic viewing and the degree of awareness of motion sickness on posture by measuring body sway during motion movie viewing. Nineteen students (12 men and 7 women; age range, 21-24 years) participated in this study. The movie, which showed several balls randomly positioned, was projected on a white wall 2 m in front of the subjects through a two-dimensional (2-D)/three-dimensional (3-D) convertible projector. To measure body sway during movie viewing, the subjects stood statically erect on a Wii balance board, with the toe opening at 18 degrees. The study protocol was as follows: The subjects watched (1) a nonmoving movie for 1 minute as the pretest and then (2) a round-trip sinusoidally moving-in-depth-direction movie for 3 minutes. (3) The initial static movie was shown again for 1 minute. Steps (2) and (3) were treated as one trial, after which two trials (2-D and 3-D movies) were performed in a random sequence. In this study, we found that posture changed according to the motion in the movie and that the longer the viewing time, the higher the synchronization accuracy. These tendencies depended on the level of awareness of motion sickness or the 3-D movie viewed. The mechanism of postural change in movie viewing was not vection but self-defense to resolve sensory conflict between visual information (spatial swing) and equilibrium sense (motionlessness).
Barske, Heather; Chimenti, Ruth; Tome, Josh; Martin, Elizabeth; Flemister, Adolph S; Houck, Jeff
2013-05-01
Lateral column lengthening (LCL) has been shown to radiographically restore the medial longitudinal arch. However, the impact of LCL on foot function during gait has not been reported using validated clinical outcomes and gait analysis. Thirteen patients with a stage II flatfoot who had undergone unilateral LCL surgery and 13 matched control subjects completed self-reported pain and functional scales as well as a clinical examination. A custom force transducer was used to establish the maximum passive range of motion of first metatarsal dorsiflexion at 40 N of force. Foot kinematic data were collected during gait using 3-dimensional motion analysis techniques. Radiographic correction of the flatfoot was achieved in all cases. Despite this, most patients continued to report pain and dysfunction postoperatively. Participants post LCL demonstrated similar passive and active movement of the medial column when we compared the operated and the nonoperated sides. However, participants post LCL demonstrated significantly greater first metatarsal passive range of motion and first metatarsal dorsiflexion during gait than did controls (P < .01 for all pairwise comparisons). Patients undergoing LCL for correction of stage II adult-acquired flatfoot deformity experience mixed outcomes and similar foot kinematics as the uninvolved limb despite radiographic correction of deformity. These patients maintain a low arch posture similar to their uninvolved limb. The consequence is that first metatarsal movement operates at the end range of dorsiflexion and patients do not obtain full hindfoot inversion at push-off. Longitudinal data are necessary to make a more valid comparison of the effects of surgical correction measured using radiographs and dynamic foot posture during gait. Level III, comparative series.
Yilmaz Yelvar, Gul Deniz; Çirak, Yasemin; Dalkilinç, Murat; Demir, Yasemin Parlak; Baltaci, Gul; Kömürcü, Mahmut; Yelvar, Gul Deniz Yilmaz
2016-06-30
Postural control allows performance of daily and sports activities. The previous studies show that postural sway inceases in orthopaedic injuries such as osteoarthritis and total knee arthroplasty. To compare postural sway, risk of falling and function between individuals with and without patellofemoral pain syndrome (PFS). This study included 22 subjects with patellofemoral pain syndrome, age-matched pain-free 22 females serving as a control group. Visual anolog scale and Kujala were used to evaluate the pain. Posturographic assesment was performed by Tetrax posturographic device. Biering Modified Sorenson test for extensor endurance and sit-up test for flexor endurance were used for the evaluation of trunk endurance. Timed get-up and go test was used for lower extremity function. The Student's t Test was used to compare variables between the groups. The Pearson correlation coefficients were calculated to examine correlation between the quantitative variables. Postural sway included eyes open without pillow, eyes open on pillow, eyes closed on pillow, risk of falling, function and postural stabilization included flexor endurance, extansor endurance are impared in patient with patellofemoral pain syndrome when compare to controls. In subjects with PFPS increased postural sway significantly associated with body mass index (r= 0.52), pain duration (r= 0.43), postural control (extansor endurance) (r= -0.50) and risk of falling (r= 0.62) on pillow with open eyes. In addition we found function significantly related with postural control (extansor endurance and flexor endurance) (r= -0.59 and r= -0.59) and risk of falling (r= 0.77)CONCLUSIONS: Decreased neuromuscular control of the trunk core and increased postural sway and falling risk were found in patients with PFPS. Patients may be evaluated for deficits in postural control and falling risk before treatment.
Messing, Karen; Stock, Susan; Côté, Julie; Tissot, France
2015-01-01
The Yant Award was established in 1964 to honor the contributions of William P. Yant, the first president of the American Industrial Hygiene Association. It is presented annually for outstanding contributions in industrial hygiene or allied fields to an individual residing outside the United States. The 2014 award recipient is Dr. Karen Messing, Professor emeritus, Department of Biological Sciences, Université du Québec à Montréal and Researcher, CINBIOSE Research Centre. Gender (socially determined) differences in occupations, employment, and working conditions, task assignments, and work methods that affect exposure to health risks are increasingly documented. Interactions of (biologically influenced) sex differences with workplace parameters may also influence exposure levels. During field studies, ergonomists learn a lot about gender and sex that can be important when generating and testing hypotheses about the mechanisms that link workplace exposures to health outcomes. Prolonged standing is common in North America; almost half (45%) of Québec workers spend more than three-quarters of their working time on their feet and 40% of these cannot sit at will. This posture has been linked to chronic back pain and musculoskeletal disorders (MSDs) in the lower limbs, but many health professionals suggest workers should stand rather than sit at work. We ask: (1) Given the fact that roughly the same proportion of men and women stand at work, what does a gender-sensitive analysis add to our ability to detect and thus prevent work-related MSDs?; (2) How does ergonomics research inform gender-sensitive analysis of occupational health data?; and (3) What do researchers need to know to orient interventions to improve general working postures? We have sought answers to these questions through collaborative research with specialists in epidemiology, occupational medicine, biomechanics, and physiology, carried out in partnership with public health organisations, community groups, and unions. We conclude that failure to characterize prolonged static standing and to apply gender-sensitive analysis can confuse assessment of musculoskeletal and circulatory effects of working postures. We suggest that prolonged static sitting and standing postures can and should be avoided by changes to workplace organization and environments. Research is needed to define optimal walking speeds and arrive at optimal ratios of sitting, standing, and walking in the workplace.
Shih, Ching-Hsiang; Shih, Ching-Tien; Chu, Chiung-Ling
2010-01-01
The latest researches adopted software technology turning the Nintendo Wii Balance Board into a high performance change of standing posture (CSP) detector, and assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture). This study extends Wii Balance Board functionality for standing posture correction (i.e., actively adjust abnormal standing posture) to assessed whether two persons with multiple disabilities would be able to actively correct their standing posture by controlling their favorite stimulation on/off using a Wii Balance Board with a newly developed standing posture correcting program (SPCP). The study was performed according to an ABAB design, in which A represented baseline and B represented intervention phases. Data showed that both participants significantly increased time duration of maintaining correct standing posture (TDMCSP) to activate the control system to produce environmental stimulation during the intervention phases. Practical and developmental implications of the findings were discussed.
Matsuura, Yukako; Fujino, Haruo; Hashimoto, Ryota; Yasuda, Yuka; Yamamori, Hidenaga; Ohi, Kazutaka; Takeda, Masatoshi; Imura, Osamu
2015-03-01
The purpose of this study was to assess postural instability in patients with schizophrenia using a pressure-sensitive platform and to examine the effects of anxiety, psychiatric symptoms, and the use of neuroleptic medications on postural sway. Participants were 23 patients with schizophrenia and 23 healthy controls. We found that the patients showed greater overall postural instability than the controls. Furthermore, they demonstrated greater instability when the test was performed with the eyes closed than with the eyes open. However, removal of visual input had less impact on the indices of postural instability in the patients than in the controls, suggesting that schizophrenia is associated with difficulties in integrating visual information and proprioceptive signals. Furthermore, in contrast to the controls, anxiety exacerbated postural instability in the patients. There were significant associations between postural stability and psychiatric symptoms in the patients without extrapyramidal symptoms, whereas medication dose did not significantly correlate with postural stability. Copyright © 2015 Elsevier B.V. All rights reserved.
Postural control in chronic obstructive pulmonary disease: a systematic review.
Porto, E F; Castro, A A M; Schmidt, V G S; Rabelo, H M; Kümpel, C; Nascimento, O A; Jardim, J R
2015-01-01
Patients with chronic obstructive pulmonary disease (COPD) fall frequently, although the risk of falls may seem less important than the respiratory consequences of the disease. Nevertheless, falls are associated to increased mortality, decreased independence and physical activity levels, and worsening of quality of life. The aims of this systematic review was to evaluate information in the literature with regard to whether impaired postural control is more prevalent in COPD patients than in healthy age-matched subjects, and to assess the main characteristics these patients present that contribute to impaired postural control. Five databases were searched with no dates or language limits. The MEDLINE, PubMed, EMBASE, Web of Science, and PEDro databases were searched using "balance", "postural control", and "COPD" as keywords. The search strategies were oriented and guided by a health science librarian and were performed on March 27, 2014. The studies included were those that evaluated postural control in COPD patients as their main outcome and scored more than five points on the PEDro scale. Studies supplied by the database search strategy were assessed independently by two blinded researchers. A total of 484 manuscripts were found using the "balance in COPD or postural control in COPD" keywords. Forty-three manuscripts appeared more than once, and 397 did not evaluate postural control in COPD patients as the primary outcome. Thus, only 14 studies had postural control as their primary outcome. Our study examiners found only seven studies that had a PEDro score higher than five points. The examiners' interrater agreement was 76.4%. Six of those studies were accomplished with a control group and one study used their patients as their own controls. The studies were published between 2004 and 2013. Patients with COPD present postural control impairment when compared with age-matched healthy controls. Associated factors contributing to impaired postural control were muscle weakness, physical inactivity, elderly age, need for supplemental oxygen, and limited mobility.
Helmchen, Christoph; Kirchhoff, Jan-Birger; Göttlich, Martin; Sprenger, Andreas
2017-01-01
The cerebellum integrates proprioceptive, vestibular and visual signals for postural control. Cerebellar patients with downbeat nystagmus (DBN) complain of unsteadiness of stance and gait as well as blurred vision and oscillopsia. The aim of this study was to elucidate the differential role of visual input, gaze eccentricity, vestibular and proprioceptive input on the postural stability in a large cohort of cerebellar patients with DBN, in comparison to healthy age-matched control subjects. Oculomotor (nystagmus, smooth pursuit eye movements) and postural (postural sway speed) parameters were recorded and related to each other and volumetric changes of the cerebellum (voxel-based morphometry, SPM). Twenty-seven patients showed larger postural instability in all experimental conditions. Postural sway increased with nystagmus in the eyes closed condition but not with the eyes open. Romberg's ratio remained stable and was not different from healthy controls. Postural sway did not change with gaze position or graviceptive input. It increased with attenuated proprioceptive input and on tandem stance in both groups but Romberg's ratio also did not differ. Cerebellar atrophy (vermal lobule VI, VIII) correlated with the severity of impaired smooth pursuit eye movements of DBN patients. Postural ataxia of cerebellar patients with DBN cannot be explained by impaired visual feedback. Despite oscillopsia visual feedback control on cerebellar postural control seems to be preserved as postural sway was strongest on visual deprivation. The increase in postural ataxia is neither related to modulations of single components characterizing nystagmus nor to deprivation of single sensory (visual, proprioceptive) inputs usually stabilizing stance. Re-weighting of multisensory signals and/or inappropriate cerebellar motor commands might account for this postural ataxia.
Helmchen, Christoph; Kirchhoff, Jan-Birger; Göttlich, Martin; Sprenger, Andreas
2017-01-01
Background The cerebellum integrates proprioceptive, vestibular and visual signals for postural control. Cerebellar patients with downbeat nystagmus (DBN) complain of unsteadiness of stance and gait as well as blurred vision and oscillopsia. Objectives The aim of this study was to elucidate the differential role of visual input, gaze eccentricity, vestibular and proprioceptive input on the postural stability in a large cohort of cerebellar patients with DBN, in comparison to healthy age-matched control subjects. Methods Oculomotor (nystagmus, smooth pursuit eye movements) and postural (postural sway speed) parameters were recorded and related to each other and volumetric changes of the cerebellum (voxel-based morphometry, SPM). Results Twenty-seven patients showed larger postural instability in all experimental conditions. Postural sway increased with nystagmus in the eyes closed condition but not with the eyes open. Romberg’s ratio remained stable and was not different from healthy controls. Postural sway did not change with gaze position or graviceptive input. It increased with attenuated proprioceptive input and on tandem stance in both groups but Romberg’s ratio also did not differ. Cerebellar atrophy (vermal lobule VI, VIII) correlated with the severity of impaired smooth pursuit eye movements of DBN patients. Conclusions Postural ataxia of cerebellar patients with DBN cannot be explained by impaired visual feedback. Despite oscillopsia visual feedback control on cerebellar postural control seems to be preserved as postural sway was strongest on visual deprivation. The increase in postural ataxia is neither related to modulations of single components characterizing nystagmus nor to deprivation of single sensory (visual, proprioceptive) inputs usually stabilizing stance. Re-weighting of multisensory signals and/or inappropriate cerebellar motor commands might account for this postural ataxia. PMID:28056109
Agmon, Maayan; Belza, Basia; Nguyen, Huong Q; Logsdon, Rebecca G; Kelly, Valerie E
2014-01-01
Injury due to falls is a major problem among older adults. Decrements in dual-task postural control performance (simultaneously performing two tasks, at least one of which requires postural control) have been associated with an increased risk of falling. Evidence-based interventions that can be used in clinical or community settings to improve dual-task postural control may help to reduce this risk. THE AIMS OF THIS SYSTEMATIC REVIEW ARE: 1) to identify clinical or community-based interventions that improved dual-task postural control among older adults; and 2) to identify the key elements of those interventions. Studies were obtained from a search conducted through October 2013 of the following electronic databases: PubMed, CINAHL, PsycINFO, and Web of Science. Randomized and nonrandomized controlled studies examining the effects of interventions aimed at improving dual-task postural control among community-dwelling older adults were selected. All studies were evaluated based on methodological quality. Intervention characteristics including study purpose, study design, and sample size were identified, and effects of dual-task interventions on various postural control and cognitive outcomes were noted. Twenty-two studies fulfilled the selection criteria and were summarized in this review to identify characteristics of successful interventions. The ability to synthesize data was limited by the heterogeneity in participant characteristics, study designs, and outcome measures. Dual-task postural control can be modified by specific training. There was little evidence that single-task training transferred to dual-task postural control performance. Further investigation of dual-task training using standardized outcome measurements is needed.
Assessing Somatosensory Utilization during Unipedal Postural Control.
Goel, Rahul; De Dios, Yiri E; Gadd, Nichole E; Caldwell, Erin E; Peters, Brian T; Reschke, Millard F; Bloomberg, Jacob J; Oddsson, Lars I E; Mulavara, Ajitkumar P
2017-01-01
Multisensory-visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects "stood" supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control.
Advantages and disadvantages of stiffness instructions when studying postural control.
Bonnet, Cédrick T
2016-05-01
To understand the maintenance of upright stance, researchers try to discover the fundamental mechanisms and attentional resources devoted to postural control and eventually to the performance of other tasks (e.g., counting in the head). During their studies, some researchers require participants to stand as steady as possible and other simply ask participants to stand naturally. Surprisingly, a clear and direct explanation of the usefulness of the steadiness requirement seems to be lacking, both in experimental and methodological discussions. Hence, the objective of the present note was to provide advantages and disadvantages of this steadiness requirement in studies of postural control. The advantages may be to study fundamental postural control, to eliminate useless postural variability, to control spurious body motions and to control the participants' thoughts. As disadvantages, this steadiness requirement only leads to study postural control in unnatural upright stance, it changes the focus of attention (internal vs. external) and the nature of postural control (unconscious vs. conscious), it increases the difficulty of a supposedly easy control task and it eliminates or reduces the opportunity to record exploratory behaviors. When looking carefully at the four advantages of the steadiness requirement, one can believe that they are, in fact, more disadvantageous than advantageous. Overall therefore, this requirement seems illegitimate and it is proposed that researchers should not use it in the study of postural control. They may use this requirement only if they search to know the limit until which participants can consciously reduce their postural sway. Copyright © 2015 Elsevier B.V. All rights reserved.
Assessing Somatosensory Utilization during Unipedal Postural Control
Goel, Rahul; De Dios, Yiri E.; Gadd, Nichole E.; Caldwell, Erin E.; Peters, Brian T.; Reschke, Millard F.; Bloomberg, Jacob J.; Oddsson, Lars I. E.; Mulavara, Ajitkumar P.
2017-01-01
Multisensory—visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects “stood” supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control. PMID:28443004
Sirois-Leclerc, Geneviève; Remaud, Anthony
2017-01-01
Postural control is not a fully automatic process, but requires a certain level of attention, particularly as the difficulty of the postural task increases. This study aimed at testing whether experienced contemporary dancers, because of their specialized training involving the control of posture/balance, would present with a dual-task performance suggesting lesser attentional demands associated with dynamic postural control compared with non-dancers. Twenty dancers and 16 non-dancers performed a dynamic postural tracking task in both antero-posterior and side-to-side directions, while standing on a force platform. The postural task was performed, in turn, 1) as a stand-alone task, and concurrently with both 2) a simple reaction time task and 3) a choice reaction time task. Postural control performance was estimated through variables calculated from centre of pressure movements. Although no overall group difference was found in reaction time values, we found a better ability to control the side to side movements of the centre of pressure during the tracking task in dancers compared with non-dancers, which was dependent on the secondary task. This suggests that such increased ability is influenced by available attentional resources. PMID:28323843
Sirois-Leclerc, Geneviève; Remaud, Anthony; Bilodeau, Martin
2017-01-01
Postural control is not a fully automatic process, but requires a certain level of attention, particularly as the difficulty of the postural task increases. This study aimed at testing whether experienced contemporary dancers, because of their specialized training involving the control of posture/balance, would present with a dual-task performance suggesting lesser attentional demands associated with dynamic postural control compared with non-dancers. Twenty dancers and 16 non-dancers performed a dynamic postural tracking task in both antero-posterior and side-to-side directions, while standing on a force platform. The postural task was performed, in turn, 1) as a stand-alone task, and concurrently with both 2) a simple reaction time task and 3) a choice reaction time task. Postural control performance was estimated through variables calculated from centre of pressure movements. Although no overall group difference was found in reaction time values, we found a better ability to control the side to side movements of the centre of pressure during the tracking task in dancers compared with non-dancers, which was dependent on the secondary task. This suggests that such increased ability is influenced by available attentional resources.
Postural Control in Children with Autism.
ERIC Educational Resources Information Center
Kohen-Raz, Reuven; And Others
1992-01-01
Postural control was evaluated in 91 autistic, 166 normal, and 18 mentally retarded children using a computerized posturographic procedure. In comparison to normal children, the autistic subjects were less likely to exhibit age-related changes in postural performance, and postures were more variable and less stable. (Author/JDD)
Inadequate interaction between open- and closed-loop postural control in phobic postural vertigo.
Wuehr, M; Pradhan, C; Novozhilov, S; Krafczyk, S; Brandt, T; Jahn, K; Schniepp, R
2013-05-01
Phobic postural vertigo (PPV) is characterized by a subjective dizziness and postural imbalance. Changes in postural control strategy may cause the disturbed postural performance in PPV. A better understanding of the mechanisms behind this change in strategy is required to improve the diagnostic tools and therapeutic options for this prevalent disorder. Here we apply stabilogram diffusion analysis (SDA) to examine the characteristics and modes of interaction of open- and closed-loop processes that make up the postural control scheme in PPV. Twenty patients with PPV and 20 age-matched healthy controls were recorded on a stabilometer platform with eyes open and with eyes closed. Spatio-temporal changes of the center of pressure (CoP) displacement were analyzed by means of SDA and complementary CoP amplitude measures. (1) Open-loop control mechanisms in PPV were disturbed because of a higher diffusion activity (p < 0.001). (2) The interaction of open- and closed-loop processes was altered in that the sensory feedback threshold of the system was lowered (p = 0.010). These two changes were comparable to those observed in healthy subjects during more demanding balance conditions such as standing with eyes closed. These data indicate that subjective imbalance in PPV is associated with characteristic changes in the coordination of open- and closed-loop mechanisms of postural control. Patients with PPV use sensory feedback inadequately during undisturbed stance, and this impairs postural performance. These changes are compatible with higher levels of anti-gravity muscle activity and co-contraction during the conscious concentration on control of postural stability.
Otolith and Vertical Canal Contributions to Dynamic Postural Control
NASA Technical Reports Server (NTRS)
Black, F. Owen
1999-01-01
The objective of this project is to determine: 1) how do normal subjects adjust postural movements in response to changing or altered otolith input, for example, due to aging? and 2) how do patients adapt postural control after altered unilateral or bilateral vestibular sensory inputs such as ablative inner ear surgery or ototoxicity, respectively? The following hypotheses are under investigation: 1) selective alteration of otolith input or abnormalities of otolith receptor function will result in distinctive spatial, frequency, and temporal patterns of head movements and body postural sway dynamics. 2) subjects with reduced, altered, or absent vertical semicircular canal receptor sensitivity but normal otolith receptor function or vice versa, should show predictable alterations of body and head movement strategies essential for the control of postural sway and movement. The effect of altered postural movement control upon compensation and/or adaptation will be determined. These experiments provide data for the development of computational models of postural control in normals, vestibular deficient subjects and normal humans exposed to unusual force environments, including orbital space flight.
Postural control in restless legs syndrome with medication intervention using pramipexole.
Ahlgrén-Rimpiläinen, Aulikki; Lauerma, Hannu; Kähkönen, Seppo; Aalto, Heikki; Tuisku, Katinka; Holi, Matti; Pyykkö, Ilmari; Rimpiläinen, Ilpo
2014-02-01
Central dopamine regulation is involved in postural control and in the pathophysiology of restless legs syndrome (RLS) and Parkinson's disease (PD). Postural control abnormalities have been detected in PD, but there are no earlier studies with regard to RLS and postural control. Computerized force platform posturography was applied to measure the shift and the velocity (CPFV) of center point of forces (CPF) with eyes open (EO) and eyes closed (EC) in controls (n = 12) and prior and after a single day intervention with pramipexole in RLS subjects (n = 12). CPFV (EO) was significantly lower in the RLS group (p < 0.05) than in controls. After pramipexole intake, the difference disappeared and the subjective symptom severity diminished. Pramipexole did not significantly influence CPFV (EC) or CPF shift direction. Subjects with RLS used extensively visual mechanisms to control vestibule-spinal reflexes to improve or compensate the postural stability. Further research is needed to clarify altered feedback in the central nervous system and involvement of dopamine and vision in the postural control in RLS.
Memari, Amir Hossein; Ghanouni, Parisa; Shayestehfar, Monir; Ghaheri, Banafsheh
2014-01-01
Context: Motor impairments in individuals with autism spectrum disorder (ASD) have been frequently reported. In this review, we narrow our focus on postural control impairments to summarize current literature for patterns, underlying mechanisms, and determinants of posture in this population. Evidence Acquisition: A literature search was conducted through Medline, ISI web of Knowledge, Scopus and Google Scholar to include studies between 1992 and February 2013. Results: Individuals with ASD have problems in maintaining postural control in infancy that well persists into later years. However, the patterns and underlying mechanisms are still unclear. Conclusions: Examining postural control as an endophenotype or early diagnostic marker of autism is a conceptual premise which should be considered in future investigations. At the end of the review, methodological recommendations on the assessment of postural control have also been provided. PMID:25520765
Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.
Segil, Jacob L; Controzzi, Marco; Weir, Richard F ff; Cipriani, Christian
2014-01-01
A myoelectric controller should provide an intuitive and effective human-machine interface that deciphers user intent in real-time and is robust enough to operate in daily life. Many myoelectric control architectures have been developed, including pattern recognition systems, finite state machines, and more recently, postural control schemes. Here, we present a comparative study of two types of finite state machines and a postural control scheme using both virtual and physical assessment procedures with seven nondisabled subjects. The Southampton Hand Assessment Procedure (SHAP) was used in order to compare the effectiveness of the controllers during activities of daily living using a multigrasp artificial hand. Also, a virtual hand posture matching task was used to compare the controllers when reproducing six target postures. The performance when using the postural control scheme was significantly better (p < 0.05) than the finite state machines during the physical assessment when comparing within-subject averages using the SHAP percent difference metric. The virtual assessment results described significantly greater completion rates (97% and 99%) for the finite state machines, but the movement time tended to be faster (2.7 s) for the postural control scheme. Our results substantiate that postural control schemes rival other state-of-the-art myoelectric controllers.
Foot posture, foot function and low back pain: the Framingham Foot Study
Menz, Hylton B.; Dufour, Alyssa B.; Riskowski, Jody L.; Hillstrom, Howard J.
2013-01-01
Objective. Abnormal foot posture and function have been proposed as possible risk factors for low back pain, but this has not been examined in detail. The objective of this study was to explore the associations of foot posture and foot function with low back pain in 1930 members of the Framingham Study (2002–05). Methods. Low back pain, aching or stiffness on most days was documented on a body chart. Foot posture was categorized as normal, planus or cavus using static weight-bearing measurements of the arch index. Foot function was categorized as normal, pronated or supinated using the centre of pressure excursion index derived from dynamic foot pressure measurements. Sex-specific multivariate logistic regression models were used to examine the associations of foot posture, foot function and asymmetry with low back pain, adjusting for confounding variables. Results. Foot posture showed no association with low back pain. However, pronated foot function was associated with low back pain in women [odds ratio (OR) = 1.51, 95% CI 1.1, 2.07, P = 0.011] and this remained significant after adjusting for age, weight, smoking and depressive symptoms (OR = 1.48, 95% CI 1.07, 2.05, P = 0.018). Conclusion. These findings suggest that pronated foot function may contribute to low back symptoms in women. Interventions that modify foot function, such as orthoses, may therefore have a role in the prevention and treatment of low back pain. PMID:24049103
Postural control and balance self-efficacy in women with fibromyalgia: are there differences?
Muto, L H A; Sauer, J F; Yuan, S L K; Sousa, A; Mango, P C; Marques, A P
2015-04-01
Fibromyalgia (FM) is a rheumatic disease characterized by chronic widespread pain and symptoms such as fatigue, sleep disturbances, cognitive difficulties, and depression. Postural instability is a debilitating disorder increasingly recognized as part of FM. To assess and compare postural control and balance self-efficacy in women with and without FM and verify the association of these variables with pain, symptom severity, and strength. Case-control study Physiotherapeutic Clinical Research and Electromyography Laboratory Department of Physical Therapy, Speech Therapy, and Occupational Therapy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil. Case-control study of 117 women ranging from age 35 to 60 years. Of these, 67 had FM. Posture control was assessed with the modified clinical test of sensory interaction on balance with patients in forceplates, balance self-efficacy with the Activities-specific Balance Confidence Scale, pain severity with the Visual Analog Scale, tender point pain threshold with digital algometry, symptom severity with the fibromyalgia impact questionnaire, and lower limb strength with a dynamometer. Individuals with FM had impaired postural control showing increased speed of oscillation of the center of gravity (P=0.004) and decreased balance self-efficacy (P<0.001). They had moderate to excellent correlations of balance self-efficacy with pain (r=0.7, P<0.01), muscle strength (r=0.52, P<0.01), and symptom severity (r=0.78, P<0.10) compared with the control group. Correlation of postural control with the same variables was weak. Patients with FM have impaired postural control and low balance self-efficacy that are associated with pain, muscle strength, and symptom severity. Postural control and balance self-efficacy needs to be assessed in patients with FM and the treatment goals should be the improvement of postural control and balance self-efficacy.
Frequency-Specific Fractal Analysis of Postural Control Accounts for Control Strategies
Gilfriche, Pierre; Deschodt-Arsac, Véronique; Blons, Estelle; Arsac, Laurent M.
2018-01-01
Diverse indicators of postural control in Humans have been explored for decades, mostly based on the trajectory of the center-of-pressure. Classical approaches focus on variability, based on the notion that if a posture is too variable, the subject is not stable. Going deeper, an improved understanding of underlying physiology has been gained from studying variability in different frequency ranges, pointing to specific short-loops (proprioception), and long-loops (visuo-vestibular) in neural control. More recently, fractal analyses have proliferated and become useful additional metrics of postural control. They allowed identifying two scaling phenomena, respectively in short and long timescales. Here, we show that one of the most widely used methods for fractal analysis, Detrended Fluctuation Analysis, could be enhanced to account for scalings on specific frequency ranges. By computing and filtering a bank of synthetic fractal signals, we established how scaling analysis can be focused on specific frequency components. We called the obtained method Frequency-specific Fractal Analysis (FsFA) and used it to associate the two scaling phenomena of postural control to proprioceptive-based control loop and visuo-vestibular based control loop. After that, convincing arguments of method validity came from an application on the study of unaltered vs. altered postural control in athletes. Overall, the analysis suggests that at least two timescales contribute to postural control: a velocity-based control in short timescales relying on proprioceptive sensors, and a position-based control in longer timescales with visuo-vestibular sensors, which is a brand-new vision of postural control. Frequency-specific scaling exponents are promising markers of control strategies in Humans. PMID:29643816
Age Related Decline in Postural Control Mechanisms.
ERIC Educational Resources Information Center
Stelmach, George E.; And Others
1989-01-01
Studied voluntary and reflexive mechanisms of postural control of young (N=8) and elderly (N=8) adults through measurement of reflexive reactions to large-fast and small-slow ankle rotation postural disturbances. Found reflexive mechanisms relatively intact for both groups although elderly appeared more disadvantaged when posture was under the…
Functional Neuroanatomy for Posture and Gait Control
Takakusaki, Kaoru
2017-01-01
Here we argue functional neuroanatomy for posture-gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture-gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling. PMID:28122432
Brincks, John; Andersen, Elisabeth Due; Sørensen, Henrik; Dalgas, Ulrik
2017-01-01
It is relevant to understand the possible influence of impaired postural balance on walking performance in multiple sclerosis (MS) gait rehabilitation. We expected associations between impaired postural balance and complex walking performance in mildly disabled persons with MS, but not in healthy controls. Thirteen persons with MS (Expanded Disability Status Scale = 2.5) and 13 healthy controls' walking performance were measured at fast walking speed, Timed Up & Go and Timed 25 Feet Walking. Postural balance was measured by stabilometry, 95% confidence ellipse sway area and sway velocity. Except from sway velocity (p = 0.07), significant differences were found between persons with MS and healthy controls in postural balance and walking. Significant correlations were observed between sway area and Timed Up & Go (r = 0.67) and fastest safe walking speed (r = -0.63) in persons with MS but not in healthy controls (r = 0.52 and r = 0.24, respectively). No other significant correlations were observed between postural balance and walking performance in neither persons with MS nor healthy controls. Findings add to the understanding of postural balance and walking in persons with MS, as impaired postural balance was related to complex walking performance. Exercises addressing impaired postural balance are encouraged in early MS gait rehabilitation.
Iyengar, Y R; Vijayakumar, K; Abraham, J M; Misri, Z K; Suresh, B V; Unnikrishnan, B
2014-01-01
This study was executed to find out correlation between postural alignment in sitting measured through photogrammetry and postural control in sitting following stroke. A cross-sectional study with convenient sampling consisting of 45 subjects with acute and sub-acute stroke. Postural alignment in sitting was measured through photogrammetry and relevant angles were obtained through software MB Ruler (version 5.0). Seated postural control was measured through Function in Sitting Test (FIST). Correlation was obtained using Spearman's Rank Correlation co-efficient in SPSS software (version 17.0). Moderate positive correlation (r = 0.385; p < 0.01) was found between angle of lordosis and angle between acromion, lateral epicondyle and point between radius and ulna. Strong negative correlation (r = -0.435; p < 0.01) was found between cranio-vertebral angle and kyphosis. FIST showed moderate positive correlation (r = 0.3446; p < 0.05) with cranio-vertebral angle and strong positive correlation (r = 0.4336; p < 0.01) with Brunnstrom's stage of recovery in upper extremity. Degree of forward head posture in sitting correlates directly with seated postural control and inversely with degree of kyphosis in sitting post-stroke. Postural control in sitting post-stroke is directly related with Brunnstrom's stage of recovery in affected upper extremity in sitting.
Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects
Paillard, Thierry; Noé, Frédéric
2015-01-01
The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them. PMID:26640800
Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects.
Paillard, Thierry; Noé, Frédéric
2015-01-01
The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Shih, Ching-Tien; Chiang, Ming-Shan
2010-01-01
This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture) and a Wii Balance Board with a newly developed standing posture detection program (i.e. a new software program turns a Wii Balance Board into a precise standing posture detector). The…
Gallea, Cecile; Ewenczyk, Claire; Degos, Bertrand; Welter, Marie-Laure; Grabli, David; Leu-Semenescu, Smaranda; Valabregue, Romain; Berroir, Pierre; Yahia-Cherif, Lydia; Bertasi, Eric; Fernandez-Vidal, Sara; Bardinet, Eric; Roze, Emmanuel; Benali, Habib; Poupon, Cyril; François, Chantal; Arnulf, Isabelle; Lehéricy, Stéphane; Vidailhet, Marie
2017-05-01
The objective of this study was to investigate pedunculopontine nucleus network dysfunctions that mediate impaired postural control and sleep disorder in Parkinson's disease. We examined (1) Parkinson's disease patients with impaired postural control and rapid eye movement sleep behavior disorder (further abbreviated as sleep disorder), (2) Parkinson's disease patients with sleep disorder only, (3) Parkinson's disease patients with neither impaired postural control nor sleep disorder, and (4) healthy volunteers. We assessed postural control with clinical scores and biomechanical recordings during gait initiation. Participants had video polysomnography, daytime sleepiness self-evaluation, and resting-state functional MRIs. Patients with impaired postural control and sleep disorder had longer duration of anticipatory postural adjustments during gait initiation and decreased functional connectivity between the pedunculopontine nucleus and the supplementary motor area in the locomotor network that correlated negatively with the duration of anticipatory postural adjustments. Both groups of patients with sleep disorder had decreased functional connectivity between the pedunculopontine nucleus and the anterior cingulate cortex in the arousal network that correlated with daytime sleepiness. The degree of dysfunction in the arousal network was related to the degree of connectivity in the locomotor network in all patients with sleep disorder, but not in patients without sleep disorder or healthy volunteers. These results shed light on the functional neuroanatomy of pedunculopontine nucleus networks supporting the clinical manifestation and the interdependence between sleep and postural control impairments in Parkinson's disease. © 2016 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Donker, Stella F.; Roerdink, Melvyn; Greven, An J.
2007-01-01
The influence of attention on the dynamical structure of postural sway was examined in 30 healthy young adults by manipulating the focus of attention. In line with the proposed direct relation between the amount of attention invested in postural control and regularity of center-of-pressure (COP) time series, we hypothesized that: (1) increasing cognitive involvement in postural control (i.e., creating an internal focus by increasing task difficulty through visual deprivation) increases COP regularity, and (2) withdrawing attention from postural control (i.e., creating an external focus by performing a cognitive dual task) decreases COP regularity. We quantified COP dynamics in terms of sample entropy (regularity), standard deviation (variability), sway-path length of the normalized posturogram (curviness), largest Lyapunov exponent (local stability), correlation dimension (dimensionality) and scaling exponent (scaling behavior). Consistent with hypothesis 1, standing with eyes closed significantly increased COP regularity. Furthermore, variability increased and local stability decreased, implying ineffective postural control. Conversely, and in line with hypothesis 2, performing a cognitive dual task while standing with eyes closed led to greater irregularity and smaller variability, suggesting an increase in the “efficiency, or “automaticity” of postural control”. In conclusion, these findings not only indicate that regularity of COP trajectories is positively related to the amount of attention invested in postural control, but also substantiate that in certain situations an increased internal focus may in fact be detrimental to postural control. PMID:17401553
Dusing, Stacey C; Izzo, Theresa; Thacker, Leroy R; Galloway, James Cole
2014-10-01
Perception-action theory suggests a cyclical relationship between movement and perceptual information. In this case series, changes in postural complexity were used to quantify an infant's action and perception during the development of early motor behaviors. Three infants born preterm with periventricular white matter injury were included. Longitudinal changes in postural complexity (approximate entropy of the center of pressure), head control, reaching, and global development, measured with the Test of Infant Motor Performance and the Bayley Scales of Infant and Toddler Development, were assessed every 0.5 to 3 months during the first year of life. All 3 infants demonstrated altered postural complexity and developmental delays. However, the timing of the altered postural complexity and the type of delays varied among the infants. For infant 1, reduced postural complexity or limited action while learning to control her head in the midline position may have contributed to her motor delay. However, her ability to adapt her postural complexity eventually may have supported her ability to learn from her environment, as reflected in her relative cognitive strength. For infant 2, limited early postural complexity may have negatively affected his learning through action, resulting in cognitive delay. For infant 3, an increase in postural complexity above typical levels was associated with declining neurological status. Postural complexity is proposed as a measure of perception and action in the postural control system during the development of early behaviors. An optimal, intermediate level of postural complexity supports the use of a variety of postural control strategies and enhances the perception-action cycle. Either excessive or reduced postural complexity may contribute to developmental delays in infants born preterm with white matter injury. © 2014 American Physical Therapy Association.
Agmon, Maayan; Belza, Basia; Nguyen, Huong Q; Logsdon, Rebecca G; Kelly, Valerie E
2014-01-01
Background Injury due to falls is a major problem among older adults. Decrements in dual-task postural control performance (simultaneously performing two tasks, at least one of which requires postural control) have been associated with an increased risk of falling. Evidence-based interventions that can be used in clinical or community settings to improve dual-task postural control may help to reduce this risk. Purpose The aims of this systematic review are: 1) to identify clinical or community-based interventions that improved dual-task postural control among older adults; and 2) to identify the key elements of those interventions. Data sources Studies were obtained from a search conducted through October 2013 of the following electronic databases: PubMed, CINAHL, PsycINFO, and Web of Science. Study selection Randomized and nonrandomized controlled studies examining the effects of interventions aimed at improving dual-task postural control among community-dwelling older adults were selected. Data extraction All studies were evaluated based on methodological quality. Intervention characteristics including study purpose, study design, and sample size were identified, and effects of dual-task interventions on various postural control and cognitive outcomes were noted. Data synthesis Twenty-two studies fulfilled the selection criteria and were summarized in this review to identify characteristics of successful interventions. Limitations The ability to synthesize data was limited by the heterogeneity in participant characteristics, study designs, and outcome measures. Conclusion Dual-task postural control can be modified by specific training. There was little evidence that single-task training transferred to dual-task postural control performance. Further investigation of dual-task training using standardized outcome measurements is needed. PMID:24741296
Saadat, Z; Rojhani-Shirazi, Z; Abbasi, L
2017-12-01
peripheral neuropathy is the most common problem of diabetes. Neuropathy leads to lower extremity somatosensory deficits and postural instability in these patients. However, there are not sufficient evidences for improving postural control in these patients. To investigate the effects of transcutaneous electrical nerve stimulation (TENS) on postural control in patients with diabetic neuropathy. Twenty eighth patients with diabetic neuropathy (40-55 Y/O) participated in this RCT study. Fourteen patients in case group received TENS and sham TENS was used for control group. Force plate platform was used to extract sway velocity and COP displacement parameters for postural control evaluation. The mean sway velocity and center of pressure displacement along the mediolateral and anteroposterior axes were not significantly different between two groups after TENS application (p>0.05). Application of 5min high frequency TENS on the knee joint could not improve postural control in patients with diabetic neuropathy. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Singh, Neeraj Kumar; Snoussi, Hichem; Hewson, David; Duchêne, Jacques
The aim of this study was to develop a method to detecting the critical point interval (CPI) when sensory feedback is used as part of a closed-loop postural control strategy. Postural balance was evaluated using centre of pressure (COP) displacements from a force plate for 17 control and 10 elderly subjects under eyes open, eyes closed, and vibration conditions. A modified local-maximum-modulus wavelet transform analysis using the power spectrum of COP signals was used to calculate CPI. Lower CPI values indicate increased closed-loop postural control with a quicker response to sensory input. Such a strategy requires greater energy expenditure due to the repeated muscular interventions to remain stable. The CPI for elderly occurred significantly quicker than for controls, indicating tighter control of posture. Similar results were observed for eyes closed and vibration conditions. The CPI parameter can be used to detect differences in postural control due to ageing.
The Role of Neuromuscular Changes in Aging and Knee Osteoarthritis on Dynamic Postural Control
Takacs, Judit; Carpenter, Mark G.; Garland, S. Jayne; Hunt, Michael A.
2013-01-01
Knee osteoarthritis (OA) is a chronic joint condition, with 30% of those over the age of 75 exhibiting severe radiographic disease. Nearly 50% of those with knee OA have experienced a fall in the past year. Falls are a considerable public health concern, with a high risk of serious injury and a significant socioeconomic impact. The ability to defend against a fall relies on adequate dynamic postural control, and alterations in dynamic postural control are seen with normal aging. Neuromuscular changes associated with aging may be responsible for some of these alterations in dynamic postural control. Even greater neuromuscular deficits, which may impact dynamic postural control and the ability to defend against a fall, are seen in people with knee OA. There is little evidence to date on how knee OA affects the ability to respond to and defend against falls and the neuromuscular changes that contribute to balance deficits. As a result, this review will: summarize the key characteristics of postural responses to an external perturbation, highlight the changes in dynamic postural control seen with normal aging, review the neuromuscular changes associated with aging that have known and possible effects on dynamic postural control, and summarize the neuromuscular changes and balance problems in knee OA. Future research to better understand the role of neuromuscular changes in knee OA and their effect on dynamic postural control will be suggested. Such an understanding is critical to the successful creation and implementation of fall prevention and treatment programs, in order to reduce the excessive risk of falling in knee OA. PMID:23696951
Sunwook, Kim; Nussbaum, Maury A; Quandt, Sara A; Laurienti, Paul J; Arcury, Thomas A
2016-02-01
The aim of the study was to assess potential chronic effects of pesticide exposure on postural control, by examining postural balance of farmworkers and non-farmworkers diverse self-reported lifetime exposures. Balance was assessed during quiet upright stance under four experimental conditions (2 visual × 2 cognitive difficulty). Significant differences in baseline balance performance (eyes open without cognitive task) between occupational groups were apparent in postural sway complexity. When adding a cognitive task to the eyes open condition, the influence of lifetime exposure on complexity ratios appeared different between occupational groups. Removing visual information revealed a negative association of lifetime exposure with complexity ratios. Farmworkers and non-farmworkers may use different postural control strategies even when controlling for the level of lifetime pesticide exposure. Long-term exposure can affect somatosensory/vestibular sensory systems and the central processing of sensory information for postural control.
Sunwook, Kim; Nussbaum, Maury A.; Quandt, Sara A.; Laurienti, Paul J.; Arcury, Thomas A.
2015-01-01
Objective Assess potential chronic effects of pesticide exposure on postural control, by examining postural balance of farmworkers and non-farmworkers diverse self-reported lifetime exposures. Methods Balance was assessed during quiet upright stance under four experimental conditions (2 visual × 2 cognitive difficulty). Results Significant differences in baseline balance performance (eyes open without cognitive task) between occupational groups were apparent in postural sway complexity. When adding a cognitive task to the eyes open condition, the influence of lifetime exposure on complexity ratios appeared different between occupational groups. Removing visual information revealed a negative association of lifetime exposure with complexity ratios. Conclusions Farmworkers and non-farmworkers may use different postural control strategies even when controlling for the level of lifetime pesticide exposure. Long-term exposure can affect somatosensory/vestibular sensory systems and the central processing of sensory information for postural control. PMID:26849257
Huisinga, Jessie M; Filipi, Mary L; Stergiou, Nicholas
2012-01-01
Postural disturbances are one of the first reported symptoms in patients with Multiple Sclerosis (MS). The purpose of this study was to investigate the effect of supervised resistance training on postural control in MS patients. Postural control was assessed using amount of sway variability [Root Mean Square (RMS)] and temporal structure of sway variability [Lyapunov Exponent (LyE)] from 15 MS patients. Posture was evaluated before and after completion of three months of resistance training. There were significant differences between MS patients pretraining and healthy controls for both LyE (p = .000) and RMS (p = .002), but no differences between groups after training. There was a significant decrease in RMS (p = .025) and a significant increase in LyE (p = .049) for MS patients pre- to posttraining. The findings suggested that postural control of MS patients could be affected by a supervised resistance training intervention.
Postural control assessment in students with normal hearing and sensorineural hearing loss.
Melo, Renato de Souza; Lemos, Andrea; Macky, Carla Fabiana da Silva Toscano; Raposo, Maria Cristina Falcão; Ferraz, Karla Mônica
2015-01-01
Children with sensorineural hearing loss can present with instabilities in postural control, possibly as a consequence of hypoactivity of their vestibular system due to internal ear injury. To assess postural control stability in students with normal hearing (i.e., listeners) and with sensorineural hearing loss, and to compare data between groups, considering gender and age. This cross-sectional study evaluated the postural control of 96 students, 48 listeners and 48 with sensorineural hearing loss, aged between 7 and 18 years, of both genders, through the Balance Error Scoring Systems scale. This tool assesses postural control in two sensory conditions: stable surface and unstable surface. For statistical data analysis between groups, the Wilcoxon test for paired samples was used. Students with hearing loss showed more instability in postural control than those with normal hearing, with significant differences between groups (stable surface, unstable surface) (p<0.001). Students with sensorineural hearing loss showed greater instability in the postural control compared to normal hearing students of the same gender and age. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Postural Control and Gait Performance in the Diabetic Peripheral Neuropathy: A Systematic Review.
Mustapa, Amirah; Justine, Maria; Mohd Mustafah, Nadia; Jamil, Nursuriati; Manaf, Haidzir
2016-01-01
Purpose. The aim of this paper is to review the published studies on the characteristics of impairments in the postural control and gait performance in diabetic peripheral neuropathy (DPN). Methods. A review was performed by obtaining publication of all papers reporting on the postural control and gait performance in DPN from Google Scholar, Ovid, SAGE, Springerlink, Science Direct (SD), EBSCO Discovery Service, and Web of Science databases. The keywords used for searching were "postural control," "balance," "gait performance," "diabetes mellitus," and "diabetic peripheral neuropathy." Results. Total of 4,337 studies were hit in the search. 1,524 studies were screened on their titles and citations. Then, 79 studies were screened on their abstract. Only 38 studies were eligible to be selected: 17 studies on postural control and 21 studies on the gait performance. Most previous researches were found to have strong evidence of postural control impairments and noticeable gait deficits in DPN. Deterioration of somatosensory, visual, and vestibular systems with the pathologic condition of diabetes on cognitive impairment causes further instability of postural and gait performance in DPN. Conclusions. Postural instability and gait imbalance in DPN may contribute to high risk of fall incidence, especially in the geriatric population. Thus, further works are crucial to highlight this fact in the hospital based and community adults.
Recovery of postural equilibrium control following spaceflight
NASA Technical Reports Server (NTRS)
Paloski, W. H.; Reschke, M. F.; Black, F. O.; Doxey, D. D.; Harm, D. L.
1992-01-01
Decreased postural stability is observed in most astronauts immediately following spaceflight. Because ataxia may present postflight operational hazards, it is important to determine the incidence of postural instability immediately following landing and the dynamics of recovery of normal postural equilibrium control. It is postulated that postflight postural instability results from in-flight adaptive changes in central nervous system (CNS) processing of sensory information from the visual, vestibular, and proprioceptive systems. The purpose of the present investigation was to determine the magnitude and time course of postflight recovery of postural equilibrium control and, hence, readaptation of CNS processing of sensory information. Thirteen crew members from six spaceflight missions were studied pre- and postflight using a modified commercial posturography system. Postural equilibrium control was found to be seriously disrupted immediately following spaceflight in all subjects. Readaptation to the terrestrial environment began immediately upon landing, proceeded rapidly for the first 10-12 hours, and then proceeded much more slowly for the subsequent 2-4 days until preflight stability levels were reachieved. It is concluded that the overall postflight recovery of postural stability follows a predictable time course.
Eye Movements Affect Postural Control in Young and Older Females
Thomas, Neil M.; Bampouras, Theodoros M.; Donovan, Tim; Dewhurst, Susan
2016-01-01
Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions. PMID:27695412
Eye Movements Affect Postural Control in Young and Older Females.
Thomas, Neil M; Bampouras, Theodoros M; Donovan, Tim; Dewhurst, Susan
2016-01-01
Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions.
Return of Postural Control to Baseline After Anaerobic and Aerobic Exercise Protocols
Fox, Zachary G; Mihalik, Jason P; Blackburn, J Troy; Battaglini, Claudio L; Guskiewicz, Kevin M
2008-01-01
Context: With regard to sideline concussion testing, the effect of fatigue associated with different types of exercise on postural control is unknown. Objective: To evaluate the effects of fatigue on postural control in healthy college-aged athletes performing anaerobic and aerobic exercise protocols and to establish an immediate recovery time course from each exercise protocol for postural control measures to return to baseline status. Design: Counterbalanced, repeated measures. Setting: Research laboratory. Patients Or Other Participants: Thirty-six collegiate athletes (18 males, 18 females; age = 19.00 ± 1.01 years, height = 172.44 ± 10.47 cm, mass = 69.72 ± 12.84 kg). Intervention(s): Participants completed 2 counterbalanced sessions within 7 days. Each session consisted of 1 exercise protocol followed by postexercise measures of postural control taken at 3-, 8-, 13-, and 18-minute time intervals. Baseline measures were established during the first session, before the specified exertion protocol was performed. Main Outcome Measure(s): Balance Error Scoring System (BESS) results, sway velocity, and elliptical sway area. Results: We found a decrease in postural control after each exercise protocol for all dependent measures. An interaction was noted between exercise protocol and time for total BESS score (P = .002). For both exercise protocols, all measures of postural control returned to baseline within 13 minutes. Conclusions: Postural control was negatively affected after anaerobic and aerobic exercise protocols as measured by total BESS score, elliptical sway area, and sway velocity. The effect of exertion lasted up to 13 minutes after each exercise was completed. Certified athletic trainers and clinicians should be aware of these effects and their recovery time course when determining an appropriate time to administer sideline assessments of postural control after a suspected mild traumatic brain injury. PMID:18833307
Return of postural control to baseline after anaerobic and aerobic exercise protocols.
Fox, Zachary G; Mihalik, Jason P; Blackburn, J Troy; Battaglini, Claudio L; Guskiewicz, Kevin M
2008-01-01
With regard to sideline concussion testing, the effect of fatigue associated with different types of exercise on postural control is unknown. To evaluate the effects of fatigue on postural control in healthy college-aged athletes performing anaerobic and aerobic exercise protocols and to establish an immediate recovery time course from each exercise protocol for postural control measures to return to baseline status. Counterbalanced, repeated measures. Research laboratory. Thirty-six collegiate athletes (18 males, 18 females; age = 19.00 +/- 1.01 years, height = 172.44 +/- 10.47 cm, mass = 69.72 +/- 12.84 kg). Participants completed 2 counterbalanced sessions within 7 days. Each session consisted of 1 exercise protocol followed by postexercise measures of postural control taken at 3-, 8-, 13-, and 18-minute time intervals. Baseline measures were established during the first session, before the specified exertion protocol was performed. Balance Error Scoring System (BESS) results, sway velocity, and elliptical sway area. We found a decrease in postural control after each exercise protocol for all dependent measures. An interaction was noted between exercise protocol and time for total BESS score (P = .002). For both exercise protocols, all measures of postural control returned to baseline within 13 minutes. Postural control was negatively affected after anaerobic and aerobic exercise protocols as measured by total BESS score, elliptical sway area, and sway velocity. The effect of exertion lasted up to 13 minutes after each exercise was completed. Certified athletic trainers and clinicians should be aware of these effects and their recovery time course when determining an appropriate time to administer sideline assessments of postural control after a suspected mild traumatic brain injury.
Teng, Ya-Ling; Chen, Chiung-Ling; Lou, Shu-Zon; Wang, Wei-Tsan; Wu, Jui-Yen; Ma, Hui-Ing; Chen, Vincent Chin-Hung
2016-01-01
Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP) postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99); controls (76.53±7.47); t1,59 = -3.28, p<0.001]. The results of mixed-model ANOVAs showed a significant interaction between the group and sensory conditions [F5,295 = 5.55, p<0.001]. Further analysis indicated that AP postural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory conditions, which was independent of clinical characteristics. Patients further demonstrated similar pattern and level of utilizing sensory information to maintain balance compared to the controls.
Neuromechanical tuning of nonlinear postural control dynamics
NASA Astrophysics Data System (ADS)
Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.
2009-06-01
Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.
Uhm, Yo-Han; Yang, Dae-Jung
2017-11-01
[Purpose] The purpose of this study was to examine the effect of biofeedback postural control training using whole body vibration in acute stroke patients on balance and gait ability. [Subjects and Methods] Thirty stroke patients participated in this study and were divided into a group of 10, a group for biofeedback postural control training combined with a whole body vibration, one for biofeedback postural control training combined with an aero-step, and one for biofeedback postural control training. Biorescue was used to measure the limits of stability, balance ability, and Lukotronic was used to measure step length, gait ability. [Results] In the comparison of balance ability and gait ability between the groups for before and after intervention, Group I showed a significant difference in balance ability and gait ability compared to Groups II and III. [Conclusion] This study showed that biofeedback postural control training using whole body vibration is effective for improving balance ability and gait ability in stroke patients.
Mouthon, A; Ruffieux, J; Wälchli, M; Keller, M; Taube, W
2015-09-10
Non-physical balance training has demonstrated to be efficient to improve postural control in young people. However, little is known about the potential to increase corticospinal excitability by mental simulation in lower leg muscles. Mental simulation of isolated, voluntary contractions of limb muscles increase corticospinal excitability but more automated tasks like walking seem to have no or only minor effects on motor-evoked potentials (MEPs) evoked by transcranial magnetic stimulation (TMS). This may be related to the way of performing the mental simulation or the task itself. Therefore, the present study aimed to clarify how corticospinal excitability is modulated during AO+MI, MI and action observation (AO) of balance tasks. For this purpose, MEPs and H-reflexes were elicited during three different mental simulations (a) AO+MI, (b) MI and (c) passive AO. For each condition, two balance tasks were evaluated: (1) quiet upright stance (static) and (2) compensating a medio-lateral perturbation while standing on a free-swinging platform (dynamic). AO+MI resulted in the largest facilitation of MEPs followed by MI and passive AO. MEP facilitation was significantly larger in the dynamic perturbation than in the static standing task. Interestingly, passive observation resulted in hardly any facilitation independent of the task. H-reflex amplitudes were not modulated. The current results demonstrate that corticospinal excitability during mental simulation of balance tasks is influenced by both the type of mental simulation and the task difficulty. As H-reflexes and background EMG were not modulated, it may be argued that changes in excitability of the primary motor cortex were responsible for the MEP modulation. From a functional point of view, our findings suggest best training/rehabilitation effects when combining MI with AO during challenging postural tasks. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Postural control under clinorotation in upside-down catfish, Synodontis nigriventris.
Ohnishi, K; Takahashi, A; Koyama, M; Ohnishi, T
1996-12-01
The upside-down catfish Synodontis nigriventris has a unique habit of swimming and resting upside-down in free water. This behavior leads to the assumption that the catfish has a specific gravity information processing system. We examined the postural control behaviors in the catfish under clinorotation which is usually used for producing pseudo-microgravity. Synodontis nigriventris kept its body posture at a stable area of the rotated flask in which the catfish was kept, when it was clinorotated at the rate of 60 rpm. In contrast to Synodontis nigriventris, a related species, Corydoras paleatus, did not show such steady postural control. When the flask was rotated at a lower rate of 30 rpm or a higher rate of 100 rpm, Synodontis nigriventris as well as Corydoras paleatus showed a considerable disturbed control of body posture. In this condition, they were frequently rotated with the flask. These findings suggest that Synodontis nigriventris has a high ability to keep upside-down posture and the gravity sensation in this catfish is likely to contribute to its different postural control from that of many other fishes.
Lajoie, Y; Richer, N; Jehu, D A; Polskaia, N; Saunders, D
2016-05-01
In the examination of postural control, instructions to stand as still as possible are common and promote a relatively unnatural sway pattern. The validity of the stability requirement is discussed in the present commentary in response to the discussion initiated by Cedrick T. Bonnet. The advantages of using the stability requirement include: evaluating unbiased postural control, reducing variability in postural sway, manipulating focus of attention, examining the ability to maintain an upright stance, and ecological validity of testing. The disadvantages include: constraining natural postural sway, increasing the complexity of the control condition, promoting an internal focus of attention, and reducing the ability to detect exploratory behaviour. After evaluating the aforementioned advantages and disadvantages, the present commentary suggests that researchers should strive to provide specific instructions to maintain feet, arm and eye position without specifically requiring participants to reduce their postural sway. Copyright © 2015 Elsevier B.V. All rights reserved.
2013-01-01
Kinect-based exergames allow players to undertake physical exercise in an interactive manner with visual stimulation. Previous studies focused on investigating physical fitness based on calories or heart rate to ascertain the effectiveness of exergames. However, designing an exergame for specific training purposes, with intensity levels suited to the needs and skills of the players, requires the investigation of motion performance to study player experience. This study investigates how parameters of a Kinect-based exergame, combined with balance training exercises, influence the balance control ability and intensity level the player can tolerate, by analyzing both objective and gameplay-based player experience, and taking enjoyment and difficulty levels into account. The exergame tested required participants to maintain their balance standing on one leg within a posture frame (PF) while a force plate evaluated the player's balance control ability in both static and dynamic gaming modes. The number of collisions with the PF depended on the frame's travel time for static PFs, and the leg-raising rate and angle for dynamic PFs. In terms of center of pressure (COP) metrics, significant impacts were caused by the frame's travel time on MDIST-AP for static PFs, and the leg-raising rate on MDIST-ML and TOTEX for dynamic PFs. The best static PF balance control performance was observed with a larger frame offset by a travel time of 2 seconds, and the worst performance with a smaller frame and a travel time of 1 second. The best dynamic PF performance was with a leg-raising rate of 1 second at a 45-degree angle, while the worst performance was with a rate of 2 seconds at a 90-degree angle. The results demonstrated that different evaluation methods for player experience could result in different findings, making it harder to study the design of those exergames with training purposes based on player experience. PMID:23922716
Ellegast, Rolf P; Kraft, Kathrin; Groenesteijn, Liesbeth; Krause, Frank; Berger, Helmut; Vink, Peter
2012-03-01
Prolonged and static sitting postures provoke physical inactivity at VDU workplaces and are therefore discussed as risk factors for the musculoskeletal system. Manufacturers have designed specific dynamic office chairs featuring structural elements which promote dynamic sitting and therefore physical activity. The aim of the present study was to evaluate the effects of four specific dynamic chairs on erector spinae and trapezius EMG, postures/joint angles and physical activity intensity (PAI) compared to those of a conventional standard office chair. All chairs were fitted with sensors for measurement of the chair parameters (backrest inclination, forward and sideward seat pan inclination), and tested in the laboratory by 10 subjects performing 7 standardized office tasks and by another 12 subjects in the field during their normal office work. Muscle activation revealed no significant differences between the specific dynamic chairs and the reference chair. Analysis of postures/joint angles and PAI revealed only a few differences between the chairs, whereas the tasks performed strongly affected the measured muscle activation, postures and kinematics. The characteristic dynamic elements of each specific chair yielded significant differences in the measured chair parameters, but these characteristics did not appear to affect the sitting dynamics of the subjects performing their office tasks. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
The foot posture index in men practicing three sports different in their biomechanical gestures.
Martínez-Nova, Alfonso; Gómez-Blázquez, Eduardo; Escamilla-Martínez, Elena; Pérez-Soriano, Pedro; Gijon-Nogueron, Gabriel; Fernández-Seguín, Lourdes María
2014-03-01
The technical gestures characteristic of certain sports may lead to one type of foot being more prevalent than the others. The Foot Posture Index (FPI) has been used as a diagnostic tool for support postures in various sports, but the differences in these postures between sports of distinct gestures in their actions are far from completely understood. The overall FPI, obtained as the sum of the scores of its six individual criteria, was determined in 90 male athletes (30 runners, 30 basketball players, and 30 handball players) in static bipedal stance and relaxed position. Analysis of variance was used to find significant differences among the three sports in the total FPI and its six criteria. The mean ± SD FPI was 2.9 ± 2.8 in runners, 3.9 ± 4.1 in basketball players, and -0.4 ± 6.9 in handball players, with significant differences among these groups (P = .008). Significant differences were also found in the talar head position and talonavicular prominence values between handball players and runners (P = .001 and P = .004, respectively) and between handball and basketball players (P = .002 and P = .006, respectively). Runners and basketball players had neutral feet, whereas handball players had supinated feet. The differences in foot posture seem to be mainly determined by two of the FPI criteria: talar head position and talonavicular prominence.
Effect of intermittent feedback control on robustness of human-like postural control system
NASA Astrophysics Data System (ADS)
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-03-01
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.
Effect of intermittent feedback control on robustness of human-like postural control system.
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-03-02
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.
Effect of intermittent feedback control on robustness of human-like postural control system
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-01-01
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies. PMID:26931281
Asseman, François B; Caron, Olivier; Crémieux, Jacques
2008-01-01
The first aim of this study was to analyse the effect of elite training, linked to expertise, in gymnastics on postural performance and control. For this purpose, body sway of expert gymnasts was compared to other sportsmen, non-experts and non-gymnasts, in two different postures: bipedal (easy and unspecific to gymnasts) and unipedal (difficult and fairly specific). The second aim was to compare the groups in the same tasks but in a visual condition for which they were not trained, i.e. with eyes closed. Postural performance was assessed by centre of gravity motion, which was computed from centre of pressure motion, estimating postural control. A significant difference between the two groups was observed for postural performance in the unipedal posture and with eyes open only. Regardless of their posture, the groups were similarly affected by removal of vision. Expertise in gymnastics seemed to improve postural performances only in situations for which their practise is related to, i.e. unipedal with eyes open. These reveal the importance of choosing a relevant postural configuration and visual condition according to the people's training or by extension experience.
The effect of standing desks on manual control in children and young adults.
Britten, L; Shire, K; Coats, R O; Astill, S L
2016-07-01
The aim of the present study was to establish if and how the additional postural constraint of standing affects accuracy and precision of goal directed naturalistic actions. Forty participants, comprising 20 young adults aged 20-23 years and 20 children aged 9-10 years completed 3 manual dexterity tasks on a tablet laptop with a handheld stylus during two separate conditions (1) while standing and (2) while seated. The order of conditions was counterbalanced across both groups of participants. The tasks were (1) a tracking task, where the stylus tracked a dot in a figure of 8 at 3 speeds, (2) an aiming task where the stylus moved from dot to dot with individual movements creating the outline of a pentagram and (3) a tracing task, where participants had to move the stylus along a static pathway or maze. Root mean squared error (RMSE), movement time and path accuracy, respectively, were used to quantify the effect that postural condition had on manual control. Overall adults were quicker and more accurate than children when performing all 3 tasks, and where the task speed was manipulated accuracy was better at slower speeds for all participants. Surprisingly, children performed these tasks more quickly and more accurately when standing compared to when sitting. In conclusion, standing at a desk while performing goal directed tasks did not detrimentally affect children's manual control, and moreover offered a benefit. Copyright © 2016 Elsevier B.V. All rights reserved.
Neural Control of Posture in Individuals with Persisting Postconcussion Symptoms.
Helmich, Ingo; Berger, Alisa; Lausberg, Hedda
2016-12-01
Postural instability has been shown to characterize individuals who suffered from long-term symptoms after mild traumatic brain injury. However, recordings of neural processes during postural control are difficult to realize with standard neuroimaging techniques. Thus, we used functional nearinfrared spectroscopy to investigate brain oxygenation of individuals with persistent postconcussion symptoms (pPCS) during postural control in altered environments. We compared brain oxygenation and postural sway during balance control in three groups: individuals suffering from pPCS, individuals with a history of mild traumatic brain injury but without pPCS, and healthy controls. Individuals were investigated during postural control tasks with six different conditions: i) eyes opened, ii) eyes closed, and iii) blurred visual input, each while standing a) on a stable and b) an unstable surface. In all groups, during the eyes closed/unstable surface condition as compared with the other conditions, the postural sway increased as well as the brain oxygenation in frontal brain cortices. In the most difficult balance condition, as compared with the other two groups, subjects with pPCS applied more force over time to keep balance as measured by the force plate system with a significantly greater activation in frontopolar/orbitofrontal areas of the right hemisphere. As subjects with pPCS applied more force over time to control balance, we propose that with regard to cognitive processes, the increase of cerebral activation in these individuals indicates an increase of attention-demanding processes during postural control in altered environments.
Larson, Dennis J; Brown, Stephen H M
2018-02-01
The purpose of this study was to induce both trunk extensor and abdominal muscle fatigue, on separate occasions, and compare their effects on standing postural control and trunk proprioception, as well as look at the effects of a recovery period on these outcome measures. A total of 20 individuals participated, with 10 (5 males and 5 females) completing either a standing postural control or lumbar axial repositioning protocol. Participants completed their randomly assigned protocol on two occasions, separated by at least 4 days, with either their trunk extensor or abdominal muscles being fatigued on either day. Postural control centre of pressure variables and trunk proprioception errors were compared pre- and post-fatigue. Results showed that both trunk extensor and abdominal muscle fatigue significantly degraded standing postural control immediately post-fatigue, with recovery occurring within 2 min post-fatigue. In general, these degradative effects on postural control appeared to be greater when the trunk extensor muscles were fatigued compared to the abdominal muscles. No statistically significant changes in trunk proprioception were found after either fatigue protocol. The present findings demonstrate our body's ability to quickly adapt and reweight somatosensory information to maintain postural control and trunk proprioception, as well as illustrate the importance of considering the abdominal muscles, along with the trunk extensor muscles, when considering the impact of fatigue on trunk movement and postural control. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of Wrist Posture on Carpal Tunnel Pressure while Typing
Rempel, David M.; Keir, Peter J.; Bach, Joel M.
2009-01-01
Long weekly hours of keyboard use may lead to or aggravate carpal tunnel syndrome. The effects of typing on fluid pressure in the carpal tunnel, a possible mediator of carpal tunnel syndrome, are unknown. Twenty healthy subjects participated in a laboratory study to investigate the effects of typing at different wrist postures on carpal tunnel pressure of the right hand. Changes in wrist flexion/extension angle (p = 0.01) and radial/ulnar deviation angle (p = 0.03) independently altered carpal tunnel pressure; wrist deviations in extension or radial deviation were associated with an increase in pressure. The activity of typing independently elevated carpal tunnel pressure (p= 0.001) relative to the static hand held in the same posture. This information can guide the design and use of keyboards and workstations in order to minimize carpal tunnel pressure while typing. The findings may also be useful to clinicians and ergonomists in the management of patients with carpal tunnel syndrome who use a keyboard. PMID:18383144
Ambusam, Subramaniam; Omar, Baharudin; Joseph, Leonard; Deepashini, Harithasan
2015-01-01
Computer users are exposed to work related neck disorders due to repetitive movement and static posture for prolonged period. Viewing document and typing simultaneously are one of the contributing factors for neck disorders. This preliminary study was conducted to evaluate the effects of the document holder on the postural neck muscles activity among computer users. Nine healthy participants with pre-defined inclusion and exclusion criteria were recruited for the study. Neck muscles activity were analyzed using the surface electromyography (EMG) in five different document location such as flat right, flat left, flat center, stand right and stand left during a 5 min typing task. The mean and standard deviation results showed a least amount of muscles activity using a document holder compared to without document holder. Nevertheless, the statistical analysis showed no significant differences between the using of a document holder. The effects of document holder on head excursion and neck muscle activity is recommended in clinical neck pain population.
Vainio, Lari; Mustonen, Terhi
2011-02-01
Brain-imaging research has shown that a viewed acting hand is mapped to the observer's hand representation that corresponds with the identity of the hand. In contrast, behavioral research has suggested that rather than representing a seen hand in relation to one's own manual system, it is represented in relation to the midline of an imaginary body. This view was drawn from the finding that indicated that the posture of the viewed hand determines how the hand facilitates responses. The present study explored how an identity of a viewed static hand facilitates responses by varying the onset time and the posture of the hand. The results were in line with the view that an observed hand can activate the observer's hand representation that corresponds with the identity of the hand. However, the posture of the hand did not influence these mapping processes. What mattered was the perspective (i.e., egocentric vs. allocentric) from which the hand was viewed. (c) 2010 APA, all rights reserved.
Tai Chi training reduced coupling between respiration and postural control
Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li
2015-01-01
In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body’s center-of-mass including those caused by spontaneous respiration. Both aging and disease increase “posturo-respiratory synchronization;” which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86±5yrs) or educational-control program (n=34, 85±6yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. PMID:26518241
Lion, Alexis; Gette, Paul; Meyer, Christophe; Seil, Romain; Theisen, Daniel
2018-02-01
Our study aimed to evaluate the effect of cognitive challenge on double-leg postural control under visual and surface perturbations of patients with anterior cruciate ligament reconstruction (ACLR) cleared to return to sport. Double-leg stance postural control of 19 rehabilitated patients with ACLR (age: 24.8 ± 6.7 years, time since surgery: 9.2 ± 1.6 months) and 21 controls (age: 24.9 ± 3.7 years) was evaluated in eight randomized situations combining two cognitive (with and without silent backward counting in steps of seven), two visual (eyes open, eyes closed) and two surface (stable support, foam support) conditions. Sway area and sway path of the centre of foot pressure were measured during three 20-s recordings for each situation. Higher values indicated poorer postural control. Generally, postural control of patients with ACLR and controls was similar for sway area and sway path (p > 0.05). The lack of visual anchorage and the disturbance of the plantar input by the foam support increased sway area and sway path (p < 0.001) similarly in both groups. The addition of the cognitive task decreased sway area and sway path (p < 0.001) similarly in both groups. Patients with ACLR who recently completed their rehabilitation have normalized postural control during double-leg stance tests. The use of a dual task paradigm under increased task complexity modified postural control, but in a similar way in patients with ACLR than in healthy controls. Double-leg stance tests, even under challenging conditions, are not sensitive enough to reveal postural control differences between rehabilitated patients with ACLR and controls. Copyright © 2017 Elsevier B.V. All rights reserved.
Spatial and temporal analysis of postural control in dyslexic children.
Gouleme, Nathalie; Gerard, Christophe Loic; Bui-Quoc, Emmanuel; Bucci, Maria Pia
2015-07-01
The aim of this study is to examine postural control of dyslexic children using both spatial and temporal analysis. Thirty dyslexic (mean age 9.7±0.3years) and thirty non-dyslexic age-matched children participated in the study. Postural stability was evaluated using Multitest Equilibre from Framiral®. Posture was recorded in the following conditions: eyes open fixating a target (EO) and eyes closed (EC) on stable (-S-) and unstable (-U-) platforms. The findings of this study showed poor postural stability in dyslexic children with respect to the non-dyslexic children group, as demonstrated by both spatial and temporal analysis. In both groups of children postural control depends on the condition, and improves when the eyes are open on a stable platform. Dyslexic children have spectral power indices that are higher than in non-dyslexic children and they showed a shorter cancelling time. Poor postural control in dyslexic children could be due to a deficit in using sensory information most likely caused by impairment in cerebellar activity. The reliability of brain activation patterns, namely in using sensory input and cerebellar activity may explain the deficit in postural control in dyslexic children. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Postural Stability in Young Adults with Down Syndrome in Challenging Conditions
Bieć, Ewa; Zima, Joanna; Wójtowicz, Dorota; Wojciechowska-Maszkowska, Bożena; Kręcisz, Krzysztof; Kuczyński, Michał
2014-01-01
To evaluate postural control and performance in subjects with Down syndrome (SwDS), we measured postural sway (COP) in quiet stance in four 20-second tests: with eyes open or closed and on hard or foam surface. Ten SwDS and eleven healthy subjects participated, aged 29.8 (4.8) and 28.4 (3.9), respectively. The time-series recorded with the sampling rate of 100 Hz were used to evaluate postural performance (COP amplitude and mean velocity) and strategies (COP frequency, fractal dimension and entropy). There were no intergroup differences in the amplitude except the stance on foam pad with eyes open when SwDS had larger sway. The COP velocity and frequency were larger in SwDS than controls in all trials on foam pad. During stances on the foam pad SwDS increased fractal dimension showing higher complexity of their equilibrium system, while controls decreased sample entropy exhibiting more conscious control of posture in comparison to the stances on hard support surface. This indicated that each group used entirely different adjustments of postural strategies to the somatosensory challenge. It is proposed that the inferior postural control of SwDS results mainly from insufficient experience in dealing with unpredictable postural stimuli and deficit in motor learning. PMID:24728178
Tekin, Fatih; Kavlak, Erdogan; Cavlak, Ugur; Altug, Filiz
2018-01-01
The aim of this study was to show the effects of an 8-week Neurodevelopmental Treatment based posture and balance training on postural control and balance in diparetic and hemiparetic Cerebral Palsied children (CPC). Fifteen CPC (aged 5-15 yrs) were recruited from Denizli Yağmur Çocukları Rehabilitation Centre. Gross Motor Function Classification System, Gross Motor Function Measure, 1-Min Walking Test, Modified Timed Up and Go Test, Paediatric Balance Scale, Functional Independence Measure for Children and Seated Postural Control Measure were used for assessment before and after treatment. An 8-week NDT based posture and balance training was applied to the CPC in one session (60-min) 2 days in a week. After the treatment program, all participants showed statistically significant improvements in terms of gross motor function (p< 0.05). They also showed statistically significant improvements about balance abilities and independence in terms of daily living activities (p< 0.05). Seated Postural Control Measure scores increased after the treatment program (p< 0.05). The results of this study indicate that an 8-week Neurodevelopmental Treatment based posture and balance training is an effective approach in order to improve functional motor level and functional independency by improving postural control and balance in diparetic and hemiparetic CPC.
Sprenger, Andreas; Wojak, Jann F; Jandl, Nico M; Helmchen, Christoph
2017-01-01
Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive deprivation heavily destabilizes BVF, even when visual control is provided.
Sprenger, Andreas; Wojak, Jann F.; Jandl, Nico M.; Helmchen, Christoph
2017-01-01
Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive deprivation heavily destabilizes BVF, even when visual control is provided. PMID:28919878
Elbasan, Bulent; Akaya, Kamile Uzun; Akyuz, Mufit; Oskay, Deran
2018-02-06
Neurodevelopmental treatment (NDT), neuromuscular electrical stimulation (NMES), and Kinesio Taping (KT) applications are separately used to improve postural control and sitting balance in children with cerebral palsy (CP). The aim of this study is to examine the combined effect of NDT, NMES and KT applications on postural control and sitting balance in children with CP. Forty five children, in 3 groups, between the ages 5-12 years were included in the study. Group 1 received NDT; group 2 received NDT + NMES; and the group 3 received NDT + NMES + KT for 6 weeks. Sitting function evaluated by the sitting section of the gross motor function measure (GMFM), and postural control assessed with the seated postural control measurement (SPCM). Seating section of GMFM was improved significantly in all the groups; however, increases in the group 3 were higher than groups 1 and 2 (p= 0.001). While significant differences were observed in all groups in the SPCM posture (p< 0.001), function (p< 0.001), and the total scores (p< 0.001); the change in the third group was higher according to the comparison of the three groups within each other. Implementation of the NMES, and KT additionally to NDT improve the sitting posture, postural control, seating function, and gross motor function in children with CP.
Postural Control and Gait Performance in the Diabetic Peripheral Neuropathy: A Systematic Review
Mustapa, Amirah; Mohd Mustafah, Nadia; Jamil, Nursuriati
2016-01-01
Purpose. The aim of this paper is to review the published studies on the characteristics of impairments in the postural control and gait performance in diabetic peripheral neuropathy (DPN). Methods. A review was performed by obtaining publication of all papers reporting on the postural control and gait performance in DPN from Google Scholar, Ovid, SAGE, Springerlink, Science Direct (SD), EBSCO Discovery Service, and Web of Science databases. The keywords used for searching were “postural control,” “balance,” “gait performance,” “diabetes mellitus,” and “diabetic peripheral neuropathy.” Results. Total of 4,337 studies were hit in the search. 1,524 studies were screened on their titles and citations. Then, 79 studies were screened on their abstract. Only 38 studies were eligible to be selected: 17 studies on postural control and 21 studies on the gait performance. Most previous researches were found to have strong evidence of postural control impairments and noticeable gait deficits in DPN. Deterioration of somatosensory, visual, and vestibular systems with the pathologic condition of diabetes on cognitive impairment causes further instability of postural and gait performance in DPN. Conclusions. Postural instability and gait imbalance in DPN may contribute to high risk of fall incidence, especially in the geriatric population. Thus, further works are crucial to highlight this fact in the hospital based and community adults. PMID:27525281
Neck/shoulder pain and low back pain among school teachers in China, prevalence and risk factors
2012-01-01
Background School teachers represent an occupational group among which there appears to be a high prevalence of neck and/or shoulder pain (NSP) and low back pain (LBP). Epidemiological data on NSP and LBP in Chinese teachers are limited. The aim of this study was to investigate the prevalence of and risk factors for NSP and LBP among primary, secondary and high school teachers. Methods In a cross-sectional study of teachers from 7 schools, information on participant demographics, work characteristics, occupational factors and musculoskeletal symptoms and pain were collected. Results Among 893 teachers, the prevalence of NSP and LBP was 48.7% and 45.6% respectively. There was significant association between the level and prevalence of NSP and LBP among teachers in different schools. The prevalence of NSP among female teachers was much higher than that for males. Self-reported NSP was associated with physical exercise (OR 0.55, 95% CI 0.35 to 0.86), prolonged standing (1.74, 1.03 to 2.95), sitting (1.76, 1.23 to 2.52) and static posture (2.25, 1.56 to 3.24), and uncomfortable back support (1.77, 1.23 to 2.55). LBP was more consistently associated with twisting posture (1.93, 1.30 to 2.87), uncomfortable back support (1.62, 1.13 to 2.32) and prolonged sitting (1.42, 1.00 to 2.02) and static posture (1.60, 1.11 to 2.31). Conclusions NSP and LBP are common among teachers. There were strong associations with different individual, ergonomic, and occupational factors. PMID:22978655
ERIC Educational Resources Information Center
Nafati, Gilel; Vuillerme, Nicolas
2011-01-01
This experiment was designed to investigate whether and how decreasing the amount of attentional focus invested in postural control could affect bipedal postural control. Twelve participants were asked to stand upright as immobile as possible on a force platform in one control condition and one cognitive condition. In the latter condition, they…
Posture and posturology, anatomical and physiological profiles: overview and current state of art.
Carini, Francesco; Mazzola, Margherita; Fici, Chiara; Palmeri, Salvatore; Messina, Massimo; Damiani, Provvidenza; Tomasello, Giovanni
2017-04-28
posture is the position of the body in the space, and is controlled by a set of anatomical structures. The maintenance and the control of posture are a set of interactions between muscle-skeletal, visual, vestibular, and skin system. Lately there are numerous studies that correlate the muscle-skeletal and the maintenance of posture. In particular, the correction of defects and obstruction of temporomandibular disorders, seem to have an impact on posture. The aim of this work is to collect information in literature on posture and the influence of the stomatognathic system on postural system. Comparison of the literature on posture and posturology by consulting books and scientific sites. the results obtained from the comparison of the literature show a discrepancy between the thesis. Some studies support the correlation between stomatognathic system and posture, while others deny such a correlation. further studies are necessary to be able to confirm one or the other argument.
Effects of the removal of vision on body sway during different postures in elite gymnasts.
Asseman, F; Caron, O; Crémieux, J
2005-03-01
The aim of this study was to analyse the effects of the removal of vision on postural performance and postural control in function of the difficulty and specificity of the posture. Twelve elite gymnasts were instructed to be as stable as possible with eyes open and eyes closed in three postures: bipedal, unipedal, and handstand ranked from the less difficult and less specific to the more difficult and more specific. The ratios eyes closed on eyes open, computed on CP surface and CP mean velocity, which respectively represents postural performance and postural control, were similar in the bipedal and handstand postures. They were highly increased in the unipedal one. The effect of the removal of vision and so the role of vision on body sway was not directly linked to the difficulty or specificity of the posture; other tasks' characteristics like the segments configuration also played a role.
Shin, Seung-Je; Yoo, Won-Gyu
2014-01-01
The static posture in visual display terminal (VDT) workers results in increased forward neck flexion and increased static muscle tension in the neck and shoulder regions. However, few studies have objectively quantified the change in head posture induced shoulder pain during VDT work. This study elucidated changes in pressure pain in the upper trapezius muscles, cervical ROM, and the cervical flexion--relaxation ratio after continuous long-term VDT work. Twelve young VDT workers were recruited. The pressure pain of the upper trapezius muscles, active CROM, and cervical flexion--relaxation ratio were measured in all subjects once before and once after VDT work. The pressure pain threshold of the right upper trapezius muscle was 6.9 ± 1.6 lb before VDT work and 6.1 ± 1.0 lb after VDT work, revealing a significant increase with VDT work. The cervical extension, left and right lateral flexion, and left rotation measurers decreased significantly with VDT work. We postulate that even short-term VDT work has the potential to cause problems. It is necessary to develop a CROM self-measuring device and to monitor patients' musculoskeletal changes frequently.
Afshari, Davood; Motamedzade, Majid; Salehi, Reza; Soltanian, Alir Raze
2015-01-01
Work-related musculoskeletal disorders of back among weavers are prevalent. Epidemiological studies have shown an association between poor working postures and back disorders among carpet weavers. Therefore, the present study aimed to evaluate the impact of the traditional (A) and ergonomically designed (B) workstations on trunk posture and cumulative compression load in carpet weavers. In this study, subtasks were identified in terms of stressful postures and carpet weaving process. Postural data were collected during knotting and compacting subtasks using inclinometer during four hours for each workstation. Postural data, weight and height of the weavers were entered into the University of Michigan three-dimensional static biomechanical model for estimation of the compression load and cumulative load were estimated from the resultant load and exposure time. Thirteen healthy carpet weavers (four males and nine females) participated in the study. Median trunk flexion angle was reduced with workstation B during knotting subtask (18° versus 8.5°, p< 0.01 in males; 18.5° versus 7°, p< 0.001 in females). Average cumulative compression load was reduced with workstation B (22.17MN-s versus 16.68MN-s, p < 0.01 in males; 13.05 MN-s versus 10.14, p < 0.001 in females). Using workstation B led to significant decrease in cumulative compressive loading during an entire shift (8 hours), which indicates reduced level of stress on the back. It is suggested to conduct biomechanical studies on the shoulder and wrist regions in carpet weavers in order to achieve further development and improvement in the ergonomically designed workstation.
Arm posture-dependent changes in corticospinal excitability are largely spinal in origin.
Nuzzo, James L; Trajano, Gabriel S; Barry, Benjamin K; Gandevia, Simon C; Taylor, Janet L
2016-04-01
Biceps brachii motor evoked potentials (MEPs) from cortical stimulation are influenced by arm posture. We used subcortical stimulation of corticospinal axons to determine whether this postural effect is spinal in origin. While seated at rest, 12 subjects assumed several static arm postures, which varied in upper-arm (shoulder flexed, shoulder abducted, arm hanging to side) and forearm orientation (pronated, neutral, supinated). Transcranial magnetic stimulation over the contralateral motor cortex elicited MEPs in resting biceps and triceps brachii, and electrical stimulation of corticospinal tract axons at the cervicomedullary junction elicited cervicomedullary motor evoked potentials (CMEPs). MEPs and CMEPs were normalized to the maximal compound muscle action potential (Mmax). Responses in biceps were influenced by upper-arm and forearm orientation. For upper-arm orientation, biceps CMEPs were 68% smaller (P= 0.001), and biceps MEPs 31% smaller (P= 0.012), with the arm hanging to the side compared with when the shoulder was flexed. For forearm orientation, both biceps CMEPs and MEPs were 34% smaller (both P< 0.046) in pronation compared with supination. Responses in triceps were influenced by upper-arm, but not forearm, orientation. Triceps CMEPs were 46% smaller (P= 0.007) with the arm hanging to the side compared with when the shoulder was flexed. Triceps MEPs and biceps and triceps MEP/CMEP ratios were unaffected by arm posture. The novel finding is that arm posture-dependent changes in corticospinal excitability in humans are largely spinal in origin. An interplay of multiple reflex inputs to motoneurons likely explains the results. Copyright © 2016 the American Physiological Society.
Arm posture-dependent changes in corticospinal excitability are largely spinal in origin
Nuzzo, James L.; Trajano, Gabriel S.; Barry, Benjamin K.; Gandevia, Simon C.
2016-01-01
Biceps brachii motor evoked potentials (MEPs) from cortical stimulation are influenced by arm posture. We used subcortical stimulation of corticospinal axons to determine whether this postural effect is spinal in origin. While seated at rest, 12 subjects assumed several static arm postures, which varied in upper-arm (shoulder flexed, shoulder abducted, arm hanging to side) and forearm orientation (pronated, neutral, supinated). Transcranial magnetic stimulation over the contralateral motor cortex elicited MEPs in resting biceps and triceps brachii, and electrical stimulation of corticospinal tract axons at the cervicomedullary junction elicited cervicomedullary motor evoked potentials (CMEPs). MEPs and CMEPs were normalized to the maximal compound muscle action potential (Mmax). Responses in biceps were influenced by upper-arm and forearm orientation. For upper-arm orientation, biceps CMEPs were 68% smaller (P = 0.001), and biceps MEPs 31% smaller (P = 0.012), with the arm hanging to the side compared with when the shoulder was flexed. For forearm orientation, both biceps CMEPs and MEPs were 34% smaller (both P < 0.046) in pronation compared with supination. Responses in triceps were influenced by upper-arm, but not forearm, orientation. Triceps CMEPs were 46% smaller (P = 0.007) with the arm hanging to the side compared with when the shoulder was flexed. Triceps MEPs and biceps and triceps MEP/CMEP ratios were unaffected by arm posture. The novel finding is that arm posture-dependent changes in corticospinal excitability in humans are largely spinal in origin. An interplay of multiple reflex inputs to motoneurons likely explains the results. PMID:26864764
Intermittent use of an "anchor system" improves postural control in healthy older adults.
Freitas, Milena de Bem Zavanella; Mauerberg-deCastro, Eliane; Moraes, Renato
2013-07-01
Haptic information, provided by a non-rigid tool (i.e., an "anchor system"), can reduce body sway in individuals who perform a standing postural task. However, it was not known whether or not continuous use of the anchor system would improve postural control after its removal. Additionally, it was unclear as to whether or not frequency of use of the anchor system is related to improved control in older adults. The present study evaluated the effect of the prolonged use of the anchor system on postural control in healthy older individuals, at different frequencies of use, while they performed a postural control task (semi-tandem position). Participants were divided into three groups according to the frequency of the anchor system's use (0%, 50%, and 100%). Pre-practice phase (without anchor) was followed by a practice phase (they used the anchor system at the predefined frequency), and a post-practice phase (immediate and late-without anchor). All three groups showed a persistent effect 15min after the end of the practice phase (immediate post-practice phase). However, only the 50% group showed a persistent effect in the late post-practice phase (24h after finishing the practice phase). Older adults can improve their postural control by practicing the standing postural task, and use of the anchor system limited to half of their practice time can provide additional improvement in their postural control. Copyright © 2013 Elsevier B.V. All rights reserved.
Static and dynamic posturography in patients with asymptomatic HIV-1 infection and AIDS
Dellepiane, M; Medicina, MC; Mora, R; Salami, A
2005-01-01
Summary Alterations of the vestibulo-ocular reflex, optokinetic nystagmus, and visuo-vestibular-ocular reflex, have already been described in patients with AIDS and HIV-1 positive asymptomatic subjects. The introduction to the clinical practice of posturographic techniques allows us to study, with precision, postural perturbation that may be present when performing Romberg’s test and to study the vestibulo-spinal reflex as a component of the vestibular system. The relative lack of studies on posturography and AIDS, encouraged us to continue our research on the vestibular system both in asymptomatic HIV-1 seropositive patients and in patients with AIDS (IV stage according to the classification proposed by the Centre for Disease Control). Recordings were made in group 1 (control group, 55 normal subjects), in group 2 (15 asymptomatic HIV-positive subjects), and in group 3 (15 patients with AIDS stage IV). Static and dynamic posturography were carried out using Tonnies platform system (Tonnies GmbH & Co., Wurzburg, Germany) and the data were analysed with Tonnies Posturographic Tübingen (TPOST) software vers. 5.19. In asymptomatic HIV+ subjects, we observed an increase in RW, RA and M3 reflex latency. AIDS patients (stage IV) exhibited significant alterations in almost all the posturographic parameters and the electromyographic potentials. Our results validate static and dynamic posturography as a method for otoneurological investigation and appear to confirm that the entire vestibular system is involved since the earliest stages of the HIV infection. In the HIV+ subjects, a variable dysfunction in the reflex control to long latency was observed, which is correlated with the alteration of the central dopaminergic system; in AIDS patients, the central nervous system damage appears more important, globally distributed and correlated also with immunosuppression. PMID:16749603
Difference in postural control between patients with functional and mechanical ankle instability.
Chen, Henry; Li, Hong-Yun; Zhang, Jian; Hua, Ying-Hui; Chen, Shi-Yi
2014-10-01
Lateral ankle sprain is one of the most common injuries. Since the structural and pathological differences in mechanical ankle instability (MAI) and functional ankle instability (FAI) may not be the same, it may be better to treat these as separate groups. The purpose of this study was to compare the difference in postural sway between MAI and FAI in patients with chronic ankle instability (CAI). Twenty-six patients with CAI and 14 healthy control participants were included in the study. The CAI patients were subdivided into MAI (15 patients) and FAI (11 patients) groups. Patients who were diagnosed with lateral ankle ligaments rupture by magnetic resonance imaging and ultrasonography were assigned to the MAI group. All participants performed single-limb postural sway tests 3 times on each leg with eyes closed and open. The average distances from the mean center of pressure position in the mediolateral and anteroposterior directions were recorded and compared among the 3 groups. The unstable ankles in the MAI group showed significantly greater postural sway in the anterior, posterior, and medial directions compared with those in the control group with eyes closed. With eyes open, significantly greater postural sway was found in the anterior direction. In the FAI group, no difference was found in postural sway compared with those in the control group. The MAI group showed significantly greater postural sway in the anterior direction compared with the FAI group with eyes closed and open. No significant difference in postural sway was found between the unstable and stable ankles in the MAI or FAI groups, with or without vision. Patients with MAI have deficits in postural control, especially in anterior-posterior directions. However, no difference was found in postural sway in patients with FAI compared with healthy people. As MAI patients suffer from deficits in postural control, balance training should be applied in those patients. In addition, special training should also include the contralateral side after a unilateral ankle ligament injured. © The Author(s) 2014.
Vertical Heterophoria and Postural Control in Nonspecific Chronic Low Back Pain
Matheron, Eric; Kapoula, Zoï
2011-01-01
The purpose of this study was to test postural control during quiet standing in nonspecific chronic low back pain (LBP) subjects with vertical heterophoria (VH) before and after cancellation of VH; also to compare with healthy subjects with, and without VH. Fourteen subjects with LBP took part in this study. The postural performance was measured through the center of pressure displacements with a force platform while the subjects fixated on a target placed at either 40 or 200 cm, before and after VH cancellation with an appropriate prism. Their postural performance was compared to that of 14 healthy subjects with VH and 12 without VH (i.e. vertical orthophoria) studied previously in similar conditions. For LBP subjects, cancellation of VH with a prism improved postural performance. With respect to control subjects (with or without VH), the variance of speed of the center of pressure was higher, suggesting more energy was needed to stabilize their posture in quiet upright stance. Similarly to controls, LBP subjects showed higher postural sway when they were looking at a target at a far distance than at a close distance. The most important finding is that LBP subjects with VH can improve their performance after prism-cancellation of their VH. We suggest that VH reflects mild conflict between sensory and motor inputs involved in postural control i.e. a non optimal integration of the various signals. This could affect the performance of postural control and perhaps lead to pain. Nonspecific chronic back pain may results from such prolonged conflict. PMID:21479210
Postural Control and Emotion in Children with Autism Spectrum Disorders
Gouleme, Nathalie; Scheid, Isabelle; Peyre, Hugo; Seassau, Magali; Maruani, Anna; Clarke, Julia; Delorme, Richard; Bucci, Maria Pia
2017-01-01
Abstract Autism Spectrum Disorders subjects (ASD) are well known to have deficits in social interaction. We recorded simultaneously eye movements and postural sway during exploration of emotional faces in children with ASD and typically developing children (TD). We analyzed several postural and ocular parameters. The results showed that all postural parameters were significantly greater in children with ASD; ASD made significantly fewer saccades and had shorter fixation time than TD, particularly in the eyes, and especially for unpleasant emotions. These results suggest that poor postural control of ASD and their impaired visual strategies could be due to a lack of interest in social cognition, causing a delay in the development of the cortical areas, and thus could have an effect on their postural control. PMID:29177103
Kim, Dae-Hun; Park, Jin-Kyu; Jeong, Myeong-Kyun
2014-01-01
In patients with chronic low back pain, the center of gravity (COG) is abnormally located posterior to the center in most cases. The purpose of this study was to examine the effects of posterior-located COG on the functions (lumbar extension strength, and static and dynamic balance) and structure (lumbar lordosis angle and lumbosacral angle) of the lumbar spine. In this study, the COG of chronic low back pain patients who complained of only low back pain were examined using dynamic body balance equipment. A total of 164 subjects participated in the study (74 males and 90 females), and they were divided into two groups of 82 patients each. One group (n=82) consisted of patients whose COG was located at the center (C-COG); the other group (n=82) consisted of patients whose COG was located posterior to the center (P-COG). The following measures assessed the lumber functions and structures of the two groups: lumbar extension strength, moving speed of static and dynamic COGs, movement distance of the static and dynamic COGs, lumbar lordosis angle, and lumbosacral angle. The measured values were analyzed using independent t-tests. The group of patients with P-COG showed more decreases in lumbar extension strength, lumbar lordosis angle, and lumbosacral angle compared to the group of patients with C-COG. Also this group showed increases in moving speed and movement distance of the static COG. However, there were no differences in moving speed and movement distance of the dynamic COG between the two groups. These findings suggest that chronic LBP patients with P-COG have some disadvantages to establish lumbar extension strength and static and dynamic balance, which require specific efforts to maintain a neutral position and to control posture.
Menz, Hylton B.; Dufour, Alyssa B.; Katz, Patricia; Hannan, Marian T.
2015-01-01
Background The foot plays an important role in supporting the body when undertaking weight bearing activities. Aging is associated with an increased prevalence of foot pain and a lowering of the arch of the foot, both of which may impair mobility. Objective To examine the associations of foot pain, foot posture and dynamic foot function with self-reported mobility limitations in community-dwelling older adults. Methods Foot examinations were conducted on 1,860 members of the Framingham Study in 2002–2005. Foot posture was categorized as normal, planus or cavus using static pressure measurements, and foot function was categorized as normal, pronated or supinated using dynamic pressure measurements. Participants were asked whether they had foot pain and any difficulty performing a list of nine weight bearing tasks. Multivariate logistic regression and linear regression models were used to examine the associations of foot pain, posture, function and ability to perform these activities. Results After adjusting for age, sex, height and weight, foot pain was significantly associated with difficulty performing all nine weight bearing activities. Compared to those with normal foot posture and function, participants with planus foot posture were more likely to report difficulty remaining balanced (odds ratio [OR] = 1.40, 95% confidence interval [CI] 1.06 to 1.85; p=0.018) and individuals with pronated foot function were more likely to report difficulty walking across a small room (OR = 2.07, 95% CI 1.02 to 4.22; p=0.045). Foot pain and planus foot posture were associated with an overall mobility limitation score combining performances on each measure. Conclusion Foot pain, planus foot posture and pronated foot function are associated with self-reported difficulty undertaking common weight bearing tasks. Interventions to reduce foot pain and improve foot posture and function may therefore have a role in improving mobility in older adults. PMID:26645379
Gera, Geetanjali; Fling, Brett W; Van Ooteghem, Karen; Cameron, Michelle; Frank, James S; Horak, Fay B
2016-09-01
Multiple sclerosis (MS) is associated with balance deficits resulting in falls and impaired mobility. Although rehabilitation has been recommended to address these balance deficits, the extent to which people with MS can learn and retain improvements in postural responses is unknown. To determine the ability of people with MS to improve postural control with surface perturbation training. A total of 24 patients with mild MS and 14 age-matched controls underwent postural control training with a set pattern of continuous, forward-backward, sinusoidal, and surface translations provided by a force platform. Postural control was then tested the following day for retention. The primary outcome measures were the relative phase and center-of-mass (CoM) gain between the body CoM and the platform motion. People with MS demonstrated similar improvements in acquiring and retaining changes in the temporal control of the CoM despite significant deficits in postural motor performance at the baseline. Both MS and control groups learned to anticipate the pattern of forward-backward perturbations, so body CoM shifted from a phase-lag (age-matched controls [CS] = -7.1 ± 1.3; MS = -12.9 ± 1.0) toward a phase-lead (CS = -0.7 ± 1.8; MS = -6.1 ± 1.4) relationship with the surface oscillations. However, MS patients were not able to retain the changes in the spatial control of the CoM acquired during training. People with MS have the capacity to improve use of a feed-forward postural strategy with practice and retain the learned behavior for temporal not spatial control of CoM, despite their significant postural response impairments. © The Author(s) 2015.
Soysal Tomruk, Melda; Uz, Muhammed Zahid; Kara, Bilge; İdiman, Egemen
2016-05-01
Decreased postural control, sensory integration deficits and fatigue are important problems that cause functional impairments in patients with multiple sclerosis (pwMS). To examine the effect of modified clinical Pilates exercises on sensory interaction and balance, postural control and fatigue in pwMS. Eleven patients with multiple sclerosis and 12 healthy matched controls were recruited in this study. Limits of stability and postural stability tests were used to evaluate postural control by Biodex Balance System and sensory interaction assessed. Fatigue was assessed by Modified Fatigue Impact Scale. Pilates exercises were applied two times a week for 10 weeks and measurements were repeated to pwMS after exercise training. Postural control and fatigue (except psychosocial parameter) of pwMS were significantly worser than healthy controls (p<0.05). Significant improvements occurred in sensory interaction (eyes open, foam surface) and total, physical and cognitive scores of fatigue after 10-week modified clinical Pilates training (p<0.05). No significant changes were detected in postural control after the pilates exercises (p>0.05). Ten-week Pilates training is effective to improve sensory interaction and to decrease fatigue. Pilates exercises can be applied safely in ambulatory pwMS for enhance sensory interaction and balance and combat fatigue. More investigations are needed. Copyright © 2016 Elsevier B.V. All rights reserved.
Ribeiro, Ana Paula; Trombini-Souza, Francis; Tessutti, Vitor; Lima, Fernanda Rodrigues; de Camargo Neves Sacco, Isabel; João, Sílvia Maria Amado
2011-01-01
OBJECTIVE: To evaluate and compare rearfoot alignment and medial longitudinal arch index during static postures in runners, with and without symptoms and histories of plantar fasciitis (PF). INTRODUCTION: PF is the third most common injury in runners but, so far, its etiology remains unclear. In the literature, rearfoot misalignment and conformations of the longitudinal plantar arch have been described as risk factors for the development of PF. However, in most of the investigated literature, the results are still controversial, mainly regarding athletic individuals and the effects of pain associated with these injuries. METHODS: Forty-five runners with plantar fasciitis (30 symptomatic and 15 with previous histories of injuries) and 60 controls were evaluated. Pain was assessed by a visual analogue scale. The assessment of rearfoot alignment and the calculations of the arch index were performed by digital photographic images. RESULTS: There were observed similarities between the three groups regarding the misalignments of the rearfoot valgus. The medial longitudinal arches were more elevated in the group with symptoms and histories of PF, compared to the control runners. CONCLUSIONS: Runners with symptoms or histories of PF did not differ in rearfoot valgus misalignments, but showed increases in the longitudinal plantar arch during bipedal static stance, regardless of the presence of pain symptoms. PMID:21808870
Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects
Baston, Chiara; Mancini, Martina; Schoneburg, Bernadette; Horak, Fay; Rocchi, Laura
2015-01-01
The present study introduces a novel instrumented method to characterize postural movement strategies to maintain balance during stance (ankle and hip strategy), by means of inertial sensors, positioned on the legs and on the trunk. We evaluated postural strategies in subjects with2 types of parkinsonism: idiopathic Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP),and inage-matched control subjects standing under perturbed conditions implementedby the Sensory Organization Test (SOT).Coordination between the upper and lower segments of the body during postural sway was measured using a covariance index over time, by a sliding-window algorithm. Afterwards, a postural strategy index was computed. We also measuredthe amount of postural sway, as adjunctive information to characterize balance, by the root mean square of the horizontal trunk acceleration signal (RMS). Results showed that control subjects were able to change their postural strategy, whilst PSP and PD subjects persisted in use of an ankle strategy in all conditions.PD subjects had RMS values similar to control subjects even without changing postural strategy appropriately, whereas PSP subjects showed much larger RMS values than controls, resulting in several falls during the most challenging SOT conditions (5 and 6). Results are in accordance with the corresponding clinical literature describing postural behavior in the same kind of subjects. The proposed strategy index, based on the use ofinertial sensors on the upper and lower body segments, isa promising and unobtrusive toolto characterize postural strategies performed to attain balance. PMID:24656713
Khan, Saad Jawaid; Khan, Soobia Saad; Usman, Juliana; Mokhtar, Abdul Halim; Abu Osman, Noor Azuan
2018-02-01
This study aims to investigate the effects of varying toe angles at different platform settings on Overall Stability Index of postural stability and fall risk using Biodex Balance System in healthy participants and medial knee osteoarthritis patients. Biodex Balance System was employed to measure postural stability and fall risk at different foot progression angles (ranging from -20° to 40°, with 10° increments) on 20 healthy (control group) and 20 knee osteoarthritis patients (osteoarthritis group) randomly (age: 59.50 ± 7.33 years and 61.50 ± 8.63 years; body mass: 69.95 ± 9.86 kg and 70.45 ± 8.80 kg). Platform settings used were (1) static, (2) postural stability dynamic level 8 (PS8), (3) fall risk levels 12 to 8 (FR12) and (4) fall risk levels 8 to 2 (FR8). Data from the tests were analysed using three-way mixed repeated measures analysis of variance. The participant group, platform settings and toe angles all had a significant main effect on balance ( p ≤ 0.02). Platform settings had a significant interaction effect with participant group F(3, 144) = 6.97, p < 0.01 and toe angles F(21, 798) = 2.83, p < 0.01. Non-significant interactions were found for group × toe angles, F(7, 266) = 0.89, p = 0.50, and for group × toe angles × settings, F(21, 798) = 1.07, p = 0.36. The medial knee osteoarthritis group has a poorer postural stability and increased fall risk as compared to the healthy group. Changing platform settings has a more pronounced effect on balance in knee osteoarthritis group than in healthy participants. Changing toe angles produced similar effects in both the participant groups, with decreased stability and increased fall risk at extreme toe-in and toe-out angles.
Experience of handicap and anxiety in phobic postural vertigo.
Holmberg, Johan; Karlberg, Mikael; Harlacher, Uwe; Magnusson, Mans
2005-03-01
We found a difference in gender distribution in a population of phobic postural vertigo patients compared with dizzy patients seen in general neuro-otological practice. It appears as if women with phobic postural vertigo suffer more and are more handicapped by dizziness than both men with phobic postural vertigo and a population with dizziness. These differences may reflect other causes of phobic postural vertigo besides anxiety, such as gender-related coping behaviour and postural strategy. Anxiety influences the degree of suffering and handicap in dizzy patients. Experiences of anxiety and handicap were investigated among a population with phobic postural vertigo. Using the Dizziness Handicap Inventory, the Vertigo Symptom Scale and the Vertigo Handicap Questionnaire, 34 consecutive patients with phobic postural vertigo were compared with a population of 95 consecutive patients seen at a balance disorder clinic. Patients with phobic postural vertigo scored higher than the control subjects with respect to all parameters with the exception of the physical subscale of the Dizziness Handicap Inventory. Because there were significantly more women in the control group we performed a gender-specific analysis of the results. The higher test scores among patients with phobic postural vertigo can be explained by the higher scores among women in this group, while the test results for men were more similar to those of the control group.
Acute Effects of Posture Shirts on Rounded-Shoulder and Forward-Head Posture in College Students.
Manor, John; Hibberd, Elizabeth; Petschauer, Meredith; Myers, Joseph
2016-12-01
Rounded-shoulder and forward-head posture can be contributing factors to shoulder pain. Corrective techniques such as manual therapy and exercise have been shown to improve these altered postures, but there is little evidence that corrective garments such as posture shirts can alter posture. To determine the acute effects of corrective postureshirt use on rounded-shoulder and forward-head posture in asymptomatic college students. Repeated-measures intervention study with counterbalanced conditions. Research laboratory. 24 members of the general student body of a university, 18-25 y old, with a forward shoulder angle (FSA) >52° and no history of upper-extremity surgery, scoliosis, active shoulder pain, or shoulder pain in the previous 3 mo that restricted participation for 3 consecutive days. Photographic posture assessment under a control condition, under a sham or treatment condition (counterbalanced), under another control condition, and treatment or sham. FSA and forward head angle (FHA) calculated from a lateral photograph. FSA decreased relative to the control condition while participants wore the sham shirt (P = .029) but not the corrective posture shirt (P = 1.00). FHA was unchanged between groups (P = .371). Application of a corrective posture shirt did not acutely alter FSA or FHA, while application of a sham shirt may decrease FSA at rest.
NASA Astrophysics Data System (ADS)
Kirchner, M.; Schubert, P.; Schmidtbleicher, D.; Haas, C. T.
2012-10-01
The analysis of postural control has a long history. Traditionally, the amount of body sway is solely used as an index of postural stability. Although this leads to some extent to an effective evaluation of balance performance, the control mechanisms involved have not yet been fully understood. The concept of nonlinear dynamics suggests that variability in the motor output is not randomness but structure, providing the stimulus to reveal the functionality of postural sway. The present work evaluates sway dynamics by means of COP excursions in a quiet standing task versus a dual-task condition in three different test times (30, 60, 300 s). Besides the application of traditional methods-which estimate the overall size of sway-the temporal pattern of body sway was quantified via wavelet transform, multiscale entropy and fractal analysis. We found higher sensitivity of the structural parameters to modulations of postural control strategies and partly an improved evaluation of sway dynamics in longer recordings. It could be shown that postural control modifications take place on different timescales corresponding to the interplay of the sensory systems. A continued application of nonlinear analysis can help to better understand postural control mechanisms.
[Static posturography versus clinical tests in elderly people with vestibular pathology].
Ortuño-Cortés, Miguel A; Martín-Sanz, Eduardo; Barona-de Guzmán, Rafael
2008-01-01
Balance can be quantified by clinical tests and through instrumental studies. The objective of this paper is to determine the correlation between static posturography and 4 clinical tests of balance in elderly people with vestibular disorders and to identify its capability to discriminate the groups studied. 60 patients with vestibular disorders and 60 healthy subjects performed 4 clinical tests (one leg standing with opened eyes, Timed Up and Go, Tinetti and Berg tests) and a static posturography analysis (NedSVE/IBV system) under 4 conditions: Romberg Test, Eyes Open (REO), Romberg Test, Eyes Closed (REC), Romberg Test on Foam with Eyes Open (RFEO), and Romberg Test on Foam with Eyes Closed (RFEC). RFEO correlated best with the clinical tests and RFEC was the worst. RFEO distinguished between healthy individuals and decompensated patients. RFEO gave the best information about postural balance in the elderly. RFEC was not useful. Static posturography can be useful to distinguish vestibular compensation status.
Postural Control Deficits in Autism Spectrum Disorder: The Role of Sensory Integration
ERIC Educational Resources Information Center
Doumas, Michail; McKenna, Roisin; Murphy, Blain
2016-01-01
We investigated the nature of sensory integration deficits in postural control of young adults with ASD. Postural control was assessed in a fixed environment, and in three environments in which sensory information about body sway from visual, proprioceptive or both channels was inaccurate. Furthermore, two levels of inaccurate information were…
McCaskey, Michael A; Wirth, Brigitte; Schuster-Amft, Corina; de Bruin, Eling D
2018-01-01
Reduced postural control is thought to contribute to the development and persistence of chronic non-specific low back pain (CNLBP). It is therefore frequently assessed in affected patients and commonly reported as the average amount of postural sway while standing upright under a variety of sensory conditions. These averaged linear outcomes, such as mean centre of pressure (CP) displacement or mean CP surface areas, may not reflect the true postural status. Adding nonlinear outcomes and multi-segmental kinematic analysis has been reported to better reflect the complexity of postural control and may detect subtler postural differences. In this cross-sectional study, a combination of linear and nonlinear postural parameters were assessed in patients with CNLBP (n = 24, 24-75 years, 9 females) and compared to symptom-free controls (CG, n = 34, 22-67 years, 11 females). Primary outcome was postural control measured by variance of joint configurations (uncontrolled manifold index, UI), confidence ellipse surface areas (CEA) and approximate entropy (ApEn) of CP dispersion during the response phase of a perturbed postural control task on a swaying platform. Secondary outcomes were segment excursions and clinical outcome correlates for pain and function. Non-parametric tests for group comparison with P-adjustment for multiple comparisons were conducted. Principal component analysis was applied to identify patterns of segmental contribution in both groups. CNLBP and CG performed similarly with respect to the primary outcomes. Comparison of joint kinematics revealed significant differences of hip (P < .001) and neck (P < .025) angular excursion, representing medium to large group effects (r's = .36 - .51). Significant (P's < .05), but moderate correlations of ApEn (r = -.42) and UI (r = -.46) with the health-related outcomes were observed. These findings lend further support to the notion that averaged linear outcomes do not suffice to describe subtle postural differences in CNLBP patients with low to moderate pain status.
Uhm, Yo-Han; Yang, Dae-Jung
2018-02-01
[Purpose] The purpose of this study was to examine the effect of computerized postural control training using whole body vibration on lower limb muscle activity and cerebral cortical activation in acute stroke patients. [Subjects and Methods] Thirty stroke patients participated and were divided into groups of 10, a group of the computerized postural control training using whole body vibration (Group I), the computerized postural control training combined with aero step (Group II) and computerized postural control training (Group III). MP100 was used to measure lower limb muscle activity, and QEEG-8 was used to measure cerebral cortical activation. [Results] Comparison of muscle activity and cerebral cortical activation before and after intervention between groups showed that Group I had significant differences in lower limb muscle activity and cerebral cortical activation compared to Groups II and III. [Conclusion] This study showed that whole body vibration combined computerized postural control training is effective for improving muscle activity and cerebral cortex activity in stroke patients.
Leisure sports and postural control: can a black belt protect your balance from aging?
Krampe, Ralf T; Smolders, Caroline; Doumas, Michail
2014-03-01
To determine potential benefits of intensive leisure sports for age-related changes in postural control, we tested 3 activity groups comprising 70 young (M = 21.67 years, SD = 2.80) and 73 older (M = 62.60 years, SD = 5.19) men. Activity groups were martial artists, who held at least 1st Dan (black belt), sportive individuals exercising sports without explicit balance components, and nonsportive controls. Martial artists had an advantage over sportive individuals in dynamic posture tasks (upright stance on a sway-referenced platform), and these 2 active groups showed better postural control than nonsportive participants. Age-related differences in postural control were larger in nonsportive men compared with the 2 active groups, who were similar in this respect. In contrast, negative age differences in other sensorimotor and cognitive functions did not differ between activity groups. We concluded that individuals engaging in intensive recreational sports have long-term advantages in postural control. However, even in older martial artists with years of practice in their sports, we observed considerable differences favoring the young. (c) 2014 APA, all rights reserved.
Influence of gymnastics training on the development of postural control.
Garcia, Claudia; Barela, José Angelo; Viana, André Rocha; Barela, Ana Maria Forti
2011-03-29
This study investigated the influence of gymnastics training on the postural control of children with and without the use of visual information. Two age groups, aged 5-7 and 9-11 years old, of gymnasts and nongymnasts were asked to maintain an upright and quiet stance on a force platform with eyes open (EO) and eyes closed (EC) for 30s. Area of the stabilogram (AOS) and mean velocity of the center of pressure (COP) in anterior-posterior (AP) and medial-lateral (ML) directions were calculated and used to investigate the effects of gymnastics training, age, and visual information. Younger gymnasts presented greater postural control compared to younger nongymnasts while visual information did not improve postural control in younger nongymnasts. Younger gymnasts displayed improved postural control with EO compared to EC. The mean velocity of the COP in the ML direction was: less for younger gymnasts than younger nongymnasts with EO. These results suggest that gymnastics training promotes improvements in postural control of younger children only, which results from their use of visual information when available. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Toprak Çelenay, Şeyda; Özer Kaya, Derya
2017-04-18
To investigate the effects of an 8-week thoracic stabilization exercise program on back pain, spinal alignment, postural sway, and core endurance in university students. University students were randomly allocated into exercise (n: 28) and control (n: 25) groups. The exercise program was carried out 3 days a week for 8 weeks. Postural pain, spinal alignment, postural sway, and core endurance were assessed via visual analogue scale, Spinal Mouse, Biodex Balance System, and McGill's trunk muscle endurance tests at the baseline and after 8 weeks of training. Differences were observed for postural pain, thoracic and lumbar curvature, dynamic stability index (eyes closed), and core endurance scores in the exercise group between baseline and week 8 (P < 0.05) and all the parameters were significantly different when compared to those of the control group (P < 0.05). The program decreased postural pain, spinal curvatures, and postural sway, and increased core endurance in university students. The program can be effective in postural pain and misalignment of spine problems related to core weakness and balance disorders.
Spatial Reorientation of Sensorimotor Balance Control in Altered Gravity
NASA Technical Reports Server (NTRS)
Paloski, W. H.; Black, F. L.; Kaufman, G. D.; Reschke, M. F.; Wood, S. J.
2007-01-01
Sensorimotor coordination of body segments following space flight are more pronounced after landing when the head is actively tilted with respect to the trunk. This suggests that central vestibular processing shifts from a gravitational frame of reference to a head frame of reference in microgravity. A major effect of such changes is a significant postural instability documented by standard head-erect Sensory Organization Tests. Decrements in functional performance may still be underestimated when head and gravity reference frames remained aligned. The purpose of this study was to examine adaptive changes in spatial processing for balance control following space flight by incorporating static and dynamic tilts that dissociate head and gravity reference frames. A second aim of this study was to examine the feasibility of altering the re-adaptation process following space flight by providing discordant visual-vestibular-somatosensory stimuli using short-radius pitch centrifugation.
Ries, Lilian Gerdi Kittel; Alves, Marcelo Correa; Bérzin, Fausto
2008-01-01
The aim of this study was to analyze the symmetry of the electromyographic (EMG) activity of the temporalis, masseter, and sternocleidomastoid (SCM) muscles in volunteers divided into a control group and a temporomandibular disorder (TMD) group. The surface EMG recordings were made during mandibular rest position, maximal intercuspal position, and during the chewing cycle. Normalized EMG waves of paired muscles were compared by computing a percentage overlapping coefficient (POC). The difference between the groups and between the static and dynamic clenching tests was analyzed through repeated measures, ANOVA. Symmetry of the temporalis, masseter, and SCM muscles activity was smaller in the TMD group compared to the control group. The mandibular postures were also significantly different among themselves. The asymmetric activation of jaw and neck muscles was interpreted as a compensatory strategy to achieve stability for the mandibular and cervical systems during masticatory function.
Husman, M A B; Maqbool, H F; Awad, M I; Abouhossein, A; Dehghani-Sanij, A A
2016-08-01
Haptic feedback to lower limb amputees is essential to maximize the functionality of a prosthetic device by providing information to the user about the interaction with the environment and the position of the prostheses in space. Severed sensory pathway and the absence of connection between the prosthesis and the Central Nervous System (CNS) after lower limb amputation reduces balance control, increases visual dependency and increases risk of falls among amputees. This work describes the design of a wearable haptic feedback device for lower limb amputees using lateral skin-stretch modality intended to serve as a feedback cue during ambulation. A feedback scheme was proposed based on gait event detection for possible real-time postural adjustment. Preliminary perceptual test with healthy subjects in static condition was carried out and the results indicated over 98% accuracy in determining stimuli location around the upper leg region, suggesting good perceptibility of the delivered stimuli.
Azadinia, Fatemeh; Ebrahimi-Takamjani, Ismail; Kamyab, Mojtaba; Parnianpour, Mohamad; Asgari, Morteza
2017-01-01
Background: Poor balance performance and impaired postural control have been frequently reported in patients with low back pain. However, postural control is rarely monitored during the course of treatment even though poor postural control may contribute to chronicity and recurrence of symptoms. Therefore, the present study aimed at investigating the effect of a nonextensible lumbosacral orthosis (LSO) versus routine physical therapy on postural stability of patients with nonspecific chronic low back pain. Methods: This was a randomized controlled trial conducted between November 2015 and May 2016 at the outpatient physical therapy clinic of the School of Rehabilitation Sciences. Patients with nonspecific chronic low back pain aged 20 to 55 years were randomly allocated to the intervention and control groups. Both groups received 8 sessions of physical therapy twice weekly for 4 weeks. The intervention group received nonextensible LSO in addition to routine physical therapy. Pain intensity, functional disability, fear of movement/ (re)injury, and postural stability in 3 levels of postural difficulty were measured before and after 4 weeks of intervention. A 2×2×3 mixed model of analysis of variance (ANOVA) was used to determine the main and interactive effects of the 3 factors including group, time, and postural difficulty conditions for each variable of postural stability. Results: The LSO and control groups displayed significant improvement in postural stability at the most difficult postural task conditions (P-value for 95% area ellipse was 0.003; and for phase plane, the mean total velocity and standard deviation of velocity was <0.001). Both groups exhibited a decrease in pain intensity, Oswestry Disability Index, and Tampa Scale of Kinesiophobia after 4 weeks of intervention. A significant difference between groups was found only for functional disability, with greater improvement in the orthosis group (t = 3.60, P<0.001). Conclusion: Both routine physical therapy and LSO significantly improved clinical and postural stability outcomes immediately after 4 weeks of intervention. The orthosis group did not display superior outcomes, except for functional disability.
Azadinia, Fatemeh; Ebrahimi-Takamjani, Ismail; Kamyab, Mojtaba; Parnianpour, Mohamad; Asgari, Morteza
2017-01-01
Background: Poor balance performance and impaired postural control have been frequently reported in patients with low back pain. However, postural control is rarely monitored during the course of treatment even though poor postural control may contribute to chronicity and recurrence of symptoms. Therefore, the present study aimed at investigating the effect of a nonextensible lumbosacral orthosis (LSO) versus routine physical therapy on postural stability of patients with nonspecific chronic low back pain. Methods: This was a randomized controlled trial conducted between November 2015 and May 2016 at the outpatient physical therapy clinic of the School of Rehabilitation Sciences. Patients with nonspecific chronic low back pain aged 20 to 55 years were randomly allocated to the intervention and control groups. Both groups received 8 sessions of physical therapy twice weekly for 4 weeks. The intervention group received nonextensible LSO in addition to routine physical therapy. Pain intensity, functional disability, fear of movement/ (re)injury, and postural stability in 3 levels of postural difficulty were measured before and after 4 weeks of intervention. A 2×2×3 mixed model of analysis of variance (ANOVA) was used to determine the main and interactive effects of the 3 factors including group, time, and postural difficulty conditions for each variable of postural stability. Results: The LSO and control groups displayed significant improvement in postural stability at the most difficult postural task conditions (P-value for 95% area ellipse was 0.003; and for phase plane, the mean total velocity and standard deviation of velocity was <0.001). Both groups exhibited a decrease in pain intensity, Oswestry Disability Index, and Tampa Scale of Kinesiophobia after 4 weeks of intervention. A significant difference between groups was found only for functional disability, with greater improvement in the orthosis group (t = 3.60, P<0.001). Conclusion: Both routine physical therapy and LSO significantly improved clinical and postural stability outcomes immediately after 4 weeks of intervention. The orthosis group did not display superior outcomes, except for functional disability. PMID:29445655
Yasuda, Kazuhiro; Kaibuki, Naomi; Harashima, Hiroaki; Iwata, Hiroyasu
2017-06-01
Impaired balance in patients with hemiparesis caused by stroke is frequently related to deficits in the central integration of afferent inputs, and traditional rehabilitation reinforces excessive visual reliance by focusing on visual compensation. The present study investigated whether a balance task involving a haptic biofeedback (BF) system, which provided supplementary vibrotactile sensory cues associated with center-of-foot-pressure displacement, improved postural control in patients with stroke. Seventeen stroke patients were assigned to two groups: the Vibrotactile BF and Control groups. During the balance task (i.e., standing on a foam mat), participants in the Vibrotactile BF group tried to stabilize their postural sway while wearing the BF system around the pelvic girdle. In the Control group, participants performed an identical postural task without the BF system. Pre- and post-test measurements of postural control using a force plate revealed that the stability of bipedal posture in the Vibrotactile BF group was markedly improved compared with that in the Control group. A balance task involving a vibrotactile BF system improved postural stability in patients with stroke immediately. This confirms the potential of a haptic-based BF system for balance training, both in routine clinical practice and in everyday life.
Hur, Pilwon; Shorter, K Alex; Mehta, Prashant G; Hsiao-Wecksler, Elizabeth T
2012-04-01
In this paper, a novel analysis technique, invariant density analysis (IDA), is introduced. IDA quantifies steady-state behavior of the postural control system using center of pressure (COP) data collected during quiet standing. IDA relies on the analysis of a reduced-order finite Markov model to characterize stochastic behavior observed during postural sway. Five IDA parameters characterize the model and offer physiological insight into the long-term dynamical behavior of the postural control system. Two studies were performed to demonstrate the efficacy of IDA. Study 1 showed that multiple short trials can be concatenated to create a dataset suitable for IDA. Study 2 demonstrated that IDA was effective at distinguishing age-related differences in postural control behavior between young, middle-aged, and older adults. These results suggest that the postural control system of young adults converges more quickly to their steady-state behavior while maintaining COP nearer an overall centroid than either the middle-aged or older adults. Additionally, larger entropy values for older adults indicate that their COP follows a more stochastic path, while smaller entropy values for young adults indicate a more deterministic path. These results illustrate the potential of IDA as a quantitative tool for the assessment of the quiet-standing postural control system.
Wang, Tien-Ni; Howe, Tsu-Hsin; Hinojosa, Jim; Weinberg, Sharon L
2011-01-01
We examined the relationship between postural control and fine motor skills of preterm infants at 6 and 12 mo adjusted age. The Alberta Infant Motor Scale was used to measure postural control, and the Peabody Developmental Motor Scales II was used to measure fine motor skills. The data analyzed were taken from 105 medical records from a preterm infant follow-up clinic at an urban academic medical center in south Taiwan. Using multiple regression analyses, we found that the development of postural control is related to the development of fine motor skills, especially in the group of preterm infants with delayed postural control. This finding supports the theoretical assumption of proximal-distal development used by many occupational therapists to guide intervention. Further research is suggested to corroborate findings.
De Pauw, J; Mercelis, R; Hallemans, A; Van Gils, G; Truijen, S; Cras, P; De Hertogh, W
2018-03-01
Cervical dystonia (CD) is a movement disorder characterized by involuntary muscle contractions leading to an abnormal head posture or movements of the neck. Dysfunctions in somatosensory integration are present and previous data showed enlarged postural sway in stance. Postural control during quiet sitting and the correlation with cervical sensorimotor control were investigated. Postural control during quiet sitting was measured via body sway parameters in 23 patients with CD, regularly receiving botulinum toxin treatment and compared with 36 healthy controls. Amplitude and velocity of displacements of the center of pressure (CoP) were measured by two embedded force plates at 1000 Hz. Three samples of 30 s were recorded with the eyes open and closed. Disease-specific characteristics were obtained in all patients by the Tsui scale, Cervical Dystonia Impact Profile (CDIP-58) and Toronto Western Spasmodic Rating Scale (TWSTRS). Cervical sensorimotor control was assessed with an infrared Vicon system during a head repositioning task. Body sway amplitude and velocity were increased in patients with CD compared to healthy controls. CoP displacements were doubled in patients without head tremor and tripled in patients with a dystonic head tremor. Impairments in cervical sensorimotor control were correlated with larger CoP displacements (r s ranged from 0.608 to 0.748). Postural control is impaired and correlates with dysfunction in cervical sensorimotor control in patients with CD. Treatment is currently focused on the cervical area. Further research towards the potential value of postural control exercises is recommended.
Moll van Charante, A W; Snijders, C J; Mulder, P G
1991-10-01
In a previous case-control study on the effect of impaired perceptual acuity on the risk of industrial injuries at a naval shipyard, three factors which might influence the perception and processing of sensory impressions--alcohol consumption, hearing loss exceeding 20 decibels (dB) and exposure to noise exceeding 82 dB(A)--were found to contribute to the risk of injury. According to recent reports, these factors can all lead to impaired posture control. Because in general about 40% of all accidents are associated with falling, tripping, slipping and the like, a supplementary study has been carried out to unravel possible confounding effects of posture control on these three risk factors. Cases (who had suffered two or more accidents during the preceding 4 years) and controls (who had been accident-free in the same period) were compared as regards posture control measured during silence or noise. No significant difference in posture control was found between cases and controls, either in silence or during exposure to heavy noise.
Impairment of Postural Control in Rabbits With Extensive Spinal Lesions
Lyalka, V. F.; Orlovsky, G. N.; Deliagina, T. G.
2009-01-01
Our previous studies on rabbits demonstrated that the ventral spinal pathways are of primary importance for postural control in the hindquarters. After ventral hemisection, postural control did not recover, whereas after dorsal or lateral hemisection it did. The aim of this study was to examine postural capacity of rabbits after more extensive lesion (3/4 section of the spinal cord at T12 level), that is, with only one ventral quadrant spared (VQ animals). They were tested before (control) and after lesion on the platform periodically tilted in the frontal plane. In control animals, tilts of the platform regularly elicited coordinated electromyographic (EMG) responses in the hindlimbs, which resulted in generation of postural corrections and in maintenance of balance. In VQ rabbits, the EMG responses appeared only in a part of tilt cycles, and they could be either correctly or incorrectly phased in relation to tilts. Because of a reduced value and incorrect phasing of EMG responses on both sides, this muscle activity did not cause postural corrective movements in the majority of rabbits, and the body swayed together with the platform. In these rabbits, the ability to perform postural corrections did not recover during the whole period of observation (≤30 days). Low probability of correct EMG responses to tilts in most rabbits as well as an appearance of incorrect responses to tilts suggest that the spinal reflex chains, necessary for postural control, have not been specifically selected by a reduced supraspinal drive transmitted via a single ventral quadrant. PMID:19164112
Ni, Meng; Mooney, Kiersten; Richards, Luca; Balachandran, Anoop; Sun, Mingwei; Harriell, Kysha; Potiaumpai, Melanie; Signorile, Joseph F
2014-09-01
To compare the effect of a custom-designed yoga program with 2 other balance training programs. Randomized controlled trial. Research laboratory. A group of older adults (N=39; mean age, 74.15 ± 6.99 y) with a history of falling. Three different exercise interventions (Tai Chi, standard balance training, yoga) were given for 12 weeks. Balance performance was examined during pre- and posttest using field tests, including the 8-foot up-and-go test, 1-leg stance, functional reach, and usual and maximal walking speed. The static and dynamic balances were also assessed by postural sway and dynamic posturography, respectively. Training produced significant improvements in all field tests (P<.005), but group difference and time × group interaction were not detected. For postural sway, significant decreases in the area of the center of pressure with eyes open (P=.001) and eyes closed (P=.002) were detected after training. For eyes open, maximum medial-lateral velocity significantly decreased for the sample (P=.013). For eyes closed, medial-lateral displacement decreased for Tai Chi (P<.01). For dynamic posturography, significant improvements in overall score (P=.001), time on the test (P=.006), and 2 linear measures in lateral (P=.001) and anterior-posterior (P<.001) directions were seen for the sample. Yoga was as effective as Tai Chi and standard balance training for improving postural stability and may offer an alternative to more traditional programs. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Influence of dental occlusion on postural control and plantar pressure distribution.
Scharnweber, Benjamin; Adjami, Frederic; Schuster, Gabriele; Kopp, Stefan; Natrup, Jörg; Erbe, Christina; Ohlendorf, Daniela
2017-11-01
The number of studies investigating correlations between the temporomandibular system and body posture, postural control or plantar pressure distribution is continuously increasing. If a connection can be found, it is often of minor influence or for only a single parameter. However, small subject groups are critical. This study was conducted to define correlations between dental parameters, postural control and plantar pressure distribution in healthy males. In this study, 87 male subjects with an average age of 25.23 ± 3.5 years (ranging from 18 to 35 years) were examined. Dental casts of the subjects were analyzed. Postural control and plantar pressure distribution were recorded by a force platform. Possible orthodontic and orthopedic factors of influence were determined by either an anamnesis or a questionnaire. All tests performed were randomized and repeated three times each for intercuspal position (ICP) and blocked occlusion (BO). For a statistical analysis of the results, non-parametric tests (Wilcoxon-Matched-Pairs-Test, Kruskall-Wallis-Test) were used. A revision of the results via Bonferroni-Holm correction was considered. ICP increases body sway in the frontal (p ≤ 0.01) and sagittal planes (p ≤ 0.03) compared to BO, whereas all other 29 correlations were independent of the occlusion position. For both of the ICP or BO cases, Angle-class, midline-displacement, crossbite, or orthodontic therapy were found to have no influence on postural control or plantar pressure distribution (p > 0.05). However, the contact time of the left foot decreased (p ≤ 0.001) while detecting the plantar pressure distribution in each position. Persistent dental parameters have no effect on postural sway. In addition, postural control and plantar pressure distribution have been found to be independent postural criteria.
Standridge, J. S.; Bhattacharya, Amit; Succop, Paul; Cox, Cyndy; Haynes, Erin
2009-01-01
OBJECTIVE The objective of this study was to determine the effect of non-occupational exposure to manganese on postural balance. METHODS Residents living near a ferromanganese refinery provided hair and blood samples after postural balance testing. The relationship between hair manganese and postural balance was analyzed with logistic regression. Following covariate adjustment, postural balance was compared with control data by analysis of covariance. RESULTS Mean hair manganese was 4.4 µg/g. A significantly positive association was found between hair manganese and sway area (EO, p=0.05; EC, p=0.04) and sway length (EO, p=0.05; EC, p=0.04). Postural balance of residents was significantly larger than controls in 5 out of 8 postural balance outcomes. CONCLUSION Preliminary findings suggest subclinical impairment in postural balance among residents chronically exposed to ambient Mn. A prospective study with a larger sample size is warranted. PMID:19092498
Comparison of human and humanoid robot control of upright stance.
Peterka, Robert J
2009-01-01
There is considerable recent interest in developing humanoid robots. An important substrate for many motor actions in both humans and biped robots is the ability to maintain a statically or dynamically stable posture. Given the success of the human design, one would expect there are lessons to be learned in formulating a postural control mechanism for robots. In this study we limit ourselves to considering the problem of maintaining upright stance. Human stance control is compared to a suggested method for robot stance control called zero moment point (ZMP) compensation. Results from experimental and modeling studies suggest there are two important subsystems that account for the low- and mid-frequency (DC to approximately 1Hz) dynamic characteristics of human stance control. These subsystems are (1) a "sensory integration" mechanism whereby orientation information from multiple sensory systems encoding body kinematics (i.e. position, velocity) is flexibly combined to provide an overall estimate of body orientation while allowing adjustments (sensory re-weighting) that compensate for changing environmental conditions and (2) an "effort control" mechanism that uses kinetic-related (i.e., force-related) sensory information to reduce the mean deviation of body orientation from upright. Functionally, ZMP compensation is directly analogous to how humans appear to use kinetic feedback to modify the main sensory integration feedback loop controlling body orientation. However, a flexible sensory integration mechanism is missing from robot control leaving the robot vulnerable to instability in conditions where humans are able to maintain stance. We suggest the addition of a simple form of sensory integration to improve robot stance control. We also investigate how the biological constraint of feedback time delay influences the human stance control design. The human system may serve as a guide for improved robot control, but should not be directly copied because the constraints on robot and human control are different.
Tai Chi training reduced coupling between respiration and postural control.
Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li
2016-01-01
In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
El Hage, Yasmin; Politti, Fabiano; Herpich, Carolina Marciela; de Souza, Dowglas Fernando Magalhães; de Paula Gomes, Cid André Fidelis; Amorim, Cesar Ferreira; de Oliveira Gonzalez, Tabajara; Biasotto-Gonzalez, Daniela Aparecida
2013-01-01
The influence of the neuromuscular system on the cervical region and mastication is directly associated with mandibular movements and neck posture. Normal occlusal homeostasis depends on complex sensory feedback mechanisms of the periodontal ligament, temporomandibular joint and other structures of the stomatognathic system. This feedback serves as a regulatory mechanism that helps determine the force and nature of muscle contractions. Alterations in the muscles of mastication, neck muscles, and occlusal characteristics constitute causal factors of imbalances in the postural muscle chains, leading to alterations in the center of pressure (CoP) of the feet. Thus, therapies that seek occlusal reestablishment, such as muscle relaxation techniques, may lead to a restructuring of the global equilibrium of the neuromuscular system and an improvement in body posture. The aim of the present pilot study was to investigate the immediate effect of facial massage on the CoP in the anteroposterior (CoPAP) and mediolateral (CoPML) directions in individuals with temporomandibular disorder (TMD). Twenty individuals with a diagnosis of TMD based on the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) were submitted to a facial massage technique. CoPAP and CoPML were evaluated using a force plate. Evaluations were performed under two visual conditions (eyes open and eyes closed) prior to resting in dorsal decubitus (baseline), after 10 minutes of rest (premassage) and after the administration of the massage technique (postmassage). No significant differences were found regarding CoPAP velocity with eyes open or the following aspects under either visual condition (eyes open or closed): CoPML velocity, RMS of CoPAP, RMS of CoPML, and sway area. The only significant difference was found for mean CoPAP velocity with eyes closed. While the results of the present study demonstrate the reliability of the reproduction of the data, facial massage had no immediate influence on postural control in individuals with TMD.
Evaluation of the lambda model for human postural control during ankle strategy.
Micheau, Philippe; Kron, Aymeric; Bourassa, Paul
2003-09-01
An accurate modeling of human stance might be helpful in assessing postural deficit. The objective of this article is to validate a mathematical postural control model for quiet standing posture. The postural dynamics is modeled in the sagittal plane as an inverted pendulum with torque applied at the ankle joint. The torque control system is represented by the physiological lambda model. Two neurophysiological command variables of the central nervous system, designated lambda and micro, establish the dynamic threshold muscle at which motoneuron recruitment begins. Kinematic data and electromyographic signals were collected on four young males in order to measure small voluntary sway and quiet standing posture. Validation of the mathematical model was achieved through comparison of the experimental and simulated results. The mathematical model allows computation of the unmeasurable neurophysiological commands lambda and micro that control the equilibrium position and stability. Furthermore, with the model it is possible to conclude that low-amplitude body sway during quiet stance is commanded by the central nervous system.
Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects.
Baston, Chiara; Mancini, Martina; Schoneburg, Bernadette; Horak, Fay; Rocchi, Laura
2014-01-01
The present study introduces a novel instrumented method to characterize postural movement strategies to maintain balance during stance (ankle and hip strategy), by means of inertial sensors, positioned on the legs and on the trunk. We evaluated postural strategies in subjects with 2 types of Parkinsonism: idiopathic Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP), and in age-matched control subjects standing under perturbed conditions implemented by the Sensory Organization Test (SOT). Coordination between the upper and lower segments of the body during postural sway was measured using a covariance index over time, by a sliding-window algorithm. Afterwards, a postural strategy index was computed. We also measured the amount of postural sway, as adjunctive information to characterize balance, by the root mean square of the horizontal trunk acceleration signal (RMS). showed that control subjects were able to change their postural strategy, whilst PSP and PD subjects persisted in use of an ankle strategy in all conditions. PD subjects had RMS values similar to control subjects even without changing postural strategy appropriately, whereas PSP subjects showed much larger RMS values than controls, resulting in several falls during the most challenging SOT conditions (5 and 6). Results are in accordance with the corresponding clinical literature describing postural behavior in the same kind of subjects. The proposed strategy index, based on the use of inertial sensors on the upper and lower body segments, is a promising and unobtrusive tool to characterize postural strategies performed to attain balance. Copyright © 2014 Elsevier B.V. All rights reserved.
Relationships between Perceptual-Motor Skills and Postural Balance in Nine Years Old Boys
ERIC Educational Resources Information Center
Atilgan, Oya Erkut
2012-01-01
The aim of this study is to investigate relationship between static-dynamic balance performance and two-hand coordination, reaction time, anthropometric measurements and leg strength. Fifty voluntary male children (age: 9.29 plus or minus 1.11 years, height: 138.86 plus or minus 7.86 cm, weight: 35.20 plus or minus 9.2 kg) who did not exercise…