14 CFR 29.1325 - Static pressure and pressure altimeter systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static pressure and pressure altimeter...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air case...
14 CFR 29.1325 - Static pressure and pressure altimeter systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air case... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure and pressure altimeter...
14 CFR 29.1325 - Static pressure and pressure altimeter systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air case... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure and pressure altimeter...
14 CFR 29.1325 - Static pressure and pressure altimeter systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air case... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure and pressure altimeter...
14 CFR 29.1325 - Static pressure and pressure altimeter systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air case... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure and pressure altimeter...
14 CFR 23.1325 - Static pressure system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure case...
14 CFR 23.1325 - Static pressure system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure case...
14 CFR 23.1325 - Static pressure system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure case...
14 CFR 23.1325 - Static pressure system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure case...
Measurement of static pressure on aircraft
NASA Technical Reports Server (NTRS)
Gracey, William
1958-01-01
Existing data on the errors involved in the measurement of static pressure by means of static-pressure tubes and fuselage vents are presented. The errors associated with the various design features of static-pressure tubes are discussed for the condition of zero angle of attack and for the case where the tube is inclined to flow. Errors which result from variations in the configuration of static-pressure vents are also presented. Errors due to the position of a static-pressure tube in the flow field of the airplane are given for locations ahead of the fuselage nose, ahead of the wing tip, and ahead of the vertical tail fin. The errors of static-pressure vents on the fuselage of an airplane are also presented. Various methods of calibrating static-pressure installations in flight are briefly discussed.
14 CFR 25.1325 - Static pressure systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pressure systems. (a) Each instrument with static air case connections must be vented to the outside... or other foreign matter, and that the correlation between air pressure in the static pressure system... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure systems. 25.1325 Section 25...
14 CFR 25.1325 - Static pressure systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pressure systems. (a) Each instrument with static air case connections must be vented to the outside... or other foreign matter, and that the correlation between air pressure in the static pressure system... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure systems. 25.1325 Section 25...
14 CFR 25.1325 - Static pressure systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pressure systems. (a) Each instrument with static air case connections must be vented to the outside... or other foreign matter, and that the correlation between air pressure in the static pressure system... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure systems. 25.1325 Section 25...
14 CFR 25.1325 - Static pressure systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pressure systems. (a) Each instrument with static air case connections must be vented to the outside... or other foreign matter, and that the correlation between air pressure in the static pressure system... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure systems. 25.1325 Section 25...
14 CFR 27.1325 - Static pressure systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pressure systems. (a) Each instrument with static air case connections must be vented so that the influence... located in such manner that the correlation between air pressure in the static pressure system and true... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure systems. 27.1325 Section 27...
14 CFR 27.1325 - Static pressure systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pressure systems. (a) Each instrument with static air case connections must be vented so that the influence... located in such manner that the correlation between air pressure in the static pressure system and true... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure systems. 27.1325 Section 27...
14 CFR 27.1325 - Static pressure systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pressure systems. (a) Each instrument with static air case connections must be vented so that the influence... located in such manner that the correlation between air pressure in the static pressure system and true... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure systems. 27.1325 Section 27...
14 CFR 27.1325 - Static pressure systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pressure systems. (a) Each instrument with static air case connections must be vented so that the influence... located in such manner that the correlation between air pressure in the static pressure system and true... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure systems. 27.1325 Section 27...
14 CFR 27.1325 - Static pressure systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ambient atmospheric static pressure is not altered when the rotorcraft encounters icing conditions. An... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static pressure systems. 27.1325 Section 27... pressure systems. (a) Each instrument with static air case connections must be vented so that the influence...
Trasonic Cascade Wind Tunnel Modification and Initial Tests.
1980-06-01
27.57 Mathr 1.432 la No. 2 t S atic Pressure = 14.040 P.-ptg= .2686 Mach= 1.510 laz~r t~o. 29 Static Pressure= 13.946 p.ptO .26f2 Macha 1.513 T tp...54 Mach = 1.475 3. Ho. 45 Static Pressure t 12.811 PPto= .2451 Mach = 1.572 Tap No. 46 Static Pressures 12.563 P/Ptow .2403 Macha 1.586 Table c-i...T al) tNo. 64 Static Pressure- 11.981 P,/PtO= .2292 Macha 1.61:3 Twi:. No. 65 Static Pressure= 11.726 P’PtG= .2243 Mach= 1.632 af l N. 66 Sttatic
33 CFR 156.170 - Equipment tests and inspections.
Code of Federal Regulations, 2014 CFR
2014-07-01
... distort under static liquid pressure at least 11/2 times the maximum allowable working pressure; and (iv... static liquid pressure test is successfully completed in the presence of the COTP. The test medium is not... static liquid pressure at least 11/2 times the maximum allowable working pressure; and (5) Each item of...
33 CFR 156.170 - Equipment tests and inspections.
Code of Federal Regulations, 2012 CFR
2012-07-01
... distort under static liquid pressure at least 11/2 times the maximum allowable working pressure; and (iv... static liquid pressure test is successfully completed in the presence of the COTP. The test medium is not... static liquid pressure at least 11/2 times the maximum allowable working pressure; and (5) Each item of...
33 CFR 156.170 - Equipment tests and inspections.
Code of Federal Regulations, 2013 CFR
2013-07-01
... distort under static liquid pressure at least 11/2 times the maximum allowable working pressure; and (iv... static liquid pressure test is successfully completed in the presence of the COTP. The test medium is not... static liquid pressure at least 11/2 times the maximum allowable working pressure; and (5) Each item of...
In-Flight Pitot-Static Calibration
NASA Technical Reports Server (NTRS)
Foster, John V. (Inventor); Cunningham, Kevin (Inventor)
2016-01-01
A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.
Pylon Effects on a Scramjet Cavity Flameholder Flowfield
2008-09-01
39 ix Page Figure 20. Static and pitot probes ...pressure (Pa) Ppitot Pitot probe pressure (Pa) Pcone Static cone probe pressure (Pa) P Static pressure (Pa) q Dynamic pressure (Pa) R...create strong shocks within the combustor section of the engine. An oblique or bow shock will form off the leading edge of the pylon reflecting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Di-xian, E-mail: luodixian_2@163.com; Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan; First People's Hospital of Chenzhou City, Chenzhou 423000, Hunan
Research highlights: {yields} Vertical static pressure accelerates ox-LDL-induced cholesterol accumulation in cultured vascular smooth muscle cells. {yields} Static pressure induces SREBP-1 activation. {yields} Static pressure downregulates the expressions of caveolin-1 by activating SREBP-1. {yields} Static pressure also downregulates the transcription of ABCA1 by activating SREBP-1. {yields} Static pressure increases ox-LDL-induced cholesterol accumulation by SREBP-1-mediated caveolin-1 downregulation in vascular smooth muscle cells cultured in vitro. -- Abstract: Objective: To investigate the effect of static pressure on cholesterol accumulation in vascular smooth muscle cells (VSMCs) and its mechanism. Methods: Rat-derived VSMC cell line A10 treated with 50 mg/L ox-LDL and different staticmore » pressures (0, 60, 90, 120, 150, 180 mm Hg) in a custom-made pressure incubator for 48 h. Intracellular lipid droplets and lipid levels were assayed by oil red O staining and HPLC; The mRNA levels of caveolin-1 and ABCA1, the protein levels of caveolin-1 SREBP-1 and mature SREBP-1 were respectively detected by RT-PCR or western blot. ALLN, an inhibitor of SREBP metabolism, was used to elevate SREBP-1 protein level in VSMCs treated with static pressure. Results: Static pressures significantly not only increase intracellular lipid droplets in VSMCs, but also elevate cellular lipid content in a pressure-dependent manner. Intracellular free cholesterol (FC), cholesterol ester (CE), total cholesterol (TC) were respectively increased from 60.5 {+-} 2.8 mg/g, 31.8 {+-} 0.7 mg/g, 92.3 {+-} 2.1 mg/g at atmosphere pressure (ATM, 0 mm Hg) to 150.8 {+-} 9.4 mg/g, 235.9 {+-} 3.0 mg/g, 386.7 {+-} 6.4 mg/g at 180 mm Hg. At the same time, static pressures decrease the mRNA and protein levels of caveolin-1, and induce the activation and nuclear translocation of SREBP-1. ALLN increases the protein level of mature SREBP-1 and decreases caveolin-1 expression, so that cellular lipid levels were upregulated. Conclusion: Static pressures stimulate ox-LDL-induced cholesterol accumulation in cultured VSMCs through decreasing caveolin-1 expression via inducing the maturation and nuclear translocation of SREBP-1.« less
Flight evaluation of an engine static pressure noseprobe in an F-15 airplane
NASA Technical Reports Server (NTRS)
Foote, C. H.; Jaekel, R. F.
1981-01-01
The flight testing of an inlet static pressure probe and instrumented inlet case produced results consistent with sea-level and altitude stand testing. The F-15 flight test verified the basic relationship of total to static pressure ratio versus corrected airflow and automatic distortion downmatch with the engine pressure ratio control mode. Additionally, the backup control inlet case statics demonstrated sufficient accuracy for backup control fuel flow scheduling, and the station 6 manifolded production probe was in agreement with the flight test station 6 tota pressure probes.
14 CFR Appendix E to Part 43 - Altimeter System Test and Inspection
Code of Federal Regulations, 2011 CFR
2011-01-01
... made that would affect the relationship between air pressure in the static pressure system and true ambient static air pressure for any flight condition. (b) Altimeter: (1) Test by an appropriately rated... inspections required by § 91.411 shall comply with the following: (a) Static pressure system: (1) Ensure...
Wind-Tunnel Tests of Seven Static-Pressure Probes at Transonic Speeds
NASA Technical Reports Server (NTRS)
Capone, Francis J.
1961-01-01
Wind-tunnel tests have been conducted to determine the errors of 3 seven static-pressure probes mounted very close to the nose of a body of revolution simulating a missile forebody. The tests were conducted at Mach numbers from 0.80 to 1.08 and at angles of attack from -1.7 deg to 8.4 deg. The test Reynolds number per foot varied from 3.35 x 10(exp 6) to 4.05 x 10(exp 6). For three 4-vane, gimbaled probes, the static-pressure errors remained constant throughout the test angle-of-attack range for all Mach numbers except 1.02. For two single-vane, self-rotating probes having two orifices at +/-37.5 deg. from the plane of symmetry on the lower surface of the probe body, the static-pressure error varied as much as 1.5 percent of free-stream static pressure through the test angle-of- attack range for all Mach numbers. For two fixed, cone-cylinder probes of short length and large diameter, the static-pressure error varied over the test angle-of-attack range at constant Mach numbers as much as 8 to 10 percent of free-stream static pressure.
Experimental Investigation and Numerical Predication of a Cross-Flow Fan
2006-12-01
Figure 3. Combination probes and pressure tap layout .....................................................6 Figure 4. CFF_DAQ graphical user interface...properties were United Sensor Devices model USD-C-161 3 mm (1/8-inch) combination thermocouple/pressure probes, and static pressure taps . The...was applied to the three static pressure tapes at the throat of the bell-mouth and to the two exhaust duct static pressure taps . Once the data
2002-01-01
Prescribed by ANSI Std Z39-18 Research and Technology Department Dynamics and Diagnostics Division, Static High- Pressure Group Overall Research...Department Dynamics and Diagnostics Division, Static High- Pressure Group Impact of this Basic Research • This research generates phase and density...Static High- Pressure Group Experimental Methodology Use Diamond Anvil Cells (DAC) with coil Heaters (HDAC) to achieve • High pressures (P) to 10 GPa
14 CFR 25.1325 - Static pressure systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... installation of the static pressure system must be such that— (1) Positive drainage of moisture is provided..., the other is blocked off; and (2) Both sources cannot be blocked off simultaneously. (h) For... other static pressure source being open or blocked. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as...
Experimental Investigation of the Mixing of Highly Swirling Flows
1982-05-01
inner stream has received an increasing amount of attention during recent years. The primary motivations for this have been the application to...2) wall Static Pressures (averaged over all subruns) and their locations PS4 (J) - Static pressure on 4" OD centerbody at location "J" (J = 1 to N(l...ZS4(J) - Axial location of static pressure PS4 (J) PS6(J) - Static pressure on inside wall of 6U tube at location "J" (J = 1 to N(2)) TH6(J) - Angular
NASA Astrophysics Data System (ADS)
Nishiyama, Randall T.; Bedard, Alfred J., Jr.
1991-09-01
There are many areas of need for accurate measurements of atmospheric static pressure. These include observations of surface meteorology, airport altimeter settings, pressure distributions around buildings, moving measurement platforms, as well as basic measurements of fluctuating pressures in turbulence. Most of these observations require long-term observations in adverse environments (e.g., rain, dust, or snow). Currently, many pressure measurements are made, of necessity, within buildings, thus involving potential errors of several millibars in mean pressure during moderate winds, accompanied by large fluctuating pressures induced by the structure. In response to these needs, a 'Quad-Disk' pressure probe for continuous, outdoor monitoring purposes was designed which is inherently weather-protected. This Quad-Disk probe has the desirable features of omnidirectional response and small error in pitch. A review of past static pressure probes contrasts design approaches and capabilities.
Effect on fan flow characteristics of length and axial location of a cascade thrust reverser
NASA Technical Reports Server (NTRS)
Dietrich, D. A.
1975-01-01
A series of static tests were conducted on a model fan with a diameter of 14.0 cm to determine the fan operating characteristics, the inlet static pressure contours, the fan-exit total and static pressure contours, and the fan-exit pressure distortion parameters associated with the installation of a partial-circumferential-emission cascade thrust reverser. The tests variables included the cascade axial length, the axial location of the reverser, and the type of fan inlet. It was shown that significant total and static pressure distortions were produced in the fan aft duct, and that some configurations induced a static pressure distortion at the fan face. The amount of flow passed by the fan and the level of the flow distortions were dependent upon all the variables tested.
Bubble dynamics in a standing sound field: the bubble habitat.
Koch, P; Kurz, T; Parlitz, U; Lauterborn, W
2011-11-01
Bubble dynamics is investigated numerically with special emphasis on the static pressure and the positional stability of the bubble in a standing sound field. The bubble habitat, made up of not dissolving, positionally and spherically stable bubbles, is calculated in the parameter space of the bubble radius at rest and sound pressure amplitude for different sound field frequencies, static pressures, and gas concentrations of the liquid. The bubble habitat grows with static pressure and shrinks with sound field frequency. The range of diffusionally stable bubble oscillations, found at positive slopes of the habitat-diffusion border, can be increased substantially with static pressure.
Probe systems for static pressure and cross-stream turbulence intensity
NASA Technical Reports Server (NTRS)
Rossow, Vernon, J.
1991-01-01
A recent study of total-pressure probes for use in highly turbulent streams is extended herein by developing probe systems that measure time-averaged static or ambient pressure and turbulence intensity. Arrangements of tubular probes of circular and elliptical cross section are described that measure the pressure at orifices on the sides of the probes to obtain different responses to the cross-stream velocity fluctuations. When the measured data are combined to remove the effect of the presence of the probes on the local pressure, the time-averaged static pressure and the cross-stream components of turbulence intensity can be determined. If a system of total pressure tubes, as described in an accompanying paper, is added to the static pressure group to form a single cluster, redundant measurements are obtained that permit accuracy and consistency checks.
33 CFR 183.580 - Static pressure test for fuel tanks.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...
33 CFR 183.580 - Static pressure test for fuel tanks.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...
33 CFR 183.580 - Static pressure test for fuel tanks.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...
33 CFR 183.580 - Static pressure test for fuel tanks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...
33 CFR 183.580 - Static pressure test for fuel tanks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...
Resistance to forced airflow through layers of composting organic material.
Teixeira, Denis Leocádio; de Matos, Antonio Teixeira; Melo, Evandro de Castro
2015-02-01
The objective of this study was to adjust equations to estimate the static pressure gradient of airflow through layers of organic residues submitted to two stages of biochemical degradation, and to evaluate the static pressure drop of airflow thought the material layer. Measurements of static pressure drop in the layers of sugarcane bagasse and coffee husks mixed with poultry litter on day 0 and after 30 days of composting were performed using a prototype with specific airflow rates ranging from 0.02 to 0.13 m(3) s(-1) m(-2). Static pressure gradient and specific airflow rate data were properly fit to the Shedd, Hukill & Ives and Ergun models, which may be used to predict the static pressure gradient of air to be blown through the organic residue layers. However, the Shedd model was that which best represented the phenomenon studied. The static pressure drop of airflow increased as a power of the material layer thickness and showed tendency for decreasing with the biochemical degradation time of the organic material. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rood, Akkie; Hannink, Gerjon; Lenting, Anke; Groenen, Karlijn; Koëter, Sander; Verdonschot, Nico; van Kampen, Albert
2015-10-01
Reconstructing the medial patellofemoral ligament (MPFL) has become a key procedure for stabilizing the patella. Different techniques to reconstruct the MPFL have been described: static techniques in which the graft is fixed rigidly to the bone or dynamic techniques with soft tissue fixation. Static MPFL reconstruction is most commonly used. However, dynamic reconstruction deforms more easily and presumably functions more like the native MPFL. The aim of the study was to evaluate the effect of the different MPFL fixation techniques on patellofemoral pressures compared with the native situation. The hypothesis was that dynamic reconstruction would result in patellofemoral pressures closer to those generated in an intact knee. Controlled laboratory study. Seven fresh-frozen knee specimens were tested in an in vitro knee joint loading apparatus. Tekscan pressure-sensitive films fixed to the retropatellar cartilage measured mean patellofemoral and peak pressures, contact area, and location of the center of force (COF) at fixed flexion angles from 0° to 110°. Four different conditions were tested: intact, dynamic, partial dynamic, and static MPFL reconstruction. Data were analyzed using linear mixed models. Static MPFL reconstruction resulted in higher peak and mean pressures from 60° to 110° of flexion (P < .001). There were no differences in pressure between the 2 different dynamic reconstructions and the intact situation (P > .05). The COF in the static reconstruction group moved more medially on the patella from 50° to 110° of flexion compared with the other conditions. The contact area showed no significant differences between the test conditions. After static MPFL reconstruction, the patellofemoral pressures in flexion angles from 60° to 110° were 3 to 5 times higher than those in the intact situation. The pressures after dynamic MPFL reconstruction were similar as compared with those in the intact situation, and therefore, dynamic MPFL reconstruction could be a safer option than static reconstruction for stabilizing the patella. This study showed that static MPFL reconstruction results in higher patellofemoral pressures and thus enhances the chance of osteoarthritis in the long term, while dynamic reconstruction results in more normal pressures. © 2015 The Author(s).
Dynamic Pressure Probes Developed for Supersonic Flow-Field Measurements
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2001-01-01
A series of dynamic flow-field pressure probes were developed for use in large-scale supersonic wind tunnels at the NASA Glenn Research Center. These flow-field probes include pitot and static pressure probes that can capture fast-acting flow-field pressure transients occurring on a millisecond timescale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The flow-field pressure probe contains four major components: 1) Static pressure aerodynamic tip; 2) Pressure-sensing cartridge assembly; 3) Pitot pressure aerodynamic tip; 4) Mounting stem. This modular design allows for a variety of probe tips to be used for a specific application. Here, the focus is on flow-field pressure measurements in supersonic flows, so we developed a cone-cylinder static pressure tip and a pitot pressure tip. Alternatively, probe tips optimized for subsonic and transonic flows could be used with this design. The pressure-sensing cartridge assembly allows the simultaneous measurement of steady-state and transient pressure which allows continuous calibration of the dynamic pressure transducer.
Terapascal static pressure generation with ultrahigh yield strength nanodiamond.
Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly
2016-07-01
Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.
Terapascal static pressure generation with ultrahigh yield strength nanodiamond
Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A.; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B.; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly
2016-01-01
Studies of materials’ properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications. PMID:27453944
A short static-pressure probe design for supersonic flow
NASA Technical Reports Server (NTRS)
Pinckney, S. Z.
1975-01-01
A static-pressure probe design concept was developed which has the static holes located close to the probe tip and is relatively insensitive to probe angle of attack and circumferential static hole location. Probes were constructed with 10 and 20 deg half-angle cone tips followed by a tangent conic curve section and a tangent cone section of 2, 3, or 3.5 deg, and were tested at Mach numbers of 2.5 and 4.0 and angles of attack up to 12 deg. Experimental results indicate that for stream Mach numbers of 2.5 and 4.0 and probe angle of attack within + or - 10 deg, values of stream static pressure can be determined from probe calibration to within about + or - 4 percent. If the probe is aligned within about 7 deg of the flow experimental results indicated, the stream static pressures can be determined to within 2 percent from probe calibration.
Effect of revised high-heeled shoes on foot pressure and static balance during standing.
Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min
2015-04-01
[Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance.
Effect of revised high-heeled shoes on foot pressure and static balance during standing
Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min
2015-01-01
[Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance. PMID:25995572
NASA Technical Reports Server (NTRS)
Budweg, H. L.; Shin, Y. S.
1987-01-01
An experimental investigation was conducted to determine the static and dynamic responses of a specific stiffened flat plate design. The air-backed rectangular flat plates of 6061-T6 aluminum with an externally machined longitudinal narrow-flanged T-stiffener and clamped boundary conditions were subjected to static loading by water hydropump pressure and shock loading from an eight pound TNT charge detonated underwater. The dynamic test plate was instrumented to measure transient strains and free field pressure. The static test plate was instrumented to measure transient strains, plate deflection, and pressure. Emphasis was placed upon forcing static and dynamic stiffener tripping, obtaining relevant strain and pressure data, and studying the associated plate-stiffener behavior.
Should care homes adopt a static-led approach to pressure ulcer prevention?
Keen, Delia Catherine
A static-led approach refers to the provision of high-specification foam mattresses for the whole of a population at risk of pressure damage. Such mattresses have been found to reduce the risk of pressure ulceration and cost less overall than standard mattresses, even in populations where only 1 in 100 patients develops a pressure ulcer. Reduced pressure ulcer prevalence and reduced costs resulting from decreased expenditure on dynamic mattresses following the implementation of a static-led approach have been reported. Pressure ulcers cause pain, a reduced quality of life, loss of independence, depression and social isolation for those in whom they develop. Organizations are increasingly having to pay out large sums of money following litigation surrounding pressure ulcers. This article explains why NHS healthcare providers and private care organizations need to work together to consider implementing a static-led approach to pressure ulcer prevention within care homes in order to reduce pressure ulcer incidence cost-effectively within their local populations.
Chen, Zefeng; Wang, Zhao; Li, Xinming; Lin, Yuxuan; Luo, Ningqi; Long, Mingzhu; Zhao, Ni; Xu, Jian-Bin
2017-05-23
The piezoelectric effect is widely applied in pressure sensors for the detection of dynamic signals. However, these piezoelectric-induced pressure sensors have challenges in measuring static signals that are based on the transient flow of electrons in an external load as driven by the piezopotential arisen from dynamic stress. Here, we present a pressure sensor with nanowires/graphene heterostructures for static measurements based on the synergistic mechanisms between strain-induced polarization charges in piezoelectric nanowires and the caused change of carrier scattering in graphene. Compared to the conventional piezoelectric nanowire or graphene pressure sensors, this sensor is capable of measuring static pressures with a sensitivity of up to 9.4 × 10 -3 kPa -1 and a fast response time down to 5-7 ms. This demonstration of pressure sensors shows great potential in the applications of electronic skin and wearable devices.
Miniature Flow-Direction/Pitot-Static Pressure Probes
NASA Technical Reports Server (NTRS)
Ashby, George C., Jr.; Coombs, David S.; Eves, John W.; Price, Howard E.; Vasquez, Peter
1989-01-01
Precision flow-direction/pitot-static pressure probes, ranging from 0.035 to 0.090 inch (0.89 to 2.29 mm) in outside diameter, successfully fabricated and calibrated for use in Langley 20-inch Mach 6 Tunnel. Probes simultaneously measure flow direction and static and pitot pressures in flow fields about configurations in hypersonic flow at temperatures up to 500 degree F (260 degree C).
Diastolic viscous properties of the intact canine left ventricle.
Nikolic, S D; Tamura, K; Tamura, T; Dahm, M; Frater, R W; Yellin, E L
1990-08-01
The viscoelastic model of the ventricle predicts that the rate of change of volume (strain rate) is a determinant of the instantaneous pressure in the ventricle during diastole. Because relaxation is not complete before the onset of filling, one cannot distinguish the individual effects of relaxation and viscosity unless the passive and active components that determine the ventricular pressure are separated. To overcome this problem, we used the method of ventricular volume clamping to compare the pressures in the fully relaxed ventricle at a given volume at zero strain rate (static pressure) and high strain rate (dynamic pressure). Six open-chest, fentanyl-anesthetized dogs were instrumented with micromanometers and an electronically controlled mitral valve occluder in series with the electromagnetic flow probe. We reasoned as follows: If there were significant viscosity, then the dynamic pressure would be higher than the static pressure. The static pressure was measured when the ventricle was completely relaxed following a mitral valve occlusion after an arbitrary filling volume had been achieved. The dynamic pressure was determined by delaying the onset of filling until relaxation was complete and then measuring the pressure at the same volume that was achieved when the static pressure was measured. In 19 different hemodynamic situations, the dynamic and static pressures were identical (mean difference, 0.1 +/- 0.8 mm Hg), indicating that in the passive ventricle viscoelastic effects are insignificant and do not contribute to the left ventricular diastolic pressure under normal filling rates.
Device to lower NOx in a gas turbine engine combustion system
Laster, Walter R; Schilp, Reinhard; Wiebe, David J
2015-02-24
An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).
Water cooled static pressure probe
NASA Technical Reports Server (NTRS)
Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)
1991-01-01
An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.
NASA Astrophysics Data System (ADS)
Grossir, Guillaume; Van Hove, Bart; Paris, Sébastien; Rambaud, Patrick; Chazot, Olivier
2016-05-01
The performance of fast-response slender static pressure probes is evaluated in the short-duration, cold-gas, VKI Longshot hypersonic wind tunnel. Free-stream Mach numbers range between 9.5 and 12, and unit Reynolds numbers are within 3-10 × 106/m. Absolute pressure sensors are fitted within the probes, and an inexpensive calibration method, suited to low static pressure environments (200-1000 Pa), is described. Transfer functions relating the probe measurements p w to the free-stream static pressure p ∞ are established for the Longshot flow conditions based on numerical simulations. The pressure ratios p w / p ∞ are found to be close to unity for both laminar and turbulent boundary layers. Weak viscous effects characterized by small viscous interaction parameters {bar{χ }}<1.5 are confirmed experimentally for probe aspect ratios of L/ D > 16.5 by installing multiple pressure sensors in a single probe. The effect of pressure orifice geometry is also evaluated experimentally and found to be negligible for either straight or chamfered holes, 0.6-1 mm in diameter. No sensitivity to probe angle of attack could be evidenced for α < 0.33°. Pressure measurements are compared to theoretical predictions assuming an isentropic nozzle flow expansion. Significant deviations from this ideal case and the Mach 14 contoured nozzle design are uncovered. Validation of the static pressure measurements is obtained by comparing shock wave locations on Schlieren photographs to numerical predictions using free-stream properties derived from the static pressure probes. While these results apply to the Longshot wind tunnel, the present methodology and sensitivity analysis can guide similar investigations for other hypersonic test facilities.
NASA Technical Reports Server (NTRS)
Bedard, A. J., Jr.; Nishiyama, R. T.
1993-01-01
Instruments developed for making meteorological observations under adverse conditions on Earth can be applied to systems designed for other planetary atmospheres. Specifically, a wind sensor developed for making measurements within tornados is capable of detecting induced pressure differences proportional to wind speed. Adding strain gauges to the sensor would provide wind direction. The device can be constructed in a rugged form for measuring high wind speeds in the presence of blowing dust that would clog bearings and plug passages of conventional wind speed sensors. Sensing static pressure in the lower boundary layer required development of an omnidirectional, tilt-insensitive static pressure probe. The probe provides pressure inputs to a sensor with minimum error and is inherently weather-protected. The wind sensor and static pressure probes have been used in a variety of field programs and can be adapted for use in different planetary atmospheres.
Measurement of the True Dynamic and Static Pressures in Flight
NASA Technical Reports Server (NTRS)
Kiel, Georg
1939-01-01
In this report, two reliable methods are presented, with the aid of which the undisturbed flight dynamic pressure and the true static pressure may be determined without error. These problems were solved chiefly through practical flight tests.
30 CFR 7.307 - Static pressure test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static pressure test. 7.307 Section 7.307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...
Investigation of two pitot-static tubes at supersonic speeds
NASA Technical Reports Server (NTRS)
Hasel, Lowell E; Coletti, Donald E
1948-01-01
The results of tests at a Mach number of 1.94 of an ogives-nose cylindrical pitot-static tube and similar tests at Mach numbers of 1.93 and 1.62 of a service pitot-static tube to determine body static pressures and indicated Mach numbers are presented and discussed. The radial pressure distribution on the cylindrical bodies is compared with that calculated by an approximate theory.
NASA Astrophysics Data System (ADS)
Weng, Hanli; Li, Youping
2017-04-01
The working principle, process device and test procedure of runner static balancing test method by weighting with three-pivot pressure transducers are introduced in this paper. Based on an actual instance of a V hydraulic turbine runner, the error and sensitivity of the three-pivot pressure transducer static balancing method are analysed. Suggestions about improving the accuracy and the application of the method are also proposed.
Static respiratory muscle work during immersion with positive and negative respiratory loading.
Taylor, N A; Morrison, J B
1999-10-01
Upright immersion imposes a pressure imbalance across the thorax. This study examined the effects of air-delivery pressure on inspiratory muscle work during upright immersion. Eight subjects performed respiratory pressure-volume relaxation maneuvers while seated in air (control) and during immersion. Hydrostatic, respiratory elastic (lung and chest wall), and resultant static respiratory muscle work components were computed. During immersion, the effects of four air-delivery pressures were evaluated: mouth pressure (uncompensated); the pressure at the lung centroid (PL,c); and at PL,c +/-0.98 kPa. When breathing at pressures less than the PL,c, subjects generally defended an expiratory reserve volume (ERV) greater than the immersed relaxation volume, minus residual volume, resulting in additional inspiratory muscle work. The resultant static inspiratory muscle work, computed over a 1-liter tidal volume above the ERV, increased from 0.23 J. l(-1), when subjects were breathing at PL,c, to 0.83 J. l(-1) at PL,c -0.98 kPa (P < 0.05), and to 1.79 J. l(-1) at mouth pressure (P < 0.05). Under the control state, and during the above experimental conditions, static expiratory work was minimal. When breathing at PL,c +0.98 kPa, subjects adopted an ERV less than the immersed relaxation volume, minus residual volume, resulting in 0.36 J. l(-1) of expiratory muscle work. Thus static inspiratory muscle work varied with respiratory loading, whereas PL,c air supply minimized this work during upright immersion, restoring lung-tissue, chest-wall, and static muscle work to levels obtained in the control state.
14 CFR 33.64 - Pressurized engine static parts.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64 Pressurized...
14 CFR 33.64 - Pressurized engine static parts.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64 Pressurized...
14 CFR 33.64 - Pressurized engine static parts.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64 Pressurized...
14 CFR 33.64 - Pressurized engine static parts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64 Pressurized...
14 CFR 33.64 - Pressurized engine static parts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64 Pressurized...
NASA Technical Reports Server (NTRS)
Henderson, William P.; Burley, James R., II
1987-01-01
An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects on empennage arrangement on single-engine nozzle/afterbody static pressures. Tests were done at Mach numbers from 0.60 to 1.20, nozzle pressure ratios from 1.0 (jet off) to 8.0. and angles of attack from -3 to 9 deg (at jet off conditions), depending on Mach number. Three empennage arrangements (aft, staggered, and forward) were investigated. Extensive measurements were made of static pressure on the nozzle/afterbody in the vicinity of the tail surfaces.
The Influence of Forward Flight on Propeller Noise
NASA Technical Reports Server (NTRS)
Magliozzi, B.
1977-01-01
The effect of flight on blade surface pressures and propeller noise was reported. There were significant differences in blade surface pressures and far-field noise between static and flight conditions. The static data showed many high-intensity, tone-like peaks whereas the flight data was generally free from tones. The turbulence ingested by the propeller operating statically was dominated by long, thin eddies. In flight the scale of the turbulence was greately reduced from that observed statically.
The Response of Frozen Soils to Vibratory Loads
1975-06-01
Construction. i | The report was technically reviewed by Dr. Y . Nakano of USA CRREL, and A.F. Müller of the Office of Chief of Engineers. Their suggestions...B.I.S. Helme, Jr., t M.J. Dabney III, F. Berrego, R.N. Lachenmaier and D.J. Coombes. Dr. T.M. Lee, Dr. D.M. Norris, Jr. and Dr. Y . Nakano gave... y /g stress static confining pressure, (a, + 2a ^/3 axial (vertical) static pressure lateral static pressure dynamic stress (peak) phase shift
NASA Technical Reports Server (NTRS)
Dicicco, L. Danielle; Nowlin, Brent C.; Tirres, Lizet
1992-01-01
The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.
NASA Technical Reports Server (NTRS)
Dicicco, L. D.; Nowlin, Brent C.; Tirres, Lizet
1992-01-01
The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.
NASA Astrophysics Data System (ADS)
Rodi, A. R.; Leon, D. C.
2012-05-01
Geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system on the University of Wyoming King Air research aircraft are used to estimate acceleration effects on static pressure measurement. Using data collected during periods of accelerated flight, comparison of measured pressure with that derived from GNSS/IMU geometric altitude show that errors exceeding 150 Pa can occur which is significant in airspeed and atmospheric air motion determination. A method is developed to predict static pressure errors from analysis of differential pressure measurements from a Rosemount model 858 differential pressure air velocity probe. The method was evaluated with a carefully designed probe towed on connecting tubing behind the aircraft - a "trailing cone" - in steady flight, and shown to have a precision of about ±10 Pa over a wide range of conditions including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, compared to the GNSS/IMU data, this algorithm predicts corrections to a precision of better than ±20 Pa. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are examined.
Jeong, Y J; Oh, T I; Woo, E J; Kim, K J
2017-07-01
Recently, highly flexible and soft pressure distribution imaging sensor is in great demand for tactile sensing, gait analysis, ubiquitous life-care based on activity recognition, and therapeutics. In this study, we integrate the piezo-capacitive and piezo-electric nanowebs with the conductive fabric sheets for detecting static and dynamic pressure distributions on a large sensing area. Electrical impedance tomography (EIT) and electric source imaging are applied for reconstructing pressure distribution images from measured current-voltage data on the boundary of the hybrid fabric sensor. We evaluated the piezo-capacitive nanoweb sensor, piezo-electric nanoweb sensor, and hybrid fabric sensor. The results show the feasibility of static and dynamic pressure distribution imaging from the boundary measurements of the fabric sensors.
NASA Technical Reports Server (NTRS)
Mikkelsen, Kevin L.; McDonald, Timothy J.; Saiyed, Naseem (Technical Monitor)
2001-01-01
This report presents the results of cold flow model tests to determine the static and wind tunnel performance of several NASA AST separate flow nozzle noise reduction configurations. The tests were conducted by Aero Systems Engineering, Inc., for NASA Glenn Research Center. The tests were performed in the Channels 14 and 6 static thrust stands and the Channel 10 transonic wind tunnel at the FluiDyne Aerodynamics Laboratory in Plymouth, Minnesota. Facility checkout tests were made using standard ASME long-radius metering nozzles. These tests demonstrated facility data accuracy at flow conditions similar to the model tests. Channel 14 static tests reported here consisted of 21 ASME nozzle facility checkout tests and 57 static model performance tests (including 22 at no charge). Fan nozzle pressure ratio varied from 1.4 to 2.0, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Channel 10 wind tunnel tests consisted of 15 tests at Mach number 0.28 and 31 tests at Mach 0.8. The sting was checked out statically in Channel 6 before the wind tunnel tests. In the Channel 6 facility, 12 ASME nozzle data points were taken and 7 model data points were taken. In the wind tunnel, fan nozzle pressure ratio varied from 1.73 to 2.8, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Test results include thrust coefficients, thrust vector angle, core and fan nozzle discharge coefficients, total pressure and temperature charging station profiles, and boat-tail static pressure distributions in the wind tunnel.
Martian Atmospheric Pressure Static Charge Elimination Tool
NASA Technical Reports Server (NTRS)
Johansen, Michael R.
2014-01-01
A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
40 CFR 60.274a - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the equipment that is important to the performance of the total capture system (i.e., pressure sensors... this subpart shall check and record on a once-per-shift basis the furnace static pressure (if DEC system is in use, and a furnace static pressure gauge is installed according to paragraph (f) of this...
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
A comparison of the calculated and experimental off-design performance of a radial flow turbine
NASA Technical Reports Server (NTRS)
Tirres, Lizet
1992-01-01
Off design aerodynamic performance of the solid version of a cooled radial inflow turbine is analyzed. Rotor surface static pressure data and other performance parameters were obtained experimentally. Overall stage performance and turbine blade surface static to inlet total pressure ratios were calculated by using a quasi-three dimensional inviscid code. The off design prediction capability of this code for radial inflow turbines shows accurate static pressure prediction. Solutions show a difference of 3 to 5 points between the experimentally obtained efficiencies and the calculated values.
A comparison of the calculated and experimental off-design performance of a radial flow turbine
NASA Technical Reports Server (NTRS)
Tirres, Lizet
1991-01-01
Off design aerodynamic performance of the solid version of a cooled radial inflow turbine is analyzed. Rotor surface static pressure data and other performance parameters were obtained experimentally. Overall stage performance and turbine blade surface static to inlet total pressure ratios were calculated by using a quasi-three dimensional inviscid code. The off design prediction capability of this code for radial inflow turbines shows accurate static pressure prediction. Solutions show a difference of 3 to 5 points between the experimentally obtained efficiencies and the calculated values.
Reduction of Orifice-Induced Pressure Errors
NASA Technical Reports Server (NTRS)
Plentovich, Elizabeth B.; Gloss, Blair B.; Eves, John W.; Stack, John P.
1987-01-01
Use of porous-plug orifice reduces or eliminates errors, induced by orifice itself, in measuring static pressure on airfoil surface in wind-tunnel experiments. Piece of sintered metal press-fitted into static-pressure orifice so it matches surface contour of model. Porous material reduces orifice-induced pressure error associated with conventional orifice of same or smaller diameter. Also reduces or eliminates additional errors in pressure measurement caused by orifice imperfections. Provides more accurate measurements in regions with very thin boundary layers.
NASA Astrophysics Data System (ADS)
Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing
2018-04-01
This paper describes the merits and demerits of different sensors for measuring propellant gas pressure, the applicable range of the frequently used dynamic pressure calibration methods, and the working principle of absolute quasi-static pressure calibration based on the drop-weight device. The main factors affecting the accuracy of pressure calibration are analyzed from two aspects of the force sensor and the piston area. To calculate the effective area of the piston rod and evaluate the uncertainty between the force sensor and the corresponding peak pressure in the absolute quasi-static pressure calibration process, a method for solving these problems based on the least squares principle is proposed. According to the relevant quasi-static pressure calibration experimental data, the least squares fitting model between the peak force and the peak pressure, and the effective area of the piston rod and its measurement uncertainty, are obtained. The fitting model is tested by an additional group of experiments, and the peak pressure obtained by the existing high-precision comparison calibration method is taken as the reference value. The test results show that the peak pressure obtained by the least squares fitting model is closer to the reference value than the one directly calculated by the cross-sectional area of the piston rod. When the peak pressure is higher than 150 MPa, the percentage difference is less than 0.71%, which can meet the requirements of practical application.
The energy density distribution of an ideal gas and Bernoulli’s equations
NASA Astrophysics Data System (ADS)
Santos, Leonardo S. F.
2018-05-01
This work discusses the energy density distribution in an ideal gas and the consequences of Bernoulli’s equation and the corresponding relation for compressible fluids. The aim of this work is to study how Bernoulli’s equation determines the energy flow in a fluid, although Bernoulli’s equation does not describe the energy density itself. The model from molecular dynamic considerations that describes an ideal gas at rest with uniform density is modified to explore the gas in motion with non-uniform density and gravitational effects. The difference between the component of the speed of a particle that is parallel to the gas speed and the gas speed itself is called ‘parallel random speed’. The pressure from the ‘parallel random speed’ is denominated as parallel pressure. The modified model predicts that the energy density is the sum of kinetic and potential gravitational energy densities plus two terms with static and parallel pressures. The application of Bernoulli’s equation and the corresponding relation for compressible fluids in the energy density expression has resulted in two new formulations. For incompressible and compressible gas, the energy density expressions are written as a function of stagnation, static and parallel pressures, without any dependence on kinetic or gravitational potential energy densities. These expressions of the energy density are the main contributions of this work. When the parallel pressure was uniform, the energy density distribution for incompressible approximation and compressible gas did not converge to zero for the limit of null static pressure. This result is rather unusual because the temperature tends to zero for null pressure. When the gas was considered incompressible and the parallel pressure was equal to static pressure, the energy density maintained this unusual behaviour with small pressures. If the parallel pressure was equal to static pressure, the energy density converged to zero for the limit of the null pressure only if the gas was compressible. Only the last situation describes an intuitive behaviour for an ideal gas.
NASA Astrophysics Data System (ADS)
M, Adimurthy; Katti, Vadiraj V.
2017-02-01
Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a normal slot air jet is experimental investigated. Present study focuses on the influence of jet-to-plate spacing ( Z/D h ) (0.5-10) and Reynolds number (2500-20,000) on the fluid flow and heat transfer distribution. A single slot jet with an aspect ratio ( l/b) of about 22 is chosen for the current study. Infrared Thermal Imaging technique is used to capture the temperature data on the target surface. Local heat transfer coefficients are estimated from the thermal images using `SMART VIEW' software. Wall static pressure measurement is carried out for the specified range of Re and Z/D h . Wall static pressure coefficients are seen to be independent of Re in the range between 5000 and 15,000 for a given Z/D h . Nu values are higher at the stagnation point for all Z/D h and Re investigated. For lower Z/D h and higher Re, secondary peaks are observed in the heat transfer distributions. This may be attributed to fluid translating from laminar to turbulent flow on the target plate. Heat transfer characteristics are explained based on the simplified flow assumptions and the pressure data obtained using Differential pressure transducer and static pressure probe. Semi-empirical correlation for the Nusselt number in the stagnation region is proposed.
Estimation of Time Dependent Properties from Surface Pressure in Open Cavities
2008-02-01
static pressure of the cavity. The stagnation and static pressures are measured separately with Druck Model DPI 145 pressure transducers (with a quoted...interacting with the ZNMF actuator jets, the 2D shape of the vortical structures transform to a 3D shape with spanwise vortical structures. These...Therefore, the pressure gradient in the d direction is dd ° 3d Substituting Equation (5.3) into Equation (5.5) results in ^l = PJk(e^-Re^)/c^ (5.6
NASA Technical Reports Server (NTRS)
O'Bryan, Thomas C; Danforth, Edward C B; Johnston, J Ford
1955-01-01
The magnitude and variation of the static-pressure error for various distances ahead of sharp-nose bodies and open-nose air inlets and for a distance of 1 chord ahead of the wing tip of a swept wing are defined by a combination of experiment and theory. The mechanism of the error is discussed in some detail to show the contributing factors that make up the error. The information presented provides a useful means for choosing a proper location for measurement of static pressure for most purposes.
Klein, Wilfried; Abe, Augusto S; Perry, Steven F
2003-04-15
The surgical removal of the post-hepatic septum (PHS) in the tegu lizard, Tupinambis merianae, significantly reduces resting lung volume (V(Lr)) and maximal lung volume (V(Lm)) when compared with tegus with intact PHS. Standardised for body mass (M(B)), static lung compliance was significantly less in tegus without PHS. Pleural and abdominal pressures followed, like ventilation, a biphasic pattern. In general, pressures increased during expiration and decreased during inspiration. However, during expiration pressure changes showed a marked intra- and interindividual variation. The removal of the PHS resulted in a lower cranio-caudal intracoelomic pressure differential, but had no effect on the general pattern of pressure changes accompanying ventilation. These results show that a perforated PHS that lacks striated muscle has significant influence on static breathing mechanics in Tupinambis and by analogy provides valuable insight into similar processes that led to the evolution of the mammalian diaphragm.
An alternating pressure sequence proposal for an air-cell cushion for preventing pressure ulcers.
Arias, Sandra; Cardiel, Eladio; Rogeli, Pablo; Mori, Taketoshi; Nakagami, Gojiro; Noguchi, Hiroshi; Sanada, Hiromi
2014-01-01
The distribution and release of pressure on ischial regions are two important parameters for evaluating the effectiveness of a cushion; especially the release of pressure over time on ischial tuberosities, which is significant for preventing pressure ulcers. The aim of this work is to evaluate the effect on interface pressure through the application of a proposed alternating pressure sequence for an air-cell cushion. Six healthy volunteers were asked to sit on the air cell cushion, in static and alternating modes, as well as on a typical foam cushion for 12 minutes. Interface pressure was monitored with a matrix sensor system. Interface pressure values on ischial tuberosities, user contact area and pressure distribution were analyzed. Results showed that IP on IT tends to increase in both foam and static cushions, while in alternating cushion IP on IT tends to decrease. User contact area was significantly larger in alternating cushion than in static or foam cushions. Moreover, there is a better pressure re-distribution with alternating cushion than with the other cushions. The goal of the alternating sequence is to redistribute pressure and stimulate the ischial regions in order to promote blood flow and prevent pressure occurring in wheelchair users.
NASA Technical Reports Server (NTRS)
Jenkins, R. V.
1977-01-01
Experimental data obtained in an investigation of the mixing of an underexpanded hydrogen jet in a supersonic flow both with and without combustion are presented. Tests were conducted in a Mach 2 test stream with both air and nitrogen as test media. Total temperature of the test stream was 2170 K, and static exit pressure was about one atmosphere. The static pressure at the exit of the hydrogen injector's Mach 2 nozzle was about two atmospheres. Primary measurements included shadowgraphs and pitot pressure surveys of the flow field. Pitot surveys and wall static pressures were measured for the case where the entire flow was shrouded. The results are compared to similar experimental data and theoretical predictions for the matched pressure case.
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.; Jeracki, Robert J.
1988-01-01
An experimental investigation was conducted in the NASA Lewis 10- by 10-Foot Supersonic Wind Tunnel during subsonic tunnel operation in the aerodynamic cycle to determine the test section flow characteristics near the Advanced Turboprop Project propeller model plane of rotation. The investigation used an eight-probe pitot static flow survey rake to measure total and static pressures at two locations in the wind tunnel: the test section and the bellmouth section (upstream of the two-dimensional flexible-wall nozzle). A cone angularity probe was used to measure any flow angularity in the test section. The evaluation was conducted at tunnel Mach numbers from 0.10 to 0.35 and at three operating altitudes from 2,000 to 50,000 ft. which correspond to tunnel reference total pressures from 1960 to 245 psfa, respectively. The results of this experimental investigation indicate a total-pressure loss area in the center of the test section and a static-pressure gradient from the test section centerline to the wall. These total and static pressure differences were observed at all tunnel operating altitudes and diminished at lower tunnel velocities. The total-pressure loss area was also found in the bellmouth section, which indicates that the loss mechanism is not the tunnel flexible-wall nozzle. The flow in the test section is essentially axial since very small flow angles were measured. The results also indicate that a correction to the tunnel total and static pressures must be applied in order to determine accurate freestream conditions at the test section centerline.
NASA Astrophysics Data System (ADS)
Meda, Adimurthy; Katti, Vadiraj V.
2017-08-01
The present work experimentally investigates the local distribution of wall static pressure and the heat transfer coefficient on a rough flat plate impinged by a slot air jet. The experimental parameters include, nozzle-to-plate spacing (Z /D h = 0.5-10.0), axial distance from stagnation point ( x/D h ), size of detached rib ( b = 4-12 mm) and Reynolds number ( Re = 2500-20,000). The wall static pressure on the surface is recorded using a Pitot tube and a differential pressure transmitter. Infrared thermal imaging technique is used to capture the temperature distribution on the target surface. It is observed that, the maximum wall static pressure occurs at the stagnation point ( x/D h = 0) for all nozzle-to-plate spacing ( Z/D h ) and rib dimensions studied. Coefficient of wall static pressure ( C p ) decreases monotonically with x/D h . Sub atmospheric pressure is evident in the detached rib configurations for jet to plate spacing up to 6.0 for all ribs studied. Sub atmospheric region is stronger at Z/D h = 0.5 due to the fluid accelerating under the rib. As nozzle to plate spacing ( Z/D h ) increases, the sub-atmospheric region becomes weak and vanishes gradually. Reasonable enhancement in both C p as well as Nu is observed for the detached rib configuration. Enhancement is found to decrease with the increase in the rib width. The results of the study can be used in optimizing the cooling system design.
PSP Measurement of Stator Vane Surface Pressures in a High Speed Fan
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan
1998-01-01
This paper presents measurements of static pressures on the stator vane suction side of a high-speed single stage fan using the technique of pressure sensitive paint (PSP). The paper illustrates development in application of the relatively new experimental technique to the complex environment of internal flows in turbomachines. First, there is a short explanation of the physics of the PSP technique and a discussion of calibration methods for pressure sensitive paint in the turbomachinery environment. A description of the image conversion process follows. The recorded image of the stator vane pressure field is skewed due to the limited optical access and must be converted to the meridional plane projection for comparison with analytical predictions. The experimental results for seven operating conditions along an off-design rotational speed line are shown in a concise form, including performance map points, mindspan static tap pressure distributions, and vane suction side pressure fields. Then, a comparison between static tap and pressure sensitive paint data is discussed. Finally, the paper lists shortcomings of the pressure sensitive paint technology and lessons learned in this high-speed fan application.
Multiple Launch Rocket System (MLRS) Fuze.
1982-06-18
8217This is to be expected, since the probes are near the axis of symmetry 08 (where the bow shock wave is most nearly normal) and, being Pitot probes ...that simulated altitudes from 15.2 Km to 21 Km. The fuze ogive was instrumented with both static and pitot pressure probes , from which the pressure data...insights into the flow. Because the bow shock wave is curved, the static-pressure on the-- .urface should decrease from avalue__ of the stagnation pressure
NASA Astrophysics Data System (ADS)
Rodi, A. R.; Leon, D. C.
2012-11-01
A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns - angle of attack, angle of sideslip, dynamic pressure and the error in static pressure - if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft - a trailing cone - and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.
Ye, Rui; Hao, Jin; Song, Jinlin; Zhao, Zhihe; Fang, Shanbao; Wang, Yating; Li, Juan
2014-06-01
Chondrocytes integrate numerous microenvironmental cues to mount physiologically relevant differentiation responses, and the regulation of mechanical signaling in chondrogenic differentiation is now coming into intensive focus. To facilitate tissue-engineered chondrogenesis by mechanical strategy, a thorough understanding about the interactional roles of chemical factors under mechanical stimuli in regulating chondrogenesis is in great need. Therefore, this study attempts to investigate the interaction of rat MSCs with their microenvironment by imposing dynamic and static hydrostatic pressure through modulating gaseous tension above the culture medium. Under dynamic pressure, chemical parameters (pH, pO2, and pCO2) were kept in homeostasis. In contrast, pH was remarkably reduced due to increased pCO2 under static pressure. MSCs under the dynamically pressured microenvironment exhibited a strong accumulation of GAG within and outside the alginate beads, while cells under the statically pressured environment lost newly synthesized GAG into the medium with a speed higher than its production. In addition, the synergic influence on expression of chondrogenic genes was more persistent under dynamic pressure than that under static pressure. This temporal contrast was similar to that of activation of endogenous TGF-β1. Taken altogether, it indicates that a loading strategy which can keep a homeostatic chemical microenvironment is preferred, since it might sustain the stimulatory effects of mechanical stimuli on chondrogenesis via activation of endogenous TGF-β1. © 2013 Wiley Periodicals, Inc.
30 CFR 18.67 - Static-pressure tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static-pressure tests. 18.67 Section 18.67 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Inspections and Tests § 18...
Interaction of two-dimensional transverse jet with a supersonic mainstream
NASA Technical Reports Server (NTRS)
Kraemer, G. O.; Tiwari, S. N.
1983-01-01
The interaction of a two dimensional sonic jet injected transversely into a confined main flow was studied. The main flow consisted of air at a Mach number of 2.9. The effects of varying the jet parameters on the flow field were examined using surface pressure and composition data. Also, the downstream flow field was examined using static pressure, pitot pressure, and composition profile data. The jet parameters varied were gapwidth, jet static pressure, and injectant species of either helium or nitrogen. The values of the jet parameters used were 0.039, 0.056, and 0.109 cm for the gapwidth and 5, 10, and 20 for the jet to mainstream static pressure ratios. The features of the flow field produced by the mixing and interaction of the jet with the mainstream were related to the jet momentum. The data were used to demonstrate the validity of an existing two dimensional elliptic flow code.
Comparative Tests of Pitot-static Tubes
NASA Technical Reports Server (NTRS)
Merriam, Kenneth G; Spaulding, Ellis R
1935-01-01
Comparative tests were made on seven conventional Pitot-static tubes to determine their static, dynamic, and resultant errors. The effect of varying the dynamic opening, static opening, wall thickness, and inner-tube diameter was investigated. Pressure-distribution measurements showing stem and tip effects were also made. A tentative design for a standard Pitot-static tube for use in measuring air velocity is submitted.
Category 5 Suppressive Shield (TDP)
1975-10-01
side- on overpressure. 3.1.3 Quasi -static Pressure. Pressure levels as measured by the PCB101A02 trans- ducers were in general difficult to...apparent: (1) The observed quasi -static pressures PnM are in general somewhnl less than the OOOiipomMng calculated values based on closed-box...explained by off-center combustion of the illuminant mix and directional convection of the reaction pro- ducts. Posttest ash deposits on the floor
Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi
2011-11-01
The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles.
Numerical Predictions of Static-Pressure-Error Corrections for a Modified T-38C Aircraft
2014-12-15
but the more modern work of Latif et al . [11] demonstrated that compensated Pitot-static probes can be simulated accurately for subsonic and...what was originally estimated from CFD simulations in Bhamidipati et al . [3] by extracting the static-pressure error in front of the production probe...Aerodynamically Compensating Pitot Tube,” Journal of Aircraft, Vol. 25, No. 6, 1988, pp. 544–547. doi:10.2514/3.45620 [11] Latif , A., Masud, J., Sheikh, S. R., and
Wiecki, P.; Nandi, M.; Bohmer, Anna; ...
2017-11-13
Here, we present 77Se -NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, T s. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. Our NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiecki, P.; Nandi, M.; Bohmer, Anna
Here, we present 77Se -NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, T s. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. Our NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.
Theory for solubility in static systems
NASA Astrophysics Data System (ADS)
Gusev, Andrei A.; Suter, Ulrich W.
1991-06-01
A theory for the solubility of small particles in static structures has been developed. The distribution function of the solute in a frozen solid has been derived in analytical form for the quantum and the quasiclassical cases. The solubility at infinitesimal gas pressure (Henry's constant) as well as the pressure dependence of the solute concentration at elevated pressures has been found from the statistical equilibrium between the solute in the static matrix and the ideal-gas phase. The distribution function of a solute containing different particles has been evaluated in closed form. An application of the theory to the sorption of methane in the computed structures of glassy polycarbonate has resulted in a satisfactory agreement with experimental data.
NASA Technical Reports Server (NTRS)
Hunton, Lynn W.; James, Harry A.
1948-01-01
Pressure measurements were made during wind-tunnel tests of the McDonnell XP-85 parasite fighter. Static-pressure orifices were located over the fuselage nose, over the canopy, along the wing root, and along the upper and lower stabilizer roots. A total-pressure and static-pressure rake was located in the turbojet engine air-intake duct. It was installed at the station where the compressor face would be located. Pressure data were obtained for two airplane conditions, clean and with skyhook extended, through a range of angle of attack and a range of yaw.
Scramjet Isolator Modeling and Control
2011-12-01
12 γ Ratio of specific heats . . . . . . . . . . . . . . . . . . . . 12 p1 Static pressure entering shock . . . . . . . . . . . . . . . . 12 M1 Mach...138 MAve Average stream Mach number . . . . . . . . . . . . . . . . 138 γ Ratio of specific heats ... heats , p1 is the static pressure entering the shock, and M1 is the Mach number of the flow entering the shock. Subsequent researchers [9] took a
30 CFR 250.1153 - When must I conduct a static bottomhole pressure survey?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER... following conditions: If you have . . . Then you must conduct . . . (1) A new producing reservoir A static bottomhole pressure survey within 90 days after the date of first continuous production. (2) A reservoir with...
30 CFR 250.1153 - When must I conduct a static bottomhole pressure survey?
Code of Federal Regulations, 2010 CFR
2010-07-01
... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production... you must conduct . . . (1) A new producing reservoir A static bottomhole pressure survey within 90 days after the date of first continuous production. (2) A reservoir with three or more producing...
Structural integrity of a confinement vessel for testing nuclear fuels for space propulsion
NASA Astrophysics Data System (ADS)
Bergmann, V. L.
Nuclear propulsion systems for rockets could significantly reduce the travel time to distant destinations in space. However, long before such a concept can become reality, a significant effort must be invested in analysis and ground testing to guide the development of nuclear fuels. Any testing in support of development of nuclear fuels for space propulsion must be safely contained to prevent the release of radioactive materials. This paper describes analyses performed to assess the structural integrity of a test confinement vessel. The confinement structure, a stainless steel pressure vessel with bolted flanges, was designed for operating static pressures in accordance with the ASME Boiler and Pressure Vessel Code. In addition to the static operating pressures, the confinement barrier must withstand static overpressures from off-normal conditions without releasing radioactive material. Results from axisymmetric finite element analyses are used to evaluate the response of the confinement structure under design and accident conditions. For the static design conditions, the stresses computed from the ASME code are compared with the stresses computed by the finite element method.
Steady hydromagnetic flows in open magnetic fields. II - Global flows with static zones
NASA Technical Reports Server (NTRS)
Tsinganos, K.; Low, B. C.
1989-01-01
A theoretical study of an axisymmetric steady stellar wind with a static zone is presented, with emphasis on the situation where the global magnetic field is symmetrical about the stellar equator and is partially open. In this scenario, the wind escapes in open magnetic fluxes originating from a region at the star pole and a region at an equatorial belt of closed magnetic field in static equilibrium. The two-dimensional balance of the pressure gradient and the inertial, gravitational, and Lorentz forces in different parts of the flow are studied, along with the static interplay between external sources of energy (heating and/or cooling) distributed in the flow and the pressure distribution.
Characterization of Space Shuttle Reusable Rocket Motor Static Test Stand Thrust Measurements
NASA Technical Reports Server (NTRS)
Cook, Mart L.; Gruet, Laurent; Cash, Stephen F. (Technical Monitor)
2003-01-01
Space Shuttle Reusable Solid Rocket Motors (RSRM) are static tested at two ATK Thiokol Propulsion facilities in Utah, T-24 and T-97. The newer T-97 static test facility was recently upgraded to allow thrust measurement capability. All previous static test motor thrust measurements have been taken at T-24; data from these tests were used to characterize thrust parameters and requirement limits for flight motors. Validation of the new T-97 thrust measurement system is required prior to use for official RSRM performance assessments. Since thrust cannot be measured on RSRM flight motors, flight motor measured chamber pressure and a nominal thrust-to-pressure relationship (based on static test motor thrust and pressure measurements) are used to reconstruct flight motor performance. Historical static test and flight motor performance data are used in conjunction with production subscale test data to predict RSRM performance. The predicted motor performance is provided to support Space Shuttle trajectory and system loads analyses. Therefore, an accurate nominal thrust-to-pressure (F/P) relationship is critical for accurate RSRM flight motor performance and Space Shuttle analyses. Flight Support Motors (FSM) 7, 8, and 9 provided thrust data for the validation of the T-97 thrust measurement system. The T-97 thrust data were analyzed and compared to thrust previously measured at T-24 to verify measured thrust data and identify any test-stand bias. The T-97 FIP data were consistent and within the T-24 static test statistical family expectation. The FSMs 7-9 thrust data met all NASA contract requirements, and the test stand is now verified for future thrust measurements.
Constant-Differential-Pressure Two-Fluid Accumulator
NASA Technical Reports Server (NTRS)
Piecuch, Benjamin; Dalton, Luke T.
2010-01-01
A two-fluid accumulator has been designed, built, and demonstrated to provide an acceptably close approximation to constant differential static pressure between two fluids over the full ranges of (1) accumulator stroke, (2) rates of flow of the fluids, and (3) common static pressure applied to the fluids. Prior differential- pressure two-fluid accumulators are generally not capable of maintaining acceptably close approximations to constant differential pressures. The inadequacies of a typical prior differential-pressure two-fluid accumulator can be summarized as follows: The static differential pressure is governed by the intrinsic spring rate (essentially, the stiffness) of an accumulator tank. The spring rate can be tailored through selection of the tank-wall thickness, selection of the number and/or shape of accumulator convolutions, and/or selection of accumulator material(s). Reliance on the intrinsic spring rate of the tank results in three severe limitations: (1) The spring rate and the expulsion efficiency tend to be inversely proportional to each other: that is to say, as the stiffness (and thus the differential pressure) is increased, the range of motion of the accumulator is reduced. (2) As the applied common static pressure increases, the differential pressure tends to decrease. An additional disadvantage, which may or may not be considered limiting, depending on the specific application, is that an increase in stiffness entails an increase in weight. (3) The additional weight required by a low expulsion efficiency accumulator eliminates the advantage given to such gas storage systems. The high expulsion efficiency provided by this two-fluid accumulator allows for a lightweight, tightly packaged system, which can be used in conjunction with a fuel cell-based system.
NASA Technical Reports Server (NTRS)
Leavitt, L. D.; Bangert, L. S.
1982-01-01
An investigation was conducted in the Langley 16 foot Transonic Tunnel and in the static test facility of that tunnel to determine the effects of divergent flap ventilation of an axisymmetric nozzle on nozzle internal (static) and wind on performance. Tests were conducted at 0 deg angle of attack at static conditions and at Mach numbers from 0.6 to 1.2. Ratios of jet total pressure to free stream static pressure were varied from 1.0 (jet off) to approximately 14.0 depending on Mach number. The results of this study indicate that divergent flap ventilation generally provided large performance benefits at overexpanded nozzle conditions and performance reductions at underexpanded nozzle conditions when compared to the baseline (unventilated) nozzles. Ventilation also reduced the peak static and wind on performance levels.
Water Ingestion into Axial Flow Compressors. Part III. Experimental Results and Discussion
1981-10-01
total pressure, static pressure, and temperature at both compressor inlet and outlet. A United Sensor model PDC-12-G-l0-KL pitot-static pressure probe...Test Compressor inlet and outlet temperatures during water injection tests: United Sensor and Control Corp. type TK-8-CiA-36’-F Aspirate...ured utilizing standard aspirated thermocouples, namely an United Sensor and Control Corp. type TK-8-C/A-36-F. The Test Compressor out- let
Guianvarc'h, Cécile; Gavioso, Roberto M; Benedetto, Giuliana; Pitre, Laurent; Bruneau, Michel
2009-07-01
Condenser microphones are more commonly used and have been extensively modeled and characterized in air at ambient temperature and static pressure. However, several applications of interest for metrology and physical acoustics require to use these transducers in significantly different environmental conditions. Particularly, the extremely accurate determination of the speed of sound in monoatomic gases, which is pursued for a determination of the Boltzmann constant k by an acoustic method, entails the use of condenser microphones mounted within a spherical cavity, over a wide range of static pressures, at the temperature of the triple point of water (273.16 K). To further increase the accuracy achievable in this application, the microphone frequency response and its acoustic input impedance need to be precisely determined over the same static pressure and temperature range. Few previous works examined the influence of static pressure, temperature, and gas composition on the microphone's sensitivity. In this work, the results of relative calibrations of 1/4 in. condenser microphones obtained using an electrostatic actuator technique are presented. The calibrations are performed in pure helium and argon gas at temperatures near 273 K and in the pressure range between 10 and 600 kPa. These experimental results are compared with the predictions of a realistic model available in the literature, finding a remarkable good agreement. The model provides an estimate of the acoustic impedance of 1/4 in. condenser microphones as a function of frequency and static pressure and is used to calculate the corresponding frequency perturbations induced on the normal modes of a spherical cavity when this is filled with helium or argon gas.
NASA Technical Reports Server (NTRS)
Nelson, D. P.
1981-01-01
A graphical presentation of the aerodynamic data acquired during coannular nozzle performance wind tunnel tests is given. The graphical data consist of plots of nozzle gross thrust coefficient, fan nozzle discharge coefficient, and primary nozzle discharge coefficient. Normalized model component static pressure distributions are presented as a function of primary total pressure, fan total pressure, and ambient static pressure for selected operating conditions. In addition, the supersonic cruise configuration data include plots of nozzle efficiency and secondary-to-fan total pressure pumping characteristics. Supersonic and subsonic cruise data are given.
User's Manual for Aerofcn: a FORTRAN Program to Compute Aerodynamic Parameters
NASA Technical Reports Server (NTRS)
Conley, Joseph L.
1992-01-01
The computer program AeroFcn is discussed. AeroFcn is a utility program that computes the following aerodynamic parameters: geopotential altitude, Mach number, true velocity, dynamic pressure, calibrated airspeed, equivalent airspeed, impact pressure, total pressure, total temperature, Reynolds number, speed of sound, static density, static pressure, static temperature, coefficient of dynamic viscosity, kinematic viscosity, geometric altitude, and specific energy for a standard- or a modified standard-day atmosphere using compressible flow and normal shock relations. Any two parameters that define a unique flight condition are selected, and their values are entered interactively. The remaining parameters are computed, and the solutions are stored in an output file. Multiple cases can be run, and the multiple case solutions can be stored in another output file for plotting. Parameter units, the output format, and primary constants in the atmospheric and aerodynamic equations can also be changed.
Radio jet refraction in galactic atmospheres with static pressure gradients
NASA Technical Reports Server (NTRS)
Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.
1981-01-01
A theory of double radio sources which have a 'Z' or 'S' morphology is proposed, based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy. The model describes a collimated jet of supersonic material bending self-consistently under the influence of external static pressure gradients. Gravity and magnetic fields are neglected in the simplest case except insofar as they determine the static pressure distribution. The calculation is a straightforward extension of a method used to calculate a ram-pressure model for twin radio trails ('C' morphology). It may also be described as a continuous-jet version of a buoyancy model proposed in 1973. The model has the added virtue of invoking a galactic atmosphere similar to those already indicated by X-ray measurements of some other radio galaxies and by models for the collimation of other radio jets.
NASA Technical Reports Server (NTRS)
Goradia, S. H.; Mehta, J. M.; Shrewsbury, G. S.
1977-01-01
The viscous flow phenomena associated with sharp and blunt trailing edge airfoils were investigated. Experimental measurements were obtained for a 17 percent thick, high performance GAW-1 airfoil. Experimental measurements consist of velocity and static pressure profiles which were obtained by the use of forward and reverse total pressure probes and disc type static pressure probes over the surface and in the wake of sharp and blunt trailing edge airfoils. Measurements of the upper surface boundary layer were obtained in both the attached and separated flow regions. In addition, static pressure data were acquired, and skin friction on the airfoil upper surface was measured with a specially constructed device. Comparison of the viscous flow data with data previously obtained elsewhere indicates reasonable agreement in the attached flow region. In the separated flow region, considerable differences exist between these two sets of measurements.
Performance of Several Conical Convergent-Divergent Rocket-Type Exhaust Nozzles
NASA Technical Reports Server (NTRS)
Campbell, C. E.; Farley, J. M.
1960-01-01
An investigation was conducted to obtain nozzle performance data with relatively large-scale models at pressure ratios as high as 120. Conical convergent-divergent nozzles with divergence angles alpha of 15, 25, and 29 deg. were each tested at area ratios of approximately 10, 25, and 40. Heated air (1200 F) was supplied at the nozzle inlet at pressures up to 145 pounds per square inch absolute and was exhausted into quiescent air at pressures as low as 1.2 pounds per square inch absolute. Thrust ratios for all nozzle configurations are presented over the range of pressure ratios attainable and were extrapolated when possible to design pressure ratio and beyond. Design thrust ratios decreased with increasing nozzle divergence angle according to the trend predicted by the (1 + cos alpha)/2 parameter. Decreasing the nozzle divergence angle resulted in sizable increases in thrust ratio for a given surface-area ratio (nozzle weight), particularly at low nozzle pressure ratios. Correlations of the nozzle static pressure at separation and of the average static pressure downstream of separation with various nozzle parameters permitted the calculation of thrust in the separated-flow region from unseparated static-pressure distributions. Thrust ratios calculated by this method agreed with measured values within about 1 percent.
NASA Technical Reports Server (NTRS)
Yetter, J. A.; Leavitt, L. D.
1980-01-01
The investigation was conducted at static conditions and over a Mach number range from 0.6 to 1.2. Angle of attack was held constant at 0 deg. High pressure air was used to simulate jet exhaust flow at ratios of jet total pressure to free-stream static pressure from 1 (jet off) to approximately 10. Sidewall cutback appears to be a viable way of reducing nozzle weight and cooling requirements without compromising installed performance.
Modeling Scala Media as a Pressure Vessel
NASA Astrophysics Data System (ADS)
Lepage, Eric; Olofsson, A.˚Ke
2011-11-01
The clinical condition known as endolymphatic hydrops is the swelling of scala media and may result in loss in hearing sensitivity consistent with other forms of low-frequency biasing. Because outer hair cells (OHCs) are displacement-sensitive and hearing levels tend to be preserved despite large changes in blood pressure and CSF pressure, it seems unlikely that the OHC respond passively to changes in static pressures in the chambers. This suggests the operation of a major feedback control loop which jointly regulates homeostasis and hearing sensitivity. Therefore the internal forces affecting the cochlear signal processing amplifier cannot be just motile responses. A complete account of the cochlear amplifier must include static pressures. To this end we have added a third, pressure vessel to our 1-D 140-segment, wave-digital filter active model of cochlear mechanics, incorporating the usual nonlinear forward transduction. In each segment the instantaneous pressure is the sum of acoustic pressure and global static pressure. The object of the model is to maintain stable OHC operating point despite any global rise in pressure in the third chamber. Such accumulated pressure is allowed to dissipate exponentially. In this first 3-chamber implementation we explore the possibility that acoustic pressures are rectified. The behavior of the model is critically dependent upon scaling factors and time-constants, yet by initial assumption, the pressure tends to accumulate in proportion to sound level. We further explore setting of the control parameters so that the accumulated pressure either stays within limits or may rise without bound.
Shim, Je-Myung; Jung, Ju-Hyeon; Kim, Hwan-Hee
2015-07-01
[Purpose] The aim of this study was to examine whether plantar flexor static stretching and dynamic stretching using an Aero-Step results in changes in foot pressure during gait in healthy adults. [Subjects] Eighteen normal adults were randomly allocated to either a dynamic stretching using an Aero-Step group (DSUAS) group (n = 8) or a static stretching (SS) group (n = 10). [Methods] The DSUAS and SS participants took part in an exercise program for 15 minutes. Outcome measures were foot plantar pressure, which was measured during the subject's gait stance phase; the asymmetric ratio of foot pressure for both feet; and the visual analogue scale (VAS) measured during the interventions. [Results] There were significant differences in the asymmetric ratio of foot pressure for both feet and VAS between the two groups after intervention. However, there were no significant differences in foot plantar pressure during the gait stance phase within both groups. [Conclusion] DSUSAS is an effective stretching method, as pain during it is lower than that with SS, which can minimize the asymmetric ratio of foot pressure for both feet during gait due to asymmetric postural alignment.
NASA Technical Reports Server (NTRS)
Kaldschmidt, G.; Syltebo, B. E.; Ting, C. T.
1973-01-01
The results from testing of a 0.3 scale model center duct inlet (S duct) for the Pratt and Whitney Aircraft JT8D-100 engines are presented. The objective of this test was to demonstrate that the required airflow of the JT8D-100 engine (480 lb/sec as compared to 334 lb/sec for JT8D-15) can be achieved with minimum modifications to the existing 727 airplane structure at acceptable levels of total pressure recovery and distortion. Steady-state pressure recovery, steady-state pressure distortion, and dynamic pressure measurements were taken at the engine face station. Surface static pressure measurements were taken along the duct. Test results indicated that the required airflow was achieved with acceptable pressure recovery (comparable to the current 727-200 S duct). Inlet inflow angle variation within the 727 airplane operating regime (minus 5 to 5 degrees) had no effect on the inlet performance. Pressure distortion at static and forward speed at takeoff airflow conditions are within P and WA limits for the Phase II duct when equipped with vortex generators. Static crosswind operation between 10 knots and 25 knots appears feasible at full takeoff power.
Preston Probe Calibrations at High Reynolds Number
NASA Technical Reports Server (NTRS)
Smits, Alexander J.
1998-01-01
The overall goal of the research effort is to study the performance of two Preston probes designed by NASA Langley Research Center across an unprecedented range of Reynolds number (based on friction velocity and probe diameter), and perform an accurate calibration over the same Reynolds number range. Using the Superpipe facility in Princeton, two rounds of experiments were performed. In each round of experiments for each Reynolds number, the pressure gradient, static pressure from the Preston probes and the total pressure from the Preston probes were measured. In the first round, 3 Preston probes having outer diameters of 0.058 inches, 0.083 inches and 0.203 inches were tested over a large range of pipe Reynolds numbers. Two data reduction methods were employed: first, the static pressure measured on the Preston probe was used to calculate P (modified Preston probe configuration), and secondly, the static pressure measured at the reference pressure tap was used to calculate P (un-modified Preston probe configuration). For both methods, the static pressure was adjusted to correspond with the static pressure at the Preston probe tip using the pressure gradient. The measurements for Preston probes with diameters of 0.058 inches, and 0.083 inches respectively were performed in the test pipe before it was polished a second time. Therefore, the measurements at high pipe Reynolds numbers may have been affected by roughness. In the second round of experiments the 0.058 inches and 0.083 inches diameter, un-modified probes were tested after the pipe was polished and prepared to ensure that the surface was smooth. The average velocity was estimated by assuming that the connection between the centerline velocity and the average velocity was known, and by using a Pitot tube to measure the centerline velocity. A preliminary error estimate suggests that it is possible to introduce a 1% to 2% error in estimating the average velocity using this approach. The evidence on the errors attending the second data set is somewhat circumstantial, and the measurements have not been repeated using a better approach, it seems probable that the correlation given applies to un-modified Preston probes over the range 6.4 less than x* less than 11.3.
NASA Technical Reports Server (NTRS)
Bare, E. Ann; Capone, Francis J.
1989-01-01
An investigation was conducted in the Static Test Facility of the Langley 16-Foot Transonic Tunnel to determine the effects of five geometric design parameters on the internal performance of convergent single expansion ramp nozzles. The effects of ramp chordal angle, initial ramp angle, flap angle, flap length, and ramp length were determined. All nozzles tested has a nominally constant throat area and aspect ratio. Static pressure distributions along the centerlines of the ramp and flap were also obtained for each configuration. Nozzle pressure ratio was varied up to 10.0 for all configurations.
Motor starting a Brayton cycle power conversion system using a static inverter
NASA Technical Reports Server (NTRS)
Curreri, J. S.; Edkin, R. A.; Kruchowy, R.
1973-01-01
The power conversion module of a 2- to 15-kWe Brayton engine was motor started using a three-phase, 400-hertz static inverter as the power source. Motor-static tests were conducted for initial gas loop pressures of 10, 14, and 17 N/sq cm (15, 20, and 25 psia) over a range of initial turbine inlet temperatures from 366 to 550 K (200 to 530 F). The data are presented to show the effects of temperature and pressure on the motor-start characteristics of the rotating unit. Electrical characteristics during motoring are also discussed.
Five-Hole Flow Angle Probe Calibration for the NASA Glenn Icing Research Tunnel
NASA Technical Reports Server (NTRS)
Gonsalez, Jose C.; Arrington, E. Allen
1999-01-01
A spring 1997 test section calibration program is scheduled for the NASA Glenn Research Center Icing Research Tunnel following the installation of new water injecting spray bars. A set of new five-hole flow angle pressure probes was fabricated to properly calibrate the test section for total pressure, static pressure, and flow angle. The probes have nine pressure ports: five total pressure ports on a hemispherical head and four static pressure ports located 14.7 diameters downstream of the head. The probes were calibrated in the NASA Glenn 3.5-in.-diameter free-jet calibration facility. After completing calibration data acquisition for two probes, two data prediction models were evaluated. Prediction errors from a linear discrete model proved to be no worse than those from a full third-order multiple regression model. The linear discrete model only required calibration data acquisition according to an abridged test matrix, thus saving considerable time and financial resources over the multiple regression model that required calibration data acquisition according to a more extensive test matrix. Uncertainties in calibration coefficients and predicted values of flow angle, total pressure, static pressure. Mach number. and velocity were examined. These uncertainties consider the instrumentation that will be available in the Icing Research Tunnel for future test section calibration testing.
Yang, Mingyang; Zheng, Xinqian; Zhang, Yangjun; Bamba, Takahiro; Tamaki, Hideaki; Huenteler, Joern; Li, Zhigang
2013-03-01
This is Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the nonaxisymmetrical flow in a centrifugal compressor induced by the nonaxisymmetrical geometry of the volute while Part II describes the development of an asymmetric flow control method to avoid the stall on the basis of the characteristic of nonaxisymmetrical flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experimental results show that there is an evident nonaxisymmetrical flow pattern throughout the compressor due to the asymmetric geometry of the overhung volute. The static pressure field in the diffuser is distorted at approximately 90 deg in the rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion slightly varies with the rotational speed. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the aforementioned unsteady effects found in the experiments and cannot predict the phase shift, however, a detailed asymmetric flow field structure is obviously obtained.
NASA Astrophysics Data System (ADS)
Maskar, A. D.; Madhekar, S. N.; Phatak, D. R.
2017-11-01
The knowledge of seismic active earth pressure behind the rigid retaining wall is very essential in the design of retaining wall in earthquake prone regions. Commonly used Mononobe-Okabe (MO) method considers pseudo-static approach. Recently there are many pseudo-dynamic methods used to evaluate the seismic earth pressure. However, available pseudo-static and pseudo-dynamic methods do not incorporate the effect of wall movement on the earth pressure distribution. Dubrova (Interaction between soils and structures, Rechnoi Transport, Moscow, 1963) was the first, who considered such effect and till date, it is used for cohesionless soil, without considering the effect of seismicity. In this paper, Dubrova's model based on redistribution principle, considering the seismic effect has been developed. It is further used to compute the distribution of seismic active earth pressure, in a more realistic manner, by considering the effect of wall movement on the earth pressure, as it is displacement based method. The effects of a wide range of parameters like soil friction angle (ϕ), wall friction angle (δ), horizontal and vertical seismic acceleration coefficients (kh and kv); on seismic active earth pressure (Kae) have been studied. Results are presented for comparison of pseudo-static and pseudo-dynamic methods, to highlight the realistic, non-linearity of seismic active earth pressure distribution. The current study results in the variation of Kae with kh in the same manner as that of MO method and Choudhury and Nimbalkar (Geotech Geol Eng 24(5):1103-1113, 2006) study. To increase in ϕ, there is a reduction in static as well as seismic earth pressure. Also, by keeping constant ϕ value, as kh increases from 0 to 0.3, earth pressure increases; whereas as δ increases, active earth pressure decreases. The seismic active earth pressure coefficient (Kae) obtained from the present study is approximately same as that obtained by previous researchers. Though seismic earth pressure obtained by pseudo-dynamic approach and seismic earth pressure obtained by redistribution principle have different background of formulation, the final earth pressure distribution is approximately same.
Modifications to the nozzle test chamber to extend nozzle static-test capability
NASA Technical Reports Server (NTRS)
Keyes, J. W.
1985-01-01
The nozzle test chamber was modified to provide a high-pressure-ratio nozzle static-test capability. Experiments were conducted to determine the range of the ratio of nozzle total pressure to chamber pressure and to make direct nozzle thrust measurements using a three-component strain-gage force balance. Pressure ratios from 3 to 285 were measured with several axisymmetric nozzles at a nozzle total pressure of 15 to 190 psia. Devices for measuring system mass flow were calibrated using standard axisymmetric convergent choked nozzles. System mass-flow rates up to 10 lbm/sec are measured. The measured thrust results of these nozzles are in good agreement with one-dimensional theoretical predictions for convergent nozzles.
NASA Technical Reports Server (NTRS)
Dewitt, R. L.; Mcintire, T. O.
1974-01-01
Pressurized expulsion tests were conducted to determine the effect of various physical parameters on the pressurant gas (methane, helium, hydrogen, and nitrogen) requirements during the expulsion of liquid methane from a 1.52-meter-(5-ft-) diameter spherical tank and to compare results with those predicted by an analytical program. Also studied were the effects on methane, helium, and hydrogen pressurant requirements of various slosh excitation frequencies and amplitudes, both with and without slosh suppressing baffles in the tank. The experimental results when using gaseous methane, helium, and hydrogen show that the predictions of the analytical program agreed well with the actual pressurant requirements for static tank expulsions. The analytical program could not be used for gaseous nitrogen expulsions because of the large quantities of nitrogen which can dissolve in liquid methane. Under slosh conditions, a pronounced increase in gaseous methane requirements was observed relative to results obtained for the static tank expulsions. Slight decreases in the helium and hydrogen requirements were noted under similar test conditions.
NASA Technical Reports Server (NTRS)
Sanchez, Christopher M.
2011-01-01
NASA White Sands Test Facility (WSTF) is leading an evaluation effort in advanced destructive and nondestructive testing of composite pressure vessels and structures. WSTF is using progressive finite element analysis methods for test design and for confirmation of composite pressure vessel performance. Using composite finite element analysis models and failure theories tested in the World-Wide Failure Exercise, WSTF is able to estimate the static strength of composite pressure vessels. Additionally, test and evaluation on composites that have been impact damaged is in progress so that models can be developed to estimate damage tolerance and the degradation in static strength.
1950-05-11
available condition supersonic flow was obtained as far as K.5 inches downstream from the diffueer inlet with a maximum Mach number of M % 1.5...Boundary—layer total-pressure measurements were made with the rake shown in figure k. The tubes varied in size from 0.030-Inch outside diameter...at the wall to 0.050—inch outside diameter farther out. A static-pressure tube was mounted on the rake to measure static pressures at the same
Spectra of turbulent static pressure fluctuations in jet mixing layers
NASA Technical Reports Server (NTRS)
Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.
1977-01-01
Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.
Wave energy absorption by a submerged air bag connected to a rigid float.
Kurniawan, A; Chaplin, J R; Hann, M R; Greaves, D M; Farley, F J M
2017-04-01
A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section.
Wave energy absorption by a submerged air bag connected to a rigid float
Chaplin, J. R.; Hann, M. R.; Greaves, D. M.; Farley, F. J. M.
2017-01-01
A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section. PMID:28484330
Wave energy absorption by a submerged air bag connected to a rigid float
NASA Astrophysics Data System (ADS)
Kurniawan, A.; Chaplin, J. R.; Hann, M. R.; Greaves, D. M.; Farley, F. J. M.
2017-04-01
A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section.
Non-axisymmetric flow characteristics in centrifugal compressor
NASA Astrophysics Data System (ADS)
Wang, Leilei; Lao, Dazhong; Liu, Yixiong; Yang, Ce
2015-06-01
The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute. The experimental and numerical simulation methods were adopted in this work to study the compressor flow field distribution with different flow conditions. The results show that the pressure distributionin volute is characterized by the circumferential non-uniform phenomenon and the pressure fluctuation on the high static pressure zone propagates reversely to upstream, which results in the non-axisymmetric flow inside the compressor. The non-uniform level of pressure distribution in large flow condition is higher than that in small flow condition, its effect on the upstream flow field is also stronger. Additionally, the non-uniform circumferential pressure distribution in volute brings the non-axisymmetric flow at impeller outlet. In different flow conditions,the circumferential variation of the absolute flow angle at impeller outlet is also different. Meanwhile, the non-axisymmetric flow characteristics in internal impeller can be also reflected by the distribution of the mass flow. The high static pressure region of the volute corresponds to the decrease of mass flow in upstream blade channel, while the low static pressure zone of the volute corresponds to the increase of the mass flow. In small flow condition, the mass flow difference in the blade channel is bigger than that in the large flow condition.
NASA Technical Reports Server (NTRS)
Re, R. J.; Leavitt, L. D.
1984-01-01
The effects of five geometric design parameters on the internal performance of single-expansion-ramp nozzles were investigated at nozzle pressure ratios up to 10 in the static-test facility of the Langley 16-Foot Transonic Tunnel. The geometric variables on the expansion-ramp surface of the upper flap consisted of ramp chordal angle, ramp length, and initial ramp angle. On the lower flap, the geometric variables consisted of flap angle and flap length. Both internal performance and static-pressure distributions on the centerlines of the upper and lower flaps were obtained for all 43 nozzle configurations tested.
LEWICE3D/GlennHT Particle Analysis of the Honeywell Al502 Low Pressure Compressor
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.; Rigby, David L.
2015-01-01
A flow and ice particle trajectory analysis was performed for the booster of the Honeywell AL502 engine. The analysis focused on two closely related conditions one of which produced a rollback and another which did not rollback during testing in the Propulsion Systems Lab at NASA Glenn Research Center. The flow analysis was generated using the NASA Glenn GlennHT flow solver and the particle analysis was generated using the NASA Glenn LEWICE3D v3.56 ice accretion software. The flow and particle analysis used a 3D steady flow, mixing plane approach to model the transport of flow and particles through the engine. The inflow conditions for the rollback case were: airspeed, 145 ms; static pressure, 33,373 Pa; static temperature, 253.3 K. The inflow conditions for the non-roll-back case were: airspeed, 153 ms; static pressure, 34,252 Pa; static temperature, 260.1 K. Both cases were subjected to an ice particle cloud with a median volume diameter of 24 microns, an ice water content of 2.0 gm3 and a relative humidity of 100 percent. The most significant difference between the rollback and non-rollback conditions was the inflow static temperature which was 6.8 K higher for the non-rollback case.
Wind Tunnel to Atmospheric Mapping for Static Aeroelastic Scaling
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Spain, Charles V.; Rivera, J. A.
2004-01-01
Wind tunnel to Atmospheric Mapping (WAM) is a methodology for scaling and testing a static aeroelastic wind tunnel model. The WAM procedure employs scaling laws to define a wind tunnel model and wind tunnel test points such that the static aeroelastic flight test data and wind tunnel data will be correlated throughout the test envelopes. This methodology extends the notion that a single test condition - combination of Mach number and dynamic pressure - can be matched by wind tunnel data. The primary requirements for affecting this extension are matching flight Mach numbers, maintaining a constant dynamic pressure scale factor and setting the dynamic pressure scale factor in accordance with the stiffness scale factor. The scaling is enabled by capabilities of the NASA Langley Transonic Dynamics Tunnel (TDT) and by relaxation of scaling requirements present in the dynamic problem that are not critical to the static aeroelastic problem. The methodology is exercised in two example scaling problems: an arbitrarily scaled wing and a practical application to the scaling of the Active Aeroelastic Wing flight vehicle for testing in the TDT.
Pressure and temperature fields associated with aero-optics tests. [transonic wind tunnel tests
NASA Technical Reports Server (NTRS)
Raman, K. R.
1980-01-01
The experimental investigation carried out in a 6 x 6 ft wind tunnel on four model configurations in the aero-optics series of tests are described. The data obtained on the random pressures (static and total pressures) and total temperatures are presented. In addition, the data for static pressure fluctuations on the Coelostat turret model are presented. The measurements indicate that the random pressures and temperature are negligible compared to their own mean (or steady state) values for the four models considered, thus allowing considerable simplification in the calculations to obtain the statistical properties of the density field. In the case of the Coelostat model tests these simplifications cannot be assumed a priori and require further investigation.
Numerical analyses of a rocket engine turbine and comparison with air test data
NASA Technical Reports Server (NTRS)
Tran, Ken; Chan, Daniel C.; Hudson, Susan T.; Gaddis, Stephen W.
1992-01-01
The study presents cold air test data on the Space Shuttle Main Engine High Pressure Fuel Turbopump turbine recently collected at the NASA Marshall Space Flight Center. Overall performance data, static pressures on the first- and second-stage nozzles, and static pressures along with the gas path at the hub and tip are gathered and compared with various (1D, quasi-3D, and 3D viscous) analysis procedures. The results of each level of analysis are compared to test data to demonstrate the range of applicability for each step in the design process of a turbine. One-dimensional performance prediction, quasi-3D loading prediction, 3D wall pressure distribution prediction, and 3D viscous wall pressure distribution prediction are illustrated.
30 CFR 7.307 - Static pressure test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...) Permanent deformation exceeding 0.040 inches per linear foot; or (iii) Clearances, in excess of those...
30 CFR 7.307 - Static pressure test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...) Permanent deformation exceeding 0.040 inches per linear foot; or (iii) Clearances, in excess of those...
30 CFR 7.307 - Static pressure test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...) Permanent deformation exceeding 0.040 inches per linear foot; or (iii) Clearances, in excess of those...
30 CFR 7.307 - Static pressure test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...) Permanent deformation exceeding 0.040 inches per linear foot; or (iii) Clearances, in excess of those...
Study of the laser-induced decomposition of HNO3/ 2-Nitropropane mixture at static high pressures
NASA Astrophysics Data System (ADS)
Bouyer, Viviane; Hébert, Philippe; Doucet, Michel
2007-06-01
HNO3 / 2-Nitropropane is a well known energetic material on which Raman spectroscopy measurements at static high pressure in a diamond anvil cell (DAC) have already been conducted at CEA/LE RIPAULT in order to examine the evolution of the mixture as a function of composition and pressure [1]. The purpose of the work presented here was to study the laser-induced decomposition of these energetic materials at static high pressures by measuring the combustion front propagation rate in the DAC. First of all, the feasibility of the experimental device was checked with a well known homogeneous explosive, nitromethane. Our results were consistent with those of Rice and Foltz [2]. Then, we investigated the initiation of NA / 2NP mixture as a function of nitric acid proportion, for a given pressure. We chose the mixture for which both the combustion propagation rate and detonation velocity are maximum and we examined the evolution of the front propagation velocity as a function of pressure and energy deposit. [1] Hebert, P., Regache, I., and Lalanne, P., ``High-Pressure Raman Spectroscopy study of HNO3 / 2-Nitropropane Mixtures. Influence of the Composition.'' Proceedings of the 42nd European High-Pressure Research Group Meeting, Lausanne, Suisse, 2004 [2] Rice, S.F., et al., Combustion and Flame 87 (1991) 109-122.
Estimating Equivalency of Explosives Through A Thermochemical Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maienschein, J L
2002-07-08
The Cheetah thermochemical computer code provides an accurate method for estimating the TNT equivalency of any explosive, evaluated either with respect to peak pressure or the quasi-static pressure at long time in a confined volume. Cheetah calculates the detonation energy and heat of combustion for virtually any explosive (pure or formulation). Comparing the detonation energy for an explosive with that of TNT allows estimation of the TNT equivalency with respect to peak pressure, while comparison of the heat of combustion allows estimation of TNT equivalency with respect to quasi-static pressure. We discuss the methodology, present results for many explosives, andmore » show comparisons with equivalency data from other sources.« less
NASA Technical Reports Server (NTRS)
Stover, E. K.; York, T. M.
1971-01-01
The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with several plasma diagnostics; they were: a rapid response pressure transducer, a magnetic field probe, a voltage probe, and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior: (1) strong axial pressure asymmetry noted early in plasma column lifetime, (2) followed by plasma heating in which there is a rapid rise in static pressure, and (3) a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating could be attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity.
Shock position sensor for supersonic inlets. [measuring pressure in the throat of a supersonic inlet
NASA Technical Reports Server (NTRS)
Dustin, M. O. (Inventor)
1975-01-01
Static pressure taps or ports are provided in the throat of a supersonic inlet, and signals indicative of the pressure at each of the ports is fed to respective comparators. Means are also provided for directing a signal indicative of the total throat pressure to the comparators. A periodic signal is superimposed on the total throat pressure so that the signal from the static pressure tabs is compared to a varying scan signal rather than to total throat pressure only. This type of comparison causes each comparator to provide a pulse width modulated output which may vary from 0% 'time on' to 100% 'time on'. The pulse width modulated outputs of the comparators are summed, filtered, and directed to a controller which operates a bypass valve such as a door whereby air is dumped from the inlet to prevent the shock wave from being expelled out the front.
2017-03-01
FINAL REPORT Demonstration of Energy Savings in Commercial Buildings for Tiered Trim and Respond Method in Resetting Static Pressure for VAV...release Page Intentionally Left Blank This report was prepared under contract to the Department of Defense Environmental Security Technology...Certification Program (ESTCP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be
Vibrational Spectroscopic Studies of Reduced-Sensitivity RDX under Static Compression
NASA Astrophysics Data System (ADS)
Wong, Chak P.; Gump, Jared C.
2006-07-01
Explosive formulations with reduced-sensitivity RDX showed reduced shock sensitivity using Naval Ordnance Laboratory (NOL) Large Scale Gap Test, compared with similar formulations using standard RDX. Molecular processes responsible for the reduction of sensitivity are unknown and are crucial for formulation development. Vibrational spectroscopy at static high pressure may shed light on the mechanisms responsible for the reduced shock sensitivity as shown by the NOL Large Scale Gap Test. I-RDX®, a form of reduced- sensitivity RDX was subjected to static compression at ambient temperature in a Merrill-Bassett sapphire cell from ambient to about 6 GPa. The spectroscopic techniques used were Raman and Fourier-Transform IR (FTIR). The pressure dependence of the Raman mode frequencies of I-RDX® was determined and compared with that of standard RDX. The behavior of I-RDX® near the pressure at which standard RDX, at ambient temperature, undergoes a phase transition from the α to the γ polymorph is presented.
Effects of combustibles on internal quasi-static loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandoval, N.R.; Hokanson, J.C.; Esparza, E.D.
1984-08-01
The phenomenon of quasi-static pressure enhancement produced when combustible materials are placed near HE sources has been recently discovered. The effects of placing solid and liquid combustible materials near detonating explosives on internal blast loading was measured during tests conducted in a one-eighth scale model of a containment structure. In many cases, dramatic increases in gas pressures resulted. Principal conclusions of this study are: combustible materials near explosives can markedly increase gas pressures in enclosed structures; there is a lack of data on HE-combustible combinations; quasi-static loading calculations should include estimates of contributions from the burning of combustible materials whenevermore » such materials are expected to be in intimate contact with HE sources; and effects of combustibles should be investigated further to determine methods for prediction. Variations in charge to combustible mass, charge type, structure volume, degree of venting and degree of contact between HE and combustible sbould be studied.« less
Measurements of compressible secondary flow in a circular S-duct
NASA Technical Reports Server (NTRS)
Vakili, A.; Wu, J. M.; Liver, P.; Bhat, M. K.
1983-01-01
This paper presents the results of an experimental study of secondary flow in a circular cross section 30 deg - 30 deg S-duct with entrance Mach number of 0.6. Local flow velocity vectors have been measured along the length of the duct at six stations. These measurements have been made using a five-port cone probe. Static and total pressure profiles in the transverse planes are obtained from the cone probe measurements. Wall static pressure measurements along three azimuth angles of 0 deg, 90 deg, and 180 deg along the duct are also made. Contour plots presenting the three dimensional velocity field as well as the total- and static-pressure fields are obtained. Surface oil flow visualization technique has been used to provide details of the flow on the S-duct boundaries. The experimental observations have been compared with typical computational results.
Analysis and testing of high entrainment single nozzle jet pumps with variable mixing tubes
NASA Technical Reports Server (NTRS)
Hickman, K. E.; Hill, P. G.; Gilbert, G. B.
1972-01-01
An analytical model was developed to predict the performance characteristics of axisymmetric single-nozzle jet pumps with variable area mixing tubes. The primary flow may be subsonic or supersonic. The computer program uses integral techniques to calculate the velocity profiles and the wall static pressures that result from the mixing of the supersonic primary jet and the subsonic secondary flow. An experimental program was conducted to measure mixing tube wall static pressure variations, velocity profiles, and temperature profiles in a variable area mixing tube with a supersonic primary jet. Static pressure variations were measured at four different secondary flow rates. These test results were used to evaluate the analytical model. The analytical results compared well to the experimental data. Therefore, the analysis is believed to be ready for use to relate jet pump performance characteristics to mixing tube design.
The Effect of Turbulence on the Drag of Flat Plates
NASA Technical Reports Server (NTRS)
Schubauer, G B; Dryden, H L
1937-01-01
in determining the effect of turbulence on the forces exerted on bodies in the air stream of a wind tunnel, it is commonly assumed that the indications of the standard Pitot-static tube used to determine the air speed are not dependent on the turbulence. To investigate the truth of this assumption, the drag of a normally exposed flat plate, the difference in pressure between the front and rear of a thin circular disk, the rate of rotation of a vane anemometer, and the pressure developed by a standard Pitot-static tube were measured in an air stream for several conditions of turbulence. The results may be interpreted as indicating that there is no appreciable effect of turbulence on the vane anemometer and the standard pitot-static tube, but that there is small effect on the drag of a flat plate and the pressure difference between front and rear of a disk.
Lo, Kin Hing; Kontis, Konstantinos
2016-01-01
An experimental study has been conducted to investigate the static and wind-on performance of two in-house-developed polymer-based pressure-sensitive paints. Platinum tetrakis (pentafluorophenyl) porphyrin and tris-bathophenanthroline ruthenium II are used as the luminophores of these two polymer-based pressure-sensitive paints. The pressure and temperature sensitivity and the photo-degradation rate of these two pressure-sensitive paints have been investigated. In the wind tunnel test, it was observed that the normalised intensity ratio of both polymer-based pressure-sensitive paints being studied decreases with increasing the number of wind tunnel runs. The exact reason that leads to the occurrence of this phenomenon is unclear, but it is deduced that the luminophore is either removed or deactivated by the incoming flow during a wind tunnel test. PMID:27128913
NASA Technical Reports Server (NTRS)
Pendergraft, O. C., Jr.; Carson, G. T., Jr.
1984-01-01
Static pressure coefficient distributions on the forebody, afterbody, and nozzles of a 1/12 scale F-15 propulsion model was determined in the 16 foot transonic tunnel for Mach numbers from 0.60 to 1.20, angles of attack from -2 deg to 7 deg and ratio of jet total pressure to free stream static pressure from 1 up to about 7, depending on Mach number. The effects of nozzle geometry and horizontal tail deflection on the pressure distributions were investigated. Boundary layer total pressure profiles were determined at two locations ahead of the nozzles on the top nacelle surface. Reynolds number varied from about 1.0 x 10 to the 7th power per meter, depending on Mach number.
Hart, Roger C; Herring, G C; Balla, R Jeffrey
2007-06-15
Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
NASA Technical Reports Server (NTRS)
Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.
2007-01-01
Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
Compressible flow in a diffusing S-duct with flow separation
NASA Technical Reports Server (NTRS)
Vakili, A. D.; Wu, J. M.; Bhat, M. K.; Liver, P.
1987-01-01
Local flow velocity vectors, as well as static and total pressures along ten radial traverses, were obtained at six stations for secondary flows in a diffusing 30-30-deg S-duct with circular cross section. The strong secondary flow measured in the first bend continued into the second with new vorticity produced in the opposite direction. Contour plots representing the transverse velocity field, as well as total and static pressure contours, have been obtained. As a result of the secondary flow and subsequent separation, substantial total pressure distortion is noted to occur at the duct exit.
NASA Technical Reports Server (NTRS)
Stabe, R. G.
1971-01-01
A jet-flap blade was designed for a velocity diagram typical of the first-stage stator of a jet engine turbine and was tested in a simple two-dimensional cascade of six blades. The principal measurements were blade surface static pressure and cross-channel surveys of exit total pressure, static pressure, and flow angle. The results of the experimental investigation include blade loading, exit angle, flow, and loss data for a range of exit critical velocity ratios and three jet flow conditions.
Measuring Time-Averaged Blood Pressure
NASA Technical Reports Server (NTRS)
Rothman, Neil S.
1988-01-01
Device measures time-averaged component of absolute blood pressure in artery. Includes compliant cuff around artery and external monitoring unit. Ceramic construction in monitoring unit suppresses ebb and flow of pressure-transmitting fluid in sensor chamber. Transducer measures only static component of blood pressure.
Cardiovascular responses to static exercise in distance runners and weight lifters
NASA Technical Reports Server (NTRS)
Longhurst, J. C.; Kelly, A. R.; Gonyea, W. J.; Mitchell, J. H.
1980-01-01
Three groups of athletes including long-distance runners, competitive and amateur weight lifters, and age- and sex-matched control subjects have been studied by hemodynamic and echocardiographic methods in order to determine the effect of the training programs on the cardiovascular response to static exercise. Blood pressure, heart rate, and double product data at rest and at fatigue suggest that competitive endurance (dynamic exercise) training alters the cardiovascular response to static exercise. In contrast to endurance exercise, weight lifting (static exercise) training does not alter the cardiovascular response to static exercise: weight lifters responded to static exercise in a manner very similar to that of the control subjects.
Experimental cavity pressure measurements at subsonic and transonic speeds. Static-pressure results
NASA Technical Reports Server (NTRS)
Plentovich, E. B.; Stallings, Robert L., Jr.; Tracy, M. B.
1993-01-01
An experimental investigation was conducted to determine cavity flow-characteristics at subsonic and transonic speeds. A rectangular box cavity was tested in the Langley 8-Foot Transonic Pressure Tunnel at Mach numbers from 0.20 to 0.95 at a unit Reynolds number of approximately 3 x 10(exp 6) per foot. The boundary layer approaching the cavity was turbulent. Cavities were tested over a range of length-to-depth ratios (l/h) of 1 to 17.5 for cavity width-to-depth ratios of 1, 4, 8, and 16. Fluctuating- and static-pressure data in the cavity were obtained; however, only static-pressure data is analyzed. The boundaries between the flow regimes based on cavity length-to-depth ratio were determined. The change to transitional flow from open flow occurs at l/h at approximately 6-8 however, the change from transitional- to closed-cavity flow occurred over a wide range of l/h and was dependent on Mach number and cavity configuration. The change from closed to open flow as found to occur gradually. The effect of changing cavity dimensions showed that if the vlaue of l/h was kept fixed but the cavity width was decreased or cavity height was increased, the cavity pressure distribution tended more toward a more closed flow distribution.
Computational Investigation of the Aerodynamic Effects on Fluidic Thrust Vectoring
NASA Technical Reports Server (NTRS)
Deere, K. A.
2000-01-01
A computational investigation of the aerodynamic effects on fluidic thrust vectoring has been conducted. Three-dimensional simulations of a two-dimensional, convergent-divergent (2DCD) nozzle with fluidic injection for pitch vector control were run with the computational fluid dynamics code PAB using turbulence closure and linear Reynolds stress modeling. Simulations were computed with static freestream conditions (M=0.05) and at Mach numbers from M=0.3 to 1.2, with scheduled nozzle pressure ratios (from 3.6 to 7.2) and secondary to primary total pressure ratios of p(sub t,s)/p(sub t,p)=0.6 and 1.0. Results indicate that the freestream flow decreases vectoring performance and thrust efficiency compared with static (wind-off) conditions. The aerodynamic penalty to thrust vector angle ranged from 1.5 degrees at a nozzle pressure ratio of 6 with M=0.9 freestream conditions to 2.9 degrees at a nozzle pressure ratio of 5.2 with M=0.7 freestream conditions, compared to the same nozzle pressure ratios with static freestream conditions. The aerodynamic penalty to thrust ratio decreased from 4 percent to 0.8 percent as nozzle pressure ratio increased from 3.6 to 7.2. As expected, the freestream flow had little influence on discharge coefficient.
Static-stress analysis of dual-axis safety vessel
NASA Astrophysics Data System (ADS)
Bultman, D. H.
1992-11-01
An 8 ft diameter safety vessel, made of HSLA-100 steel, is evaluated to determine its ability to contain the quasi-static residual pressure from a high explosive (HE) blast. The safety vessel is designed for use with the Dual-Axis Radiographic Hydrotest (DARHT) facility being developed at Los Alamos National Laboratory. A smaller confinement vessel fits inside the safety vessel and contains the actual explosion, and the safety vessel functions as a second layer of containment in the unlikely case of a confinement vessel leak. The safety vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section 8, Division 1, and the Welding Research Council Bulletin, WRC107. Combined stresses that result from internal pressure and external loads on nozzles are calculated and compared to the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzle components are adequately designed for a static pressure of 830 psi, plus the maximum expected external loads. Shell stresses at the 'shell to nozzle' interface, produced from external loads on the nozzles, were less than 700 psi. The maximum combined stress resulting from the internal pressure plus external loads was 17,384 psi, which is significantly less than the allowable stress of 42,375 psi for HSLA-100 steel.
Study of stator-vane fluctuating pressures in a turbofan engine for static and flight tests
NASA Technical Reports Server (NTRS)
Mueller, A. W.
1984-01-01
As part of a program to study the fan noise generated from turbofan engines, fluctuating surface pressures induced by fan-rotor wakes were measured on core- and bypass-stator outlet guide vanes of a modified JT15D-1 engine. Tests were conducted with the engine operating on an outdoor test stand and in flight. The amplitudes of pressures measured at fan-rotor blade-passage fundamental frequencies were generally higher and appeared less stable for the static tests than for the flight tests. Fluctuating pressures measured at the blade-passage frequency of the high-speed core compressor were interpreted to be acoustic; however, disturbance trace velocities for either the convected rotor wakes or acoustic pressures were difficult to interpret because of the complex environment.
NASA Technical Reports Server (NTRS)
Wing, David J.
1994-01-01
A static investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel of two thrust-vectoring concepts which utilize fluidic mechanisms for deflecting the jet of a two-dimensional convergent-divergent nozzle. One concept involved using the Coanda effect to turn a sheet of injected secondary air along a curved sidewall flap and, through entrainment, draw the primary jet in the same direction to produce yaw thrust vectoring. The other concept involved deflecting the primary jet to produce pitch thrust vectoring by injecting secondary air through a transverse slot in the divergent flap, creating an oblique shock in the divergent channel. Utilizing the Coanda effect to produce yaw thrust vectoring was largely unsuccessful. Small vector angles were produced at low primary nozzle pressure ratios, probably because the momentum of the primary jet was low. Significant pitch thrust vector angles were produced by injecting secondary flow through a slot in the divergent flap. Thrust vector angle decreased with increasing nozzle pressure ratio but moderate levels were maintained at the highest nozzle pressure ratio tested. Thrust performance generally increased at low nozzle pressure ratios and decreased near the design pressure ratio with the addition of secondary flow.
Variable camber wing based on pneumatic artificial muscles
NASA Astrophysics Data System (ADS)
Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong
2009-07-01
As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.
Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga
2017-08-21
The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg.
Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga
2017-01-01
The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg. PMID:28825672
Analysis of foot structure in athletes sustaining proximal fifth metatarsal stress fracture.
Hetsroni, Iftach; Nyska, Meir; Ben-Sira, David; Mann, Gideon; Segal, Ofer; Maoz, Guy; Ayalon, Moshe
2010-03-01
In the past, several studies provided anecdotal descriptions of high-arched feet in individuals sustaining proximal fifth metatarsal stress fractures. This relationship has never been supported by scientific evidence. Our objective was to examine whether athletes who sustained this injury had an exceptional static foot structure or dynamic loading pattern. Ten injured professional soccer players who regained full professional activity following a unilateral proximal fifth metatarsal stress fracture and ten control soccer players were examined. Independent variables included static evaluation of foot and arch structure, followed by dynamic plantar foot pressure evaluation. Each variable was compared between injured, contra-lateral uninjured, and control feet. Static measurements of foot and arch structure did not reveal differences among the groups. However, plantar pressure evaluation revealed relative unloading of the fourth metatarsal in injured and uninjured limbs of injured athletes compared with control, while the fifth metatarsal revealed pressure reduction only in the injured limbs of injured athletes. Athletes who sustained proximal fifth metatarsal stress fracture were not characterized by an exceptional static foot structure. Dynamically, lateral metatarsal unloading during stance may either play a role in the pathogenesis of the injury, or alternately represent an adaptive process. Footwear fabrication for previously injured athletes should not categorically address cushioning properties designed for high-arch feet, but rather focus on individual dynamic evaluation of forefoot loading, with less attention applied to static foot and arch characteristics.
Investigation of Shock Diffusers at Mach Number 1.85. 2 - Projecting Double-Shock Cones
1947-06-17
pitot - static rake located as shown in figure 1(a). Total-pressure recoveries were measured for a series of tip projections varied in minimum steps...is shown. The position of the pitot -static rake with which these distributions were .measured is shown in figure 1(a). The data points correspond...Schroeder SUMMARY An Investigation has "been undertaken in the Cleveland 18- by 18-Inch, supersonic tunnel to determine the total-pressure
Atmospheric Dynamics on Venus, Jupiter, and Saturn: An Observational and Analytical Study
NASA Technical Reports Server (NTRS)
Bridger, Alison; Magalhaes, Julio A.; Young, Richard E.
2000-01-01
Determining the static stability of Jupiter's atmosphere below the visible cloud levels is important for understanding the dynamical modes by which energy and momentum are transported through Jupiter's deep troposphere. The Galileo Probe Atmospheric Structure Investigation (ASI) employed pressure and temperature sensors to directly measure these state variables during the parachute-descent phase, which started at a pressure (p) of 0.4 bars and ended at p= 22 bars. The internal temperature of the probe underwent large temperature fluctuations which significantly exceeded design specifications. Corrections for these anomalous interior temperatures have been evaluated based on laboratory data acquired after the mission using the flight spare hardware. The corrections to the pressure sensor readings was particularly large and the uncertainties in the atmospheric pressures derived from the p sensor measurements may still be significant. We have sought to estimate the formal uncertainties in the static stability derived from the p and T sensor measurements directly and to devise means of assessing the static stability of Jupiter's atmosphere which do not rely on the p sensor data.
NASA Technical Reports Server (NTRS)
Mcardle, J. G.; Homyak, L.; Moore, A. S.
1979-01-01
The performance of a YF-102 turbofan engine was measured in an outdoor test stand with a bellmouth inlet and seven exhaust-system configurations. The configurations consisted of three separate-flow systems of various fan and core nozzle sizes and four confluent-flow systems of various nozzle sizes and shapes. A computer program provided good estimates of the engine performance and of thrust at maximum rating for each exhaust configuration. The internal performance of two different-shaped core nozzles for confluent-flow configurations was determined to be satisfactory. Pressure and temperature surveys were made with a traversing probe in the exhaust-nozzle flow for some confluent-flow configurations. The survey data at the mixing plane, plus the measured flow rates, were used to calculate the static-pressure variation along the exhaust nozzle length. The computed pressures compared well with experimental wall static-pressure data. External-flow surveys were made, for some confluent-flow configurations, with a large fixed rake at various locations in the exhaust plume.
NASA Astrophysics Data System (ADS)
Huang, X.; Oram, C.; Sick, M.
2014-03-01
More efforts are put on hydro-power to balance voltage and frequency within seconds for primary control in modern smart grids. This requires hydraulic turbines to run at off-design conditions. especially at low load or speed-no load. Besides. the tendency of increasing power output and decreasing weight of the turbine runners has also led to the high level vibration problem of the runners. especially high head Francis runners. Therefore. it is important to carry out the static and dynamic stress analyses of prototype high head Francis runners. This paper investigates the static and dynamic stresses on the prototype high head Francis runner based on site measurements and numerical simulations. The site measurements are performed with pressure transducers and strain gauges. Based on the measured results. computational fluid dynamics (CFD) simulations for the flow channel from stay vane to draft tube cone are performed. Static pressure distributions and dynamic pressure pulsations caused by rotor-stator interaction (RSI) are obtained under various operating conditions. With the CFD results. static and dynamic stresses on the runner at different operating points are calculated by means of the finite element method (FEM). The agreement between simulation and measurement is analysed with linear regression method. which indicates that the numerical result agrees well with that of measurement. Furthermore. the maximum static and dynamic stresses on the runner blade are obtained at various operating points. The relations of the maximum stresses and the power output are discussed in detail. The influences of the boundary conditions on the structural behaviour of the runner are also discussed.
Prevention of pressure ulcers with a static air support surface: A systematic review.
Serraes, Brecht; van Leen, Martin; Schols, Jos; Van Hecke, Ann; Verhaeghe, Sofie; Beeckman, Dimitri
2018-06-01
The aims of this study were to identify, assess, and summarise available evidence about the effectiveness of static air mattress overlays to prevent pressure ulcers. The primary outcome was the incidence of pressure ulcers. Secondary outcomes included costs and patient comfort. This study was a systematic review. Six electronic databases were consulted: Cochrane Library, EMBASE, PubMed (Medline), CINAHL (EBSCOhost interface), Science direct, and Web of Science. In addition, a hand search through reviews, conference proceedings, and the reference lists of the included studies was performed to identify additional studies. Potential studies were reviewed and assessed by 2 independent authors based on the title and abstract. Decisions regarding inclusion or exclusion of the studies were based on a consensus between the authors. Studies were included if the following criteria were met: reporting an original study; the outcome was the incidence of pressure ulcer categories I to IV when using a static air mattress overlay and/or in comparison with other pressure-redistribution device(s); and studies published in English, French, and Dutch. No limitation was set on study setting, design, and date of publication. The methodological quality assessment was evaluated using the Critical Appraisal Skills Program Tool. Results were reported in a descriptive way to reflect the exploratory nature of the review. The searches included 13 studies: randomised controlled trials (n = 11) and cohort studies (n = 2). The mean pressure ulcer incidence figures found in the different settings were, respectively, 7.8% pressure ulcers of categories II to IV in nursing homes, 9.06% pressure ulcers of categories I to IV in intensive care settings, and 12% pressure ulcers of categories I to IV in orthopaedic wards. Seven comparative studies reported a lower incidence in the groups of patients on a static air mattress overlay. Three studies reported a statistical (P < .1) lower incidence compared with a standard hospital mattress (10 cm thick, density 35 kg/m 3 ), a foam mattress (15 cm thick), and a viscoelastic foam mattress (15 cm thick). No significant difference in incidence, purchase costs, and patient comfort was found compared with dynamic air mattresses. This review focused on the effectiveness of static air mattress overlays to prevent pressure ulcers. There are indications that these mattress overlays are more effective in preventing pressure ulcers compared with the use of a standard mattress or a pressure-reducing foam mattress in nursing homes and intensive care settings. However, interpretation of the evidence should be performed with caution due to the wide variety of methodological and/or reporting quality levels of the included studies. © 2018 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Flowfield measurements in the NASA Lewis Research Center 9- by 15-foot low-speed wind tunnel
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.
1989-01-01
An experimental investigation was conducted in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel to determine the flow characteristics in the test section during wind tunnel operation. In the investigation, a 20-probe horizontally-mounted Pitot-static flow survey rake was used to obtain cross-sectional total and static pressure surveys at four axial locations in the test section. At each axial location, the cross-sectional flowfield surveys were made by repositioning the Pitot-static flow survey rake vertically. In addition, a calibration of the new wind tunnel rake instrumentation, used to determine the wind tunnel operating conditions, was performed. Boundary laser surveys were made at three axial locations in the test section. The investigation was conducted at tunnel Mach numbers 0.20, 0.15, 0.10, and 0.05. The test section profile results from the investigation indicate that fairly uniform total pressure profiles (outside the test section boundary layer) and fairly uniform static pressure and Mach number profiles (away from the test section walls and downstream of the test section entrance) exist throughout in the wind tunnel test section.
Potential uses of vacuum bubbles in noise and vibration control
NASA Technical Reports Server (NTRS)
Ver, Istvan L.
1989-01-01
Vacuum bubbles are new acoustic elements which are dynamically more compliant than the gas volume they replace, but which are statically robust. They are made of a thin metallic shell with vacuum in their cavity. Consequently, they pose no danger in terms of contamination or fire hazard. The potential of the vacuum bubble concept for noise and vibration control was assessed with special emphases on spacecraft and aircraft applications. The following potential uses were identified: (1) as a cladding, to reduce sound radiation of vibrating surfaces and the sound excitation of structures, (2) as a screen, to reflect or absorb an incident sound wave, and (3) as a liner, to increase low frequency sound transmission loss of double walls and to increase the low frequency sound attenuation of muffler baffles. It was found that geometric and material parameters must be controlled to a very high accuracy to obtain optimal performance and that performance is highly sensitive to variations in static pressure. Consequently, it was concluded that vacuum bubbles have more potential in spacecraft applications where static pressure is controlled more than in aircraft applications where large fluctuations in static pressure are common.
Influence of gas law on ultrasonic behaviour of porous media under pressure.
Griffiths, S; Ayrault, C
2010-06-01
This paper deals with the influence of gas law on ultrasonic behaviour of porous media when the saturating fluid is high pressured. Previous works have demonstrated that ultrasonic transmission through a porous sample with variations of the static pressure (up to 18 bars) of the saturating fluid allows the characterization of high damping materials. In these studies, the perfect gas law was used to link static pressure and density, which is disputable for high pressures. This paper compares the effects of real and perfect gas laws on modeled transmission coefficient for porous foams at these pressures. Direct simulations and a mechanical parameters estimation from minimization show that results are very similar in both cases. The real gas law is thus not necessary to describe the acoustic behaviour of porous media at low ultrasonic frequencies (100 kHz) up to 20 bars. 2010 Elsevier B.V. All rights reserved.
Oyarzo, Claudio A; Villagrán, Claudio R; Silvestre, Rony E; Carpintero, Pedro; Berral, Francisco J
2014-01-01
Although current research findings suggest that postural control or static balance is impaired in subjects with low back pain, few studies have specifically addressed the effect of low back pain on static balance in elite athletes. Forty-four athletes belonging to Chilean national teams took part in this study; 20 had low back pain and the remaining 24 were healthy controls. Displacement of the centre of pressure was analyzed by computerized platform posturography, using a standardized protocol; subjects were required to stand upright on both feet, with eyes first open then closed. The results showed that, athletes with low back pain used significantly more energy (p< 0.0182) and had a greater displacement of the centre of pressure (p< 0.005) with open eyes to control posture than healthy athletes. It may be concluded that static balance is impaired in elite athletes with low back pain and that analysis of two-footed stance provides a sensitive assessment of static balance in athletes.
Hsieh, Yi-Yin; Chin, Hui Yen; Tsai, Min-Lang
2015-11-20
This study aimed to establish the sequential static and static-dynamic supercritical carbon dioxide (SDCO2) fractionation conditions to obtain a higher yield and desired chitosan with lower polydispersity index (PDI) and higher degree of deacetylation (DD). The yield increased with increasing DD of used chitosan and amount of cosolvent. The yield of acetic acid cosolvent was higher than those of malic and citric acid cosolvents. SDCO2, compared to static supercritical carbon dioxide, has higher yield. The yield of extracted chitosan was 5.82-14.70% by SDCO2/acetic acid, which increases with increasing pressure. The DD of fractionated chitosan increased from 66.1% to 70.81-85.33%, while the PDI decreased from 3.97 to 1.69-3.16. The molecular weight changed from 622kDa to 412-649kDa, which increased as density of supercritical carbon dioxide increases. Hence, higher DD and lower PDI extracted chitosan can be obtained through controlling the temperature and pressure of SDCO2. Copyright © 2015 Elsevier Ltd. All rights reserved.
Role of central command in carotid baroreflex resetting in humans during static exercise
NASA Technical Reports Server (NTRS)
Ogoh, S.; Wasmund, W. L.; Keller, D. M.; O-Yurvati, A.; Gallagher, K. M.; Mitchell, J. H.; Raven, P. B.
2002-01-01
The purpose of the experiments was to examine the role of central command in the exercise-induced resetting of the carotid baroreflex. Eight subjects performed 30 % maximal voluntary contraction (MVC) static knee extension and flexion with manipulation of central command (CC) by patellar tendon vibration (PTV). The same subjects also performed static knee extension and flexion exercise without PTV at a force development that elicited the same ratings of perceived exertion (RPE) as those observed during exercise with PTV in order to assess involvement of the exercise pressor reflex. Carotid baroreflex (CBR) function curves were modelled from the heart rate (HR) and mean arterial pressure (MAP) responses to rapid changes in neck pressure and suction during steady state static exercise. Knee extension exercise with PTV (decreased CC activation) reset the CBR-HR and CBR-MAP to a lower operating pressure (P < 0.05) and knee flexion exercise with PTV (increased CC activation) reset the CBR-HR and CBR-MAP to a higher operating pressure (P < 0.05). Comparison between knee extension and flexion exercise at the same RPE with and without PTV found no difference in the resetting of the CBR-HR function curves (P > 0.05) suggesting the response was determined primarily by CC activation. However, the CBR-MAP function curves were reset to operating pressures determined by both exercise pressor reflex (EPR) and central command activation. Thus the physiological response to exercise requires CC activation to reset the carotid-cardiac reflex but requires either CC or EPR to reset the carotid-vasomotor reflex.
The Seismic Design of Waterfront Retaining Structures
1993-01-01
of elastic backfill behind a rigid wall .... .......... .. 134 5.2 Pressure distributions on smooth rigid wall for l-g static horizontal body force...135 5.3 Resultant force and resultant moment on smooth rigid wall for l-g static horizontal body force...distributions on smooth rigid wall for 1-g static horizontal body force clearly showed the limitations of Woods simplified procedure when this condi- tion is not
NASA Technical Reports Server (NTRS)
Green, Robert S.; Carson, George T., Jr.
1987-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel at static conditions to measure the pressure distributions inside a nonaxisymmetric nozzle with simultaneous partial thrust reversing (50-percent deployment) and thrust vectoring of the primary (forward-thrust) nozzle flow. Geometric forward-thrust-vector angles of 0 and 15 deg. were tested. Test data were obtained at static conditions while nozzle pressure ratio was varied from 2.0 to 4.0. Results indicate that, unlike the 0 deg. vector angle nozzle, a complicated, asymmetric exhaust flow pattern exists in the primary-flow exhaust duct of the 15 deg. vectored nozzle.
Design of on line detection system for static evaporation rate of LNG vehicle cylinders
NASA Astrophysics Data System (ADS)
Tang, P.; Wang, M.; Tan, W. H.; Ling, Z. W.; Li, F.
2017-06-01
In order to solve the problems existing in the regular inspection of LNG vehicle cylinders, the static evaporation rate on line detection system of LNG cylinders is discussed in this paper. A non-disassembling, short-term and high-efficiency on line detection system for LNG vehicle cylinders is proposed, which can meet the requirement of evaporation rate test under different media and different test pressures. And then test methods under the experimental conditions, atmospheric pressure and pressure are given respectively. This online detection system designed in this paper can effectively solve the technical problems during the inspection of the cylinder.
NASA Astrophysics Data System (ADS)
Iadicicco, Agostino; Cutolo, A.; Campopiano, Stefania
2014-05-01
This paper reports on the fabrication of Long Period Gratings (LPGs) in hollow-core air-silica photonic bandgap fibers (HC-PCFs) by using pressure assisted Electrode Arc Discharge (EAD) technique. In particular, the fabrication procedure relies on the combined use of EAD step, to locally heat the HC fiber, and of a static pressure (slightly higher than the external one) inside the fiber holes, to modify the holes. Here, the experimental fabrication of LPG prototypes with different periods and lengths are discussed. And, the sensitivity of LPGs in HC-PCF to environmental parameters such as strain, temperature and static pressure are presented and discussed.
Performance Characteristics of Plane-Wall Two-Dimensional Diffusers
NASA Technical Reports Server (NTRS)
Reid, Elliott G
1953-01-01
Experiments have been made at Stanford University to determine the performance characteristics of plane-wall, two-dimensional diffusers which were so proportioned as to insure reasonable approximation of two-dimensional flow. All of the diffusers had identical entrance cross sections and discharged directly into a large plenum chamber; the test program included wide variations of divergence angle and length. During all tests a dynamic pressure of 60 pounds per square foOt was maintained at the diffuser entrance and the boundary layer there was thin and fully turbulent. The most interesting flow characteristics observed were the occasional appearance of steady, unseparated, asymmetric flow - which was correlated with the boundary-layer coalescence - and the rapid deterioration of flow steadiness - which occurred as soon as the divergence angle for maximum static pressure recovery was exceeded. Pressure efficiency was found to be controlled almost exclusively by divergence angle, whereas static pressure recovery was markedly influenced by area ratio (or length) as well as divergence angle. Volumetric efficiency. diminished as area ratio increased, and at a greater rate with small lengths than with large ones. Large values of the static-pressure-recovery coefficient were attained only with long diffusers of large area ratio; under these conditions pressure efficiency was high and. volumetric efficiency low. Auxiliary tests with asymmetric diffusers demonstrated that longitudinal pressure gradient, rather than wall divergence angle, controlled flow separation. Others showed that the addition of even a short exit duct of uniform section augmented pressure recovery. Finally, it was found that the installation of a thin, central, longitudinal partition suppressed flow separation in short diffusers and thereby improved pressure recovery
NASA Technical Reports Server (NTRS)
Braddock, W. F.; Streby, G. D.
1977-01-01
The results of a pressure test of a .00548 scale 146 inch Space Shuttle Solid Rocket Booster (SRB) with and without protuberances, conducted in a 14 x 14 inch trisonic wind tunnel are presented. Static pressure distributions for the SRB at reentry attitudes and flight conditions were obtained. Local longitudinal and ring pressure distributions are presented in tabulated form. Integration of the pressure data was performed. The test was conducted at Mach numbers of 0.40 to 4.45 over an angle of attack range from 60 to 185 degrees. Roll angles of 0, 45, 90 and 315 degrees were investigated. Reynolds numbers per foot varied for selected Mach numbers.
Protecting the Turkish Straits from Maritime Terrorism: A Scheme to Impede Propeller Efficiency
2012-06-01
electric fence, fire nozzle with pressurized water, optical laser distracter (a dazzle gun), Long Range Acoustic Device (LRAD) and other types of non...are easily ignited by machinery, cigarettes, and static electricity . Static electricity discharged when one walks on a carpet or brushes his/her hair...formed in the first tank car due to the impact with a signaling stake. The pressurized LPG was released as a two-phase jet: the liquid phase formed a
Turbine Engine Control Synthesis. Volume 1. Optimal Controller Synthesis and Demonstration
1975-03-01
Nomenclature (Continued) Symbol Deseription M Matrix (of Table 12) M Mach number N Rotational speed, rpm N ’ Nonlinear rotational speed, rpm P Power lever... P Pressure, N /m 2; bfh/ft 2 PLA Power lever angle PR = PT3/PT2 Pressure ratio ( P Power, ft-lbf/sec Q Matrix (of Table 30) R Universal gas constant, 53...function, i = 1, 2, 3, ... in Inlet n Stage number designation out Outlet p Variable associated with particle s Static condition _se Static condition
Probe systems for measuring static pressure and turbulence intensity in fluid streams
NASA Technical Reports Server (NTRS)
Rossow, Vernon J. (Inventor)
1993-01-01
A method and an apparatus for measuring time-averaged static or ambient pressure and turbulence intensity in a turbulent stream are discussed. The procedure involves placing a plurality of probes in the stream. Each probe responds in a different manner to characteristics of the fluid stream, preferably as a result of having varying cross sections. The responses from the probes are used to eliminate unwanted components in the measured quantities for accurate determination of selected characteristics.
Sarafidis, P A; Lazaridis, A A; Imprialos, K P; Georgianos, P I; Avranas, K A; Protogerou, A D; Doumas, M N; Athyros, V G; Karagiannis, A I
2016-12-01
Ambulatory blood pressure monitoring is an important tool in hypertension diagnosis and management. Although several ambulatory devices exist, comparative studies are scarce. This study aimed to compare for the first time brachial blood pressure levels of Spacelabs 90217A and Mobil-O-Graph NG, under static and ambulatory conditions. We examined 40 healthy individuals under static (study A) and ambulatory (study B) conditions. In study A, participants were randomized into two groups that included blood pressure measurements with mercury sphygmomanometer, Spacelabs and Mobil-O-Graph devices with reverse order of recordings. In study B, simultaneous 6-h recordings with both devices were performed with participants randomized in two sequences of device positioning with arm reversal at 3 h. Finally, all the participants filled in a questionnaire rating their overall preference for a device. In study A, brachial systolic blood pressure (117.2±10.3 vs 117.1±9.8 mm Hg, P=0.943) and diastolic blood pressure (73.3±9.4 mm Hg vs 74.1±9.4 mm Hg, P=0.611) did not differ between Spacelabs and Mobil-O-Graph or vs sphygmomanometer (117.8±11.1 mm Hg, P=0.791 vs Spacelabs, P=0.753 vs Mobil-O-Graph). Similarly, no differences were found in ambulatory systolic blood pressure (117.9±11.4 vs 118.3±11.0 mm Hg, P=0.864), diastolic blood pressure (73.7±7.4 vs 74.7±8.0 mm Hg, P=0.571), mean blood pressure and heart rate between Spacelabs and Mobil-O-Graph. Correlation analyses and Bland-Altman plots showed agreement between the monitors. Overall, the participants showed a preference for the Mobil-O-Graph. Spacelabs 90217A and Mobil-O-Graph NG provide practically identical measurements during the static and ambulatory conditions in healthy individuals and can be rather used interchangeably in clinical practice.
Bragin, Denis E; Statom, Gloria; Nemoto, Edwin M
2016-01-01
We previously suggested that the discrepancy between a critical cerebral perfusion pressure (CPP) of 30 mmHg, obtained by increasing intracranial pressure (ICP), and 60 mmHg, obtained by decreasing arterial pressure, was due to pathological microvascular shunting at high ICP [1], and that the determination of the critical CPP by the static cerebral blood flow (CBF) autoregulation curve is not valid with intracranial hypertension. Here, we demonstrated that induced dynamic ICP reactivity (iPRx), and cerebrovascular reactivity (CVRx) tests accurately identify the critical CPP in the hypertensive rat brain, which differs from that obtained by the static autoregulation curve. Step changes in CPP from 70 to 50 and 30 mmHg were made by increasing ICP using an artificial cerebrospinal fluid reservoir connected to the cisterna magna. At each CPP, a transient 10-mmHg increase in arterial pressure was induced by bolus intravenous dopamine. iPRx and iCVRx were calculated as ΔICP/Δ mean arterial pressure (MAP) and as ΔCBF/ΔMAP, respectively. The critical CPP at high ICP, obtained by iPRx and iCVRx, is 50 mmHg, where compromised capillary flow, transition of blood flow to nonnutritive microvascular shunts, tissue hypoxia, and brain-blood barrier leakage begin to occur, which is higher than the 30 mmHg determined by static autoregulation.
Global Pressure- and Temperature-Measurements in 1.27-m JAXA Hypersonic Wind Tunnel
NASA Astrophysics Data System (ADS)
Yamada, Y.; Miyazaki, T.; Nakagawa, M.; Tsuda, S.; Sakaue, H.
Pressure-sensitive paint (PSP) technique has been widely used in aerodynamic measurements. A PSP is a global optical sensor, which consists of a luminophore and binding material. The luminophore gives a luminescence related to an oxygen concentration known as oxygen quenching. In an aerodynamic measurement, the oxygen concentration is related to a partial pressure of oxygen and a static pressure, thus the luminescent signal can be related to a static pressure [1]. The PSP measurement system consists of a PSP coated model, an image acquisition unit, and an image processing unit (Fig. 1). For the image acquisition, an illumination source and a photo-detector are required. To separate the illumination and PSP emission detected by a photo-detector, appropriate band-pass filters are placed in front of the illumination and photo-detector. The image processing unit includes the calibration and computation. The calibration relates the luminescent signal to pressures and temperatures. Based on these calibrations, luminescent images are converted to a pressure map.
Effect of attack angle on flow characteristic of centrifugal fan
NASA Astrophysics Data System (ADS)
Wu, Y.; Dou, H. S.; Wei, Y. K.; Chen, X. P.; Chen, Y. N.; Cao, W. B.
2016-05-01
In this paper, numerical simulation is performed for the performance and internal flow of a centrifugal fan with different operating conditions using steady three-dimensional incompressible Navier-Stokes equations coupled with the RNG k-e turbulent model. The performance curves, the contours of static pressure, total pressure, radial velocity, relative streamlines and turbulence intensity at different attack angles are obtained. The distributions of static pressure and velocity on suction surface and pressure surface in the same impeller channel are compared for various attack angles. The research shows that the efficiency of the centrifugal fan is the highest when the attack angle is 8 degree. The main reason is that the vortex flow in the impeller is reduced, and the jet-wake pattern is weakened at the impeller outlet. The pressure difference between pressure side and suction side is smooth and the amplitude of the total pressure fluctuation is low along the circumferential direction. These phenomena may cause the loss reduced for the attack angle of about 8 degree.
An investigation of transient pressure and plasma properties in a pinched plasma column. M.S. Thesis
NASA Technical Reports Server (NTRS)
Stover, E. K.; York, T. M.
1971-01-01
The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with the following plasma diagnostics: a special rapid response pressure transducer, a magnetic field probe, a voltage probe and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior; they were in temporal sequence: strong axial pressure asymmetry noted early in plasma column lifetime followed by plasma heating in which there is a rapid rise in static pressure and a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating is attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity. Turbulent heating arising from discharge current excitation of the ion acoustic wave instability is also considered a possible heating mechanism.
Measuring Blast-Related Intracranial Pressure Within the Human Head
2010-08-01
an d stagnation pressures; stagnation pr essure , also called incident pre ssure, consists of static and dynamic pressure combined and subsequent da...represent a n oticeable decrease in IC pr essure that happened before the IC pressure started to increase. This behavior is very noticeable in all
Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations
NASA Astrophysics Data System (ADS)
Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.
2018-02-01
We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.
Simon, Scott Douglas; Grey, Casey Paul
2014-04-01
The Penumbra system uses a coaxial separator and continuous extracorporeal suction to remove a clot from a cerebral artery. Forced-suction thrombectomy (FST) involves aspirating clots through the same reperfusion catheter using only a syringe, decreasing the procedure time and supplies needed. To evaluate multiple combinations of catheters and syringes to determine the optimal pairing for use in FST. Tests were performed using both the Penumbra system and syringes to aspirate water through Penumbra 0.041 inch (041), 4Max, 0.054 inch (054) and 5Max reperfusion catheters and a shuttle sheath. Dynamic pressure and flow at the catheter tip were calculated from the fill times for each system. Static pressure and force for each aspiration source were determined with a vacuum gauge. All syringes provided significantly higher dynamic pressure at the catheter tip than the Penumbra system (p<0.001). Increasing syringe volume significantly increased static pressure (p<0.001). Both flow and aspiration force significantly increased with catheter size (p<0.001). Cases are presented to demonstrate the clinical value of the laboratory principles. Maximizing static and dynamic pressure when performing FST is achieved by aspirating with a syringe possessing both the largest volume and the largest inlet diameter available. Maximizing aspiration force and flow rate is achieved by using the largest catheter possible.
Effect of Sweep on Cavity Flow Fields at Subsonic and Transonic Speeds
NASA Technical Reports Server (NTRS)
Tracy, Maureen B.; Plentovich, Elizabeth B.; Hemsch, Michael J.; Wilcox, Floyd J.
2012-01-01
An experimental investigation was conducted in the NASA Langley 7 x 10-Foot High Speed Tunnel (HST) to study the effect of leading- and trailing-edge sweep on cavity flow fields for a range of cavity length-to-height (l/h) ratios. The free-stream Mach number was varied from 0.2 to 0.8. The cavity had a depth of 0.5 inches, a width of 2.5 inches, and a maximum length of 12.0 inches. The leading- and trailing-edge sweep was adjusted using block inserts to achieve leading edge sweep angles of 65 deg, 55 deg, 45 deg, 35 deg, and 0 deg. The fore and aft cavity walls were always parallel. The aft wall of the cavity was remotely positioned to achieve a range of length-to-depth ratios. Fluctuating- and static-pressure data were obtained on the floor of the cavity. The fluctuating pressure data were used to determine whether or not resonance occurred in the cavity rather than to provide a characterization of the fluctuating pressure field. Qualitative surface flow visualization was obtained using a technique in which colored water was introduced into the model through static-pressure orifices. A complete tabulation of the mean static-pressure data for the swept leading edge cavities is included.
Vibrational Spectroscopic Studies of Reduced-Sensitivity RDX under Static Compression
NASA Astrophysics Data System (ADS)
Wong, Chak
2005-07-01
Explosives formulations with Reduced- Sensitivity RDX showed reduced shock sensitivity using NOL Large Scale Gap Test, compared with similar formulations using normal RDX. Molecular processes responsible for the reduction of sensitivity are unknown and are crucial for formulation development. Vibrational spectroscopy at static high pressure may shed light to the mechanisms responsible for the reduced shock sensitivity as shown by the NOL Large Scale Gap Test. SIRDX, a form of Reduced- Sensitivity RDX, was subjected to static compression at ambient temperature in a Merrill-Bassett sapphire cell from ambient to about 6 GPa. The spectroscopic techniques used were Raman and Fourier-Transformed IR (FTIR). The pressure dependence of the Raman mode frequencies of SIRDX was determined and compared with that of normal RDX. The behavior of SIRDX near the pressure at which normal RDX, at ambient temperature, undergoes a phase transition from the α to the γ polymorph will be presented. Implications to the reduction in sensitivity will be discussed.
NASA Technical Reports Server (NTRS)
Brankovic, Andreja; Ryder, Robert C., Jr.; Hendricks, Robert C.; Liu, Nan-Suey; Gallagher, John R.; Shouse, Dale T.; Roquemore, W. Melvyn; Cooper, Clayton S.; Burrus, David L.; Hendricks, John A.
2002-01-01
The trapped vortex combustor (TVC) pioneered by Air Force Research Laboratories (AFRL) is under consideration as an alternative to conventional gas turbine combustors. The TVC has demonstrated excellent operational characteristics such as high combustion efficiency, low NO(x) emissions, effective flame stabilization, excellent high-altitude relight capability, and operation in the lean-burn or rich burn-quick quench-lean burn (RQL) modes of combustion. It also has excellent potential for lowering the engine combustor weight. This performance at low to moderate combustor mach numbers has stimulated interest in its ability to operate at higher combustion mach number, and for aerospace, this implies potentially higher flight mach numbers. To this end, a lobed diffuser-mixer that enhances the fuel-air mixing in the TVC combustor core was designed and evaluated, with special attention paid to the potential shock system entering the combustor core. For the present investigation, the lobed diffuser-mixer combustor rig is in a full annular configuration featuring sixfold symmetry among the lobes, symmetry within each lobe, and plain parallel, symmetric incident flow. During hardware cold-flow testing, significant discrepancies were found between computed and measured values for the pitot-probe-averaged static pressure profiles at the lobe exit plane. Computational fluid dynamics (CFD) simulations were initiated to determine whether the static pressure probe was causing high local flow-field disturbances in the supersonic flow exiting the diffuser-mixer and whether shock wave impingement on the pitot probe tip, pressure ports, or surface was the cause of the discrepancies. Simulations were performed with and without the pitot probe present in the modeling. A comparison of static pressure profiles without the probe showed that static pressure was off by nearly a factor of 2 over much of the radial profile, even when taking into account potential axial displacement of the probe by up to 0.25 in. (0.64 cm). Including the pitot probe in the CFD modeling and data interpretation lead to good agreement between measurement and prediction. Graphical inspection of the results showed that the shock waves impinging on the probe surface were highly nonuniform, with static pressure varying circumferentially among the pressure ports by over 10 percent in some cases. As part of the measurement methodology, such measurements should be routinely supplemented with CFD analyses that include the pitot probe as part of the flow-path geometry.
Incidence loss for a core turbine rotor blade in a two-dimensional cascade
NASA Technical Reports Server (NTRS)
Stabe, R. G.; Kline, J. F.
1974-01-01
The effect of incidence angle on the aerodynamic performance of an uncooled core turbine rotor blade was investigated experimentally in a two-dimensional cascade. The cascade test covered a range of incidence angles from minus 15 deg to 15 deg in 5-degree increments and a range of pressure ratios corresponding to ideal exit critical velocity ratios of 0.6 to 0.95. The principal measurements were blade-surface static pressures and cross-channel surveys of exit total pressure, static pressure, and flow angle. The results of the investigation include blade-surface velocity distribution and overall performance in terms of weight flow and loss for the range of incidence angles and exit velocity ratios investigated. The measured losses are also compared with two common methods of predicting incidence loss.
Analysis of Fluctuating Static Pressure Measurements in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Igoe, William B.
1996-01-01
Dynamic measurements of fluctuating static pressure levels were taken with flush-mounted, high-frequency response pressure transducers at 11 locations in the circuit of the National Transonic Facility (NTF) across the complete operating range of this wind tunnel. Measurements were taken at test-section Mach numbers from 0.1 to 1.2, at pressures from 1 to 8.6 atm, and at temperatures from ambient to -250 F, which resulted in dynamic flow disturbance measurements at the highest Reynolds numbers available in a transonic ground test facility. Tests were also made by independent variation of the Mach number, the Reynolds number, or the fan drive power while the other two parameters were held constant, which for the first time resulted in a distinct separation of the effects of these three important parameters.
Turbine airfoil with ambient cooling system
Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.
2016-06-07
A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.
NASA Astrophysics Data System (ADS)
Volpe, Peter A.
This thesis presents analytical models, finite element models and experimental data to investigate the response of the human eye to loads that can be experienced when in a non-supine sleeping position. The hypothesis being investigated is that non-supine sleeping positions can lead to stress, strain and deformation of the eye as well as changes in intraocular pressure (IOP) that may exacerbate vision loss in individuals who have glaucoma. To investigate the quasi-static changes in stress and internal pressure, a Fluid-Structure Interaction simulation was performed on an axisymmetrical model of an eye. Common Aerospace Engineering methods for analyzing pressure vessels and hyperelastic structural walls are applied to developing a suitable model. The quasi-static pressure increase was used in an iterative code to analyze changes in IOP over time.
High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors
NASA Technical Reports Server (NTRS)
Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender
2014-01-01
Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.
NASA Astrophysics Data System (ADS)
Phillips, Michael G.
Human exposure to blast waves, including blast-induced traumatic brain injury, is a developing field in medical research. Experiments with explosives have many disadvantages including safety, cost, and required area for trials. Shock tubes provide an alternative method to produce free field blast wave profiles. A compressed nitrogen shock tube experiment instrumented with static and reflective pressure taps is modeled using a numerical simulation. The geometry of the numerical model is simplified and blast wave characteristics are derived based upon static and pressure profiles. The pressure profiles are analyzed along the shock tube centerline and radially away from the tube axis. The blast wave parameters found from the pressure profiles provide guidelines for spatial location of a specimen. The location could be based on multiple parameters and provides a distribution of anticipated pressure profiles experience by the specimen.
Dynamic analysis of solid propellant grains subjected to ignition pressurization loading
NASA Astrophysics Data System (ADS)
Chyuan, Shiang-Woei
2003-11-01
Traditionally, the transient analysis of solid propellant grains subjected to ignition pressurization loading was not considered, and quasi-elastic-static analysis was widely adopted for structural integrity because the analytical task gets simplified. But it does not mean that the dynamic effect is not useful and could be neglected arbitrarily, and this effect usually plays a very important role for some critical design. In order to simulate the dynamic response for solid rocket motor, a transient finite element model, accompanied by concepts of time-temperature shift principle, reduced integration and thermorheologically simple material assumption, was used. For studying the dynamic response, diverse ignition pressurization loading cases were used and investigated in the present paper. Results show that the dynamic effect is important for structural integrity of solid propellant grains under ignition pressurization loading. Comparing the effective stress of transient analysis and of quasi-elastic-static analysis, one can see that there is an obvious difference between them because of the dynamic effect. From the work of quasi-elastic-static and transient analyses, the dynamic analysis highlighted several areas of interest and a more accurate and reasonable result could be obtained for the engineer.
NASA Technical Reports Server (NTRS)
Exton, R. J.; Hillard, M. E.
1986-01-01
Molecular flow velocity (one component), translational temperature, and static pressure of N2 are measured in a supersonic wind tunnel using inverse Raman spectroscopy. For velocity, the technique employs the large Doppler shift exhibited by the molecules when the pump and probe laser beams are counterpropagating (backward scattering). A retrometer system is employed to yield an optical configuration insensitive to mechanical vibration, which has the additional advantage of simultaneously obtaining both the forward and backward scattered spectra. The forward and backward line breadths and their relative Doppler shift can be used to determine the static pressure, translational temperature, and molecular flow velocity. A demonstration of the technique was performed in a continuous airflow supersonic wind tunnel in which data were obtained under the following conditions: (1) free-stream operation at five set Mach number levels over the 2.50-4.63 range; (2) free-stream operation over a range of Reynolds number (at a fixed Mach number) to vary systematically the static pressure; and (3) operation in the flow field of a simple aerodynamic model to assess beam steering effects in traversing the attached shock layer.
Serraes, Brecht; Beeckman, Dimitri
2016-01-01
The aim of this study was to investigate the incidence and risk factors for developing pressure injuries (PIs) in patients placed on a static air support surfaces: mattress overlay, heel wedge, and seat cushion. Multicenter cohort study. The sample comprised 176 residents; their mean age was 87 (SD = 6.76) years; their mean Braden Scale score was 14 (SD = 2.54). The study was performed on a convenience sample of 6 nursing homes in Belgium. Data were collected on 23 care units. The primary outcome measure, cumulative PI incidence (category [stage] II-IV) over a 30-day observation period, was calculated. Pressure injury occurrence was defined according to the 2014 European and US National Pressure Injury Advisory panels, Pan Pacific Pressure Injury Alliance classification system. The PI incidence for category (stage) II-IV was 5.1%. Six residents (3.4%) developed a category II PI, and 3 (1.7%) developed a category III PI; no category IV ulcers occurred. No significant risk factors for category II-IV PIs were identified using multivariate logistic regression. Time of sitting in a chair was found to be a risk factor for development of nonblanchable erythema (category I PI) (odds ratio = 21.608; 95% confidence interval [CI], 20.510-22.812; P = .013). The median time to develop a category II-IV PI was 16 days (interquartile range = 2-26). The interrater reliability between the observations of the researcher and nurses on-site was almost perfect (0.86; 95% CI, 0.81-0.91). We found a low incidence of PIs when using a static air overlay mattress for patients at risk in a nursing home population. Static air support surfaces, alongside patient-tailored patient repositioning protocols, should be considered to prevent PIs in this patient population.
NASA Technical Reports Server (NTRS)
Koch, D. E.; Stephenson, J. G.
1983-01-01
Hole sizes deduced from pressure measurements. Measuring apparatus consists of pitot tube attached to water-filled manometer. Compartment tested is pressurized with air. Pitot probe placed at known distance from leak. Dynamic pressure of jet measured at that point and static pressure measured in compartment. Useful in situations in which small leaks are tolerable but large leaks are not.
NASA Astrophysics Data System (ADS)
Patselov, A. M.; Gladkovskii, S. V.; Lavrikov, R. D.; Kamantsev, I. S.
2015-10-01
The static and cyclic fracture toughnesses of a Ti-Al3Ti-Al-Al3Ti laminate composite material containing at most 15 vol % intermetallic compound are studied. Composite specimens are prepared by terminating reaction sintering of titanium and aluminum foils under pressure. The fracture of the titanium layers is quasi-cleavage during cyclic crack growth and is ductile during subsequent static loading.
14 CFR 23.1323 - Airspeed indicating system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... instrument calibration error when the corresponding pitot and static pressures are applied. (b) Each airspeed... positive drainage of moisture from the pitot static plumbing. (d) If certification for instrument flight rules or flight in icing conditions is requested, each airspeed system must have a heated pitot tube or...
NASA Astrophysics Data System (ADS)
Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.
2018-01-01
Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2000-01-01
A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10-by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor staff and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.
Halawa, Mohammed R; Eid, Yara M; El-Hilaly, Rana A; Abdelsalam, Mona M; Amer, Amr H
Foot disease is a common complication of type 2 diabetes that can have tragic consequences. Abnormal plantar pressures are considered to play a major role in the pathologies of neuropathic ulcers in the diabetic foot. To examine Relationship of Planter Pressure and Glycemic Control in Type 2 Diabetic Patients with and without Neuropathy. The study was conducted on 50 type 2 diabetic patients and 30 healthy volunteers. BMI calculation, disease duration, Hemoglobin A1c and presence of neuropathy (by history, foot examination and DN4 questionnaire) were recorded. Plantar pressure was recorded for all patients using the Mat-scan (Tekscan, Inc.vers. 6.34 Boston USA) in static conditions (standing) and dynamic conditions (taking a step on the Mat-scan). Plantar pressures (kPa) were determined at the five metatarsal areas, mid foot area, medial and lateral heel areas and medial three toes. Static and dynamic plantar pressures in both right and left feet were significantly higher in diabetic with neuropathy group than in control group in measured areas (P<0.05). Static and dynamic pressures in right and left feet were significantly higher in diabetic with neuropathy group than in diabetic without neuropathy group in measured areas (P<0.05). On comparison between controls and diabetic without neuropathy group there was a significant difference in plantar pressures especially in metatarsal areas (P<0.05). No significant correlations were present between the studied variables age, disease duration, BMI and HbA1c and plantar pressures in all studied areas. Persons with diabetic neuropathy have elevated peak plantar pressure (PPP) compared to patients without neuropathy and control group. HbA1c% as a surrogate for glycemic control had no direct impact on peak planter pressure, yet it indirectly impacts neuropathy evolution through out disease duration eventually leading to the drastic planter pressure and gait biomechanics changes. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.
Static Posturography: A New Perspective in the Assessment of Lameness in a Canine Model
Manera, Maria E.; Carrillo, José M.; Batista, Miguel; Rubio, Monica; Sopena, Joaquin; Santana, Angelo
2017-01-01
The aim of this study was to assess the static posturography in dogs as a useful tool for diagnosis of lameness by means of the use of a pressure platform. For this purpose, a series of different parameters (pressure distribution, area of support, mean pressure, maximum pressure and statokinesiograms) were obtained from five lame dogs with unilateral elbow osteoarthritis treated with plasma rich in growth factors. Data were obtained before and 3 months after treatment, and results were compared with a control group of sound dogs of similar conformation. Significant differences were found in the above mentioned parameters between sound and lame limbs. Improvement after 3 months of treatment was also detected, demonstrating that this multi-parametric technique is an effective and reliable method for the assessment of lameness in dogs. PMID:28114312
Static Posturography: A New Perspective in the Assessment of Lameness in a Canine Model.
Manera, Maria E; Carrillo, José M; Batista, Miguel; Rubio, Monica; Sopena, Joaquin; Santana, Angelo; Vilar, José M
2017-01-01
The aim of this study was to assess the static posturography in dogs as a useful tool for diagnosis of lameness by means of the use of a pressure platform. For this purpose, a series of different parameters (pressure distribution, area of support, mean pressure, maximum pressure and statokinesiograms) were obtained from five lame dogs with unilateral elbow osteoarthritis treated with plasma rich in growth factors. Data were obtained before and 3 months after treatment, and results were compared with a control group of sound dogs of similar conformation. Significant differences were found in the above mentioned parameters between sound and lame limbs. Improvement after 3 months of treatment was also detected, demonstrating that this multi-parametric technique is an effective and reliable method for the assessment of lameness in dogs.
Variation with Mach Number of Static and Total Pressures Through Various Screens
NASA Technical Reports Server (NTRS)
Adler, Alfred A
1946-01-01
Tests were conducted in the Langley 24-inch highspeed tunnel to ascertain the static-pressure and total-pressure losses through screens ranging in mesh from 3 to 12 wires per inch and in wire diameter from 0.023 to 0.041 inch. Data were obtained from a Mach number of approximately 0.20 up to the maximum (choking) Mach number obtainable for each screen. The results of this investigation indicate that the pressure losses increase with increasing Mach number until the choking Mach number, which can be computed, is reached. Since choking imposes a restriction on the mass rate of flow and maximum losses are incurred at this condition, great care must be taken in selecting the screen mesh and wire dimmeter for an installation so that the choking Mach number is
Stolwijk, Niki M.; Duysens, Jacques; Louwerens, Jan Willem K.; van de Ven, Yvonne HM.; Keijsers, Noël LW.
2013-01-01
In contrast to western countries, foot complaints are rare in Africa. This is remarkable, as many African adults walk many hours each day, often barefoot or with worn-out shoes. The reason why Africans can withstand such loading without developing foot complaints might be related to the way the foot is loaded. Therefore, static foot geometry and dynamic plantar pressure distribution of 77 adults from Malawi were compared to 77 adults from the Netherlands. None of the subjects had a history of foot complaints. The plantar pressure pattern as well as the Arch Index (AI) and the trajectory of the center of pressure during the stance phase were calculated and compared between both groups. Standardized pictures were taken from the feet to assess the height of the Medial Longitudinal Arch (MLA). We found that Malawian adults: (1) loaded the midfoot for a longer and the forefoot for a shorter period during roll off, (2) had significantly lower plantar pressures under the heel and a part of the forefoot, and (3) had a larger AI and a lower MLA compared to the Dutch. These findings demonstrate that differences in static foot geometry, foot loading, and roll off technique exist between the two groups. The advantage of the foot loading pattern as shown by the Malawian group is that the plantar pressure is distributed more equally over the foot. This might prevent foot complaints. PMID:23468936
Research on viscosity of metal at high pressure
NASA Astrophysics Data System (ADS)
Li, Y.; Liu, F.; Ma, X.; Zhang, M.
2016-11-01
A new experimental technique, the flyer-impact method, is proposed in this article to investigate the viscosity coefficient of shocked metals. In this technique, a shock wave with a sinusoidal perturbation on the front is induced by the sinusoidal profile of the impact surface of the sample by use of a two-stage light-gas gun, and the oscillatory damping process of the perturbation amplitude is monitored by electric pins. The damping processes of aluminum at 78 and 101 GPa and iron at 159 and 103 GPa are obtained by this technique, which supplement the existing data by measuring the viscosity coefficient via a dynamic high-pressure method. Applying the formula of Miller and Ahrens to fit the experimental data, the shear viscosity coefficients of aluminum at 78 and 101 GPa are 1350 ± 500 and 1200 ± 500 Pa s, respectively, and those of iron at 159 and 103 GPa are 1150 ± 1000 and 4800 ± 1000 Pa s, respectively. The values measured by the flyer-impact method, approximately 103 Pa s, are consistent with those measured by Sakharov's method, while still greatly differing from those measured by static high-pressure methods. In dynamic high-pressure experiments, the shear viscosity is related to dislocation motion in the solid material, while that in static high-pressure experiments is related to the diffusion motion of atoms or molecules in liquids. Therefore, there are different physical meanings of shear viscosity in dynamic and static high-pressure experiments, and there is no comparability among these results.
Bragin, Denis E.; Statom, Gloria; Nemoto, Edwin M.
2016-01-01
SUMMARY We previously suggested that the discrepancy between the critical cerebral perfusion pressures (CPP) of 30 mmHg, obtained by increasing intracranial pressure (ICP), and 60 mmHg, obtained by decreasing arterial pressure, was due to pathological microvascular shunting at high ICP [1] and that the determination of the critical CPP by the static cerebral blood flow (CBF) autoregulation curve is not valid with intracranial hypertension. Here we demonstrated that critical CPP, measured by induced dynamic ICP reactivity (iPRx) and cerebrovascular reactivity (CVRx), accurately identifies the critical CPP in the hypertensive rat brain which differs from that obtained by the static autoregulation curve. Step changes in CPP from 70 to 50 and 30 mmHg were made by increasing ICP using an artificial cerebrospinal fluid reservoir connected to the cisterna magna. At each CPP, a transient 10-mmHg rise in arterial pressure was induced by bolus i.v. dopamine. iPRx and iCVRx were calculated as ΔICP/ΔMAP and as ΔCBF/ΔMAP, respectively. The critical CPP at high ICP, obtained by iPRx and iCVRx, is 50 mmHg, where compromised capillary flow, transition of blood flow to non-nutritive microvascular shunts, tissue hypoxia and BBB leakage begin to occur, which is higher than the 30 mmHg determined by static autoregulation. PMID:27165917
NASA Technical Reports Server (NTRS)
Tracy, M. B.; Plentovich, E. B.
1993-01-01
Static and fluctuating pressure distributions were obtained along the floor of a rectangular-box cavity in an experiment performed in the LaRC 0.3-Meter Transonic Cryogenic Tunnel. The cavity studied was 11.25 in. long and 2.50 in. wide with a variable height to obtain length-to-height ratios of 4.4, 6.7, 12.67, and 20.0. The data presented herein were obtained for yaw angles of 0 deg and 15 deg over a Mach number range from 0.2 to 0.9 at a Reynolds number of 30 x 10(exp 6) per ft with a boundary-layer thickness of approximately 0.5 in. The results indicated that open and transitional-open cavity flow supports tone generation at subsonic and transonic speeds at Mach numbers of 0.6 and above. Further, pressure fluctuations associated with acoustic tone generation can be sustained when static pressure distributions indicate that transitional-closed and closed flow fields exist in the cavity. Cavities that support tone generation at 0 deg yaw also supported tone generation at 15 deg yaw when the flow became transitional-closed. For the latter cases, a reduction in tone amplitude was observed. Both static and fluctuating pressure data must be considered when defining cavity flow fields, and the flow models need to be refined to accommodate steady and unsteady flows.
Investigation of Shock Diffusers at Mach Number 1.85. 1 - Projecting Single Shock Cones
1947-06-17
cylindrical simulated combustion chamber was used to vary the outlet area of the flow through the diffuser. The pitot -static rake , located as shown in the...Simulated combustion u chamber A 90° W •—Conical damper S Static-pressure orifice ps pitot -static "" rake ’ NATIONAL ADVISORY...recoveries were obtained with subsonic entrance flow. INTRODCJCTION For efficient conversion of the kinetic energy of a supersonic air stream into ram
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2001-01-01
A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10- by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor stall and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.
Hydrostatic pressure modulates mRNA expressions for matrix proteins in human meniscal cells.
Suzuki, Toru; Toyoda, Takashi; Suzuki, Hiroshi; Hisamori, Noriyuki; Matsumoto, Hideo; Toyama, Yoshiaki
2006-01-01
There have been few reports describing the effects of mechanical loading on the metabolism of meniscal cells. The aim of this study was to investigate the effects of hydrostatic pressure on meniscal cell metabolism. Human meniscal cells were cultured in alginate beads for 3 days. They were then subjected to 4 MPa hydrostatic pressure for 4 hours in either a static or cyclic (1 Hz) mode using a specially designed and constructed system. Immediately after the pressure application, the messenger RNA levels for aggrecan, type I collagen, matrix metalloproteinases (MMP) -1, -3, -9, -13 and tissue inhibitors of metalloproteinases (TIMP) -1 and -2 were measured. It was found that the application of static hydrostatic pressure caused a significant decrease in mRNA expression for MMP-1 and -13 (p<0.05). In contrast, the application of cyclic hydrostatic pressure was associated with a significant increase in type I collagen (p<0.01), TIMP-1 and -2 mRNA expression (p<0.01). These results would suggest that hydrostatic pressure in isolation can modulate mRNA expressions for matrix proteins in meniscal cells.
Porous plug for reducing orifice induced pressure error in airfoils
NASA Technical Reports Server (NTRS)
Plentovich, Elizabeth B. (Inventor); Gloss, Blair B. (Inventor); Eves, John W. (Inventor); Stack, John P. (Inventor)
1988-01-01
A porous plug is provided for the reduction or elimination of positive error caused by the orifice during static pressure measurements of airfoils. The porous plug is press fitted into the orifice, thereby preventing the error caused either by fluid flow turning into the exposed orifice or by the fluid flow stagnating at the downstream edge of the orifice. In addition, the porous plug is made flush with the outer surface of the airfoil, by filing and polishing, to provide a smooth surface which alleviates the error caused by imperfections in the orifice. The porous plug is preferably made of sintered metal, which allows air to pass through the pores, so that the static pressure measurements can be made by remote transducers.
Zhang, Hong; Liu, Howe; Lin, Qing; Zhang, Guohui; Mason, David C
2016-08-26
Homeostasis imbalance of intracellular Ca(2+) is one of the key pathophysiological factors in skeletal muscle injuries. Such imbalance can cause significant change in the metabolism of Ca(2+)-related biomarkers in skeletal muscle, such as superoxide dismutase (SOD), malondialdehyde (MDA) and creatine kinase (CK). Measurements of these biomarkers can be used to evaluate the degree of damage to human skeletal muscle cells (HSKMCs) injury. Rolling manipulation is the most popular myofascial release technique in Traditional Chinese Medicine. The mechanism of how this technique works in ameliorating muscle injury is unknown. This study aimed to investigate the possible Ca(2+) mediated effects of intermittent pressure imitating rolling manipulation (IPIRM) of Traditional Chinese Medicine in the injured HSKMCs. The normal HSKMCs was used as control normal group (CNG), while the injured HSKMCs were further divided into five different groups: control injured group (CIG), Rolling manipulation group (RMG), Rolling manipulation-Verapamil group (RMVG), static pressure group (SPG) and static pressure-Verapamil group (SPVG). RMG and RMVG cells were cyclically exposed to 9.5-12.5 N/cm(2) of IPIRM at a frequency of 1.0 Hz for 10 min. SPG and SPVG were loaded to a continuous pressure of 12.5 N/cm(2) for 10 min. Verapamil, a calcium antagonist, was added into the culture mediums of both RMVG and SPVG groups to block the influx of calcium ion. Compared with the CNG (normal cells), SOD activity was remarkably decreased while both MDA content and CK activity were significantly increased in the CIG (injured cells). When the injured cells were treated with the intermittent rolling manipulation pressure (RMG), the SOD activity was significantly increased and MDA content and CK activity were remarkably decreased. These effects were suppressed by adding the calcium antagonist Verapamil into the culture medium in RMVG. On the other hand, exposure to static pressure in SPG and SPVG affected neither the SOD activity nor the MDA content and CK activity in the injured muscle cells regardless of the presence of verapamil or not in the culture medium. These data suggest that the intermittent rolling pressure with the manipulation could ameliorate HSKMCs injury through a Ca(2+) dependent pathway. Static pressure did not lead to the same results.
An improved method for predicting brittleness of rocks via well logs in tight oil reservoirs
NASA Astrophysics Data System (ADS)
Wang, Zhenlin; Sun, Ting; Feng, Cheng; Wang, Wei; Han, Chuang
2018-06-01
There can be no industrial oil production in tight oil reservoirs until fracturing is undertaken. Under such conditions, the brittleness of the rocks is a very important factor. However, it has so far been difficult to predict. In this paper, the selected study area is the tight oil reservoirs in Lucaogou formation, Permian, Jimusaer sag, Junggar basin. According to the transformation of dynamic and static rock mechanics parameters and the correction of confining pressure, an improved method is proposed for quantitatively predicting the brittleness of rocks via well logs in tight oil reservoirs. First, 19 typical tight oil core samples are selected in the study area. Their static Young’s modulus, static Poisson’s ratio and petrophysical parameters are measured. In addition, the static brittleness indices of four other tight oil cores are measured under different confining pressure conditions. Second, the dynamic Young’s modulus, Poisson’s ratio and brittleness index are calculated using the compressional and shear wave velocity. With combination of the measured and calculated results, the transformation model of dynamic and static brittleness index is built based on the influence of porosity and clay content. The comparison of the predicted brittleness indices and measured results shows that the model has high accuracy. Third, on the basis of the experimental data under different confining pressure conditions, the amplifying factor of brittleness index is proposed to correct for the influence of confining pressure on the brittleness index. Finally, the above improved models are applied to formation evaluation via well logs. Compared with the results before correction, the results of the improved models agree better with the experimental data, which indicates that the improved models have better application effects. The brittleness index prediction method of tight oil reservoirs is improved in this research. It is of great importance in the optimization of fracturing layer and fracturing construction schemes and the improvement of oil recovery.
46 CFR 153.940 - Standards for marking of cargo hose.
Code of Federal Regulations, 2012 CFR
2012-10-01
... abnormally distort under static liquid pressure at least as great as the recommended working pressure. [CGD... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Marking of... manufacture; (2) Working pressure discribed in paragraph (d) of this section; (3) Date of the last test made...
46 CFR 153.940 - Standards for marking of cargo hose.
Code of Federal Regulations, 2011 CFR
2011-10-01
... abnormally distort under static liquid pressure at least as great as the recommended working pressure. [CGD... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Marking of... manufacture; (2) Working pressure discribed in paragraph (d) of this section; (3) Date of the last test made...
46 CFR 153.940 - Standards for marking of cargo hose.
Code of Federal Regulations, 2013 CFR
2013-10-01
... abnormally distort under static liquid pressure at least as great as the recommended working pressure. [CGD... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Marking of... manufacture; (2) Working pressure discribed in paragraph (d) of this section; (3) Date of the last test made...
46 CFR 153.940 - Standards for marking of cargo hose.
Code of Federal Regulations, 2010 CFR
2010-10-01
... abnormally distort under static liquid pressure at least as great as the recommended working pressure. [CGD... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Marking of... manufacture; (2) Working pressure discribed in paragraph (d) of this section; (3) Date of the last test made...
46 CFR 153.940 - Standards for marking of cargo hose.
Code of Federal Regulations, 2014 CFR
2014-10-01
... abnormally distort under static liquid pressure at least as great as the recommended working pressure. [CGD... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Marking of... manufacture; (2) Working pressure described in paragraph (d) of this section; (3) Date of the last test made...
NASA Technical Reports Server (NTRS)
Eppel, J. C.; Shovlin, M. D.; Jaynes, D. N.; Englar, R. J.; Nichols, J. H., Jr.
1982-01-01
Full scale static investigations were conducted on the Quiet Short Haul Research Aircraft (QSRA) to determine the thrust deflecting capabilities of the circulation control wing/upper surface blowing (CCW/USB) concept. This scheme, which combines favorable characteristics of both the A-6/CCW and QSRA, employs the flow entrainment properties of CCW to pneumatically deflect engine thrust in lieu of the mechanical USB flap system. Results show that the no moving parts blown system produced static thrust deflections in the range of 40 deg to 97 deg (depending on thrust level) with a CCW pressure of 208,900 Pa (30.3 psig). In addition, the ability to vary horizontal forces from thrust to drag while maintaining a constant vertical (or lift) value was demonstrated by varying the blowing pressure. The versatility of the CCW/USB system, if applied to a STOL aircraft, was confirmed, where rapid conversion from a high drag approach mode to a thrust recovering waveoff or takeoff configuration could be achieved by nearly instantaneous blowing pressure variation.
Aerodynamic characteristics of the National Launch System (NLS) 1 1/2 stage launch vehicle
NASA Technical Reports Server (NTRS)
Springer, A. M.; Pokora, D. C.
1994-01-01
The National Aeronautics and Space Administration (NASA) is studying ways of assuring more reliable and cost effective means to space. One launch system studied was the NLS which included the l l/2 stage vehicle. This document encompasses the aerodynamic characteristics of the 1 l/2 stage vehicle. To support the detailed configuration definition two wind tunnel tests were conducted in the NASA Marshall Space Flight Center's 14x14-Inch Trisonic Wind Tunnel during 1992. The tests were a static stability and a pressure test, each utilizing 0.004 scale models. The static stability test resulted in the forces and moments acting on the vehicle. The aerodynamics for the reference configuration with and without feedlines and an evaluation of three proposed engine shroud configurations were also determined. The pressure test resulted in pressure distributions over the reference vehicle with and without feedlines including the reference engine shrouds. These pressure distributions were integrated and balanced to the static stability coefficients resulting in distributed aerodynamic loads on the vehicle. The wind tunnel tests covered a Mach range of 0.60 to 4.96. These ascent flight aerodynamic characteristics provide the basis for trajectory and performance analysis, loads determination, and guidance and control evaluation.
NASA Astrophysics Data System (ADS)
Brown, M. R. M.; Ge, S.
2017-12-01
Increased pore pressure decreasing the effective stress on a critically stressed fault has been the accepted mechanism for injection-induced seismicity. This, however, is an over simplified approach that does not take into account the coupled hydro-mechanical effects. In addition, this approach leaves out a possible key stressor in the system, the earthquakes. Earthquakes are known to interact with each other by Coulomb static stress transfer, the process of permanent stress change caused by movement on a fault. In areas of induced seismicity, many small to moderate earthquakes can occur adding to the stress in the system via Coulomb static stress transfer. Here we ask: Is the Coulomb static stress transfer from the earthquakes as important as the pore pressure increase or stress changes caused by coupled hydro-mechanical processes? Is there a point where the Coulomb static stress transfer from the earthquakes becomes the controlling process for inducing future earthquakes? How does the effect of many small earthquakes compare to a few larger events in terms of Coulomb static stress transfer? In this study, we use hydrologic and coupled hydro-mechanical models and USGS Coulomb 3 to assess the importance of induced earthquakes in terms of the stress change in the system. Realistic scenarios of wastewater injection and earthquake magnitude-frequency distributions are used to develop generic models. Model variables and data are varied to evaluate the range of possible outcomes. Preliminary results show that the stress change associated with injection is of the same order of magnitude as the cumulative Coulomb static stress change of a series of small (1
Flight-test data on the static fore-and-aft stability of various German airplanes
NASA Technical Reports Server (NTRS)
Hubner, Walter
1933-01-01
The static longitudinal stability of an airplane with locked elevator is usually determined by analysis and model tests. The present report proposes to supply the results of such measurements. The method consisted of recording the dynamic pressure versus elevator displacement at different center-of-gravity positions in unaccelerated flight.
Supersonic Pitch Damping Predictions of Blunt Entry Vehicles from Static CFD Solutions
NASA Technical Reports Server (NTRS)
Schoenenberger, Mark
2013-01-01
A technique for predicting supersonic pitch damping of blunt axisymmetric bodies from static CFD data is presented. The contributions to static pitching moment due to forebody and aftbody pressure distributions are broken out and considered separately. The one-dimension moment equation is cast to model the separate contributions from forebody and aftbody pressures with no traditional damping term included. The aftbody contribution to pitching moment is lagged by a phase angle of the natural oscillation period. This lag represents the time for aftbody wake structures to equilibrate while the body is oscillation. The characteristic equation of this formulation indicates that the lagged backshell moment adds a damping moment equivalent in form to a constant pitch damping term. CFD calculations of the backshell's contribution to the static pitching moment for a range of angles-of-attack is used to predict pitch damping coefficients. These predictions are compared with ballistic range data taken of the Mars Exploration Rover (MER) capsule and forced oscillation data of the Mars Viking capsule. The lag model appears to capture dynamic stability variation due to backshell geometry as well as Mach number.
Experimental measurements of hydrodynamic stiffness matrices for a centrifugal pump impeller
NASA Technical Reports Server (NTRS)
Chamieh, D. S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.; Franz, R.
1982-01-01
The objective of the Rotor Force Test Facility at the California Institute of Technology is to artificially orbit the center of rotation of an impeller enclosed within a volute over a range of frequencies from zero to synchronous and to measure the resulting forces on the impeller. Preliminary data from the first stage experiments in which the shaft is orbited at low frequency is reported. Steady volute forces along with stiffness matrices due to the change in position of the rotor center are measured. Static pressure taps around the volute are used to obtain volute pressure distributions for various fixed positions of the impeller center and for various flow rates. Static pressure forces are calculated from these pressure distributions allowing a more complete analysis of the components of the impeller forces. Comparison is made with various existing theoretical and experimental results.
Cold flow testing of the Space Shuttle Main Engine high pressure fuel turbine model
NASA Technical Reports Server (NTRS)
Hudson, Susan T.; Gaddis, Stephen W.; Johnson, P. D.; Boynton, James L.
1991-01-01
In order to experimentally determine the performance of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) turbine, a 'cold' air flow turbine test program was established at NASA's Marshall Space Flight Center. As part of this test program, a baseline test of Rocketdyne's HPFTP turbine has been completed. The turbine performance and turbine diagnostics such as airfoil surface static pressure distributions, static pressure drops through the turbine, and exit swirl angles were investigated at the turbine design point, over its operating range, and at extreme off-design points. The data was compared to pretest predictions with good results. The test data has been used to improve meanline prediction codes and is now being used to validate various three-dimensional codes. The data will also be scaled to engine conditions and used to improve the SSME steady-state performance model.
NASA Technical Reports Server (NTRS)
Lagen, Nicholas; Seiner, John M.
1990-01-01
Water cooled supersonic probes are developed to investigate total pressure, static pressure, and total temperature in high-temperature jet plumes and thereby determine the mean flow properties. Two probe concepts, designed for operation at up to 1366 K in a Mach 2 flow, are tested on a water cooled nozzle. The two probe designs - the unsymmetric four-tube cooling configuration and the symmetric annular cooling design - take measurements at 755, 1089, and 1366 K of the three parameters. The cooled total and static pressure readings are found to agree with previous test results with uncooled configurations. The total-temperature probe, however, is affected by the introduction of water coolant, and effect which is explained by the increased heat transfer across the thermocouple-bead surface. Further investigation of the effect of coolant on the temperature probe is proposed to mitigate the effect and calculate more accurate temperatures in jet plumes.
NASA Technical Reports Server (NTRS)
Allison, Dennis O.; Cavallo, Peter A.
2003-01-01
An equivalent-plate structural deformation technique was coupled with a steady-state unstructured-grid three-dimensional Euler flow solver and a two-dimensional strip interactive boundary-layer technique. The objective of the research was to assess the extent to which a simple accounting for static model deformations could improve correlations with measured wing pressure distributions and lift coefficients at transonic speeds. Results were computed and compared to test data for a wing-fuselage model of a generic low-wing transonic transport at a transonic cruise condition over a range of Reynolds numbers and dynamic pressures. The deformations significantly improved correlations with measured wing pressure distributions and lift coefficients. This method provided a means of quantifying the role of dynamic pressure in wind-tunnel studies of Reynolds number effects for transonic transport models.
A design method for entrance sections of transonic wind tunnels with rectangular cross sections
NASA Technical Reports Server (NTRS)
Lionel, L.; Mcdevitt, J. B.
1975-01-01
A mathematical technique developed to design entrance sections for transonic or high-speed subsonic wind tunnels with rectangular cross sections is discribed. The transition from a circular cross-section setting chamber to a rectangular test section is accomplished smoothly so as not to introduce secondary flows (vortices or boundary-layer separation) into a uniform test stream. The results of static-pressure measurements in the transition region and of static and total-pressure surveys in the test section of a pilot model for a new facility at the Ames Research Center are presented.
Poroelastic metamaterials with negative effective static compressibility
NASA Astrophysics Data System (ADS)
Qu, Jingyuan; Kadic, Muamer; Wegener, Martin
2017-04-01
We suggest a three-dimensional metamaterial structure exhibiting an isotropic expansion in response to an increased hydrostatic pressure imposed by a surrounding gas or liquid. We show that this behavior corresponds to a negative absolute (rather than only differential) effective compressibility under truly static and stable conditions. The poroelastic metamaterial is composed of only a single ordinary constituent solid. By detailed numerical parameter studies, we find that a pressure increase of merely one bar can lead to a relative increase in the effective volume exceeding one percent for geometrical structure parameters that should be accessible to fabrication by 3D printing.
The numerical simulation based on CFD of hydraulic turbine pump
NASA Astrophysics Data System (ADS)
Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.
2016-05-01
As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.
NASA Technical Reports Server (NTRS)
Wing, David J.
1995-01-01
Distributions of static pressure coefficient over the afterbody and axisymmetric nozzles of a generic, twin-tail twin-engine fighter were obtained in the Langley 16-Foot Transonic Tunnel. The longitudinal positions of the vertical and horizontal tails were varied for a total of six aft-end configurations. Static pressure coefficients were obtained at Mach numbers between 0.6 and 1.2, angles of attack between 0 deg and 8 deg, and nozzle pressure ratios ranging from jet-off to 8. The results of this investigation indicate that the influence of the vertical and horizontal tails extends beyond the vicinity of the tail-afterbody juncture. The pressure distribution affecting the aft-end drag is influenced more by the position of the vertical tails than by the position of the horizontal tails. Transonic tail-interference effects are seen at lower free-stream Mach numbers at positive angles of attack than at an angle of attack of 0 deg.
Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar
Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Prakapenka, Vitali B; Abakumov, Artem M
2012-01-01
Since invention of the diamond anvil cell technique in the late 1950s for studying materials at extreme conditions, the maximum static pressure generated so far at room temperature was reported to be about 400 GPa. Here we show that use of micro-semi-balls made of nanodiamond as second-stage anvils in conventional diamond anvil cells drastically extends the achievable pressure range in static compression experiments to above 600 GPa. Micro-anvils (10–50 μm in diameter) of superhard nanodiamond (with a grain size below ∼50 nm) were synthesized in a large volume press using a newly developed technique. In our pilot experiments on rhenium and gold we have studied the equation of state of rhenium at pressures up to 640 GPa and demonstrated the feasibility and crucial necessity of the in situ ultra high-pressure measurements for accurate determination of material properties at extreme conditions. PMID:23093199
Measurements of Flow Turbulence in the NASA Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Wiesman, Carol D.; Sleeper, Robert K.
2005-01-01
An assessment of the flow turbulence in the NASA Langley Transonic Dynamics Tunnel (TDT) was conducted during calibration activities following the facility conversion from a Freon-12 heavy-gas test medium to an R134a heavy-gas test medium. Total pressure, static pressure, and acoustic pressure levels were measured at several locations on a stingmounted rake. The test measured wall static pressures at several locations although this paper presents only those from one location. The test used two data acquisition systems, one sampling at 1000 Hz and the second sampling at 125 000 Hz, for acquiring time-domain data. This paper presents standard deviations and power spectral densities of the turbulence points throughout the wind tunnel envelope in air and R134a. The objective of this paper is to present the turbulence characteristics for the test section. No attempt is made to assess the causes of the turbulence. The present paper looks at turbulence in terms of pressure fluctuations. Reference 1 looked at tunnel turbulence in terms of velocity fluctuations.
NASA Technical Reports Server (NTRS)
Debogdan, C. E.; Moss, J. E., Jr.; Braithwaite, W. M.
1977-01-01
The measured distribution of compressor interstage pressures and temperatures resulting from a 180 deg inlet-total-pressure distortion for a J85-13 turbojet engine is reported. Extensive inner stage instrumentation combined with stepwise rotation of the inlet distortion gave data of high circumferential resolution. The steady-state pressures and temperatures along with the amplitude, extent, and location of the distorted areas are given. Data for 80, 90, and 100 percent of rotor design speed are compared with clean (undistorted) inlet flow conditions to show pressure and temperature behavior within the compressor. Both overall and stagewise compressor performances vary only slightly when clean and distorted inlet conditions are compared. Total and static pressure distortions increase in amplitude in the first few stages of the compressor and then attenuate fairly uniformly to zero at the discharge. Total-temperature distortion induced by the pressure distortion reached a maximum amplitude by the first two stages and decayed only a little through the rest of the compressor. Distortion amplitude tended to peak in line with the screen edges, and, except for total and static pressure in the tip zone, there was little swirl in the axial direction.
Survival of Shewanella Oneidensis MR-1 to GPa pressures
NASA Astrophysics Data System (ADS)
Hazael, Rachael; Foglia, Fabrizia; Leighs, James; Appleby-Thomas, Gareth; Daniel, Isabelle; Eakins, Daniel; Meersman, Filip; McMillian, Paul
2013-06-01
Most life on Earth is thought to occupy near-surface environments under relatively mild conditions of temperature, pressure, pH, salinity etc. That view is changing following discovery of extremophile organisms that prefer environments based on high or low T, extreme chemistries, or very high pressures. Over the past three decades, geomicrobiologists have discovered an extensive subsurface biosphere, that may account for between 1/10 to 1/3 of Earth's living biomass. We subjected samples of Shewanella oneidensis to several pressure cycles to examine its survival to static high pressures to above 1.5 GPa. Shewanella forms part of a genus that contains several piezophile species like S. violacea and S. benthica. We have obtained growth curves for populations recovered from high P conditions and cultured in the laboratory, before being subjected to even higher pressures. We have also carried out dynamic shock experiments using a specially designed cell to maintain high-P, low-T conditions during shock-recovery experiments and observe colony formation among the survivors. Colony counts, shape and growth curves allow us to compare the static vs dynamic pressure resistance of wild type vs pressure-adapted strains. Leverhulme
Static and Dynamic Moduli of Malm Carbonate: A Poroelastic Correlation
NASA Astrophysics Data System (ADS)
Hassanzadegan, Alireza; Guérizec, Romain; Reinsch, Thomas; Blöcher, Guido; Zimmermann, Günter; Milsch, Harald
2016-08-01
The static and poroelastic moduli of a porous rock, e.g., the drained bulk modulus, can be derived from stress-strain curves in rock mechanical tests, and the dynamic moduli, e.g., dynamic Poisson's ratio, can be determined by acoustic velocity and bulk density measurements. As static and dynamic elastic moduli are different, a correlation is often required to populate geomechanical models. A novel poroelastic approach is introduced to correlate static and dynamic bulk moduli of outcrop analogues samples, representative of Upper-Malm reservoir rock in the Molasse basin, southwestern Germany. Drained and unjacketed poroelastic experiments were performed at two different temperature levels (30 and 60°C). For correlating the static and dynamic elastic moduli, a drained acoustic velocity ratio is introduced, corresponding to the drained Poisson's ratio in poroelasticity. The strength of poroelastic coupling, i.e., the product of Biot and Skempton coefficients here, was the key parameter. The value of this parameter decreased with increasing effective pressure by about 56 ~% from 0.51 at 3 MPa to 0.22 at 73 MPa. In contrast, the maximum change in P- and S-wave velocities was only 3 % in this pressure range. This correlation approach can be used in characterizing underground reservoirs, and can be employed to relate seismicity and geomechanics (seismo-mechanics).
Jiang, Qixia; Li, Xiaohua; Zhang, Aiqin; Guo, Yanxia; Liu, Yahong; Liu, Haiying; Qu, Xiaolong; Zhu, Yajun; Guo, Xiujun; Liu, Li; Zhang, Liyan; Bo, Suping; Jia, Jing; Chen, Yuejuan; Zhang, Rui; Wang, Jiandong
2014-01-01
Objective: Present study is designed to evaluate the effects of preventing pressure ulcer in surgical patients with two types of pressure-relieving mattresses. Methods: 1074 surgical patients from 12 hospitals in China were divided into A group (static air mattress with repositioning every 2 hours, n = 562) and B group (power pressure air mattress with repositioning every 2 hours, n = 512). The patient was subjected to a pressure-relieving mattress and observed from 0-5 days after surgery. Indications include the Braden scores, hospital-acquired pressure ulcers (HAPU) incidence and stage. Results: The Braden scores between two groups in five days after surgery were no significant (P > 0.05). The incidence of HAPU between two groups in same days also was no significant (1.07% vs. 0.98%, P > 0.05). The incidence of Stage I and stage II pressure ulcers in group A and B were 1.07% (6/562) and 0.98% (5/512), respectively (χ2 = 0.148, P = 0.882). Conclusion: The effects of preventing pressure ulcer in surgical patients with two types of pressure-relieving mattresses are similar, but the protocol by static air mattress with repositioning every 2 hours is benefit when no power. PMID:25356144
Chang, Hsun-Wen; Chieh, Hsiao-Feng; Lin, Chien-Ju; Su, Fong-Chin; Tsai, Ming-June
2014-01-01
Objectives The purpose of this study was to examine the correlation between the foot arch volume measured from static positions and the plantar pressure distribution during walking. Methods A total of 27 children, two to six years of age, were included in this study. Measurements of static foot posture were obtained, including navicular height and foot arch volume in sitting and standing positions. Plantar pressure, force and contact areas under ten different regions of the foot were obtained during walking. Results The foot arch index was correlated (r = 0.32) with the pressure difference under the midfoot during the foot flat phase. The navicular heights and foot arch volumes in sitting and standing positions were correlated with the mean forces and pressures under the first (r = −0.296∼−0.355) and second metatarsals (r = −0.335∼−0.504) and midfoot (r = −0.331∼−0.496) during the stance phase of walking. The contact areas under the foot were correlated with the foot arch parameters, except for the area under the midfoot. Conclusions The foot arch index measured in a static position could be a functional index to predict the dynamic foot functions when walking. The foot arch is a factor which will influence the pressure distribution under the foot. Children with a lower foot arch demonstrated higher mean pressure and force under the medial forefoot and midfoot, and lower contact areas under the foot, except for the midfoot region. Therefore, children with flatfoot may shift their body weight to a more medial foot position when walking, and could be at a higher risk of soft tissue injury in this area. PMID:24736650
NASA Technical Reports Server (NTRS)
Pendergraft, O. C., Jr.
1979-01-01
Static pressure coefficient distributions on the forebody, afterbody, and nozzles of a 1/12 scale F-15 propulsion model were determined. The effects of nozzle power setting and horizontal tail deflection angle on the pressure coefficient distributions were investigated.
40 CFR 60.274 - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... that is important to the performance of the total capture system (i.e., pressure sensors, dampers, and... under paragraph (d) of this section; and (4) All pressure data obtained under paragraph (f) of this... provisions of this subpart shall check and record on a once-per-shift basis furnace static pressure (if a DEC...
Code of Federal Regulations, 2012 CFR
2012-10-01
... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH...
Code of Federal Regulations, 2013 CFR
2013-10-01
... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH...
Code of Federal Regulations, 2014 CFR
2014-10-01
... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH...
Code of Federal Regulations, 2010 CFR
2010-10-01
... respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... the facepiece shall not fall below atmospheric at inhalation airflows less than 115 liters (4 cubic...
Code of Federal Regulations, 2011 CFR
2011-10-01
... respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... the facepiece shall not fall below atmospheric at inhalation airflows less than 115 liters (4 cubic...
NASA Technical Reports Server (NTRS)
Haviland, J. K.; Schroeder, J. C.
1978-01-01
As part of an overall study of the scaling laws for the fluctuating pressures induced on the wings and flaps of STOL aircraft by jet engine impingement, an experimental investigation was made of the near field fluctuating pressures behind a cold circular jet, both when it was free and when it was impinging on a flat plate. Miniature static pressure probes were developed for measurements in the free jet and on the flat plate which were connected by plastic tubing to 1/8 inch microphones and acted as pressure transducers. Using a digital correlator together with an FFT program on the CDC 6400 computer, spectral densities, relative amplitudes, phase lags, and coherences were also obtained for the signals from pairs of these probes, and were used to calibrate these probes directly against microphones. This system of instrumentation was employed to obtain single point rms and third octave surveys of the static pressures in the free jet and on the surface of the plate.
NASA Technical Reports Server (NTRS)
Gooderum, P. B.; Bushnell, D. M.
1972-01-01
Atomization, drop size, and penetration data are presented for cross stream water injection at conditions simulating high altitude reentry (low Weber number, high static temperature, high Knudsen number, and low static pressure). These results are applied to the RAM C-1 and C-3 flights. Two primary breakup modes are considered, vapor pressure or flashing and aerodynamic atomization. Results are given for breakup boundaries and mean drop size for each of these atomization mechanisms. Both standard and flight orifice geometries are investigated. The data were obtained in both a static environment and in conventional aerodynamic facilities at Mach numbers of 4.5 and 8. The high temperature aspects of reentry were simulated in a Mach 5.5 cyanogen-oxygen tunnel with total temperature of 4500 K.
Magma degassing triggered by static decompression at Kīlauea Volcano, Hawai‘i
Poland, Michael P.; Jeff, Sutton A.; Gerlach, Terrence M.
2009-01-01
During mid-June 2007, the summit of Kīlauea Volcano, Hawai‘i, deflated rapidly as magma drained from the subsurface to feed an east rift zone intrusion and eruption. Coincident with the deflation, summit SO2 emission rates rose by a factor of four before decaying to background levels over several weeks. We propose that SO2 release was triggered by static decompression caused by magma withdrawal from Kīlauea's shallow summit reservoir. Models of the deflation suggest a pressure drop of 0.5–3 MPa, which is sufficient to trigger exsolution of the observed excess SO2 from a relatively small volume of magma at the modeled source depth beneath Kīlauea's summit. Static decompression may also explain other episodes of deflation accompanied by heightened gas emission, including the precursory phases of Kīlauea's 2008 summit eruption. Hazards associated with unexpected volcanic gas emission argue for increased awareness of magma reservoir pressure fluctuations.
Ngomo, Suzy; Messing, Karen; Perrault, Hélène; Comtois, Alain
2008-11-01
North American workers usually stand while working, and prolonged standing is associated with discomfort and cardiovascular problems. Moving may alleviate the problems, but optimum mobility is unknown. The effects of variations in mobility were explored among (1) 34 health care workers whose symptoms of orthostatic intolerance (OI) were recorded after work; (2) 45 factory and laundry workers. Postures were observed over a workday and blood pressure (BP) and heart rate (HR) of both groups were recorded before and after work. Among health care workers, 65% manifested OI symptoms. In a multiple logistic regression, presence of >or= 1 symptom of OI was associated with static postures and being female (p=0.001). More static standing was associated with a larger drop in BP (p=0.04) in both populations. The results suggest that more static standing postures are associated with OI and musculoskeletal symptoms and with a subclinical drop in BP.
NASA Technical Reports Server (NTRS)
Thornton, D. E.
1976-01-01
Tests were conducted in a 14 foot transonic wind tunnel to examine the feasibility of the auxiliary aerodynamic data system (AADS) for determining angles of attack and sideslip during boost flight. The model used was a 0.07 scale replica of the external tank forebody consisting of the nose portion and a 60 inch (full scale) cylindrical section of the ogive cylinder tangency point. The model terminated in a blunt base with a 320.0 inch diameter at external tank (ET) station 1120.37. Pressure data were obtained from five pressure orifices (one total and four statics) on the nose probe, and sixteen surface static pressure orifices along the ET forebody.
Incidence loss for fan turbine rotor blade in two-dimensional cascade
NASA Technical Reports Server (NTRS)
Kline, J. F.; Moffitt, T. P.; Stabe, R. G.
1983-01-01
The effect of incidence angle on the aerodynamic performance of a fan turbine rotor blade was investigated experimentally in a two dimensional cascade. The test covered a range of incidence angles from -15 deg to 10 deg and exit ideal critical velocity ratios from 0.75 to 0.95. The principal measurements were blade-surface static pressures and cross-channel survey of exit total pressure, static pressure, and flow angle. Flow adjacent to surfaces was examined using a visualization technique. The results of the investigation include blade-surface velocity distribution and overall kinetic energy loss coefficients for the incidence angles and exit velocity ratios tested. The measured losses are compared with those from a reference core turbine rotor blade and also with two common analytical methods of predicting incidence loss.
NASA Astrophysics Data System (ADS)
Sebold, Jean Eduardo; de Lacerda, Luiz Alkimin
2018-04-01
This paper describes a substantiated mathematical theory for Rayleigh waves propagated on some types of metal cylinders. More specifically, it presents not only a new way to express the dispersion relation of Rayleigh waves propagated on the cylindrical surface, but also how it can be used to construct a mathematical equation showing that the applied static mechanical pressure affects the shear modulus of the metal cylinder. All steps, required to conclude the process, consider the equation of motion as a function of radial and circumferential coordinates only, while the axial component can be overlooked without causing any problems. Some numerical experiments are done to illustrate the changes in the Rayleigh circumferential phase velocity in a metal cylindrical section due to static mechanical pressure around its external surface.
NASA Technical Reports Server (NTRS)
Tanner, John A.
1996-01-01
A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.
NASA Technical Reports Server (NTRS)
Tanner, John A.
1996-01-01
A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical-loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.
NASA Technical Reports Server (NTRS)
Elrod, David; Christensen, Eric; Brown, Andrew
2011-01-01
The temporal frequency content of the dynamic pressure predicted by a 360 degree computational fluid dynamics (CFD) analysis of a turbine flow field provides indicators of forcing function excitation frequencies (e.g., multiples of blade pass frequency) for turbine components. For the Pratt and Whitney Rocketdyne J-2X engine turbopumps, Campbell diagrams generated using these forcing function frequencies and the results of NASTRAN modal analyses show a number of components with modes in the engine operating range. As a consequence, forced response and static analyses are required for the prediction of combined stress, high cycle fatigue safety factors (HCFSF). Cyclically symmetric structural models have been used to analyze turbine vane and blade rows, not only in modal analyses, but also in forced response and static analyses. Due to the tortuous flow pattern in the turbine, dynamic pressure loading is not cyclically symmetric. Furthermore, CFD analyses predict dynamic pressure waves caused by adjacent and non-adjacent blade/vane rows upstream and downstream of the row analyzed. A MATLAB script has been written to calculate displacements due to the complex cyclically asymmetric dynamic pressure components predicted by CFD analysis, for all grids in a blade/vane row, at a chosen turbopump running speed. The MATLAB displacements are then read into NASTRAN, and dynamic stresses are calculated, including an adjustment for possible mistuning. In a cyclically symmetric NASTRAN static analysis, static stresses due to centrifugal, thermal, and pressure loading at the mode running speed are calculated. MATLAB is used to generate the HCFSF at each grid in the blade/vane row. When compared to an approach assuming cyclic symmetry in the dynamic flow field, the current approach provides better assurance that the worst case safety factor has been identified. An extended example for a J-2X turbopump component is provided.
NASA Astrophysics Data System (ADS)
Staszek, M.; Orlecka-Sikora, B.; Leptokaropoulos, K.; Kwiatek, G.; Martínez-Garzón, P.
2017-07-01
We use a high-quality data set from the NW part of The Geysers geothermal field to determine statistical significance of temporal static stress drop variations and their relation to injection rate changes. We use a group of 322 seismic events which occurred in the proximity of Prati-9 and Prati-29 injection wells to examine the influence of parameters such as moment magnitude, focal mechanism, hypocentral depth, and normalized hypocentral distances from open-hole sections of injection wells on static stress drop changes. Our results indicate that (1) static stress drop variations in time are statistically significant, (2) statistically significant static stress drop changes are inversely related to injection rate fluctuations. Therefore, it is highly expected that static stress drop of seismic events is influenced by pore pressure in underground fluid injection conditions and depends on the effective normal stress and strength of the medium.
Blast-Induced Acceleration in a Shock Tube: Distinguishing Primary and Tertiary Blast Injury
2015-10-01
these well-defined exposure conditions, anesthetized rats are used to simultaneously record intracranial pressure (ICP), intravascular pressure , and...blast flow conditions (e.g. peak static and total pressure , positive phase duration, and impulse) and acceleration and displacement of a wide range of...resultant pressure responses in varied compartments in concert with the neuropathological, neurochemical, and neurobehavioral consequences of exposures
W. J. Massman; R. A. Sommerfeld; A. R. Mosier; K. F. Zeller; T.J . Hehn; S. G. Rochelle
1997-01-01
Pressure pumping at the Earth's surface is caused by short-period atmospheric turbulence, longer-period barometric changes, and quasi-static pressure fields induced by wind blowing across irregular topography. These naturally occurring atmospheric pressure variations induce periodic fluctuations in airflow through snowpacks, soils, and any other porous media at...
NASA Astrophysics Data System (ADS)
Salminen, J.; Högström, R.; Saxholm, S.; Lakka, A.; Riski, K.; Heinonen, M.
2018-04-01
In this paper we present the development of a primary standard for dynamic pressures that is based on the drop weight method. At the moment dynamic pressure transducers are typically calibrated using reference transducers, which are calibrated against static pressure standards. Because dynamic and static characteristics of pressure transducers may significantly differ from each other, it is important that these transducers are calibrated against dynamic pressure standards. In a method developed in VTT Technical Research Centre of Finland Ltd, Centre for Metrology MIKES, a pressure pulse is generated by impact between a dropping weight and a piston of a liquid-filled piston-cylinder assembly. The traceability to SI-units is realized through interferometric measurement of the acceleration of the dropping weight during impact, the effective area of the piston-cylinder assembly and the mass of the weight. Based on experimental validation and an uncertainty evaluation, the developed primary standard provides traceability for peak pressures in the range from 10 MPa to 400 MPa with a few millisecond pulse width and a typical relative expanded uncertainty (k = 2) of 1.5%. The performance of the primary standard is demonstrated by test calibrations of two dynamic pressure transducers.
Preliminary Drag Tests in Flight of Low-Drag Wing on the Curtiss XP-60 Airplane
1941-12-01
y () Ho T Y absolute free q abaolute weke HI absolute wake Ho absolute free stream static p~. essure position static ~ essure position totel ~ressure...t’hetotal .hetidlev61- The stream stagnation ,pressure .Ho is found ay ‘addingthe .~ essure corresponding to the indicated deflection of “fourthtube 142..3
Orifice-induced pressure error studies in Langley 7- by 10-foot high-speed tunnel
NASA Technical Reports Server (NTRS)
Plentovich, E. B.; Gloss, B. B.
1986-01-01
For some time it has been known that the presence of a static pressure measuring hole will disturb the local flow field in such a way that the sensed static pressure will be in error. The results of previous studies aimed at studying the error induced by the pressure orifice were for relatively low Reynolds number flows. Because of the advent of high Reynolds number transonic wind tunnels, a study was undertaken to assess the magnitude of this error at high Reynolds numbers than previously published and to study a possible method of eliminating this pressure error. This study was conducted in the Langley 7- by 10-Foot High-Speed Tunnel on a flat plate. The model was tested at Mach numbers from 0.40 to 0.72 and at Reynolds numbers from 7.7 x 1,000,000 to 11 x 1,000,000 per meter (2.3 x 1,000,000 to 3.4 x 1,000,000 per foot), respectively. The results indicated that as orifice size increased, the pressure error also increased but that a porous metal (sintered metal) plug inserted in an orifice could greatly reduce the pressure error induced by the orifice.
NASA Technical Reports Server (NTRS)
Boswinkle, Robert W JR; Keith, Arvid L JR
1948-01-01
A method for calculating the flow fields of axially symmetric bodies from their pressure distributions is reported in NACA RM No. L8I17. In order to facilitate application of this method to the important case of the cowling-spinner combination, for use in the design of propellers, the present paper presents static-pressure distributions on the tops of 79 high-critical-speed NACA 1-series cowling-spinner combinations over wide ranges of inlet-velocity ratio at angles of attack of 0 degrees, 2 degrees, 4 degrees, and 6 degrees. Static-pressure distributions around the nose sections of several cowlings are given in greater detail to aid in estimating the pressures near the stagnation points and to show the effect of changes in the internal lip shape. The effects of the operation of a typical propeller on the surface pressures on the cowling are shown for one configuration. The pressure distributions over the nine NACA 1-series nose inlets used as the basic components of these combinations are also presented ro supplement the existing open-nose-cowling data of NACA ACR No. L5F30a which are applicable to the case of the rotating cowling.
1944-11-01
SS SUBJECT HEADIN6S: Pressure distribution - Flow research - Methods (40950) Wings (74500); DMiion, Intolilfjonco Air Kkrtcricl Command AIQ TECHNICAL INDGK Wrl0ht- Patto *son Air Forco ( Dayton, Ohio ///¥
Vertical thermal structure of the Venus atmosphere from temperature and pressure measurements
NASA Technical Reports Server (NTRS)
Linkin, V. M.; Blamon, Z.; Lipatov, A. P.; Devyatkin, S. I.; Dyachkov, A. V.; Ignatova, S. I.; Kerzhanovich, V. V.; Malyk, K.; Stadny, V. I.; Sanotskiy, Y. V.
1986-01-01
Accurate temperature and pressure measurements were made on the Vega-2 lander during its entire descent. The temperature and pressure at the surface were 733 K and 89.3 bar, respectively. A strong temperature inversion was found in the upper troposphere. Several layers with differing static stability were visible in the atmospheric structure.
NASA Technical Reports Server (NTRS)
Jaeck, C. L.
1976-01-01
A test was conducted in the Boeing Large Anechoic Chamber to determine static jet noise source locations of six baseline and suppressor nozzle models, and establish a technique for extrapolating near field data into the far field. The test covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K.
Tests Of Array Of Flush Pressure Sensors
NASA Technical Reports Server (NTRS)
Larson, Larry J.; Moes, Timothy R.; Siemers, Paul M., III
1992-01-01
Report describes tests of array of pressure sensors connected to small orifices flush with surface of 1/7-scale model of F-14 airplane in wind tunnel. Part of effort to determine whether pressure parameters consisting of various sums, differences, and ratios of measured pressures used to compute accurately free-stream values of stagnation pressure, static pressure, angle of attack, angle of sideslip, and mach number. Such arrays of sensors and associated processing circuitry integrated into advanced aircraft as parts of flight-monitoring and -controlling systems.
Transient Pressure Test Article (TPTA) 1.1 and 1.1A, volume 1
NASA Technical Reports Server (NTRS)
Rebells, Clarence A.
1988-01-01
This final test report presents the results obtained during the static hot firing and cold-gas high Q tests of the first Transient Pressure Test Article (TPTA) 1.1. The TPTA consisted of field test joints A and B, which were the original RSRM J-insulation configuration, with a metal capture feature. It also consisted of a flight configuration nozzle-to-case test joint (Joint D) with shorter vent slots. Fluorocarbon O-rings were used in all the test joints. The purpose of the TPTA tests is to evaluate and characterize the RSMR field and nozzle-to-case joints under the influence of ignition and strut loads during liftoff anf high Q. All objectives of the cold-gas high Q (TPTA 1.1A) test were met and all measurements were close to predicted values. During the static hot-firing test (TPTA 1.1), the motor was inadvertently plugged by the quench injector plug, making it a more severe test, although no strut loads were applied. The motor was depressurized after approximately 11 min using an auxiliary system, and no anomalies were noted. In the static hot-firing test, pressure was incident on the insulation and the test joint gaps were within the predicted range. During the static hot-firing test, no strut loads were applied because the loading system malfunctioned. For this test, all measurements were within range of similar tests performed without strut loads.
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Brausch, J. F.; Price, A. O.
1984-01-01
Acoustic and diagnostic data that were obtained to determine the influence of selected geometric and aerodynamic flow variables of coannular nozzles with thermal acoustic shields are summarized in this comprehensive data report. A total of 136 static and simulated flight acoustic test points were conducted with 9 scale-model nozzles. Aerodynamic laser velocimeter measurements were made for four selected plumes. In addition, static pressure data in the chute base region of the suppressor configurations were obtained to assess the influence of the shield stream on the suppressor base drag.
Portable wastewater flow meter
Hunter, Robert M.
1999-02-02
A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.
Portable wastewater flow meter
Hunter, Robert M.
1990-01-01
A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.
NASA Astrophysics Data System (ADS)
Arts, T.; Lambertderouvroit, M.; Rutherford, A. W.
1990-09-01
An experimental aerothermal investigation of a highly loaded transonic turbine nozzle guide vane mounted in a linear cascade arrangement is presented. The measurements were performed in a short duration isentropic light piston compression tube facility, allowing a correct simulation of Mach and Reynolds numbers as well as of the gas to wall temperature ratio compared to the values currently observed in modern aeroengines. The experimental program consisted of the following: (1) flow periodicity checks by means of wall static pressure measurements and Schlieren flow visualizations; (2) blade velocity distribution measurements by means of static pressure tappings; (3) blade convective heat transfer measurements by means of static pressure tappings; (4) blade convective heat transfer measurements by means of platinium thin films; (5) downstream loss coefficient and exit flow angle determinations by using a new fast traversing mechanism; and (6) free stream turbulence intensity and spectrum measurements. These different measurements were performed for several combinations of the free stream flow parameters looking at the relative effects on the aerodynamic blade performance and blade convective heat transfer of Mach number, Reynolds number, and freestream turbulence intensity.
A review of wave celerity in frictionless and axisymmetrical steel-lined pressure tunnels
NASA Astrophysics Data System (ADS)
Hachem, F. E.; Schleiss, A. J.
2011-02-01
Generally applicable approaches for estimating the “quasi-static”, which means without fluid-structure interaction and frequency-dependent water-hammer wave speed in steel-lined pressure tunnels are analyzed. The external constraints and assumptions of these approaches are discussed in detail. The reformulated formulas are then compared to commonly used expressions. Some special cases of wave speed calculation such as unlined pressure tunnels and open-air penstocks are investigated. The quasi-static wave speed is significantly influenced by the state of the backfill concrete and the near-field rock zone (cracked or uncracked). In the case when these two layers are cracked, the quasi-static wave speed is overestimated in between 1% and 8% compared to uncracked concrete and near-field rock layers. Depending on the stiffness of steel liner and penstock, the fluid-structure interaction leads to significant difference in wave speeds values. Compared to the quasi-static case, the fluid-structure interaction approach, applied to steel-lined tunnels, results up to 13% higher wave speed values in the high-frequency range (higher than 600 Hz) and up to 150% lower values for frequencies between 150 and 300 Hz in the considered test case.
A GPS-Based Pitot-Static Calibration Method Using Global Output-Error Optimization
NASA Technical Reports Server (NTRS)
Foster, John V.; Cunningham, Kevin
2010-01-01
Pressure-based airspeed and altitude measurements for aircraft typically require calibration of the installed system to account for pressure sensing errors such as those due to local flow field effects. In some cases, calibration is used to meet requirements such as those specified in Federal Aviation Regulation Part 25. Several methods are used for in-flight pitot-static calibration including tower fly-by, pacer aircraft, and trailing cone methods. In the 1990 s, the introduction of satellite-based positioning systems to the civilian market enabled new inflight calibration methods based on accurate ground speed measurements provided by Global Positioning Systems (GPS). Use of GPS for airspeed calibration has many advantages such as accuracy, ease of portability (e.g. hand-held) and the flexibility of operating in airspace without the limitations of test range boundaries or ground telemetry support. The current research was motivated by the need for a rapid and statistically accurate method for in-flight calibration of pitot-static systems for remotely piloted, dynamically-scaled research aircraft. Current calibration methods were deemed not practical for this application because of confined test range size and limited flight time available for each sortie. A method was developed that uses high data rate measurements of static and total pressure, and GPSbased ground speed measurements to compute the pressure errors over a range of airspeed. The novel application of this approach is the use of system identification methods that rapidly compute optimal pressure error models with defined confidence intervals in nearreal time. This method has been demonstrated in flight tests and has shown 2- bounds of approximately 0.2 kts with an order of magnitude reduction in test time over other methods. As part of this experiment, a unique database of wind measurements was acquired concurrently with the flight experiments, for the purpose of experimental validation of the optimization method. This paper describes the GPS-based pitot-static calibration method developed for the AirSTAR research test-bed operated as part of the Integrated Resilient Aircraft Controls (IRAC) project in the NASA Aviation Safety Program (AvSP). A description of the method will be provided and results from recent flight tests will be shown to illustrate the performance and advantages of this approach. Discussion of maneuver requirements and data reduction will be included as well as potential applications.
NASA Technical Reports Server (NTRS)
Pool, Kirby V.
1989-01-01
This volume summarizes the analysis used to assess the structural life of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbo-Pump (HPFTP) Third Stage Impeller. This analysis was performed in three phases, all using the DIAL finite element code. The first phase was a static stress analysis to determine the mean (non-varying) stress and static margin of safety for the part. The loads involved were steady state pressure and centrifugal force due to spinning. The second phase of the analysis was a modal survey to determine the vibrational modes and natural frequencies of the impeller. The third phase was a dynamic response analysis to determine the alternating component of the stress due to time varying pressure impulses at the outlet (diffuser) side of the impeller. The results of the three phases of the analysis show that the Third Stage Impeller operates very near the upper limits of its capability at full power level (FPL) loading. The static loading alone creates stresses in some areas of the shroud which exceed the yield point of the material. Additional cyclic loading due to the dynamic force could lead to a significant reduction in the life of this part. The cyclic stresses determined in the dynamic response phase of this study are based on an assumption regarding the magnitude of the forcing function.
NASA Technical Reports Server (NTRS)
Thompson, Jim Rogers; Bray, Richard S; COOPER GEORGE E
1950-01-01
The calibrations of four airspeed systems installed in a North American F-86A airplane have been determined in flight at Mach numbers up to 1.04 by the NACA radar-phototheodolite method. The variation of the static-pressure error per unit indicated impact pressure is presented for three systems typical of those currently in use in flight research, a nose boom and two different wing-tip booms, and for the standard service system installed in the airplane. A limited amount of information on the effect of airplane normal-force coefficient on the static-pressure error is included. The results are compared with available theory and with results from wind-tunnel tests of the airspeed heads alone. Of the systems investigated, a nose-boom installation was found to be most suitable for research use at transonic and low supersonic speeds because it provided the greatest sensitivity of the indicated Mach number to a unit change in true Mach number at very high subsonic speeds, and because it was least sensitive to changes in airplane normal-force coefficient. The static-pressure error of the nose-boom system was small and constant above a Mach number of 1.03 after passage of the fuselage bow shock wave over the airspeed head.
The phase diagram of solid hydrogen at high pressure: A challenge for first principles calculations
NASA Astrophysics Data System (ADS)
Azadi, Sam; Foulkes, Matthew
2015-03-01
We present comprehensive results for the high-pressure phase diagram of solid hydrogen. We focus on the energetically most favorable molecular and atomic crystal structures. To obtain the ground-state static enthalpy and phase diagram, we use semi-local and hybrid density functional theory (DFT) as well as diffusion quantum Monte Carlo (DMC) methods. The closure of the band gap with increasing pressure is investigated utilizing quasi-particle many-body calculations within the GW approximation. The dynamical phase diagram is calculated by adding proton zero-point energies (ZPE) to static enthalpies. Density functional perturbation theory is employed to calculate the proton ZPE and the infra-red and Raman spectra. Our results clearly demonstrate the failure of DFT-based methods to provide an accurate static phase diagram, especially when comparing insulating and metallic phases. Our dynamical phase diagram obtained using fully many-body DMC calculations shows that the molecular-to-atomic phase transition happens at the experimentally accessible pressure of 374 GPa. We claim that going beyond mean-field schemes to obtain derivatives of the total energy and optimize crystal structures at the many-body level is crucial. This work was supported by the UK engineering and physics science research council under Grant EP/I030190/1, and made use of computing facilities provided by HECTOR, and by the Imperial College London high performance computing centre.
Experimental Investigation on Design Enhancement of Axial Fan Using Fixed Guide Vane
NASA Astrophysics Data System (ADS)
Munisamy, K. M.; Govindasamy, R.; Thangaraju, S. K.
2015-09-01
Airflow passes through the rotating blade in an axial flow fan will experience a helical flow pattern. This swirling effect leads the system to experience swirl energy losses or pressure drop yet reducing the total efficiency of the fan system. A robust tool to encounter this air spin past the blade is by introducing guide vane to the system. Owing to its importance, a new approach in designing outlet guide vane design for a commercial usage 1250mm diameter axial fan with a 30° pitch angle impeller has been introduced in this paper. A single line metal of proper curvature guide vane design technique has been adopted for this study. By choosing fan total efficiency as a target variable to be improved, the total and static pressure on the design point were set to be constraints. Therefore, the guide vane design was done based on the improvement target on the static pressure in system. The research shows that, with the improvement in static pressure by 29.63% through guide vane installation, the total fan efficiency is increased by 5.12%, thus reduces the fan power by 5.32%. Good agreement were found, that when the fan total efficiency increases, the power consumption of the fan is reduced. Therefore, this new approach of guide vane design can be applied to improve axial fan performance.
Wind pressure testing of tornado safe room components made from wood
Robert Falk; Deepak Shrestha
2016-01-01
To evaluate the ability of a wood tornado safe room to resist wind pressures produced by a tornado, two safe room com-ponents were tested for wind pressure strength. A tornado safe room ceiling panel and door were static-pressure-tested according to ASTM E 330 using a vacuum test system. Re-sults indicate that the panels had load capacities from 2.4 to 3.5 times that...
Manufacturing Diamond Under Very High Pressure
NASA Technical Reports Server (NTRS)
Voronov, Oleg
2007-01-01
A process for manufacturing bulk diamond has been made practical by the invention of the High Pressure and Temperature Apparatus capable of applying the combination of very high temperature and high pressure needed to melt carbon in a sufficiently large volume. The apparatus includes a reaction cell wherein a controlled static pressure as high as 20 GPa and a controlled temperature as high as 5,000 C can be maintained.
The Ames 12-Foot Pressure Tunnel: Tunnel Empty Flow Calibration Results and Discussion
NASA Technical Reports Server (NTRS)
Zell, Peter T.; Banducci, David E. (Technical Monitor)
1996-01-01
An empty test section flow calibration of the refurbished NASA Ames 12-Foot Pressure Tunnel was recently completed. Distributions of total pressure, dynamic pressure, Mach number, flow angularity temperature, and turbulence are presented along with results obtained prior to facility demolition. Axial static pressure distributions along tunnel centerline are also compared. Test section model support geometric configurations will be presented along with a discussion of the issues involved with different model mounting schemes.
Hobson, Deborah B; Chang, Tracy Y; Aboagye, Jonathan K; Lau, Brandyn D; Shihab, Hasan M; Fisher, Betsy; Young, Samantha; Sujeta, Nancy; Shaffer, Dauryne L; Popoola, Victor O; Kraus, Peggy S; Knorr, Gina; Farrow, Norma E; Streiff, Michael B; Haut, Elliott R
2017-08-01
This study aimed to determine the prevalence of static graduated compression stocking (sGCS)-associated pressure injury among patients in surgical intensive care units (ICUs). We retrospectively reviewed data from wound care rounds between April 2011 and June 2012 at 3 surgical ICUs at an urban, tertiary care hospital. Patients with sGCS-associated pressure injury were identified and descriptive analysis was performed on their demographic, perioperative, and postoperative characteristics. We examined 1787 individual patients during 2391 patient encounters. A total of 129 (7.2%) of patients developed pressure injuries. Forty patients (2.2%) developed sGCS-associated pressure injury. Static GCS-associated pressure injury accounted for 31% (40/129) of all pressure injuries and 74% (40/54) of all medical device-related pressure injury. Eighteen (45%) and 6 (15%) developed stage 1 and 2 pressure injury, respectively, and 16 (40%) developed deep tissue injuries. The mean age of our patients was 64.7 years, about half (47.5%) were male, and their mean Acute Physiology and Chronic Health Evaluation II score was 18.8. Many had comorbid conditions, including obesity (44.5%) and diabetes (42.5%), and required mechanical ventilation (45%). Pressure injuries are a notable complication of sGCS in surgical ICU patients. Appropriate measures are required to help avoid this potentially preventable harm. Copyright © 2017 Elsevier Inc. All rights reserved.
Pressure ulcer risk assessment and prevention: a systematic comparative effectiveness review.
Chou, Roger; Dana, Tracy; Bougatsos, Christina; Blazina, Ian; Starmer, Amy J; Reitel, Katie; Buckley, David I
2013-07-02
Pressure ulcers are associated with substantial health burdens but may be preventable. To review the clinical utility of pressure ulcer risk assessment instruments and the comparative effectiveness of preventive interventions in persons at higher risk. MEDLINE (1946 through November 2012), CINAHL, the Cochrane Library, grant databases, clinical trial registries, and reference lists. Randomized trials and observational studies on effects of using risk assessment on clinical outcomes and randomized trials of preventive interventions on clinical outcomes. Multiple investigators abstracted and checked study details and quality using predefined criteria. One good-quality trial found no evidence that use of a pressure ulcer risk assessment instrument, with or without a protocolized intervention strategy based on assessed risk, reduces risk for incident pressure ulcers compared with less standardized risk assessment based on nurses' clinical judgment. In higher-risk populations, 1 good-quality and 4 fair-quality randomized trials found that more advanced static support surfaces were associated with lower risk for pressure ulcers compared with standard mattresses (relative risk range, 0.20 to 0.60). Evidence on the effectiveness of low-air-loss and alternating-air mattresses was limited, with some trials showing no clear differences from advanced static support surfaces. Evidence on the effectiveness of nutritional supplementation, repositioning, and skin care interventions versus usual care was limited and had methodological shortcomings, precluding strong conclusions. Only English-language articles were included, publication bias could not be formally assessed, and most studies had methodological shortcomings. More advanced static support surfaces are more effective than standard mattresses for preventing ulcers in higher-risk populations. The effectiveness of formal risk assessment instruments and associated intervention protocols compared with less standardized assessment methods and the effectiveness of other preventive interventions compared with usual care have not been clearly established.
NASA Astrophysics Data System (ADS)
Disotell, Kevin J.; Nikoueeyan, Pourya; Naughton, Jonathan W.; Gregory, James W.
2016-05-01
Recognizing the need for global surface measurement techniques to characterize the time-varying, three-dimensional loading encountered on rotating wind turbine blades, fast-responding pressure-sensitive paint (PSP) has been evaluated for resolving unsteady aerodynamic effects in incompressible flow. Results of a study aimed at demonstrating the laser-based, single-shot PSP technique on a low Reynolds number wind turbine airfoil in static and dynamic stall are reported. PSP was applied to the suction side of a Delft DU97-W-300 airfoil (maximum thickness-to-chord ratio of 30 %) at a chord Reynolds number of 225,000 in the University of Wyoming open-return wind tunnel. Static and dynamic stall behaviors are presented using instantaneous and phase-averaged global pressure maps. In particular, a three-dimensional pressure topology driven by a stall cell pattern is detected near the maximum lift condition on the steady airfoil. Trends in the PSP-measured pressure topology on the steady airfoil were confirmed using surface oil visualization. The dynamic stall case was characterized by a sinusoidal pitching motion with mean angle of 15.7°, amplitude of 11.2°, and reduced frequency of 0.106 based on semichord. PSP images were acquired at selected phase positions, capturing the breakdown of nominally two-dimensional flow near lift stall, development of post-stall suction near the trailing edge, and a highly three-dimensional topology as the flow reattaches. Structural patterns in the surface pressure topologies are considered from the analysis of the individual PSP snapshots, enabled by a laser-based excitation system that achieves sufficient signal-to-noise ratio in the single-shot images. The PSP results are found to be in general agreement with observations about the steady and unsteady stall characteristics expected for the airfoil.
NASA Technical Reports Server (NTRS)
Hackett, J. E.; Praytor, E. B.
1972-01-01
Theoretical studies are made of three dimensional turbulent boundary layer behavior on fixed grounds and on moving grounds of the type used in wind tunnel tests. It is shown that, for several widely-varying STOL configurations, the ground static pressure distributions possess a remarkable degree of fore-aft symmetry about the center of lift. At low Renolds number, corresponding to small-tunnel testing, the boundary layer displacement surface reflects to a large degree the symmetry of the pressure distribution. For this reason, induced incidence at the model is small for unseparated ground flow. At high Reynolds number, the displacement thickness decrease aft of the static pressure maximum is noticeably more rapid than the corresponding rise. This is attributed to trailing-vortex-induced spanwise pumping within the boundary layer.
Dynamic XRD, Shock and Static Compression of CaF2
NASA Astrophysics Data System (ADS)
Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew; Smith, Jesse; Sinogeikin, Stanislav
2017-06-01
The high-pressure behavior of CaF2 is probed with x-ray diffraction (XRD) combined with both dynamic compression, using a two-stage light gas gun, and static compression, using diamond anvil cells. We use XRD to follow the unfolding of a shock-driven, fluorite to cotunnite phase transition, on the timescale of nanoseconds. The dynamic behavior of CaF2 under shock loading is contrasted with that under static compression. This work leverages experimental capabilities at the Advanced Photon Source: dynamic XRD and shock experiments at the Dynamic Compression Sector, as well as XRD and static compression in diamond anvil cell at the High-Pressure Collaborative Access Team. These experiments and cross-platform comparisons, open the door to an unprecedented understanding of equations of state and phase transitions at the microstructural level and at different time scales and will ultimately improve our capability to simulate the behavior of materials at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
In situ determination of the static inductance and resistance of a plasma focus capacitor bank.
Saw, S H; Lee, S; Roy, F; Chong, P L; Vengadeswaran, V; Sidik, A S M; Leong, Y W; Singh, A
2010-05-01
The static (unloaded) electrical parameters of a capacitor bank are of utmost importance for the purpose of modeling the system as a whole when the capacitor bank is discharged into its dynamic electromagnetic load. Using a physical short circuit across the electromagnetic load is usually technically difficult and is unnecessary. The discharge can be operated at the highest pressure permissible in order to minimize current sheet motion, thus simulating zero dynamic load, to enable bank parameters, static inductance L(0), and resistance r(0) to be obtained using lightly damped sinusoid equations given the bank capacitance C(0). However, for a plasma focus, even at the highest permissible pressure it is found that there is significant residual motion, so that the assumption of a zero dynamic load introduces unacceptable errors into the determination of the circuit parameters. To overcome this problem, the Lee model code is used to fit the computed current trace to the measured current waveform. Hence the dynamics is incorporated into the solution and the capacitor bank parameters are computed using the Lee model code, and more accurate static bank parameters are obtained.
In situ determination of the static inductance and resistance of a plasma focus capacitor bank
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saw, S. H.; Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone, Victoria 3148; Lee, S.
2010-05-15
The static (unloaded) electrical parameters of a capacitor bank are of utmost importance for the purpose of modeling the system as a whole when the capacitor bank is discharged into its dynamic electromagnetic load. Using a physical short circuit across the electromagnetic load is usually technically difficult and is unnecessary. The discharge can be operated at the highest pressure permissible in order to minimize current sheet motion, thus simulating zero dynamic load, to enable bank parameters, static inductance L{sub 0}, and resistance r{sub 0} to be obtained using lightly damped sinusoid equations given the bank capacitance C{sub 0}. However, formore » a plasma focus, even at the highest permissible pressure it is found that there is significant residual motion, so that the assumption of a zero dynamic load introduces unacceptable errors into the determination of the circuit parameters. To overcome this problem, the Lee model code is used to fit the computed current trace to the measured current waveform. Hence the dynamics is incorporated into the solution and the capacitor bank parameters are computed using the Lee model code, and more accurate static bank parameters are obtained.« less
NASA Technical Reports Server (NTRS)
Barnhart, Paul J.; Greber, Isaac
1997-01-01
A series of experiments were performed to investigate the effects of Mach number variation on the characteristics of the unsteady shock wave/turbulent boundary layer interaction generated by a blunt fin. A single blunt fin hemicylindrical leading edge diameter size was used in all of the experiments which covered the Mach number range from 2.0 to 5.0. The measurements in this investigation included surface flow visualization, static and dynamic pressure measurements, both on centerline and off-centerline of the blunt fin axis. Surface flow visualization and static pressure measurements showed that the spatial extent of the shock wave/turbulent boundary layer interaction increased with increasing Mach number. The maximum static pressure, normalized by the incoming static pressure, measured at the peak location in the separated flow region ahead of the blunt fin was found to increase with increasing Mach number. The mean and standard deviations of the fluctuating pressure signals from the dynamic pressure transducers were found to collapse to self-similar distributions as a function of the distance perpendicular to the separation line. The standard deviation of the pressure signals showed initial peaked distribution, with the maximum standard deviation point corresponding to the location of the separation line at Mach number 3.0 to 5.0. At Mach 2.0 the maximum standard deviation point was found to occur significantly upstream of the separation line. The intermittency distributions of the separation shock wave motion were found to be self-similar profiles for all Mach numbers. The intermittent region length was found to increase with Mach number and decrease with interaction sweepback angle. For Mach numbers 3.0 to 5.0 the separation line was found to correspond to high intermittencies or equivalently to the downstream locus of the separation shock wave motion. The Mach 2.0 tests, however, showed that the intermittent region occurs significantly upstream of the separation line. Power spectral densities measured in the intermittent regions were found to have self-similar frequency distributions when compared as functions of a Strouhal number for all Mach numbers and interaction sweepback angles. The maximum zero-crossing frequencies were found to correspond with the peak frequencies in the power spectra measured in the intermittent region.
NASA Technical Reports Server (NTRS)
Webb, L. D.; Washington, H. P.
1972-01-01
Static pressure position error calibrations for a compensated and an uncompensated XB-70 nose boom pitot static probe were obtained in flight. The methods (Pacer, acceleration-deceleration, and total temperature) used to obtain the position errors over a Mach number range from 0.5 to 3.0 and an altitude range from 25,000 feet to 70,000 feet are discussed. The error calibrations are compared with the position error determined from wind tunnel tests, theoretical analysis, and a standard NACA pitot static probe. Factors which influence position errors, such as angle of attack, Reynolds number, probe tip geometry, static orifice location, and probe shape, are discussed. Also included are examples showing how the uncertainties caused by position errors can affect the inlet controls and vertical altitude separation of a supersonic transport.
Correlation of Slag Expulsion with Ballistic Anomalies in Shuttle Solid Rocket Motors
NASA Technical Reports Server (NTRS)
Sambamurthi, Jay K.; Alvarado, Alexis; Mathias, Edward C.
1996-01-01
During the Shuttle launches, the solid rocket motors (SRM) occasionally experience pressure perturbations (8-13 psi) between 65-75 s into the motor burn time. The magnitudes of these perturbations are very small in comparison with the operating motor chamber pressure, which is over 600 psi during this time frame. These SRM pressure perturbations are believed to he caused primarily by the expulsion of slag (aluminum oxide). Two SRM static tests, TEM-11 and FSM-4, were instrumented extensively for the study of the phenomena associated with pressure perturbations. The test instrumentation used included nonintrusive optical and infrared diagnostics of the plume, such as high-speed photography, radiometers, and thermal image cameras. Results from all of these nonintrusive observations provide substantial circumstantial evidence to support the scenario that the pressure perturbation event in the Shuttle SRM is caused primarily by the expulsion of molten slag. In the static motor tests, the slag was also expelled preferentially near the bottom of the nozzle because of slag accumulation at the bottom of the aft end of the horizontally oriented motor.
Static Feed Water Electrolysis Subsystem Testing and Component Development
NASA Technical Reports Server (NTRS)
Koszenski, E. P.; Schubert, F. H.; Burke, K. A.
1983-01-01
A program was carried out to develop and test advanced electrochemical cells/modules and critical electromechanical components for a static feed (alkaline electrolyte) water electrolysis oxygen generation subsystem. The accomplishments were refurbishment of a previously developed subsystem and successful demonstration for a total of 2980 hours of normal operation; achievement of sustained one-person level oxygen generation performance with state-of-the-art cell voltages averaging 1.61 V at 191 ASF for an operating temperature of 128F (equivalent to 1.51V when normalized to 180F); endurance testing and demonstration of reliable performance of the three-fluid pressure controller for 8650 hours; design and development of a fluid control assembly for this subsystem and demonstration of its performance; development and demonstration at the single cell and module levels of a unitized core composite cell that provides expanded differential pressure tolerance capability; fabrication and evaluation of a feed water electrolyte elimination five-cell module; and successful demonstration of an electrolysis module pressurization technique that can be used in place of nitrogen gas during the standby mode of operation to maintain system pressure and differential pressures.
NASA Technical Reports Server (NTRS)
Bogdonoff, Seymour M.
1991-01-01
This report on a program to study in-plane streamline curvature effects in a turbulent boundary layer at a Mach number of 3. The original proposal, for a 3-year program to explore in-plane streamline curvature effects on a supersonic turbulent boundary layer using three-dimensional pressure fields generated by fins and wall geometry, ended after one year. The purpose of these tests was to compare these streamline curvature effects to the more classical two-dimensional curvature generated by wall shape and imposed pressure gradients, previously considered primarily in a plane normal to the floor. The studies were carried out in the Mach number of 3, 8 x 8 inch High Reynolds Number Supersonic Tunnel. The usual surface visualization and mean wall static pressures were supplemented by the use of many small high frequency wall static pressure gauges (Kulites) to get some indication of the amplification of boundary layer disturbances by the in-plane streamline curvature caused by the three-dimensional pressure fields imposed on the boundary layer.
Integrated experimental platforms to study blast injuries: a bottom-up approach
NASA Astrophysics Data System (ADS)
Bo, C.; Williams, A.; Rankin, S.; Proud, W. G.; Brown, K. A.
2014-05-01
We are developing experimental models of blast injury using data from live biological samples. An integrated research strategy is followed to study material and biological properties of cells, tissues and organs, that are subjected to dynamic and static pressures, relevant to those of battlefield blast. We have developed a confined Split Hopkinson Pressure Bar (SHPB) system, which allows cells, either in suspension or as a monolayer, to be subjected to compression waves with pressures on the order of a few MPa and durations of hundreds of microseconds. The chamber design enables recovery of biological samples for cellular and molecular analysis. The SHPB platform, coupled with Quasi-Static experiments, is used to determine stress-strain curves of soft biological tissues under compression at low, medium and high strain rates. Tissue samples are examined, using histological techniques, to study macro- and microscopic changes induced by compression waves. In addition, a shock tube enables application of single or multiple air blasts with pressures on the order of kPa and a few milliseconds duration; this platform was used for initial studies on mesenchymal stem cells responses to blast pressures.
In-Situ Ultra Low Frequency Poroelastic Response of a Natural Macro-Fracture
NASA Astrophysics Data System (ADS)
Guglielmi, Y.; Cappa, F.; Rutqvist, J.; Tsang, C.; Gaffet, S.
2008-12-01
The seismic visibility of macro-fractures filled with fluids is a central problem in the exploration of thermo- hydro-mechanical and chemical processes that occur in Earth' s subsurface. Most studies have been concerned (1) with cracks of a small size relative to the seismic wavelength (2) with "core-sized" samples of single macro-fractures. In comparison, in-situ studies of macro-fractures are very rare and no real estimate is made of the relevance of this convenient "core-sized" data to in-situ reservoirs in general. In this study, we present a new experimental approach to in-situ characterize mechanical and hydraulic properties of fractures using the innovative HPPP protocol. This protocol allows simultaneous high-frequency (120.2 Hz) sampling of normal displacement and fluid pressure in a borehole intersecting the fracture. We show preliminary results conducted in a single fracture vertically embedded in a carbonate reservoir that contains 3 sets of macro-fractures with an average 2m spacing. Two HPPP probes were set, spaced one meter vertically in the fracture. Two types of ULF seismic sources are applied: a fluid pressure pulse injected in the fracture and a hammer hit at a point located 5m far from the fracture plane. There is a highly non-linear variation of fracture normal displacement-versus- fluid pressure as a function of frequency, the higher the frequency, the lower the displacement spectral amplitude is. The pressure pulse and the hammer hit allow exploring the fracture poroelastic response in the [0 - 3Hz] frequency range. The fracture plays the role of a "low-pass" filter for fluid pressure waves; only a quasi-static pressure signal being registered at the receiver. The displacement wave propagation is more complex resulting in uncoupled quasi-static-pressure-2Hz-deformation signals at the receiver. For low magnitude seismic sources (low amplitude pulse and seismic wave), the fracture natural resonance is amplified resulting in separate signals power spectral peaks. When fluid pressure is enough increased, hydraulic diffusion takes place at frequencies lower than 1.2 Hz. Poroelastic effects related to static hydraulic diffusion and to wave propagation were described separately using a linear elastic model where the fracture was treated as a displacement discontinuity across which stresses are continuous but displacement are discontinuous. It appears that the dynamic fracture normal stiffness at 2 to 3 Hz is a factor of 2.8 higher than the static stiffness although the fracture displays a high hydraulic aperture of 10-4 m. This surprising result is related to a high heterogeneity of the fracture channel network with a large porosity/permeability contrast that does not allow fluid displacement under dynamic loading. The HPPP approach appears as a possibility to in-situ characterize such fractures static to seismic poroelastic heterogeneous properties.
A Modified Jaeger's Method for Measuring Surface Tension.
ERIC Educational Resources Information Center
Ntibi, J. Effiom-Edem
1991-01-01
A static method of measuring the surface tension of a liquid is presented. Jaeger's method is modified by replacing the pressure source with a variable pressure head. By using this method, stationary air bubbles are obtained thus resulting in controllable external parameters. (Author/KR)
NASA Technical Reports Server (NTRS)
Oliver, Michael J.
2014-01-01
The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested. For each pressure altitude test point conducted the ambient static temperature was predicted using a NASA engine icing risk computer model for the given ambient static pressure while maintaining the engine speed.
NASA Technical Reports Server (NTRS)
Mcronald, A. D.
1975-01-01
Mean density and temperature fluctuations were measured across the turbulent, cooled-wall boundary layer in a continuous hypersonic (Mach 9.4) wind tunnel in air, using the nitrogen fluorescence excited by a 50 kV electron beam. Data were taken at three values of the tunnel stagnation pressure, the corresponding free stream densities being equivalent to 1.2, 4.0, and 7.4 torr at room temperature, and the boundary layer thicknesses about 4.0, 4.5, and 6.0 inches. The mean temperature and density profiles were similar to those previously determined in the same facility by conventional probes (static and pitot pressure, total temperature). A static pressure variation of about 50% across the boundary layer was found, the shape of the variation changing somewhat for the three stagnation pressure levels. The quadrupole model for rotational temperature spectra gave closer agreement with the free stream isentropic level (approximately 44 K) than the dipole model.
Design of an efficient space constrained diffuser for supercritical CO2 turbines
NASA Astrophysics Data System (ADS)
Keep, Joshua A.; Head, Adam J.; Jahn, Ingo H.
2017-03-01
Radial inflow turbines are an arguably relevant architecture for energy extraction from ORC and supercritical CO 2 power cycles. At small scale, design constraints can prescribe high exit velocities for such turbines, which lead to high kinetic energy in the turbine exhaust stream. The inclusion of a suitable diffuser in a radial turbine system allows some exhaust kinetic energy to be recovered as static pressure, thereby ensuring efficient operation of the overall turbine system. In supercritical CO 2 Brayton cycles, the high turbine inlet pressure can lead to a sealing challenge if the rotor is supported from the rotor rear side, due to the seal operating at rotor inlet pressure. An alternative to this is a cantilevered layout with the rotor exit facing the bearing system. While such a layout is attractive for the sealing system, it limits the axial space claim of any diffuser. Previous studies into conical diffuser geometries for supercritical CO 2 have shown that in order to achieve optimal static pressure recovery, longer geometries of a shallower cone angle are necessitated when compared to air. A diffuser with a combined annular-radial arrangement is investigated as a means to package the aforementioned geometric characteristics into a limited space claim for a 100kW radial inflow turbine. Simulation results show that a diffuser of this design can attain static pressure rise coefficients greater than 0.88. This confirms that annular-radial diffusers are a viable design solution for supercritical CO2 radial inflow turbines, thus enabling an alternative cantilevered rotor layout.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Gases), 2.5 (Test Pressures and Burner Adjustments), 2.6 (Static Pressure and Air Flow Adjustments), 2... pressure, as specified in Section 2.5.1 of ANSI Standard Z21.47-1998, (Incorporated by reference, see § 431... thermal efficiency test), 41 (Initial Test Conditions), 42 (Combustion Test—Burner and Furnace), 43.2...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Gases), 2.5 (Test Pressures and Burner Adjustments), 2.6 (Static Pressure and Air Flow Adjustments), 2... pressure, as specified in Section 2.5.1 of ANSI Standard Z21.47-1998, (Incorporated by reference, see § 431... thermal efficiency test), 41 (Initial Test Conditions), 42 (Combustion Test—Burner and Furnace), 43.2...
Static and cyclic performance evaluation of sensors for human interface pressure measurement.
Dabling, Jeffrey G; Filatov, Anton; Wheeler, Jason W
2012-01-01
Researchers and clinicians often desire to monitor pressure distributions on soft tissues at interfaces to mechanical devices such as prosthetics, orthotics or shoes. The most common type of sensor used for this type of applications is a Force Sensitive Resistor (FSR) as these are convenient to use and inexpensive. Several other types of sensors exist that may have superior sensing performance but are less ubiquitous or more expensive, such as optical or capacitive sensors. We tested five sensors (two FSRs, one optical, one capacitive and one fluid pressure) in a static drift and cyclic loading configuration. The results show that relative to the important performance characteristics for soft tissue pressure monitoring (i.e. hysteresis, drift), many of the sensors tested have significant limitations. The FSRs exhibited hysteresis, drift and loss of sensitivity under cyclic loading. The capacitive sensor had substantial drift. The optical sensor had some hysteresis and temperature-related drift. The fluid pressure sensor performed well in these tests but is not as flat as the other sensors and is not commercially available. Researchers and clinicians should carefully consider the convenience and performance trade-offs when choosing a sensor for soft-tissue pressure monitoring.
The experimental study of matching between centrifugal compressor impeller and diffuser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamaki, H.; Nakao, H.; Saito, M.
1999-01-01
the centrifugal compressor for a marine use turbocharger with its design pressure ratio of 3.2 was tested with a vaneless diffuser and various vaned diffusers. Vaned diffusers were chosen to cover impeller operating range as broad as possible. The analysis of the static pressure ratio in the impeller and the diffusing system, consisting of the diffuser and scroll, showed that there were four possible combinations of characteristics of impeller pressure ratio and diffusing system pressure ratio. The flow rate, Q{sub P}, where the impeller achieved maximum static pressure ratio, was surge flow rate of the centrifugal compressor determined by themore » critical flow rate. In order to operate the compressor at a rate lower than Q{sub P}, the diffusing system, whose pressure recovery factor was steep negative slope near Q{sub P}, was needed. When the diffuser throat area was less than a certain value, the compressor efficiency deteriorated; however, the compressor stage pressure ratio was almost constant. In this study, by reducing the diffuser throat area, the compressor could be operated at a flow rate less than 40% of its design flow rate. Analysis of the pressure ratio in the impeller and diffusing systems at design and off-design speeds showed that the irregularities in surge line occurred when the component that controlled the negative slope on the compressor stage pressure ratio changed.« less
Micro Electro-Mechanical System (MEMS) Pressure Sensor for Footwear
Kholwadwala, Deepesh K.; Rohrer, Brandon R.; Spletzer, Barry L.; Galambos, Paul C.; Wheeler, Jason W.; Hobart, Clinton G.; Givler, Richard C.
2008-09-23
Footwear comprises a sole and a plurality of sealed cavities contained within the sole. The sealed cavities can be incorporated as deformable containers within an elastic medium, comprising the sole. A plurality of micro electro-mechanical system (MEMS) pressure sensors are respectively contained within the sealed cavity plurality, and can be adapted to measure static and dynamic pressure within each of the sealed cavities. The pressure measurements can provide information relating to the contact pressure distribution between the sole of the footwear and the wearer's environment.
High precision Hugoniot measurements on statically pre-compressed fluid helium
NASA Astrophysics Data System (ADS)
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; Hickman, Randy J.; Thornhill, Tom F.
2016-09-01
The capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modest (0.27-0.38 GPa) initial pressures. The dynamic response of pre-compressed helium in the initial density range of 0.21-0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (up) relationship: us = C0 + sup, with C0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.
Adaptive wing static aeroelastic roll control
NASA Astrophysics Data System (ADS)
Ehlers, Steven M.; Weisshaar, Terrence A.
1993-09-01
Control of the static aeroelastic characteristics of a swept uniform wing in roll using an adaptive structure is examined. The wing structure is modeled as a uniform beam with bending and torsional deformation freedom. Aerodynamic loads are obtained from strip theory. The structure model includes coefficients representing torsional and bending actuation provided by embedded piezoelectric material layers. The wing is made adaptive by requiring the electric field applied to the piezoelectric material layers to be proportional to the wing root loads. The proportionality factor, or feedback gain, is used to control static aeroelastic rolling properties. Example wing configurations are used to illustrate the capabilities of the adaptive structure. The results show that rolling power, damping-in-roll and aileron effectiveness can be controlled by adjusting the feedback gain. And that dynamic pressure affects the gain required. Gain scheduling can be used to set and maintain rolling properties over a range of dynamic pressures. An adaptive wing provides a method for active aeroelastic tailoring of structural response to meet changing structural performance requirements during a roll maneuver.
Relationship between sensibility and ability to read braille in diabetics.
Nakada, M; Dellon, A L
1989-01-01
Twenty-five vision-impaired diabetics received an evaluation of sensibility. Each subject had received 2 years of instruction in braille reading at the Konan Rehabilitation Center prior to the sensibility testing. Sensibility evaluation consisted of cutaneous pressure threshold measurements with the Semmes-Weinstein monofilament and evaluation of moving and static two-point discrimination with Disk-Criminator. The ability to read braille was graded by the braille-teaching instructors as good, fair, and unable. The results of the evaluation of sensibility demonstrated that the value of the cutaneous pressure threshold did not correlate with the ability to read braille. Moving and static two-point discrimination were found to correlate highly (P less than .001) with the ability to read braille at a level of fair or good. No patient in this study with a moving two-point discrimination value of 4 or more or a static two-point discrimination value of 5 or more was able to read braille even at the fair level of ability.
Intense cavitation at extreme static pressure.
Pishchalnikov, Yuri A; Gutierrez, Joel; Dunbar, Wylene W; Philpott, Richard W
2016-02-01
Cavitation is usually performed at hydrostatic pressures at or near 0.1 MPa. Higher static pressure produces more intense cavitation, but requires an apparatus that can build high amplitude acoustic waves with rarefactions exceeding the cavitation threshold. The absence of such an apparatus has prevented the achievement of intense acoustic cavitation, hindering research and the development of new applications. Here we describe a new high-pressure spherical resonator system, as well as experimental and modeling results in water and liquid metal (gallium), for cavitation at hydrostatic pressures between 10 and 150 MPa. Our computational data, using HYADES plasma hydrodynamics code, show the formation of dense plasma that, under these conditions, reaches peak pressures of about three to four orders of magnitude greater than the hydrostatic pressure in the bulk liquid and temperatures in the range of 100,000 K. Passive cavitation detection (PCD) data validate both a linear increase in shock wave amplitude and the production of highly intense concentrations of mechanical energy in the collapsing bubbles. High-speed camera observations show the formation of bubble clusters from single bubbles. The increased shock wave amplitude produced by bubble clusters, measured using PCD and fiber optic probe hydrophone, was consistent with current understanding that bubble clusters enable amplification of energy produced. Copyright © 2015 Elsevier B.V. All rights reserved.
Analysis on pressure characteristics of pump turbine guide bearing rotating sump based on VOF model
NASA Astrophysics Data System (ADS)
Zhai, L. M.; Yao, Z.; Huang, Q. S.; Xiao, Y. X.; Wang, Z. W.
2013-12-01
With the technology of Computational Fluid Dynamics (CFD), this paper conducts a 3D numerical simulation for the oil and gas flow field in the Pump turbine guide bearing rotating sump. VOF model is adopted in this simulation. This study calculates distribution of the oil-air phase and characteristics of the pressure. The influence of sump rotating speed, oil level and oil viscosity on the pressure at the inlet of oil-immersion plate are discussed. The results demonstrate that the static pressure at the inlet is roughly proportional to oil level. Too low level may result in the separation between lubrication oil and supply hole on the oil-immersion plate, which then disables the oil supply. The static pressure at the inlet increases parabola as the sump rotating speed increases. To ensure the supply pressure, the unit is not suitable for long time operation under low rotating speed. The temperature-viscosity effect of the lubricant oil has little influence on the oil pressure at the supply hole. This paper provides a theoretical base for the safe design and operation of the pump turbine rotating sump, and offers the inlet boundary condition for the analysis of the oil film dynamic characteristics of the turbine guide bearing.
Estimating Engine Airflow in Gas-Turbine Powered Aircraft with Clean and Distorted Inlet Flows
NASA Technical Reports Server (NTRS)
Williams, J. G.; Steenken, W. G.; Yuhas, A. J.
1996-01-01
The P404-GF-400 Powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the impact of inlet-generated total-pressure distortion on estimating levels of engine airflow. Five airflow estimation methods were studied. The Reference Method was a fan corrected airflow to fan corrected speed calibration from an uninstalled engine test. In-flight airflow estimation methods utilized the average, or individual, inlet duct static- to total-pressure ratios, and the average fan-discharge static-pressure to average inlet total-pressure ratio. Correlations were established at low distortion conditions for each method relative to the Reference Method. A range of distorted inlet flow conditions were obtained from -10 deg. to +60 deg. angle of attack and -7 deg. to +11 deg. angle of sideslip. The individual inlet duct pressure ratio correlation resulted in a 2.3 percent airflow spread for all distorted flow levels with a bias error of -0.7 percent. The fan discharge pressure ratio correlation gave results with a 0.6 percent airflow spread with essentially no systematic error. Inlet-generated total-pressure distortion and turbulence had no significant impact on the P404-GE400 engine airflow pumping. Therefore, a speed-flow relationship may provide the best airflow estimate for a specific engine under all flight conditions.
Lung Mechanics in Marine Mammals
2013-09-30
system of anesthetized pinnipeds (Table 1, Fig. 1). In some animals where euthanasia was planned, we managed to measure both lung mechanics in vivo...during spontaneous breathing (dynamic) and mechanical ventilation (static), and the static compliance after euthanasia . Table 1. Number of samples...airway and esophageal pressures during voluntary breathing and mechanical ventilation (Fig. 1). Aim 2: In the second year we also used a fast response
Sandrock, H.E.
1982-05-06
Static axial mixing apparatus includes a plurality of channels, forming flow paths of different dimensions. The axial mixer includes a flow adjusting device for adjustable selective control of flow resistance of various flow paths in order to provide substantially identical flows through the various channels, thereby reducing nonuniform coating of interior surfaces of the channels. The flow adjusting device may include diaphragm valves, and may further include a pressure regulating system therefor.
Static and kinetic friction of granite at high normal stress
Byerlee, J.D.
1970-01-01
Frictional sliding on ground surfaces of granite, angle of sliding planes 30?? and 45??, was investigated as a function of confining pressure. Over the normal stress range of 2-12 kb, the static frictional shear stress ??s follows the relationship ??s = 0??5 + 0?? ??n and the kinetic frictional shear stress ??k was calculated to be ??k = 0??25 + 0??47 ??n. ?? 1970.
Static internal performance of a two-dimensional convergent-divergent nozzle with thrust vectoring
NASA Technical Reports Server (NTRS)
Bare, E. Ann; Reubush, David E.
1987-01-01
A parametric investigation of the static internal performance of multifunction two-dimensional convergent-divergent nozzles has been made in the static test facility of the Langley 16-Foot Transonic Tunnel. All nozzles had a constant throat area and aspect ratio. The effects of upper and lower flap angles, divergent flap length, throat approach angle, sidewall containment, and throat geometry were determined. All nozzles were tested at a thrust vector angle that varied from 5.60 tp 23.00 deg. The nozzle pressure ratio was varied up to 10 for all configurations.
USB environment measurements based on full-scale static engine ground tests
NASA Technical Reports Server (NTRS)
Sussman, M. B.; Harkonen, D. L.; Reed, J. B.
1976-01-01
Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle, and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data, and to establish a basis for future flight test comparisons.
Computation of viscous transonic flow about a lifting airfoil
NASA Technical Reports Server (NTRS)
Walitt, L.; Liu, C. Y.
1976-01-01
The viscous transonic flow about a stationary body in free air was numerically investigated. The geometry chosen was a symmetric NACA 64A010 airfoil at a freestream Mach number of 0.8, a Reynolds number of 4 million based on chord, and angles of attack of 0 and 2 degrees. These conditions were such that, at 2 degrees incidence unsteady periodic motion was calculated along the aft portion of the airfoil and in its wake. Although no unsteady measurements were made for the NACA 64A010 airfoil at these flow conditions, interpolated steady measurements of lift, drag, and surface static pressures compared favorably with corresponding computed time-averaged lift, drag, and surface static pressures.
Kurzeja, Patrick
2016-05-01
Modern imaging techniques, increased simulation capabilities and extended theoretical frameworks, naturally drive the development of multiscale modelling by the question: which new information should be considered? Given the need for concise constitutive relationships and efficient data evaluation; however, one important question is often neglected: which information is sufficient? For this reason, this work introduces the formalized criterion of subscale sufficiency. This criterion states whether a chosen constitutive relationship transfers all necessary information from micro to macroscale within a multiscale framework. It further provides a scheme to improve constitutive relationships. Direct application to static capillary pressure demonstrates usefulness and conditions for subscale sufficiency of saturation and interfacial areas.
NASA Technical Reports Server (NTRS)
Viegas, John R.; Rubesin, Morris W.
1991-01-01
Several recently published compressibility corrections to the standard k-epsilon turbulence model are used with the Navier-Stokes equations to compute the mixing region of a large variety of high speed flows. These corrections, specifically developed to address the weakness of higher order turbulence models to accurately predict the spread rate of compressible free shear flows, are applied to two stream flows of the same gas mixing under a large variety of free stream conditions. Results are presented for two types of flows: unconfined streams with either (1) matched total temperatures and static pressures, or (2) matched static temperatures and pressures, and a confined stream.
NASA Technical Reports Server (NTRS)
Ramsey, P. E.; Winkler, G. W.
1975-01-01
Static pressure distributions for the external tank (ET) at reentry conditions are presented. Basic configuration of the model was the MCR 0200 ET modified to include a rectangular crossbar at the aft ET/orbiter attach point. Mach numbers were 1.96, 3.48, and 4.96. Reynolds number per foot at these Mach numbers were 6.95 million, 6.42 million, and 4.95 million, respectively. Angle of attack range was -8 to 100 degrees and roll angle was 0 to 315 degrees.
Effect of Rocket-Motor Operation on the Drag of Three 1/5-Scale Hermes A-3A Models in Free Flight
NASA Technical Reports Server (NTRS)
Jackson, H. Herbert
1954-01-01
Three 1/5-scale models of the Hermes A-3A missile have been flown to determine the effect of rocket-motor operation on the drag corresponding to various altitude and Mach number combinations. The flights covered a Mach number range from 0.5 to 1.8, and ratios of jet-exit static pressure to free-stream static pressure from 0.8 to 1.8. The results indicate that the power-on drag of the missile should be the same as the power-off drag at Mach number 1.3 and slightly less than the power-off drag at Mach number 1.55.
Darrah, Shaun D; Dicianno, Brad E; Berthold, Justin; McCoy, Andrew; Haas, Matthew; Cooper, Rory A
2016-01-01
To determine whether sledge hockey players with physical disability have higher average seated pressures compared to non-disabled controls. Fifteen age-matched controls without physical disability and 15 experimental participants with physical disability were studied using a pressure mapping device to determine risk for skin pressure ulceration and the impact of cushioning and knee angle positioning on seated pressure distributions. Regardless of participant group, cushioning, or knee angle, average seated pressures exceeded clinically acceptable seated pressures. Controls had significantly higher average seated pressures than the disability group when knees were flexed, both with the cushion (p = 0.013) and without (p = 0.015). Knee extension showed significantly lower average pressures in controls, both with the cushion (p < 0.001) and without (p < 0.001). Placement of the cushion resulted in significantly lower average pressure in controls when knees were extended (p = 0.024) but not when flexed (p = 0.248). Placement of the cushion resulted in no difference in pressure (p = 0.443) in the disability group. Pressures recorded indicate high risk for skin ulceration. Cushioning was effective only in the control group with knees extended. That knee extension significantly lowered average seated pressures is important, as many sledge hockey players utilize positioning with larger knee flexion angles. Implications for Rehabilitation Ice sledge hockey is a fast growing adaptive sport. Adaptive sports have been associated with several positive improvements in overall health and quality of life, though may be putting players at risk for skin ulceration. Measured static seated pressure in sledges greatly exceeds current clinically accepted clinical guidelines. With modern improvements in wheelchair pressure relief/cushioning there are potential methods for improvement of elevated seated pressure in ice hockey sledges.
Bacterial survival following shock compression in the GigaPascal range
NASA Astrophysics Data System (ADS)
Hazael, Rachael; Fitzmaurice, Brianna C.; Foglia, Fabrizia; Appleby-Thomas, Gareth J.; McMillan, Paul F.
2017-09-01
The possibility that life can exist within previously unconsidered habitats is causing us to expand our understanding of potential planetary biospheres. Significant populations of living organisms have been identified at depths extending up to several km below the Earth's surface; whereas laboratory experiments have shown that microbial species can survive following exposure to GigaPascal (GPa) pressures. Understanding the degree to which simple organisms such as microbes survive such extreme pressurization under static compression conditions is being actively investigated. The survival of bacteria under dynamic shock compression is also of interest. Such studies are being partly driven to test the hypothesis of potential transport of biological organisms between planetary systems. Shock compression is also of interest for the potential modification and sterilization of foodstuffs and agricultural products. Here we report the survival of Shewanella oneidensis bacteria exposed to dynamic (shock) compression. The samples examined included: (a) a "wild type" (WT) strain and (b) a "pressure adapted" (PA) population obtained by culturing survivors from static compression experiments to 750 MPa. Following exposure to peak shock pressures of 1.5 and 2.5 GPa the proportion of survivors was established as the number of colony forming units (CFU) present after recovery to ambient conditions. The data were compared with previous results in which the same bacterial samples were exposed to static pressurization to the same pressures, for 15 minutes each. The results indicate that shock compression leads to survival of a significantly greater proportion of both WT and PA organisms. The significantly shorter duration of the pressure pulse during the shock experiments (2-3 μs) likely contributes to the increased survival of the microbial species. One reason for this can involve the crossover from deformable to rigid solid-like mechanical relaxational behavior that occurs for bacterial cell walls on the order of seconds in the time-dependent strain rate.
Bubble production using a Non-Newtonian fluid in microfluidic flow focusing device
NASA Astrophysics Data System (ADS)
Wang, Yi-Lin; Ward, Thomas; Grant, Christine
2012-02-01
We experimentally study the production of micrometer-sized bubbles using microfluidic technology and a flow-focusing geometry. Bubbles are produced by using a mixture containing aqueous polyacrylamide of concentrations ranging from 0.01-0.10% by weight and several solution also containing a sodium-lauryl-sulfate (SLS) surfactant at concentrations ranging 0.01-0.1% by weight. The fluids are driven by controlling the static pressure above a hydrostatic head of the liquid while the disperse phase fluid static pressure is held constant (air). In the absence of surfactant the bubble production is discontinuous. The addition of surfactant stabilizes the bubble production. In each type of experiment, the bubble length l, velocity U and production frequency φ are measured and compared as a function of the inlet pressure ratio. The bubbles exhibit a contraction in their downstream length as a function of the polymer concentration which is investigated.
NASA Astrophysics Data System (ADS)
Hamstad, M. A.; Whittaker, J. W.; Brosey, W. D.
1992-01-01
Small, filament-wound, Kevlar/epoxy, biaxial test specimens were subjected to various levels of impact damage. The specimens were pressurized in a proof test cycle to 58 percent of their nominal, undamaged strength and then pressurized to failure. Acoustic emission data were gathered by multiple sensors during a 10 minute hold at peak proof pressure. Post-test filtering of the data was performed to study composite behavior in the damaged region and other areas. The rate and total amount of AE produced depends on the duration of the static load and degree of damage. The concept of the event rate moment is introduced as a method of quantifying a structure's total AE behavior when under static load. Average event rate, total long duration events, and event rate moments provided various degrees of correlation between AE and residual strength.
A qualitative view of cryogenic fluid injection into high speed flows
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Schlumberger, J.; Proctor, M.
1991-01-01
The injection of supercritical pressure, subcritical temperature fluids, into a 2-D, ambient, static temperature and static pressure supersonic tunnel and free jet supersonic nitrogen flow field was observed. Observed patterns with fluid air were the same as those observed for fluid nitrogen injected into the tunnel at 90 deg to the supersonic flow. The nominal injection pressure was of 6.9 MPa and tunnel Mach number was 2.7. When injected directly into and opposing the tunnel exhaust flow, the observed patterns with fluid air were similar to those observed for fluid nitrogen but appeared more diffusive. Cryogenic injection creates a high density region within the bow shock wake but the standoff distance remains unchanged from the gaseous value. However, as the temperature reaches a critical value, the shock faded and advanced into the supersonic stream. For both fluids, nitrogen and air, the phenomena was completely reversible.
Evaluation of aero Commander propeller acoustic data: Static operations
NASA Technical Reports Server (NTRS)
Piersol, A. G.; Wilby, E. G.; Wilby, J. F.
1978-01-01
Acoustic data are analyzed from a series of ground tests performed on an Aero Commander propeller-driven aircraft with an array of microphones flush-mounted on one side of the fuselage. The analyses were concerned with the propeller blade passage noise during static operation at several different engine speeds and included calculations of the magnitude and phase of the blade passage tones, the amplitude stability of the tones, and the spatial phase and coherence of the tones. The results indicate that the pressure field impinging on the fuselage represents primarily aerodynamic (near field) effects in the plane of the propeller at all frequencies. Forward and aft of the propeller plane aerodynamic effects still dominate the pressure field at frequencies below 200 Hz; but at higher frequencies, the pressure field is due to acoustic propagation from an equivalent center located about 0.15 to 0.30 blade diameters inboard from the propeller hub.
Utility of Functional Hemodynamics and Echocardiography to Aid Diagnosis and Management of Shock.
McGee, William T; Raghunathan, Karthik; Adler, Adam C
2015-12-01
The utility of functional hemodynamics and bedside ultrasonography is increasingly recognized as advantageous for both improved diagnosis and management of shock states. In contrast to conventional "static" measures, "dynamic" hemodynamic measures and bedside imaging modalities enhance pathophysiology-based comprehensive understanding of shock states and the response to therapy. The current editions of major textbooks in the primary specialties--in which clinicians routinely encounter patients in shock--including surgery, anesthesia, emergency medicine, and internal medicine continue to incorporate traditional (conventional) descriptions of shock that use well-described (but potentially misleading) intravascular pressures to classify shock states. Reliance on such intravascular pressure measurements is not as helpful as newer "dynamic" functional measures including ultrasonography to both better assess volume responsiveness and biventricular cardiac function. This review thus emphasizes the application of current functional hemodynamics and ultrasonography to the diagnosis and management of shock as a contrast to conventional "static" pressure-based measures.
NASA Astrophysics Data System (ADS)
McWilliams, R. S.
2013-12-01
Laboratory studies of volatiles at high pressure are constantly challenged to achieve conditions directly relevant to planets. While dynamic compression experiments are confined to adiabatic pathways that frequently exceed relevant temperatures due to the low densities and bulk moduli of volatile samples, static compression experiments are often complicated by sample reactivity and mobility before reaching relevant temperatures. By combining the speed of dynamic compression with the flexibility of experimental path afforded by static compression, optical spectroscopy measurements in volatiles such as H, N, and Ar have been demonstrated at previously-unexplored planetary temperature (up to 11,000 K) and pressure (up to 150 GPa). These optical data characterize the electronic properties of extreme states and have implications for bonding, transport, and mixing behavior in volatiles within planets. This work was conducted in collaboration with D.A. Dalton and A.F. Goncharov (Carnegie Institution of Washington) and M.F. Mahmood (Howard University).
NASA Technical Reports Server (NTRS)
Calleja, John; Tamagno, Jose
1993-01-01
A series of air calibration tests were performed in GASL's HYPULSE facility in order to more accurately determine test section flow conditions for flows simulating total enthalpies in the Mach 13 to 17 range. Present calibration data supplements previous data and includes direct measurement of test section pitot and static pressure, acceleration tube wall pressure and heat transfer, and primary and secondary incident shock velocities. Useful test core diameters along with the corresponding free-stream conditions and usable testing times were determined. For the M13.5 condition, in-stream static pressure surveys showed the temporal and spacial uniformity of this quantity across the useful test core. In addition, finite fringe interferograms taken of the free-stream flow at the test section did not indicate the presence of any 'strong' wave system for any of the conditions investigated.
Fluidic Thrust Vectoring of an Axisymmetric Exhaust Nozzle at Static Conditions
NASA Technical Reports Server (NTRS)
Wing, David J.; Giuliano, Victor J.
1997-01-01
A sub-scale experimental static investigation of an axisymmetric nozzle with fluidic injection for thrust vectoring was conducted at the NASA Langley Jet Exit Test Facility. Fluidic injection was introduced through flush-mounted injection ports in the divergent section. Geometric variables included injection-port geometry and location. Test conditions included a range of nozzle pressure ratios from 2 to 10 and a range of injection total pressure ratio from no-flow to 1.5. The results indicate that fluidic injection in an axisymmetric nozzle operating at design conditions produced significant thrust-vector angles with less reduction in thrust efficiency than that of a fluidically-vectored rectangular jet. The axisymmetric geometry promoted a pressure relief mechanism around the injection slot, thereby reducing the strength of the oblique shock and the losses associated with it. Injection port geometry had minimal effect on thrust vectoring.
Effect of rotor design tip speed on noise of a 1.21 pressure ratio model fan under static conditions
NASA Technical Reports Server (NTRS)
Loeffler, I. J.; Lieblein, S.; Stockman, N. O.
1973-01-01
Preliminary results are presented for a reverberant-field noise investigation of three fan stages designed for the same overall total pressure ratio of 1.21 at different rotor tip speeds (750, 900, and 1050 ft/sec). The stages were tested statically in a 15-inch-diameter model lift fan installed in a wing pod located in the test section of a wind tunnel. Although the fan stages produced essentially the same design pressure ratio, marked differences were observed in the variation of fan noise with fan operating speed. At design speed, the forward-radiated sound power level was approximately the same for the 750 ft/sec and 900 ft/sec stages. For the 1050 ft/sec stage, the design-speed forward-radiated power level was about 7 db higher due to the generation of multiple pure tone noise.
Effect of rotor design tip speed on noise of a 1.21 pressure ratio model fan under static conditions
NASA Technical Reports Server (NTRS)
Loeffler, I. J.; Lieblein, S.; Stockman, N. O.
1973-01-01
Preliminary results are presented for a reverberant-field noise investigation of three fan stages designed for the same overall total pressure ratio of 1.21 at different rotor tip speeds (750, 900, and 1050 fps). The stages were tested statically in a 15-in.-dia model lift fan installed in a wing pod located in the test section of a wind tunnel. Although the fan stages produced essentially the same design pressure ratio, marked differences were observed in the variation of fan noise with fan operating speed. At design speed, the forward-radiated sound power level was approximately the same for the 750 and 900 fps stages. For the 1050 fps stage, the design-speed forward-radiated power level was about 7 dB higher due to the generation of multiple pure tone noise.
NASA Technical Reports Server (NTRS)
Larson, T. J.; Flechner, S. G.; Siemers, P. M., III
1980-01-01
The results of a wind tunnel investigation on an all flush orifice air data system for use on a KC-135A aircraft are presented. The investigation was performed to determine the applicability of fixed all flush orifice air data systems that use only aircraft surfaces for orifices on the nose of the model (in a configuration similar to that of the shuttle entry air data system) provided the measurements required for the determination of stagnation pressure, angle of attack, and angle of sideslip. For the measurement of static pressure, additional flush orifices in positions on the sides of the fuselage corresponding to those in a standard pitot-static system were required. An acceptable but less accurate system, consisting of orifices only on the nose of the model, is defined and discussed.
Static and dynamic stability analysis of the space shuttle vehicle-orbiter
NASA Technical Reports Server (NTRS)
Chyu, W. J.; Cavin, R. K.; Erickson, L. L.
1978-01-01
The longitudinal static and dynamic stability of a Space Shuttle Vehicle-Orbiter (SSV Orbiter) model is analyzed using the FLEXSTAB computer program. Nonlinear effects are accounted for by application of a correction technique in the FLEXSTAB system; the technique incorporates experimental force and pressure data into the linear aerodynamic theory. A flexible Orbiter model is treated in the static stability analysis for the flight conditions of Mach number 0.9 for rectilinear flight (1 g) and for a pull-up maneuver (2.5 g) at an altitude of 15.24 km. Static stability parameters and structural deformations of the Orbiter are calculated at trim conditions for the dynamic stability analysis, and the characteristics of damping in pitch are investigated for a Mach number range of 0.3 to 1.2. The calculated results for both the static and dynamic stabilities are compared with the available experimental data.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-14
... pressure at a wastewater effluent pump station. Lake County is receiving this waiver to purchase Noreva... will be installed on a 15,000 foot, 6-inch effluent line under high pressure (515 feet of static head... Class 300, wafer body to fit between ANSI B16.5 flanges, rated working pressure 720 psig at 100 degrees...
Measurement of Air Flow Characteristics Using Seven-Hole Cone Probes
NASA Technical Reports Server (NTRS)
Takahashi, Timothy T.
1997-01-01
The motivation for this work has been the development of a wake survey system. A seven-hole probe can measure the distribution of static pressure, total pressure, and flow angularity in a wind tunnel environment. The author describes the development of a simple, very efficient algorithm to compute flow properties from probe tip pressures. Its accuracy and applicability to unsteady, turbulent flow are discussed.
Flow Field Measurements Using Hotwire Anemometry.
1987-09-01
is connected to the differential pressure transducer, the other is connected to an absolute pressure transducer. Static pressure from the absolute ...and intercept data. The seventh variable contains the calibration tunnel temperature in degrees Farenheit . This is0* . used for hotwire compensation...output is then directed to channel five of the Relay Multiplexer. Voltage output from the signal amplifier is zeroed at 0 degrees AOA and is positive for
Atmospheric Science Data Center
2015-11-25
... Dew/Frost Point Temperature Diffusional Growth Rate Ice Water Concent Particle Diameter Particle Number Concentration Precipitation Rate Radar Reflectivity Relative Humidity Static Pressure Vertical ...
Atmospheric Science Data Center
2015-11-25
... Dew/Frost Point Temperature Diffusional Growth Rate Ice Water Content Particle Diameter Particle Number Concentration Precipitation Rate Radar Reflectivity Relative Humidity Static Pressure Vertical ...
Atmospheric Science Data Center
2015-11-25
... Dew/Frost Point Temperature Diffusional Growth Rate Ice Water Content Particle Diameter Particle Number Concentration Preciptiation Rate Radar Reflectivity Relative Humidity Static Pressure Vertical ...
NASA Astrophysics Data System (ADS)
Jameson, S.
2015-12-01
Most scientists agree that greenhouse gases (GHG) such as carbon dioxide (CO2), Methane (CH4), and nitrous oxide (N2O) are major contributors to the global warming trend and climate change. One effort to mitigate anthropogenic sourced CO2 is through carbon capture and sequestration. Depleted oil and gas reservoirs due to their known trapping capability, in-place infrastructure, and proximity to carbon emission sources are good candidates for possible CO2 storage. The Vedder formation is one of three reservoirs identified in the San Joaquin Basin that meets standards for possible storage. An analysis of net fluid production data (produced minus injected) from discovery to the present is used to determine the reservoir volume available for CO2 storage. Data regarding reservoir pressure response to injection and production of fluids include final shut-in pressures from drill stem test, static bottom-hole pressure measurements from well completion histories, and idle well fluid level measurements for recent pressure data. Proprietary experimental pressure, volume and temperature data (PVT), gas oil ratios (GOR), well by well permeability, porosity, and oil gravity, and relative permeability and perforation intervals are used to create static and dynamic multiphase fluid flow models. All data collected was logged and entered into excel spreadsheets and mapping software to create subsurface structure, reservoir thickness and pressure maps, cross sections, production/injection charts on a well-by-well basis, and both static and dynamic flow models. This data is used to determine storage capacity and the amount of pressure variance within the field to determine how the reservoir will react to CO2 injection and to gain insight into the subsurface fluid movement of CO2. Results indicate a homogenous field with a storage capacity of approximately 26 Million Metric Tons of CO2. Analysis of production by stream and pressure change through time indicates a strong water drive. The connection to a large and active aquifer allows pressure changes to be spread over large areas. Flow modeling will help to determine the impact that the water influx will have on storage capacity and EOR production potential.
Thermal Equation of State of Iron: Constraint on the Density Deficit of Earth's Core
NASA Astrophysics Data System (ADS)
Fei, Y.; Murphy, C. A.; Shibazaki, Y.; Huang, H.
2013-12-01
The seismically inferred densities of Earth's solid inner core and the liquid outer core are smaller than the measured densities of solid hcp-iron and liquid iron, respectively. The inner core density deficit is significantly smaller than the outer core density deficit, implying different amounts and/or identities of light-elements incorporated in the inner and outer cores. Accurate measurements of the thermal equation-of-state of iron over a wide pressure and temperature range are required to precisely quantify the core density deficits, which are essential for developing a quantitative composition model for the core. The challenge has been evaluating the experimental uncertainties related to the choice of pressure scales and the sample environment, such as hydrostaticity at multi-megabar pressures and extreme temperatures. We have conducted high-pressure experiments on iron in MgO, NaCl, and Ne pressure media and obtained in-situ X-ray diffraction data up to 200 GPa at room temperature. Using inter-calibrated pressure scales including the MgO, NaCl, Ne, and Pt scales, we have produced a consistent compression curve of hcp-Fe at room temperature. We have also performed laser-heated diamond-anvil cell experiments on both Fe and Pt in a Ne pressure medium. The experiment was designed to quantitatively compare the thermal expansion of Fe and Pt in the same sample environment using Ne as the pressure medium. The thermal expansion data of hcp-Fe at high pressure were derived based on the thermal equation of state of Pt. Using the 300-K isothermal compression curve of iron derived from our static experiments as a constraint, we have developed a thermal equation of state of hcp-Fe that is consistent with the static P-V-T data of iron and also reproduces the shock wave Hugoniot data for pure iron. The thermodynamic model, based on both static and dynamic data, is further used to calculate the density and bulk sound velocity of liquid iron. Our results define the solid inner core and liquid outer core density deficits, which can serve as the basis for any core composition models.
Simon, Julianna C; Sapozhnikov, Oleg A; Kreider, Wayne; Breshock, Michael; Williams, James C; Bailey, Michael R
2018-01-09
The color Doppler ultrasound twinkling artifact, which highlights kidney stones with rapidly changing color, has the potential to improve stone detection; however, its inconsistent appearance has limited its clinical utility. Recently, it was proposed stable crevice bubbles on the kidney stone surface cause twinkling; however, the hypothesis is not fully accepted because the bubbles have not been directly observed. In this paper, the micron or submicron-sized bubbles predicted by the crevice bubble hypothesis are enlarged in kidney stones of five primary compositions by exposure to acoustic rarefaction pulses or hypobaric static pressures in order to simultaneously capture their appearance by high-speed photography and ultrasound imaging. On filming stones that twinkle, consecutive rarefaction pulses from a lithotripter caused some bubbles to reproducibly grow from specific locations on the stone surface, suggesting the presence of pre-existing crevice bubbles. Hyperbaric and hypobaric static pressures were found to modify the twinkling artifact; however, the simple expectation that hyperbaric exposures reduce and hypobaric pressures increase twinkling by shrinking and enlarging bubbles, respectively, largely held for rough-surfaced stones but was inadequate for smoother stones. Twinkling was found to increase or decrease in response to elevated static pressure on smooth stones, perhaps because of the compression of internal voids. These results support the crevice bubble hypothesis of twinkling and suggest the kidney stone crevices that give rise to the twinkling phenomenon may be internal as well as external.
NASA Astrophysics Data System (ADS)
Simon, Julianna C.; Sapozhnikov, Oleg A.; Kreider, Wayne; Breshock, Michael; Williams, James C., Jr.; Bailey, Michael R.
2018-01-01
The color Doppler ultrasound twinkling artifact, which highlights kidney stones with rapidly changing color, has the potential to improve stone detection; however, its inconsistent appearance has limited its clinical utility. Recently, it was proposed stable crevice bubbles on the kidney stone surface cause twinkling; however, the hypothesis is not fully accepted because the bubbles have not been directly observed. In this paper, the micron or submicron-sized bubbles predicted by the crevice bubble hypothesis are enlarged in kidney stones of five primary compositions by exposure to acoustic rarefaction pulses or hypobaric static pressures in order to simultaneously capture their appearance by high-speed photography and ultrasound imaging. On filming stones that twinkle, consecutive rarefaction pulses from a lithotripter caused some bubbles to reproducibly grow from specific locations on the stone surface, suggesting the presence of pre-existing crevice bubbles. Hyperbaric and hypobaric static pressures were found to modify the twinkling artifact; however, the simple expectation that hyperbaric exposures reduce and hypobaric pressures increase twinkling by shrinking and enlarging bubbles, respectively, largely held for rough-surfaced stones but was inadequate for smoother stones. Twinkling was found to increase or decrease in response to elevated static pressure on smooth stones, perhaps because of the compression of internal voids. These results support the crevice bubble hypothesis of twinkling and suggest the kidney stone crevices that give rise to the twinkling phenomenon may be internal as well as external.
Hood entry coefficients of compound exhaust hoods.
Figueroa, Crescente E
2011-12-01
A traditional method for assessing the flow rate in ventilation systems is based on multiple readings of velocity or velocity pressure (VP) (usually 10 or 20 points) taken in ductwork sections located away from fittings (> seven × diameters of straight duct). This study seeks to eliminate the need for a multiple-point evaluation and replace it with a simplified method that requires only a single measurement of hood static pressure (SP(h)) taken at a more accessible location (< three × diameters of straight duct from the hood entry). The SP(h) method is widely used for the assessment of flow rate in simple hoods. However, industrial applications quite often use compound hoods that are regularly of the slot/plenum type. For these hoods, a "compound coefficient of entry" has not been published, which makes the use of the hood static pressure method unfeasible. This study proposes a model for the computation of a "compound coefficient of entry" and validates the use of this model to assess flow rate in two systems of well-defined geometry (multi-slotted/plenum and single-slotted/tapered or "fish-tail" types). When using a conservative value of the slot loss factor (1.78), the proposed model yielded an estimate of the volumetric flow rate within 10% of that provided by a more comprehensive method of assessment. The simplicity of the hood static pressure method makes it very desirable, even in the upper range of experimental error found in this study.
Impact of air and water vapor environments on the hydrophobicity of surfaces.
Weisensee, Patricia B; Neelakantan, Nitin K; Suslick, Kenneth S; Jacobi, Anthony M; King, William P
2015-09-01
Droplet wettability and mobility play an important role in dropwise condensation heat transfer. Heat exchangers and heat pipes operate at liquid-vapor saturation. We hypothesize that the wetting behavior of liquid water on microstructures surrounded by pure water vapor differs from that for water droplets in air. The static and dynamic contact angles and contact angle hysteresis of water droplets were measured in air and pure water vapor environments inside a pressure vessel. Pressures ranged from 60 to 1000 mbar, with corresponding saturation temperatures between 36 and 100°C. The wetting behavior was studied on four hydrophobic surfaces: flat Teflon-coated, micropillars, micro-scale meshes, and nanoparticle-coated with hierarchical micro- and nanoscale roughness. Static advancing contact angles are 9° lower in the water vapor environment than in air on a flat surface. One explanation for this reduction in contact angles is water vapor adsorption to the Teflon. On microstructured surfaces, the vapor environment has little effect on the static contact angles. In all cases, variations in pressure and temperature do not influence the wettability and mobility of the water droplets. In most cases, advancing contact angles increase and contact angle hysteresis decreases when the droplets are sliding or rolling down an inclined surface. Copyright © 2015 Elsevier Inc. All rights reserved.
Performance characteristics of two multiaxis thrust-vectoring nozzles at Mach numbers up to 1.28
NASA Technical Reports Server (NTRS)
Wing, David J.; Capone, Francis J.
1993-01-01
The thrust-vectoring axisymmetric (VA) nozzle and a spherical convergent flap (SCF) thrust-vectoring nozzle were tested along with a baseline nonvectoring axisymmetric (NVA) nozzle in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0 to 1.28 and nozzle pressure ratios from 1 to 8. Test parameters included geometric yaw vector angle and unvectored divergent flap length. No pitch vectoring was studied. Nozzle drag, thrust minus drag, yaw thrust vector angle, discharge coefficient, and static thrust performance were measured and analyzed, as well as external static pressure distributions. The NVA nozzle and the VA nozzle displayed higher static thrust performance than the SCF nozzle throughout the nozzle pressure ratio (NPR) range tested. The NVA nozzle had higher overall thrust minus drag than the other nozzles throughout the NPR and Mach number ranges tested. The SCF nozzle had the lowest jet-on nozzle drag of the three nozzles throughout the test conditions. The SCF nozzle provided yaw thrust angles that were equal to the geometric angle and constant with NPR. The VA nozzle achieved yaw thrust vector angles that were significantly higher than the geometric angle but not constant with NPR. Nozzle drag generally increased with increases in thrust vectoring for all the nozzles tested.
Laboratory Investigations in Support of Carbon Dioxide-Limestone Sequestration in the Ocean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan Golomb; Eugene Barry; David Ryan
2005-11-01
This semi-annual progress reports includes further findings on CO{sub 2}-in-Water (C/W) emulsions stabilized by fine particles. In previous semi-annual reports we described the formation of stable C/W emulsions using pulverized limestone (CaCO{sub 3}), flyash, beach sand, shale and lizardite, a rock rich in magnesium silicate. For the creation of these emulsions we used a High-Pressure Batch Reactor (HPBR) equipped with view windows for illumination and video camera recording. For deep ocean sequestration, a C/W emulsion using pulverized limestone may be the most suitable. (a) Limestone (mainly CaCO{sub 3}) is cheap and plentiful; (b) limestone is innocuous for marine organisms (inmore » fact, it is the natural ingredient of shells and corals); (c) it buffers the carbonic acid that forms when CO{sub 2} dissolves in water. For large-scale sequestration of a CO{sub 2}/H{sub 2}O/CaCO{sub 3} emulsion a device is needed that mixes the ingredients, liquid carbon dioxide, seawater, and a slurry of pulverized limestone in seawater continuously, rather than incrementally as in a batch reactor. A practical mixing device is a Kenics-type static mixer. The static mixer has no moving parts, and the shear force for mixing is provided by the hydrostatic pressure of liquid CO{sub 2} and CaCO{sub 3} slurry in the delivery pipes from the shore to the disposal depth. This semi-annual progress report is dedicated to the description of the static mixer and the results that have been obtained using a bench-scale static mixer for the continuous formation of a CO{sub 2}/H{sub 2}O/CaCO{sub 3} emulsion. The static mixer has an ID of 0.63 cm, length 23.5 cm, number of baffles 27. Under pressure, a slurry of CaCO{sub 3} in artificial seawater (3.5% by weight NaCl) and liquid CO{sub 2} are co-injected into the mixer. From the mixer, the resulting emulsion flows into a Jerguson cell with two oblong windows on opposite sides, then it is vented. A fully ported ball valve inserted after the Jerguson cell allows the emulsion to be stopped in the cell. In such a manner the emulsion can be photographed while it is flowing through the cell, or after it has stagnated in the cell. A slurry of 10 g/L CaCO{sub 3} (Sigma Chemicals C-4830 reagent grade) in artificial seawater, co-injected into the static mixer at a rate of 1.5 L/min with liquid CO{sub 2} at a rate of 150 mL/min, at temperature 5-10 C, pressure 10 MPa, produced an emulsion with mean globule diameter in the 70-100 {micro}m range. In a HPBR, using the same materials, proportions, temperature and pressure, mixed with a magnetic stir bar at 1300 rpm, the mean globule diameter is in the 200-300 {micro}m range. Evidently, the static mixer produces an emulsion with smaller globule diameters and narrower distribution of globule diameters than a batch reactor.« less
Effect of static and dynamic exercise on heart rate and blood pressure variabilities.
González-Camarena, R; Carrasco-Sosa, S; Román-Ramos, R; Gaitán-González, M J; Medina-Bañuelos, V; Azpiroz-Leehan, J
2000-10-01
This study examines the effect of static and dynamic leg exercises on heart rate variability (HRV) and blood pressure variability (BPV) in humans. 10 healthy male subjects were studied at rest, during static exercise performed at 30% of maximal voluntary contraction (SX30), and during dynamic cycling exercises done at 30% of VO2max (DX30) and at 60% of VO2max (DX60). Respiration, heart rate, and blood pressure signals were digitized to analyze temporal and spectral parameters involving short and overall indexes (SD, deltaRANGE, RMSSD, Total power), power of the low (LF), middle (MF), and high (HF) frequency components, and the baroreceptor sensitivity by the alphaMF index. During SX30, indexes of HRV as SD, deltaRANGE, Total power, and MF in absolute units increased in relation with rest values and were significantly higher (P < 0.001) than during DX30 and DX60; HF during SX30, in normalized and absolute units, was not different of the rest condition but was higher (P < 0.001) than HF during DX30 and DX60. Parameters of BPV as SD and deltaRANGE increased (P < 0.001) during both type of exercises, and significant (P < 0.01) increments were observed on MF during SX30 and DX30; systolic HF was attenuated during DX30 (P < 0.05), whereas diastolic HF was augmented during DX60 (P < 0.001). Compared with rest condition, the alphaMF index decreased (P < 0.01) only during dynamic exercises. Because HRV and BPV response is different when induced by static or dynamic exercise, differences in the autonomic activity can be advised. Instead of the vagal withdrawal and sympathetic augmentation observed during dynamic exercise, the increase in the overall HRV and the MF component during static exercise suggest an increased activity of both autonomic branches.
Gas separation and bubble behavior at a woven screen
NASA Astrophysics Data System (ADS)
Conrath, Michael; Dreyer, Michael E.
Gas-liquid two phase flows are widespread and in many applications the separation of both phases is necessary. Chemical reactors, water treatment devices or gas-free delivery of liquids like propellant are only some of them. We study the performance of a woven metal screen in respect to its phase separation behavior under static and dynamic conditions. Beside hydraulic screen resistance and static bubble point, our study also comprises the bubble detachment from the screen upon gas breakthrough. Since a woven screen is essentially an array of identical pores, analogies to bubble detachment from a needle can be established. While the bubble point poses an upper limit for pressurized gas at a wetted screen to preclude gas breakthrough, the necessary pressure for growing bubbles to detach from the screen pores a lower limit when breakthrough is already in progress. Based on that inside, the dynamic bubble point effects were constituted that relate to a trapped bubble at such a screen in liquid flow. A trapped is caused to break through the screen by the flow-induced pressure drop across it. Our model includes axially symmetric bubble shapes, degree of coverage of the screen and bubble pressurization due to hydraulic losses in the rest of the circuit. We have built an experiment that consists of a Dutch Twilled woven screen made of stainless steel in a vertical acrylic glass tube. The liquid is silicon oil SF0.65. The screen is suspended perpendicular to the liquid flow which is forced through it at variable flow rate. Controlled injection of air from a needle allows us to examine the ability of the screen to separate gas and liquid along the former mentioned effects. We present experimental data on static bubble point and detachment pressure for breakthrough at different gas supply rates that suggest a useful criterion for reliable static bubble point measurements. Results for the dynamic bubble point are presented that include i) screen pressure drop for different trapped bubble volumes, liquid flow rates and flow-induced compression, ii) typical breakthrough of a trapped bubble at rising liquid flow rate and iii) steady gas supply in steady liquid flow. It shows that our model can explain the experimental observations. One of the interesting findings for the dynamic bubble point is that hydraulic losses in the rest of the circuit will shift the breakthrough of gas to higher liquid flow rates.
Effect of armor and carrying load on body balance and leg muscle function.
Park, Huiju; Branson, Donna; Kim, Seonyoung; Warren, Aric; Jacobson, Bert; Petrova, Adriana; Peksoz, Semra; Kamenidis, Panagiotis
2014-01-01
This study investigated the impact of weight and weight distribution of body armor and load carriage on static body balance and leg muscle function. A series of human performance tests were conducted with seven male, healthy, right-handed military students in seven garment conditions with varying weight and weight distributions. Static body balance was assessed by analyzing the trajectory of center of plantar pressure and symmetry of weight bearing in the feet. Leg muscle functions were assessed by analyzing the peak electromyography amplitude of four selected leg muscles during walking. Results of this study showed that uneven weight distribution of garment and load beyond an additional 9 kg impaired static body balance as evidenced by increased sway of center of plantar pressure and asymmetry of weight bearing in the feet. Added weight on non-dominant side of the body created greater impediment to static balance. Increased garment weight also elevated peak EMG amplitude in the rectus femoris to maintain body balance and in the medial gastrocnemius to increase propulsive force. Negative impacts on balance and leg muscle function with increased carrying loads, particularly with an uneven weight distribution, should be stressed to soldiers, designers, and sports enthusiasts. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Zhenxun; Wang, Jingying; Jiang, Chongwen; Lee, Chunhian
2014-11-01
In the framework of Reynolds-averaged Navier-Stokes simulation, supersonic turbulent combustion flows at the German Aerospace Centre (DLR) combustor and Japan Aerospace Exploration Agency (JAXA) integrated scramjet engine are numerically simulated using the flamelet model. Based on the DLR combustor case, theoretical analysis and numerical experiments conclude that: the finite rate model only implicitly considers the large-scale turbulent effect and, due to the lack of the small-scale non-equilibrium effect, it would overshoot the peak temperature compared to the flamelet model in general. Furthermore, high-Mach-number compressibility affects the flamelet model mainly through two ways: the spatial pressure variation and the static enthalpy variation due to the kinetic energy. In the flamelet library, the mass fractions of the intermediate species, e.g. OH, are more sensible to the above two effects than the main species such as H2O. Additionally, in the combustion flowfield where the pressure is larger than the value adopted in the generation of the flamelet library or the conversion from the static enthalpy to the kinetic energy occurs, the temperature obtained by the flamelet model without taking compressibility effects into account would be undershot, and vice versa. The static enthalpy variation effect has only little influence on the temperature simulation of the flamelet model, while the effect of the spatial pressure variation may cause relatively large errors. From the JAXA case, it is found that the flamelet model cannot in general be used for an integrated scramjet engine. The existence of the inlet together with the transverse injection scheme could cause large spatial variations of pressure, so the pressure value adopted for the generation of a flamelet library should be fine-tuned according to a pre-simulation of pure mixing.
NASA Technical Reports Server (NTRS)
Igoe, William B.
1991-01-01
Dynamic measurements of fluctuating static pressure levels were made using flush mounted high frequency response pressure transducers at eleven locations in the circuit of the National Transonic Facility (NTF) over the complete operating range of this wind tunnel. Measurements were made at test section Mach numbers from 0.2 to 1.2, at pressure from 1 to 8.6 atmospheres and at temperatures from ambient to -250 F, resulting in dynamic flow disturbance measurements at the highest Reynolds numbers available in a transonic ground test facility. Tests were also made independently at variable Mach number, variable Reynolds number, and variable drivepower, each time keeping the other two variables constant thus allowing for the first time, a distinct separation of these three important variables. A description of the NTF emphasizing its flow quality features, details on the calibration of the instrumentation, results of measurements with the test section slots covered, downstream choke, effects of liquid nitrogen injection and gaseous nitrogen venting, comparisons between air and nitrogen, isolation of the effects of Mach number, Reynolds number, and fan drive power, and identification of the sources of significant flow disturbances is included. The results indicate that primary sources of flow disturbance in the NTF may be edge-tones generated by test section sidewall re-entry flaps and the venting of nitrogen gas from the return leg of the tunnel circuit between turns 3 and 4 in the cryogenic mode of operation. The tests to isolate the effects of Mach number, Reynolds number, and drive power indicate that Mach number effects predominate. A comparison with other transonic wind tunnels shows that the NTF has low levels of test section fluctuating static pressure especially in the high subsonic Mach number range from 0.7 to 0.9.
Palacios-Ceña, M; Wang, K; Castaldo, M; Guerrero-Peral, Á; Caminero, A B; Fernández-de-Las-Peñas, C; Arendt-Nielsen, L
2017-09-01
To explore the validity of dynamic pressure algometry for evaluating deep dynamic mechanical sensitivity by assessing its association with headache features and widespread pressure sensitivity in tension-type headache (TTH). One hundred and eighty-eight subjects with TTH (70% women) participated. Deep dynamic sensitivity was assessed with a dynamic pressure algometry set (Aalborg University, Denmark © ) consisting of 11 different rollers including fixed levels from 500 g to 5300 g. Each roller was moved at a speed of 0.5 cm/s over a 60-mm horizontal line covering the temporalis muscle. Dynamic pain threshold (DPT-level of the first painful roller) was determined and pain intensity during DPT was rated on a numerical pain rate scale (NPRS, 0-10). Headache clinical features were collected on a headache diary. As gold standard, static pressure pain thresholds (PPT) were assessed over temporalis, C5/C6 joint, second metacarpal, and tibialis anterior muscle. Side-to-side consistency between DPT (r = 0.843, p < 0.001) and pain evoked (r = 0.712; p < 0.001) by dynamic algometer was observed. DPT was moderately associated with widespread PPTs (0.526 > r > 0.656, all p < 0.001). Furthermore, pain during DPT was negatively associated with widespread PPTs (-0.370 < r < -0.162, all p < 0.05). Dynamic pressure algometry was a valid tool for assessing deep dynamic mechanical sensitivity in TTH. DPT was associated with widespread pressure sensitivity independently of the frequency of headaches supporting that deep dynamic pressure sensitivity within the trigeminal area is consistent with widespread pressure sensitivity. Assessing deep static and dynamic somatic tissue pain sensitivity may provide new opportunities for differentiated diagnostics and possibly a new tool for assessing treatment effects. The current study found that dynamic pressure algometry in the temporalis muscle was associated with widespread pressure pain sensitivity in individuals with tension-type headache. The association was independent of the frequency of headaches. Assessing deep static and dynamic somatic tissue pain sensitivity may provide new opportunities for differentiated diagnostics and possibly a tool for assessing treatment effects. © 2017 European Pain Federation - EFIC®.
Abnormal pressures as hydrodynamic phenomena
Neuzil, C.E.
1995-01-01
So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author
NASA Technical Reports Server (NTRS)
Torrence, M. G.
1975-01-01
An investigation of a fixed-geometry, swept external-internal compression inlet was conducted at a Mach number of 6.0 and a test-section Reynolds number of 1.55 x 10 to the 7th power per meter. The test conditions was constant for all runs with stagnation pressure and temperature at 20 atmospheres and 500 K, respectively. Tests were made at angles of attack of -5 deg, 0 deg, 3 deg, and 5 deg. Measurements consisted of pitot- and static-pressure surveys in inlet throat, wall static pressures, and surface temperatures. Boundary-layer bleed was provided on the centerbody and on the cowl internal surface. The inlet performance was consistently high over the range of the angle of attack tested, with an overall average total pressure recovery of 78 percent and corresponding adiabatic kinetic-energy efficiency of 99 percent. The inlet throat flow distribution was uniform and the Mach number and pressure level were of the correct magnitude for efficient combustor design. The utilization of a swept compression field to meet the starting requirements of a fixed-geometry inlet produced neither flow instability nor a tendency to unstart.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ossler, Frederik; Santodonato, Louis J.; Bilheux, Hassina Z.
Here, we report results from experiments where we characterize the surface properties of soot particles interacting with high-pressure methane. We also found considerable differences in behavior of the soot material between static and dynamic pressure conditions that can be explained by multiscale correlations in the dynamics, from the micro to macro of the porous fractal-like carbon matrix. The measurements were possible utilizing cold neutron imaging of methane mixed with combustion generated carbon (soot) inside steel cells. The studies were performed under static and dynamic pressure conditions in the range 10-90 bar, and are of interest for applications of energy storagemore » of hydrogenous fuels. The very high cross sections for neutrons compared to hard X-ray photons, enabled us to find considerable amounts of native hydrogen in the soot and to see and quantify the presence of hydrogen atoms in the carbon soot matrix under different pressure conditions. Our work lays the base for more detailed in-situ investigations on the interaction of porous carbon materials with hydrogen in practical environments for hydrogen and methane storage.« less
Pressure loss in elbow pipes of unplasticized polyvinyl chloride.
Iwasaki, T; Ojima, J
1996-01-01
In the ductwork of local exhaust systems, 90 degrees elbow pipes (JIS K 6739) are commonly used to alter the direction of airflow; thus, are important components of polyvinyl chloride (PVC) ducts. Pressure loss in 90 degrees PVC elbow pipes was investigated by measuring static pressure, and the characteristics of airflow was determined. First, a linear decrease in static pressure was observed at points of the downstream side beyond a distance of 10 times the diameter (10d) from the flanged round opening of the smooth VU ducts (JIS K6741). The linear decrease was also observed at points of the downstream side located at distances of greater than 30d from the elbow pipe. Coefficients of loss in the PVC elbow pipes were found to be constant for the Reynolds numbers ranging from 3.38 x 10(4) to 5.96 x 10(5) for all diameters examined, and a chart of pressure loss was constructed with these coefficients. The coefficients of loss in PVC elbow pipes were not equivalent to those of metal stamped elbows for any R/d. However, the differences in the coefficients between the metal stamped elbow and the PVC elbow were smaller with larger R/d values.
Ossler, Frederik; Santodonato, Louis J.; Bilheux, Hassina Z.
2017-02-12
Here, we report results from experiments where we characterize the surface properties of soot particles interacting with high-pressure methane. We also found considerable differences in behavior of the soot material between static and dynamic pressure conditions that can be explained by multiscale correlations in the dynamics, from the micro to macro of the porous fractal-like carbon matrix. The measurements were possible utilizing cold neutron imaging of methane mixed with combustion generated carbon (soot) inside steel cells. The studies were performed under static and dynamic pressure conditions in the range 10-90 bar, and are of interest for applications of energy storagemore » of hydrogenous fuels. The very high cross sections for neutrons compared to hard X-ray photons, enabled us to find considerable amounts of native hydrogen in the soot and to see and quantify the presence of hydrogen atoms in the carbon soot matrix under different pressure conditions. Our work lays the base for more detailed in-situ investigations on the interaction of porous carbon materials with hydrogen in practical environments for hydrogen and methane storage.« less
Suresh, R; Bhalla, S; Singh, C; Kaur, N; Hao, J; Anand, S
2015-01-01
Clinical monitoring of planar pressure is vital in several pathological conditions, such as diabetes, where excess pressure might have serious repercussions on health of the patient, even to the extent of amputation. The main objective of this paper is to experimentally evaluate the combined application of the Fibre Bragg Grating (FBG) and the lead zirconate titanate (PZT) piezoceramic sensors for plantar pressure monitoring during walk at low and high speeds. For fabrication of the pressure sensors, the FBGs are embedded within layers of carbon composite material and stacked in an arc shape. From this embedding technique, average pressure sensitivity of 1.3 pm/kPa and resolution of nearly 0.8 kPa is obtained. These sensors are found to be suitable for measuring the static and the low-speed walk generated foot pressure. Simultaneously, PZT patches of size 10 × 10 × 0.3 mm were used as sensors, utilizing the d
Optical zero-differential pressure switch and its evaluation in a multiple pressure measuring system
NASA Technical Reports Server (NTRS)
Powell, J. A.
1977-01-01
The design of a clamped-diaphragm pressure switch is described in which diaphragm motion is detected by a simple fiber-optic displacement sensor. The switch was evaluated in a pressure measurement system where it detected the zero crossing of the differential pressure between a static test pressure and a tank pressure that was periodically ramped from near zero to fullscale gage pressure. With a ramping frequency of 1 hertz and a full-scale tank pressure of 69 N/sq cm gage (100 psig), the switch delay was as long as 2 milliseconds. Pressure measurement accuracies were 0.25 to 0.75 percent of full scale. Factors affecting switch performance are also discussed.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Arrangements), 2.3 (Test Ducts and Plenums), 2.4 (Test Gases), 2.5 (Test Pressures and Burner Adjustments), 2.6 (Static Pressure and Air Flow Adjustments), 2.39 (Thermal Efficiency) (note, this is 2.38 in ANSI Z21.47... test must be conducted only at the normal inlet test pressure, as specified in section 2.5.1 of ANSI...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Arrangements), 2.3 (Test Ducts and Plenums), 2.4 (Test Gases), 2.5 (Test Pressures and Burner Adjustments), 2.6 (Static Pressure and Air Flow Adjustments), 2.39 (Thermal Efficiency) (note, this is 2.38 in ANSI Z21.47... test must be conducted only at the normal inlet test pressure, as specified in section 2.5.1 of ANSI...
Inspiratory Resistance as a Potential Treatment for Orthostatic Intolerance and Hemorrhagic Shock
2005-04-01
central blood volume by forcing the thoracic muscles to develop increased negative pressure , thus drawing venous blood from extrathoracic cavi- ties...cardiac baroreflex sensitivity associated with re- ductions of central blood volume during lower body negative pressure (LBNP) are reversed with...9:621–26. 8. Chapleau MW, Abboud FM. Contrasting effects of static and pulsatile pressure on carotid baroreceptor activity in dogs. Circ Res 1987; 61
Vapor pressure of germanium precursors
NASA Astrophysics Data System (ADS)
Pangrác, J.; Fulem, M.; Hulicius, E.; Melichar, K.; Šimeček, T.; Růžička, K.; Morávek, P.; Růžička, V.; Rushworth, S. A.
2008-11-01
The vapor pressure of two germanium precursors tetrakis(methoxy)germanium (Ge(OCH 3) 4, CASRN 992-91-6) and tetrakis(ethoxy)germanium (Ge(OC 2H 5) 4, CASRN 14165-55-0) was determined using a static method in the temperature range 259-303 K. The experimental vapor pressure data were fit with the Antoine equation. The mass spectra before and after degassing by vacuum distillation at low temperature are also reported and discussed.
Static-stress analysis of dual-axis confinement vessel
NASA Astrophysics Data System (ADS)
Bultman, D. H.
1992-11-01
This study evaluates the static-pressure containment capability of a 6-ft-diameter, spherical vessel, made of HSLA-100 steel, to be used for high-explosive (HE) containment. The confinement vessel is designed for use with the Dual-Axis Radiographic Hydrotest Facility (DARHT) being developed at Los Alamos National Laboratory. Two sets of openings in the vessel are covered with x-ray transparent covers to allow radiographic imaging of an explosion as it occurs inside the vessel. The confinement vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section 8, Division 1, and the Welding Research Council Bulletin, WRC-107. Combined stresses resulting from internal pressure and external loads on nozzles are calculated and compared with the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzles of the confinement vessel are adequately designed to safely contain the maximum residual pressure of 1675 psi that would result from an HE charge of 24.2 kg detonated in a vacuum. Shell stresses at the shell-to-nozzle interface, produced from external loads on the nozzles, were less than 400 psi. The maximum combined stress resulting from the internal pressure plus external loads was 16,070 psi, which is less than half the allowable stress of 42,375 psi for HSLA-100 steel.
2008-05-14
survey rake installed in the test section to measure pitot pressure, static pressure and stagnation point heat transfer in the freestream. From these...on the cone, employing time of arrival pressure transducers to obtain 2"d mode transition frequencies, and making pitot pressure measurements to...these studies have proven to be the most accurate measurement technique in supersonic and hypersonic test facilities, and the small size of the sensing
Numerical Simulation of Earth Pressure on Head Chamber of Shield Machine with FEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Shouju; Kang Chengang; Sun, Wei
2010-05-21
Model parameters of conditioned soils in head chamber of shield machine are determined based on tree-axial compression tests in laboratory. The loads acting on tunneling face are estimated according to static earth pressure principle. Based on Duncan-Chang nonlinear elastic constitutive model, the earth pressures on head chamber of shield machine are simulated in different aperture ratio cases for rotating cutterhead of shield machine. Relationship between pressure transportation factor and aperture ratio of shield machine is proposed by using aggression analysis.
The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
Maier, Hannes; Salcher, Rolf; Schwab, Burkard; Lenarz, Thomas
2013-07-01
The Direct Acoustic Cochlea Stimulator Partial Implant (DACS PI, Phonak Acoustic Implants SA, Switzerland) is intended to stimulate the cochlea by a conventional stapedotomy piston that is crimped onto the DACS PI artificial incus. An alternative approach to the round window (RW) is successfully done with other devices, having the advantage of being also independent of the existence of middle ear structure (e.g. ossicles). Here the possibility of stimulating the RW with the DACS actuator is investigated including the impact of static force on sound transmission to the cochlea. The maximum equivalent sound pressure output with RW stimulation was determined experimentally in fresh human temporal bones. Experiments were performed in analogy to the ASTM standard (F2504.24930-1) method for the output determination of implantable middle ear hearing devices (IMEHDs) in human cadaveric temporal bones (TBs). ASTM compliant temporal bones were stimulated with a prosthesis having a spherical tip (∅0.5 mm) attached to the actuator. The stimulation was performed perpendicular to the round window membrane (RWM) at varying position relative to the RW and the resulting static force on the RW membrane was determined. At each position the displacement output of the DACS PI actuator and the stapes footplate (SFP) vibration in response to actuator stimulation was measured with a Laser Doppler Velocimeter (LDV). By comparison of the achieved output at the stapes footplate in response to sound and transducer stimulation the equivalent sound pressure level at the tympanic membrane at 1Vrms input voltage was calculated assuming that the SFP displacement in both conditions is a measure of perceived loudness, as it is done in the ASTM standard. Ten TB preparations within the acceptance range of the ASTM standard were used for analysis. The actuator driven stapes footplate displacement amplitude as well as the resulting equivalent sound pressure level was highly dependent on the static force applied to the RW. The sound transfer efficiency from the RW to the stapes footplate increased monotonically with increasing static load. At a moderate static force load (approx. 3.9 mN) the obtained average sound equivalent sound pressure level was 102-120 eq. dB SPL @ nominally 1Vrms input for frequencies ≤4 kHz. At higher frequencies (6-10 kHz) the achieved output dropped to ∼90 dB SPL. This output was obtained at loading conditions compatible with the actuator safe operating range, although it was possible to increase the output further by increasing the static force load. Our results demonstrate for a first time that static force applied to the RW is crucial for sound transmission efficiency. Further we could show that RW stimulation with the DACS PI actuator is possible having a maximum output that is sufficient to treat moderate and pronounced sensorineural hearing losses (SNHL). This article is part of a Special Issue entitled "MEMRO 2012". Copyright © 2013 Elsevier B.V. All rights reserved.
CFD research on runaway transient of pumped storage power station caused by pumping power failure
NASA Astrophysics Data System (ADS)
Zhang, L. G.; Zhou, D. Q.
2013-12-01
To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.
Radio jet refraction in galactic atmospheres with static pressure gradients
NASA Technical Reports Server (NTRS)
Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.
1981-01-01
A theory based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy, is proposed for double radio sources with a Z or S morphology. The model describes a collimated jet of supersonic material that bends self-consistently under the influence of external static pressure gradients, and may alternatively be seen as a continuous-jet version of the buoyancy model proposed by Gull (1973). Emphasis is placed on (1) S-shaped radio sources identified with isolated galaxies, such as 3C 293, whose radio structures should be free of distortions resulting from motion relative to a cluster medium, and (2) small-scale, galaxy-dominated rather than environment-dominated S-shaped sources such as the inner jet structure of Fornax A.
NASA Technical Reports Server (NTRS)
Sussman, M. B.; Harkonen, D. L.; Reed, J. B.
1976-01-01
Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive-lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data and to establish a basis for future flight test comparisons.
Efficient gas-liquid contact using microfluidic membrane devices with staggered herringbone mixers.
Femmer, Tim; Eggersdorfer, Max L; Kuehne, Alexander J C; Wessling, Matthias
2015-08-07
We describe a novel membrane based gas-liquid-contacting device with increased mass transport and reduced pressure loss by combining a membrane with a staggered herringbone static mixer. Herringbone structures are imposed on the microfluidic channel geometry via soft lithography, acting as mixers which introduce secondary flows at the membrane interface. Such flows include Dean vortices and Taylor flows generating effective mixing while improving mass transport and preventing concentration polarization in microfluidic channels. Furthermore, our static herringbone mixer membranes effectively reduce pressure losses leading to devices with enhanced transfer properties for microfluidic gas-liquid contact. We investigate the red blood cell distribution to tailor our devices towards miniaturised extracorporeal membrane oxygenation and improved comfort of patients with lung insufficiencies.
A study of high speed flows in an aircraft transition duct. Ph.D. Thesis - Iowa State Univ.
NASA Technical Reports Server (NTRS)
Reichert, Bruce A.
1991-01-01
The study of circular-to-rectangular transition duct flows with and without inlet swirl is presented. A method was devised to create a swirling, solid body rotational flow with minimal associated disturbances. Details of the swirl generator design and construction are discussed. Coefficients based on velocities and total and static pressures measured in cross stream planes at four axial locations within the transition duct along with surface static pressures and surface oil film visualization are presented for both nonswirling and swirling incoming flows. A method was developed to acquire trace gas measurements within the transition duct at high flow velocities. Statistical methods are used to help interpret the trace gas results.
2016-01-01
Modern imaging techniques, increased simulation capabilities and extended theoretical frameworks, naturally drive the development of multiscale modelling by the question: which new information should be considered? Given the need for concise constitutive relationships and efficient data evaluation; however, one important question is often neglected: which information is sufficient? For this reason, this work introduces the formalized criterion of subscale sufficiency. This criterion states whether a chosen constitutive relationship transfers all necessary information from micro to macroscale within a multiscale framework. It further provides a scheme to improve constitutive relationships. Direct application to static capillary pressure demonstrates usefulness and conditions for subscale sufficiency of saturation and interfacial areas. PMID:27279769
Super earth interiors and validity of Birch's Law for ultra-high pressure metals and ionic solids
NASA Astrophysics Data System (ADS)
Ware, Lucas Andrew
2015-01-01
Super Earths, recently detected by the Kepler Mission, expand the ensemble of known terrestrial planets beyond our Solar System's limited group. Birch's Law and velocity-density systematics have been crucial in constraining our knowledge of the composition of Earth's mantle and core. Recently published static diamond anvil cell experimental measurements of sound velocities in iron, a key deep element in most super Earth models, are inconsistent with each other with regard to the validity of Birch's Law. We examine the range of validity of Birch's Law for several metallic elements, including iron, and ionic solids shocked with a two-stage light gas gun into the ultra-high pressure, temperature fluid state and make comparisons to the recent static data.
Recombination of Hydrogen-Air Combustion Products in an Exhaust Nozzle
NASA Technical Reports Server (NTRS)
Lezberg, Erwin A.; Lancashire, Richard B.
1961-01-01
Thrust losses due to the inability of dissociated combustion gases to recombine in exhaust nozzles are of primary interest for evaluating the performance of hypersonic ramjets. Some results for the expansion of hydrogen-air combustion products are described. Combustion air was preheated up to 33000 R to simulate high-Mach-number flight conditions. Static-temperature measurements using the line reversal method and wall static pressures were used to indicate the state of the gas during expansion. Results indicated substantial departure from the shifting equilibrium curve beginning slightly downstream of the nozzle throat at stagnation pressures of 1.7 and 3.6 atmospheres. The results are compared with an approximate method for determining a freezing point using an overall rate equation for the oxidation of hydrogen.
Speed and pressure recording in three-dimensional flow
NASA Technical Reports Server (NTRS)
Krisam, F
1932-01-01
Van der Megge Zijnen's spherical Pitot tube with its 5 test holes insures a simultaneous record of static pressure and magnitude and direction of velocity in three-dimensional flow. The report treats the method as well as the range of application of this Pitot in the light of modern knowledge on flow around spheres.
Ocean Engineering Studies Compiled 1991. Volume 10. External Pressure Housing - Concrete
1991-01-01
Hafsklold Ing. F. Selmer AS Anton Brandtzaeg Post Office Box 256 Professor of Construction & Harbour Oslo, Norway Engineering Norwegian Technical University...1984, pp 364-411. 50. 0. Olsen , "Implosion analysis of concrete cylinders under hydro- static pressure," ACI, vol 75, no. 3, Mar 1973, pp 82-85. 51. K.P
Hydrostatic Pressure Project: Linked-Class Problem-Based Learning in Engineering
ERIC Educational Resources Information Center
Davis, Freddie J.; Lockwood-Cooke, Pamela; Hunt, Emily M.
2011-01-01
Over the last few years, WTAMU Mathematics, Engineering and Science faculty has used interdisciplinary projects as the basis for implementation of a linked-class approach to Problem-Based Learning (PBL). A project that has significant relevance to engineering statics, fluid mechanics, and calculus is the Hydrostatic Pressure Project. This project…
Industrial-scale storage of CO2 in saline sedimentary basins will cause zones of elevated pressure, larger than the CO2 plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards al...
Measurement of water saturation in porous media is essential for many types of studies including subsurface water flow, subsurface colloids transport and contaminant remediation to name a few. Water saturation (S) in porous media is dependent on the capillary pressure (Pc) which,...
Static internal performance characteristics of two thrust reverser concepts for axisymmetric nozzles
NASA Technical Reports Server (NTRS)
Leavitt, L. D.; Re, R. J.
1982-01-01
The statis performance of two axisymmetric nozzle thrust reverser concepts was investigated. A rotating vane thrust reverser represented a concept in which reversing is accomplished upstream of the nozzle throat, and a three door reverser concept provided reversing downstream of the nozzle throat. Nozzle pressure ratio was varied from 2.0 to approximately 6.0. The results of this investigation indicate that both the rotating vane and three door reverser concepts were effective static thrust spoilers with the landing approach nozzle geometry and were capable of providing at least a 50 percent reversal of static thrust when fully deployed with the ground roll nozzle geometry.
Lubricant Rheology in Concentrated Contacts
NASA Technical Reports Server (NTRS)
Jacobson, B. O.
1984-01-01
Lubricant behavior in highly stressed situtations shows that a Newtonian model for lubricant rheology is insufficient for explanation of traction behavior. The oil film build up is predicted by using a Newtonian lubricant model except at high slide to roll ratios and at very high loads, where the nonNewtonian behavior starts to be important already outside the Hertzian contact area. Static and dynamic experiments are reported. In static experiments the pressure is applied to the lubricant more than a million times longer than in an EHD contact. Depending on the pressure-temperature history of the experiment the lubricant will become a crystallized or amorphous solid at high pressures. In dynamic experiments, the oil is in an amorphous solid state. Depending on the viscosity, time scale, elasticity of the oil and the bearing surfaces, the oil film pressure, shear strain rate and the type of lubricant, different properties of the oil are important for prediction of shear stresses in the oil. The different proposed models for the lubricant, which describe it to a Newtonian liquid, an elastic liquid, a plastic liquid and an elastic-plastic solid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorynin, I.V.; Filatov, V.M.; Ignatov, V.A.
1986-07-01
The authors examine data on the effect of defects on the fracture resistance of high-pressure vessels and their models obtained within the framework of the HSST program. Results of internal-pressure tests of two types of vessels with a wall thickness of 152 mm made from forgings of steels SA508 and SA533, as well as small vessels with a wall thickness of 11.5 and 23mm made of steel SA533 are shown. The authors state that testing thick-walled welded high-pressure vessels and thin-walled vessels with surface defects of different sizes has demonstrated that there are substantial static-strength reserves in structures designed bymore » existing domestic and foreign standards on the strength of power-plant equipment. A correction was proposed for the presently used method of calculating the resistance of highpressure vessels to brittle fracture that allows for the dimensions of the defects in relation to the type of vessel, the manufacturing technology, and the method of inspection.« less
NASA Astrophysics Data System (ADS)
Kinoshita, C.; Saffer, D.; Kopf, A.; Roesner, A.; Wallace, L. M.; Araki, E.; Kimura, T.; Machida, Y.; Kobayashi, R.; Davis, E.; Toczko, S.; Carr, S.
2018-02-01
One primary objective of Integrated Ocean Drilling Program Expedition 365, conducted as part of the Nankai Trough Seismogenic Zone Experiment, was to recover a temporary observatory emplaced to monitor formation pore fluid pressure and temperature within a splay fault in the Nankai subduction zone offshore SW Honshu, Japan. Here we use a 5.3 year time series of formation pore fluid pressure, and in particular the response to ocean tidal loading, to evaluate changes in pore pressure and formation and fluid elastic properties induced by earthquakes. Our analysis reveals 31 earthquake-induced perturbations. These are dominantly characterized by small transient increases in pressure (28 events) and decreases in ocean tidal loading efficiency (14 events) that reflect changes to formation or fluid compressibility. The observed perturbations follow a magnitude-distance threshold similar to that reported for earthquake-driven hydrological effects in other settings. To explore the mechanisms that cause these changes, we evaluate the expected static and dynamic strains from each earthquake. The expected static strains are too small to explain the observed pressure changes. In contrast, estimated dynamic strains correlate with the magnitude of changes in both pressure and loading efficiency. We propose potential mechanism for the changes and subsequent recovery, which is exsolution of dissolved gas in interstitial fluids in response to shaking.
NASA Technical Reports Server (NTRS)
Richwine, David M.; Fisher, David F.
1992-01-01
Flow-field measurements on the leading-edge extension (LEX) of the F-18 High Alpha Research Vehicle (HARV) were obtained using a rotating rake with 16 hemispherical-tipped five-hole probes. Detailed pressure, velocity, and flow direction data were obtained through the LEX vortex core. Data were gathered during 1-g quasi-stabilized flight conditions at angles of attack alpha from 10 degrees to 52 degrees and at Reynolds numbers based on mean aerodynamic cord up to 16 x 10(exp 6). Normalized dynamic pressures and crossflow velocities clearly showed the primary vortex above the LEX and formation of a secondary vortex at higher angles of attack. The vortex was characterized by a ring of high dynamic pressure surrounding a region of low dynamic pressure at the vortex core center. The vortex core, subcore diameter, and vertical location of the core above the LEX increased with angle of attack. Minimum values for static pressure were obtained in the vortex subcore and decreased nearly linearly with increasing angle of attack until vortex breakdown. Rake-measured static pressures were consistent with previously documented surface pressures and showed good agreement with flow visualization flight test results. Comparison of the LEX vortex flight test data to computational solutions at alpha approximately equals 19 degrees and 30 degrees showed fair correlation.
Gmitrov, Juraj
2010-02-01
We compared the effect of static magnetic field (SMF) and verapamil, a potent vascular calcium channel blocking agent, on sudden elevation in blood pressure in conjunction with arterial baroreflex sensitivity (BRS) and microcirculation. Forty-four experiments were performed on conscious rabbits sedated using pentobarbital intravenous (i.v.) infusion (5 mg kg(-1) h(-1)). Mean femoral artery blood pressure (MAP), heart rate, BRS and ear lobe skin microcirculatory blood flow, estimated using microphotoelectric plethysmography (MPPG), were simultaneously measured after a 40 min exposure of the sinocarotid baroreceptors to 350 mT SMF, generated by Nd(2)-Fe(14)-B magnets, or 30 min of verapamil i.v. administration (20 microg kg(-1) min(-1)). BRS was assessed from heart rate and MAP responses to i.v. bolus of nitroprusside and phenylephrine. The decrease in phenylephrine-induced abrupt elevation in MAP (DeltaMAP(AE)) was significantly larger after verapamil than after SMF exposure. DeltaMAP(AE) inversely correlated with verapamil-induced significant increase in DeltaMPPG (r = 0.53, p < 0.000) and with SMF-induced significant increase in DeltaBRS (r = 0.47, p < 0.016). Our results suggest that verapamil-potentiated vascular blood pressure buffering mechanism was more effective than SMF-potentiated baroreflex-mediated blood pressure buffering mechanism, and a potential benefit of both approaches in cardiovascular conditions with abrupt high elevation in blood pressure.
NASA Astrophysics Data System (ADS)
Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.
2014-09-01
A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s-1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.
Pore-scale modeling of moving contact line problems in immiscible two-phase flow.
NASA Astrophysics Data System (ADS)
Kucala, A.; Noble, D.; Martinez, M. J.
2016-12-01
Two immiscible fluids in static equilibrium form a common interface along a solid surface, characterized as the static contact (wetting) angle and is a function of surface geometry, intermolecular forces, and interfacial surface energies manifested as interfacial tension. This static configuration may become perturbed due to external force imbalances (mass injection, pressure gradients, buoyancy, etc.) and the contact line location and interface curvature becomes dynamic. Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. The moving two-phase interface is tracked using the level set method and discretized with the conformal decomposition finite element method (CDFEM), allowing for surface tension effects to be computed at the exact interface location. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000
Dynamic Dilational Strengthening During Earthquakes in Saturated Gouge-Filled Fault Zones
NASA Astrophysics Data System (ADS)
Sparks, D. W.; Higby, K.
2016-12-01
The effect of fluid pressure in saturated fault zones has been cited as an important factor in the strength and slip-stability of faults. Fluid pressure controls the effective normal stress across the fault and therefore controls the faults strength. In a fault core consisting of granular fault gouge, local transient dilations and compactions occur during slip that dynamically change the fluid pressure. We use a grain-scale numerical model to investigate the effect of these fluid effects in fault gouge during an earthquake. We use a coupled finite difference-discrete element model (Goren et al, 2011), in which the pore space is filled with a fluid. Local changes in grain packing generate local deviations in fluid pressure, which can be relieved by fluid flow through the permeable gouge. Fluid pressure gradients exert drag forces on the grains that couple the grain motion and fluid flow. We simulated 39 granular gouge zones that were slowly loaded in shear stress to near the failure point, and then conducted two different simulations starting from each grain packing: one with a high enough mean permeability (> 10-11 m2) that pressure remains everywhere equilibrated ("fully drained"), and one with a lower permeability ( 10-14 m2) in which flow is not fast enough to prevent significant pressure variations from developing ("undrained"). The static strength of the fault, the size of the event and the evolution of slip velocity are not imposed, but arise naturally from the granular packing. In our particular granular model, all fully drained slip events are well-modeled by a rapid drop in the frictional resistance of the granular packing from a static value to a dynamic value that remains roughly constant during slip. Undrained events show more complex behavior. In some cases, slip occurs via a slow creep with resistance near the static value. When rapid slip events do occur, the dynamic resistance is typically larger than in drained events, and highly variable. Frictional resistance is not correlated with the mean fluid pressure in the layer, but is instead controlled by local regions undergoing dilational strengthening. We find that (in the absence of pressure-generating effects like thermal pressurization or fluid-releasing reactions), the overall effect of fluid is to strengthen the fault.
NASA Technical Reports Server (NTRS)
Sinclair, Archibald R; Mace, William D
1956-01-01
A limited calibration of a combined pitot-static tube and vane-type flow-angularity indicator has been made in the Langley 4- by 4-foot supersonic pressure tunnel at Mach numbers of 1.61 and 2.01. The results indicated that the angle-of-yaw indications were affected by unsymmetric shock effects at low angles of attack.
Measurement of unsteady surface pressure on rotor blades of fans by pressure-sensitive paint
NASA Astrophysics Data System (ADS)
Yokoyama, Hiroshi; Miura, Kouhei; Iida, Akiyoshi
2017-01-01
To clarify the unsteady pressure distributions on the rotor blades of an axial fan, a pressure-sensitive paint (PSP) technique was used. To capture the image of the rotating fan as a static image, an optical derotator method with a dove prism was adopted. It was confirmed by preliminary experiments with a resonator and a speaker that the pressure fluctuations with 347 Hz can be measured by the present PSP. The measured mean pressure distributions were compared with the predicted results based on large-eddy simulations. The measured instantaneous surface pressure is instrumental to identify acoustic source of fan noise in the design stage.
NASA Astrophysics Data System (ADS)
Kim, Youn-Jea; Kim, Dong-Won
The effects of casing shapes on the performance and the interaction between an impeller and a casing in a small-size turbo-compressor are investigated. Numerical analysis is conducted for the turbo-compressor with circular and single volute casings from the inlet to a discharge nozzle. The optimum design for each element is important to develop the small-size turbo-compressor using alternative refrigerant as a working fluid. Typically, the rotating speed of the compressor is in the range of 40000-45000rpm because of the small size of an impeller diameter. A blade of an impeller has backswept two-dimensional shape due to tip clearance and a vane diffuser has wedge type. In order to predict the flow pattern inside the entire impeller, the vaneless diffuser and the casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For compressible turbulent flow fields, the continuity and time-averaged three-dimensional Navier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure recovery and loss coefficients are obtained with various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. To prove the accuracy of numerical results, measurements of static pressure around the casing and pressure difference between the inlet and the outlet of the compressor are performed for the circular casing. The comparison of experimental and numerical results is conducted, and reasonable agreement is obtained.
Effects of Water-Based Training on Static and Dynamic Balance of Older Women.
Bento, Paulo Cesar Barauce; Lopes, Maria de Fátima A; Cebolla, Elaine Cristine; Wolf, Renata; Rodacki, André L F
2015-08-01
The aim of this study was to evaluate the effects of a water-based exercise program on static and dynamic balance. Thirty-six older women were randomly assigned to a water-based training (3 days/week for 12 weeks) or control group. Water level was kept at the level of the xiphoid process and temperature at ∼28-30°C. Each session included aerobic activities and lower limb strength exercises. The medial-lateral, the anterior-posterior amplitude, and displacement of the center of pressure (CP-D) were measured in a quiet standing position (60 sec eyes opened and closed). The dynamic balance and 8-Foot Up-and-Go tests were also applied. Group comparisons were made using two-way analysis of variance (ANOVA) with repeated measures. No differences were found in the center of pressure variables; however, the WBT group showed better performance in the 8 Foot Up-and-Go Test after training (5.61±0.76 vs. 5.18±0.42; p<0.01). The water-based training was effective in improving dynamic balance, but not static balance.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Haering, Edward A., Jr.; Ehernberger, L. J.
1996-01-01
In-flight measurements of the SR-71 near-field sonic boom were obtained by an F-16XL airplane at flightpath separation distances from 40 to 740 ft. Twenty-two signatures were obtained from Mach 1.60 to Mach 1.84 and altitudes from 47,600 to 49,150 ft. The shock wave signatures were measured by the total and static sensors on the F-16XL noseboo. These near-field signature measurements were distorted by pneumatic attenuation in the pitot-static sensors and accounting for their effects using optimal deconvolution. Measurement system magnitude and phase characteristics were determined from ground-based step-response tests and extrapolated to flight conditions using analytical models. Deconvolution was implemented using Fourier transform methods. Comparisons of the shock wave signatures reconstructed from the total and static pressure data are presented. The good agreement achieved gives confidence of the quality of the reconstruction analysis. although originally developed to reconstruct the sonic boom signatures from SR-71 sonic boom flight tests, the methods presented here generally apply to other types of highly attenuated or distorted pneumatic measurements.
High precision Hugoniot measurements on statically pre-compressed fluid helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.
Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (u p) relationship: u s = C 0 + su p, with C 0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less
High precision Hugoniot measurements on statically pre-compressed fluid helium
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; ...
2016-09-27
Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (u p) relationship: u s = C 0 + su p, with C 0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less
Pre-Flight Ground Testing of the Full-Scale HIFiRE-1 at Fully Duplicated Flight Conditions
2008-05-14
survey rake installed in the test section to measure X ... -------- pitot pressure, static pressure and stagnation point heat transfer in . the...equilibrium at Figure 17. Photograph of Pitot Rake Assembly all points. This is a safe assumption, as the pressures and Mounted Inside Test Section of...measurement technique in supersonic and hypersonic test facilities, and the small size of the sensing element coupled with the insulating substrate
Serpentine Diffuser Performance with Emphasis on Future Introduction to a Transonic Fan (Postprint)
2013-01-01
conditioning barrel . The velocity distribution across the flow conditioning barrel was measured at the same axial location of inlet temperature and...rakes at the same axial plane (AIP) of the total pressure probe tips. The probes were constructed from stainless steel tubing with 0.027 inch inside...numbers with 195 axial and circumferential static pressure measurements within the diffuser flow path. Pressure distortion at the diffuser discharge
The effects of confining pressure and stress difference on static fatigue of granite
NASA Technical Reports Server (NTRS)
Kranz, R. L.
1980-01-01
Samples of Barre granite have been creep tested at room temperature at confining pressures up to 2 kbar. Experimental procedures are described and the results of observations and analysis are presented. It is noted that the effect of pressure is to increase the amount of inelastic deformation the rock can sustain before becoming unstable. It is also shown that this increased deformation is due to longer and more numerous microcracks.
The 727/JT8D refan side nacelle airloads
NASA Technical Reports Server (NTRS)
Bailey, R. W.; Vadset, H. J.
1974-01-01
Airloads on the 727/JT8D refan side engine nacelle are presented. These consist of surface static pressure distributions from two low speed wind tunnel tests. External nacelle surface pressures are from testing of a flow-through, body mounted nacelle model, and internal inlet surface pressures are from performance testing of a forced air inlet model. The method for obtaining critical airloads on nacelle components and a representative example are discussed.
Abd Razak, Nasrul A; Abu Osman, Noor A; Ali, Sadeeq A; Gholizadeh, Hossein
2016-01-15
While considering how important the interface between the amputees with the prostheses socket, we have carried out research to compare the gradient pressure occur at the interface socket that may lead to the discomforting effects to the user using common ICRC polypropylene socket and air splint socket. Not Applicable SETTING: Not Applicable POPULATION: The subject was a 23 year old who suffered a traumatic defect on the right arm caused by higher electrical volt. F-Socket sensors have been used to measure dynamic socket interface pressure for the transradial amputee wearer during static and dynamic movements. The printed circuit with a thickness of 0.18 mm is equipped between the socket and the surface of the residual limb. Two F-Socket sensor is required to cover the entire socket surface attached to the residual limb. The average of 10 trials made on prosthetic user using both type of sockets for static and dynamic movements was recorded. The pressure gradient shows that the circumference of the socket interface for the ICRC polypropylene socket gives the most pressure distributions to the amputees compared to the pressure gradient for the air splint socket. The pressure gradient for ICRC socket increased consistently when the user makes movements while for the air splint socket remain constantly. The specific interface pressure occur at the socket interface help in determine the comfort and pain of the socket design and improve the correlation between the user and the prosthesis.
Role of muscle mass and mode of contraction in circulatory responses to exercise
NASA Technical Reports Server (NTRS)
Lewis, S. F.; Snell, P. G.; Pettinger, W. A.; Blomqvist, C. G.; Taylor, W. F.; Hamra, M.; Graham, R. M.
1985-01-01
The roles of the mode of contraction (dynamic or static) and active muscle mass in determining the cardiovascular response to exercise has been investigated experimentally in six normal men. Exercise consisted of static handgrip and dynamic handgrip exercise, and static and dynamic knee extension for a period of six minutes. Observed increases in mean arterial pressure after exercise were similar for each mode of contraction, but larger for knee extension than handgrip exercise. Cardiac output increased more for dynamic than for static exercise and for each mode more for knee exercise than for handgrip exercise. Systemic resistance was found to be lower for dynamic than for static exercise, and to decrease from resisting levels by about one third during dynamic knee extension. It is shown that the magnitude of cardiovascular response is related to active muscle mass, but is independent of the contraction mode. Equalization of cardiovascular response was achieved by proportionately larger increases in cardiac output during dynamic exercise. The complete experimental results are given in a table.
NASA Astrophysics Data System (ADS)
Chitnis, Parag V.; Lee, Paul; Mamou, Jonathan; Allen, John S.; Böhmer, Marcel; Ketterling, Jeffrey A.
2011-04-01
Polymer-shelled micro-bubbles are employed as ultrasound contrast agents (UCAs) and vesicles for targeted drug delivery. UCA-based delivery of the therapeutic payload relies on ultrasound-induced shell rupture. The fragility of two polymer-shelled UCAs manufactured by Point Biomedical or Philips Research was investigated by characterizing their response to static overpressure. The nominal diameters of Point and Philips UCAs were 3 μm and 2 μm, respectively. The UCAs were subjected to static overpressure in a glycerol-filled test chamber with a microscope-reticule lid. UCAs were reconstituted in 0.1 mL of water and added over the glycerol surface in contact with the reticule. A video-microscope imaged UCAs as glycerol was injected (5 mL/h) to vary the pressure from 2 to 180 kPa over 1 h. Neither UCA population responded to overpressure until the rupture threshold was exceeded, which resulted in abrupt destruction. The rupture data for both UCAs indicated three subclasses that exhibited different rupture behavior, although their mean diameters were not statistically different. The rupture pressures provided a measure of UCA fragility; the Philips UCAs were more resilient than Point UCAs. Results were compared to theoretical models of spherical shells under compression. Observed variations in rupture pressures are attributed to shell imperfections. These results may provide means to optimize polymeric UCAs for drug delivery and elucidate associated mechanisms.
NASA Technical Reports Server (NTRS)
Jacobson, B. O.; Vinet, P.
1986-01-01
Two pressure chambers, for compression experiments with liquids from zero to 2.2 GPa pressure, are described. The experimentally measured compressions are then compared to theoretical values given by an isothermal model of equation of state recently introduced for solids. The model describes the pressure and bulk modulus as a function of compression for different types of lubricants with a very high accuracy up to the pressure limit of the high pressure chamber used (2.2 GPa). In addition the influence of temperature on static solidification pressure was found to be a simple function of the thermal expansion of the fluid.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-15
... Rocks for Engineering Analysis and Design of Nuclear Power Plants.'' In this exemption request, the... the design of the wall. Hence, the staff concludes that, the resulting static and dynamic earth pressures will be bounded by the lateral earth pressures used in design. Bearing Capacity The applicant...
NASA Technical Reports Server (NTRS)
Power, Gloria B.; Violett, Rebeca S.
1989-01-01
The analysis performed on the High Pressure Oxidizer Turbopump (HPOTP) preburner pump bearing assembly located on the Space Shuttle Main Engine (SSME) is summarized. An ANSYS finite element model for the inlet assembly was built and executed. Thermal and static analyses were performed.
46 CFR 38.05-3 - Design and construction of pressure vessel type cargo tanks-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... will, by themselves, constitute the cargo containment system and usually will not require a secondary... tanks by their support due to static and dynamic forces under operating conditions or during testing... percent of the vapor pressure corresponding to the temperature of the liquid at which the system is...
Dead space variability of face masks for valved holding chambers.
Amirav, Israel; Newhouse, Michael T
2008-03-01
Valved holding chambers with masks are commonly used to deliver inhaled medications to young children with asthma. Optimal mask properties such as their dead space volume have received little attention. The smaller the mask the more likely it is that a greater proportion of the dose in the VHC will be inhaled with each breath, thus speeding VHC emptying and improving overall aerosol delivery efficiency and dose. Masks may have different DSV and thus different performance. To compare both physical dead space and functional dead space of different face masks under various applied pressures. The DSV of three commonly used face masks of VHCs was measured by water displacement both under various pressures (to simulate real-life application, dynamic DSV) and under no pressure (static DSV). There was a great variability of both static and dynamic dead space among various face mask for VHCs, which is probably related to their flexibility. Different masks have different DSV characteristics. This variability should be taken into account when comparing the clinical efficacy of various VHCs.
NASA Technical Reports Server (NTRS)
Herring, Gregory C.
2008-01-01
A noninvasive optical method is used to make time-averaged (30 sec) off-body measurements in a supersonic airflow. Seeding of tracer particles is not required. One spatial component of velocity, static pressure, and static temperature are measured with stimulated Raman scattering. The three flow parameters are determined simultaneously from a common sample volume (0.3 by 0.3 by 15 mm) using concurrent measurements of the forward and backward scattered line shapes of a N2 vibrational Raman transition. The capability of this technique is illustrated with laboratory and large-scale wind tunnel testing that demonstrate 5-10% measurement uncertainties. Because the spatial resolution of the present work was improved to 1.5 cm (compared to 20 cm in previous work), it was possible to demonstrate a modest one-dimensional profiling of cross-flow velocity, pressure, and translational temperature through the low-density core of a stream-wise vortex (delta-wing model at Mach 2.8 in NASA Langley's Unitary Plan Wind Tunnel).
Uncertainty Analysis of the Grazing Flow Impedance Tube
NASA Technical Reports Server (NTRS)
Brown, Martha C.; Jones, Michael G.; Watson, Willie R.
2012-01-01
This paper outlines a methodology to identify the measurement uncertainty of NASA Langley s Grazing Flow Impedance Tube (GFIT) over its operating range, and to identify the parameters that most significantly contribute to the acoustic impedance prediction. Two acoustic liners are used for this study. The first is a single-layer, perforate-over-honeycomb liner that is nonlinear with respect to sound pressure level. The second consists of a wire-mesh facesheet and a honeycomb core, and is linear with respect to sound pressure level. These liners allow for evaluation of the effects of measurement uncertainty on impedances educed with linear and nonlinear liners. In general, the measurement uncertainty is observed to be larger for the nonlinear liners, with the largest uncertainty occurring near anti-resonance. A sensitivity analysis of the aerodynamic parameters (Mach number, static temperature, and static pressure) used in the impedance eduction process is also conducted using a Monte-Carlo approach. This sensitivity analysis demonstrates that the impedance eduction process is virtually insensitive to each of these parameters.
Forcing function modeling for flow induced vibration
NASA Technical Reports Server (NTRS)
Fleeter, Sanford
1993-01-01
The fundamental forcing function unsteady aerodynamics for application to turbomachine blade row forced response are considered, accomplished through a series of experiments performed in a rotating annular cascade and a research axial flow turbine. In particular, the unsteady periodic flowfields downstream of rotating rows of perforated plates, airfoils and turbine blade rows are measured with a cross hot-wire and an unsteady total pressure probe. The unsteady velocity and static pressure fields were then analyzed harmonically and split into vortical and potential gusts, accomplished by developing a gust splitting analysis which includes both gust unsteady static pressure and velocity data. The perforated plate gusts closely were found to be linear theory vortical gusts, satisfying the vortical gust constraints. The airfoil and turbine blade row generated velocity perturbations did not satisfy the vortical gust constraints. However, the decomposition of the unsteady flow field separated the data into a propagating vortical component which satisfied these vortical gust constraints and a decaying potential component.
Assessment of early onset of driver fatigue using multimodal fatigue measures in a static simulator.
Jagannath, M; Balasubramanian, Venkatesh
2014-07-01
Driver fatigue is an important contributor to road accidents. This paper reports a study that evaluated driver fatigue using multimodal fatigue measures, i.e., surface electromyography (sEMG), electroencephalography (EEG), seat interface pressure, blood pressure, heart rate and oxygen saturation level. Twenty male participants volunteered in this study by performing 60 min of driving on a static simulator. Results from sEMG showed significant physical fatigue (ρ < 0.05) in back and shoulder muscle groups. EEG showed significant (ρ < 0.05) increase of alpha and theta activities and a significant decrease of beta activity during monotonous driving. Results also showed significant change in bilateral pressure distribution on thigh and buttocks region during the study. These findings demonstrate the use of multimodal measures to assess early onset of fatigue. This will help us understand the influence of physical and mental fatigue on driver during monotonous driving. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Pressure sensor to determine spatial pressure distributions on boundary layer flows
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Piroozan, Parham; Corke, Thomas C.
1997-03-01
The determination of pressures along the surface of a wind tunnel proves difficult with methods that must introduce devices into the flow stream. This paper presents a sensor that is part of the wall. A special interferometric reflection moire technique is developed and used to produce signals that measures pressure both in static and dynamic settings. The sensor developed is an intelligent sensor that combines optics and electronics to analyze the pressure patterns. The sensor provides the input to a control system that is capable of modifying the shape of the wall and preserve the stability of the flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Shakhrai, D. V.
We have constructed the equations of state for crystalline boron carbide B{sub 11}C (C–B–C) and its melt under high dynamic and static pressures. A kink on the shock adiabat for boron carbide has been revealed in the pressure range near 100 GPa, and the melting curve with negative curvature in the pressure range 0–120 GPa has been calculated. The results have been used for interpreting the kinks on the shock adiabat for boron carbide in the pressure range of 0–400 GPa.
Gardinier, Joseph D; Gangadharan, Vimal; Wang, Liyun; Duncan, Randall L
2014-06-01
During physiological activities, osteoblasts experience a variety of mechanical forces that stimulate anabolic responses at the cellular level necessary for the formation of new bone. Previous studies have primarily investigated the osteoblastic response to individual forms of mechanical stimuli. However in this study, we evaluated the response of osteoblasts to two simultaneous, but independently controlled stimuli; fluid flow-induced shear stress (FSS) and static or cyclic hydrostatic pressure (SHP or CHP, respectively). MC3T3-E1 osteoblasts-like cells were subjected to 12dyn/cm 2 FSS along with SHP or CHP of varying magnitudes to determine if pressure enhances the anabolic response of osteoblasts during FSS. For both SHP and CHP, the magnitude of hydraulic pressure that induced the greatest release of ATP during FSS was 15 mmHg. Increasing the hydraulic pressure to 50 mmHg or 100 mmHg during FSS attenuated the ATP release compared to 15 mmHg during FSS. Decreasing the magnitude of pressure during FSS to atmospheric pressure reduced ATP release to that of basal ATP release from static cells and inhibited actin reorganization into stress fibers that normally occurred during FSS with 15 mmHg of pressure. In contrast, translocation of nuclear factor kappa B (NFκB) to the nucleus was independent of the magnitude of hydraulic pressure and was found to be mediated through the activation of phospholipase-C (PLC), but not src kinase. In conclusion, hydraulic pressure during FSS was found to regulate purinergic signaling and actin cytoskeleton reorganization in the osteoblasts in a biphasic manner, while FSS alone appeared to stimulate NFκB translocation. Understanding the effects of hydraulic pressure on the anabolic responses of osteoblasts during FSS may provide much needed insights into the physiologic effects of coupled mechanical stimuli on osteogenesis.
Gardinier, Joseph D.; Gangadharan, Vimal; Wang, Liyun; Duncan, Randall L.
2014-01-01
During physiological activities, osteoblasts experience a variety of mechanical forces that stimulate anabolic responses at the cellular level necessary for the formation of new bone. Previous studies have primarily investigated the osteoblastic response to individual forms of mechanical stimuli. However in this study, we evaluated the response of osteoblasts to two simultaneous, but independently controlled stimuli; fluid flow-induced shear stress (FSS) and static or cyclic hydrostatic pressure (SHP or CHP, respectively). MC3T3-E1 osteoblasts-like cells were subjected to 12dyn/cm2 FSS along with SHP or CHP of varying magnitudes to determine if pressure enhances the anabolic response of osteoblasts during FSS. For both SHP and CHP, the magnitude of hydraulic pressure that induced the greatest release of ATP during FSS was 15 mmHg. Increasing the hydraulic pressure to 50 mmHg or 100 mmHg during FSS attenuated the ATP release compared to 15 mmHg during FSS. Decreasing the magnitude of pressure during FSS to atmospheric pressure reduced ATP release to that of basal ATP release from static cells and inhibited actin reorganization into stress fibers that normally occurred during FSS with 15 mmHg of pressure. In contrast, translocation of nuclear factor kappa B (NFκB) to the nucleus was independent of the magnitude of hydraulic pressure and was found to be mediated through the activation of phospholipase-C (PLC), but not src kinase. In conclusion, hydraulic pressure during FSS was found to regulate purinergic signaling and actin cytoskeleton reorganization in the osteoblasts in a biphasic manner, while FSS alone appeared to stimulate NFκB translocation. Understanding the effects of hydraulic pressure on the anabolic responses of osteoblasts during FSS may provide much needed insights into the physiologic effects of coupled mechanical stimuli on osteogenesis. PMID:24910719
Development and evaluation of a self-regulating alternating pressure air cushion.
Nakagami, Gojiro; Sanada, Hiromi; Sugama, Junko
2015-03-01
To investigate the effect of alternating air cells of a newly developed dynamic cushion on interface pressure and tissue oxygenation levels. This cross-over experimental study included 19 healthy volunteers. The dynamic cushion used has an automatic self-regulating alternating pressure air-cell system with 35 small and four large air cells for maintaining posture while seated. This cushion also has 17 bottoming-out detectors that automatically inflate the air cells to release a high interface pressure. To assess the effect of this alternating system, participants sat on the new cushion with an alternating system or static system for 30 min and then performed push-ups. The interface pressure was monitored by pressure-sensitive and conductive ink film sensors and tissue oxygenation levels were monitored by near-infrared spectroscopy. A reactive hyperaemia indicator was calculated using tissue oxygenation levels as an outcome measure. The peak interface pressure was not significantly different between the groups. The reactive hyperaemia indicator was significantly higher in the static group than in the alternating group. An alternating system has beneficial effects on blood oxygenation levels without increasing interface pressure. Therefore, our new cushion is promising for preventing pressure ulcers with patients with limited ability to perform push-ups. Implications for Rehabilitation A dynamic cushion was developed, which consists of a uniquely-designed air-cell layout, detectors for bottoming out, and an alternating system with multiple air-cell lines. The alternating system did not increase interface pressure and it significantly reduced reactive hyperaemia after 30 min of sitting in healthy volunteers. This cushion is a new option for individuals who require stable posture but have limitations in performing scheduled push-ups for prevention of pressure ulcers.
Application of Pressure Sensitive Paint to Confined Flow at Mach Number 2.5
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; Bencic, T. J.; Bruckner, R. J.
1998-01-01
Pressure sensitive paint (PSP) is a novel technology that is being used frequently in external aerodynamics. For internal flows in narrow channels, and applications at elevated nonuniform temperatures, however, there are still unresolved problems that complicate the procedures for calibrating PSP signals. To address some of these problems, investigations were carried out in a narrow channel with supersonic flows of Mach 2.5. The first set of tests focused on the distribution of the wall pressure in the diverging section of the test channel downstream of the nozzle throat. The second set dealt with the distribution of wall static pressure due to the shock/wall interaction caused by a 25 deg. wedge in the constant Mach number part of the test section. In addition, the total temperature of the flow was varied to assess the effects of temperature on the PSP signal. Finally, contamination of the pressure field data, caused by internal reflection of the PSP signal in a narrow channel, was demonstrated. The local wall pressures were measured with static taps, and the wall pressure distributions were acquired by using PSP. The PSP results gave excellent qualitative impressions of the pressure field investigated. However, the quantitative results, specifically the accuracy of the PSP data in narrow channels, show that improvements need to be made in the calibration procedures, particularly for heated flows. In the cases investigated, the experimental error had a standard deviation of +/- 8.0% for the unheated flow, and +/- 16.0% for the heated flow, at an average pressure of 11 kpa.
NASA Technical Reports Server (NTRS)
Spaid, F. W.; Dahlin, J. A.; Roos, F. W.; Stivers, L. S., Jr.
1983-01-01
Surface static-pressure and drag data obtained from tests of two slightly modified versions of the original NASA Whitcomb airfoil and a model of the NACA 0012 airfoil section are presented. Data for the supercritical airfoil were obtained for a free-stream Mach number range of 0.5 to 0.9, and a chord Reynolds number range of 2 x 10 to the 6th power to 4 x 10 to the 6th power. The NACA 0012 airfoil was tested at a constant chord Reynolds number of 2 x 10 to the 6th power and a free-stream Mach number range of 0.6 to 0.8.
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Bartels, Robert E.
2009-01-01
This paper examines the aeroelastic stability of an on-orbit installable Space Shuttle patch panel. CFD flutter solutions were obtained for thick and thin boundary layers at a free stream Mach number of 2.0 and several Mach numbers near sonic speed. The effect of structural damping on these flutter solutions was also examined, and the effect of structural nonlinearities associated with in-plane forces in the panel was considered on the worst case linear flutter solution. The results of the study indicated that adequate flutter margins exist for the panel at the Mach numbers examined. The addition of structural damping improved flutter margins as did the inclusion of nonlinear effects associated with a static pressure difference across the panel.
Numerical and Experimental Dynamic Characteristics of Thin-Film Membranes
NASA Technical Reports Server (NTRS)
Young, Leyland G.; Ramanathan, Suresh; Hu, Jia-Zhu; Pai, P. Frank
2004-01-01
Presented is a total-Lagrangian displacement-based non-linear finite-element model of thin-film membranes for static and dynamic large-displacement analyses. The membrane theory fully accounts for geometric non-linearities. Fully non-linear static analysis followed by linear modal analysis is performed for an inflated circular cylindrical Kapton membrane tube under different pressures, and for a rectangular membrane under different tension loads at four comers. Finite element results show that shell modes dominate the dynamics of the inflated tube when the inflation pressure is low, and that vibration modes localized along four edges dominate the dynamics of the rectangular membrane. Numerical dynamic characteristics of the two membrane structures were experimentally verified using a Polytec PI PSV-200 scanning laser vibrometer and an EAGLE-500 8-camera motion analysis system.
Convenient optical pressure gauge for multimegabar pressures calibrated to 300 GPa
NASA Astrophysics Data System (ADS)
Sun, Liling; Ruoff, Arthur L.; Stupian, Gary
2005-01-01
The accurate measurement of pressure by a straightforward and inexpensive optical procedure has been needed in the multimegabar region since static pressures over 216GPa, 361GPa, 420GPa and 560GPa were obtained in the diamond anvil cell. Here, a simple optical pressure gauge based on the Raman shift of the diamond at the center of a diamond tip at the diamond-sample interface is calibrated against a primary gauge (Pt isotherm at 300K from shock data) to 300GPa, thus enabling researchers who do not have a synchrotron to conveniently measure pressure with an optical scale from 50to300GPa.
Distortion product otoacoustic emissions upon ear canal pressurization.
Zebian, Makram; Schirkonyer, Volker; Hensel, Johannes; Vollbort, Sven; Fedtke, Thomas; Janssen, Thomas
2013-04-01
The purpose of this study was to quantify the change in distortion product otoacoustic emission (DPOAE) level upon ear canal pressurization. DPOAEs were measured on 12 normal-hearing human subjects for ear canal static pressures between -200 and +200 daPa in (50 ± 5) daPa steps. A clear dependence of DPOAE levels on the pressure was observed, with levels being highest at the maximum compliance of the middle ear, and decreasing on average by 2.3 dB per 50 daPa for lower and higher pressures. Ear canal pressurization can serve as a tool for improving the detectability of DPOAEs in the case of middle-ear dysfunction.
NASA Technical Reports Server (NTRS)
Re, R. J.; Leavitt, L. D.
1984-01-01
The effects of geometric design parameters on two dimensional convergent-divergent nozzles were investigated at nozzle pressure ratios up to 12 in the static test facility. Forward flight (dry and afterburning power settings), vectored-thrust (afterburning power setting), and reverse-thrust (dry power setting) nozzles were investigated. The nozzles had thrust vector angles from 0 deg to 20.26 deg, throat aspect ratios of 3.696 to 7.612, throat radii from sharp to 2.738 cm, expansion ratios from 1.089 to 1.797, and various sidewall lengths. The results indicate that unvectored two dimensional convergent-divergent nozzles have static internal performance comparable to axisymmetric nozzles with similar expansion ratios.
29Si nuclear magnetic resonance study of URu 2Si 2 under pressure
Shirer, K. R.; Dioguardi, A. P.; Bush, B. T.; ...
2015-12-01
Here, we report 29Si nuclear magnetic resonance measurements of single crystals and aligned powders of URu 2Si 2 under pressure in the hidden order and paramagnetic phases. We find evidence for a reduction of the Knight shift with applied pressure, consistent with previous measurements of the static magnetic susceptibility. Previous measurements of the spin lattice relaxation time revealed a partial suppression of the density of states below 30 K. Here, we find that the temperature at which this suppression occurs is enhanced with applied pressure.
Phase diagram of the Pr-Mn-O system in composition-temperature-oxygen pressure coordinates
NASA Astrophysics Data System (ADS)
Vedmid', L. B.; Yankin, A. M.; Fedorova, O. M.; Kozin, V. M.
2016-05-01
The phase relations in the Pr-Mn-O system were studied by the static method at lowered oxygen pressure in combination with thermal analysis and high-temperature X-ray diffraction. The equilibrium oxygen pressure in dissociation of PrMn2O5 and PrMnO3 was measured, and the thermodynamic characteristics of formation of these compounds from elements were calculated. The P- T- x phase diagram of the Pr-Mn-O system was constructed in the "composition-oxygen pressure-temperature" coordinates.
High-temperature fiber optic pressure sensor
NASA Technical Reports Server (NTRS)
Berthold, J. W.
1984-01-01
Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.
Xu, Wei-Hua; Shen, Hua-Hao
2010-02-25
When using pressure-type plethysmography to test lung function of rodents, calculation of lung volume is always based on Boyle's law. The precondition of Boyle's law is that perfect air is static. However, air in the chamber is flowing continuously when a rodent breathes inside the chamber. Therefore, Boyle's law, a principle of air statics, may not be appropriate for measuring pressure changes of flowing air. In this study, we deduced equations for pressure changes inside pressure-type plethysmograph and then designed three experiments to testify the theoretic deduction. The results of theoretic deduction indicated that increased pressure was generated from two sources: one was based on Boyle's law, and the other was based on the law of conservation of momentum. In the first experiment, after injecting 0.1 mL, 0.2 mL, 0.4 mL of air into the plethysmograph, the pressure inside the chamber increased sharply to a peak value, then promptly decreased to horizontal pressure. Peak values were significantly higher than the horizontal values (P<0.001). This observation revealed that flowing air made an extra effect on air pressure in the plethysmograph. In the second experiment, the same volume of air was injected into the plethysmograph at different frequencies (0, 0.5, 1, 2, 3 Hz) and pressure changes inside were measured. The results showed that, with increasing frequencies, the pressure changes in the chamber became significantly higher (P<0.001). In the third experiment, small animal ventilator and pipette were used to make two types of airflow with different functions of time. The pressure changes produced by the ventilator were significantly greater than those produced by the pipette (P<0.001). Based on the data obtained, we draw the conclusion that, the flow of air plays a role in pressure changes inside the plethysmograph, and the faster the airflow is, the higher the pressure changes reach. Furthermore, the type of airflow also influences the pressure changes.
NASA Technical Reports Server (NTRS)
Catalano, G. D.; Morton, J. B.; Humphris, R. R.
1978-01-01
The effects of increasing the velocity ratio, lambda sub j were explored. The quantities measured include the width of the mixing region, the mean velocity field, turbulent intensities and time scales. In addition, wall and static pressure velocity correlations and coherences are presented. The velocity measurements were made using a laser Doppler velocimeter with a phase locked loop processor. The fluctuating pressures were monitored using condenser type microphones.
Methods and results of boundary layer measurements on a glider
NASA Technical Reports Server (NTRS)
Nes, W. V.
1978-01-01
Boundary layer measurements were carried out on a glider under natural conditions. Two effects are investigated: the effect of inconstancy of the development of static pressure within the boundary layer and the effect of the negative pressure difference in a sublaminar boundary layer. The results obtained by means of an ion probe in parallel connection confirm those results obtained by means of a pressure probe. Additional effects which have occurred during these measurements are briefly dealt with.
A pressure and shear sensor system for stress measurement at lower limb residuum/socket interface.
Laszczak, P; McGrath, M; Tang, J; Gao, J; Jiang, L; Bader, D L; Moser, D; Zahedi, S
2016-07-01
A sensor system for measurement of pressure and shear at the lower limb residuum/socket interface is described. The system comprises of a flexible sensor unit and a data acquisition unit with wireless data transmission capability. Static and dynamic performance of the sensor system was characterised using a mechanical test machine. The static calibration results suggest that the developed sensor system presents high linearity (linearity error ≤ 3.8%) and resolution (0.9 kPa for pressure and 0.2 kPa for shear). Dynamic characterisation of the sensor system shows hysteresis error of approximately 15% for pressure and 8% for shear. Subsequently, a pilot amputee walking test was conducted. Three sensors were placed at the residuum/socket interface of a knee disarticulation amputee and simultaneous measurements were obtained during pilot amputee walking test. The pressure and shear peak values as well as their temporal profiles are presented and discussed. In particular, peak pressure and shear of approximately 58 kPa and 27 kPa, respectively, were recorded. Their temporal profiles also provide dynamic coupling information at this critical residuum/socket interface. These preliminary amputee test results suggest strong potential of the developed sensor system for exploitation as an assistive technology to facilitate socket design, socket fit and effective monitoring of lower limb residuum health. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Sera, Toshihiro; Yokota, Hideo; Tanaka, Gaku; Uesugi, Kentaro; Yagi, Naoto; Schroter, Robert C
2013-07-15
We visualized pulmonary acini in the core regions of the mouse lung in situ using synchrotron refraction-enhanced computed tomography (CT) and evaluated their kinematics during quasi-static inflation. This CT system (with a cube voxel of 2.8 μm) allows excellent visualization of not just the conducting airways, but also the alveolar ducts and sacs, and tracking of the acinar shape and its deformation during inflation. The kinematics of individual alveoli and alveolar clusters with a group of terminal alveoli is influenced not only by the connecting alveolar duct and alveoli, but also by the neighboring structures. Acinar volume was not a linear function of lung volume. The alveolar duct diameter changed dramatically during inflation at low pressures and remained relatively constant above an airway pressure of ∼8 cmH2O during inflation. The ratio of acinar surface area to acinar volume indicates that acinar distension during low-pressure inflation differed from that during inflation over a higher pressure range; in particular, acinar deformation was accordion-like during low-pressure inflation. These results indicated that the alveoli and duct expand differently as total acinar volume increases and that the alveolar duct may expand predominantly during low-pressure inflation. Our findings suggest that acinar deformation in the core regions of the lung is complex and heterogeneous.
Sensitivity Analysis of the Static Aeroelastic Response of a Wing
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.
1993-01-01
A technique to obtain the sensitivity of the static aeroelastic response of a three dimensional wing model is designed and implemented. The formulation is quite general and accepts any aerodynamic and structural analysis capability. A program to combine the discipline level, or local, sensitivities into global sensitivity derivatives is developed. A variety of representations of the wing pressure field are developed and tested to determine the most accurate and efficient scheme for representing the field outside of the aerodynamic code. Chebyshev polynomials are used to globally fit the pressure field. This approach had some difficulties in representing local variations in the field, so a variety of local interpolation polynomial pressure representations are also implemented. These panel based representations use a constant pressure value, a bilinearly interpolated value. or a biquadraticallv interpolated value. The interpolation polynomial approaches do an excellent job of reducing the numerical problems of the global approach for comparable computational effort. Regardless of the pressure representation used. sensitivity and response results with excellent accuracy have been produced for large integrated quantities such as wing tip deflection and trim angle of attack. The sensitivities of such things as individual generalized displacements have been found with fair accuracy. In general, accuracy is found to be proportional to the relative size of the derivatives to the quantity itself.
Effect of compression rate on ice VI crystal growth using dDAC
NASA Astrophysics Data System (ADS)
Lee, Yun-Hee; Kim, Yong-Jae; Lee, Sooheyong; Cho, Yong Chan; Lee, Geun Woo; Frontier in Extreme Physics Team
It is well known that static and dynamic pressure give different results in many aspects. Understanding of crystal growth under such different pressure condition is one of the crucial issues for the formation of materials in the earth and planets. To figure out the crystal growth under the different pressure condition, we should control compression rate from static to dynamic pressurization. Here, we use a dynamic diamond anvil cell (dDAC) technique to study the effect of compression rate of ice VI crystal growth. Using dDAC with high speed camera, we monitored growth of a single crystal ice VI. A rounded ice crystal with rough surface was selected in the phase boundary of water and ice VI and then, its repetitive growth and melting has been carried out by dynamic operation of the pressure cell. The roughened crystal showed interesting growth transition with compression rate from three dimensional to two dimensional growth as well as faceting process. We will discuss possible mechanism of the growth change by compression rate with diffusion mechanism of water. This research was supported by the Converging Research Center Program through the Ministry of Science, ICT and Future Planning, Korea (NRF-2014M1A7A1A01030128).
A new algorithm for five-hole probe calibration, data reduction, and uncertainty analysis
NASA Technical Reports Server (NTRS)
Reichert, Bruce A.; Wendt, Bruce J.
1994-01-01
A new algorithm for five-hole probe calibration and data reduction using a non-nulling method is developed. The significant features of the algorithm are: (1) two components of the unit vector in the flow direction replace pitch and yaw angles as flow direction variables; and (2) symmetry rules are developed that greatly simplify Taylor's series representations of the calibration data. In data reduction, four pressure coefficients allow total pressure, static pressure, and flow direction to be calculated directly. The new algorithm's simplicity permits an analytical treatment of the propagation of uncertainty in five-hole probe measurement. The objectives of the uncertainty analysis are to quantify uncertainty of five-hole results (e.g., total pressure, static pressure, and flow direction) and determine the dependence of the result uncertainty on the uncertainty of all underlying experimental and calibration measurands. This study outlines a general procedure that other researchers may use to determine five-hole probe result uncertainty and provides guidance to improve measurement technique. The new algorithm is applied to calibrate and reduce data from a rake of five-hole probes. Here, ten individual probes are mounted on a single probe shaft and used simultaneously. Use of this probe is made practical by the simplicity afforded by this algorithm.
A study of the compressible flow through a diffusing S-duct
NASA Technical Reports Server (NTRS)
Wellborn, Steven R.; Okiishi, Theodore H.; Reichert, Bruce A.
1993-01-01
Benchmark aerodynamic data are presented for compressible flow through a representative S-duct configuration. A numerical prediction of the S-duct flow field, obtained from a subsonic parabolized Navier-Stokes algorithm, is also shown. The experimental and numerical results are compared. Measurements of the three-dimensional velocity field, total pressures, and static pressures were obtained at five cross-sectional planes. Aerodynamic data were gathered with calibrated pneumatic probes. Surface static pressure and surface flow visualization data were also acquired. All reported tests were conducted with an inlet centerline Mach number of 0.6. The Reynolds number, based on the inlet centerline velocity and duct inlet diameter, was 2.6 x 10(exp 6). Thin inlet turbulent boundary layers existed. The collected data should be beneficial to aircraft inlet designers and the measurements are suitable for the validation of computational codes. The results show that a region of streamwise flow separation occurred within the duct. Details about the separated flow region, including mechanisms which drive this complicated flow phenomenon, are discussed. Results also indicate that the duct curvature induces strong pressure driven secondary flows. The cross flows evolve into counter-rotating vortices. These vortices convect low momentum fluid of the boundary layer toward the center of the duct, degrading both the uniformity and magnitude of the total pressure profile.
The effect of hydrostatic vs. shock pressure treatment of plant seeds
NASA Astrophysics Data System (ADS)
Mustey, A.; Leighs, J. A.; Appleby-Thomas, G. J.; Wood, D. C.; Hazael, R.; McMillan, P. F.; Hazell, P. J.
2014-05-01
The hydrostatic pressure and shock response of plant seeds has been investigated antecedently, primarily driven by interest in reducing bacterial contamination of crops and the theory of panspermia, respectively. However, comparisons have not previously been made between these two methods ofapplying pressure to plant seeds. Here such a comparison has been undertaken based on the premise that any correlations in collected data may provide a route to inform understanding of damage mechanisms in the seeds under test. In this work two varieties of plant seeds were subjected to hydrostatic pressure via a non-end-loaded piston cylinder setup and shock compression via employment of a 50 mm bore, single stage gas gun using the flyer plate technique. Results from germination tests of recovered seed samples have been compared and contrasted, and initial conclusions made regarding causes of trends in the resultant data-set. Data collected has shown that cress seeds are extremely resilient to static loading, whereas the difference in the two forms of loading is negligible for lettuce seeds. Germination time has been seen to extend dramatically following static loading of cress seeds to greater than 0.4 GPa. In addition, the cut-off pressure previously seen to cause 0% germination in dynamic experiments performed on cress seeds has now also been seen in lettuce seeds.
An experimental study of near wall flow parameters in the blade end-wall corner region
NASA Technical Reports Server (NTRS)
Bhargava, Rakesh K.; Raj, Rishi S.
1989-01-01
The near wall flow parameters in the blade end-wall corner region is investigated. The blade end-wall corner region was simulated by mounting an airfoil section (NACA 65-015 base profile) symmetric blades on both sides of the flat plate with semi-circular leading edge. The initial 7 cm from the leading edge of the flat plate was roughened by gluing No. 4 floor sanding paper to artificially increase the boundary layer thickness on the flat plate. The initial flow conditions of the boundary layer upstream of the corner region are expected to dictate the behavior of flow inside the corner region. Therefore, an experimental investigation was extended to study the combined effect of initial roughness and increased level of free stream turbulence on the development of a 2-D turbulent boundary layer in the absence of the blade. The measurement techniques employed in the present investigation included, the conventional pitot and pitot-static probes, wall taps, the Preston tube, piezoresistive transducer and the normal sensor hot-wire probe. The pitot and pitot-static probes were used to obtain mean velocity profile measurements within the boundary layer. The measurements of mean surface static pressure were obtained with the surface static tube and the conventional wall tap method. The wall shear vector measurements were made with a specially constructed Preston tube. The flush mounted piezoresistive type pressure transducer were employed to measure the wall pressure fluctuation field. The velocity fluctuation measurements, used in obtaining the wall pressure-velocity correlation data, were made with normal single sensor hot-wire probe. At different streamwise stations, in the blade end-wall corner region, the mean values of surface static pressure varied more on the end-wall surface in the corner region were mainly caused by the changes in the curvature of the streamlines. The magnitude of the wall shear stress in the blade end-wall corner region increased significantly in the close vicinity of the corner line. The maximum value of the wall shear stress and its location from the corner line, on both the surfaces forming the corner region, were observed to change along the corner. These observed changes in the maximum values of the wall shear stress and its location from the corner line could be associated with the stretching and attenuation of the horseshoe vortex. The wall shear stress vectors in the blade end-wall corner region were observed to be more skewed on the end-wall surface as compared to that on the blade surface. The differences in the wall shear stress directions obtained with the Preston tube and flow visualization method were within the range in which the Preston tube was found to be insensitive to the yaw angle.
Dynamic pressure sensor calibration techniques offering expanded bandwidth with increased resolution
NASA Astrophysics Data System (ADS)
Wisniewiski, David
2015-03-01
Advancements in the aerospace, defense and energy markets are being made possible by increasingly more sophisticated systems and sub-systems which rely upon critical information to be conveyed from the physical environment being monitored through ever more specialized, extreme environment sensing components. One sensing parameter of particular interest is dynamic pressure measurement. Crossing the boundary of all three markets (i.e. aerospace, defense and energy) is dynamic pressure sensing which is used in research and development of gas turbine technology, and subsequently embedded into a control loop used for long-term monitoring. Applications include quantifying the effects of aircraft boundary layer ingestion into the engine inlet to provide a reliable and robust design. Another application includes optimization of combustor dynamics by "listening" to the acoustic signature so that fuel-to-air mixture can be adjusted in real-time to provide cost operating efficiencies and reduced NOx emissions. With the vast majority of pressure sensors supplied today being calibrated either statically or "quasi" statically, the dynamic response characterization of the frequency dependent sensitivity (i.e. transfer function) of the pressure sensor is noticeably absent. The shock tube has been shown to be an efficient vehicle to provide frequency response of pressure sensors from extremely high frequencies down to 500 Hz. Recent development activity has lowered this starting frequency; thereby augmenting the calibration bandwidth with increased frequency resolution so that as the pressure sensor is used in an actual test application, more understanding of the physical measurement can be ascertained by the end-user.
Pseudolinear gradient ultrahigh-pressure liquid chromatography using an injection valve assembly.
Xiang, Yanqiao; Liu, Yansheng; Stearns, Stanley D; Plistil, Alex; Brisbin, Martin P; Lee, Milton L
2006-02-01
The use of ultrahigh pressures in liquid chromatography (UHPLC) imposes stringent requirements on hardware such as pumps, valves, injectors, connecting tubing, and columns. One of the most difficult components of the UHPLC system to develop has been the sample injector. Static-split injection, which can be performed at pressures up to 6900 bar (100,000 psi), consumes a large sample volume and is very irreproducible. A pressure-balanced injection valve provided better reproducibility, shorter injection time, reduced sample consumption, and greater ease of use; however, it could only withstand pressures up to approximately 1000 bar (15,000 psi). In this study, a new injection valve assembly that can operate at pressures as high as 2070 bar (30,000 psi) was evaluated for UHPLC. This assembly contains six miniature electronically controlled needle valves to provide accurate and precise volumes for introduction into the capillary LC column. It was found that sample volumes as small as several tenths of a nanoliter can be injected, which are comparable to the results obtained from the static-split injector. The reproducibilities of retention time, efficiency, and peak area were investigated, and the results showed that the relative standard deviations of these parameters were small enough for quantitative analyses. Separation experiments using the UHPLC system with this new injection valve assembly showed that this new injector is suitable for both isocratic and gradient operation modes. A newly designed capillary connector was used at a pressure as high as 2070 bar (30,000 psi).
NASA Technical Reports Server (NTRS)
Larson, T. J.
1984-01-01
The measurement performance of a hemispherical flow-angularity probe and a fuselage-mounted pitot-static probe was evaluated at high flow angles as part of a test program on an F-14 airplane. These evaluations were performed using a calibrated pitot-static noseboom equipped with vanes for reference flow direction measurements, and another probe incorporating vanes but mounted on a pod under the fuselage nose. Data are presented for angles of attack up to 63, angles of sideslip from -22 deg to 22 deg, and for Mach numbers from approximately 0.3 to 1.3. During maneuvering flight, the hemispherical flow-angularity probe exhibited flow angle errors that exceeded 2 deg. Pressure measurements with the pitot-static probe resulted in very inaccurate data above a Mach number of 0.87 and exhibited large sensitivities with flow angle.
Technology advancement of the static feed water electrolysis process
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Wynveen, R. A.
1977-01-01
A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.
14 CFR 29.1323 - Airspeed indicating system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... minimum practicable instrument calibration error when the corresponding pitot and static pressures are... pitot tube or an equivalent means of preventing malfunction due to icing. [Doc. No. 5084, 29 FR 16150...
A New Sensor for Measurement of Dynamic Contact Stress in the Hip
Rudert, M. J.; Ellis, B. J.; Henak, C. R.; Stroud, N. J.; Pederson, D. R.; Weiss, J. A.; Brown, T. D.
2014-01-01
Various techniques exist for quantifying articular contact stress distributions, an important class of measurements in the field of orthopaedic biomechanics. In situations where the need for dynamic recording has been paramount, the approach of preference has involved thin-sheet multiplexed grid-array transducers. To date, these sensors have been used to study contact stresses in the knee, shoulder, ankle, wrist, and spinal facet joints. Until now, however, no such sensor had been available for the human hip joint due to difficulties posed by the deep, bi-curvilinear geometry of the acetabulum. We report here the design and development of a novel sensor capable of measuring dynamic contact stress in human cadaveric hip joints (maximum contact stress of 20 MPa and maximum sampling rate 100 readings/s). Particular emphasis is placed on issues concerning calibration, and on the effect of joint curvature on the sensor's performance. The active pressure-sensing regions of the sensors have the shape of a segment of an annulus with a 150-deg circumferential span, and employ a polar/circumferential “ring-and-spoke” sensel grid layout. There are two sensor sizes, having outside radii of 44 and 48 mm, respectively. The new design was evaluated in human cadaver hip joints using two methods. The stress magnitudes and spatial distribution measured by the sensor were compared to contact stresses measured by pressure sensitive film during static loading conditions that simulated heel strike during walking and stair climbing. Additionally, the forces obtained by spatial integration of the sensor contact stresses were compared to the forces measured by load cells during the static simulations and for loading applied by a dynamic hip simulator. Stress magnitudes and spatial distribution patterns obtained from the sensor versus from pressure sensitive film exhibited good agreement. The joint forces obtained during both static and dynamic loading were within ±10% and ±26%, respectively, of the forces measured by the load cells. These results provide confidence in the measurements obtained by the sensor. The new sensor's real-time output and dynamic measurement capabilities hold significant advantages over static measurements from pressure sensitive film. PMID:24763632
MHD Forces in Quasi-Static Evolution, Catastrophe, and ``Failed'' Eruption of Solar Flux Ropes
NASA Astrophysics Data System (ADS)
Chen, James
2017-08-01
This paper presents the first unified theoretical model of flux rope dynamics---a single set of flux-rope equations in ideal MHD---to describe as one dynamical process the quasi-static evolution, catastrophic transition to eruption, cessation (``failure'') of eruption, and the post-eruption quasi-equilibria. The model is defined by the major radial {\\it and} minor radial equations of motion including pressure. The initial equilibrium is a flux rope in a background plasma with pressure $p_c(Z)$ and an overlying magnetic field $B_c(Z)$. The flux rope is initially force-free, but theevolution is not required to be force- free. A single quasi-static control parameter, the rate of increase in poloidal flux, is used for the entire process. As this parameter is slowly increased, the flux rope rises, following a sequence of quasi-static equilibria. As the apex of the flux rope rises past a critical height $Z_{crt}$, it expands on a dynamical (Alfvénic) timescale. The eruption rapidly ceases, as the stored magnetic energy of eruption is exhausted, and a new equilibrium is established at height $Z_1 > Z_{crt}$. The calculated velocity profile resembles the observed velocity profiles in ``failed'' eruptions including a damped oscillation. In the post-eruption equilibria, the outward hoop force is balanced by the tension of the toroidal self magnetic field and pressure gradient force. Thus, the flux rope does not evolve in a force-free manner. The flux rope may also expand without reaching a new equilibrium, provided a sufficient amount of poloidal flux is injected on the timescale of eruption. This scenario results in a full CME eruption. It is shown that the minor radial expansion critically couples the evolution of the toroidal self-field and pressure gradient force. No parameter regime is found in which the commonly used simplifications---near-equilibrium minor radial expansion, force-free expansion, and constant aspect ratio $R/a$ (e.g., the torus instability equation)---are valid.Work supported by the Naval Research Laboratory Base Research Program
A new sensor for measurement of dynamic contact stress in the hip.
Rudert, M J; Ellis, B J; Henak, C R; Stroud, N J; Pederson, D R; Weiss, J A; Brown, T D
2014-03-01
Various techniques exist for quantifying articular contact stress distributions, an important class of measurements in the field of orthopaedic biomechanics. In situations where the need for dynamic recording has been paramount, the approach of preference has involved thin-sheet multiplexed grid-array transducers. To date, these sensors have been used to study contact stresses in the knee, shoulder, ankle, wrist, and spinal facet joints. Until now, however, no such sensor had been available for the human hip joint due to difficulties posed by the deep, bi-curvilinear geometry of the acetabulum. We report here the design and development of a novel sensor capable of measuring dynamic contact stress in human cadaveric hip joints (maximum contact stress of 20 MPa and maximum sampling rate 100 readings/s). Particular emphasis is placed on issues concerning calibration, and on the effect of joint curvature on the sensor's performance. The active pressure-sensing regions of the sensors have the shape of a segment of an annulus with a 150-deg circumferential span, and employ a polar/circumferential "ring-and-spoke" sensel grid layout. There are two sensor sizes, having outside radii of 44 and 48 mm, respectively. The new design was evaluated in human cadaver hip joints using two methods. The stress magnitudes and spatial distribution measured by the sensor were compared to contact stresses measured by pressure sensitive film during static loading conditions that simulated heel strike during walking and stair climbing. Additionally, the forces obtained by spatial integration of the sensor contact stresses were compared to the forces measured by load cells during the static simulations and for loading applied by a dynamic hip simulator. Stress magnitudes and spatial distribution patterns obtained from the sensor versus from pressure sensitive film exhibited good agreement. The joint forces obtained during both static and dynamic loading were within ±10% and ±26%, respectively, of the forces measured by the load cells. These results provide confidence in the measurements obtained by the sensor. The new sensor's real-time output and dynamic measurement capabilities hold significant advantages over static measurements from pressure sensitive film.
NASA Technical Reports Server (NTRS)
Cole, T. W.; Rathburn, E. A.
1974-01-01
A static acoustic and propulsion test of a small radius Jacobs-Hurkamp and a large radius Flex Flap combined with four upper surface blowing (USB) nozzles was performed. Nozzle force and flow data, flap trailing edge total pressure survey data, and acoustic data were obtained. Jacobs-Hurkamp flap surface pressure data, flow visualization photographs, and spoiler acoustic data from the limited mid-year tests are reported. A pressure ratio range of 1.2 to 1.5 was investigated for the USB nozzles and for the auxiliary blowing slots. The acoustic data were scaled to a four-engine STOL airplane of roughly 110,000 kilograms or 50,000 pounds gross weight, corresponding to a model scale of approximately 0.2 for the nozzles without deflector. The model nozzle scale is actually reduced to about .17 with deflector although all results in this report assume 0.2 scale factor. Trailing edge pressure surveys indicated that poor flow attachment was obtained even at large flow impingement angles unless a nozzle deflector plate was used. Good attachment was obtained with the aspect ratio four nozzle with deflector, confirming the small scale wind tunnel tests.
Sectional Finite Element Analysis on Viscous Pressure Forming of Sheet Metal
NASA Astrophysics Data System (ADS)
Liu, Jianguang; Wang, Zhongjin; Liu, Yan
2007-05-01
Viscous pressure forming (VPF) is a recently developed sheet flexible-die forming process, which uses a kind of semi-solid, flowable and viscous material as pressure-carrying medium that typically applied on one side of the sheet metal or on both sides of sheet metal. Different from traditional sheet metal forming processes in which sheet metal is the unique deformation-body, VPF is a coupling process of visco-elastoplastic bulk deformation of viscous medium and elasto-plastic deformation of sheet metal. A sectional finite element model for the coupled deformation between visco-elastoplastic body and elasto-plastic sheet metal was proposed to analyze VPF. The resolution of the Updated Lagrangian formulation is based on a static approach. By using static-explicit time integration strategy, the deformation of elasto-plastic sheet metal and visco-elastoplastic body can keep stable. The frictional contact between sheet metal and visco-elastoplastic body is treated by penalty function method. Using the proposed algorithm, sheet metal viscous pressure bulging (VPB) process is analyzed and compared with experiments. A good agreement between numerical simulation results and experimental ones proved the efficiency and stability of this algorithm.
Stress regularity in quasi-static perfect plasticity with a pressure dependent yield criterion
NASA Astrophysics Data System (ADS)
Babadjian, Jean-François; Mora, Maria Giovanna
2018-04-01
This work is devoted to establishing a regularity result for the stress tensor in quasi-static planar isotropic linearly elastic - perfectly plastic materials obeying a Drucker-Prager or Mohr-Coulomb yield criterion. Under suitable assumptions on the data, it is proved that the stress tensor has a spatial gradient that is locally squared integrable. As a corollary, the usual measure theoretical flow rule is expressed in a strong form using the quasi-continuous representative of the stress.
Fatigue tests on big structure assemblies of concorde aircraft
NASA Technical Reports Server (NTRS)
Nguyen, V. P.; Perrais, J. P.
1972-01-01
Fatigue tests on structural assemblies of the Concorde supersonic transport aircraft are reported. Two main sections of the aircraft were subjected to pressure, mechanical load, and thermal static tests. The types of fatigue tests conducted and the results obtained are discussed. It was concluded that on a supersonic aircraft whose structural weight is a significant part of the weight analysis, many fatigue and static strength development tests should be made and fatigue and thermal tests of the structures are absolutely necessary.
Evaluation of Aero Commander sidewall vibration and interior acoustic data: Static operations
NASA Technical Reports Server (NTRS)
Piersol, A. G.; Wilby, E. G.; Wilby, J. F.
1980-01-01
Results for the vibration measured at five locations on the fuselage structure during static operations are presented. The analysis was concerned with the magnitude of the vibration and the relative phase between different locations, the frequency response (inertance) functions between the exterior pressure field and the vibration, and the coherent output power functions at interior microphone locations based on sidewall vibration. Fuselage skin panels near the plane of rotation of the propeller accept propeller noise excitation more efficiently than they do exhaust noise.
Pressurised fluid extraction of bupirimate and ethirimol from aged soils.
Fitzpatrick, L J; Dean, J R
2001-05-25
This paper assesses the effect of pressurised fluid extraction (PFE) on the recovery of bupirimate and its degradation product, ethirimol from a range of soil types. The analytes were extracted under standard conditions (pressure, 2000 p.s.i.; temperature, 100 degrees C; and, three static flush cycles of 5 min static extraction time each) using a variety of individual and combined solvents. It was found that the recovery of bupirimate was dependent upon the organic matter content of soil.
Static internal performance of an axisymmetric nozzle with multiaxis thrust-vectoring capability
NASA Technical Reports Server (NTRS)
Carson, George T., Jr.; Capone, Francis J.
1991-01-01
An investigation was conducted in the static test facility of the Langley 16 Foot Transonic Tunnel in order to determine the internal performance characteristics of a multiaxis thrust vectoring axisymmetric nozzle. Thrust vectoring for this nozzle was achieved by deflection of only the divergent section of this nozzle. The effects of nozzle power setting and divergent flap length were studied at nozzle deflection angles of 0 to 30 at nozzle pressure ratios up to 8.0.
BPM Motors in Residential Gas Furnaces: What are theSavings?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutz, James; Franco, Victor; Lekov, Alex
2006-05-12
Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured staticmore » pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.« less
NASA Technical Reports Server (NTRS)
Watkins, William B.
1990-01-01
Comparisons between scramjet combustor data and a three-dimensional full Navier-Stokes calculation have been made to verify and substantiate computational fluid dynamics (CFD) codes and application procedures. High Mach number scramjet combustor development will rely heavily on CFD applications to provide wind tunnel-equivalent data of quality sufficient to design, build and fly hypersonic aircraft. Therefore. detailed comparisons between CFD results and test data are imperative. An experimental case is presented, for which combustor wall static pressures were measured and flow-fieid interferograms were obtained. A computer model was done of the experiment, and counterpart parameters are compared with experiment. The experiment involved a subscale combustor designed and fabricated for the National Aero-Space Plane Program, and tested in the Calspan Corporation 96" hypersonic shock tunnel. The combustor inlet ramp was inclined at a 20 angle to the shock tunnel nozzle axis, and resulting combustor entrance flow conditions simulated freestream M=10. The combustor body and cowl walls were instrumented with static pressure transducers, and the combustor lateral walls contained windows through which flowfield holographic interferograms were obtained. The CFD calculation involved a three-dimensional time-averaged full Navier-Stokes code applied to the axial flow segment containing fuel injection and combustion. The full Navier-Stokes approach allowed for mixed supersonic and subsonic flow, downstream-upstream communication in subsonic flow regions, and effects of adverse pressure gradients. The code included hydrogen-air chemistry in the combustor segment which begins near fuel injection and continues through combustor exhaust. Combustor ramp and inlet segments on the combustor lateral centerline were modelled as two dimensional. Comparisons to be shown include calculated versus measured wall static pressures as functions of axial flow coordinate, and calculated path-averaged density contours versus an holographic Interferogram.
Prosthetics socket that incorporates an air splint system focusing on dynamic interface pressure.
Razak, Nasrul Anuar Abd; Osman, Noor Azuan Abu; Gholizadeh, Hossein; Ali, Sadeeq
2014-08-01
The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee's satisfaction and comfort. This paper presents the design and performance of a new prosthetic socket that uses an air splint system. The air splint prosthetic socket system was implemented by combining the air splint with a pressure sensor that the transhumeral user controls through the use of a microcontroller. The modular construction of the system developed allows the FSR pressure sensors that are placed inside the air splint socket to determine the required size and fitting for the socket used. Fifteen transhumeral amputees participated in the study. The subject's dynamic pressure on the socket that's applied while wearing the air splint systems was recorded using F-socket transducers and microcontroller analysis. The values collected by the F-socket sensor for the air splint prosthetic socket system were determined accordingly by comparing the dynamic pressure applied using statically socket. The pressure volume of the air splint fluctuated and was recorded at an average of 38 kPa (2.5) to 41 kPa (1.3) over three hours. The air splint socket might reduce the pressure within the interface of residual limb. This is particularly important during the daily life activities and may reduce the pain and discomfort at the residual limb in comparison to the static socket. The potential development of an auto-adjusted socket that uses an air splint system as the prosthetic socket will be of interest to researchers involved in rehabilitation engineering, prosthetics and orthotics.
Prosthetics socket that incorporates an air splint system focusing on dynamic interface pressure
2014-01-01
Background The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee’s satisfaction and comfort. This paper presents the design and performance of a new prosthetic socket that uses an air splint system. Methods The air splint prosthetic socket system was implemented by combining the air splint with a pressure sensor that the transhumeral user controls through the use of a microcontroller. The modular construction of the system developed allows the FSR pressure sensors that are placed inside the air splint socket to determine the required size and fitting for the socket used. Fifteen transhumeral amputees participated in the study. Results The subject’s dynamic pressure on the socket that’s applied while wearing the air splint systems was recorded using F-socket transducers and microcontroller analysis. The values collected by the F-socket sensor for the air splint prosthetic socket system were determined accordingly by comparing the dynamic pressure applied using statically socket. The pressure volume of the air splint fluctuated and was recorded at an average of 38 kPa (2.5) to 41 kPa (1.3) over three hours. Conclusion The air splint socket might reduce the pressure within the interface of residual limb. This is particularly important during the daily life activities and may reduce the pain and discomfort at the residual limb in comparison to the static socket. The potential development of an auto-adjusted socket that uses an air splint system as the prosthetic socket will be of interest to researchers involved in rehabilitation engineering, prosthetics and orthotics. PMID:25085005
A New Low-frequency Sonophoresis System Combined with Ultrasonic Motor and Transducer
NASA Astrophysics Data System (ADS)
Zhu, Pancheng; Peng, Hanmin; Yang, Jianzhi; Mao, Ting; Sheng, Juan
2018-03-01
Low frequency sonophoresis (LFS) is currently being attempted as a transdermal drug delivery method in clinical areas. However, it lacks both an effective control method and the equipment to satisfy the varying drug dosage requirements of individual patients. Herein, a novel method aimed at controlling permeability is proposed and developed, using a pressure control strategy which is based on an accurate, adjustable and non-invasive ultrasound transdermal drug delivery system in in vitro LFS. The system mainly consists of a lead screw linear ultrasonic motor and an ultrasonic transducer, in which the former offers pressure and the latter provides ultrasound wave in the liquid. The ultrasound can enhance non-invasive permeation and the pressure from the motor can control the permeability. The calculated and experimental results demonstrate that the maximum pressure on artificial skin is under the area with the maximum vibration amplitude of the ultrasonic transducer, and the total pressure consists of acoustic pressure from the transducer and approximate static pressure from the motor. Changing the static pressure from the ultrasonic motor can effectively control the non-invasive permeability, by adjusting the duty ratio or the amplitude of the motor’s driving voltage. In addition, the permeability control of calcein by thrust control is realized in 15 min, indicating the suitability of this method for application in accurate medical technology. The obtained results reveal that the issue of difficult permeability control can be addressed, using this control method in in vitro LFS to open up a route to the design of accurate drug delivery technology for individual patients.
The influence of exogenous cross-linking and compressive creep loading on intradiscal pressure.
Chuang, Shih-Youeng; Lin, Leou-Chyr; Hedman, Thomas P
2010-10-01
This study involves a biomechanical evaluation of a prospective injectable treatment for degenerative discs. The high osmolarity of the non-degenerated nucleus pulposus attracts water contributing to the hydrostatic behavior of the tissue. This intradiscal pressure is known to drop as fluid is exuded from the matrix due to compressive loading. The objective of this study was to compare the changes in intradiscal pressure in control and genipin cross-linked intervertebral discs. Thirty bovine lumbar motion segments were randomly divided into a phosphate-buffered saline control group and a 0.33% genipin group and soaked at room temperature for 2 days. A needle pressure sensor was held in the center of the disc while short-term and static creep compressive loads were applied. The control group demonstrated a 25% higher average intradiscal pressure compared to genipin-treated discs under 750 N compressive load (p=0.029). Depressurization during static compressive creep was 56% higher in the control than in the genipin group (p=0.014). These results suggest cross-linking induced changes in the poroelastic properties of the involved tissues affected the mechanics of compressive load support in the disc with lower levels of nucleus pressure, a corresponding decrease in the elastic expansion of the annulus, and an increased axial compressive loading of the inner and outer annulus tissues. It is possible that concurrent changes in hydraulic permeability and proteoglycan retention known to be associated with genipin cross-linking were also contributors to poroelastic changes. Reduction of peak pressures and moderation of pressure fluctuations could be beneficial relative to discogenic pain.
Simon, Scott; Grey, Casey Paul; Massenzo, Trisha; Simpson, David G; Longest, P Worth
2014-11-01
Current technology for endovascular thrombectomy in ischemic stroke utilizes static loading and is successful in approximately 85% of cases. Existing technology uses either static suction (applied via a continuous pump or syringe) or flow arrest with a proximal balloon. In this paper we evaluate the potential of cyclic loading in aspiration thrombectomy. In order to evaluate the efficacy of cyclic aspiration, a model was created using a Penumbra aspiration system, three-way valve and Penumbra 5Max catheter. Synthetic clots were aspirated at different frequencies and using different aspiration mediums. Success or failure of clot removal and time were recorded. All statistical analyses were based on either a one-way or two-way analysis of variance, Holm-Sidak pairwise multiple comparison procedure (α=0.05). Cyclic aspiration outperformed static aspiration in overall clot removal and removal speed (p<0.001). Within cyclic aspiration, Max Hz frequencies (∼6.3 Hz) cleared clots faster than 1 Hz (p<0.001) and 2 Hz (p=0.024). Loading cycle dynamics (specific pressure waveforms) affected speed and overall clearance (p<0.001). Water as the aspiration medium was more effective at clearing clots than air (p=0.019). Cyclic aspiration significantly outperformed static aspiration in speed and overall clearance of synthetic clots in our experimental model. Within cyclic aspiration, efficacy is improved by increasing cycle frequency, utilizing specific pressure cycle waveforms and using water rather than air as the aspiration medium. These findings provide a starting point for altering existing thrombectomy technology or perhaps the development of new technologies with higher recanalization rates. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Technical Reports Server (NTRS)
Beecher, L. C.; Williams, F. T.
1970-01-01
Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.
NASA Technical Reports Server (NTRS)
Sandford, M. C.; Ricketts, R. H.; Cazier, F. W., Jr.
1980-01-01
A supercritical wing with an aspect ratio of 10.76 and with two trailing-edge oscillating control surfaces is described. The semispan wing is instrumented with 252 static orifices and 164 in situ dynamic-pressure gages for studying the effects of control-surface position and motion on steady- and unsteady-pressures at transonic speeds. Results from initial tests conducted in the Langley Transonic Dynamics Tunnel at two Reynolds numbers are presented in tabular form.
Static internal pressure capacity of Hanford Single-Shell Waste Tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Julyk, L.J.
1994-07-19
Underground single-shell waste storage tanks located at the Hanford Site in Richland, Washington, generate gaseous mixtures that could be ignited, challenging the structural integrity of the tanks. The structural capacity of the single-shell tanks to internal pressure is estimated through nonlinear finite-element structural analyses of the reinforced concrete tank. To determine their internal pressure capacity, designs for both the million-gallon and the half-million-gallon tank are evaluated on the basis of gross structural instability.
NASA Technical Reports Server (NTRS)
Roelke, R. J.; Mclallin, K. L.
1978-01-01
The aerodynamic performance of the compressor-drive turbine of the DOE baseline gas-turbine engine was determined over a range of pressure ratios and speeds. In addition, static pressures were measured in the diffusing transition duct located immediately downstream of the turbine. Results are presented in terms of mass flow, torque, specific work, and efficiency for the turbine and in terms of pressure recovery and effectiveness for the transition duct.
Static high pressure studies on Nd and Sc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akella, J.; Xu, J.; Smith, G.S.
1985-06-24
We have investigated the crystal structural transformations in neodymium and scandium up to 4.0 GPa pressure and at room temperature, in a diamond-anvil high pressure apparatus. Nd has a double hexagonal-close packed (dhcp) structure at ambient pressure and temperature. Then it transforms to a face-centered cubic (fcc) structure at 3.8 GPa, which further transforms to a triple hexagonal-close packed structure (thcp) at about 18.0 GPa. In scandium we observed only one transformation from the hexagonal-close packed (hcp) structure at room temperature to a tetragonal structure. This transformation occurs between 19.0 and 23.2 GPa pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Pravica; M Galley; E Kim
We report two separate synchrotron FTIR measurements of the high explosive HMX at ambient temperature and static high pressure in the far- (100-500 wavenumbers) and mid- (500-3200 wavenumbers) infrared (IR) regions up to 30 GPa. The sample for the far-IR experiment was loaded with no pressure-transmitting medium and the sample for the mid-IR study utilized a KBr pressurizing medium. Two possible phase transitions from beta-HMX at ambient conditions were observed near 5 and 12 GPa (likely into the epsilon phase). A phase transition was observed near 25 GPa probably into the delta phase. Pressure cycling in both experiments found nomore » irreversible damage within this pressure range.« less
Commercial turbofan engine exhaust nozzle flow analyses using PAB3D
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Uenishi, K.; Carlson, John R.; Keith, B. D.
1992-01-01
Recent developments of a three-dimensional (PAB3D) code have paved the way for a computational investigation of complex aircraft aerodynamic components. The PAB3D code was developed for solving the simplified Reynolds Averaged Navier-Stokes equations in a three-dimensional multiblock/multizone structured mesh domain. The present analysis was applied to commercial turbofan exhaust flow systems. Solution sensitivity to grid density is presented. Laminar flow solutions were developed for all grids and two-equation k-epsilon solutions were developed for selected grids. Static pressure distributions, mass flow and thrust quantities were calculated for on-design engine operating conditions. Good agreement between predicted surface static pressures and experimental data was observed at different locations. Mass flow was predicted within 0.2 percent of experimental data. Thrust forces were typically within 0.4 percent of experimental data.
Steinmeyer, J; Torzilli, P A; Burton-Wurster, N; Lust, G
1993-01-01
A prototype chamber was used to apply a precise cyclic or static load on articular cartilage explants under sterile conditions. A variable pressure, pneumatic controller was constructed to power the chamber's air cylinder, capable of applying, with a porous load platen, loads of up to 10 MPa at cycles ranging from 0 to 10 Hz. Pig articular cartilage explants were maintained successfully in this chamber for 2 days under cyclic mechanical loading of 0.5 Hz, 0.5 MPa. Explants remained sterile, viable and metabolically active. Cartilage responded to this load with a decreased synthesis of fibronectin and a small but statistically significant elevation in proteoglycan content. Similar but less extensive effects on fibronectin synthesis were observed with the small static load (0.016 MPa) inherent in the design of the chamber.
NASA Technical Reports Server (NTRS)
Yamamoto, K.; Janardan, B. A.; Brausch, J. F.; Hoerst, D. J.; Price, A. O.
1984-01-01
Parameters which contribute to supersonic jet shock noise were investigated for the purpose of determining means to reduce such noise generation to acceptable levels. Six dual-stream test nozzles with varying flow passage and plug closure designs were evaluated under simulated flight conditions in an anechoic chamber. All nozzles had combined convergent-divergent or convergent flow passages. Mean velocity and turbulence velocity measurements of 25 selected flow conditions were performed employing a laser Doppler velocimeter. Static pressure measurements were made to define the actual convergence-divergence condition. Test point definition, tabulation of aerodynamic test conditions, velocity histograms, and shadowgraph photographs are presented. Flow visualization through shadowgraph photography can contribute to the development of an analytical prediction model for shock noise from coannular plug nozzles.
A simplified gross thrust computing technique for an afterburning turbofan engine
NASA Technical Reports Server (NTRS)
Hamer, M. J.; Kurtenbach, F. J.
1978-01-01
A simplified gross thrust computing technique extended to the F100-PW-100 afterburning turbofan engine is described. The technique uses measured total and static pressures in the engine tailpipe and ambient static pressure to compute gross thrust. Empirically evaluated calibration factors account for three-dimensional effects, the effects of friction and mass transfer, and the effects of simplifying assumptions for solving the equations. Instrumentation requirements and the sensitivity of computed thrust to transducer errors are presented. NASA altitude facility tests on F100 engines (computed thrust versus measured thrust) are presented, and calibration factors obtained on one engine are shown to be applicable to the second engine by comparing the computed gross thrust. It is concluded that this thrust method is potentially suitable for flight test application and engine maintenance on production engines with a minimum amount of instrumentation.
NASA Astrophysics Data System (ADS)
Ko, Dae-Eun; Shin, Sang-Hoon
2017-11-01
Spherical LNG tanks having many advantages such as structural safety are used as a cargo containment system of LNG carriers. However, it is practically difficult to fabricate perfectly spherical tanks of different sizes in the yard. The most effective method of manufacturing LNG tanks of various capacities is to insert a cylindrical part at the center of existing spherical tanks. While a simplified high-precision analysis method for the initial design of the spherical tanks has been developed for both static and dynamic loads, in the case of spherical tanks with a cylindrical central part, the analysis method available only considers static loads. The purpose of the present study is to derive the dynamic pressure distribution due to horizontal acceleration, which is essential for developing an analysis method that considers dynamic loads as well.
DC dynamic pull-in instability of a dielectric elastomer balloon: an energy-based approach
NASA Astrophysics Data System (ADS)
Sharma, Atul Kumar; Arora, Nitesh; Joglekar, M. M.
2018-03-01
This paper reports an energy-based method for the dynamic pull-in instability analysis of a spherical dielectric elastomer (DE) balloon subjected to a quasi-statically applied inflation pressure and a Heaviside step voltage across the balloon wall. The proposed technique relies on establishing the energy balance at the point of maximum stretch in an oscillation cycle, followed by the imposition of an instability condition for extracting the threshold parameters. The material models of the Ogden family are employed for describing the hyperelasticity of the balloon. The accuracy of the critical dynamic pull-in parameters is established by examining the saddle-node bifurcation in the transient response of the balloon obtained by integrating numerically the equation of motion, derived using the Euler-Lagrange equation. The parametric study brings out the effect of inflation pressure on the onset of the pull-in instability in the DE balloon. A quantitative comparison between the static and dynamic pull-in parameters at four different levels of the inflation pressure is presented. The results indicate that the dynamic pull-in instability gets triggered at electric fields that are lower than those corresponding to the static instability. The results of the present investigation can find potential use in the design and development of the balloon actuators subjected to transient loading. The method developed is versatile and can be used in the dynamic instability analysis of other conservative systems of interest.