Measurement of static pressure on aircraft
NASA Technical Reports Server (NTRS)
Gracey, William
1958-01-01
Existing data on the errors involved in the measurement of static pressure by means of static-pressure tubes and fuselage vents are presented. The errors associated with the various design features of static-pressure tubes are discussed for the condition of zero angle of attack and for the case where the tube is inclined to flow. Errors which result from variations in the configuration of static-pressure vents are also presented. Errors due to the position of a static-pressure tube in the flow field of the airplane are given for locations ahead of the fuselage nose, ahead of the wing tip, and ahead of the vertical tail fin. The errors of static-pressure vents on the fuselage of an airplane are also presented. Various methods of calibrating static-pressure installations in flight are briefly discussed.
NASA Technical Reports Server (NTRS)
O'Bryan, Thomas C; Danforth, Edward C B; Johnston, J Ford
1955-01-01
The magnitude and variation of the static-pressure error for various distances ahead of sharp-nose bodies and open-nose air inlets and for a distance of 1 chord ahead of the wing tip of a swept wing are defined by a combination of experiment and theory. The mechanism of the error is discussed in some detail to show the contributing factors that make up the error. The information presented provides a useful means for choosing a proper location for measurement of static pressure for most purposes.
Analysis and testing of high entrainment single nozzle jet pumps with variable mixing tubes
NASA Technical Reports Server (NTRS)
Hickman, K. E.; Hill, P. G.; Gilbert, G. B.
1972-01-01
An analytical model was developed to predict the performance characteristics of axisymmetric single-nozzle jet pumps with variable area mixing tubes. The primary flow may be subsonic or supersonic. The computer program uses integral techniques to calculate the velocity profiles and the wall static pressures that result from the mixing of the supersonic primary jet and the subsonic secondary flow. An experimental program was conducted to measure mixing tube wall static pressure variations, velocity profiles, and temperature profiles in a variable area mixing tube with a supersonic primary jet. Static pressure variations were measured at four different secondary flow rates. These test results were used to evaluate the analytical model. The analytical results compared well to the experimental data. Therefore, the analysis is believed to be ready for use to relate jet pump performance characteristics to mixing tube design.
NASA Astrophysics Data System (ADS)
Staszek, M.; Orlecka-Sikora, B.; Leptokaropoulos, K.; Kwiatek, G.; Martínez-Garzón, P.
2017-07-01
We use a high-quality data set from the NW part of The Geysers geothermal field to determine statistical significance of temporal static stress drop variations and their relation to injection rate changes. We use a group of 322 seismic events which occurred in the proximity of Prati-9 and Prati-29 injection wells to examine the influence of parameters such as moment magnitude, focal mechanism, hypocentral depth, and normalized hypocentral distances from open-hole sections of injection wells on static stress drop changes. Our results indicate that (1) static stress drop variations in time are statistically significant, (2) statistically significant static stress drop changes are inversely related to injection rate fluctuations. Therefore, it is highly expected that static stress drop of seismic events is influenced by pore pressure in underground fluid injection conditions and depends on the effective normal stress and strength of the medium.
NASA Astrophysics Data System (ADS)
Gao, Zhenxun; Wang, Jingying; Jiang, Chongwen; Lee, Chunhian
2014-11-01
In the framework of Reynolds-averaged Navier-Stokes simulation, supersonic turbulent combustion flows at the German Aerospace Centre (DLR) combustor and Japan Aerospace Exploration Agency (JAXA) integrated scramjet engine are numerically simulated using the flamelet model. Based on the DLR combustor case, theoretical analysis and numerical experiments conclude that: the finite rate model only implicitly considers the large-scale turbulent effect and, due to the lack of the small-scale non-equilibrium effect, it would overshoot the peak temperature compared to the flamelet model in general. Furthermore, high-Mach-number compressibility affects the flamelet model mainly through two ways: the spatial pressure variation and the static enthalpy variation due to the kinetic energy. In the flamelet library, the mass fractions of the intermediate species, e.g. OH, are more sensible to the above two effects than the main species such as H2O. Additionally, in the combustion flowfield where the pressure is larger than the value adopted in the generation of the flamelet library or the conversion from the static enthalpy to the kinetic energy occurs, the temperature obtained by the flamelet model without taking compressibility effects into account would be undershot, and vice versa. The static enthalpy variation effect has only little influence on the temperature simulation of the flamelet model, while the effect of the spatial pressure variation may cause relatively large errors. From the JAXA case, it is found that the flamelet model cannot in general be used for an integrated scramjet engine. The existence of the inlet together with the transverse injection scheme could cause large spatial variations of pressure, so the pressure value adopted for the generation of a flamelet library should be fine-tuned according to a pre-simulation of pure mixing.
Klein, Wilfried; Abe, Augusto S; Perry, Steven F
2003-04-15
The surgical removal of the post-hepatic septum (PHS) in the tegu lizard, Tupinambis merianae, significantly reduces resting lung volume (V(Lr)) and maximal lung volume (V(Lm)) when compared with tegus with intact PHS. Standardised for body mass (M(B)), static lung compliance was significantly less in tegus without PHS. Pleural and abdominal pressures followed, like ventilation, a biphasic pattern. In general, pressures increased during expiration and decreased during inspiration. However, during expiration pressure changes showed a marked intra- and interindividual variation. The removal of the PHS resulted in a lower cranio-caudal intracoelomic pressure differential, but had no effect on the general pattern of pressure changes accompanying ventilation. These results show that a perforated PHS that lacks striated muscle has significant influence on static breathing mechanics in Tupinambis and by analogy provides valuable insight into similar processes that led to the evolution of the mammalian diaphragm.
NASA Technical Reports Server (NTRS)
Mcronald, A. D.
1975-01-01
Mean density and temperature fluctuations were measured across the turbulent, cooled-wall boundary layer in a continuous hypersonic (Mach 9.4) wind tunnel in air, using the nitrogen fluorescence excited by a 50 kV electron beam. Data were taken at three values of the tunnel stagnation pressure, the corresponding free stream densities being equivalent to 1.2, 4.0, and 7.4 torr at room temperature, and the boundary layer thicknesses about 4.0, 4.5, and 6.0 inches. The mean temperature and density profiles were similar to those previously determined in the same facility by conventional probes (static and pitot pressure, total temperature). A static pressure variation of about 50% across the boundary layer was found, the shape of the variation changing somewhat for the three stagnation pressure levels. The quadrupole model for rotational temperature spectra gave closer agreement with the free stream isentropic level (approximately 44 K) than the dipole model.
W. J. Massman; R. A. Sommerfeld; A. R. Mosier; K. F. Zeller; T.J . Hehn; S. G. Rochelle
1997-01-01
Pressure pumping at the Earth's surface is caused by short-period atmospheric turbulence, longer-period barometric changes, and quasi-static pressure fields induced by wind blowing across irregular topography. These naturally occurring atmospheric pressure variations induce periodic fluctuations in airflow through snowpacks, soils, and any other porous media at...
Effects of combustibles on internal quasi-static loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandoval, N.R.; Hokanson, J.C.; Esparza, E.D.
1984-08-01
The phenomenon of quasi-static pressure enhancement produced when combustible materials are placed near HE sources has been recently discovered. The effects of placing solid and liquid combustible materials near detonating explosives on internal blast loading was measured during tests conducted in a one-eighth scale model of a containment structure. In many cases, dramatic increases in gas pressures resulted. Principal conclusions of this study are: combustible materials near explosives can markedly increase gas pressures in enclosed structures; there is a lack of data on HE-combustible combinations; quasi-static loading calculations should include estimates of contributions from the burning of combustible materials whenevermore » such materials are expected to be in intimate contact with HE sources; and effects of combustibles should be investigated further to determine methods for prediction. Variations in charge to combustible mass, charge type, structure volume, degree of venting and degree of contact between HE and combustible sbould be studied.« less
NASA Technical Reports Server (NTRS)
Kaldschmidt, G.; Syltebo, B. E.; Ting, C. T.
1973-01-01
The results from testing of a 0.3 scale model center duct inlet (S duct) for the Pratt and Whitney Aircraft JT8D-100 engines are presented. The objective of this test was to demonstrate that the required airflow of the JT8D-100 engine (480 lb/sec as compared to 334 lb/sec for JT8D-15) can be achieved with minimum modifications to the existing 727 airplane structure at acceptable levels of total pressure recovery and distortion. Steady-state pressure recovery, steady-state pressure distortion, and dynamic pressure measurements were taken at the engine face station. Surface static pressure measurements were taken along the duct. Test results indicated that the required airflow was achieved with acceptable pressure recovery (comparable to the current 727-200 S duct). Inlet inflow angle variation within the 727 airplane operating regime (minus 5 to 5 degrees) had no effect on the inlet performance. Pressure distortion at static and forward speed at takeoff airflow conditions are within P and WA limits for the Phase II duct when equipped with vortex generators. Static crosswind operation between 10 knots and 25 knots appears feasible at full takeoff power.
Influence of gas law on ultrasonic behaviour of porous media under pressure.
Griffiths, S; Ayrault, C
2010-06-01
This paper deals with the influence of gas law on ultrasonic behaviour of porous media when the saturating fluid is high pressured. Previous works have demonstrated that ultrasonic transmission through a porous sample with variations of the static pressure (up to 18 bars) of the saturating fluid allows the characterization of high damping materials. In these studies, the perfect gas law was used to link static pressure and density, which is disputable for high pressures. This paper compares the effects of real and perfect gas laws on modeled transmission coefficient for porous foams at these pressures. Direct simulations and a mechanical parameters estimation from minimization show that results are very similar in both cases. The real gas law is thus not necessary to describe the acoustic behaviour of porous media at low ultrasonic frequencies (100 kHz) up to 20 bars. 2010 Elsevier B.V. All rights reserved.
Analysis of Fluctuating Static Pressure Measurements in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Igoe, William B.
1996-01-01
Dynamic measurements of fluctuating static pressure levels were taken with flush-mounted, high-frequency response pressure transducers at 11 locations in the circuit of the National Transonic Facility (NTF) across the complete operating range of this wind tunnel. Measurements were taken at test-section Mach numbers from 0.1 to 1.2, at pressures from 1 to 8.6 atm, and at temperatures from ambient to -250 F, which resulted in dynamic flow disturbance measurements at the highest Reynolds numbers available in a transonic ground test facility. Tests were also made by independent variation of the Mach number, the Reynolds number, or the fan drive power while the other two parameters were held constant, which for the first time resulted in a distinct separation of the effects of these three important parameters.
NASA Technical Reports Server (NTRS)
Tanner, John A.
1996-01-01
A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.
NASA Technical Reports Server (NTRS)
Tanner, John A.
1996-01-01
A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical-loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.
Variation with Mach Number of Static and Total Pressures Through Various Screens
NASA Technical Reports Server (NTRS)
Adler, Alfred A
1946-01-01
Tests were conducted in the Langley 24-inch highspeed tunnel to ascertain the static-pressure and total-pressure losses through screens ranging in mesh from 3 to 12 wires per inch and in wire diameter from 0.023 to 0.041 inch. Data were obtained from a Mach number of approximately 0.20 up to the maximum (choking) Mach number obtainable for each screen. The results of this investigation indicate that the pressure losses increase with increasing Mach number until the choking Mach number, which can be computed, is reached. Since choking imposes a restriction on the mass rate of flow and maximum losses are incurred at this condition, great care must be taken in selecting the screen mesh and wire dimmeter for an installation so that the choking Mach number is
NASA Technical Reports Server (NTRS)
Mcardle, J. G.; Homyak, L.; Moore, A. S.
1979-01-01
The performance of a YF-102 turbofan engine was measured in an outdoor test stand with a bellmouth inlet and seven exhaust-system configurations. The configurations consisted of three separate-flow systems of various fan and core nozzle sizes and four confluent-flow systems of various nozzle sizes and shapes. A computer program provided good estimates of the engine performance and of thrust at maximum rating for each exhaust configuration. The internal performance of two different-shaped core nozzles for confluent-flow configurations was determined to be satisfactory. Pressure and temperature surveys were made with a traversing probe in the exhaust-nozzle flow for some confluent-flow configurations. The survey data at the mixing plane, plus the measured flow rates, were used to calculate the static-pressure variation along the exhaust nozzle length. The computed pressures compared well with experimental wall static-pressure data. External-flow surveys were made, for some confluent-flow configurations, with a large fixed rake at various locations in the exhaust plume.
Non-axisymmetric flow characteristics in centrifugal compressor
NASA Astrophysics Data System (ADS)
Wang, Leilei; Lao, Dazhong; Liu, Yixiong; Yang, Ce
2015-06-01
The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute. The experimental and numerical simulation methods were adopted in this work to study the compressor flow field distribution with different flow conditions. The results show that the pressure distributionin volute is characterized by the circumferential non-uniform phenomenon and the pressure fluctuation on the high static pressure zone propagates reversely to upstream, which results in the non-axisymmetric flow inside the compressor. The non-uniform level of pressure distribution in large flow condition is higher than that in small flow condition, its effect on the upstream flow field is also stronger. Additionally, the non-uniform circumferential pressure distribution in volute brings the non-axisymmetric flow at impeller outlet. In different flow conditions,the circumferential variation of the absolute flow angle at impeller outlet is also different. Meanwhile, the non-axisymmetric flow characteristics in internal impeller can be also reflected by the distribution of the mass flow. The high static pressure region of the volute corresponds to the decrease of mass flow in upstream blade channel, while the low static pressure zone of the volute corresponds to the increase of the mass flow. In small flow condition, the mass flow difference in the blade channel is bigger than that in the large flow condition.
14 CFR 29.1325 - Static pressure and pressure altimeter systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static pressure and pressure altimeter...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air case...
14 CFR 29.1325 - Static pressure and pressure altimeter systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air case... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure and pressure altimeter...
14 CFR 29.1325 - Static pressure and pressure altimeter systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air case... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure and pressure altimeter...
14 CFR 29.1325 - Static pressure and pressure altimeter systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air case... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure and pressure altimeter...
14 CFR 29.1325 - Static pressure and pressure altimeter systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air case... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure and pressure altimeter...
Potential uses of vacuum bubbles in noise and vibration control
NASA Technical Reports Server (NTRS)
Ver, Istvan L.
1989-01-01
Vacuum bubbles are new acoustic elements which are dynamically more compliant than the gas volume they replace, but which are statically robust. They are made of a thin metallic shell with vacuum in their cavity. Consequently, they pose no danger in terms of contamination or fire hazard. The potential of the vacuum bubble concept for noise and vibration control was assessed with special emphases on spacecraft and aircraft applications. The following potential uses were identified: (1) as a cladding, to reduce sound radiation of vibrating surfaces and the sound excitation of structures, (2) as a screen, to reflect or absorb an incident sound wave, and (3) as a liner, to increase low frequency sound transmission loss of double walls and to increase the low frequency sound attenuation of muffler baffles. It was found that geometric and material parameters must be controlled to a very high accuracy to obtain optimal performance and that performance is highly sensitive to variations in static pressure. Consequently, it was concluded that vacuum bubbles have more potential in spacecraft applications where static pressure is controlled more than in aircraft applications where large fluctuations in static pressure are common.
14 CFR 23.1325 - Static pressure system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure case...
14 CFR 23.1325 - Static pressure system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure case...
14 CFR 23.1325 - Static pressure system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure case...
14 CFR 23.1325 - Static pressure system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure case...
Performance of a cascade in an annular vortex-generating tunnel over range of Reynolds numbers
NASA Technical Reports Server (NTRS)
Thurston, Sidney; Brunk, Ralph E
1951-01-01
Total-pressure deficiency for an annular cascade of 65-(12)10 blades was measured at three radial stations over a range of Reynolds numbers from 50,000 to 250,000 and at angles of attack of 15 degrees and 25 degrees. The variation of turning angle and shape of static pressure distribution at these stations is also shown.
Ngomo, Suzy; Messing, Karen; Perrault, Hélène; Comtois, Alain
2008-11-01
North American workers usually stand while working, and prolonged standing is associated with discomfort and cardiovascular problems. Moving may alleviate the problems, but optimum mobility is unknown. The effects of variations in mobility were explored among (1) 34 health care workers whose symptoms of orthostatic intolerance (OI) were recorded after work; (2) 45 factory and laundry workers. Postures were observed over a workday and blood pressure (BP) and heart rate (HR) of both groups were recorded before and after work. Among health care workers, 65% manifested OI symptoms. In a multiple logistic regression, presence of >or= 1 symptom of OI was associated with static postures and being female (p=0.001). More static standing was associated with a larger drop in BP (p=0.04) in both populations. The results suggest that more static standing postures are associated with OI and musculoskeletal symptoms and with a subclinical drop in BP.
Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga
2017-08-21
The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg.
Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga
2017-01-01
The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg. PMID:28825672
NASA Technical Reports Server (NTRS)
Braden, J. A.; Hancock, J. P.; Hackett, J. E.; Lyman, V.
1979-01-01
The experimental data encompassing surface pressure measurements, and wake surveys at static and wind-on conditions are analyzed. Cruise performance trends reflecting nacelle geometric variations, and nozzle operating conditions are presented. Details of the modeling process are included.
NASA Technical Reports Server (NTRS)
Eppel, J. C.; Shovlin, M. D.; Jaynes, D. N.; Englar, R. J.; Nichols, J. H., Jr.
1982-01-01
Full scale static investigations were conducted on the Quiet Short Haul Research Aircraft (QSRA) to determine the thrust deflecting capabilities of the circulation control wing/upper surface blowing (CCW/USB) concept. This scheme, which combines favorable characteristics of both the A-6/CCW and QSRA, employs the flow entrainment properties of CCW to pneumatically deflect engine thrust in lieu of the mechanical USB flap system. Results show that the no moving parts blown system produced static thrust deflections in the range of 40 deg to 97 deg (depending on thrust level) with a CCW pressure of 208,900 Pa (30.3 psig). In addition, the ability to vary horizontal forces from thrust to drag while maintaining a constant vertical (or lift) value was demonstrated by varying the blowing pressure. The versatility of the CCW/USB system, if applied to a STOL aircraft, was confirmed, where rapid conversion from a high drag approach mode to a thrust recovering waveoff or takeoff configuration could be achieved by nearly instantaneous blowing pressure variation.
Supersonic Pitch Damping Predictions of Blunt Entry Vehicles from Static CFD Solutions
NASA Technical Reports Server (NTRS)
Schoenenberger, Mark
2013-01-01
A technique for predicting supersonic pitch damping of blunt axisymmetric bodies from static CFD data is presented. The contributions to static pitching moment due to forebody and aftbody pressure distributions are broken out and considered separately. The one-dimension moment equation is cast to model the separate contributions from forebody and aftbody pressures with no traditional damping term included. The aftbody contribution to pitching moment is lagged by a phase angle of the natural oscillation period. This lag represents the time for aftbody wake structures to equilibrate while the body is oscillation. The characteristic equation of this formulation indicates that the lagged backshell moment adds a damping moment equivalent in form to a constant pitch damping term. CFD calculations of the backshell's contribution to the static pitching moment for a range of angles-of-attack is used to predict pitch damping coefficients. These predictions are compared with ballistic range data taken of the Mars Exploration Rover (MER) capsule and forced oscillation data of the Mars Viking capsule. The lag model appears to capture dynamic stability variation due to backshell geometry as well as Mach number.
CFD research on runaway transient of pumped storage power station caused by pumping power failure
NASA Astrophysics Data System (ADS)
Zhang, L. G.; Zhou, D. Q.
2013-12-01
To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.
NASA Astrophysics Data System (ADS)
Maskar, A. D.; Madhekar, S. N.; Phatak, D. R.
2017-11-01
The knowledge of seismic active earth pressure behind the rigid retaining wall is very essential in the design of retaining wall in earthquake prone regions. Commonly used Mononobe-Okabe (MO) method considers pseudo-static approach. Recently there are many pseudo-dynamic methods used to evaluate the seismic earth pressure. However, available pseudo-static and pseudo-dynamic methods do not incorporate the effect of wall movement on the earth pressure distribution. Dubrova (Interaction between soils and structures, Rechnoi Transport, Moscow, 1963) was the first, who considered such effect and till date, it is used for cohesionless soil, without considering the effect of seismicity. In this paper, Dubrova's model based on redistribution principle, considering the seismic effect has been developed. It is further used to compute the distribution of seismic active earth pressure, in a more realistic manner, by considering the effect of wall movement on the earth pressure, as it is displacement based method. The effects of a wide range of parameters like soil friction angle (ϕ), wall friction angle (δ), horizontal and vertical seismic acceleration coefficients (kh and kv); on seismic active earth pressure (Kae) have been studied. Results are presented for comparison of pseudo-static and pseudo-dynamic methods, to highlight the realistic, non-linearity of seismic active earth pressure distribution. The current study results in the variation of Kae with kh in the same manner as that of MO method and Choudhury and Nimbalkar (Geotech Geol Eng 24(5):1103-1113, 2006) study. To increase in ϕ, there is a reduction in static as well as seismic earth pressure. Also, by keeping constant ϕ value, as kh increases from 0 to 0.3, earth pressure increases; whereas as δ increases, active earth pressure decreases. The seismic active earth pressure coefficient (Kae) obtained from the present study is approximately same as that obtained by previous researchers. Though seismic earth pressure obtained by pseudo-dynamic approach and seismic earth pressure obtained by redistribution principle have different background of formulation, the final earth pressure distribution is approximately same.
Effect of rotor design tip speed on noise of a 1.21 pressure ratio model fan under static conditions
NASA Technical Reports Server (NTRS)
Loeffler, I. J.; Lieblein, S.; Stockman, N. O.
1973-01-01
Preliminary results are presented for a reverberant-field noise investigation of three fan stages designed for the same overall total pressure ratio of 1.21 at different rotor tip speeds (750, 900, and 1050 ft/sec). The stages were tested statically in a 15-inch-diameter model lift fan installed in a wing pod located in the test section of a wind tunnel. Although the fan stages produced essentially the same design pressure ratio, marked differences were observed in the variation of fan noise with fan operating speed. At design speed, the forward-radiated sound power level was approximately the same for the 750 ft/sec and 900 ft/sec stages. For the 1050 ft/sec stage, the design-speed forward-radiated power level was about 7 db higher due to the generation of multiple pure tone noise.
Effect of rotor design tip speed on noise of a 1.21 pressure ratio model fan under static conditions
NASA Technical Reports Server (NTRS)
Loeffler, I. J.; Lieblein, S.; Stockman, N. O.
1973-01-01
Preliminary results are presented for a reverberant-field noise investigation of three fan stages designed for the same overall total pressure ratio of 1.21 at different rotor tip speeds (750, 900, and 1050 fps). The stages were tested statically in a 15-in.-dia model lift fan installed in a wing pod located in the test section of a wind tunnel. Although the fan stages produced essentially the same design pressure ratio, marked differences were observed in the variation of fan noise with fan operating speed. At design speed, the forward-radiated sound power level was approximately the same for the 750 and 900 fps stages. For the 1050 fps stage, the design-speed forward-radiated power level was about 7 dB higher due to the generation of multiple pure tone noise.
Performance Characteristics of Plane-Wall Two-Dimensional Diffusers
NASA Technical Reports Server (NTRS)
Reid, Elliott G
1953-01-01
Experiments have been made at Stanford University to determine the performance characteristics of plane-wall, two-dimensional diffusers which were so proportioned as to insure reasonable approximation of two-dimensional flow. All of the diffusers had identical entrance cross sections and discharged directly into a large plenum chamber; the test program included wide variations of divergence angle and length. During all tests a dynamic pressure of 60 pounds per square foOt was maintained at the diffuser entrance and the boundary layer there was thin and fully turbulent. The most interesting flow characteristics observed were the occasional appearance of steady, unseparated, asymmetric flow - which was correlated with the boundary-layer coalescence - and the rapid deterioration of flow steadiness - which occurred as soon as the divergence angle for maximum static pressure recovery was exceeded. Pressure efficiency was found to be controlled almost exclusively by divergence angle, whereas static pressure recovery was markedly influenced by area ratio (or length) as well as divergence angle. Volumetric efficiency. diminished as area ratio increased, and at a greater rate with small lengths than with large ones. Large values of the static-pressure-recovery coefficient were attained only with long diffusers of large area ratio; under these conditions pressure efficiency was high and. volumetric efficiency low. Auxiliary tests with asymmetric diffusers demonstrated that longitudinal pressure gradient, rather than wall divergence angle, controlled flow separation. Others showed that the addition of even a short exit duct of uniform section augmented pressure recovery. Finally, it was found that the installation of a thin, central, longitudinal partition suppressed flow separation in short diffusers and thereby improved pressure recovery
NASA Technical Reports Server (NTRS)
Dittrich, R. T.
1972-01-01
Water flow tests with circumferential inlet and outlet manifolds were conducted to determine factors affecting fluid distribution and pressure losses. Various orifice sizes and manifold geometries were tested over a range of flow velocities. With inlet manifolds, flow distribution was related directly to orifice discharge coefficients. A correlation indicated that nonuniform distribution resulted when the velocity head ratio at the orifice was not in the range of constant discharge coefficient. With outlet manifolds, nonuniform flow was related to static pressure variations along the manifold. Outlet manifolds had appreciably greater pressure losses than comparable inlet manifolds.
14 CFR 25.1325 - Static pressure systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pressure systems. (a) Each instrument with static air case connections must be vented to the outside... or other foreign matter, and that the correlation between air pressure in the static pressure system... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure systems. 25.1325 Section 25...
14 CFR 25.1325 - Static pressure systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pressure systems. (a) Each instrument with static air case connections must be vented to the outside... or other foreign matter, and that the correlation between air pressure in the static pressure system... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure systems. 25.1325 Section 25...
14 CFR 25.1325 - Static pressure systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pressure systems. (a) Each instrument with static air case connections must be vented to the outside... or other foreign matter, and that the correlation between air pressure in the static pressure system... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure systems. 25.1325 Section 25...
14 CFR 25.1325 - Static pressure systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pressure systems. (a) Each instrument with static air case connections must be vented to the outside... or other foreign matter, and that the correlation between air pressure in the static pressure system... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure systems. 25.1325 Section 25...
NASA Astrophysics Data System (ADS)
Xu, Cheng; Amano, Ryoichi Samuel; Lee, Eng Kwong
A 1.829m (6ft) diameter industrial large flow-rate axial fan operated at 1770rpm was studied experimentally in laboratory conditions. The flow characteristics on the fan blade surfaces were investigated by measuring the pressure distributions on the blade suction and pressure surfaces and the results were discussed by comparing with analytical formulations and CFD. Flow visualizations were also performed to validate the flow characteristics near the blade surface and it was demonstrated that the flow characteristics near the fan blade surface were dominated by the centrifugal force of the fan rotation which resulted in strong three-dimensional flows. The time-dependent pressure measurement showed that the pressure oscillations on the fan blade were significantly dominated by vortex shedding from the fan blades. It was further demonstrated that the pressure distributions during the fan start-up were highly unsteady, and the main frequency variation of the static pressure was much smaller than the fan rotational frequency. The time-dependent pressure measurement when the fan operated at a constant speed showed that the magnitude of the blade pressure variation with time and the main variation frequency was much smaller than the fan rotational frequency. The pressure variations that were related to the vortex shedding were slightly smaller than the fan rotational frequency. The strain gages were used to measure the blade stress and the results were compared with FEA results.
14 CFR 27.1325 - Static pressure systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pressure systems. (a) Each instrument with static air case connections must be vented so that the influence... located in such manner that the correlation between air pressure in the static pressure system and true... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure systems. 27.1325 Section 27...
14 CFR 27.1325 - Static pressure systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pressure systems. (a) Each instrument with static air case connections must be vented so that the influence... located in such manner that the correlation between air pressure in the static pressure system and true... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure systems. 27.1325 Section 27...
14 CFR 27.1325 - Static pressure systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pressure systems. (a) Each instrument with static air case connections must be vented so that the influence... located in such manner that the correlation between air pressure in the static pressure system and true... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure systems. 27.1325 Section 27...
14 CFR 27.1325 - Static pressure systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pressure systems. (a) Each instrument with static air case connections must be vented so that the influence... located in such manner that the correlation between air pressure in the static pressure system and true... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure systems. 27.1325 Section 27...
14 CFR 27.1325 - Static pressure systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ambient atmospheric static pressure is not altered when the rotorcraft encounters icing conditions. An... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static pressure systems. 27.1325 Section 27... pressure systems. (a) Each instrument with static air case connections must be vented so that the influence...
Khodasevych, Iryna; Parmar, Suresh; Troynikov, Olga
2017-10-20
Flexible pressure sensors are increasingly being used in medical and non-medical applications, and particularly in innovative health monitoring. Their efficacy in medical applications such as compression therapy depends on the accuracy and repeatability of their output, which in turn depend on factors such as sensor type, shape, pressure range, and conformability of the sensor to the body surface. Numerous researchers have examined the effects of sensor type and shape, but little information is available on the effect of human body parameters such as support surfaces' curvature and the stiffness of soft tissues on pressure sensing performance. We investigated the effects of body parameters on the performance of pressure sensors using a custom-made human-leg-like test setup. Pressure sensing parameters such as accuracy, drift and repeatability were determined in both static (eight hours continuous pressure) and dynamic (10 cycles of pressure application of 30 s duration) testing conditions. The testing was performed with a focus on compression therapy application for venous leg ulcer treatments, and was conducted in a low-pressure range of 20-70 mmHg. Commercially available sensors manufactured by Peratech and Sensitronics were used under various loading conditions to determine the influence of stiffness and curvature. Flat rigid, flat soft silicone and three cylindrical silicone surfaces of radii of curvature of 3.5 cm, 5.5 cm and 6.5 cm were used as substrates under the sensors. The Peratech sensor averaged 94% accuracy for both static and dynamic measurements on all substrates; the Sensitronics sensor averaged 88% accuracy. The Peratech sensor displayed moderate variations and the Sensitronics sensor large variations in output pressure readings depending on the underlying test surface, both of which were reduced markedly by individual pressure calibration for surface type. Sensor choice and need for calibration to surface type are important considerations for their application in healthcare monitoring.
Khodasevych, Iryna; Parmar, Suresh
2017-01-01
Flexible pressure sensors are increasingly being used in medical and non-medical applications, and particularly in innovative health monitoring. Their efficacy in medical applications such as compression therapy depends on the accuracy and repeatability of their output, which in turn depend on factors such as sensor type, shape, pressure range, and conformability of the sensor to the body surface. Numerous researchers have examined the effects of sensor type and shape, but little information is available on the effect of human body parameters such as support surfaces’ curvature and the stiffness of soft tissues on pressure sensing performance. We investigated the effects of body parameters on the performance of pressure sensors using a custom-made human-leg-like test setup. Pressure sensing parameters such as accuracy, drift and repeatability were determined in both static (eight hours continuous pressure) and dynamic (10 cycles of pressure application of 30 s duration) testing conditions. The testing was performed with a focus on compression therapy application for venous leg ulcer treatments, and was conducted in a low-pressure range of 20–70 mmHg. Commercially available sensors manufactured by Peratech and Sensitronics were used under various loading conditions to determine the influence of stiffness and curvature. Flat rigid, flat soft silicone and three cylindrical silicone surfaces of radii of curvature of 3.5 cm, 5.5 cm and 6.5 cm were used as substrates under the sensors. The Peratech sensor averaged 94% accuracy for both static and dynamic measurements on all substrates; the Sensitronics sensor averaged 88% accuracy. The Peratech sensor displayed moderate variations and the Sensitronics sensor large variations in output pressure readings depending on the underlying test surface, both of which were reduced markedly by individual pressure calibration for surface type. Sensor choice and need for calibration to surface type are important considerations for their application in healthcare monitoring. PMID:29053605
NASA Technical Reports Server (NTRS)
Thompson, Jim Rogers; Bray, Richard S; COOPER GEORGE E
1950-01-01
The calibrations of four airspeed systems installed in a North American F-86A airplane have been determined in flight at Mach numbers up to 1.04 by the NACA radar-phototheodolite method. The variation of the static-pressure error per unit indicated impact pressure is presented for three systems typical of those currently in use in flight research, a nose boom and two different wing-tip booms, and for the standard service system installed in the airplane. A limited amount of information on the effect of airplane normal-force coefficient on the static-pressure error is included. The results are compared with available theory and with results from wind-tunnel tests of the airspeed heads alone. Of the systems investigated, a nose-boom installation was found to be most suitable for research use at transonic and low supersonic speeds because it provided the greatest sensitivity of the indicated Mach number to a unit change in true Mach number at very high subsonic speeds, and because it was least sensitive to changes in airplane normal-force coefficient. The static-pressure error of the nose-boom system was small and constant above a Mach number of 1.03 after passage of the fuselage bow shock wave over the airspeed head.
Performance assessment of low pressure nuclear thermal propulsion
NASA Technical Reports Server (NTRS)
Gerrish, H. P., Jr.; Doughty, G. E.
1993-01-01
A low pressure nuclear thermal propulsion (LPNTP) system, which takes advantage of hydrogen dissociation/recombination, was proposed as a means of increasing engine specific impulse (Isp). The effect of hydrogen dissociation/recombination on LPNTP Isp is examined. A two-dimensional computer model was used to show that the optimum chamber pressure is approximately 100 psia (at a chamber temperature of 3,000 K), with an Isp approximately 15 s higher than at 1,000 psia. At high chamber temperatures and low chamber pressures, the increase in Isp is due to both lower average molecular weights caused by dissociation and added kinetic energy from monatomic hydrogen recombination. Monatomic hydrogen recombination increases the Isp more then hydrogen dissociation. Variations in the mole fraction of monatomic hydrogen are similar to variations in static pressure along the axial nozzle position. Most recombination occurs close to the nozzle throat. Practical variations in nozzle geometry have minimal impact on recombination. Other models which can simulate a wider range of nozzle designs should be used in the future. The uncertainty of the hydrogen kinetic reaction rates at high temperatures (approximately 3,000 K) affects the accuracy of the analysis and should be verified with simple bench tests.
Jain, Anil Kumar; Khan, Asma M
2012-09-01
: The potential for fluid overload in large-volume liposuction is a source of serious concern. Fluid management in these patients is controversial and governed by various formulas that have been advanced by many authors. Basically, it is the ratio of what goes into the patient and what comes out. Central venous pressure has been used to monitor fluid therapy. Dynamic parameters, such as stroke volume and pulse pressure variation, are better predictors of volume responsiveness and are superior to static indicators, such as central venous pressure and pulmonary capillary wedge pressure. Stroke volume variation was used in this study to guide fluid resuscitation and compared with one guided by an intraoperative fluid ratio of 1.2 (i.e., Rohrich formula). : Stroke volume variation was used as a guide for intraoperative fluid administration in 15 patients subjected to large-volume liposuction. In another 15 patients, fluid resuscitation was guided by an intraoperative fluid ratio of 1.2. The amounts of intravenous fluid administered in the groups were compared. : The mean amount of fluid infused was 561 ± 181 ml in the stroke volume variation group and 2383 ± 1208 ml in the intraoperative fluid ratio group. The intraoperative fluid ratio when calculated for the stroke volume variation group was 0.936 ± 0.084. All patients maintained hemodynamic parameters (heart rate and systolic, diastolic, and mean blood pressure). Renal and metabolic indices remained within normal limits. : Stroke volume variation-guided fluid application could result in an appropriate amount of intravenous fluid use in patients undergoing large-volume liposuction. : Therapeutic, II.
Impact of air and water vapor environments on the hydrophobicity of surfaces.
Weisensee, Patricia B; Neelakantan, Nitin K; Suslick, Kenneth S; Jacobi, Anthony M; King, William P
2015-09-01
Droplet wettability and mobility play an important role in dropwise condensation heat transfer. Heat exchangers and heat pipes operate at liquid-vapor saturation. We hypothesize that the wetting behavior of liquid water on microstructures surrounded by pure water vapor differs from that for water droplets in air. The static and dynamic contact angles and contact angle hysteresis of water droplets were measured in air and pure water vapor environments inside a pressure vessel. Pressures ranged from 60 to 1000 mbar, with corresponding saturation temperatures between 36 and 100°C. The wetting behavior was studied on four hydrophobic surfaces: flat Teflon-coated, micropillars, micro-scale meshes, and nanoparticle-coated with hierarchical micro- and nanoscale roughness. Static advancing contact angles are 9° lower in the water vapor environment than in air on a flat surface. One explanation for this reduction in contact angles is water vapor adsorption to the Teflon. On microstructured surfaces, the vapor environment has little effect on the static contact angles. In all cases, variations in pressure and temperature do not influence the wettability and mobility of the water droplets. In most cases, advancing contact angles increase and contact angle hysteresis decreases when the droplets are sliding or rolling down an inclined surface. Copyright © 2015 Elsevier Inc. All rights reserved.
Xie, Hui; Song, Kang; He, Yu
2014-07-01
A novel solution for electro-hydraulic variable valve timing (VVT) system of gasoline engines is proposed, based on the concept of active disturbance rejection control (ADRC). Disturbances, such as oil pressure and engine speed variations, are all estimated and mitigated in real-time. A feed-forward controller was added to enhance the performance of the system based on a simple and static first principle model, forming a hybrid disturbance rejection control (HDRC) strategy. HDRC was validated by experimentation and compared with an existing manually tuned proportional-integral (PI) controller. The results show that HDRC provided a faster response and better tolerance of engine speed and oil pressure variations. © 2013 ISA Published by ISA All rights reserved.
Trasonic Cascade Wind Tunnel Modification and Initial Tests.
1980-06-01
27.57 Mathr 1.432 la No. 2 t S atic Pressure = 14.040 P.-ptg= .2686 Mach= 1.510 laz~r t~o. 29 Static Pressure= 13.946 p.ptO .26f2 Macha 1.513 T tp...54 Mach = 1.475 3. Ho. 45 Static Pressure t 12.811 PPto= .2451 Mach = 1.572 Tap No. 46 Static Pressures 12.563 P/Ptow .2403 Macha 1.586 Table c-i...T al) tNo. 64 Static Pressure- 11.981 P,/PtO= .2292 Macha 1.61:3 Twi:. No. 65 Static Pressure= 11.726 P’PtG= .2243 Mach= 1.632 af l N. 66 Sttatic
Dynamic Characteristics of The DSI-Type Constant-Flow Valves
NASA Astrophysics Data System (ADS)
Kang, Yuan; Hu, Sheng-Yan; Chou, Hsien-Chin; Lee, Hsing-Han
Constant flow valves have been presented in industrial applications or academic studies, which compensate recess pressures of a hydrostatic bearing to resist load fluctuating. The flow rate of constant-flow valves can be constant in spite of the pressure changes in recesses, however the design parameters must be specified. This paper analyzes the dynamic responses of DSI-type constant-flow valves that is designed as double pistons on both ends of a spool with single feedback of working pressure and regulating restriction at inlet. In this study the static analysis presents the specific relationships among design parameters for constant flow rate and the dynamic analyses give the variations around the constant flow rate as the working pressure fluctuates.
Neutral winds and electric fields from model studies using reduced ionograms
NASA Technical Reports Server (NTRS)
Baran, D. E.
1974-01-01
A relationship between the vertical component of the ion velocity and electron density profiles derived from reduced ionograms is developed. Methods for determining the horizontal components of the neutral winds and electric fields by using this relationship and making use of the variations of the inclinations and declinations of the earth's magnetic field are presented. The effects that electric fields have on the neutral wind calculations are estimated to be small but not second order. Seasonal and latitudinal variations of the calculated neutral winds are presented. From the calculated neutral winds a new set of neutral pressure gradients is determined. The new pressure gradients are compared with those generated from several static neutral atmospheric models. Sensitivity factors relating the pressure gradients and neutral winds are calculated and these indicate that mode coupling and harmonic generation are important to studies which assume linearized theories.
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; ...
2015-11-12
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
Closed Loop Active Flow Separation Detection and Control in a Multistage Compressor
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Culley, Dennis E.; Braunscheidel, Edward P.; Welch, Gerard E.
2005-01-01
Active closed loop flow control was successfully demonstrated on a full annulus of stator vanes in a low speed axial compressor. Two independent methods of detecting separated flow conditions on the vane suction surface were developed. The first technique detects changes in static pressure along the vane suction surface, while the second method monitors variation in the potential field of the downstream rotor. Both methods may feasibly be used in future engines employing embedded flow control technology. In response to the detection of separated conditions, injection along the suction surface of each vane was used. Injected mass flow on the suction surface of stator vanes is known to reduce separation and the resulting limitation on static pressure rise due to lowered diffusion in the vane passage. A control algorithm was developed which provided a proportional response of the injected mass flow to the degree of separation, thereby minimizing the performance penalty on the compressor system.
Analysis of noise from reusable solid rocket motor firings
NASA Astrophysics Data System (ADS)
Jerome, Trevor W.; Gee, Kent L.; Neilsen, Tracianne B.
2012-10-01
As part of investigations into the design of next-generation launch vehicles, near and far-field data were collected during horizontal static firings of reusable solid rocket motors. Spatial variation of overall and one-third octave band pressure levels at sideline and polar arc arrays is analyzed. Spectra at individual microphone locations were analyzed. Positively-skewed pressure waveforms were observed in the probability density functions. Extreme skewness in the first-order estimate of the time derivative was found as a result of the presence of significant acoustic shocks.
NASA Technical Reports Server (NTRS)
Stockman, N. O.; Loeffler, I. J.; Lieblein, S.
1973-01-01
Results are presented for a wind tunnel investigation of three single VTOL lift fan stages designed for the same overall total pressure ratio at different rotor tip speeds. The stages were tested in a model lift fan installed in a wing pod. The three stages had essentially the same aerodynamic performance along the operating line. However, differences in stage thrust characteristics were obtained when a variation in back pressure was imposed on the stages by cross-flow effects and thrust-vectoring louvers.
Survey of long-term durability of fiberglass reinforced plastic structures
NASA Technical Reports Server (NTRS)
Lieblein, S.
1981-01-01
Included are fluid containment vessels, marine structures, and aircraft components with up to 19 years of service. Correlations were obtained for the variation of static fatigue strength, cyclic fatigue strength, and residual burst strength for pressure vessels. In addition, data are presented for the effects of moisture on strength retention. Data variations were analyzed, and relationships and implications for testing are discussed. Change in strength properties for complete structures was examined for indications of the effects of environmental conditions such as moisture and outdoor exposure (ultraviolet radiation, weathering) on long term durability.
33 CFR 156.170 - Equipment tests and inspections.
Code of Federal Regulations, 2014 CFR
2014-07-01
... distort under static liquid pressure at least 11/2 times the maximum allowable working pressure; and (iv... static liquid pressure test is successfully completed in the presence of the COTP. The test medium is not... static liquid pressure at least 11/2 times the maximum allowable working pressure; and (5) Each item of...
33 CFR 156.170 - Equipment tests and inspections.
Code of Federal Regulations, 2012 CFR
2012-07-01
... distort under static liquid pressure at least 11/2 times the maximum allowable working pressure; and (iv... static liquid pressure test is successfully completed in the presence of the COTP. The test medium is not... static liquid pressure at least 11/2 times the maximum allowable working pressure; and (5) Each item of...
33 CFR 156.170 - Equipment tests and inspections.
Code of Federal Regulations, 2013 CFR
2013-07-01
... distort under static liquid pressure at least 11/2 times the maximum allowable working pressure; and (iv... static liquid pressure test is successfully completed in the presence of the COTP. The test medium is not... static liquid pressure at least 11/2 times the maximum allowable working pressure; and (5) Each item of...
The Effect of Hemodynamics on Cerebral Aneurysm Morphology
NASA Astrophysics Data System (ADS)
Metcalfe, Ralph; Mantha, Aishwarya; Karmonik, Christof; Strother, Charles
2004-11-01
One of the difficulties in applying principles of hemodynamics to the study of blood flow in aneurysms are the drastic variations in possible shape of both the aneurysms and the parent arteries in the region of interest. We have taken data from three para-opthalmic internal carotid artery aneurysms using 3D-digital subtraction angiography (3D-DSA) and performed CFD simulations of steady and unsteady flows through the three different cases using the same pressure gradients and pulsatile flow waveforms (based on the Ku model for flow through the Carotid bifurcation). We have found that the total pressure differential within the aneurysms is consistent with the direction of flow, and that the dynamic pressure gradient within the aneurysm is very small compared with the static pressure variations. Wall shear stresses were highest near regions of sharp arterial curvature, but always remained low inside the aneurysm. These results suggest a more complex role for hemodynamics in aneurysm generation, growth and rupture.
In-Flight Pitot-Static Calibration
NASA Technical Reports Server (NTRS)
Foster, John V. (Inventor); Cunningham, Kevin (Inventor)
2016-01-01
A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.
Pylon Effects on a Scramjet Cavity Flameholder Flowfield
2008-09-01
39 ix Page Figure 20. Static and pitot probes ...pressure (Pa) Ppitot Pitot probe pressure (Pa) Pcone Static cone probe pressure (Pa) P Static pressure (Pa) q Dynamic pressure (Pa) R...create strong shocks within the combustor section of the engine. An oblique or bow shock will form off the leading edge of the pylon reflecting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Di-xian, E-mail: luodixian_2@163.com; Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan; First People's Hospital of Chenzhou City, Chenzhou 423000, Hunan
Research highlights: {yields} Vertical static pressure accelerates ox-LDL-induced cholesterol accumulation in cultured vascular smooth muscle cells. {yields} Static pressure induces SREBP-1 activation. {yields} Static pressure downregulates the expressions of caveolin-1 by activating SREBP-1. {yields} Static pressure also downregulates the transcription of ABCA1 by activating SREBP-1. {yields} Static pressure increases ox-LDL-induced cholesterol accumulation by SREBP-1-mediated caveolin-1 downregulation in vascular smooth muscle cells cultured in vitro. -- Abstract: Objective: To investigate the effect of static pressure on cholesterol accumulation in vascular smooth muscle cells (VSMCs) and its mechanism. Methods: Rat-derived VSMC cell line A10 treated with 50 mg/L ox-LDL and different staticmore » pressures (0, 60, 90, 120, 150, 180 mm Hg) in a custom-made pressure incubator for 48 h. Intracellular lipid droplets and lipid levels were assayed by oil red O staining and HPLC; The mRNA levels of caveolin-1 and ABCA1, the protein levels of caveolin-1 SREBP-1 and mature SREBP-1 were respectively detected by RT-PCR or western blot. ALLN, an inhibitor of SREBP metabolism, was used to elevate SREBP-1 protein level in VSMCs treated with static pressure. Results: Static pressures significantly not only increase intracellular lipid droplets in VSMCs, but also elevate cellular lipid content in a pressure-dependent manner. Intracellular free cholesterol (FC), cholesterol ester (CE), total cholesterol (TC) were respectively increased from 60.5 {+-} 2.8 mg/g, 31.8 {+-} 0.7 mg/g, 92.3 {+-} 2.1 mg/g at atmosphere pressure (ATM, 0 mm Hg) to 150.8 {+-} 9.4 mg/g, 235.9 {+-} 3.0 mg/g, 386.7 {+-} 6.4 mg/g at 180 mm Hg. At the same time, static pressures decrease the mRNA and protein levels of caveolin-1, and induce the activation and nuclear translocation of SREBP-1. ALLN increases the protein level of mature SREBP-1 and decreases caveolin-1 expression, so that cellular lipid levels were upregulated. Conclusion: Static pressures stimulate ox-LDL-induced cholesterol accumulation in cultured VSMCs through decreasing caveolin-1 expression via inducing the maturation and nuclear translocation of SREBP-1.« less
NASA Technical Reports Server (NTRS)
Elrod, David; Christensen, Eric; Brown, Andrew
2011-01-01
The temporal frequency content of the dynamic pressure predicted by a 360 degree computational fluid dynamics (CFD) analysis of a turbine flow field provides indicators of forcing function excitation frequencies (e.g., multiples of blade pass frequency) for turbine components. For the Pratt and Whitney Rocketdyne J-2X engine turbopumps, Campbell diagrams generated using these forcing function frequencies and the results of NASTRAN modal analyses show a number of components with modes in the engine operating range. As a consequence, forced response and static analyses are required for the prediction of combined stress, high cycle fatigue safety factors (HCFSF). Cyclically symmetric structural models have been used to analyze turbine vane and blade rows, not only in modal analyses, but also in forced response and static analyses. Due to the tortuous flow pattern in the turbine, dynamic pressure loading is not cyclically symmetric. Furthermore, CFD analyses predict dynamic pressure waves caused by adjacent and non-adjacent blade/vane rows upstream and downstream of the row analyzed. A MATLAB script has been written to calculate displacements due to the complex cyclically asymmetric dynamic pressure components predicted by CFD analysis, for all grids in a blade/vane row, at a chosen turbopump running speed. The MATLAB displacements are then read into NASTRAN, and dynamic stresses are calculated, including an adjustment for possible mistuning. In a cyclically symmetric NASTRAN static analysis, static stresses due to centrifugal, thermal, and pressure loading at the mode running speed are calculated. MATLAB is used to generate the HCFSF at each grid in the blade/vane row. When compared to an approach assuming cyclic symmetry in the dynamic flow field, the current approach provides better assurance that the worst case safety factor has been identified. An extended example for a J-2X turbopump component is provided.
NASA Astrophysics Data System (ADS)
Staszek, Monika; Orlecka-Sikora, Beata; Lasocki, Stanislaw; Kwiatek, Grzegorz; Leptokaropoulos, Konstantinos; Martinez-Garzon, Patricia
2017-04-01
One of the major environmental impacts of shale gas exploitation is triggered and induced seismicity. Due to the similarity of fluid injection process data from geothermal fields can be used as a proxy for shale gas exploitation associated seismicity. Therefore, in this paper we utilize 'The Geysers' dataset compiled within SHale gas Exploration and Exploitation induced Risks (SHEER) project. The dependence of earthquake static stress drops on pore pressure in the medium was previously suggested by Goertz-Allmann et al. (2011), who observed an increase of the static stress drop with the distance from injection well during reservoir stimulation at Deep Heat Mining project in Basel, Switzerland. Similar observation has been done by Kwiatek et al. (2014) in Berlín geothermal field, El Salvador. In this study, we use a high-quality data from The Geysers geothermal field to determine whether the static stress drops and the stress drop distributions change statistically significantly in time or not, and how such changes are correlated with the values of hypocenter depth, water injection rate, and distance from injection well. For the analyses we use a group of 354 earthquakes, which occurred in the proximity of Prati-9 and Prati-29 injection wells. Spectral parameters of these earthquakes were determined using mesh spectral ratio technique. Our results indicate that: (1) the static stress drop variation in time is statistically significant, (2) median static stress drop is inversely related to median injection rate. Therefore, it is highly expected that static stress drop is influenced by pore pressure in underground fluid injection conditions. References: Goertz-Allmann B., Goertz A., Wiemer S. (2011), Stress drop variations of induced earthquakes at the Basel geothermal site. Geophysical Research Letters, 38, L09308, doi:10.1029/2011GL047498. Kwiatek G., Bulut F., Bohnhoff M., Dresen G. (2014), High-resolution analysis of seismicity induced at Berlin geothermal field, El Salvador. Geothermics, 52, 98-111, doi: 10.1016/j.geothermics.2013.09.008. Acknowledgements: This work was supported under SHEER: "Shale Gas Exploration and Exploitation Induced Risks" project funded from Horizon 2020 - R&I Framework Programme, call H2020-LCE-2014-1 and by the Ministry of Science and Higher Education of Poland under project no. 500-10-27.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, D.W.; Ferretti, Alessandro; Novali, Fabrizio
2008-05-01
Transient pressure variations within a reservoir can be treated as a propagating front and analyzed using an asymptotic formulation. From this perspective one can define a pressure 'arrival time' and formulate solutions along trajectories, in the manner of ray theory. We combine this methodology and a technique for mapping overburden deformation into reservoir volume change as a means to estimate reservoir flow properties, such as permeability. Given the entire 'travel time' or phase field, obtained from the deformation data, we can construct the trajectories directly, there-by linearizing the inverse problem. A numerical study indicates that, using this approach, we canmore » infer large-scale variations in flow properties. In an application to Interferometric Synthetic Aperture (InSAR) observations associated with a CO{sub 2} injection at the Krechba field, Algeria, we image pressure propagation to the northwest. An inversion for flow properties indicates a linear trend of high permeability. The high permeability correlates with a northwest trending fault on the flank of the anticline which defines the field.« less
Flight evaluation of an engine static pressure noseprobe in an F-15 airplane
NASA Technical Reports Server (NTRS)
Foote, C. H.; Jaekel, R. F.
1981-01-01
The flight testing of an inlet static pressure probe and instrumented inlet case produced results consistent with sea-level and altitude stand testing. The F-15 flight test verified the basic relationship of total to static pressure ratio versus corrected airflow and automatic distortion downmatch with the engine pressure ratio control mode. Additionally, the backup control inlet case statics demonstrated sufficient accuracy for backup control fuel flow scheduling, and the station 6 manifolded production probe was in agreement with the flight test station 6 tota pressure probes.
14 CFR Appendix E to Part 43 - Altimeter System Test and Inspection
Code of Federal Regulations, 2011 CFR
2011-01-01
... made that would affect the relationship between air pressure in the static pressure system and true ambient static air pressure for any flight condition. (b) Altimeter: (1) Test by an appropriately rated... inspections required by § 91.411 shall comply with the following: (a) Static pressure system: (1) Ensure...
Sensitivity Analysis of the Static Aeroelastic Response of a Wing
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.
1993-01-01
A technique to obtain the sensitivity of the static aeroelastic response of a three dimensional wing model is designed and implemented. The formulation is quite general and accepts any aerodynamic and structural analysis capability. A program to combine the discipline level, or local, sensitivities into global sensitivity derivatives is developed. A variety of representations of the wing pressure field are developed and tested to determine the most accurate and efficient scheme for representing the field outside of the aerodynamic code. Chebyshev polynomials are used to globally fit the pressure field. This approach had some difficulties in representing local variations in the field, so a variety of local interpolation polynomial pressure representations are also implemented. These panel based representations use a constant pressure value, a bilinearly interpolated value. or a biquadraticallv interpolated value. The interpolation polynomial approaches do an excellent job of reducing the numerical problems of the global approach for comparable computational effort. Regardless of the pressure representation used. sensitivity and response results with excellent accuracy have been produced for large integrated quantities such as wing tip deflection and trim angle of attack. The sensitivities of such things as individual generalized displacements have been found with fair accuracy. In general, accuracy is found to be proportional to the relative size of the derivatives to the quantity itself.
NASA Astrophysics Data System (ADS)
Chitnis, Parag V.; Lee, Paul; Mamou, Jonathan; Allen, John S.; Böhmer, Marcel; Ketterling, Jeffrey A.
2011-04-01
Polymer-shelled micro-bubbles are employed as ultrasound contrast agents (UCAs) and vesicles for targeted drug delivery. UCA-based delivery of the therapeutic payload relies on ultrasound-induced shell rupture. The fragility of two polymer-shelled UCAs manufactured by Point Biomedical or Philips Research was investigated by characterizing their response to static overpressure. The nominal diameters of Point and Philips UCAs were 3 μm and 2 μm, respectively. The UCAs were subjected to static overpressure in a glycerol-filled test chamber with a microscope-reticule lid. UCAs were reconstituted in 0.1 mL of water and added over the glycerol surface in contact with the reticule. A video-microscope imaged UCAs as glycerol was injected (5 mL/h) to vary the pressure from 2 to 180 kPa over 1 h. Neither UCA population responded to overpressure until the rupture threshold was exceeded, which resulted in abrupt destruction. The rupture data for both UCAs indicated three subclasses that exhibited different rupture behavior, although their mean diameters were not statistically different. The rupture pressures provided a measure of UCA fragility; the Philips UCAs were more resilient than Point UCAs. Results were compared to theoretical models of spherical shells under compression. Observed variations in rupture pressures are attributed to shell imperfections. These results may provide means to optimize polymeric UCAs for drug delivery and elucidate associated mechanisms.
A Dynamic Model of Mercury's Magnetospheric Magnetic Field
Johnson, Catherine L.; Philpott, Lydia; Tsyganenko, Nikolai A.; Anderson, Brian J.
2017-01-01
Abstract Mercury's solar wind and interplanetary magnetic field environment is highly dynamic, and variations in these external conditions directly control the current systems and magnetic fields inside the planetary magnetosphere. We update our previous static model of Mercury's magnetic field by incorporating variations in the magnetospheric current systems, parameterized as functions of Mercury's heliocentric distance and magnetic activity. The new, dynamic model reproduces the location of the magnetopause current system as a function of systematic pressure variations encountered during Mercury's eccentric orbit, as well as the increase in the cross‐tail current intensity with increasing magnetic activity. Despite the enhancements in the external field parameterization, the residuals between the observed and modeled magnetic field inside the magnetosphere indicate that the dynamic model achieves only a modest overall improvement over the previous static model. The spatial distribution of the residuals in the magnetic field components shows substantial improvement of the model accuracy near the dayside magnetopause. Elsewhere, the large‐scale distribution of the residuals is similar to those of the static model. This result implies either that magnetic activity varies much faster than can be determined from the spacecraft's passage through the magnetosphere or that the residual fields are due to additional external current systems not represented in the model or both. Birkeland currents flowing along magnetic field lines between the magnetosphere and planetary high‐latitude regions have been identified as one such contribution. PMID:29263560
Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.
1976-01-01
A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.
Modeling subharmonic response from contrast microbubbles as a function of ambient static pressure
Katiyar, Amit; Sarkar, Kausik; Forsberg, Flemming
2011-01-01
Variation of subharmonic response from contrast microbubbles with ambient pressure is numerically investigated for non-invasive monitoring of organ-level blood pressure. Previously, several contrast microbubbles both in vitro and in vivo registered approximately linear (5–15 dB) subharmonic response reduction with 188 mm Hg change in ambient pressure. In contrast, simulated subharmonic response from a single microbubble is seen here to either increase or decrease with ambient pressure. This is shown using the code BUBBLESIM for encapsulated microbubbles, and then the underlying dynamics is investigated using a free bubble model. The ratio of the excitation frequency to the natural frequency of the bubble is the determining parameter—increasing ambient pressure increases natural frequency thereby changing this ratio. For frequency ratio below a lower critical value, increasing ambient pressure monotonically decreases subharmonic response. Above an upper critical value of the same ratio, increasing ambient pressure increases subharmonic response; in between, the subharmonic variation is non-monotonic. The precise values of frequency ratio for these three different trends depend on bubble radius and excitation amplitude. The modeled increase or decrease of subharmonic with ambient pressure, when one happens, is approximately linear only for certain range of excitation levels. Possible reasons for discrepancies between model and previous experiments are discussed. PMID:21476688
Wind-Tunnel Tests of Seven Static-Pressure Probes at Transonic Speeds
NASA Technical Reports Server (NTRS)
Capone, Francis J.
1961-01-01
Wind-tunnel tests have been conducted to determine the errors of 3 seven static-pressure probes mounted very close to the nose of a body of revolution simulating a missile forebody. The tests were conducted at Mach numbers from 0.80 to 1.08 and at angles of attack from -1.7 deg to 8.4 deg. The test Reynolds number per foot varied from 3.35 x 10(exp 6) to 4.05 x 10(exp 6). For three 4-vane, gimbaled probes, the static-pressure errors remained constant throughout the test angle-of-attack range for all Mach numbers except 1.02. For two single-vane, self-rotating probes having two orifices at +/-37.5 deg. from the plane of symmetry on the lower surface of the probe body, the static-pressure error varied as much as 1.5 percent of free-stream static pressure through the test angle-of- attack range for all Mach numbers. For two fixed, cone-cylinder probes of short length and large diameter, the static-pressure error varied over the test angle-of-attack range at constant Mach numbers as much as 8 to 10 percent of free-stream static pressure.
NASA Astrophysics Data System (ADS)
Mapakshi, N. K.; Chang, J.; Nakshatrala, K. B.
2018-04-01
Mathematical models for flow through porous media typically enjoy the so-called maximum principles, which place bounds on the pressure field. It is highly desirable to preserve these bounds on the pressure field in predictive numerical simulations, that is, one needs to satisfy discrete maximum principles (DMP). Unfortunately, many of the existing formulations for flow through porous media models do not satisfy DMP. This paper presents a robust, scalable numerical formulation based on variational inequalities (VI), to model non-linear flows through heterogeneous, anisotropic porous media without violating DMP. VI is an optimization technique that places bounds on the numerical solutions of partial differential equations. To crystallize the ideas, a modification to Darcy equations by taking into account pressure-dependent viscosity will be discretized using the lowest-order Raviart-Thomas (RT0) and Variational Multi-scale (VMS) finite element formulations. It will be shown that these formulations violate DMP, and, in fact, these violations increase with an increase in anisotropy. It will be shown that the proposed VI-based formulation provides a viable route to enforce DMP. Moreover, it will be shown that the proposed formulation is scalable, and can work with any numerical discretization and weak form. A series of numerical benchmark problems are solved to demonstrate the effects of heterogeneity, anisotropy and non-linearity on DMP violations under the two chosen formulations (RT0 and VMS), and that of non-linearity on solver convergence for the proposed VI-based formulation. Parallel scalability on modern computational platforms will be illustrated through strong-scaling studies, which will prove the efficiency of the proposed formulation in a parallel setting. Algorithmic scalability as the problem size is scaled up will be demonstrated through novel static-scaling studies. The performed static-scaling studies can serve as a guide for users to be able to select an appropriate discretization for a given problem size.
Experimental Investigation and Numerical Predication of a Cross-Flow Fan
2006-12-01
Figure 3. Combination probes and pressure tap layout .....................................................6 Figure 4. CFF_DAQ graphical user interface...properties were United Sensor Devices model USD-C-161 3 mm (1/8-inch) combination thermocouple/pressure probes, and static pressure taps . The...was applied to the three static pressure tapes at the throat of the bell-mouth and to the two exhaust duct static pressure taps . Once the data
2002-01-01
Prescribed by ANSI Std Z39-18 Research and Technology Department Dynamics and Diagnostics Division, Static High- Pressure Group Overall Research...Department Dynamics and Diagnostics Division, Static High- Pressure Group Impact of this Basic Research • This research generates phase and density...Static High- Pressure Group Experimental Methodology Use Diamond Anvil Cells (DAC) with coil Heaters (HDAC) to achieve • High pressures (P) to 10 GPa
14 CFR 25.1325 - Static pressure systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... installation of the static pressure system must be such that— (1) Positive drainage of moisture is provided..., the other is blocked off; and (2) Both sources cannot be blocked off simultaneously. (h) For... other static pressure source being open or blocked. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as...
Experimental Investigation of the Mixing of Highly Swirling Flows
1982-05-01
inner stream has received an increasing amount of attention during recent years. The primary motivations for this have been the application to...2) wall Static Pressures (averaged over all subruns) and their locations PS4 (J) - Static pressure on 4" OD centerbody at location "J" (J = 1 to N(l...ZS4(J) - Axial location of static pressure PS4 (J) PS6(J) - Static pressure on inside wall of 6U tube at location "J" (J = 1 to N(2)) TH6(J) - Angular
NASA Astrophysics Data System (ADS)
Nishiyama, Randall T.; Bedard, Alfred J., Jr.
1991-09-01
There are many areas of need for accurate measurements of atmospheric static pressure. These include observations of surface meteorology, airport altimeter settings, pressure distributions around buildings, moving measurement platforms, as well as basic measurements of fluctuating pressures in turbulence. Most of these observations require long-term observations in adverse environments (e.g., rain, dust, or snow). Currently, many pressure measurements are made, of necessity, within buildings, thus involving potential errors of several millibars in mean pressure during moderate winds, accompanied by large fluctuating pressures induced by the structure. In response to these needs, a 'Quad-Disk' pressure probe for continuous, outdoor monitoring purposes was designed which is inherently weather-protected. This Quad-Disk probe has the desirable features of omnidirectional response and small error in pitch. A review of past static pressure probes contrasts design approaches and capabilities.
Effect on fan flow characteristics of length and axial location of a cascade thrust reverser
NASA Technical Reports Server (NTRS)
Dietrich, D. A.
1975-01-01
A series of static tests were conducted on a model fan with a diameter of 14.0 cm to determine the fan operating characteristics, the inlet static pressure contours, the fan-exit total and static pressure contours, and the fan-exit pressure distortion parameters associated with the installation of a partial-circumferential-emission cascade thrust reverser. The tests variables included the cascade axial length, the axial location of the reverser, and the type of fan inlet. It was shown that significant total and static pressure distortions were produced in the fan aft duct, and that some configurations induced a static pressure distortion at the fan face. The amount of flow passed by the fan and the level of the flow distortions were dependent upon all the variables tested.
Bubble dynamics in a standing sound field: the bubble habitat.
Koch, P; Kurz, T; Parlitz, U; Lauterborn, W
2011-11-01
Bubble dynamics is investigated numerically with special emphasis on the static pressure and the positional stability of the bubble in a standing sound field. The bubble habitat, made up of not dissolving, positionally and spherically stable bubbles, is calculated in the parameter space of the bubble radius at rest and sound pressure amplitude for different sound field frequencies, static pressures, and gas concentrations of the liquid. The bubble habitat grows with static pressure and shrinks with sound field frequency. The range of diffusionally stable bubble oscillations, found at positive slopes of the habitat-diffusion border, can be increased substantially with static pressure.
NASA Technical Reports Server (NTRS)
Thompson, Scott A.
1989-01-01
Wind tunnel experiments were performed on a 70 deg sweep delta wing to determine the effect of a sinusoidal pitching motion on the pressure field on the suction side of the wing. Twelve pressure taps were placed from 35 to 90 percent of the chord, at 60 percent of the local semi-span. Pressure coefficients were measured as a function of Reynolds number and pitch rate. The pressure coefficient was seen to vary at approximately the same frequency as the pitching frequency. The relative pressure variation at each chord location was comparable for each case. The average pressure distribution through each periodic motion was near the static distribution for the average angle of attack. Upon comparing the upstroke and downstroke pressures for a specific angle of attack, the downstroke pressures were slightly larger. Vortex breakdown was seen to have the most significant effect at the 40 to 45 percent chord location, where a decrease in pressure was apparent.
Collapsing granular beds: the role of interstitial air.
Homan, Tess; Gjaltema, Christa; van der Meer, Devaraj
2014-05-01
A prefluidized sand bed consisting of fine particles compactifies when it is subjected to a shock. We observe that the response depends on both the shock strength and the ambient pressure, where, counterintuitively, at high ambient pressure the compaction is larger, which we connect to a decrease of the static friction inside the bed. We find that the interstitial air is trapped inside the bed during and long after compaction. We deduce this from measuring the pressure changes above and below the bed: The top pressure decreases abruptly, on the time scale of the compaction, whereas that below the bed slowly rises to a maximum. Subsequently, both gently relax to ambient values. We formulate a one-dimensional diffusion model that uses only the change in bed height and the ambient pressure as an input, and we show that it leads to a fully quantitative understanding of the measured pressure variations.
Probe systems for static pressure and cross-stream turbulence intensity
NASA Technical Reports Server (NTRS)
Rossow, Vernon, J.
1991-01-01
A recent study of total-pressure probes for use in highly turbulent streams is extended herein by developing probe systems that measure time-averaged static or ambient pressure and turbulence intensity. Arrangements of tubular probes of circular and elliptical cross section are described that measure the pressure at orifices on the sides of the probes to obtain different responses to the cross-stream velocity fluctuations. When the measured data are combined to remove the effect of the presence of the probes on the local pressure, the time-averaged static pressure and the cross-stream components of turbulence intensity can be determined. If a system of total pressure tubes, as described in an accompanying paper, is added to the static pressure group to form a single cluster, redundant measurements are obtained that permit accuracy and consistency checks.
NASA Technical Reports Server (NTRS)
Byrdsong, T. A.; Brooks, C. W., Jr.
1983-01-01
Wind-tunnel measurements were made of the wing-surface static-pressure distributions on a 0.237 scale model of a remotely piloted research vehicle equipped with a thick, high-aspect-ratio supercritical wing. Data are presented for two model configurations (with and without a ventral pod) at Mach numbers from 0.70 to 0.92 at angles of attack from -4 deg to 8 deg. Large variations of wing-surface local pressure distributions were developed; however, the characteristic supercritical-wing pressure distribution occurred near the design condition of 0.80 Mach number and 2 deg angle of attack. The significant variations of the local pressure distributions indicated pronounced shock-wave movements that were highly sensitive to angle of attack and Mach number. The effect of the vertical pod varied with test conditions; however at the higher Mach numbers, the effects on wing flow characteristics were significant at semispan stations as far outboard as 0.815. There were large variations of the wing loading in the range of test conditions, both model configurations exhibited a well-defined peak value of normal-force coefficient at the cruise angle of attack (2 deg) and Mach number (0.80).
Evolution of brain-body allometry in Lake Tanganyika cichlids.
Tsuboi, Masahito; Kotrschal, Alexander; Hayward, Alexander; Buechel, Severine Denise; Zidar, Josefina; Løvlie, Hanne; Kolm, Niclas
2016-07-01
Brain size is strongly associated with body size in all vertebrates. This relationship has been hypothesized to be an important constraint on adaptive brain size evolution. The essential assumption behind this idea is that static (i.e., within species) brain-body allometry has low ability to evolve. However, recent studies have reported mixed support for this view. Here, we examine brain-body static allometry in Lake Tanganyika cichlids using a phylogenetic comparative framework. We found considerable variation in the static allometric intercept, which explained the majority of variation in absolute and relative brain size. In contrast, the slope of the brain-body static allometry had relatively low variation, which explained less variation in absolute and relative brain size compared to the intercept and body size. Further examination of the tempo and mode of evolution of static allometric parameters confirmed these observations. Moreover, the estimated evolutionary parameters indicate that the limited observed variation in the static allometric slope could be a result of strong stabilizing selection. Overall, our findings suggest that the brain-body static allometric slope may represent an evolutionary constraint in Lake Tanganyika cichlids. © 2016 The Author(s).
Investigation of surface fluctuating pressures on a 1/4 scale YC-14 upper surface blown flap model
NASA Technical Reports Server (NTRS)
Pappa, R. S.
1979-01-01
Fluctuating pressures were measured at 30 positions on the surface of a 1/4-scale YC-14 wing and fuselage model during an outdoor static testing program. These data were obtained as part of a NASA program to study the fluctuating loads imposed on STOL aircraft configurations and to further the understanding of the scaling laws of unsteady surface pressure fields. Fluctuating pressure data were recorded at several discrete engine thrust settings for each of 16 configurations of the model. These data were reduced using the technique of random data analysis to obtain auto-and cross-spectral density functions and coherence functions for frequencies from 0 to 10 kHz, and cross-correlation functions for time delays from 0 to 10.24 ms. Results of this program provide the following items of particular interest: (1) Good collapse of normalized PSD functions on the USB flap was found using a technique applied by Lilley and Hodgson to data from a laboratory wall-jet apparatus. (2) Results indicate that the fluctuating pressure loading on surfaces washed by the jet exhaust flow was dominated by hydrodynamic pressure variations, loading on surface well outside the flow region dominated by acoustic pressure variations, and loading near the flow boundaries from a mixture of the two.
Bruner, E; Mantini, S; Guerrini, V; Ciccarelli, A; Giombini, A; Borrione, P; Pigozzi, F; Ripani, M
2009-09-01
Baropodometrical digital techniques map the pressures exerted on the foot plant during both static and dynamic loadings. The study of the distribution of such pressures makes it possible to evaluate the postural and locomotory biomechanics together with its pathological variations. This paper is aimed at evaluating the integration between baropodometric analysis (pressure distribution) and geometrical models (shape of the footprints), investigating the pattern of variation associated with normal plantar morphology. The sample includes 91 individuals (47 males, 44 females), ranging from 5 to 85 years of age (mean and standard deviation = 40 + or - 24).The first component of variation is largely associated with the breadth of the isthmus, along a continuous gradient of increasing/decreasing flattening of the foot plant. This character being dominant upon the whole set of morphological components even in a non-pathological sample, such multivariate computation may represent a good diagnostic tool to quantify its degree of expression in individual subject or group samples. Sexual differences are not significant, and allometric variations associated with increasing plantar surface or stature are not quantitatively relevant. There are some differences between adult and young individuals, associated in the latter with a widening of the medial and posterior areas. These results provide a geometrical framework of baropodometrical analysis, suggesting possible future applications in diagnosis and basic research.
33 CFR 183.580 - Static pressure test for fuel tanks.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...
33 CFR 183.580 - Static pressure test for fuel tanks.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...
33 CFR 183.580 - Static pressure test for fuel tanks.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...
33 CFR 183.580 - Static pressure test for fuel tanks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...
33 CFR 183.580 - Static pressure test for fuel tanks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...
Resistance to forced airflow through layers of composting organic material.
Teixeira, Denis Leocádio; de Matos, Antonio Teixeira; Melo, Evandro de Castro
2015-02-01
The objective of this study was to adjust equations to estimate the static pressure gradient of airflow through layers of organic residues submitted to two stages of biochemical degradation, and to evaluate the static pressure drop of airflow thought the material layer. Measurements of static pressure drop in the layers of sugarcane bagasse and coffee husks mixed with poultry litter on day 0 and after 30 days of composting were performed using a prototype with specific airflow rates ranging from 0.02 to 0.13 m(3) s(-1) m(-2). Static pressure gradient and specific airflow rate data were properly fit to the Shedd, Hukill & Ives and Ergun models, which may be used to predict the static pressure gradient of air to be blown through the organic residue layers. However, the Shedd model was that which best represented the phenomenon studied. The static pressure drop of airflow increased as a power of the material layer thickness and showed tendency for decreasing with the biochemical degradation time of the organic material. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rood, Akkie; Hannink, Gerjon; Lenting, Anke; Groenen, Karlijn; Koëter, Sander; Verdonschot, Nico; van Kampen, Albert
2015-10-01
Reconstructing the medial patellofemoral ligament (MPFL) has become a key procedure for stabilizing the patella. Different techniques to reconstruct the MPFL have been described: static techniques in which the graft is fixed rigidly to the bone or dynamic techniques with soft tissue fixation. Static MPFL reconstruction is most commonly used. However, dynamic reconstruction deforms more easily and presumably functions more like the native MPFL. The aim of the study was to evaluate the effect of the different MPFL fixation techniques on patellofemoral pressures compared with the native situation. The hypothesis was that dynamic reconstruction would result in patellofemoral pressures closer to those generated in an intact knee. Controlled laboratory study. Seven fresh-frozen knee specimens were tested in an in vitro knee joint loading apparatus. Tekscan pressure-sensitive films fixed to the retropatellar cartilage measured mean patellofemoral and peak pressures, contact area, and location of the center of force (COF) at fixed flexion angles from 0° to 110°. Four different conditions were tested: intact, dynamic, partial dynamic, and static MPFL reconstruction. Data were analyzed using linear mixed models. Static MPFL reconstruction resulted in higher peak and mean pressures from 60° to 110° of flexion (P < .001). There were no differences in pressure between the 2 different dynamic reconstructions and the intact situation (P > .05). The COF in the static reconstruction group moved more medially on the patella from 50° to 110° of flexion compared with the other conditions. The contact area showed no significant differences between the test conditions. After static MPFL reconstruction, the patellofemoral pressures in flexion angles from 60° to 110° were 3 to 5 times higher than those in the intact situation. The pressures after dynamic MPFL reconstruction were similar as compared with those in the intact situation, and therefore, dynamic MPFL reconstruction could be a safer option than static reconstruction for stabilizing the patella. This study showed that static MPFL reconstruction results in higher patellofemoral pressures and thus enhances the chance of osteoarthritis in the long term, while dynamic reconstruction results in more normal pressures. © 2015 The Author(s).
NASA Technical Reports Server (NTRS)
Barnhart, Paul J.; Greber, Isaac
1997-01-01
A series of experiments were performed to investigate the effects of Mach number variation on the characteristics of the unsteady shock wave/turbulent boundary layer interaction generated by a blunt fin. A single blunt fin hemicylindrical leading edge diameter size was used in all of the experiments which covered the Mach number range from 2.0 to 5.0. The measurements in this investigation included surface flow visualization, static and dynamic pressure measurements, both on centerline and off-centerline of the blunt fin axis. Surface flow visualization and static pressure measurements showed that the spatial extent of the shock wave/turbulent boundary layer interaction increased with increasing Mach number. The maximum static pressure, normalized by the incoming static pressure, measured at the peak location in the separated flow region ahead of the blunt fin was found to increase with increasing Mach number. The mean and standard deviations of the fluctuating pressure signals from the dynamic pressure transducers were found to collapse to self-similar distributions as a function of the distance perpendicular to the separation line. The standard deviation of the pressure signals showed initial peaked distribution, with the maximum standard deviation point corresponding to the location of the separation line at Mach number 3.0 to 5.0. At Mach 2.0 the maximum standard deviation point was found to occur significantly upstream of the separation line. The intermittency distributions of the separation shock wave motion were found to be self-similar profiles for all Mach numbers. The intermittent region length was found to increase with Mach number and decrease with interaction sweepback angle. For Mach numbers 3.0 to 5.0 the separation line was found to correspond to high intermittencies or equivalently to the downstream locus of the separation shock wave motion. The Mach 2.0 tests, however, showed that the intermittent region occurs significantly upstream of the separation line. Power spectral densities measured in the intermittent regions were found to have self-similar frequency distributions when compared as functions of a Strouhal number for all Mach numbers and interaction sweepback angles. The maximum zero-crossing frequencies were found to correspond with the peak frequencies in the power spectra measured in the intermittent region.
Differential Pressures on a Pitot-venturi and a Pitot-static Nozzle over 360 Degrees Pitch and Yaw
NASA Technical Reports Server (NTRS)
Bear, R M
1928-01-01
Measurements of the differential pressures on two navy air-speed nozzles, consisting of a Zahm type Pitot-Venturi tube and a SQ-16 two-pronged Pitot-static tube, in a tunnel air stream of fixed speed at various angles of pitch and yaw between 0 degrees and plus or minus 180 degrees. This shows for a range over -20 degrees to +20 degrees pitch and yaw, indicated air speeds varying very slightly over 2 per cent for the Zahm type and a maximum of about 5 per cent for the SQ-16 type from the calibrated speed at 0 degree. For both types of air-speed nozzle the indicated air speed increases slightly as the tubes are pitched or yawed several degrees from their normal 0 degrees altitude, attains a maximum around plus or minus 15 degrees to 25 degrees, declines rapidly therefrom as plus or minus 40 degrees is passed, to zero in the vicinity of plus or minus 70 degrees to 100 degrees, and thence fluctuates irregular from thereabouts to plus or minus 180 degrees. The complete variation in indicated air speed for the two tubes over 360 degree pitch and yaw is graphically portrayed in figures 9 and 10. For the same air speed and 0 degree pitch and yaw the differential pressure of the Zahm type Pitot-Venturi nozzle is about seven times that of the SQ-16 type two-prolonged Pitot-static nozzle.
Dynamic Pressure Probes Developed for Supersonic Flow-Field Measurements
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2001-01-01
A series of dynamic flow-field pressure probes were developed for use in large-scale supersonic wind tunnels at the NASA Glenn Research Center. These flow-field probes include pitot and static pressure probes that can capture fast-acting flow-field pressure transients occurring on a millisecond timescale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The flow-field pressure probe contains four major components: 1) Static pressure aerodynamic tip; 2) Pressure-sensing cartridge assembly; 3) Pitot pressure aerodynamic tip; 4) Mounting stem. This modular design allows for a variety of probe tips to be used for a specific application. Here, the focus is on flow-field pressure measurements in supersonic flows, so we developed a cone-cylinder static pressure tip and a pitot pressure tip. Alternatively, probe tips optimized for subsonic and transonic flows could be used with this design. The pressure-sensing cartridge assembly allows the simultaneous measurement of steady-state and transient pressure which allows continuous calibration of the dynamic pressure transducer.
Terapascal static pressure generation with ultrahigh yield strength nanodiamond.
Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly
2016-07-01
Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.
Terapascal static pressure generation with ultrahigh yield strength nanodiamond
Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A.; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B.; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly
2016-01-01
Studies of materials’ properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications. PMID:27453944
A short static-pressure probe design for supersonic flow
NASA Technical Reports Server (NTRS)
Pinckney, S. Z.
1975-01-01
A static-pressure probe design concept was developed which has the static holes located close to the probe tip and is relatively insensitive to probe angle of attack and circumferential static hole location. Probes were constructed with 10 and 20 deg half-angle cone tips followed by a tangent conic curve section and a tangent cone section of 2, 3, or 3.5 deg, and were tested at Mach numbers of 2.5 and 4.0 and angles of attack up to 12 deg. Experimental results indicate that for stream Mach numbers of 2.5 and 4.0 and probe angle of attack within + or - 10 deg, values of stream static pressure can be determined from probe calibration to within about + or - 4 percent. If the probe is aligned within about 7 deg of the flow experimental results indicated, the stream static pressures can be determined to within 2 percent from probe calibration.
NASA Technical Reports Server (NTRS)
Reynolds, Robert M; Samonds, Robert I; Walker, John H
1957-01-01
An investigation has been made to determine the aerodynamic characteristics of the NACA 4-(5)(05)-041 four-blade, single-relation propeller and the NACA 4-(5)(05)-037 six- and eight-blade, dual-rotation propellers in combination with various spinners and NACA d-type spinner-cowling combinations at Mach numbers up to 0.84. Propeller force characteristics, local velocity distributions in the propeller planes, inlet pressure recoveries, and static-pressure distributions on the cowling surfaces were measured for a wide range of blade angles, advance ratios, and inlet-velocity ratios. Included are data showing: (a) the effect of extended cylindrical spinners on the characteristics of the single-rotation propeller, (b) the effect of variation of the difference in blade angle setting between the front and rear components of the dual-rotation propellers, (c) the negative- and static-thrust characteristics of the propellers with 1 series spinners, and (d) the effects of ideal- and platform-type propeller-spinner junctures on the pressure-recovery characteristics of the single-rotation propeller-spinner-cowling combination.
Effect of revised high-heeled shoes on foot pressure and static balance during standing.
Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min
2015-04-01
[Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance.
Effect of revised high-heeled shoes on foot pressure and static balance during standing
Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min
2015-01-01
[Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance. PMID:25995572
Static aeroelastic analysis and tailoring of missile control fins
NASA Technical Reports Server (NTRS)
Mcintosh, S. C., Jr.; Dillenius, M. F. E.
1989-01-01
A concept for enhancing the design of control fins for supersonic tactical missiles is described. The concept makes use of aeroelastic tailoring to create fin designs (for given planforms) that limit the variations in hinge moments that can occur during maneuvers involving high load factors and high angles of attack. It combines supersonic nonlinear aerodynamic load calculations with finite-element structural modeling, static and dynamic structural analysis, and optimization. The problem definition is illustrated. The fin is at least partly made up of a composite material. The layup is fixed, and the orientations of the material principal axes are allowed to vary; these are the design variables. The objective is the magnitude of the difference between the chordwise location of the center of pressure and its desired location, calculated for a given flight condition. Three types of constraints can be imposed: upper bounds on static displacements for a given set of load conditions, lower bounds on specified natural frequencies, and upper bounds on the critical flutter damping parameter at a given set of flight speeds and altitudes. The idea is to seek designs that reduce variations in hinge moments that would otherwise occur. The block diagram describes the operation of the computer program that accomplishes these tasks. There is an option for a single analysis in addition to the optimization.
NASA Technical Reports Server (NTRS)
Kofskey, M. G.; Haas, J. E.
1973-01-01
The effect of increased rotor blade loading on turbine performance was investigated by reducing rotor blade inlet diameter. The reduction was made in four stages. Each modification was tested with the same stator using cold air as the working fluid. Results are presented in terms of equivalent mass flow and efficiency at equivalent design rotative speed and over a range of pressure ratios. Internal flow characteristics are shown in terms of stator exit static pressure and the radial variation of local loss and rotor-exit flow angle with radius ratio. Included are velocity diagrams calculated from the experimental results.
NASA Technical Reports Server (NTRS)
Rao, D. M.; Tingas, S. A.
1981-01-01
The drag reduction potential of leading edge devices on a 60 degree delta wing at high lift was examined. Geometric variations of fences, chordwise slots, pylon type vortex generators, leading edge vortex flaps, and sharp leading edge extensions were tested individually and in specific combinations to improve high-alpha drag performance with a minimum of low-alpha drag penalty. The force, moment, and surface static pressure data for angles of attack up to 23 degrees, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter are documented.
NASA Technical Reports Server (NTRS)
Wang, Ten-See
1993-01-01
The objective of this study is to benchmark a four-engine clustered nozzle base flowfield with a computational fluid dynamics (CFD) model. The CFD model is a three-dimensional pressure-based, viscous flow formulation. An adaptive upwind scheme is employed for the spatial discretization. The upwind scheme is based on second and fourth order central differencing with adaptive artificial dissipation. Qualitative base flow features such as the reverse jet, wall jet, recompression shock, and plume-plume impingement have been captured. The computed quantitative flow properties such as the radial base pressure distribution, model centerline Mach number and static pressure variation, and base pressure characteristic curve agreed reasonably well with those of the measurement. Parametric study on the effect of grid resolution, turbulence model, inlet boundary condition and difference scheme on convective terms has been performed. The results showed that grid resolution had a strong influence on the accuracy of the base flowfield prediction.
NASA Technical Reports Server (NTRS)
Malak, Malak Fouad; Hamed, Awatef; Tabakoff, Widen
1990-01-01
A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvaned portion of the nozzle of a radial inflow turbine scroll. The cold flow experimental results are presented for the velocity field at the scroll tongue. In addition, a total pressure loss of 3.5 percent for the scroll is revealed from the velocity measurements combined with the static pressure readings. Moreover, the measurement of the three normal stresses of the turbulence has showed that the flow is anisotropic. Furthermore, the mean velocity components are compared with a numerical solution of the potential flow field using the finite element technique. The theoretical prediction of the exit flow angle variation agrees well with the experimental results. This variation leads to a higher scroll pattern factor which can be avoided by controlling the scroll cross sectional area distribution.
Energy and mass balance in the three-phase interstellar medium
NASA Technical Reports Server (NTRS)
Wang, Zhong; Cowie, Lennox L.
1988-01-01
Details of the energy and mass balances are considered in the context of a three-phase interstellar medium. The rates of mass exchange between the different phases are derived based on the pressure variations created by supernova remnant expansions. It is shown that the pressure-confined warm and cold gases have stable temperatures under a variety of interstellar conditions. The three-phase quasi-static configuration is found to be a natural outcome, and both warm and cold phases generally contribute about half of the total mass density to the diffuse interstellar gas. The model is also likely to be self-regulatory in the sense that variations of the input parameters do not strongly alter the general result, which is consistent with most current observations. The consequences of extreme conditions on this model are considered, and the possible implications for interstellar medium in other galaxies are briefly discussed.
NASA Technical Reports Server (NTRS)
Budweg, H. L.; Shin, Y. S.
1987-01-01
An experimental investigation was conducted to determine the static and dynamic responses of a specific stiffened flat plate design. The air-backed rectangular flat plates of 6061-T6 aluminum with an externally machined longitudinal narrow-flanged T-stiffener and clamped boundary conditions were subjected to static loading by water hydropump pressure and shock loading from an eight pound TNT charge detonated underwater. The dynamic test plate was instrumented to measure transient strains and free field pressure. The static test plate was instrumented to measure transient strains, plate deflection, and pressure. Emphasis was placed upon forcing static and dynamic stiffener tripping, obtaining relevant strain and pressure data, and studying the associated plate-stiffener behavior.
Should care homes adopt a static-led approach to pressure ulcer prevention?
Keen, Delia Catherine
A static-led approach refers to the provision of high-specification foam mattresses for the whole of a population at risk of pressure damage. Such mattresses have been found to reduce the risk of pressure ulceration and cost less overall than standard mattresses, even in populations where only 1 in 100 patients develops a pressure ulcer. Reduced pressure ulcer prevalence and reduced costs resulting from decreased expenditure on dynamic mattresses following the implementation of a static-led approach have been reported. Pressure ulcers cause pain, a reduced quality of life, loss of independence, depression and social isolation for those in whom they develop. Organizations are increasingly having to pay out large sums of money following litigation surrounding pressure ulcers. This article explains why NHS healthcare providers and private care organizations need to work together to consider implementing a static-led approach to pressure ulcer prevention within care homes in order to reduce pressure ulcer incidence cost-effectively within their local populations.
Chen, Zefeng; Wang, Zhao; Li, Xinming; Lin, Yuxuan; Luo, Ningqi; Long, Mingzhu; Zhao, Ni; Xu, Jian-Bin
2017-05-23
The piezoelectric effect is widely applied in pressure sensors for the detection of dynamic signals. However, these piezoelectric-induced pressure sensors have challenges in measuring static signals that are based on the transient flow of electrons in an external load as driven by the piezopotential arisen from dynamic stress. Here, we present a pressure sensor with nanowires/graphene heterostructures for static measurements based on the synergistic mechanisms between strain-induced polarization charges in piezoelectric nanowires and the caused change of carrier scattering in graphene. Compared to the conventional piezoelectric nanowire or graphene pressure sensors, this sensor is capable of measuring static pressures with a sensitivity of up to 9.4 × 10 -3 kPa -1 and a fast response time down to 5-7 ms. This demonstration of pressure sensors shows great potential in the applications of electronic skin and wearable devices.
Testing of the Crew Exploration Vehicle in NASA Langley's Unitary Plan Wind Tunnel
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Borg, Stephen E.; Watkins, Anthony N.; Cole, Daniel R.; Schwartz, Richard J.
2007-01-01
As part of a strategic, multi-facility test program, subscale testing of NASA s Crew Exploration Vehicle was conducted in both legs of NASA Langley s Unitary Plan Wind Tunnel. The objectives of these tests were to generate aerodynamic and surface pressure data over a range of supersonic Mach numbers and reentry angles of attack for experimental and computational validation and aerodynamic database development. To provide initial information on boundary layer transition at supersonic test conditions, transition studies were conducted using temperature sensitive paint and infrared thermography optical techniques. To support implementation of these optical diagnostics in the Unitary Wind Tunnel, the experiment was first modeled using the Virtual Diagnostics Interface software. For reentry orientations of 140 to 170 degrees (heat shield forward), windward surface flow was entirely laminar for freestream unit Reynolds numbers equal to or less than 3 million per foot. Optical techniques showed qualitative evidence of forced transition on the windward heat shield with application of both distributed grit and discreet trip dots. Longitudinal static force and moment data showed the largest differences with Mach number and angle of attack variations. Differences associated with Reynolds number variation and/or laminar versus turbulent flow on the heat shield were very small. Static surface pressure data supported the aforementioned trends with Mach number, Reynolds number, and angle of attack.
Miniature Flow-Direction/Pitot-Static Pressure Probes
NASA Technical Reports Server (NTRS)
Ashby, George C., Jr.; Coombs, David S.; Eves, John W.; Price, Howard E.; Vasquez, Peter
1989-01-01
Precision flow-direction/pitot-static pressure probes, ranging from 0.035 to 0.090 inch (0.89 to 2.29 mm) in outside diameter, successfully fabricated and calibrated for use in Langley 20-inch Mach 6 Tunnel. Probes simultaneously measure flow direction and static and pitot pressures in flow fields about configurations in hypersonic flow at temperatures up to 500 degree F (260 degree C).
NASA Astrophysics Data System (ADS)
Bramlette, Richard B.
In the 1950s, Eugene Gluhareff built the first working "pressure jet" engine, a variation on the classical ramjet engine with a pressurized inlet system relying on sonic tuning which allowed operation at subsonic speeds. The engine was an unqualified success. Unfortunately, after decades of sales and research, Gluhareff passed away leaving behind no significant published studies of the engine or detailed analysis of its operation. The design was at serious risk of being lost to history. This dissertation is intended to address that risk by studying a novel subscale modification of Gluhareff's original design operating on the same principles. Included is a background of related engine and how the pressure jet is distinct. The preliminary sizing of a pressure jet using closed-form expressions is then discussed followed by a review of propane oxidation modeling, how it integrates into the Computational Fluid Dynamics (CFD) solver, and the modeling of the pressure jet engine cycle with CFD. The simulation was matched to experimental data recorded on a purpose-built test stand recording chamber pressure, exhaust speed (via a Pitot/static system), temperatures, and thrust force. The engine CFD simulation produced a wide range of qualitative results that matched the experimental data well and suggested strong recirculation flows through the engine confirming suspicions about how the engine operates. Engine operating frequency between CFD and experiment also showed good agreement and appeared to be driven by the "Kadenacy Effect." The research effort lastly opens the door for further study of the engine cycle, the use of pressurized intakes to produce static thrust in a ramjet engine, the Gluhareff pressure jet's original geometry, and a wide array of potential applications. A roadmap of further study and applications is detailed including a modeling and testing of larger engines.
Diastolic viscous properties of the intact canine left ventricle.
Nikolic, S D; Tamura, K; Tamura, T; Dahm, M; Frater, R W; Yellin, E L
1990-08-01
The viscoelastic model of the ventricle predicts that the rate of change of volume (strain rate) is a determinant of the instantaneous pressure in the ventricle during diastole. Because relaxation is not complete before the onset of filling, one cannot distinguish the individual effects of relaxation and viscosity unless the passive and active components that determine the ventricular pressure are separated. To overcome this problem, we used the method of ventricular volume clamping to compare the pressures in the fully relaxed ventricle at a given volume at zero strain rate (static pressure) and high strain rate (dynamic pressure). Six open-chest, fentanyl-anesthetized dogs were instrumented with micromanometers and an electronically controlled mitral valve occluder in series with the electromagnetic flow probe. We reasoned as follows: If there were significant viscosity, then the dynamic pressure would be higher than the static pressure. The static pressure was measured when the ventricle was completely relaxed following a mitral valve occlusion after an arbitrary filling volume had been achieved. The dynamic pressure was determined by delaying the onset of filling until relaxation was complete and then measuring the pressure at the same volume that was achieved when the static pressure was measured. In 19 different hemodynamic situations, the dynamic and static pressures were identical (mean difference, 0.1 +/- 0.8 mm Hg), indicating that in the passive ventricle viscoelastic effects are insignificant and do not contribute to the left ventricular diastolic pressure under normal filling rates.
Device to lower NOx in a gas turbine engine combustion system
Laster, Walter R; Schilp, Reinhard; Wiebe, David J
2015-02-24
An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).
Water cooled static pressure probe
NASA Technical Reports Server (NTRS)
Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)
1991-01-01
An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.
NASA Astrophysics Data System (ADS)
Grossir, Guillaume; Van Hove, Bart; Paris, Sébastien; Rambaud, Patrick; Chazot, Olivier
2016-05-01
The performance of fast-response slender static pressure probes is evaluated in the short-duration, cold-gas, VKI Longshot hypersonic wind tunnel. Free-stream Mach numbers range between 9.5 and 12, and unit Reynolds numbers are within 3-10 × 106/m. Absolute pressure sensors are fitted within the probes, and an inexpensive calibration method, suited to low static pressure environments (200-1000 Pa), is described. Transfer functions relating the probe measurements p w to the free-stream static pressure p ∞ are established for the Longshot flow conditions based on numerical simulations. The pressure ratios p w / p ∞ are found to be close to unity for both laminar and turbulent boundary layers. Weak viscous effects characterized by small viscous interaction parameters {bar{χ }}<1.5 are confirmed experimentally for probe aspect ratios of L/ D > 16.5 by installing multiple pressure sensors in a single probe. The effect of pressure orifice geometry is also evaluated experimentally and found to be negligible for either straight or chamfered holes, 0.6-1 mm in diameter. No sensitivity to probe angle of attack could be evidenced for α < 0.33°. Pressure measurements are compared to theoretical predictions assuming an isentropic nozzle flow expansion. Significant deviations from this ideal case and the Mach 14 contoured nozzle design are uncovered. Validation of the static pressure measurements is obtained by comparing shock wave locations on Schlieren photographs to numerical predictions using free-stream properties derived from the static pressure probes. While these results apply to the Longshot wind tunnel, the present methodology and sensitivity analysis can guide similar investigations for other hypersonic test facilities.
Post-Injection Induced Seismicity in EGS: Triggering Mechanisms and Mitigation.
NASA Astrophysics Data System (ADS)
De Simone, S.; Carrera, J.; Vilarrasa, V.
2017-12-01
Induced microseismicity is a controversial issue related to Enhanced Geothermal Systems (EGS) and in general with fluid injection into deep geological formations. The occurring of felt earthquakes after stopping injection especially generates concern, because the correlation between injection and seismic activity is unclear. The aim of this work is to advance in the understanding of the processes that may induce or trigger co- and post-injection seismicity. To this end we investigate the thermo-hydro-mechanical coupling by means of numerical simulations of hydraulic stimulation of deep geothermal systems. We find that preferential flow through conductive fractures or fault zones provokes pressure and temperature perturbations that result in not only heterogeneous variation of the stress field, but also highly anisotropic variations of the local stress tensor. Anisotropic variations tend to stabilize some fractures, but destabilize others. Moreover, activation of shear slip causes a significant variation of the stress field that enlarges the range of critical fracture orientations. We find that post-injection seismicity may occur on non-critically oriented faults that were originally stable. During injection, such faults become destabilized by thermal and shear slip stress changes, but remain static by the superposition of the stabilizing effect of pressure forces. However, these fractures become unstable and fail when the pressure forcing dissipates shortly after injection stops abruptly, which suggests that a slow reduction in injection rate may mitigate post-injection seismicity.
NASA Technical Reports Server (NTRS)
Bedard, A. J., Jr.; Nishiyama, R. T.
1993-01-01
Instruments developed for making meteorological observations under adverse conditions on Earth can be applied to systems designed for other planetary atmospheres. Specifically, a wind sensor developed for making measurements within tornados is capable of detecting induced pressure differences proportional to wind speed. Adding strain gauges to the sensor would provide wind direction. The device can be constructed in a rugged form for measuring high wind speeds in the presence of blowing dust that would clog bearings and plug passages of conventional wind speed sensors. Sensing static pressure in the lower boundary layer required development of an omnidirectional, tilt-insensitive static pressure probe. The probe provides pressure inputs to a sensor with minimum error and is inherently weather-protected. The wind sensor and static pressure probes have been used in a variety of field programs and can be adapted for use in different planetary atmospheres.
Effects of Mach Numbers on Side Force, Yawing Moment and Surface Pressure
NASA Astrophysics Data System (ADS)
Sohail, Muhammad Amjad; Muhammad, Zaka; Husain, Mukkarum; Younis, Muhammad Yamin
2011-09-01
In this research, CFD simulations are performed for air vehicle configuration to compute the side force effect and yawing moment coefficients variations at high angle of attack and Mach numbers. As the angle of attack is increased then lift and drag are increased for cylinder body configurations. But when roll angle is given to body then side force component is also appeared on the body which causes lateral forces on the body and yawing moment is also produced. Now due to advancement of CFD methods we are able to calculate these forces and moment even at supersonic and hypersonic speed. In this study modern CFD techniques are used to simulate the hypersonic flow to calculate the side force effects and yawing moment coefficient. Static pressure variations along the circumferential and along the length of the body are also calculated. The pressure coefficient and center of pressure may be accurately predicted and calculated. When roll angle and yaw angle is given to body then these forces becomes very high and cause the instability of the missile body with fin configurations. So it is very demanding and serious problem to accurately predict and simulate these forces for the stability of supersonic vehicles.
NASA Technical Reports Server (NTRS)
Won, Mark J.
1990-01-01
Wind tunnel tests of propulsion-integrated aircraft models have identified inlet flow distortion as a major source of compressor airflow measurement error in turbine-powered propulsion simulators. Consequently, two Compact Multimission Aircraft Propulsion Simulator (CMAPS) units were statically tested at sea level ambient conditions to establish simulator operating performance characteristics and to calibrate the compressor airflow against an accurate bellmouth flowmeter in the presence of inlet flow distortions. The distortions were generated using various-shaped wire mesh screens placed upstream of the compressor. CMAPS operating maps and performance envelopes were obtained for inlet total pressure distortions (ratio of the difference between the maximum and minimum total pressures to the average total pressure) up to 35 percent, and were compared to baseline simulator operating characteristics for a uniform inlet. Deviations from CMAPS baseline performance were attributed to the coupled variation of both compressor inlet-flow distortion and Reynolds number index throughout the simulator operating envelope for each screen configuration. Four independent methods were used to determine CMAPS compressor airflow; direct compressor inlet and discharge measurements, an entering/exiting flow-balance relationships, and a correlation between the mixer pressure and the corrected compressor airflow. Of the four methods, the last yielded the least scatter in the compressor flow coefficient, approximately + or - 3 percent over the range of flow distortions.
Measurement of the True Dynamic and Static Pressures in Flight
NASA Technical Reports Server (NTRS)
Kiel, Georg
1939-01-01
In this report, two reliable methods are presented, with the aid of which the undisturbed flight dynamic pressure and the true static pressure may be determined without error. These problems were solved chiefly through practical flight tests.
Ignition and Performance Tests of Rocket-Based Combined Cycle Propulsion System
NASA Technical Reports Server (NTRS)
Anderson, William E.
2005-01-01
The ground testing of a Rocket Based Combined Cycle engine implementing the Simultaneous Mixing and Combustion scheme was performed at the direct-connect facility of Purdue University's High Pressure Laboratory. The fuel-rich exhaust of a JP-8/H2O2 thruster was mixed with compressed, metered air in a constant area, axisymmetric duct. The thruster was similar in design and function to that which will be used in the flight test series of Dryden's Ducted-Rocket Experiment. The determination of duct ignition limits was made based on the variation of secondary air flow rates and primary thruster equivalence ratios. Thrust augmentation and improvements in specific impulse were studied along with the pressure and temperature profiles of the duct to study mixing lengths and thermal choking. The occurrence of ignition was favored by lower rocket equivalence ratios. However, among ignition cases, better thrust and specific impulse performance were seen with higher equivalence ratios owing to the increased fuel available for combustion. Thrust and specific impulse improvements by factors of 1.2 to 1.7 were seen. The static pressure and temperature profiles allowed regions of mixing and heat addition to be identified. The mixing lengths were found to be shorter at lower rocket equivalence ratios. Total pressure measurements allowed plume-based calculation of thrust, which agreed with load-cell measured values to within 6.5-8.0%. The corresponding Mach Number profile indicated the flow was not thermally choked for the highest duct static pressure case.
Dynamic Dilational Strengthening During Earthquakes in Saturated Gouge-Filled Fault Zones
NASA Astrophysics Data System (ADS)
Sparks, D. W.; Higby, K.
2016-12-01
The effect of fluid pressure in saturated fault zones has been cited as an important factor in the strength and slip-stability of faults. Fluid pressure controls the effective normal stress across the fault and therefore controls the faults strength. In a fault core consisting of granular fault gouge, local transient dilations and compactions occur during slip that dynamically change the fluid pressure. We use a grain-scale numerical model to investigate the effect of these fluid effects in fault gouge during an earthquake. We use a coupled finite difference-discrete element model (Goren et al, 2011), in which the pore space is filled with a fluid. Local changes in grain packing generate local deviations in fluid pressure, which can be relieved by fluid flow through the permeable gouge. Fluid pressure gradients exert drag forces on the grains that couple the grain motion and fluid flow. We simulated 39 granular gouge zones that were slowly loaded in shear stress to near the failure point, and then conducted two different simulations starting from each grain packing: one with a high enough mean permeability (> 10-11 m2) that pressure remains everywhere equilibrated ("fully drained"), and one with a lower permeability ( 10-14 m2) in which flow is not fast enough to prevent significant pressure variations from developing ("undrained"). The static strength of the fault, the size of the event and the evolution of slip velocity are not imposed, but arise naturally from the granular packing. In our particular granular model, all fully drained slip events are well-modeled by a rapid drop in the frictional resistance of the granular packing from a static value to a dynamic value that remains roughly constant during slip. Undrained events show more complex behavior. In some cases, slip occurs via a slow creep with resistance near the static value. When rapid slip events do occur, the dynamic resistance is typically larger than in drained events, and highly variable. Frictional resistance is not correlated with the mean fluid pressure in the layer, but is instead controlled by local regions undergoing dilational strengthening. We find that (in the absence of pressure-generating effects like thermal pressurization or fluid-releasing reactions), the overall effect of fluid is to strengthen the fault.
30 CFR 7.307 - Static pressure test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static pressure test. 7.307 Section 7.307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...
In-Situ Ultra Low Frequency Poroelastic Response of a Natural Macro-Fracture
NASA Astrophysics Data System (ADS)
Guglielmi, Y.; Cappa, F.; Rutqvist, J.; Tsang, C.; Gaffet, S.
2008-12-01
The seismic visibility of macro-fractures filled with fluids is a central problem in the exploration of thermo- hydro-mechanical and chemical processes that occur in Earth' s subsurface. Most studies have been concerned (1) with cracks of a small size relative to the seismic wavelength (2) with "core-sized" samples of single macro-fractures. In comparison, in-situ studies of macro-fractures are very rare and no real estimate is made of the relevance of this convenient "core-sized" data to in-situ reservoirs in general. In this study, we present a new experimental approach to in-situ characterize mechanical and hydraulic properties of fractures using the innovative HPPP protocol. This protocol allows simultaneous high-frequency (120.2 Hz) sampling of normal displacement and fluid pressure in a borehole intersecting the fracture. We show preliminary results conducted in a single fracture vertically embedded in a carbonate reservoir that contains 3 sets of macro-fractures with an average 2m spacing. Two HPPP probes were set, spaced one meter vertically in the fracture. Two types of ULF seismic sources are applied: a fluid pressure pulse injected in the fracture and a hammer hit at a point located 5m far from the fracture plane. There is a highly non-linear variation of fracture normal displacement-versus- fluid pressure as a function of frequency, the higher the frequency, the lower the displacement spectral amplitude is. The pressure pulse and the hammer hit allow exploring the fracture poroelastic response in the [0 - 3Hz] frequency range. The fracture plays the role of a "low-pass" filter for fluid pressure waves; only a quasi-static pressure signal being registered at the receiver. The displacement wave propagation is more complex resulting in uncoupled quasi-static-pressure-2Hz-deformation signals at the receiver. For low magnitude seismic sources (low amplitude pulse and seismic wave), the fracture natural resonance is amplified resulting in separate signals power spectral peaks. When fluid pressure is enough increased, hydraulic diffusion takes place at frequencies lower than 1.2 Hz. Poroelastic effects related to static hydraulic diffusion and to wave propagation were described separately using a linear elastic model where the fracture was treated as a displacement discontinuity across which stresses are continuous but displacement are discontinuous. It appears that the dynamic fracture normal stiffness at 2 to 3 Hz is a factor of 2.8 higher than the static stiffness although the fracture displays a high hydraulic aperture of 10-4 m. This surprising result is related to a high heterogeneity of the fracture channel network with a large porosity/permeability contrast that does not allow fluid displacement under dynamic loading. The HPPP approach appears as a possibility to in-situ characterize such fractures static to seismic poroelastic heterogeneous properties.
Areal Mass Oscillations in Planar Targets Due to Feedout: Theory and Simulations.
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Obenschain, S. P.; Serlin, V.; Pawley, C. J.; Gardner, J. H.; Aglitskiy, Y.; Metzler, N.
2001-10-01
When a planar shock wave breaks out at a rippled rear surface of a laser-driven target, the lateral pressure gradient in a rippled rarefaction wave propagating back to the front surface causes a lateral mass redistribution that reverses the phase of mass variation. If the driving laser pulse has no foot, then the RT growth, starting when the rarefaction wave reaches the front surface, causes the second phase reversal of mass variation, and continues at the initial phase, as consistently observed in feedout experiments on Nike. A foot of the laser pulse can cause an early phase reversal of mass variation, making the strong shock wave driven by the main pulse interact with a density variation in a rippled rarefaction wave rather than with static rear surface ripples. Theory and simulations predict that this interaction can make the phase of mass variation reverse one or three times. Then the phase of the RT growing mode would be opposite to that of the initial mass variation.
Insert metering plates for gas turbine nozzles
Burdgick, Steven S.; Itzel, Gary; Chopra, Sanjay; Abuaf, Nesim; Correia, Victor H.
2004-05-11
The invention comprises a metering plate which is assembled to an impingement insert for use in the nozzle of a gas turbine. The metering plate can have one or more metering holes and is used to balance the cooling flow within the nozzle. A metering plate with multiple holes reduces static pressure variations which result from the cooling airflow through the metering plate. The metering plate can be assembled to the insert before or after the insert is inserted into the nozzle.
Influence of tooth profile on the noncircular gear tooth contact
NASA Astrophysics Data System (ADS)
Cristescu, A.; Andrei, L.; Cristescu, B.
2017-02-01
With noncircular gears, the continuous modification of the tooth meshing, in terms of variation of the tooth profiles and the line of action position and inclination, makes difficult the implementation of a general standard procedure for the analysis of the noncircular gears tooth contact. In this paper, the authors present a graphical approach that enables the tooth contact static pattern to be produced and evaluated in case of a noncircular gear with complex geometry of the pitch curve. The study is virtually developed, in AutoCAD environment, by animating and investigating the gear solid models in mesh. The tooth static contact analysis enables the path of contact area and distribution to be evaluated in correlation with the following variable initial data: gear pitch curve geometry, tooth profile geometry, as a consequence of different generating procedures, and the gear pressure angle. It was found out that the noncircular gear tooth contact could be improved by choosing different procedures for the tooth flank generation in concave and convex zones and by increasing the gear pressure angle.
Supersonic flow gradients at an overexpanded nozzle lip
NASA Astrophysics Data System (ADS)
Silnikov, M. V.; Chernyshov, M. V.
2018-07-01
The flowfield of a planar, overexpanded jet flow and an axisymmetric one are analyzed theoretically for a wide range of governing flow parameters (such as the nozzle divergence angle, the initial flow Mach number, the jet expansion ratio, and the ratio of specific heats). Significant differences are discovered between these parameters of the incident shock and the downstream flow for a planar jet and for an axisymmetric overexpanded jet flow. Incident shock curvature, shock strength variation, the geometrical curvature of the jet boundary, gradients of total and static pressure and Mach number, and flow vorticity parameters in post-shock flow are studied theoretically for non-separated nozzle flows. Flow parameters indicating zero and extrema values of these gradients are reported. Some theoretical results (such as concavities of incident shock and jet boundary, local decreases in the incident shock strength, increases and decreases in the static pressure, and the Mach number downstream of the incident shock) seem rather specific and non-evident at first sight. The theoretical results, achieved while using an inviscid flow model, are compared and confirmed with experimental data obtained by other authors.
Investigation of two pitot-static tubes at supersonic speeds
NASA Technical Reports Server (NTRS)
Hasel, Lowell E; Coletti, Donald E
1948-01-01
The results of tests at a Mach number of 1.94 of an ogives-nose cylindrical pitot-static tube and similar tests at Mach numbers of 1.93 and 1.62 of a service pitot-static tube to determine body static pressures and indicated Mach numbers are presented and discussed. The radial pressure distribution on the cylindrical bodies is compared with that calculated by an approximate theory.
NASA Astrophysics Data System (ADS)
Weng, Hanli; Li, Youping
2017-04-01
The working principle, process device and test procedure of runner static balancing test method by weighting with three-pivot pressure transducers are introduced in this paper. Based on an actual instance of a V hydraulic turbine runner, the error and sensitivity of the three-pivot pressure transducer static balancing method are analysed. Suggestions about improving the accuracy and the application of the method are also proposed.
NASA Technical Reports Server (NTRS)
Hingst, W. R.; Tanji, F. T.
1983-01-01
The two-dimensional interaction of an oblique shock wave with a turbulent boundary layer that included the effect of bleed was examined experimentally using a shock generator mounted across a supersonic wind tunnel The studies were performed at Mach numbers 2.5 and 2.0 and unit Reynolds number of approximately 2.0 x 10 to the 7th/meter. The study includes surface oil flow visualization, wall static pressure distributions and boundary layer pitot pressure profiles. In addition, the variation of the local bleed rates were measured. The results show the effect of the bleed on the boundary layer as well as the effect of the flow conditions on the local bleed rate.
Improved model for the design and analysis of centrifugal compressor volutes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van den Braembussche, R.A.; Ayder, E.; Hagelstein, D.
1999-07-01
This paper describes a new model for the analysis of the flow in volutes of centrifugal compressors. It explicitly takes into account the vortical structure of the flow that has been observed during detailed three-dimensional flow measurements. It makes use of an impeller and diffuser response model to predict the nonuniformity of the volute inlet flow due, to the circumferential variation of the pressure at the volute inlet, and is therefore applicable also at off-design operation of the volute. Predicted total pressure loss and static pressure rise coefficients at design and off-design operation have been compared with experimental data formore » different volute geometries but only one test case is presented here. Good agreement in terms of losses and pressure rise is observed at most operating points and confirms the validity of the impeller and diffuser response model.« less
Influence of tip end-plate on noise of small axial fan
NASA Astrophysics Data System (ADS)
Mao, Hongya; Wang, Yanping; Lin, Peifeng; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong
2017-02-01
In this work, tip end-plate is used to improve the noise performance of small axial fans. Both numerical simulations and experimental methods were adopted to study the fluid flow and noise level of axial fans. Four modified models and the prototype are simulated. Influences of tip end-plate on static characteristics, internal flow field and noise of small axial fans are analyzed. The results show that on basis of the prototype, the model with the tip end-plate of 2 mm width and changed length achieved best noise performance. The overall sound pressure level of the model with the tip end-plate of 2 mm width and changed length is 2.4 dB less than that of the prototype at the monitoring point in specified far field. It is found that the mechanism of noise reduction is due to the decrease of vorticity variation on the surface of blades caused by the tip end-plate. Compared with the prototype, the static pressure of the model with the tip end-plate of 2 mm width and changed length at design flow rate decreases by 2 Pa and the efficiency decreases by 0.8%. It is concluded that the method of adding tip end-plate to impeller blades has a positive influence on reducing noise, but it may diminish the static characteristics of small axial fan to some extent.
Static respiratory muscle work during immersion with positive and negative respiratory loading.
Taylor, N A; Morrison, J B
1999-10-01
Upright immersion imposes a pressure imbalance across the thorax. This study examined the effects of air-delivery pressure on inspiratory muscle work during upright immersion. Eight subjects performed respiratory pressure-volume relaxation maneuvers while seated in air (control) and during immersion. Hydrostatic, respiratory elastic (lung and chest wall), and resultant static respiratory muscle work components were computed. During immersion, the effects of four air-delivery pressures were evaluated: mouth pressure (uncompensated); the pressure at the lung centroid (PL,c); and at PL,c +/-0.98 kPa. When breathing at pressures less than the PL,c, subjects generally defended an expiratory reserve volume (ERV) greater than the immersed relaxation volume, minus residual volume, resulting in additional inspiratory muscle work. The resultant static inspiratory muscle work, computed over a 1-liter tidal volume above the ERV, increased from 0.23 J. l(-1), when subjects were breathing at PL,c, to 0.83 J. l(-1) at PL,c -0.98 kPa (P < 0.05), and to 1.79 J. l(-1) at mouth pressure (P < 0.05). Under the control state, and during the above experimental conditions, static expiratory work was minimal. When breathing at PL,c +0.98 kPa, subjects adopted an ERV less than the immersed relaxation volume, minus residual volume, resulting in 0.36 J. l(-1) of expiratory muscle work. Thus static inspiratory muscle work varied with respiratory loading, whereas PL,c air supply minimized this work during upright immersion, restoring lung-tissue, chest-wall, and static muscle work to levels obtained in the control state.
14 CFR 33.64 - Pressurized engine static parts.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64 Pressurized...
14 CFR 33.64 - Pressurized engine static parts.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64 Pressurized...
14 CFR 33.64 - Pressurized engine static parts.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64 Pressurized...
14 CFR 33.64 - Pressurized engine static parts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64 Pressurized...
14 CFR 33.64 - Pressurized engine static parts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64 Pressurized...
NASA Astrophysics Data System (ADS)
Billiard, N.; Paniagua, Guillermo; Dénos, R.
2008-06-01
This paper focuses on the experimental investigation of the time-averaged and time-accurate aero-thermodynamics of a second stator tested in a 1.5 stage high-pressure turbine. The effect of clocking on aerodynamic and heat transfer are investigated. Tests are performed under engine representative conditions in the VKI compression tube CT3. The test program includes four different clocking positions, i.e. relative pitch-wise positions between the first and the second stator. Probes located upstream and downstream of the second stator provide the thermodynamic conditions of the flow field. On the second stator airfoil, measurements are taken around the blade profile at 15, 50 and 85% span with pressure sensors and thin-film gauges. Both time-averaged and time-resolved aspects of the flow field are addressed. Regarding the time-averaged results, clocking effects are mainly observed within the leading edge region of the second stator, the largest effects being observed at 15% span. The surface static pressure distribution is changed locally, hence affecting the overall airfoil performance. For one clocking position, the thermal load of the airfoil is noticeably reduced. Pressure fluctuations are attributed to the passage of the upstream transonic rotor and its associated pressure gradients. The pattern of these fluctuations changes noticeably as a function of clocking. The time-resolved variations of heat flux and static pressure are analyzed together showing that the major effect is due to a potential interaction. The time-resolved pressure distribution integrated along the second stator surface yields the unsteady forces on the vane. The magnitude of the unsteady force is very dependent on the clocking position.
Exhaust Simulation Testing of a Hypersonic Airbreathing Model at Transonic Speeds
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Witte, David W.; Andrews, Earl H., Jr.
2004-01-01
An experimental study was performed to examine jet-effects for an airframe-integrated, scramjet-rocket combined-cycle vehicle configuration at transonic test conditions. This investigation was performed by testing an existing exhaust simulation wind tunnel model, known as Model 5B, in the NASA Langley 16-Ft. Transonic Tunnel. Tests were conducted at freestream Mach numbers from 0.7 to 1.2, at angles of attack from 2 to +14 degrees, and at up to seven nozzle static pressure ratio values for a set of horizontal-tail and body-flap deflections. The model aftbody, horizontal tails, and body flaps were extensively pressure instrumented to provide an understanding of jet-effects and control-surface/plume interactions, as well as for the development of analytical methodologies and calibration of computational fluid dynamic codes to predict this type of flow phenomenon. At all transonic test conditions examined, the exhaust flow at the exit of the internal nozzle was over-expanded, generating an exhaust plume that turned toward the aftbody. Pressure contour plots for the aftbody of Model 5B are presented for freestream transonic Mach numbers of 0.70, 0.95, and 1.20. These pressure data, along with shadowgraph images, indicated the impingement of an internal plume shock and at least one reflected shock onto the aftbody for all transonic conditions tested. These results also provided evidence of the highly three-dimensional nature of the aftbody exhaust flowfield. Parametric testing showed that angle-of-attack, static nozzle pressure ratio, and freestream Mach number all affected the exhaust-plume size, exhaust-flowfield shock structure, and the aftbody-pressure distribution, with Mach number having the largest effect. Integration of the aftbody pressure data showed large variations in the pitching moment throughout the transonic regime.
NASA Technical Reports Server (NTRS)
Henderson, William P.; Burley, James R., II
1987-01-01
An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects on empennage arrangement on single-engine nozzle/afterbody static pressures. Tests were done at Mach numbers from 0.60 to 1.20, nozzle pressure ratios from 1.0 (jet off) to 8.0. and angles of attack from -3 to 9 deg (at jet off conditions), depending on Mach number. Three empennage arrangements (aft, staggered, and forward) were investigated. Extensive measurements were made of static pressure on the nozzle/afterbody in the vicinity of the tail surfaces.
The Influence of Forward Flight on Propeller Noise
NASA Technical Reports Server (NTRS)
Magliozzi, B.
1977-01-01
The effect of flight on blade surface pressures and propeller noise was reported. There were significant differences in blade surface pressures and far-field noise between static and flight conditions. The static data showed many high-intensity, tone-like peaks whereas the flight data was generally free from tones. The turbulence ingested by the propeller operating statically was dominated by long, thin eddies. In flight the scale of the turbulence was greately reduced from that observed statically.
Tests of a D vented thrust deflecting nozzle behind a simulated turbofan engine
NASA Technical Reports Server (NTRS)
Watson, T. L.
1982-01-01
A D vented thrust deflecting nozzle applicable to subsonic V/STOL aircraft was tested behind a simulated turbofan engine in the verticle thrust stand. Nozzle thrust, fan operating characteristics, nozzle entrance conditions, and static pressures were measured. Nozzle performance was measured for variations in exit area and thrust deflection angle. Six core nozzle configurations, the effect of core exit axial location, mismatched core and fan stream nozzle pressure ratios, and yaw vane presence were evaluated. Core nozzle configuration affected performance at normal and engine out operating conditions. Highest vectored nozzle performance resulted for a given exit area when core and fan stream pressure were equal. Its is concluded that high nozzle performance can be maintained at both normal and engine out conditions through control of the nozzle entrance Mach number with a variable exit area.
The Response of Frozen Soils to Vibratory Loads
1975-06-01
Construction. i | The report was technically reviewed by Dr. Y . Nakano of USA CRREL, and A.F. Müller of the Office of Chief of Engineers. Their suggestions...B.I.S. Helme, Jr., t M.J. Dabney III, F. Berrego, R.N. Lachenmaier and D.J. Coombes. Dr. T.M. Lee, Dr. D.M. Norris, Jr. and Dr. Y . Nakano gave... y /g stress static confining pressure, (a, + 2a ^/3 axial (vertical) static pressure lateral static pressure dynamic stress (peak) phase shift
NASA Technical Reports Server (NTRS)
Dicicco, L. Danielle; Nowlin, Brent C.; Tirres, Lizet
1992-01-01
The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.
NASA Technical Reports Server (NTRS)
Dicicco, L. D.; Nowlin, Brent C.; Tirres, Lizet
1992-01-01
The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.
Evaluation of F/A-18A HARV inlet flow analysis with flight data
NASA Technical Reports Server (NTRS)
Smith, C. Frederic; Podleski, Steve D.; Barankiewicz, Wendy S.; Zeleznik, Susan Z.
1995-01-01
The F/A-18A aircraft has experienced engine stalls at high angles-of-attack and yaw flight conditions which were outside of its flight envelope. Future aircraft may be designed to operate routinely in this flight regime. Therefore, it is essential that an understanding of the inlet flow field at these flight conditions be obtained. Due to the complex interactions of the fuselage and inlet flow fields, a study of the flow within the inlet must also include external effects. Full Navier-Stokes (FNS) calculations on the F/A-18A High Alpha Research Vehicle (HARV) inlet for several angles-of-attack with sideslip and free stream Mach numbers have been obtained. The predicted forebody/fuselage surface static pressures agreed well with flight data. The surface static pressures along the inlet lip are in good agreement with the numerical predictions. The major departure in agreement is along the bottom of the lip at 30 deg and 60 deg angle-of-attack where a possible streamwise flow separation is not being predicted by the code. The circumferential pressure distributions at the engine face are in very good agreement with the numerical results. The variation in surface static pressure in the circumferential direction is very small with the exception of 60 angle-of-attack. Although the simulation does not include the effect of the engine, it appears that this omission has a second order effect on the circumferential pressure distribution. An examination of the unsteady flight test data base has shown that the secondary vortex migrates a significant distance with time. In fact, the extent of this migration increases with angle-of-attack with increasing levels of distortion. The effects of the engine on this vortex movement is unknown. This implies that the level of flow unsteadiness increases with increasing distortion. Since the computational results represent an asymptotic solution driven by steady boundary conditions, these numerical results may represent an arbitrary point in time. A comparison of the predicted total pressure contours with flight data indicates that the numerical results are within the excursion range of the unsteady data which is the best the calculations can attain unless an unsteady simulation is performed.
Radiation induced precursor flow field ahead of a Jovian entry body
NASA Technical Reports Server (NTRS)
Tiwari, S.; Szema, K. Y.
1977-01-01
The change in flow properties ahead of the bow shock of a Jovian entry body, resulting from absorption of radiation from the shock layer, is investigated. Ultraviolet radiation is absorbed by the free stream gases, causing dissociation, ionization, and an increase in enthalpy of flow ahead of the shock wave. As a result of increased fluid enthalpy, the entire flow field in the precursor region is perturbed. The variation in flow properties is determined by employing the small perturbation technique of classical aerodynamics as well as the thin layer approximation for the preheating zone. By employing physically realistic models of radiative transfer, solutions are obtained for velocity, pressure, density, temperature, and enthalpy variations. The results indicate that the precursor flow effects, in general, are greater at higher altitudes. Just ahead of the shock, however, the effects are larger at lower altitudes. Pre-heating of the gas significantly increases the static pressure and temperature ahead of the shock for velocities exceeding 36 km/sec.
NASA Astrophysics Data System (ADS)
Rodi, A. R.; Leon, D. C.
2012-05-01
Geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system on the University of Wyoming King Air research aircraft are used to estimate acceleration effects on static pressure measurement. Using data collected during periods of accelerated flight, comparison of measured pressure with that derived from GNSS/IMU geometric altitude show that errors exceeding 150 Pa can occur which is significant in airspeed and atmospheric air motion determination. A method is developed to predict static pressure errors from analysis of differential pressure measurements from a Rosemount model 858 differential pressure air velocity probe. The method was evaluated with a carefully designed probe towed on connecting tubing behind the aircraft - a "trailing cone" - in steady flight, and shown to have a precision of about ±10 Pa over a wide range of conditions including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, compared to the GNSS/IMU data, this algorithm predicts corrections to a precision of better than ±20 Pa. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are examined.
Jeong, Y J; Oh, T I; Woo, E J; Kim, K J
2017-07-01
Recently, highly flexible and soft pressure distribution imaging sensor is in great demand for tactile sensing, gait analysis, ubiquitous life-care based on activity recognition, and therapeutics. In this study, we integrate the piezo-capacitive and piezo-electric nanowebs with the conductive fabric sheets for detecting static and dynamic pressure distributions on a large sensing area. Electrical impedance tomography (EIT) and electric source imaging are applied for reconstructing pressure distribution images from measured current-voltage data on the boundary of the hybrid fabric sensor. We evaluated the piezo-capacitive nanoweb sensor, piezo-electric nanoweb sensor, and hybrid fabric sensor. The results show the feasibility of static and dynamic pressure distribution imaging from the boundary measurements of the fabric sensors.
Chen, Jia-Qing; Zhang, Nan; Wang, Jin-Hui; Zhu, Ling; Shang, Chao
2011-12-01
With the gradual improvement of environmental regulations, more and more attentions are attracted to the vapor emissions during the process of vehicle refueling. Research onto the vehicle refueling process by means of numerical simulation has been executed abroad since 1990s, while as it has never been involved so far domestically. Through reasonable simplification about the physical system of "Nozzle + filler pipe + gasoline storage tank + vent pipe" for vehicle refueling, and by means of volume of fluid (VOF) model for gas-liquid two-phase flow and Re-Normalization Group kappa-epsilon turbulence flow model provided in commercial computational fluid dynamics (CFD) software Fluent, this paper determined the proper mesh discretization scheme and applied the proper boundary conditions based on the Gambit software, then established the reasonable numerical simulation model for the gas-liquid two-phase flow during the refueling process. Through discussing the influence of refueling velocity on the static pressure of vent space in gasoline tank, the back-flowing phenomenon has been revealed in this paper. It has been demonstrated that, the more the flow rate and the refueling velocity of refueling nozzle is, the higher the gross static pressure in the vent space of gasoline tank. In the meanwhile, the variation of static pressure in the vent space of gasoline tank can be categorized into three obvious stages. When the refueling flow rate becomes higher, the back-flowing phenomenon of liquid gasoline can sometimes be induced in the head section of filler pipe, thus making the gasoline nozzle pre-shut-off. Totally speaking, the theoretical work accomplished in this paper laid some solid foundation for self-researching and self-developing the technology and apparatus for the vehicle refueling and refueling emissions control domestically.
NASA Technical Reports Server (NTRS)
Mikkelsen, Kevin L.; McDonald, Timothy J.; Saiyed, Naseem (Technical Monitor)
2001-01-01
This report presents the results of cold flow model tests to determine the static and wind tunnel performance of several NASA AST separate flow nozzle noise reduction configurations. The tests were conducted by Aero Systems Engineering, Inc., for NASA Glenn Research Center. The tests were performed in the Channels 14 and 6 static thrust stands and the Channel 10 transonic wind tunnel at the FluiDyne Aerodynamics Laboratory in Plymouth, Minnesota. Facility checkout tests were made using standard ASME long-radius metering nozzles. These tests demonstrated facility data accuracy at flow conditions similar to the model tests. Channel 14 static tests reported here consisted of 21 ASME nozzle facility checkout tests and 57 static model performance tests (including 22 at no charge). Fan nozzle pressure ratio varied from 1.4 to 2.0, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Channel 10 wind tunnel tests consisted of 15 tests at Mach number 0.28 and 31 tests at Mach 0.8. The sting was checked out statically in Channel 6 before the wind tunnel tests. In the Channel 6 facility, 12 ASME nozzle data points were taken and 7 model data points were taken. In the wind tunnel, fan nozzle pressure ratio varied from 1.73 to 2.8, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Test results include thrust coefficients, thrust vector angle, core and fan nozzle discharge coefficients, total pressure and temperature charging station profiles, and boat-tail static pressure distributions in the wind tunnel.
Martian Atmospheric Pressure Static Charge Elimination Tool
NASA Technical Reports Server (NTRS)
Johansen, Michael R.
2014-01-01
A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.
The NASA Ames 16-Inch Shock Tunnel Nozzle Simulations and Experimental Comparison
NASA Technical Reports Server (NTRS)
TokarcikPolsky, S.; Papadopoulos, P.; Venkatapathy, E.; Delwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
The 16-Inch Shock Tunnel at NASA Ames Research Center is a unique test facility used for hypersonic propulsion testing. To provide information necessary to understand the hypersonic testing of the combustor model, computational simulations of the facility nozzle were performed and results are compared with available experimental data, namely static pressure along the nozzle walls and pitot pressure at the exit of the nozzle section. Both quasi-one-dimensional and axisymmetric approaches were used to study the numerous modeling issues involved. The facility nozzle flow was examined for three hypersonic test conditions, and the computational results are presented in detail. The effects of variations in reservoir conditions, boundary layer growth, and parameters of numerical modeling are explored.
NASA Astrophysics Data System (ADS)
Gribin, V. G.; Gavrilov, I. Yu.; Tishchenko, A. A.; Tishchenko, V. A.; Alekseev, R. A.
2017-05-01
This paper is devoted to the wave structure of a flow at its near- and supersonic velocities in a flat turbine cascade of profiles in the zone of phase transitions. The main task was investigation of the mechanics of interaction of the condensation jump with the adiabatic jumps of packing in a change of the initial condition of the flow. The obtained results are necessary for verification of the calculation models of the moisture-steam flow in the elements of lotic parts of the steam turbines. The experimental tests were made on a stand of the wet steam contour (WSC-2) in the Moscow Power Engineering Institute (MPEI, National Research University) at various initial states of steam in a wide range of Mach numbers. In the investigation of the wave structure, use was made of an instrument based on the Schlieren-method principle. The amplitude-frequency characteristics of the flow was found by measurement of static pressure pulsations by means of the piezo resistive sensors established on a bandage plate along the bevel cut of the cascade. It is shown that appearance of phase transitions in the bevel cut of the nozzle turbine cascade leads to a change in the wave structure of the flow. In case of condensation jump, the system of adiabatic jumps in the bevel cut of the cascade becomes nonstationary, and the amplitude-frequency characteristics of static pressure pulsations are restructured. In this, a change in the frequency pulsations of pressure and amplitude takes place. It is noted that, at near-sonic speeds of the flow and the state of saturation at the input, the low-frequency pulsations of static pressure appear that lead to periodic disappearance of the condensation jump and of the adiabatic jump. As a result, in this mode, the flow discharge variations take place.
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
40 CFR 60.274a - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the equipment that is important to the performance of the total capture system (i.e., pressure sensors... this subpart shall check and record on a once-per-shift basis the furnace static pressure (if DEC system is in use, and a furnace static pressure gauge is installed according to paragraph (f) of this...
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
A comparison of the calculated and experimental off-design performance of a radial flow turbine
NASA Technical Reports Server (NTRS)
Tirres, Lizet
1992-01-01
Off design aerodynamic performance of the solid version of a cooled radial inflow turbine is analyzed. Rotor surface static pressure data and other performance parameters were obtained experimentally. Overall stage performance and turbine blade surface static to inlet total pressure ratios were calculated by using a quasi-three dimensional inviscid code. The off design prediction capability of this code for radial inflow turbines shows accurate static pressure prediction. Solutions show a difference of 3 to 5 points between the experimentally obtained efficiencies and the calculated values.
A comparison of the calculated and experimental off-design performance of a radial flow turbine
NASA Technical Reports Server (NTRS)
Tirres, Lizet
1991-01-01
Off design aerodynamic performance of the solid version of a cooled radial inflow turbine is analyzed. Rotor surface static pressure data and other performance parameters were obtained experimentally. Overall stage performance and turbine blade surface static to inlet total pressure ratios were calculated by using a quasi-three dimensional inviscid code. The off design prediction capability of this code for radial inflow turbines shows accurate static pressure prediction. Solutions show a difference of 3 to 5 points between the experimentally obtained efficiencies and the calculated values.
Sounding experiments of high pressure gas discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biele, Joachim K.
A high pressure discharge experiment (200 MPa, 5{center_dot}10{sup 21} molecules/cm{sup 3}, 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm{sup 3}) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm{sup 3}) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at themore » combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved.« less
Reduction of Orifice-Induced Pressure Errors
NASA Technical Reports Server (NTRS)
Plentovich, Elizabeth B.; Gloss, Blair B.; Eves, John W.; Stack, John P.
1987-01-01
Use of porous-plug orifice reduces or eliminates errors, induced by orifice itself, in measuring static pressure on airfoil surface in wind-tunnel experiments. Piece of sintered metal press-fitted into static-pressure orifice so it matches surface contour of model. Porous material reduces orifice-induced pressure error associated with conventional orifice of same or smaller diameter. Also reduces or eliminates additional errors in pressure measurement caused by orifice imperfections. Provides more accurate measurements in regions with very thin boundary layers.
NASA Astrophysics Data System (ADS)
Zhang, Rui-rui; Huang, Wei; Yan, Li; Li, Lang-quan; Li, Shi-bin; Moradi, R.
2018-05-01
To design a kind of aerospace vehicle, the drag and heat flux reduction are the most important factors. In the current study, the counterflowing jet, one of the effective drag and heat flux reduction concepts, is investigated numerically by the two-dimensional axisymmetric Reynolds-averaged Navier-Stokes equations coupled with the SST k-ω turbulence model. An axisymmetric numerical simulation mode of the counterflowing jet on the supersonic vehicle nose-tip is established, and the numerical method employed is validated by the experimental schlieren images and experimental data in the open literature. A pulsed counterflowing jet scheme is proposed, and it uses a sinusoidal function to control the total and static pressures of the counterflowing jet. The obtained results show that the long penetration mode does not exist in the whole turnaround, even in a relatively small range of the jet total and static pressures, and this is different from the phenomenon obtained under the steady condition in the open literature. At the same time, it is observed that the variation of the physical parameters, such as the Stanton number induced by the pulsed jet, has an obvious periodicity and hysteresis phenomenon.
Orifice Mass Flow Calculation in NASA's W-8 Single Stage Axial Compressor Facility
NASA Technical Reports Server (NTRS)
Bozak, Richard F.
2018-01-01
Updates to the orifice mass flow calculation for the W-8 Single Stage Axial Compressor Facility at NASA Glenn Research Center are provided to include the effect of humidity and incorporate ISO 5167. A methodology for including the effect of humidity into the inlet orifice mass flow calculation is provided. Orifice mass flow calculations provided by ASME PTC-19.5-2004, ASME MFC-3M-2004, ASME Fluid Meters, and ISO 5167 are compared for W-8's atmospheric inlet orifice plate. Differences in expansion factor and discharge coefficient given by these standards give a variation of about +/- 75% mass flow except for a few cases. A comparison of the calculations with an inlet static pressure mass flow correlation and a fan exit mass flow integration using test data from a 2017 turbofan rotor test in W-8 show good agreement between the inlet static pressure mass flow correlation, ISO 5167, and ASME Fluid Meters. While W-8's atmospheric inlet orifice plate violates the pipe diameter limit defined by each of the standards, the ISO 5167 is chosen to be the primary orifice mass flow calculation to use in the W-8 facility.
NASA Astrophysics Data System (ADS)
Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing
2018-04-01
This paper describes the merits and demerits of different sensors for measuring propellant gas pressure, the applicable range of the frequently used dynamic pressure calibration methods, and the working principle of absolute quasi-static pressure calibration based on the drop-weight device. The main factors affecting the accuracy of pressure calibration are analyzed from two aspects of the force sensor and the piston area. To calculate the effective area of the piston rod and evaluate the uncertainty between the force sensor and the corresponding peak pressure in the absolute quasi-static pressure calibration process, a method for solving these problems based on the least squares principle is proposed. According to the relevant quasi-static pressure calibration experimental data, the least squares fitting model between the peak force and the peak pressure, and the effective area of the piston rod and its measurement uncertainty, are obtained. The fitting model is tested by an additional group of experiments, and the peak pressure obtained by the existing high-precision comparison calibration method is taken as the reference value. The test results show that the peak pressure obtained by the least squares fitting model is closer to the reference value than the one directly calculated by the cross-sectional area of the piston rod. When the peak pressure is higher than 150 MPa, the percentage difference is less than 0.71%, which can meet the requirements of practical application.
Characterization for the performance of capacitive switches activated by mechanical shock.
Younis, Mohammad I; Alsaleem, Fadi M; Miles, Ronald; Su, Quang
2007-01-01
This paper presents experimental and theoretical investigation of a new concept of switches (triggers) that are actuated at or beyond a specific level of mechanical shock or acceleration. The principle of operation of the switches is based on dynamic pull-in instability induced by the combined interaction between electrostatic and mechanical shock forces. These switches can be tuned to be activated at various shock and acceleration thresholds by adjusting the DC voltage bias. Two commercial off-the-shelf capacitive accelerometers operating in air are tested under mechanical shock and electrostatic loading. A single-degree-of-freedom model accounting for squeeze-film damping, electrostatic forces, and mechanical shock is utilized for the theoretical investigation. Good agreement is found between simulation results and experimental data. Our results indicate that designing these new switches to respond quasi-statically to mechanical shock makes them robust against variations in shock shape and duration. More importantly, quasi-static operation makes the switches insensitive to variations in damping conditions. This can be promising to lower the cost of packaging for these switches since they can operate in atmospheric pressure with no hermetic sealing or costly package required.
Characterization for the performance of capacitive switches activated by mechanical shock
Younis, Mohammad I.; Alsaleem, Fadi M; Miles, Ronald; Su, Quang
2009-01-01
This paper presents experimental and theoretical investigation of a new concept of switches (triggers) that are actuated at or beyond a specific level of mechanical shock or acceleration. The principle of operation of the switches is based on dynamic pull-in instability induced by the combined interaction between electrostatic and mechanical shock forces. These switches can be tuned to be activated at various shock and acceleration thresholds by adjusting the DC voltage bias. Two commercial off-the-shelf capacitive accelerometers operating in air are tested under mechanical shock and electrostatic loading. A single-degree-of-freedom model accounting for squeeze-film damping, electrostatic forces, and mechanical shock is utilized for the theoretical investigation. Good agreement is found between simulation results and experimental data. Our results indicate that designing these new switches to respond quasi-statically to mechanical shock makes them robust against variations in shock shape and duration. More importantly, quasi-static operation makes the switches insensitive to variations in damping conditions. This can be promising to lower the cost of packaging for these switches since they can operate in atmospheric pressure with no hermetic sealing or costly package required. PMID:21720493
The energy density distribution of an ideal gas and Bernoulli’s equations
NASA Astrophysics Data System (ADS)
Santos, Leonardo S. F.
2018-05-01
This work discusses the energy density distribution in an ideal gas and the consequences of Bernoulli’s equation and the corresponding relation for compressible fluids. The aim of this work is to study how Bernoulli’s equation determines the energy flow in a fluid, although Bernoulli’s equation does not describe the energy density itself. The model from molecular dynamic considerations that describes an ideal gas at rest with uniform density is modified to explore the gas in motion with non-uniform density and gravitational effects. The difference between the component of the speed of a particle that is parallel to the gas speed and the gas speed itself is called ‘parallel random speed’. The pressure from the ‘parallel random speed’ is denominated as parallel pressure. The modified model predicts that the energy density is the sum of kinetic and potential gravitational energy densities plus two terms with static and parallel pressures. The application of Bernoulli’s equation and the corresponding relation for compressible fluids in the energy density expression has resulted in two new formulations. For incompressible and compressible gas, the energy density expressions are written as a function of stagnation, static and parallel pressures, without any dependence on kinetic or gravitational potential energy densities. These expressions of the energy density are the main contributions of this work. When the parallel pressure was uniform, the energy density distribution for incompressible approximation and compressible gas did not converge to zero for the limit of null static pressure. This result is rather unusual because the temperature tends to zero for null pressure. When the gas was considered incompressible and the parallel pressure was equal to static pressure, the energy density maintained this unusual behaviour with small pressures. If the parallel pressure was equal to static pressure, the energy density converged to zero for the limit of the null pressure only if the gas was compressible. Only the last situation describes an intuitive behaviour for an ideal gas.
Space Shuttle Redesigned Solid Rocket Motor nozzle natural frequency variations with burn time
NASA Technical Reports Server (NTRS)
Lui, C. Y.; Mason, D. R.
1991-01-01
The effects of erosion and thermal degradation on the Space Shuttle Redesigned Solid Rocket Motor (RSRM) nozzle's structural dynamic characteristics were analytically evaluated. Also considered was stiffening of the structure due to internal pressurization. A detailed NASTRAN finite element model of the nozzle was developed and used to evaluate the influence of these effects at several discrete times during motor burn. Methods were developed for treating erosion and thermal degradation, and a procedure was developed to account for internal pressure stiffening using differential stiffness matrix techniques. Results were verified using static firing test accelerometer data. Fast Fourier Transform and Maximum Entropy Method techniques were applied to the data to generate waterfall plots which track modal frequencies with burn time. Results indicate that the lower frequency nozzle 'vectoring' modes are only slightly affected by erosion, thermal effects and internal pressurization. The higher frequency shell modes of the nozzle are, however, significantly reduced.
Gravitational biology and the mammalian circadian timing system
NASA Astrophysics Data System (ADS)
Fuller, Charles A.; Murakami, Dean M.; Sulzman, Frank M.
Mammals have evolved under the influence of many selective pressures. Two of these pressures have been the static force of gravity and the daily variations in the environment due to the rotation of the earth. It is now clear that each of these pressures has led to specific adaptations which influence how organisms respond to changes in either gravity or daily time cues. However, several unpredicted responses to altered gravitational environments occur within the homeostatic and circadian control systems. These results may be particularly relevant to biological and medical issues related to spaceflight. This paper demonstrates that the homeostatic regulation of rat body temperature, heart rate, and activity become depressed following exposure to a 2 G hyperdynamic field, and recovers within 5-6 days. In addition, the circadian rhythms of these same variables exhibit a depression of rhythm amplitude; however, recovery required a minimum of 7 days.
NASA Technical Reports Server (NTRS)
Hanson, D. B.
1976-01-01
Miniature pressure transducers installed near the leading edge of a fan blade were used to diagnose the non-uniform flow entering a subsonic tip speed turbofan on a static test stand. The pressure response of the blade to the inlet flow variations was plotted in a form which shows the space-time history of disturbances ingested by the rotor. Also, periodically sampled data values were auto- and cross-correlated as if they had been acquired from fixed hot wire anemometers at 150 equally spaced angles around the inlet. With a clean inlet and low wind, evidence of long, narrow turbulence eddies was easily found both in the boundary layer of the fan duct and outside the boundary layer. The role of the boundary layer was to follow and amplify disturbances in the outer flow. These eddies frequently moved around the inlet with a corkscrew motion as they passed through.
NASA Astrophysics Data System (ADS)
M, Adimurthy; Katti, Vadiraj V.
2017-02-01
Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a normal slot air jet is experimental investigated. Present study focuses on the influence of jet-to-plate spacing ( Z/D h ) (0.5-10) and Reynolds number (2500-20,000) on the fluid flow and heat transfer distribution. A single slot jet with an aspect ratio ( l/b) of about 22 is chosen for the current study. Infrared Thermal Imaging technique is used to capture the temperature data on the target surface. Local heat transfer coefficients are estimated from the thermal images using `SMART VIEW' software. Wall static pressure measurement is carried out for the specified range of Re and Z/D h . Wall static pressure coefficients are seen to be independent of Re in the range between 5000 and 15,000 for a given Z/D h . Nu values are higher at the stagnation point for all Z/D h and Re investigated. For lower Z/D h and higher Re, secondary peaks are observed in the heat transfer distributions. This may be attributed to fluid translating from laminar to turbulent flow on the target plate. Heat transfer characteristics are explained based on the simplified flow assumptions and the pressure data obtained using Differential pressure transducer and static pressure probe. Semi-empirical correlation for the Nusselt number in the stagnation region is proposed.
Convergent evolution of sexual shape dimorphism in Diptera.
Bonduriansky, Russell
2006-05-01
Several patterns of sexual shape dimorphism, such as male body elongation, eye stalks, or extensions of the exoskeleton, have evolved repeatedly in the true flies (Diptera). Although these dimorphisms may have evolved in response to sexual selection on male body shape, conserved genetic factors may have contributed to this convergent evolution, resulting in stronger phenotypic convergence than might be expected from functional requirements alone. I compared phenotypic variation in body shape in two distantly related species exhibiting sexually dimorphic body elongation: Prochyliza xanthostoma (Piophilidae) and Telostylinus angusticollis (Neriidae). Although sexual selection appears to act differently on male body shape in these species, they exhibited strikingly similar patterns of sexual dimorphism. Likewise, patterns of within-sex shape variation were similar in the two species, particularly in males: relative elongation of the male head capsule, antenna, and legs was associated with reduced head capsule width and wing length, but was nearly independent of variation in thorax length. However, the two species presented contrasting patterns of static allometry: male sexual traits exhibited elevated allometric slopes in T. angusticollis, but not in P. xanthostoma. These results suggest that a shared pattern of covariation among traits may have channeled the evolution of sexually dimorphic body elongation in these species. Nonetheless, static allometries may have been shaped by species-specific selection pressures or genetic architectures. Copyright 2006 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Wang, Ten-See
1993-01-01
The objective of this study is to benchmark a four-engine clustered nozzle base flowfield with a computational fluid dynamics (CFD) model. The CFD model is a pressure based, viscous flow formulation. An adaptive upwind scheme is employed for the spatial discretization. The upwind scheme is based on second and fourth order central differencing with adaptive artificial dissipation. Qualitative base flow features such as the reverse jet, wall jet, recompression shock, and plume-plume impingement have been captured. The computed quantitative flow properties such as the radial base pressure distribution, model centerline Mach number and static pressure variation, and base pressure characteristic curve agreed reasonably well with those of the measurement. Parametric study on the effect of grid resolution, turbulence model, inlet boundary condition and difference scheme on convective terms has been performed. The results showed that grid resolution and turbulence model are two primary factors that influence the accuracy of the base flowfield prediction.
Estimation of Time Dependent Properties from Surface Pressure in Open Cavities
2008-02-01
static pressure of the cavity. The stagnation and static pressures are measured separately with Druck Model DPI 145 pressure transducers (with a quoted...interacting with the ZNMF actuator jets, the 2D shape of the vortical structures transform to a 3D shape with spanwise vortical structures. These...Therefore, the pressure gradient in the d direction is dd ° 3d Substituting Equation (5.3) into Equation (5.5) results in ^l = PJk(e^-Re^)/c^ (5.6
NASA Technical Reports Server (NTRS)
Robertson, Franklin; Bosilovich, Michael; Miller, Timothy
2007-01-01
Mass and energy transports associated with the Hadley and Walker circulations are important components of the earth s climate system and are strongly linked to hydrologic processes. Interannual to decadal variation in these flows likely signify a combination of natural climate noise as well as a response to anthropgenic forcing. There remains considerable uncertainty in quantifying variations in these flows. Evidence in the surface pressure record supports a weakening of the Walker circulation over the Pacific in recent decades. Conversely the NCEP / NCAR and ERA 40 reanalyses indicate that the Hadley circulation has increased in strength over the last two decades, though these analyses depict significantly different mass circulation changes. Interestingly, the NCEP - II / DOE reanalysis contains essentially no Hadley circulation changes. Most climate model integrations anticipate a weakening of both tropical circulations associated with stronger static stability. Clearly there is much uncertainty not only with the mass transports, but also how they are linked to water and energy balance of the planet through variations in turbulent heat and radiative fluxes and horizontal exports / imports of energy. Here we examine heat and water budget variations from a number of reanalysis products and focus on the linear and nonlinear response of ENSO warm and cold events as opportunities to study budget variations over the past 15-20 years. Our analysis addresses such questions as To what extent do Hadley and Walker Cell variations compensate each other on mass and energy transport? Do static stability adjustments appear to constrain fractional precipitation response vs. fractional water vapor response? We appeal to constraints offered by GPCP precipitation, SSWI ocean evaporation estimates, and ISCCP-FD radiative fluxes, and other satellite data sets to interpret and confirm reanalysis-based diagnostics. Using our findings we also attempt to place in context the recent findings that tropical ocean evaporation increased by order 5% or more during the 1990s, reconciling this with GPCP precipitation variations.
An alternating pressure sequence proposal for an air-cell cushion for preventing pressure ulcers.
Arias, Sandra; Cardiel, Eladio; Rogeli, Pablo; Mori, Taketoshi; Nakagami, Gojiro; Noguchi, Hiroshi; Sanada, Hiromi
2014-01-01
The distribution and release of pressure on ischial regions are two important parameters for evaluating the effectiveness of a cushion; especially the release of pressure over time on ischial tuberosities, which is significant for preventing pressure ulcers. The aim of this work is to evaluate the effect on interface pressure through the application of a proposed alternating pressure sequence for an air-cell cushion. Six healthy volunteers were asked to sit on the air cell cushion, in static and alternating modes, as well as on a typical foam cushion for 12 minutes. Interface pressure was monitored with a matrix sensor system. Interface pressure values on ischial tuberosities, user contact area and pressure distribution were analyzed. Results showed that IP on IT tends to increase in both foam and static cushions, while in alternating cushion IP on IT tends to decrease. User contact area was significantly larger in alternating cushion than in static or foam cushions. Moreover, there is a better pressure re-distribution with alternating cushion than with the other cushions. The goal of the alternating sequence is to redistribute pressure and stimulate the ischial regions in order to promote blood flow and prevent pressure occurring in wheelchair users.
Acoustic Liner Drag: Measurements on Novel Facesheet Perforate Geometries
NASA Technical Reports Server (NTRS)
Howerton, Brian M.; Jones, Michael G.
2016-01-01
Interest in characterization of the aerodynamic drag of acoustic liners has increased in the past several years. This paper details experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of several perforate-over-honeycomb liner configurations at flow speeds of centerline flow Mach number equals 0.3 and 0.5. Various perforate geometries and orientations are investigated to determine their resistance factors using a static pressure drop approach. Comparison of these resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 hertz at source sound pressure levels of 140 and 150 decibels. Educed impedance and attenuation spectra are used to determine the impact of variations in perforate geometry on acoustic performance.
NASA Technical Reports Server (NTRS)
Jenkins, R. V.
1977-01-01
Experimental data obtained in an investigation of the mixing of an underexpanded hydrogen jet in a supersonic flow both with and without combustion are presented. Tests were conducted in a Mach 2 test stream with both air and nitrogen as test media. Total temperature of the test stream was 2170 K, and static exit pressure was about one atmosphere. The static pressure at the exit of the hydrogen injector's Mach 2 nozzle was about two atmospheres. Primary measurements included shadowgraphs and pitot pressure surveys of the flow field. Pitot surveys and wall static pressures were measured for the case where the entire flow was shrouded. The results are compared to similar experimental data and theoretical predictions for the matched pressure case.
Inertial Currents in Isotropic Plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.
1993-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MED plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
Inertial currents in isotropic plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H. JR.
1994-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, magnetohyrodynamic (MHD) plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
Inertial currents in isotropic plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.
1994-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
Dynamics of a Pipeline under the Action of Internal Shock Pressure
NASA Astrophysics Data System (ADS)
Il'gamov, M. A.
2017-11-01
The static and dynamic bending of a pipeline in the vertical plane under the action of its own weight is considered with regard to the interaction of the internal pressure with the curvature of the axial line and the axisymmetric deformation. The pressure consists of a constant and timevarying parts and is assumed to be uniformly distributed over the entire span between the supports. The pipeline reaction to the stepwise increase in the pressure is analyzed in the case where it is possible to determine the exact solution of the problem. The initial stage of bending determined by the smallness of elastic forces as compared to the inertial forces is introduced into the consideration. At this stage, the solution is sought in the form of power series and the law of pressure variation can be arbitrary. This solution provides initial conditions for determining the further process. The duration of the inertial stage is compared with the times of sharp changes of the pressure and the shock waves in fluids. The structure parameters are determined in the case where the shock pressure is accepted only by the inertial forces in the pipeline.
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.; Jeracki, Robert J.
1988-01-01
An experimental investigation was conducted in the NASA Lewis 10- by 10-Foot Supersonic Wind Tunnel during subsonic tunnel operation in the aerodynamic cycle to determine the test section flow characteristics near the Advanced Turboprop Project propeller model plane of rotation. The investigation used an eight-probe pitot static flow survey rake to measure total and static pressures at two locations in the wind tunnel: the test section and the bellmouth section (upstream of the two-dimensional flexible-wall nozzle). A cone angularity probe was used to measure any flow angularity in the test section. The evaluation was conducted at tunnel Mach numbers from 0.10 to 0.35 and at three operating altitudes from 2,000 to 50,000 ft. which correspond to tunnel reference total pressures from 1960 to 245 psfa, respectively. The results of this experimental investigation indicate a total-pressure loss area in the center of the test section and a static-pressure gradient from the test section centerline to the wall. These total and static pressure differences were observed at all tunnel operating altitudes and diminished at lower tunnel velocities. The total-pressure loss area was also found in the bellmouth section, which indicates that the loss mechanism is not the tunnel flexible-wall nozzle. The flow in the test section is essentially axial since very small flow angles were measured. The results also indicate that a correction to the tunnel total and static pressures must be applied in order to determine accurate freestream conditions at the test section centerline.
NASA Astrophysics Data System (ADS)
Meda, Adimurthy; Katti, Vadiraj V.
2017-08-01
The present work experimentally investigates the local distribution of wall static pressure and the heat transfer coefficient on a rough flat plate impinged by a slot air jet. The experimental parameters include, nozzle-to-plate spacing (Z /D h = 0.5-10.0), axial distance from stagnation point ( x/D h ), size of detached rib ( b = 4-12 mm) and Reynolds number ( Re = 2500-20,000). The wall static pressure on the surface is recorded using a Pitot tube and a differential pressure transmitter. Infrared thermal imaging technique is used to capture the temperature distribution on the target surface. It is observed that, the maximum wall static pressure occurs at the stagnation point ( x/D h = 0) for all nozzle-to-plate spacing ( Z/D h ) and rib dimensions studied. Coefficient of wall static pressure ( C p ) decreases monotonically with x/D h . Sub atmospheric pressure is evident in the detached rib configurations for jet to plate spacing up to 6.0 for all ribs studied. Sub atmospheric region is stronger at Z/D h = 0.5 due to the fluid accelerating under the rib. As nozzle to plate spacing ( Z/D h ) increases, the sub-atmospheric region becomes weak and vanishes gradually. Reasonable enhancement in both C p as well as Nu is observed for the detached rib configuration. Enhancement is found to decrease with the increase in the rib width. The results of the study can be used in optimizing the cooling system design.
PSP Measurement of Stator Vane Surface Pressures in a High Speed Fan
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan
1998-01-01
This paper presents measurements of static pressures on the stator vane suction side of a high-speed single stage fan using the technique of pressure sensitive paint (PSP). The paper illustrates development in application of the relatively new experimental technique to the complex environment of internal flows in turbomachines. First, there is a short explanation of the physics of the PSP technique and a discussion of calibration methods for pressure sensitive paint in the turbomachinery environment. A description of the image conversion process follows. The recorded image of the stator vane pressure field is skewed due to the limited optical access and must be converted to the meridional plane projection for comparison with analytical predictions. The experimental results for seven operating conditions along an off-design rotational speed line are shown in a concise form, including performance map points, mindspan static tap pressure distributions, and vane suction side pressure fields. Then, a comparison between static tap and pressure sensitive paint data is discussed. Finally, the paper lists shortcomings of the pressure sensitive paint technology and lessons learned in this high-speed fan application.
Multiple Launch Rocket System (MLRS) Fuze.
1982-06-18
8217This is to be expected, since the probes are near the axis of symmetry 08 (where the bow shock wave is most nearly normal) and, being Pitot probes ...that simulated altitudes from 15.2 Km to 21 Km. The fuze ogive was instrumented with both static and pitot pressure probes , from which the pressure data...insights into the flow. Because the bow shock wave is curved, the static-pressure on the-- .urface should decrease from avalue__ of the stagnation pressure
NASA Astrophysics Data System (ADS)
Rodi, A. R.; Leon, D. C.
2012-11-01
A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns - angle of attack, angle of sideslip, dynamic pressure and the error in static pressure - if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft - a trailing cone - and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.
Ye, Rui; Hao, Jin; Song, Jinlin; Zhao, Zhihe; Fang, Shanbao; Wang, Yating; Li, Juan
2014-06-01
Chondrocytes integrate numerous microenvironmental cues to mount physiologically relevant differentiation responses, and the regulation of mechanical signaling in chondrogenic differentiation is now coming into intensive focus. To facilitate tissue-engineered chondrogenesis by mechanical strategy, a thorough understanding about the interactional roles of chemical factors under mechanical stimuli in regulating chondrogenesis is in great need. Therefore, this study attempts to investigate the interaction of rat MSCs with their microenvironment by imposing dynamic and static hydrostatic pressure through modulating gaseous tension above the culture medium. Under dynamic pressure, chemical parameters (pH, pO2, and pCO2) were kept in homeostasis. In contrast, pH was remarkably reduced due to increased pCO2 under static pressure. MSCs under the dynamically pressured microenvironment exhibited a strong accumulation of GAG within and outside the alginate beads, while cells under the statically pressured environment lost newly synthesized GAG into the medium with a speed higher than its production. In addition, the synergic influence on expression of chondrogenic genes was more persistent under dynamic pressure than that under static pressure. This temporal contrast was similar to that of activation of endogenous TGF-β1. Taken altogether, it indicates that a loading strategy which can keep a homeostatic chemical microenvironment is preferred, since it might sustain the stimulatory effects of mechanical stimuli on chondrogenesis via activation of endogenous TGF-β1. © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yeh, En-Chao; Suppe, John
2014-05-01
Some classic accretionary wedges such as Nankai trough and Barbados are mechanically heterogeneous based on their spatial variation in taper, showing inward decrease in surface slope α without covariation in detachment dip β. Possible sources of regional heterogeniety include variation in fluid pressure, density, cohesion and fault strength, which can be constrained by the seismic or borehole observable parameter, fluid-retention depth Z_FRD, below which compaction is strongly diminished. In particular the Hubbert-Rubey fluid-pressure weakening can be addressed as (1-lambda)~0.6Z_FRD/Z. We recast the heterogeneous critical-taper wedge theory of Dahlen (1990) in terms of the observable Z_FRD/H, where H is the detachment depth, which allows for real world applications. For example, seismic velocity and borehole data from the Barbados shows that the fluid-retention depth Z_FRD is approximately constant and Z_FRD/H decreases inward. This leads to a factor of four inward decreases in wedge strength, dominated by fluid pressure, with only a second-order role for density and cohesion. An inward decrease in wedge strength should by itself produce an increase in taper, therefore the observed decreasing taper must be dominated by decreasing fault strength mu_b* from 0.03 to 0.01. Static fluid-pressures along the detachment in equilibrium with the overlying wedge predict the observed wedge geometry well, given a constant intrinsic friction coefficient mu_b=0.15.
30 CFR 18.67 - Static-pressure tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static-pressure tests. 18.67 Section 18.67 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Inspections and Tests § 18...
Computational Test Cases for a Rectangular Supercritical Wing Undergoing Pitching Oscillations
NASA Technical Reports Server (NTRS)
Bennett, Robert M.; Walker, Charlotte E.
1999-01-01
Proposed computational test cases have been selected from the data set for a rectangular wing of panel aspect ratio two with a twelve-percent-thick supercritical airfoil section that was tested in the NASA Langley Transonic Dynamics Tunnel. The test cases include parametric variation of static angle of attack, pitching oscillation frequency, and Mach numbers from subsonic to transonic with strong shocks. Tables and plots of the measured pressures are presented for each case. This report provides an early release of test cases that have been proposed for a document that supplements the cases presented in AGARD Report 702.
Experimental evaluation of exhaust mixers for an Energy Efficient Engine
NASA Technical Reports Server (NTRS)
Kozlowski, H.; Kraft, G.
1980-01-01
Static scale model tests were conducted to evaluate exhaust system mixers for a high bypass ratio engine as part of the NASA sponsored Energy Efficient program. Gross thrust coefficients were measured for a series of mixer configurations which included variations in the number of mixer lobes, tailpipe length, mixer penetration, and length. All of these parameters have a significant impact on exhaust system performance. In addition, flow visualization pictures and pressure/temperature traverses were obtained for selected configurations. Parametric performance trends are discussed and the results considered relative to the Energy Efficient Engine program goals.
NASA Technical Reports Server (NTRS)
Tanner, J. A.
1974-01-01
An investigation was conducted to determine the fore-and-aft elastic response characteristics of 34 x 9.9, type VII, 14 ply-rating aircraft tires of bias-ply, bias-belted, and radial-belted design. The investigation consisted of static and rolling tests on dry concrete pavements at the Langley aircraft landing loads and traction facility; statistical techniques which related the measured tire elastic characteristics to variations in the vertical load, inflation pressure, braking force and/or tire vertical deflection; and a semiempirical analysis which related the tire elastic behavior to measured wheel slippage during steady-state braking. The bias-belted tire developed the largest spring constant value for most loading conditions; the radial-belted tire, the smallest. The elastic response of the tire free periphery to static braking included both tread stretch and carcass torsional wind-up about the axle for the bias-ply and bias-belted tires and carcass wind-up alone for the radial-belted tire.
The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics.
Ene, Florentina; Delassus, Patrick; Morris, Liam
2014-08-01
The variation in computational assumptions for analysing abdominal aortic aneurysm haemodynamics can influence the desired output results and computational cost. Such assumptions for abdominal aortic aneurysm modelling include static/transient pressures, steady/transient flows and rigid/compliant walls. Six computational methods and these various assumptions were simulated and compared within a realistic abdominal aortic aneurysm model with and without intraluminal thrombus. A full transient fluid-structure interaction was required to analyse the flow patterns within the compliant abdominal aortic aneurysms models. Rigid wall computational fluid dynamics overestimates the velocity magnitude by as much as 40%-65% and the wall shear stress by 30%-50%. These differences were attributed to the deforming walls which reduced the outlet volumetric flow rate for the transient fluid-structure interaction during the majority of the systolic phase. Static finite element analysis accurately approximates the deformations and von Mises stresses when compared with transient fluid-structure interaction. Simplifying the modelling complexity reduces the computational cost significantly. In conclusion, the deformation and von Mises stress can be approximately found by static finite element analysis, while for compliant models a full transient fluid-structure interaction analysis is required for acquiring the fluid flow phenomenon. © IMechE 2014.
Interaction of two-dimensional transverse jet with a supersonic mainstream
NASA Technical Reports Server (NTRS)
Kraemer, G. O.; Tiwari, S. N.
1983-01-01
The interaction of a two dimensional sonic jet injected transversely into a confined main flow was studied. The main flow consisted of air at a Mach number of 2.9. The effects of varying the jet parameters on the flow field were examined using surface pressure and composition data. Also, the downstream flow field was examined using static pressure, pitot pressure, and composition profile data. The jet parameters varied were gapwidth, jet static pressure, and injectant species of either helium or nitrogen. The values of the jet parameters used were 0.039, 0.056, and 0.109 cm for the gapwidth and 5, 10, and 20 for the jet to mainstream static pressure ratios. The features of the flow field produced by the mixing and interaction of the jet with the mainstream were related to the jet momentum. The data were used to demonstrate the validity of an existing two dimensional elliptic flow code.
Comparative Tests of Pitot-static Tubes
NASA Technical Reports Server (NTRS)
Merriam, Kenneth G; Spaulding, Ellis R
1935-01-01
Comparative tests were made on seven conventional Pitot-static tubes to determine their static, dynamic, and resultant errors. The effect of varying the dynamic opening, static opening, wall thickness, and inner-tube diameter was investigated. Pressure-distribution measurements showing stem and tip effects were also made. A tentative design for a standard Pitot-static tube for use in measuring air velocity is submitted.
Category 5 Suppressive Shield (TDP)
1975-10-01
side- on overpressure. 3.1.3 Quasi -static Pressure. Pressure levels as measured by the PCB101A02 trans- ducers were in general difficult to...apparent: (1) The observed quasi -static pressures PnM are in general somewhnl less than the OOOiipomMng calculated values based on closed-box...explained by off-center combustion of the illuminant mix and directional convection of the reaction pro- ducts. Posttest ash deposits on the floor
Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi
2011-11-01
The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles.
Numerical Predictions of Static-Pressure-Error Corrections for a Modified T-38C Aircraft
2014-12-15
but the more modern work of Latif et al . [11] demonstrated that compensated Pitot-static probes can be simulated accurately for subsonic and...what was originally estimated from CFD simulations in Bhamidipati et al . [3] by extracting the static-pressure error in front of the production probe...Aerodynamically Compensating Pitot Tube,” Journal of Aircraft, Vol. 25, No. 6, 1988, pp. 544–547. doi:10.2514/3.45620 [11] Latif , A., Masud, J., Sheikh, S. R., and
NASA Astrophysics Data System (ADS)
Dong, Qian
2017-12-01
The study of propagation law of plane stress wave in jointed rock mass under in-situ stress has important significance for safety excavation of underground rock mass engineering. A model test of the blasting stress waves propagating in the intact rock and jointed rock mass under different in-situ stresses was carried out, and the influencing factors on the propagation law, such as the scale of static loads and the number of joints were studied respectively. The results show that the transmission coefficient of intact rock is larger than that of jointed rock mass under the same loading condition. With the increase of confining pressure, the transmission coefficients of intact rock and jointed rock mass both show an trend of increasing first and then decreasing, and the variation of transmission coefficients in intact rock is smaller than that of jointed rock mass. Transmission coefficient of jointed rock mass decreases with the increase of the number of joints under the same loading condition, when the confining pressure is relatively small, the reduction of transmission coefficients decreases with the increasing of the number of joints, and the variation law of the reduction of transmission coefficients is contrary when the confining pressure is large.
2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall
NASA Technical Reports Server (NTRS)
Piziali, R. A.
1994-01-01
A comprehensive experimental investigation of the pressure distribution over a semispan wing undergoing pitching motions representative of a helicopter rotor blade was conducted. Testing the wing in the nonrotating condition isolates the three-dimensional (3-D) blade aerodynamic and dynamic stall characteristics from the complications of the rotor blade environment. The test has generated a very complete, detailed, and accurate body of data. These data include static and dynamic pressure distributions, surface flow visualizations, two-dimensional (2-D) airfoil data from the same model and installation, and important supporting blockage and wall pressure distributions. This body of data is sufficiently comprehensive and accurate that it can be used for the validation of rotor blade aerodynamic models over a broad range of the important parameters including 3-D dynamic stall. This data report presents all the cycle-averaged lift, drag, and pitching moment coefficient data versus angle of attack obtained from the instantaneous pressure data for the 3-D wing and the 2-D airfoil. Also presented are examples of the following: cycle-to-cycle variations occurring for incipient or lightly stalled conditions; 3-D surface flow visualizations; supporting blockage and wall pressure distributions; and underlying detailed pressure results.
Structure and osmotic pressure of ionic microgel dispersions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedrick, Mary M.; Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050; Chung, Jun Kyung
We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute bothmore » macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model’s limits in predicting osmotic pressures of salty dispersions.« less
DESIGN ANALYSIS OF RADIAL INFLOW TURBINES
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1994-01-01
This program performs a velocity-diagram analysis required for determining geometry and estimating performance for radial-inflow turbines. Input design requirements are power, mass flow rate, inlet temperature and pressure, and rotative rate. The design variables include stator-exit angle, rotor-exit-tip to rotor-inlet radius ratio, rotor-exit-hub to tip radius ratio, and the magnitude and radial distribution of rotor-exit tangential velocity. The program output includes diameters, total and static efficiences, all absolute and relative temperatures, pressures, and velocities, and flow angles at stator inlet, stator exit, rotor inlet, and rotor exit. Losses accounted for in this program by the internal loss model are three-dimensional (profile plus end wall) viscous losses in the stator and the rotor, the disk-friction loss on the back side of the rotor, the loss due to the clearance between the rotor tip and the outer casing, and the exit velocity loss. The flow analysis is one-dimensional at the stator inlet, stator exit, and rotor inlet, each of these calculation stations being at a constant radius. At the rotor exit where there is a variation in flow-field radius, an axisymmetric two-dimensional analysis is made using constant height sectors. Simple radial equilibrium is used to establish the static pressure gradient at the rotor exit. This program is written in FORTRAN V and has been implemented on a UNIVAC 1100 series computer with a memory requirement of approximately 22K of 36 bit words.
Wiecki, P.; Nandi, M.; Bohmer, Anna; ...
2017-11-13
Here, we present 77Se -NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, T s. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. Our NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiecki, P.; Nandi, M.; Bohmer, Anna
Here, we present 77Se -NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, T s. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. Our NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.
Theory for solubility in static systems
NASA Astrophysics Data System (ADS)
Gusev, Andrei A.; Suter, Ulrich W.
1991-06-01
A theory for the solubility of small particles in static structures has been developed. The distribution function of the solute in a frozen solid has been derived in analytical form for the quantum and the quasiclassical cases. The solubility at infinitesimal gas pressure (Henry's constant) as well as the pressure dependence of the solute concentration at elevated pressures has been found from the statistical equilibrium between the solute in the static matrix and the ideal-gas phase. The distribution function of a solute containing different particles has been evaluated in closed form. An application of the theory to the sorption of methane in the computed structures of glassy polycarbonate has resulted in a satisfactory agreement with experimental data.
NASA Technical Reports Server (NTRS)
Hunton, Lynn W.; James, Harry A.
1948-01-01
Pressure measurements were made during wind-tunnel tests of the McDonnell XP-85 parasite fighter. Static-pressure orifices were located over the fuselage nose, over the canopy, along the wing root, and along the upper and lower stabilizer roots. A total-pressure and static-pressure rake was located in the turbojet engine air-intake duct. It was installed at the station where the compressor face would be located. Pressure data were obtained for two airplane conditions, clean and with skyhook extended, through a range of angle of attack and a range of yaw.
Madeleine, Pascal; Nielsen, Mogens; Arendt-Nielsen, Lars
2011-04-01
The ability to maintain balance is diminished in patients suffering from a whiplash injury. The aim of this study was to characterize the variability of postural control in patients with chronic whiplash injury. For this purpose, we analyzed static postural recordings from 11 whiplash patients and sex- and age-matched asymptomatic healthy volunteers. Static postural recordings were performed randomly with eyes open, eyes closed, and eyes open and speaking (dual task). Spatial-temporal changes of the center of pressure displacement were analyzed to assess the amplitude and structure of postural variability by computing, respectively, the standard deviation/coefficient of variation and sample entropy/fractal dimension of the time series. The amplitude of variability of the center of pressure was larger among whiplash patients compared with controls (P<0.001) while fractal dimension was lower (P<0.001). The sample entropy increased during both eyes closed and a simple dual task compared with eyes open (P<0.05). The analysis of postural control dynamics revealed increased amplitude of postural variability and decreased signal dimensionality related to the deficit in postural stability found in whiplash patients. Linear and nonlinear analyses can thus be helpful for the quantification of postural control in normal and pathological conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.
Jia, Xiaohong; Zhang, Ming; Li, Xiaobing; Lee, Winson C C
2005-07-01
To predict the interface pressure between residual limb and prosthetic socket for trans-tibial amputees during walking. A quasi-dynamic finite element model was built based on the actual geometry of residual limb, internal bones and socket liner. To simulate the friction/slip boundary conditions between the skin and liner, automated surface-to-surface contact was used. Besides variable external loads and material inertia, the coupling between the large rigid displacement of knee joint and small elastic deformation of residual limb and prosthetic components were also considered. Interface pressure distribution was found to have the same profile during walking. The high pressures fall over popliteal depression, middle patella tendon, lateral tibia and medial tibia regions. Interface pressure predicted by static or quasi-dynamic analysis had the similar double-peaked waveform shape in stance phase. The consideration of inertial effects and motion of knee joint cause 210% average variation of the area between the pressure curve and the horizontal line of pressure threshold between two cases, even though there is only a small change in the peak pressure. The findings in this paper show that the coupling dynamic effects of inertial loads and knee flexion must be considered to study interface pressure between residual limb and prosthetic socket during walking.
Scholz, Timo; Zech, Astrid; Wegscheider, Karl; Lezius, Susanne; Braumann, Klaus-Michael; Sehner, Susanne; Hollander, Karsten
2017-09-01
Measurement of the medial longitudinal foot arch in children is a controversial topic, as there are many different methods without a definite standard procedure. The purpose of this study was to 1) investigate intraday and interrater reliability regarding dynamic arch index and static arch height, 2) explore the correlation between both arch indices, and 3) examine the variation of the medial longitudinal arch at two different times of the day. Eighty-six children (mean ± SD age, 8.9 ± 1.9 years) participated in the study. Dynamic footprint data were captured with a pedobarographic platform. For static arch measurements, a specially constructed caliper was used to assess heel-to-toe length and dorsum height. A mixed model was established to determine reliability and variation. Reliability was found to be excellent for the static arch height index in sitting (intraday, 0.90; interrater, 0.80) and standing positions (0.88 and 0.85) and for the dynamic arch index (both 1.00). There was poor correlation between static and dynamic assessment of the medial longitudinal arch (standing dynamic arch index, r = -0.138; sitting dynamic arch index, r = -0.070). Static measurements were found to be significantly influenced by the time of day (P < .001), whereas the dynamic arch index was unchanged (P = .845). This study revealed some further important findings. The static arch height index is influenced by gender (P = .004), whereas dynamic arch index is influenced by side (P = .011) and body mass index (P < .001). Dynamic and static foot measurements are reliable for medial longitudinal foot arch assessment in children. The variation of static arch measurements during the day has to be kept in mind. For clinical purposes, static and dynamic arch data should be interpreted separately.
Close-Range Photogrammetric Measurement of Static Deflections for an Aeroelastic Supercritical Wing
NASA Technical Reports Server (NTRS)
Byrdsong, Thomas A.; Adams, Richard R.; Sandford, Maynard C.
1990-01-01
Close range photogrammetric measurements were made for the lower wing surface of a full span aspect ratio 10.3 aeroelastic supercritical research wing. The measurements were made during wind tunnel tests for quasi-steady pressure distributions on the wing. The tests were conducted in the NASA Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90 and dynamic pressures up to 300 pounds per square foot. Deflection data were obtained for 57 locations on the wing lower surface using dual non-metric cameras. Representative data are presented as graphical overview to show variations and trends of spar deflection with test variables. Comparative data are presented for photogrammetric and cathetometric results of measurements for the wing tip deflections. A tabulation of the basic measurements is presented in a supplement to this report.
Scramjet Isolator Modeling and Control
2011-12-01
12 γ Ratio of specific heats . . . . . . . . . . . . . . . . . . . . 12 p1 Static pressure entering shock . . . . . . . . . . . . . . . . 12 M1 Mach...138 MAve Average stream Mach number . . . . . . . . . . . . . . . . 138 γ Ratio of specific heats ... heats , p1 is the static pressure entering the shock, and M1 is the Mach number of the flow entering the shock. Subsequent researchers [9] took a
30 CFR 250.1153 - When must I conduct a static bottomhole pressure survey?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER... following conditions: If you have . . . Then you must conduct . . . (1) A new producing reservoir A static bottomhole pressure survey within 90 days after the date of first continuous production. (2) A reservoir with...
30 CFR 250.1153 - When must I conduct a static bottomhole pressure survey?
Code of Federal Regulations, 2010 CFR
2010-07-01
... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production... you must conduct . . . (1) A new producing reservoir A static bottomhole pressure survey within 90 days after the date of first continuous production. (2) A reservoir with three or more producing...
Flow and pressure characteristics within a screw compressor
NASA Astrophysics Data System (ADS)
Guerrato, D.; Nouri, J. M.; Stosic, N.; Arcoumanis, C.
2007-10-01
The angle-resolved mean and turbulence characteristics of the axial air flow inside a screw compressor with both male and female rotors have been measured, using a laser Doppler velocimeter (LDV) with high spatial and temporal resolution at different radial and axial locations for speeds of 800-1600 rpm, discharge pressures of 1-1.6 bar and discharge temperatures of 33-90°C. The velocity measurements were performed through a special transparent window fixed near the discharge port. The results confirmed the ability of the LDV technique to characterise the flow inside the compressor working chamber; an angular resolution of 1.5° was able to fully describe the velocity field within the machine. The flow variation between the different working chambers was established as well as the spatial variation of the axial mean velocity and turbulence velocity fluctuation within the working chamber. The effect of discharge port opening on the axial mean and RMS velocities was found to be significant near the leading edge of the rotors causing an increase in the mean and RMS velocities of the order of 4.2Vp in mean (where Vp is the axial pitched velocity) for male rotor and 5.4Vp for, female rotor and this effect is less pronounced on the flow near the root of the rotor. Moreover, to obtain a better understanding of the flow motion, a high sampling rate pressure transducer was used to provide the internal angular static pressure variation. These measurements are used to validate the in-house CFD model of the fluid flow within twin screw compressors which, in turn, allows reliable optimisation of various compressor designs.
Structural integrity of a confinement vessel for testing nuclear fuels for space propulsion
NASA Astrophysics Data System (ADS)
Bergmann, V. L.
Nuclear propulsion systems for rockets could significantly reduce the travel time to distant destinations in space. However, long before such a concept can become reality, a significant effort must be invested in analysis and ground testing to guide the development of nuclear fuels. Any testing in support of development of nuclear fuels for space propulsion must be safely contained to prevent the release of radioactive materials. This paper describes analyses performed to assess the structural integrity of a test confinement vessel. The confinement structure, a stainless steel pressure vessel with bolted flanges, was designed for operating static pressures in accordance with the ASME Boiler and Pressure Vessel Code. In addition to the static operating pressures, the confinement barrier must withstand static overpressures from off-normal conditions without releasing radioactive material. Results from axisymmetric finite element analyses are used to evaluate the response of the confinement structure under design and accident conditions. For the static design conditions, the stresses computed from the ASME code are compared with the stresses computed by the finite element method.
NASA Astrophysics Data System (ADS)
Wang, Rui; Tomikawa, Yoshihiro; Nakamura, Takuji; Huang, Kaiming; Zhang, Shaodong; Zhang, Yehui; Yang, Huigen; Hu, Hongqiao
2016-10-01
The mechanism to explain the variations of tropopause and tropopause inversion layer (TIL) in the Arctic region during a sudden stratospheric warming (SSW) in 2009 was studied with the Modern-Era Retrospective analysis for Research and Applications reanalysis data and GPS/Constellation Observing system for Meteorology, Ionosphere, and Climate (COSMIC) temperature data. During the prominent SSW in 2009, the cyclonic system changed to the anticyclonic system due to the planetary wave with wave number 2 (wave2). The GPS/COSMIC temperature data showed that during the SSW in 2009, the tropopause height in the Arctic decreased accompanied with the tropopause temperature increase and the TIL enhancement. The variations of the tropopause and TIL were larger in higher latitudes. A static stability analysis showed that the variations of the tropopause and TIL were associated with the variations of the residual circulation and the static stability due to the SSW. Larger static stability appeared in the upper stratosphere and moved downward to the narrow region just above the tropopause. The descent of strong downward flow was faster in higher latitudes. The static stability tendency analysis showed that the strong downward residual flow induced the static stability change in the stratosphere and around the tropopause. The strong downwelling in the stratosphere was mainly induced by wave2, which led to the tropopause height and temperature changes due to the adiabatic heating. Around the tropopause, a pair of downwelling above the tropopause and upwelling below the tropopause due to wave2 contributed to the enhancement of static stability in the TIL immediately after the SSW.
Time-Averaged Velocity, Temperature and Density Surveys of Supersonic Free Jets
NASA Technical Reports Server (NTRS)
Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.
2005-01-01
A spectrally resolved molecular Rayleigh scattering technique was used to simultaneously measure axial component of velocity U, static temperature T, and density p in unheated free jets at Mach numbers M = 0.6,0.95, 1.4 and 1.8. The latter two conditions were achieved using contoured convergent-divergent nozzles. A narrow line-width continuous wave laser was passed through the jet plumes and molecular scattered light from a small region on the beam was collected and analyzed using a Fabry-Perot interferometer. The optical spectrum analysis air density at the probe volume was determined by monitoring the intensity variation of the scattered light using photo-multiplier tubes. The Fabry-Perot interferometer was operated in the imaging mode, whereby the fringe formed at the image plane was captured by a cooled CCD camera. Special attention was given to remove dust particles from the plume and to provide adequate vibration isolation to the optical components. The velocity profiles from various operating conditions were compared with that measured by a Pitot tube. An excellent comparison within 5m's demonstrated the maturity of the technique. Temperature was measured least accurately, within 10K, while density was measured within 1% uncertainty. The survey data consisted of centerline variations and radial profiles of time-averaged U, T and p. The static temperature and density values were used to determine static pressure variations inside the jet. The data provided a comparative study of jet growth rates with increasing Mach number. The current work is part of a data-base development project for Computational Fluid Dynamics and Aeroacoustics codes that endeavor to predict noise characteristics of high speed jets. A limited amount of far field noise spectra from the same jets are also presented. Finally, a direct experimental validation was obtained for the Crocco-Busemann equation which is commonly used to predict temperature and density profiles from known velocity profiles. Data presented in this paper are available in ASCII format upon request.
Steady hydromagnetic flows in open magnetic fields. II - Global flows with static zones
NASA Technical Reports Server (NTRS)
Tsinganos, K.; Low, B. C.
1989-01-01
A theoretical study of an axisymmetric steady stellar wind with a static zone is presented, with emphasis on the situation where the global magnetic field is symmetrical about the stellar equator and is partially open. In this scenario, the wind escapes in open magnetic fluxes originating from a region at the star pole and a region at an equatorial belt of closed magnetic field in static equilibrium. The two-dimensional balance of the pressure gradient and the inertial, gravitational, and Lorentz forces in different parts of the flow are studied, along with the static interplay between external sources of energy (heating and/or cooling) distributed in the flow and the pressure distribution.
Characterization of Space Shuttle Reusable Rocket Motor Static Test Stand Thrust Measurements
NASA Technical Reports Server (NTRS)
Cook, Mart L.; Gruet, Laurent; Cash, Stephen F. (Technical Monitor)
2003-01-01
Space Shuttle Reusable Solid Rocket Motors (RSRM) are static tested at two ATK Thiokol Propulsion facilities in Utah, T-24 and T-97. The newer T-97 static test facility was recently upgraded to allow thrust measurement capability. All previous static test motor thrust measurements have been taken at T-24; data from these tests were used to characterize thrust parameters and requirement limits for flight motors. Validation of the new T-97 thrust measurement system is required prior to use for official RSRM performance assessments. Since thrust cannot be measured on RSRM flight motors, flight motor measured chamber pressure and a nominal thrust-to-pressure relationship (based on static test motor thrust and pressure measurements) are used to reconstruct flight motor performance. Historical static test and flight motor performance data are used in conjunction with production subscale test data to predict RSRM performance. The predicted motor performance is provided to support Space Shuttle trajectory and system loads analyses. Therefore, an accurate nominal thrust-to-pressure (F/P) relationship is critical for accurate RSRM flight motor performance and Space Shuttle analyses. Flight Support Motors (FSM) 7, 8, and 9 provided thrust data for the validation of the T-97 thrust measurement system. The T-97 thrust data were analyzed and compared to thrust previously measured at T-24 to verify measured thrust data and identify any test-stand bias. The T-97 FIP data were consistent and within the T-24 static test statistical family expectation. The FSMs 7-9 thrust data met all NASA contract requirements, and the test stand is now verified for future thrust measurements.
Evaluation of submarine strain-gage systems for monitoring coastal sediment migration
NASA Technical Reports Server (NTRS)
Shideler, G. L.; Mcgrath, D. G.
1973-01-01
Single and multiple strain-gage systems were respectively evaluated as in situ point and areal sensors for monitoring sand-height variations in coastal environments. Static loading tests indicate that gage response pressure is linear for sand heights up to 24 inches. Response pressures are a function of both sand height and aggregate density, with density being influenced by both sediment texture and degree of compaction. Poorer sediment sorting and greater compaction result in higher response pressures. Field tests in a beach foreshore environment indicate that the gage systems are effective qualitative instruments for monitoring long-period migration trends of beach sediments; whereas, short-period responses are not sufficiently reliable. The durability and compactness of the gage systems must be substantially increased for effective field operations. It is recommended that the systems' qualitative potentials be further developed, whereas their development as quantitative instruments be terminated. Further development should emphasize the construction of remote recording systems designed for semipermanent installation.
Structure and screening in molecular and metallic hydrogen at high pressure
NASA Technical Reports Server (NTRS)
Wood, D. M.; Ashcroft, N. W.
1981-01-01
A variational wavefunction is used to express the (spin restricted) Hartree-Fock energy as reciprocal lattice sums for static lattice FCC monatomic hydrogen and diatomic Pa3 molecular hydrogen. In the monatomic phase the hydrogenic orbital range closely parallels the inverse Thomas-Fermi wavevector; the corresponding energy E has a minimum of -0.929 Ryd/electron at r sub s = 1.67. For the diatomic phase E(r sub s) is similar, but the constituent energies, screening, and bond length reflect a qualitative change in the nature of the solid at r sub s = 2.8. This change is interpreted in terms of a transition from protons as structural units (at high density) to weakly interacting models (at low density). Insensitivity of the total energy to a rapid fall in the bond length suggests association with the rotational transition where the rapid molecular orientations characteristic of high pressures disappear and the molecules rotate freely at low pressure.
Constant-Differential-Pressure Two-Fluid Accumulator
NASA Technical Reports Server (NTRS)
Piecuch, Benjamin; Dalton, Luke T.
2010-01-01
A two-fluid accumulator has been designed, built, and demonstrated to provide an acceptably close approximation to constant differential static pressure between two fluids over the full ranges of (1) accumulator stroke, (2) rates of flow of the fluids, and (3) common static pressure applied to the fluids. Prior differential- pressure two-fluid accumulators are generally not capable of maintaining acceptably close approximations to constant differential pressures. The inadequacies of a typical prior differential-pressure two-fluid accumulator can be summarized as follows: The static differential pressure is governed by the intrinsic spring rate (essentially, the stiffness) of an accumulator tank. The spring rate can be tailored through selection of the tank-wall thickness, selection of the number and/or shape of accumulator convolutions, and/or selection of accumulator material(s). Reliance on the intrinsic spring rate of the tank results in three severe limitations: (1) The spring rate and the expulsion efficiency tend to be inversely proportional to each other: that is to say, as the stiffness (and thus the differential pressure) is increased, the range of motion of the accumulator is reduced. (2) As the applied common static pressure increases, the differential pressure tends to decrease. An additional disadvantage, which may or may not be considered limiting, depending on the specific application, is that an increase in stiffness entails an increase in weight. (3) The additional weight required by a low expulsion efficiency accumulator eliminates the advantage given to such gas storage systems. The high expulsion efficiency provided by this two-fluid accumulator allows for a lightweight, tightly packaged system, which can be used in conjunction with a fuel cell-based system.
NASA Technical Reports Server (NTRS)
Ammer, R. C.; Kutney, J. T.
1977-01-01
A static scale model test program was conducted in the static test area of the NASA-Langley 9.14- by 18.29 m(30- by 60-ft) Full-Scale Wind Tunnel Facility to develop an over-the-wing (OTW) nozzle and reverser configuration for the Quiet Clean Short-Haul Experimental Engine (QCSEE). Three nozzles and one basic reverser configuration were tested over the QCSEE takeoff and approach power nozzle pressure ratio range between 1.1 and 1.3. The models were scaled to 8.53% of QCSEE engine size and tested behind two 13.97-cm (5.5-in.) diameter tip-turbine-driven fan simulators coupled in tandem. An OTW nozzle and reverser configuration was identified which satisfies the QCSEE experimental engine requirements in terms of nozzle cycle area variation capability and reverse thrust level, and provides good jet flow spreading over a wing upper surface for achievement of high propulsive lift performance.
Combining stress transfer and source directivity: the case of the 2012 Emilia seismic sequence
Convertito, Vincenzo; Catalli, Flaminia; Emolo, Antonio
2013-01-01
The Emilia seismic sequence (Northern Italy) started on May 2012 and caused 17 casualties, severe damage to dwellings and forced the closure of several factories. The total number of events recorded in one month was about 2100, with local magnitude ranging between 1.0 and 5.9. We investigate potential mechanisms (static and dynamic triggering) that may describe the evolution of the sequence. We consider rupture directivity in the dynamic strain field and observe that, for each main earthquake, its aftershocks and the subsequent large event occurred in an area characterized by higher dynamic strains and corresponding to the dominant rupture direction. We find that static stress redistribution alone is not capable of explaining the locations of subsequent events. We conclude that dynamic triggering played a significant role in driving the sequence. This triggering was also associated with a variation in permeability and a pore pressure increase in an area characterized by a massive presence of fluids. PMID:24177982
NASA Technical Reports Server (NTRS)
Leavitt, L. D.; Bangert, L. S.
1982-01-01
An investigation was conducted in the Langley 16 foot Transonic Tunnel and in the static test facility of that tunnel to determine the effects of divergent flap ventilation of an axisymmetric nozzle on nozzle internal (static) and wind on performance. Tests were conducted at 0 deg angle of attack at static conditions and at Mach numbers from 0.6 to 1.2. Ratios of jet total pressure to free stream static pressure were varied from 1.0 (jet off) to approximately 14.0 depending on Mach number. The results of this study indicate that divergent flap ventilation generally provided large performance benefits at overexpanded nozzle conditions and performance reductions at underexpanded nozzle conditions when compared to the baseline (unventilated) nozzles. Ventilation also reduced the peak static and wind on performance levels.
Water Ingestion into Axial Flow Compressors. Part III. Experimental Results and Discussion
1981-10-01
total pressure, static pressure, and temperature at both compressor inlet and outlet. A United Sensor model PDC-12-G-l0-KL pitot-static pressure probe...Test Compressor inlet and outlet temperatures during water injection tests: United Sensor and Control Corp. type TK-8-CiA-36’-F Aspirate...ured utilizing standard aspirated thermocouples, namely an United Sensor and Control Corp. type TK-8-C/A-36-F. The Test Compressor out- let
Induced matter brane gravity and Einstein static universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydarzade, Y.; Darabi, F., E-mail: heydarzade@azaruniv.edu, E-mail: f.darabi@azaruniv.edu
We investigate stability of the Einstein static universe against the scalar, vector and tensor perturbations in the context of induced matter brane gravity. It is shown that in the framework of this model, the Einstein static universe has a positive spatial curvature. In contrast to the classical general relativity, it is found that a stable Einstein static universe against the scalar perturbations does exist provided that the variation of time dependent geometrical equation of state parameter is proportional to the minus of the variation of the scale factor, δ ω{sub g}(t) = −Cδ a(t). We obtain neutral stability against the vector perturbations, and themore » stability against the tensor perturbations is guaranteed due to the positivity of the spatial curvature of the Einstein static universe in induced matter brane gravity.« less
Rinaldi, Andrea; Tamburrano, Alessio; Fortunato, Marco; Sarto, Maria Sabrina
2016-01-01
The demand for high performance multifunctional wearable devices is more and more pushing towards the development of novel low-cost, soft and flexible sensors with high sensitivity. In the present work, we describe the fabrication process and the properties of new polydimethylsiloxane (PDMS) foams loaded with multilayer graphene nanoplatelets (MLGs) for application as high sensitive piezoresistive pressure sensors. The effective DC conductivity of the produced foams is measured as a function of MLG loading. The piezoresistive response of the MLG-PDMS foam-based sensor at different strain rates is assessed through quasi-static pressure tests. The results of the experimental investigations demonstrated that sensor loaded with 0.96 wt.% of MLGs is characterized by a highly repeatable pressure-dependent conductance after a few stabilization cycles and it is suitable for detecting compressive stresses as low as 10 kPa, with a sensitivity of 0.23 kPa−1, corresponding to an applied pressure of 70 kPa. Moreover, it is estimated that the sensor is able to detect pressure variations of ~1 Pa. Therefore, the new graphene-PDMS composite foam is a lightweight cost-effective material, suitable for sensing applications in the subtle or low and medium pressure ranges. PMID:27999251
Guianvarc'h, Cécile; Gavioso, Roberto M; Benedetto, Giuliana; Pitre, Laurent; Bruneau, Michel
2009-07-01
Condenser microphones are more commonly used and have been extensively modeled and characterized in air at ambient temperature and static pressure. However, several applications of interest for metrology and physical acoustics require to use these transducers in significantly different environmental conditions. Particularly, the extremely accurate determination of the speed of sound in monoatomic gases, which is pursued for a determination of the Boltzmann constant k by an acoustic method, entails the use of condenser microphones mounted within a spherical cavity, over a wide range of static pressures, at the temperature of the triple point of water (273.16 K). To further increase the accuracy achievable in this application, the microphone frequency response and its acoustic input impedance need to be precisely determined over the same static pressure and temperature range. Few previous works examined the influence of static pressure, temperature, and gas composition on the microphone's sensitivity. In this work, the results of relative calibrations of 1/4 in. condenser microphones obtained using an electrostatic actuator technique are presented. The calibrations are performed in pure helium and argon gas at temperatures near 273 K and in the pressure range between 10 and 600 kPa. These experimental results are compared with the predictions of a realistic model available in the literature, finding a remarkable good agreement. The model provides an estimate of the acoustic impedance of 1/4 in. condenser microphones as a function of frequency and static pressure and is used to calculate the corresponding frequency perturbations induced on the normal modes of a spherical cavity when this is filled with helium or argon gas.
NASA Technical Reports Server (NTRS)
Nelson, D. P.
1981-01-01
A graphical presentation of the aerodynamic data acquired during coannular nozzle performance wind tunnel tests is given. The graphical data consist of plots of nozzle gross thrust coefficient, fan nozzle discharge coefficient, and primary nozzle discharge coefficient. Normalized model component static pressure distributions are presented as a function of primary total pressure, fan total pressure, and ambient static pressure for selected operating conditions. In addition, the supersonic cruise configuration data include plots of nozzle efficiency and secondary-to-fan total pressure pumping characteristics. Supersonic and subsonic cruise data are given.
User's Manual for Aerofcn: a FORTRAN Program to Compute Aerodynamic Parameters
NASA Technical Reports Server (NTRS)
Conley, Joseph L.
1992-01-01
The computer program AeroFcn is discussed. AeroFcn is a utility program that computes the following aerodynamic parameters: geopotential altitude, Mach number, true velocity, dynamic pressure, calibrated airspeed, equivalent airspeed, impact pressure, total pressure, total temperature, Reynolds number, speed of sound, static density, static pressure, static temperature, coefficient of dynamic viscosity, kinematic viscosity, geometric altitude, and specific energy for a standard- or a modified standard-day atmosphere using compressible flow and normal shock relations. Any two parameters that define a unique flight condition are selected, and their values are entered interactively. The remaining parameters are computed, and the solutions are stored in an output file. Multiple cases can be run, and the multiple case solutions can be stored in another output file for plotting. Parameter units, the output format, and primary constants in the atmospheric and aerodynamic equations can also be changed.
Radio jet refraction in galactic atmospheres with static pressure gradients
NASA Technical Reports Server (NTRS)
Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.
1981-01-01
A theory of double radio sources which have a 'Z' or 'S' morphology is proposed, based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy. The model describes a collimated jet of supersonic material bending self-consistently under the influence of external static pressure gradients. Gravity and magnetic fields are neglected in the simplest case except insofar as they determine the static pressure distribution. The calculation is a straightforward extension of a method used to calculate a ram-pressure model for twin radio trails ('C' morphology). It may also be described as a continuous-jet version of a buoyancy model proposed in 1973. The model has the added virtue of invoking a galactic atmosphere similar to those already indicated by X-ray measurements of some other radio galaxies and by models for the collimation of other radio jets.
NASA Technical Reports Server (NTRS)
Goradia, S. H.; Mehta, J. M.; Shrewsbury, G. S.
1977-01-01
The viscous flow phenomena associated with sharp and blunt trailing edge airfoils were investigated. Experimental measurements were obtained for a 17 percent thick, high performance GAW-1 airfoil. Experimental measurements consist of velocity and static pressure profiles which were obtained by the use of forward and reverse total pressure probes and disc type static pressure probes over the surface and in the wake of sharp and blunt trailing edge airfoils. Measurements of the upper surface boundary layer were obtained in both the attached and separated flow regions. In addition, static pressure data were acquired, and skin friction on the airfoil upper surface was measured with a specially constructed device. Comparison of the viscous flow data with data previously obtained elsewhere indicates reasonable agreement in the attached flow region. In the separated flow region, considerable differences exist between these two sets of measurements.
NASA Technical Reports Server (NTRS)
Carlson, John R.
1996-01-01
The ability of the three-dimensional Navier-Stokes method, PAB3D, to simulate the effect of Reynolds number variation using non-linear explicit algebraic Reynolds stress turbulence modeling was assessed. Subsonic flat plate boundary-layer flow parameters such as normalized velocity distributions, local and average skin friction, and shape factor were compared with DNS calculations and classical theory at various local Reynolds numbers up to 180 million. Additionally, surface pressure coefficient distributions and integrated drag predictions on an axisymmetric nozzle afterbody were compared with experimental data from 10 to 130 million Reynolds number. The high Reynolds data was obtained from the NASA Langley 0.3m Transonic Cryogenic Tunnel. There was generally good agreement of surface static pressure coefficients between the CFD and measurement. The change in pressure coefficient distributions with varying Reynolds number was similar to the experimental data trends, though slightly over-predicting the effect. The computational sensitivity of viscous modeling and turbulence modeling are shown. Integrated afterbody pressure drag was typically slightly lower than the experimental data. The change in afterbody pressure drag with Reynolds number was small both experimentally and computationally, even though the shape of the distribution was somewhat modified with Reynolds number.
Ospina, D A; Mora-Ramos, M E; Duque, C A
2017-02-01
The properties of the electronic structure of a finite-barrier semiconductor multiple quantum well are investigated taking into account the effects of the application of a static electric field and hydrostatic pressure. With the information of the allowed quasi-stationary energy states, the coefficients of linear and nonlinear optical absorption and of the relative refractive index change associated to transitions between allowed subbands are calculated with the use of a two-level scheme for the density matrix equation of motion and the rotating wave approximation. It is noticed that the hydrostatic pressure enhances the amplitude of the nonlinear contribution to the optical response of the multiple quantum well, whilst the linear one becomes reduced. Besides, the calculated coefficients are blueshifted due to the increasing of the applied electric field, and shows systematically dependence upon the hydrostatic pressure. The comparison of these results with those related with the consideration of a stationary spectrum of states in the heterostructure-obtained by placing infinite confining barriers at a conveniently far distance-shows essential differences in the pressure-induced effects in the sense of resonant frequency shifting as well as in the variation of the amplitudes of the optical responses.
Slip flow through a converging microchannel: experiments and 3D simulations
NASA Astrophysics Data System (ADS)
Varade, Vijay; Agrawal, Amit; Pradeep, A. M.
2015-02-01
An experimental and 3D numerical study of gaseous slip flow through a converging microchannel is presented in this paper. The measurements reported are with nitrogen gas flowing through the microchannel with convergence angles (4°, 8° and 12°), hydraulic diameters (118, 147 and 177 µm) and lengths (10, 20 and 30 mm). The measurements cover the entire slip flow regime and a part of the continuum and transition regimes (the Knudsen number is between 0.0004 and 0.14); the flow is laminar (the Reynolds number is between 0.5 and 1015). The static pressure drop is measured for various mass flow rates. The overall pressure drop increases with a decrease in the convergence angle and has a relatively large contribution of the viscous component. The numerical solutions of the Navier-Stokes equations with Maxwell’s slip boundary condition explore two different flow behaviors: uniform centerline velocity with linear pressure variation in the initial and the middle part of the microchannel and flow acceleration with nonlinear pressure variation in the last part of the microchannel. The centerline velocity and the wall shear stress increase with a decrease in the convergence angle. The concept of a characteristic length scale for a converging microchannel is also explored. The location of the characteristic length is a function of the Knudsen number and approaches the microchannel outlet with rarefaction. These results on gaseous slip flow through converging microchannels are observed to be considerably different than continuum flow.
NASA Technical Reports Server (NTRS)
Flechner, S. G.
1979-01-01
A wind tunnel investigation to identify changes in stability and control characteristics of a model KC-135A due to the addition of winglets is presented. Static longitudinal and lateral-directional aerodynamic characteristics were determined for the model with and without winglets. Variations in the aerodynamic characteristics at various Mach numbers, angles of attack, and angles of slidslip are discussed. The effect of the winglets on the drag and lift coefficients are evaluated and the low speed and high speed characteristics of the model are reported.
Acoustic temperature measurement in a rocket noise field.
Giraud, Jarom H; Gee, Kent L; Ellsworth, John E
2010-05-01
A 1 μm diameter platinum wire resistance thermometer has been used to measure temperature fluctuations generated during a static GEM-60 rocket motor test. Exact and small-signal relationships between acoustic pressure and acoustic temperature are derived in order to compare the temperature probe output with that of a 3.18 mm diameter condenser microphone. After preliminary plane wave tests yielded good agreement between the transducers within the temperature probe's ∼2 kHz bandwidth, comparison between the temperature probe and microphone data during the motor firing show that the ±∼3 K acoustic temperature fluctuations are a significant contributor to the total temperature variations.
NASA Technical Reports Server (NTRS)
Bennett, Robert M.; Walker, Charlotte E.
1999-01-01
Computational test cases have been selected from the data set for a clipped delta wing with a six-percent-thick circular-arc airfoil section that was tested in the NASA Langley Transonic Dynamics Tunnel. The test cases include parametric variation of static angle of attack, pitching oscillation frequency, trailing-edge control surface oscillation frequency, and Mach numbers from subsonic to low supersonic values. Tables and plots of the measured pressures are presented for each case. This report provides an early release of test cases that have been proposed for a document that supplements the cases presented in AGARD Report 702.
Performance of Several Conical Convergent-Divergent Rocket-Type Exhaust Nozzles
NASA Technical Reports Server (NTRS)
Campbell, C. E.; Farley, J. M.
1960-01-01
An investigation was conducted to obtain nozzle performance data with relatively large-scale models at pressure ratios as high as 120. Conical convergent-divergent nozzles with divergence angles alpha of 15, 25, and 29 deg. were each tested at area ratios of approximately 10, 25, and 40. Heated air (1200 F) was supplied at the nozzle inlet at pressures up to 145 pounds per square inch absolute and was exhausted into quiescent air at pressures as low as 1.2 pounds per square inch absolute. Thrust ratios for all nozzle configurations are presented over the range of pressure ratios attainable and were extrapolated when possible to design pressure ratio and beyond. Design thrust ratios decreased with increasing nozzle divergence angle according to the trend predicted by the (1 + cos alpha)/2 parameter. Decreasing the nozzle divergence angle resulted in sizable increases in thrust ratio for a given surface-area ratio (nozzle weight), particularly at low nozzle pressure ratios. Correlations of the nozzle static pressure at separation and of the average static pressure downstream of separation with various nozzle parameters permitted the calculation of thrust in the separated-flow region from unseparated static-pressure distributions. Thrust ratios calculated by this method agreed with measured values within about 1 percent.
NASA Astrophysics Data System (ADS)
Lucking, Greg; Stark, Nina; Lippmann, Thomas; Smyth, Stephen
2017-10-01
Tidal estuaries feature spatially and temporally varying sediment dynamics and characteristics. Particularly, the variability of geotechnical sediment parameters is still poorly understood, limiting the prediction of long-term sediment stability and dynamics. This paper presents results from an in situ investigation of surficial sediments (≤50 cm) in a tidal estuary in New Hampshire (USA), using a portable free fall penetrometer. The aim is to investigate variations in sediment strength and pore pressure behavior with regard to sediment type and seabed morphology. The study also provides a detailed analysis of high velocity impact pore pressure data to derive information about sediment type and permeability. The penetrometer was deployed 227 times, and the findings are correlated to 78 sediment samples. Differences in sediment strength and type were found when transitioning from tidal flats to the deeper channels. Finer-grained sediments located predominantly on the tidal flats appeared well consolidated with noticeable and spatially consistent sediment strength (reflected in an estimate of quasi-static bearing capacity qsbcmax 10 kPa). Sediments with higher sand content (>75%) showed more variations in strength relating to differences in gradation, and likely represent loose and poorly consolidated sands (qsbcmax 10-55 kPa). The rate at which the recorded excess pore pressures approached equilibrium after penetration was classified and related to sediment type. The data indicate that the development of excess pore pressures upon impact and during penetration may provide additional insight into the nature and layering of bed material, such as identifying a desiccated or over-consolidated dilative surficial layer. In summary, with varying sediment grain size distributions, bulk densities and morphology, sediment strength and pore pressure behavior can vary significantly within a tidal estuary.
NASA Technical Reports Server (NTRS)
Yetter, J. A.; Leavitt, L. D.
1980-01-01
The investigation was conducted at static conditions and over a Mach number range from 0.6 to 1.2. Angle of attack was held constant at 0 deg. High pressure air was used to simulate jet exhaust flow at ratios of jet total pressure to free-stream static pressure from 1 (jet off) to approximately 10. Sidewall cutback appears to be a viable way of reducing nozzle weight and cooling requirements without compromising installed performance.
Modeling Scala Media as a Pressure Vessel
NASA Astrophysics Data System (ADS)
Lepage, Eric; Olofsson, A.˚Ke
2011-11-01
The clinical condition known as endolymphatic hydrops is the swelling of scala media and may result in loss in hearing sensitivity consistent with other forms of low-frequency biasing. Because outer hair cells (OHCs) are displacement-sensitive and hearing levels tend to be preserved despite large changes in blood pressure and CSF pressure, it seems unlikely that the OHC respond passively to changes in static pressures in the chambers. This suggests the operation of a major feedback control loop which jointly regulates homeostasis and hearing sensitivity. Therefore the internal forces affecting the cochlear signal processing amplifier cannot be just motile responses. A complete account of the cochlear amplifier must include static pressures. To this end we have added a third, pressure vessel to our 1-D 140-segment, wave-digital filter active model of cochlear mechanics, incorporating the usual nonlinear forward transduction. In each segment the instantaneous pressure is the sum of acoustic pressure and global static pressure. The object of the model is to maintain stable OHC operating point despite any global rise in pressure in the third chamber. Such accumulated pressure is allowed to dissipate exponentially. In this first 3-chamber implementation we explore the possibility that acoustic pressures are rectified. The behavior of the model is critically dependent upon scaling factors and time-constants, yet by initial assumption, the pressure tends to accumulate in proportion to sound level. We further explore setting of the control parameters so that the accumulated pressure either stays within limits or may rise without bound.
Shim, Je-Myung; Jung, Ju-Hyeon; Kim, Hwan-Hee
2015-07-01
[Purpose] The aim of this study was to examine whether plantar flexor static stretching and dynamic stretching using an Aero-Step results in changes in foot pressure during gait in healthy adults. [Subjects] Eighteen normal adults were randomly allocated to either a dynamic stretching using an Aero-Step group (DSUAS) group (n = 8) or a static stretching (SS) group (n = 10). [Methods] The DSUAS and SS participants took part in an exercise program for 15 minutes. Outcome measures were foot plantar pressure, which was measured during the subject's gait stance phase; the asymmetric ratio of foot pressure for both feet; and the visual analogue scale (VAS) measured during the interventions. [Results] There were significant differences in the asymmetric ratio of foot pressure for both feet and VAS between the two groups after intervention. However, there were no significant differences in foot plantar pressure during the gait stance phase within both groups. [Conclusion] DSUSAS is an effective stretching method, as pain during it is lower than that with SS, which can minimize the asymmetric ratio of foot pressure for both feet during gait due to asymmetric postural alignment.
NASA Astrophysics Data System (ADS)
Sharma, R.
2016-12-01
Carbonate rocks are sensitive to circulation of fluid types that leads to diagenetic alterations and therefore to heterogeneity in distribution of porosity and permeability. These heterogeneities in turn, lead to heterogeneity in saturations varying from partial to patchy to uniform. Depending on the interaction between fluids and rock matrix, a weakening or strengthening in shear modulus of carbonate rocks can also develop (Eberli et al., 2003; Adam et al., 2006; Sharma et al., 2009; Sharma et al., 2013). Thus the elastic response over the production life of the carbonate reservoirs can change considerably. Efforts to couple fluid flow with varying seismic properties of these reservoirs are limited in success due to the differences between static elastic properties derived from reservoir simulation and dynamic elastic properties derived from inverted seismic. An additional limitation arises from the assumption that shear modulus does not change with fluid type and saturations. To overcome these limitations, we need to understand the relationships between the static and the dynamic elastic properties using laboratory measurements made at varying pressures, frequencies and with varying saturants. I will present the following results: 1) errors associated with using dynamic (2 - 2000 Hz and 1 MHz) elastic properties data for static ( 0 Hz) reservoir properties, 2) shear modulus variation in carbonates upon saturation with varying saturants The results will enable us to estimate, 1) distribution of stress-strain relations in reservoir rocks and 2) modulus dispersion to correct seismic-derived moduli as inputs for reservoir simulators. The results are critical to estimate, 1) modulus dispersion correction and 2) occurrence and amount of shear modulus variation with fluid change vital for rock stability analysis
Preston Probe Calibrations at High Reynolds Number
NASA Technical Reports Server (NTRS)
Smits, Alexander J.
1998-01-01
The overall goal of the research effort is to study the performance of two Preston probes designed by NASA Langley Research Center across an unprecedented range of Reynolds number (based on friction velocity and probe diameter), and perform an accurate calibration over the same Reynolds number range. Using the Superpipe facility in Princeton, two rounds of experiments were performed. In each round of experiments for each Reynolds number, the pressure gradient, static pressure from the Preston probes and the total pressure from the Preston probes were measured. In the first round, 3 Preston probes having outer diameters of 0.058 inches, 0.083 inches and 0.203 inches were tested over a large range of pipe Reynolds numbers. Two data reduction methods were employed: first, the static pressure measured on the Preston probe was used to calculate P (modified Preston probe configuration), and secondly, the static pressure measured at the reference pressure tap was used to calculate P (un-modified Preston probe configuration). For both methods, the static pressure was adjusted to correspond with the static pressure at the Preston probe tip using the pressure gradient. The measurements for Preston probes with diameters of 0.058 inches, and 0.083 inches respectively were performed in the test pipe before it was polished a second time. Therefore, the measurements at high pipe Reynolds numbers may have been affected by roughness. In the second round of experiments the 0.058 inches and 0.083 inches diameter, un-modified probes were tested after the pipe was polished and prepared to ensure that the surface was smooth. The average velocity was estimated by assuming that the connection between the centerline velocity and the average velocity was known, and by using a Pitot tube to measure the centerline velocity. A preliminary error estimate suggests that it is possible to introduce a 1% to 2% error in estimating the average velocity using this approach. The evidence on the errors attending the second data set is somewhat circumstantial, and the measurements have not been repeated using a better approach, it seems probable that the correlation given applies to un-modified Preston probes over the range 6.4 less than x* less than 11.3.
Variations of archived static-weight data and WIM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, C.J.; Gillmann, R.; Kent, P.M.
1998-12-01
Using seven-card archived, static-weight and weigh-in-motion (WIM), truck data received by FHWA for 1966--1992, the authors examine the fluctuations of four fiducial weight measures reported at weight sites in the 50 states. The reduced 172 MB Class 9 (332000) database was prepared and ordered from 2 CD-ROMS with duplicate records removed. Front-axle weight and gross-vehicle weight (GVW) are combined conceptually by determining the front axle weight in four-quartile GVW categories. The four categories of front axle weight from the four GVW categories are combined in four ways. Three linear combinations are with fixed-coefficient fiducials and one is that optimal linearmore » combination producing the smallest standard deviation to mean value ratio. The best combination gives coefficients of variation of 2--3% for samples of 100 trucks, below the expected accuracy of single-event WIM measurements. Time tracking of data shows some high-variation sites have seasonal variations, or linear variations over the time-ordered samples. Modeling of these effects is very site specific but provides a way to reduce high variations. Some automatic calibration schemes would erroneously remove such seasonal or linear variations were they static effects.« less
Electrolysis Performance Improvement Concept Study (EPICS) flight experiment phase C/D
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Lee, M. G.
1995-01-01
The overall purpose of the Electrolysis Performance Improvement Concept Study flight experiment is to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer concept as well as investigate the effect of microgravity on water electrolysis performance. The scope of the experiment includes variations in microstructural characteristics of electrodes and current densities in a static feed electrolysis cell configuration. The results of the flight experiment will be used to improve efficiency of the static feed electrolysis process and other electrochemical regenerative life support processes by reducing power and expanding the operational range. Specific technologies that will benefit include water electrolysis for propulsion, energy storage, life support, extravehicular activity, in-space manufacturing and in-space science in addition to other electrochemical regenerative life support technologies such as electrochemical carbon dioxide and oxygen separation, electrochemical oxygen compression and water vapor electrolysis. The Electrolysis Performance Improvement Concept Study flight experiment design incorporates two primary hardware assemblies: the Mechanical/Electrochemical Assembly and the Control/Monitor Instrumentation. The Mechanical/Electrochemical Assembly contains three separate integrated electrolysis cells along with supporting pressure and temperature control components. The Control/Monitor Instrumentation controls the operation of the experiment via the Mechanical/Electrochemical Assembly components and provides for monitoring and control of critical parameters and storage of experimental data.
NASA Astrophysics Data System (ADS)
Romli, N. K.; Rejab, M. R. M.; Bachtiar, D.; Siregar, J.; Rani, M. F.; Salleh, Salwani Mohd; Merzuki, M. N. M.
2018-03-01
The response of the aluminium/carbon laminate was examined by an experimental work. The investigation on fibre metal laminate behaviour was done through an indentation test in a quasi-static loading. The hybrid laminate was fabricated by a compression moulding technique and used two types of carbon fibre orientations; plain weave and unidirectional. The plain weave orientation is dry fibre, and unidirectional orientation is prepreg type fibre. The plain weave carbon fibre and aluminium alloy 2024-0 was laminated by using thermoset epoxy while the unidirectional carbon fibre was pressed by using a hot press machine and cured under a specific temperature and pressure. A compression moulding technique was used for the FML fabrication. The aluminium sheet metal has been roughening by a metal sanding method which to improve the bonding between the fibre and metal layer. The main objective of this paper is to determine the failure response of the laminate under five variation of the crosshead speeds in the quasi-static loading. Based on the experimental data of the test, the result of 1 mm/min in the plain weave CFRP has lower loading than unidirectional fibre which the value of both was 4.11 kN and 4.69 kN, respectively.
Hydrostatic compression of Fe(1-x)O wuestite
NASA Technical Reports Server (NTRS)
Jeanloz, R.; Sato-Sorensen, Y.
1986-01-01
Hydrostatic compression measurements on Fe(0.95)O wuestite up to 12 GPa yield a room temperature value for the isothermal bulk modulus of K(ot) = 157 (+ or - 10) GPa at zero pressure. This result is in accord with previous hydrostatic and nonhydrostatic measurements of K(ot) for wuestites of composition: 0.89 = Fe/O 0.95. Dynamic measurements of the bulk modulus by ultrasonic, shock-wave and neutron-scattering experiments tend to yield a larger value: K(ot) approximately 180 GPa. The discrepancy between static and dynamic values cannot be explained by the variation of K(ot) with composition, as has been proposed. This conclusion is based on high-precision compression data and on theoretical models of the effects of defects on elastic constants. Barring serious errors in the published measurements, the available data suggest that wuestite exhibits a volume relaxation under pressure.
NASA Technical Reports Server (NTRS)
Bare, E. Ann; Capone, Francis J.
1989-01-01
An investigation was conducted in the Static Test Facility of the Langley 16-Foot Transonic Tunnel to determine the effects of five geometric design parameters on the internal performance of convergent single expansion ramp nozzles. The effects of ramp chordal angle, initial ramp angle, flap angle, flap length, and ramp length were determined. All nozzles tested has a nominally constant throat area and aspect ratio. Static pressure distributions along the centerlines of the ramp and flap were also obtained for each configuration. Nozzle pressure ratio was varied up to 10.0 for all configurations.
Motor starting a Brayton cycle power conversion system using a static inverter
NASA Technical Reports Server (NTRS)
Curreri, J. S.; Edkin, R. A.; Kruchowy, R.
1973-01-01
The power conversion module of a 2- to 15-kWe Brayton engine was motor started using a three-phase, 400-hertz static inverter as the power source. Motor-static tests were conducted for initial gas loop pressures of 10, 14, and 17 N/sq cm (15, 20, and 25 psia) over a range of initial turbine inlet temperatures from 366 to 550 K (200 to 530 F). The data are presented to show the effects of temperature and pressure on the motor-start characteristics of the rotating unit. Electrical characteristics during motoring are also discussed.
Five-Hole Flow Angle Probe Calibration for the NASA Glenn Icing Research Tunnel
NASA Technical Reports Server (NTRS)
Gonsalez, Jose C.; Arrington, E. Allen
1999-01-01
A spring 1997 test section calibration program is scheduled for the NASA Glenn Research Center Icing Research Tunnel following the installation of new water injecting spray bars. A set of new five-hole flow angle pressure probes was fabricated to properly calibrate the test section for total pressure, static pressure, and flow angle. The probes have nine pressure ports: five total pressure ports on a hemispherical head and four static pressure ports located 14.7 diameters downstream of the head. The probes were calibrated in the NASA Glenn 3.5-in.-diameter free-jet calibration facility. After completing calibration data acquisition for two probes, two data prediction models were evaluated. Prediction errors from a linear discrete model proved to be no worse than those from a full third-order multiple regression model. The linear discrete model only required calibration data acquisition according to an abridged test matrix, thus saving considerable time and financial resources over the multiple regression model that required calibration data acquisition according to a more extensive test matrix. Uncertainties in calibration coefficients and predicted values of flow angle, total pressure, static pressure. Mach number. and velocity were examined. These uncertainties consider the instrumentation that will be available in the Icing Research Tunnel for future test section calibration testing.
Yang, Mingyang; Zheng, Xinqian; Zhang, Yangjun; Bamba, Takahiro; Tamaki, Hideaki; Huenteler, Joern; Li, Zhigang
2013-03-01
This is Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the nonaxisymmetrical flow in a centrifugal compressor induced by the nonaxisymmetrical geometry of the volute while Part II describes the development of an asymmetric flow control method to avoid the stall on the basis of the characteristic of nonaxisymmetrical flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experimental results show that there is an evident nonaxisymmetrical flow pattern throughout the compressor due to the asymmetric geometry of the overhung volute. The static pressure field in the diffuser is distorted at approximately 90 deg in the rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion slightly varies with the rotational speed. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the aforementioned unsteady effects found in the experiments and cannot predict the phase shift, however, a detailed asymmetric flow field structure is obviously obtained.
Wind tunnel test results of a 1/8-scale fan-in-wing model
NASA Technical Reports Server (NTRS)
Wilson, John C.; Gentry, Garl L.; Gorton, Susan A.
1996-01-01
A 1/8-scale model of a fan-in-wing concept considered for development by Grumman Aerospace Corporation for the U.S. Army was tested in the Langley 14- by 22-Foot Subsonic Tunnel. Hover testing, which included height above a pressure-instrumented ground plane, angle of pitch, and angle of roll for a range of fan thrust, was conducted in a model preparation area near the tunnel. The air loads and surface pressures on the model were measured for several configurations in the model preparation area and in the tunnel. The major hover configuration change was varying the angles of the vanes attached to the exit of the fans for producing propulsive force. As the model height above the ground was decreased, there was a significant variation of thrust-removed normal force with constant fan speed. The greatest variation was generally for the height-to-fan exit diameter ratio of less than 2.5; the variation was reduced by deflecting fan exit flow outboard with the vanes. In the tunnel angles of pitch and sideslip, height above the tunnel floor, and wind speed were varied for a range of fan thrust and different vane angle configurations. Other configuration features such as flap deflections and tail incidence were evaluated as well. Though the V-tail empennage provided an increase in static longitudinal stability, the total model configuration remained unstable.
Total fluid pressure imbalance in the scrape-off layer of tokamak plasmas
NASA Astrophysics Data System (ADS)
Churchill, R. M.; Canik, J. M.; Chang, C. S.; Hager, R.; Leonard, A. W.; Maingi, R.; Nazikian, R.; Stotler, D. P.
2017-04-01
Simulations using the fully kinetic neoclassical code XGCa (X-point included guiding- center axisymmetric) were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total-f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Previously presented XGCa results showed several noteworthy features, including large variations of ion density and pressure along field lines in the SOL, experimentally relevant levels of SOL parallel ion flow (Mach number ˜ 0.5), skewed ion distributions near the sheath entrance leading to subsonic flow there, and elevated sheath potentials (Churchill 2016 Nucl. Mater. Energy 1-6). In this paper, we explore in detail the question of pressure balance in the SOL, as it was observed in the simulation that there was a large deviation from a simple total pressure balance (the sum of ion and electron static pressure plus ion inertia). It will be shown that both the contributions from the ion viscosity (driven by ion temperature anisotropy) and neutral source terms can be substantial, and should be retained in the parallel momentum equation in the SOL, but still falls short of accounting for the observed fluid pressure imbalance in the XGCa simulation results.
Modifications to the nozzle test chamber to extend nozzle static-test capability
NASA Technical Reports Server (NTRS)
Keyes, J. W.
1985-01-01
The nozzle test chamber was modified to provide a high-pressure-ratio nozzle static-test capability. Experiments were conducted to determine the range of the ratio of nozzle total pressure to chamber pressure and to make direct nozzle thrust measurements using a three-component strain-gage force balance. Pressure ratios from 3 to 285 were measured with several axisymmetric nozzles at a nozzle total pressure of 15 to 190 psia. Devices for measuring system mass flow were calibrated using standard axisymmetric convergent choked nozzles. System mass-flow rates up to 10 lbm/sec are measured. The measured thrust results of these nozzles are in good agreement with one-dimensional theoretical predictions for convergent nozzles.
NASA Astrophysics Data System (ADS)
Zhang, Hongwen
In this thesis, a detailed investigation of thermal stability and mechanical deformation behavior of Zr/Hf-based Bulk Metallic Glasses is conducted. First, systematic studies had been implemented to understand the influence of relative compositions of Zr and Hf on thermal stability and mechanical property evolution. Second, shear band evolution under indentations were investigated experimentally and theoretically. It was found in the present work that gradually replacing Zr by Hf remarkably increases the density and improves the mechanical properties. However, a slight decrease in glass forming ability with increasing Hf content has also been identified through thermodynamic analysis although all the materials in the current study were still found to be amorphous. Many indentation studies have revealed only a few shear bands surrounding the indent on the top surface of the specimen. This small number of shear bands cannot account for the large plastic deformation beneath the indentations. Therefore, a bonded interface technique has been used to observe the slip-steps due to shear band evolution. Vickers indentations were performed along the interface of the bonded split specimen at increasing loads. At small indentation loads, the plastic deformation was primarily accommodated by semi-circular primary shear bands surrounding the indentation. At higher loads, secondary and tertiary shear bands were formed inside this plastic zone. A modified expanding cavity model was then used to predict the plastic zone size characterized by the shear bands and to identify the stress components responsible for the evolution of the various types of shear bands. The applicability of various hardness - yield-strength (H-sigma y) relationships currently available in the literature for bulk metallic glasses (BMGs) is also investigated. Experimental data generated on ZrHf-based BMGs in the current study and those available elsewhere on other BMG compositions were used to validate the models. A modified expanding-cavity model, employed in earlier work, was extended to propose a new H-sigmay relationship. Unlike previous models, the proposed model takes into account not only the indenter geometry and the material properties, but also the pressure sensitivity index of the BMGs. The influence of various model parameters is systematically analyzed. It is shown that there is a good correlation between the model predictions and the experimental data for a wide range of BMG compositions. Under dynamic Vickers indentation, a decrease in indentation hardness at high loading rate was observed compared to static indentation hardness. It was observed that at equivalent loads, dynamic indentations produced more severe deformation features on the loading surface than static indentations. Different from static indentation, two sets of widely spaced semi-circular shear bands with two different curvatures were observed. The observed shear band pattern and the strain rate softening in indentation hardness were rationalized based on the variations in the normal stress on the slip plane, the strain rate of shear and the temperature rise associated with the indentation deformation. Finally, a coupled thermo-mechanical model is proposed that utilizes a momentum diffusion mechanism for the growth and evolution of the final spacing of shear bands. The influence of strain rate, confinement pressure and critical shear displacement on the shear band spacing, temperature rise within the shear band, and the associated variation in flow stress have been captured and analyzed. Consistent with the known pressure sensitive behavior of BMGs, the current model clearly captures the influence of the normal stress in the formation of shear bands. The normal stress not only reduces the time to reach critical shear displacement but also causes a significant temperature rise during the shear band formation. Based on this observation, the variation of shear band spacing in a typical dynamic indentation test has been rationalized. The temperature rise within a shear band can be in excess of 2000K at high strain rate and high confinement pressure conditions. The associated drop in viscosity and flow stress may explain the observed decrease in fracture strength and indentation hardness. The above investigations provide valuable insight into the deformation behavior of BMGs under static and dynamic loading conditions. The shear band patterns observed in the above indentation studies can be helpful to understand and model the deformation features under complex loading scenarios such as the interaction of a penetrator with armor. Future work encompasses (1) extending and modifying the coupled thermo-mechanical model to account for the temperature rise in quasistatic deformation; and (2) expanding this model to account for the microstructural variation-crystallization and free volume migration associated with the deformation. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Dewitt, R. L.; Mcintire, T. O.
1974-01-01
Pressurized expulsion tests were conducted to determine the effect of various physical parameters on the pressurant gas (methane, helium, hydrogen, and nitrogen) requirements during the expulsion of liquid methane from a 1.52-meter-(5-ft-) diameter spherical tank and to compare results with those predicted by an analytical program. Also studied were the effects on methane, helium, and hydrogen pressurant requirements of various slosh excitation frequencies and amplitudes, both with and without slosh suppressing baffles in the tank. The experimental results when using gaseous methane, helium, and hydrogen show that the predictions of the analytical program agreed well with the actual pressurant requirements for static tank expulsions. The analytical program could not be used for gaseous nitrogen expulsions because of the large quantities of nitrogen which can dissolve in liquid methane. Under slosh conditions, a pronounced increase in gaseous methane requirements was observed relative to results obtained for the static tank expulsions. Slight decreases in the helium and hydrogen requirements were noted under similar test conditions.
NASA Technical Reports Server (NTRS)
Sanchez, Christopher M.
2011-01-01
NASA White Sands Test Facility (WSTF) is leading an evaluation effort in advanced destructive and nondestructive testing of composite pressure vessels and structures. WSTF is using progressive finite element analysis methods for test design and for confirmation of composite pressure vessel performance. Using composite finite element analysis models and failure theories tested in the World-Wide Failure Exercise, WSTF is able to estimate the static strength of composite pressure vessels. Additionally, test and evaluation on composites that have been impact damaged is in progress so that models can be developed to estimate damage tolerance and the degradation in static strength.
1950-05-11
available condition supersonic flow was obtained as far as K.5 inches downstream from the diffueer inlet with a maximum Mach number of M % 1.5...Boundary—layer total-pressure measurements were made with the rake shown in figure k. The tubes varied in size from 0.030-Inch outside diameter...at the wall to 0.050—inch outside diameter farther out. A static-pressure tube was mounted on the rake to measure static pressures at the same
Spectra of turbulent static pressure fluctuations in jet mixing layers
NASA Technical Reports Server (NTRS)
Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.
1977-01-01
Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.
Wave energy absorption by a submerged air bag connected to a rigid float.
Kurniawan, A; Chaplin, J R; Hann, M R; Greaves, D M; Farley, F J M
2017-04-01
A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section.
Wave energy absorption by a submerged air bag connected to a rigid float
Chaplin, J. R.; Hann, M. R.; Greaves, D. M.; Farley, F. J. M.
2017-01-01
A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section. PMID:28484330
Wave energy absorption by a submerged air bag connected to a rigid float
NASA Astrophysics Data System (ADS)
Kurniawan, A.; Chaplin, J. R.; Hann, M. R.; Greaves, D. M.; Farley, F. J. M.
2017-04-01
A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section.
NASA Technical Reports Server (NTRS)
Re, R. J.; Leavitt, L. D.
1984-01-01
The effects of five geometric design parameters on the internal performance of single-expansion-ramp nozzles were investigated at nozzle pressure ratios up to 10 in the static-test facility of the Langley 16-Foot Transonic Tunnel. The geometric variables on the expansion-ramp surface of the upper flap consisted of ramp chordal angle, ramp length, and initial ramp angle. On the lower flap, the geometric variables consisted of flap angle and flap length. Both internal performance and static-pressure distributions on the centerlines of the upper and lower flaps were obtained for all 43 nozzle configurations tested.
Freitas, F G R; Bafi, A T; Nascente, A P M; Assunção, M; Mazza, B; Azevedo, L C P; Machado, F R
2013-03-01
The applicability of pulse pressure variation (ΔPP) to predict fluid responsiveness using lung-protective ventilation strategies is uncertain in clinical practice. We designed this study to evaluate the accuracy of this parameter in predicting the fluid responsiveness of septic patients ventilated with low tidal volumes (TV) (6 ml kg(-1)). Forty patients after the resuscitation phase of severe sepsis and septic shock who were mechanically ventilated with 6 ml kg(-1) were included. The ΔPP was obtained automatically at baseline and after a standardized fluid challenge (7 ml kg(-1)). Patients whose cardiac output increased by more than 15% were considered fluid responders. The predictive values of ΔPP and static variables [right atrial pressure (RAP) and pulmonary artery occlusion pressure (PAOP)] were evaluated through a receiver operating characteristic (ROC) curve analysis. Thirty-four patients had characteristics consistent with acute lung injury or acute respiratory distress syndrome and were ventilated with high levels of PEEP [median (inter-quartile range) 10.0 (10.0-13.5)]. Nineteen patients were considered fluid responders. The RAP and PAOP significantly increased, and ΔPP significantly decreased after volume expansion. The ΔPP performance [ROC curve area: 0.91 (0.82-1.0)] was better than that of the RAP [ROC curve area: 0.73 (0.59-0.90)] and pulmonary artery occlusion pressure [ROC curve area: 0.58 (0.40-0.76)]. The ROC curve analysis revealed that the best cut-off for ΔPP was 6.5%, with a sensitivity of 0.89, specificity of 0.90, positive predictive value of 0.89, and negative predictive value of 0.90. Automatized ΔPP accurately predicted fluid responsiveness in septic patients ventilated with low TV.
LEWICE3D/GlennHT Particle Analysis of the Honeywell Al502 Low Pressure Compressor
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.; Rigby, David L.
2015-01-01
A flow and ice particle trajectory analysis was performed for the booster of the Honeywell AL502 engine. The analysis focused on two closely related conditions one of which produced a rollback and another which did not rollback during testing in the Propulsion Systems Lab at NASA Glenn Research Center. The flow analysis was generated using the NASA Glenn GlennHT flow solver and the particle analysis was generated using the NASA Glenn LEWICE3D v3.56 ice accretion software. The flow and particle analysis used a 3D steady flow, mixing plane approach to model the transport of flow and particles through the engine. The inflow conditions for the rollback case were: airspeed, 145 ms; static pressure, 33,373 Pa; static temperature, 253.3 K. The inflow conditions for the non-roll-back case were: airspeed, 153 ms; static pressure, 34,252 Pa; static temperature, 260.1 K. Both cases were subjected to an ice particle cloud with a median volume diameter of 24 microns, an ice water content of 2.0 gm3 and a relative humidity of 100 percent. The most significant difference between the rollback and non-rollback conditions was the inflow static temperature which was 6.8 K higher for the non-rollback case.
Wind Tunnel to Atmospheric Mapping for Static Aeroelastic Scaling
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Spain, Charles V.; Rivera, J. A.
2004-01-01
Wind tunnel to Atmospheric Mapping (WAM) is a methodology for scaling and testing a static aeroelastic wind tunnel model. The WAM procedure employs scaling laws to define a wind tunnel model and wind tunnel test points such that the static aeroelastic flight test data and wind tunnel data will be correlated throughout the test envelopes. This methodology extends the notion that a single test condition - combination of Mach number and dynamic pressure - can be matched by wind tunnel data. The primary requirements for affecting this extension are matching flight Mach numbers, maintaining a constant dynamic pressure scale factor and setting the dynamic pressure scale factor in accordance with the stiffness scale factor. The scaling is enabled by capabilities of the NASA Langley Transonic Dynamics Tunnel (TDT) and by relaxation of scaling requirements present in the dynamic problem that are not critical to the static aeroelastic problem. The methodology is exercised in two example scaling problems: an arbitrarily scaled wing and a practical application to the scaling of the Active Aeroelastic Wing flight vehicle for testing in the TDT.
Thermospheric temperature, density, and composition: New models
NASA Technical Reports Server (NTRS)
Jacchia, L. G.
1977-01-01
The models essentially consist of two parts: the basic static models, which give temperature and density profiles for the relevant atmospheric constituents for any specified exospheric temperature, and a set of formulae to compute the exospheric temperature and the expected deviations from the static models as a result of all the recognized types of thermospheric variation. For the basic static models, tables are given for heights from 90 to 2,500 km and for exospheric temperatures from 500 to 2600 K. In the formulae for the variations, an attempt has been made to represent the changes in composition observed by mass spectrometers on the OGO 6 and ESRO 4 satellites.
Pressure and temperature fields associated with aero-optics tests. [transonic wind tunnel tests
NASA Technical Reports Server (NTRS)
Raman, K. R.
1980-01-01
The experimental investigation carried out in a 6 x 6 ft wind tunnel on four model configurations in the aero-optics series of tests are described. The data obtained on the random pressures (static and total pressures) and total temperatures are presented. In addition, the data for static pressure fluctuations on the Coelostat turret model are presented. The measurements indicate that the random pressures and temperature are negligible compared to their own mean (or steady state) values for the four models considered, thus allowing considerable simplification in the calculations to obtain the statistical properties of the density field. In the case of the Coelostat model tests these simplifications cannot be assumed a priori and require further investigation.
Numerical analyses of a rocket engine turbine and comparison with air test data
NASA Technical Reports Server (NTRS)
Tran, Ken; Chan, Daniel C.; Hudson, Susan T.; Gaddis, Stephen W.
1992-01-01
The study presents cold air test data on the Space Shuttle Main Engine High Pressure Fuel Turbopump turbine recently collected at the NASA Marshall Space Flight Center. Overall performance data, static pressures on the first- and second-stage nozzles, and static pressures along with the gas path at the hub and tip are gathered and compared with various (1D, quasi-3D, and 3D viscous) analysis procedures. The results of each level of analysis are compared to test data to demonstrate the range of applicability for each step in the design process of a turbine. One-dimensional performance prediction, quasi-3D loading prediction, 3D wall pressure distribution prediction, and 3D viscous wall pressure distribution prediction are illustrated.
Performance of J33 turbojet engine with shaft-power extraction III : turbine performance
NASA Technical Reports Server (NTRS)
Huppert, M C; Nettles, J C
1949-01-01
The performance of the turbine component of a J33 turbojet engine was determined over a range of turbine speeds from 8000 to 11,500 rpm.Turbine-inlet temperature was varied from the minimum required to drive the compressor to a maximum of approximately 2000 degrees R at each of several intermediate turbine speeds. Data are presented that show the horsepower developed by the turbine per pound of gas flow. The relation between turbine-inlet stagnation pressure, turbine-outlet stagnation pressure, and turbine-outlet static pressure was established. The turbine-weight-flow parameter varied from 39.2 to 43.6. The maximum turbine efficiency measured was 0.86 at a pressure ratio of 3.5 and a ratio of blade speed to theoretical nozzle velocity of 0.39. A generalized performance map of the turbine-horsepower parameter plotted against the turbine-speed parameter indicated that the best turbine efficiency is obtained when the turbine power is 10 percent greater than the compressor horsepower. The variation of efficiency with the ratio of blade speed to nozzle velocity indicated that the turbine operates at a speed above that for maximum efficiency when the engine is operated normally with the 19-inch-diameter jet nozzle.
30 CFR 7.307 - Static pressure test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...) Permanent deformation exceeding 0.040 inches per linear foot; or (iii) Clearances, in excess of those...
30 CFR 7.307 - Static pressure test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...) Permanent deformation exceeding 0.040 inches per linear foot; or (iii) Clearances, in excess of those...
30 CFR 7.307 - Static pressure test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...) Permanent deformation exceeding 0.040 inches per linear foot; or (iii) Clearances, in excess of those...
30 CFR 7.307 - Static pressure test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...) Permanent deformation exceeding 0.040 inches per linear foot; or (iii) Clearances, in excess of those...
Study of the laser-induced decomposition of HNO3/ 2-Nitropropane mixture at static high pressures
NASA Astrophysics Data System (ADS)
Bouyer, Viviane; Hébert, Philippe; Doucet, Michel
2007-06-01
HNO3 / 2-Nitropropane is a well known energetic material on which Raman spectroscopy measurements at static high pressure in a diamond anvil cell (DAC) have already been conducted at CEA/LE RIPAULT in order to examine the evolution of the mixture as a function of composition and pressure [1]. The purpose of the work presented here was to study the laser-induced decomposition of these energetic materials at static high pressures by measuring the combustion front propagation rate in the DAC. First of all, the feasibility of the experimental device was checked with a well known homogeneous explosive, nitromethane. Our results were consistent with those of Rice and Foltz [2]. Then, we investigated the initiation of NA / 2NP mixture as a function of nitric acid proportion, for a given pressure. We chose the mixture for which both the combustion propagation rate and detonation velocity are maximum and we examined the evolution of the front propagation velocity as a function of pressure and energy deposit. [1] Hebert, P., Regache, I., and Lalanne, P., ``High-Pressure Raman Spectroscopy study of HNO3 / 2-Nitropropane Mixtures. Influence of the Composition.'' Proceedings of the 42nd European High-Pressure Research Group Meeting, Lausanne, Suisse, 2004 [2] Rice, S.F., et al., Combustion and Flame 87 (1991) 109-122.
The effect of gravitational and pressure torques on Titan's length-of-day variations
NASA Astrophysics Data System (ADS)
Van Hoolst, T.; Rambaux, N.; Karatekin, Ö.; Baland, R.-M.
2009-03-01
Cassini radar observations show that Titan's spin is slightly faster than synchronous spin. Angular momentum exchange between Titan's surface and the atmosphere over seasonal time scales corresponding to Saturn's orbital period of 29.5 year is the most likely cause of the observed non-synchronous rotation. We study the effect of Saturn's gravitational torque and torques between internal layers on the length-of-day (LOD) variations driven by the atmosphere. Because static tides deform Titan into an ellipsoid with the long axis approximately in the direction to Saturn, non-zero gravitational and pressure torques exist that can change the rotation rate of Titan. For the torque calculation, we estimate the flattening of Titan and its interior layers under the assumption of hydrostatic equilibrium. The gravitational forcing by Saturn, due to misalignment of the long axis of Titan with the line joining the mass centers of Titan and Saturn, reduces the LOD variations with respect to those for a spherical Titan by an order of magnitude. Internal gravitational and pressure coupling between the ice shell and the interior beneath a putative ocean tends to reduce any differential rotation between shell and interior and reduces further the LOD variations by a few times. For the current estimate of the atmospheric torque, we obtain LOD variations of a hydrostatic Titan that are more than 100 times smaller than the observations indicate when Titan has no ocean as well as when a subsurface ocean exists. Moreover, Saturn's torque causes the rotation to be slower than synchronous in contrast to the Cassini observations. The calculated LOD variations could be increased if the atmospheric torque is larger than predicted and or if fast viscous relaxation of the ice shell could reduce the gravitational coupling, but it remains to be studied if a two order of magnitude increase is possible and if these effects can explain the phase difference of the predicted rotation variations. Alternatively, the large differences with the observations may suggest that non-hydrostatic effects in Titan are important. In particular, we show that the amplitude and phase of the calculated rotation variations are similar to the observed values if non-hydrostatic effects could strongly reduce the equatorial flattening of the ice shell above an internal ocean.
NASA Astrophysics Data System (ADS)
Seno, Tetsuzo
2009-05-01
We construct the differential stress profile across the fore arc in a subduction zone from the force balance between the shear stress, τ, at seismogenic megathrust and the lithostatic pressure. We assume that τ is written by μ (1 - λ) σn, where λ is the pore fluid pressure ratio, μ is the coefficient of static friction, and σn is the normal stress. Given a density structure of the fore-arc wedge, we determine λ by comparing calculated fore-arc stresses with observed ones, as 0.95-0.98 in Shikoku, Miyagi, Peru, north Chile, and south Chile and 0.90-0.93 in south Vancouver Island and Washington. The parameter τ averaged over the seismogenic megathrust is of the order of ˜10 MPa. Stress drops of great earthquakes in these zones occupy 14-87% and not a constant fraction of τ. They, on the other hand, increase linearly with 1 - λ. We propose a simple fault model in which the area of asperities as a fraction of the total fault area is proportional to 1 - λ. Variation of fractional area of asperities thus may explain the observed correlation and the regional variation of λ. Assuming that the differential stress at summit of the Andean mountains is zero, not at the coast as observed at present, we determine λ to be 0.84 in north Chile in the mountain building stage. Such a smaller value of λ, along with λ < ˜0.4 in collision zones previously obtained and >˜0.9 in subduction zones, would suggest that variation of λ controls the tectonic style of the Earth.
Instrumented urethral catheter and its ex vivo validation in a sheep urethra
NASA Astrophysics Data System (ADS)
Ahmadi, Mahdi; Rajamani, Rajesh; Timm, Gerald; Sezen, Serdar
2017-03-01
This paper designs and fabricates an instrumented catheter for instantaneous measurement of distributed urethral pressure profiles. Since the catheter enables a new type of urological measurement, a process for accurate ex vivo validation of the catheter is developed. A flexible sensor strip is first fabricated with nine pressure sensors and integrated electronic pads for an associated sensor IC chip. The flexible sensor strip and associated IC chip are assembled on a 7 Fr Foley catheter. A sheep bladder and urethra are extracted and used in an ex vivo set up for verification of the developed instrumented catheter. The bladder-urethra are suspended in a test rig and pressure cuffs placed to apply known static and dynamic pressures around the urethra. A significant challenge in the performance of the sensor system is the presence of parasitics that introduce large bias and drift errors in the capacitive sensor signals. An algorithm based on use of reference parasitic transducers is used to compensate for the parasitics. Extensive experimental results verify that the developed compensation method works effectively. Results on pressure variation profiles circumferentially around the urethra and longitudinally along the urethra are presented. The developed instrumented catheter will be useful in improved urodynamics to more accurately diagnose the source of urinary incontinence in patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchill, Randy M.; Canik, John M.; Chang, C. S.
Simulations using the fully kinetic neoclassical code XGCa (X-point included guiding-center axisymmetric) were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total-f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Previously presented XGCa results showed several noteworthy features, including large variations of ion density and pressure along field lines in the SOL, experimentally relevant levels of SOL parallel ion flow (Mach number similar to 0.5), skewed ion distributions near the sheath entrance leading to subsonic flowmore » there, and elevated sheath potentials (Churchill 2016 Nucl. Mater. Energy 1-6). In this paper, we explore in detail the question of pressure balance in the SOL, as it was observed in the simulation that there was a large deviation from a simple total pressure balance (the sum of ion and electron static pressure plus ion inertia). It will be shown that both the contributions from the ion viscosity (driven by ion temperature anisotropy) and neutral source terms can be substantial, and should be retained in the parallel momentum equation in the SOL, but still falls short of accounting for the observed fluid pressure imbalance in the XGCa simulation results.« less
Active localization of virtual sounds
NASA Technical Reports Server (NTRS)
Loomis, Jack M.; Hebert, C.; Cicinelli, J. G.
1991-01-01
We describe a virtual sound display built around a 12 MHz 80286 microcomputer and special purpose analog hardware. The display implements most of the primary cues for sound localization in the ear-level plane. Static information about direction is conveyed by interaural time differences and, for frequencies above 1800 Hz, by head sound shadow (interaural intensity differences) and pinna sound shadow. Static information about distance is conveyed by variation in sound pressure (first power law) for all frequencies, by additional attenuation in the higher frequencies (simulating atmospheric absorption), and by the proportion of direct to reverberant sound. When the user actively locomotes, the changing angular position of the source occasioned by head rotations provides further information about direction and the changing angular velocity produced by head translations (motion parallax) provides further information about distance. Judging both from informal observations by users and from objective data obtained in an experiment on homing to virtual and real sounds, we conclude that simple displays such as this are effective in creating the perception of external sounds to which subjects can home with accuracy and ease.
Estimating Equivalency of Explosives Through A Thermochemical Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maienschein, J L
2002-07-08
The Cheetah thermochemical computer code provides an accurate method for estimating the TNT equivalency of any explosive, evaluated either with respect to peak pressure or the quasi-static pressure at long time in a confined volume. Cheetah calculates the detonation energy and heat of combustion for virtually any explosive (pure or formulation). Comparing the detonation energy for an explosive with that of TNT allows estimation of the TNT equivalency with respect to peak pressure, while comparison of the heat of combustion allows estimation of TNT equivalency with respect to quasi-static pressure. We discuss the methodology, present results for many explosives, andmore » show comparisons with equivalency data from other sources.« less
NASA Technical Reports Server (NTRS)
Stover, E. K.; York, T. M.
1971-01-01
The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with several plasma diagnostics; they were: a rapid response pressure transducer, a magnetic field probe, a voltage probe, and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior: (1) strong axial pressure asymmetry noted early in plasma column lifetime, (2) followed by plasma heating in which there is a rapid rise in static pressure, and (3) a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating could be attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity.
Shock position sensor for supersonic inlets. [measuring pressure in the throat of a supersonic inlet
NASA Technical Reports Server (NTRS)
Dustin, M. O. (Inventor)
1975-01-01
Static pressure taps or ports are provided in the throat of a supersonic inlet, and signals indicative of the pressure at each of the ports is fed to respective comparators. Means are also provided for directing a signal indicative of the total throat pressure to the comparators. A periodic signal is superimposed on the total throat pressure so that the signal from the static pressure tabs is compared to a varying scan signal rather than to total throat pressure only. This type of comparison causes each comparator to provide a pulse width modulated output which may vary from 0% 'time on' to 100% 'time on'. The pulse width modulated outputs of the comparators are summed, filtered, and directed to a controller which operates a bypass valve such as a door whereby air is dumped from the inlet to prevent the shock wave from being expelled out the front.
2017-03-01
FINAL REPORT Demonstration of Energy Savings in Commercial Buildings for Tiered Trim and Respond Method in Resetting Static Pressure for VAV...release Page Intentionally Left Blank This report was prepared under contract to the Department of Defense Environmental Security Technology...Certification Program (ESTCP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be
Vibrational Spectroscopic Studies of Reduced-Sensitivity RDX under Static Compression
NASA Astrophysics Data System (ADS)
Wong, Chak P.; Gump, Jared C.
2006-07-01
Explosive formulations with reduced-sensitivity RDX showed reduced shock sensitivity using Naval Ordnance Laboratory (NOL) Large Scale Gap Test, compared with similar formulations using standard RDX. Molecular processes responsible for the reduction of sensitivity are unknown and are crucial for formulation development. Vibrational spectroscopy at static high pressure may shed light on the mechanisms responsible for the reduced shock sensitivity as shown by the NOL Large Scale Gap Test. I-RDX®, a form of reduced- sensitivity RDX was subjected to static compression at ambient temperature in a Merrill-Bassett sapphire cell from ambient to about 6 GPa. The spectroscopic techniques used were Raman and Fourier-Transform IR (FTIR). The pressure dependence of the Raman mode frequencies of I-RDX® was determined and compared with that of standard RDX. The behavior of I-RDX® near the pressure at which standard RDX, at ambient temperature, undergoes a phase transition from the α to the γ polymorph is presented.
Measurements of compressible secondary flow in a circular S-duct
NASA Technical Reports Server (NTRS)
Vakili, A.; Wu, J. M.; Liver, P.; Bhat, M. K.
1983-01-01
This paper presents the results of an experimental study of secondary flow in a circular cross section 30 deg - 30 deg S-duct with entrance Mach number of 0.6. Local flow velocity vectors have been measured along the length of the duct at six stations. These measurements have been made using a five-port cone probe. Static and total pressure profiles in the transverse planes are obtained from the cone probe measurements. Wall static pressure measurements along three azimuth angles of 0 deg, 90 deg, and 180 deg along the duct are also made. Contour plots presenting the three dimensional velocity field as well as the total- and static-pressure fields are obtained. Surface oil flow visualization technique has been used to provide details of the flow on the S-duct boundaries. The experimental observations have been compared with typical computational results.
The Effect of Turbulence on the Drag of Flat Plates
NASA Technical Reports Server (NTRS)
Schubauer, G B; Dryden, H L
1937-01-01
in determining the effect of turbulence on the forces exerted on bodies in the air stream of a wind tunnel, it is commonly assumed that the indications of the standard Pitot-static tube used to determine the air speed are not dependent on the turbulence. To investigate the truth of this assumption, the drag of a normally exposed flat plate, the difference in pressure between the front and rear of a thin circular disk, the rate of rotation of a vane anemometer, and the pressure developed by a standard Pitot-static tube were measured in an air stream for several conditions of turbulence. The results may be interpreted as indicating that there is no appreciable effect of turbulence on the vane anemometer and the standard pitot-static tube, but that there is small effect on the drag of a flat plate and the pressure difference between front and rear of a disk.
Lo, Kin Hing; Kontis, Konstantinos
2016-01-01
An experimental study has been conducted to investigate the static and wind-on performance of two in-house-developed polymer-based pressure-sensitive paints. Platinum tetrakis (pentafluorophenyl) porphyrin and tris-bathophenanthroline ruthenium II are used as the luminophores of these two polymer-based pressure-sensitive paints. The pressure and temperature sensitivity and the photo-degradation rate of these two pressure-sensitive paints have been investigated. In the wind tunnel test, it was observed that the normalised intensity ratio of both polymer-based pressure-sensitive paints being studied decreases with increasing the number of wind tunnel runs. The exact reason that leads to the occurrence of this phenomenon is unclear, but it is deduced that the luminophore is either removed or deactivated by the incoming flow during a wind tunnel test. PMID:27128913
NASA Technical Reports Server (NTRS)
Pendergraft, O. C., Jr.; Carson, G. T., Jr.
1984-01-01
Static pressure coefficient distributions on the forebody, afterbody, and nozzles of a 1/12 scale F-15 propulsion model was determined in the 16 foot transonic tunnel for Mach numbers from 0.60 to 1.20, angles of attack from -2 deg to 7 deg and ratio of jet total pressure to free stream static pressure from 1 up to about 7, depending on Mach number. The effects of nozzle geometry and horizontal tail deflection on the pressure distributions were investigated. Boundary layer total pressure profiles were determined at two locations ahead of the nozzles on the top nacelle surface. Reynolds number varied from about 1.0 x 10 to the 7th power per meter, depending on Mach number.
NASA Astrophysics Data System (ADS)
Sawada, Takuya; Takata, Hidehiro; Nii, Koji; Nagata, Makoto
2013-04-01
Static random access memory (SRAM) cores exhibit susceptibility against power supply voltage variation. False operation is investigated among SRAM cells under sinusoidal voltage variation on power lines introduced by direct RF power injection. A standard SRAM core of 16 kbyte in a 90 nm 1.5 V technology is diagnosed with built-in self test and on-die noise monitor techniques. The sensitivity of bit error rate is shown to be high against the frequency of injected voltage variation, while it is not greatly influenced by the difference in frequency and phase against SRAM clocking. It is also observed that the distribution of false bits is substantially random in a cell array.
Hart, Roger C; Herring, G C; Balla, R Jeffrey
2007-06-15
Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
NASA Technical Reports Server (NTRS)
Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.
2007-01-01
Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
Compressible flow in a diffusing S-duct with flow separation
NASA Technical Reports Server (NTRS)
Vakili, A. D.; Wu, J. M.; Bhat, M. K.; Liver, P.
1987-01-01
Local flow velocity vectors, as well as static and total pressures along ten radial traverses, were obtained at six stations for secondary flows in a diffusing 30-30-deg S-duct with circular cross section. The strong secondary flow measured in the first bend continued into the second with new vorticity produced in the opposite direction. Contour plots representing the transverse velocity field, as well as total and static pressure contours, have been obtained. As a result of the secondary flow and subsequent separation, substantial total pressure distortion is noted to occur at the duct exit.
NASA Technical Reports Server (NTRS)
Stabe, R. G.
1971-01-01
A jet-flap blade was designed for a velocity diagram typical of the first-stage stator of a jet engine turbine and was tested in a simple two-dimensional cascade of six blades. The principal measurements were blade surface static pressure and cross-channel surveys of exit total pressure, static pressure, and flow angle. The results of the experimental investigation include blade loading, exit angle, flow, and loss data for a range of exit critical velocity ratios and three jet flow conditions.
Measuring Time-Averaged Blood Pressure
NASA Technical Reports Server (NTRS)
Rothman, Neil S.
1988-01-01
Device measures time-averaged component of absolute blood pressure in artery. Includes compliant cuff around artery and external monitoring unit. Ceramic construction in monitoring unit suppresses ebb and flow of pressure-transmitting fluid in sensor chamber. Transducer measures only static component of blood pressure.
Correlation between temperature variations of static and dynamic properties in glass-forming liquids
Voylov, D. N.; Griffin, P. J.; Mercado, B.; ...
2016-12-29
In this detailed analysis of the static structure factor S(Q) in several glass-forming liquids we show that the temperature variations of the width of the main diffraction peak Q(T ) correlate with the fragility of these liquids. Our observation suggests a direct connection between rather subtle structural changes and sharp slowing down of structural relaxation in glass-forming liquids. We also show that this observation can be rationalized using the Adam-Gibbs approach, through a connection between temperature variations of structural correlation length, lc 2 /Q, and the size of cooperatively rearranging regions.
Cardiovascular responses to static exercise in distance runners and weight lifters
NASA Technical Reports Server (NTRS)
Longhurst, J. C.; Kelly, A. R.; Gonyea, W. J.; Mitchell, J. H.
1980-01-01
Three groups of athletes including long-distance runners, competitive and amateur weight lifters, and age- and sex-matched control subjects have been studied by hemodynamic and echocardiographic methods in order to determine the effect of the training programs on the cardiovascular response to static exercise. Blood pressure, heart rate, and double product data at rest and at fatigue suggest that competitive endurance (dynamic exercise) training alters the cardiovascular response to static exercise. In contrast to endurance exercise, weight lifting (static exercise) training does not alter the cardiovascular response to static exercise: weight lifters responded to static exercise in a manner very similar to that of the control subjects.
Experimental cavity pressure measurements at subsonic and transonic speeds. Static-pressure results
NASA Technical Reports Server (NTRS)
Plentovich, E. B.; Stallings, Robert L., Jr.; Tracy, M. B.
1993-01-01
An experimental investigation was conducted to determine cavity flow-characteristics at subsonic and transonic speeds. A rectangular box cavity was tested in the Langley 8-Foot Transonic Pressure Tunnel at Mach numbers from 0.20 to 0.95 at a unit Reynolds number of approximately 3 x 10(exp 6) per foot. The boundary layer approaching the cavity was turbulent. Cavities were tested over a range of length-to-depth ratios (l/h) of 1 to 17.5 for cavity width-to-depth ratios of 1, 4, 8, and 16. Fluctuating- and static-pressure data in the cavity were obtained; however, only static-pressure data is analyzed. The boundaries between the flow regimes based on cavity length-to-depth ratio were determined. The change to transitional flow from open flow occurs at l/h at approximately 6-8 however, the change from transitional- to closed-cavity flow occurred over a wide range of l/h and was dependent on Mach number and cavity configuration. The change from closed to open flow as found to occur gradually. The effect of changing cavity dimensions showed that if the vlaue of l/h was kept fixed but the cavity width was decreased or cavity height was increased, the cavity pressure distribution tended more toward a more closed flow distribution.
Computational Investigation of the Aerodynamic Effects on Fluidic Thrust Vectoring
NASA Technical Reports Server (NTRS)
Deere, K. A.
2000-01-01
A computational investigation of the aerodynamic effects on fluidic thrust vectoring has been conducted. Three-dimensional simulations of a two-dimensional, convergent-divergent (2DCD) nozzle with fluidic injection for pitch vector control were run with the computational fluid dynamics code PAB using turbulence closure and linear Reynolds stress modeling. Simulations were computed with static freestream conditions (M=0.05) and at Mach numbers from M=0.3 to 1.2, with scheduled nozzle pressure ratios (from 3.6 to 7.2) and secondary to primary total pressure ratios of p(sub t,s)/p(sub t,p)=0.6 and 1.0. Results indicate that the freestream flow decreases vectoring performance and thrust efficiency compared with static (wind-off) conditions. The aerodynamic penalty to thrust vector angle ranged from 1.5 degrees at a nozzle pressure ratio of 6 with M=0.9 freestream conditions to 2.9 degrees at a nozzle pressure ratio of 5.2 with M=0.7 freestream conditions, compared to the same nozzle pressure ratios with static freestream conditions. The aerodynamic penalty to thrust ratio decreased from 4 percent to 0.8 percent as nozzle pressure ratio increased from 3.6 to 7.2. As expected, the freestream flow had little influence on discharge coefficient.
Static-stress analysis of dual-axis safety vessel
NASA Astrophysics Data System (ADS)
Bultman, D. H.
1992-11-01
An 8 ft diameter safety vessel, made of HSLA-100 steel, is evaluated to determine its ability to contain the quasi-static residual pressure from a high explosive (HE) blast. The safety vessel is designed for use with the Dual-Axis Radiographic Hydrotest (DARHT) facility being developed at Los Alamos National Laboratory. A smaller confinement vessel fits inside the safety vessel and contains the actual explosion, and the safety vessel functions as a second layer of containment in the unlikely case of a confinement vessel leak. The safety vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section 8, Division 1, and the Welding Research Council Bulletin, WRC107. Combined stresses that result from internal pressure and external loads on nozzles are calculated and compared to the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzle components are adequately designed for a static pressure of 830 psi, plus the maximum expected external loads. Shell stresses at the 'shell to nozzle' interface, produced from external loads on the nozzles, were less than 700 psi. The maximum combined stress resulting from the internal pressure plus external loads was 17,384 psi, which is significantly less than the allowable stress of 42,375 psi for HSLA-100 steel.
Study of stator-vane fluctuating pressures in a turbofan engine for static and flight tests
NASA Technical Reports Server (NTRS)
Mueller, A. W.
1984-01-01
As part of a program to study the fan noise generated from turbofan engines, fluctuating surface pressures induced by fan-rotor wakes were measured on core- and bypass-stator outlet guide vanes of a modified JT15D-1 engine. Tests were conducted with the engine operating on an outdoor test stand and in flight. The amplitudes of pressures measured at fan-rotor blade-passage fundamental frequencies were generally higher and appeared less stable for the static tests than for the flight tests. Fluctuating pressures measured at the blade-passage frequency of the high-speed core compressor were interpreted to be acoustic; however, disturbance trace velocities for either the convected rotor wakes or acoustic pressures were difficult to interpret because of the complex environment.
NASA Technical Reports Server (NTRS)
Wing, David J.
1994-01-01
A static investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel of two thrust-vectoring concepts which utilize fluidic mechanisms for deflecting the jet of a two-dimensional convergent-divergent nozzle. One concept involved using the Coanda effect to turn a sheet of injected secondary air along a curved sidewall flap and, through entrainment, draw the primary jet in the same direction to produce yaw thrust vectoring. The other concept involved deflecting the primary jet to produce pitch thrust vectoring by injecting secondary air through a transverse slot in the divergent flap, creating an oblique shock in the divergent channel. Utilizing the Coanda effect to produce yaw thrust vectoring was largely unsuccessful. Small vector angles were produced at low primary nozzle pressure ratios, probably because the momentum of the primary jet was low. Significant pitch thrust vector angles were produced by injecting secondary flow through a slot in the divergent flap. Thrust vector angle decreased with increasing nozzle pressure ratio but moderate levels were maintained at the highest nozzle pressure ratio tested. Thrust performance generally increased at low nozzle pressure ratios and decreased near the design pressure ratio with the addition of secondary flow.
NASA Technical Reports Server (NTRS)
Flegel, Ashlie B.
2014-01-01
The purpose of this thesis is to document the impact of incidence angle and Reynolds number variations on the three-dimensional flow field and midspan loss and turning of a two-dimensional section of a variable-speed power-turbine (VSPT) rotor blade. Aerodynamic measurements were obtained in a transonic linear cascade at NASA Glenn Research Center in Cleveland, Ohio. Steady-state data were obtained for 10 incidence angles ranging from +15.8deg to -51.0deg. At each angle, data were acquired at five flow conditions with the exit Reynolds number (based on axial chord) varying over an order-of-magnitude from 2.12×105 to 2.12×106. Data were obtained at the design exit Mach number of 0.72 and at a reduced exit Mach number of 0.35 as required to achieve the lowest Reynolds number. Midspan tota lpressure and exit flow angle data were acquired using a five-hole pitch/yaw probe surveyed on a plane located 7.0 percent axial-chord downstream of the blade trailing edge plane. The survey spanned three blade passages. Additionally, three-dimensional half-span flow fields were examined with additional probe survey data acquired at 26 span locations for two key incidence angles of +5.8deg and -36.7deg. Survey data near the endwall were acquired with a three-hole boundary-layer probe. The data were integrated to determine average exit total-pressure and flow angle as functions of incidence and flow conditions. The data set also includes blade static pressures measured on four spanwise planes and endwall static pressures.
NASA Technical Reports Server (NTRS)
Kim, Hyun D.; Frate, Franco C.
2001-01-01
A subscale aerodynamic model of the GTX air-breathing launch vehicle was tested at NASA Glenn Research Center's 10- by 10-Foot Supersonic Wind Tunnel from Mach 2.0 to 3.5 at various angles-of-attack. The objective of the test was to investigate the effect of angle-of-attack on inlet mass capture, inlet diverter effectiveness, and the flowfield at the cowl lip plane. The flow-through inlets were tested with and without boundary-layer diverters. Quantitative measurements such as inlet mass flow rates and pitot-pressure distributions in the cowl lip plane are presented. At a 3deg angle-of-attack, the flow rates for the top and side inlets were within 8 percent of the zero angle-of-attack value, and little distortion was evident at the cowl lip plane. Surface oil flow patterns showing the shock/boundary-layer interaction caused by the inlet spikes are shown. In addition to inlet data, vehicle forebody static pressure distributions, boundary-layer profiles, and temperature-sensitive paint images to evaluate the boundary-layer transition are presented. Three-dimensional parabolized Navier-Stokes computational fluid dynamics calculations of the forebody flowfield are presented and show good agreement with the experimental static pressure distributions and boundary-layer profiles. With the boundary-layer diverters installed, no adverse aerodynamic phenomena were found that would prevent the inlets from operating at the required angles-of-attack. We recommend that phase 2 of the test program be initiated, where inlet contraction ratio and diverter geometry variations will be tested.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, A. K.
1978-01-01
A description is presented of six simulation cases investigating the effect of the variation of static-dynamic Coulomb friction on servo system stability/performance. The upper and lower levels of dynamic Coulomb friction which allowed operation within requirements were determined roughly to be three times and 50% respectively of nominal values considered in a table. A useful application for the nonlinear time response simulation is the sensitivity analysis of final hardware design with respect to such system parameters as cannot be varied realistically or easily in the actual hardware. Parameters of the static/dynamic Coulomb friction fall in this category.
Quasi-static responses and variational principles in gradient plasticity
NASA Astrophysics Data System (ADS)
Nguyen, Quoc-Son
2016-12-01
Gradient models have been much discussed in the literature for the study of time-dependent or time-independent processes such as visco-plasticity, plasticity and damage. This paper is devoted to the theory of Standard Gradient Plasticity at small strain. A general and consistent mathematical description available for common time-independent behaviours is presented. Our attention is focussed on the derivation of general results such as the description of the governing equations for the global response and the derivation of related variational principles in terms of the energy and the dissipation potentials. It is shown that the quasi-static response under a loading path is a solution of an evolution variational inequality as in classical plasticity. The rate problem and the rate minimum principle are revisited. A time-discretization by the implicit scheme of the evolution equation leads to the increment problem. An increment of the response associated with a load increment is a solution of a variational inequality and satisfies also a minimum principle if the energy potential is convex. The increment minimum principle deals with stables solutions of the variational inequality. Some numerical methods are discussed in view of the numerical simulation of the quasi-static response.
Variable camber wing based on pneumatic artificial muscles
NASA Astrophysics Data System (ADS)
Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong
2009-07-01
As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.
Total fluid pressure imbalance in the scrape-off layer of tokamak plasmas
Churchill, Randy M.; Canik, John M.; Chang, C. S.; ...
2017-03-10
Simulations using the fully kinetic neoclassical code XGCa (X-point included guiding-center axisymmetric) were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total-f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Previously presented XGCa results showed several noteworthy features, including large variations of ion density and pressure along field lines in the SOL, experimentally relevant levels of SOL parallel ion flow (Mach number similar to 0.5), skewed ion distributions near the sheath entrance leading to subsonic flowmore » there, and elevated sheath potentials (Churchill 2016 Nucl. Mater. Energy 1-6). In this paper, we explore in detail the question of pressure balance in the SOL, as it was observed in the simulation that there was a large deviation from a simple total pressure balance (the sum of ion and electron static pressure plus ion inertia). It will be shown that both the contributions from the ion viscosity (driven by ion temperature anisotropy) and neutral source terms can be substantial, and should be retained in the parallel momentum equation in the SOL, but still falls short of accounting for the observed fluid pressure imbalance in the XGCa simulation results.« less
Analysis of foot structure in athletes sustaining proximal fifth metatarsal stress fracture.
Hetsroni, Iftach; Nyska, Meir; Ben-Sira, David; Mann, Gideon; Segal, Ofer; Maoz, Guy; Ayalon, Moshe
2010-03-01
In the past, several studies provided anecdotal descriptions of high-arched feet in individuals sustaining proximal fifth metatarsal stress fractures. This relationship has never been supported by scientific evidence. Our objective was to examine whether athletes who sustained this injury had an exceptional static foot structure or dynamic loading pattern. Ten injured professional soccer players who regained full professional activity following a unilateral proximal fifth metatarsal stress fracture and ten control soccer players were examined. Independent variables included static evaluation of foot and arch structure, followed by dynamic plantar foot pressure evaluation. Each variable was compared between injured, contra-lateral uninjured, and control feet. Static measurements of foot and arch structure did not reveal differences among the groups. However, plantar pressure evaluation revealed relative unloading of the fourth metatarsal in injured and uninjured limbs of injured athletes compared with control, while the fifth metatarsal revealed pressure reduction only in the injured limbs of injured athletes. Athletes who sustained proximal fifth metatarsal stress fracture were not characterized by an exceptional static foot structure. Dynamically, lateral metatarsal unloading during stance may either play a role in the pathogenesis of the injury, or alternately represent an adaptive process. Footwear fabrication for previously injured athletes should not categorically address cushioning properties designed for high-arch feet, but rather focus on individual dynamic evaluation of forefoot loading, with less attention applied to static foot and arch characteristics.
Investigation of Shock Diffusers at Mach Number 1.85. 2 - Projecting Double-Shock Cones
1947-06-17
pitot - static rake located as shown in figure 1(a). Total-pressure recoveries were measured for a series of tip projections varied in minimum steps...is shown. The position of the pitot -static rake with which these distributions were .measured is shown in figure 1(a). The data points correspond...Schroeder SUMMARY An Investigation has "been undertaken in the Cleveland 18- by 18-Inch, supersonic tunnel to determine the total-pressure
Atmospheric Dynamics on Venus, Jupiter, and Saturn: An Observational and Analytical Study
NASA Technical Reports Server (NTRS)
Bridger, Alison; Magalhaes, Julio A.; Young, Richard E.
2000-01-01
Determining the static stability of Jupiter's atmosphere below the visible cloud levels is important for understanding the dynamical modes by which energy and momentum are transported through Jupiter's deep troposphere. The Galileo Probe Atmospheric Structure Investigation (ASI) employed pressure and temperature sensors to directly measure these state variables during the parachute-descent phase, which started at a pressure (p) of 0.4 bars and ended at p= 22 bars. The internal temperature of the probe underwent large temperature fluctuations which significantly exceeded design specifications. Corrections for these anomalous interior temperatures have been evaluated based on laboratory data acquired after the mission using the flight spare hardware. The corrections to the pressure sensor readings was particularly large and the uncertainties in the atmospheric pressures derived from the p sensor measurements may still be significant. We have sought to estimate the formal uncertainties in the static stability derived from the p and T sensor measurements directly and to devise means of assessing the static stability of Jupiter's atmosphere which do not rely on the p sensor data.
Development of an Uncertainty Model for the National Transonic Facility
NASA Technical Reports Server (NTRS)
Walter, Joel A.; Lawrence, William R.; Elder, David W.; Treece, Michael D.
2010-01-01
This paper introduces an uncertainty model being developed for the National Transonic Facility (NTF). The model uses a Monte Carlo technique to propagate standard uncertainties of measured values through the NTF data reduction equations to calculate the combined uncertainties of the key aerodynamic force and moment coefficients and freestream properties. The uncertainty propagation approach to assessing data variability is compared with ongoing data quality assessment activities at the NTF, notably check standard testing using statistical process control (SPC) techniques. It is shown that the two approaches are complementary and both are necessary tools for data quality assessment and improvement activities. The SPC approach is the final arbiter of variability in a facility. Its result encompasses variation due to people, processes, test equipment, and test article. The uncertainty propagation approach is limited mainly to the data reduction process. However, it is useful because it helps to assess the causes of variability seen in the data and consequently provides a basis for improvement. For example, it is shown that Mach number random uncertainty is dominated by static pressure variation over most of the dynamic pressure range tested. However, the random uncertainty in the drag coefficient is generally dominated by axial and normal force uncertainty with much less contribution from freestream conditions.
High-density force myography: A possible alternative for upper-limb prosthetic control.
Radmand, Ashkan; Scheme, Erik; Englehart, Kevin
2016-01-01
Several multiple degree-of-freedom upper-limb prostheses that have the promise of highly dexterous control have recently been developed. Inadequate controllability, however, has limited adoption of these devices. Introducing more robust control methods will likely result in higher acceptance rates. This work investigates the suitability of using high-density force myography (HD-FMG) for prosthetic control. HD-FMG uses a high-density array of pressure sensors to detect changes in the pressure patterns between the residual limb and socket caused by the contraction of the forearm muscles. In this work, HD-FMG outperforms the standard electromyography (EMG)-based system in detecting different wrist and hand gestures. With the arm in a fixed, static position, eight hand and wrist motions were classified with 0.33% error using the HD-FMG technique. Comparatively, classification errors in the range of 2.2%-11.3% have been reported in the literature for multichannel EMG-based approaches. As with EMG, position variation in HD-FMG can introduce classification error, but incorporating position variation into the training protocol reduces this effect. Channel reduction was also applied to the HD-FMG technique to decrease the dimensionality of the problem as well as the size of the sensorized area. We found that with informed, symmetric channel reduction, classification error could be decreased to 0.02%.
NASA Astrophysics Data System (ADS)
Stemkens, Bjorn; Glitzner, Markus; Kontaxis, Charis; de Senneville, Baudouin Denis; Prins, Fieke M.; Crijns, Sjoerd P. M.; Kerkmeijer, Linda G. W.; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.; Tijssen, Rob H. N.
2017-09-01
Stereotactic body radiation therapy (SBRT) has shown great promise in increasing local control rates for renal-cell carcinoma (RCC). Characterized by steep dose gradients and high fraction doses, these hypo-fractionated treatments are, however, prone to dosimetric errors as a result of variations in intra-fraction respiratory-induced motion, such as drifts and amplitude alterations. This may lead to significant variations in the deposited dose. This study aims to develop a method for calculating the accumulated dose for MRI-guided SBRT of RCC in the presence of intra-fraction respiratory variations and determine the effect of such variations on the deposited dose. For this, RCC SBRT treatments were simulated while the underlying anatomy was moving, based on motion information from three motion models with increasing complexity: (1) STATIC, in which static anatomy was assumed, (2) AVG-RESP, in which 4D-MRI phase-volumes were time-weighted, and (3) PCA, a method that generates 3D volumes with sufficient spatio-temporal resolution to capture respiration and intra-fraction variations. Five RCC patients and two volunteers were included and treatments delivery was simulated, using motion derived from subject-specific MR imaging. Motion was most accurately estimated using the PCA method with root-mean-squared errors of 2.7, 2.4, 1.0 mm for STATIC, AVG-RESP and PCA, respectively. The heterogeneous patient group demonstrated relatively large dosimetric differences between the STATIC and AVG-RESP, and the PCA reconstructed dose maps, with hotspots up to 40% of the D99 and an underdosed GTV in three out of the five patients. This shows the potential importance of including intra-fraction motion variations in dose calculations.
NASA Astrophysics Data System (ADS)
Huang, X.; Oram, C.; Sick, M.
2014-03-01
More efforts are put on hydro-power to balance voltage and frequency within seconds for primary control in modern smart grids. This requires hydraulic turbines to run at off-design conditions. especially at low load or speed-no load. Besides. the tendency of increasing power output and decreasing weight of the turbine runners has also led to the high level vibration problem of the runners. especially high head Francis runners. Therefore. it is important to carry out the static and dynamic stress analyses of prototype high head Francis runners. This paper investigates the static and dynamic stresses on the prototype high head Francis runner based on site measurements and numerical simulations. The site measurements are performed with pressure transducers and strain gauges. Based on the measured results. computational fluid dynamics (CFD) simulations for the flow channel from stay vane to draft tube cone are performed. Static pressure distributions and dynamic pressure pulsations caused by rotor-stator interaction (RSI) are obtained under various operating conditions. With the CFD results. static and dynamic stresses on the runner at different operating points are calculated by means of the finite element method (FEM). The agreement between simulation and measurement is analysed with linear regression method. which indicates that the numerical result agrees well with that of measurement. Furthermore. the maximum static and dynamic stresses on the runner blade are obtained at various operating points. The relations of the maximum stresses and the power output are discussed in detail. The influences of the boundary conditions on the structural behaviour of the runner are also discussed.
Prevention of pressure ulcers with a static air support surface: A systematic review.
Serraes, Brecht; van Leen, Martin; Schols, Jos; Van Hecke, Ann; Verhaeghe, Sofie; Beeckman, Dimitri
2018-06-01
The aims of this study were to identify, assess, and summarise available evidence about the effectiveness of static air mattress overlays to prevent pressure ulcers. The primary outcome was the incidence of pressure ulcers. Secondary outcomes included costs and patient comfort. This study was a systematic review. Six electronic databases were consulted: Cochrane Library, EMBASE, PubMed (Medline), CINAHL (EBSCOhost interface), Science direct, and Web of Science. In addition, a hand search through reviews, conference proceedings, and the reference lists of the included studies was performed to identify additional studies. Potential studies were reviewed and assessed by 2 independent authors based on the title and abstract. Decisions regarding inclusion or exclusion of the studies were based on a consensus between the authors. Studies were included if the following criteria were met: reporting an original study; the outcome was the incidence of pressure ulcer categories I to IV when using a static air mattress overlay and/or in comparison with other pressure-redistribution device(s); and studies published in English, French, and Dutch. No limitation was set on study setting, design, and date of publication. The methodological quality assessment was evaluated using the Critical Appraisal Skills Program Tool. Results were reported in a descriptive way to reflect the exploratory nature of the review. The searches included 13 studies: randomised controlled trials (n = 11) and cohort studies (n = 2). The mean pressure ulcer incidence figures found in the different settings were, respectively, 7.8% pressure ulcers of categories II to IV in nursing homes, 9.06% pressure ulcers of categories I to IV in intensive care settings, and 12% pressure ulcers of categories I to IV in orthopaedic wards. Seven comparative studies reported a lower incidence in the groups of patients on a static air mattress overlay. Three studies reported a statistical (P < .1) lower incidence compared with a standard hospital mattress (10 cm thick, density 35 kg/m 3 ), a foam mattress (15 cm thick), and a viscoelastic foam mattress (15 cm thick). No significant difference in incidence, purchase costs, and patient comfort was found compared with dynamic air mattresses. This review focused on the effectiveness of static air mattress overlays to prevent pressure ulcers. There are indications that these mattress overlays are more effective in preventing pressure ulcers compared with the use of a standard mattress or a pressure-reducing foam mattress in nursing homes and intensive care settings. However, interpretation of the evidence should be performed with caution due to the wide variety of methodological and/or reporting quality levels of the included studies. © 2018 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Flowfield measurements in the NASA Lewis Research Center 9- by 15-foot low-speed wind tunnel
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.
1989-01-01
An experimental investigation was conducted in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel to determine the flow characteristics in the test section during wind tunnel operation. In the investigation, a 20-probe horizontally-mounted Pitot-static flow survey rake was used to obtain cross-sectional total and static pressure surveys at four axial locations in the test section. At each axial location, the cross-sectional flowfield surveys were made by repositioning the Pitot-static flow survey rake vertically. In addition, a calibration of the new wind tunnel rake instrumentation, used to determine the wind tunnel operating conditions, was performed. Boundary laser surveys were made at three axial locations in the test section. The investigation was conducted at tunnel Mach numbers 0.20, 0.15, 0.10, and 0.05. The test section profile results from the investigation indicate that fairly uniform total pressure profiles (outside the test section boundary layer) and fairly uniform static pressure and Mach number profiles (away from the test section walls and downstream of the test section entrance) exist throughout in the wind tunnel test section.
Oyarzo, Claudio A; Villagrán, Claudio R; Silvestre, Rony E; Carpintero, Pedro; Berral, Francisco J
2014-01-01
Although current research findings suggest that postural control or static balance is impaired in subjects with low back pain, few studies have specifically addressed the effect of low back pain on static balance in elite athletes. Forty-four athletes belonging to Chilean national teams took part in this study; 20 had low back pain and the remaining 24 were healthy controls. Displacement of the centre of pressure was analyzed by computerized platform posturography, using a standardized protocol; subjects were required to stand upright on both feet, with eyes first open then closed. The results showed that, athletes with low back pain used significantly more energy (p< 0.0182) and had a greater displacement of the centre of pressure (p< 0.005) with open eyes to control posture than healthy athletes. It may be concluded that static balance is impaired in elite athletes with low back pain and that analysis of two-footed stance provides a sensitive assessment of static balance in athletes.
Hsieh, Yi-Yin; Chin, Hui Yen; Tsai, Min-Lang
2015-11-20
This study aimed to establish the sequential static and static-dynamic supercritical carbon dioxide (SDCO2) fractionation conditions to obtain a higher yield and desired chitosan with lower polydispersity index (PDI) and higher degree of deacetylation (DD). The yield increased with increasing DD of used chitosan and amount of cosolvent. The yield of acetic acid cosolvent was higher than those of malic and citric acid cosolvents. SDCO2, compared to static supercritical carbon dioxide, has higher yield. The yield of extracted chitosan was 5.82-14.70% by SDCO2/acetic acid, which increases with increasing pressure. The DD of fractionated chitosan increased from 66.1% to 70.81-85.33%, while the PDI decreased from 3.97 to 1.69-3.16. The molecular weight changed from 622kDa to 412-649kDa, which increased as density of supercritical carbon dioxide increases. Hence, higher DD and lower PDI extracted chitosan can be obtained through controlling the temperature and pressure of SDCO2. Copyright © 2015 Elsevier Ltd. All rights reserved.
Role of central command in carotid baroreflex resetting in humans during static exercise
NASA Technical Reports Server (NTRS)
Ogoh, S.; Wasmund, W. L.; Keller, D. M.; O-Yurvati, A.; Gallagher, K. M.; Mitchell, J. H.; Raven, P. B.
2002-01-01
The purpose of the experiments was to examine the role of central command in the exercise-induced resetting of the carotid baroreflex. Eight subjects performed 30 % maximal voluntary contraction (MVC) static knee extension and flexion with manipulation of central command (CC) by patellar tendon vibration (PTV). The same subjects also performed static knee extension and flexion exercise without PTV at a force development that elicited the same ratings of perceived exertion (RPE) as those observed during exercise with PTV in order to assess involvement of the exercise pressor reflex. Carotid baroreflex (CBR) function curves were modelled from the heart rate (HR) and mean arterial pressure (MAP) responses to rapid changes in neck pressure and suction during steady state static exercise. Knee extension exercise with PTV (decreased CC activation) reset the CBR-HR and CBR-MAP to a lower operating pressure (P < 0.05) and knee flexion exercise with PTV (increased CC activation) reset the CBR-HR and CBR-MAP to a higher operating pressure (P < 0.05). Comparison between knee extension and flexion exercise at the same RPE with and without PTV found no difference in the resetting of the CBR-HR function curves (P > 0.05) suggesting the response was determined primarily by CC activation. However, the CBR-MAP function curves were reset to operating pressures determined by both exercise pressor reflex (EPR) and central command activation. Thus the physiological response to exercise requires CC activation to reset the carotid-cardiac reflex but requires either CC or EPR to reset the carotid-vasomotor reflex.
The Seismic Design of Waterfront Retaining Structures
1993-01-01
of elastic backfill behind a rigid wall .... .......... .. 134 5.2 Pressure distributions on smooth rigid wall for l-g static horizontal body force...135 5.3 Resultant force and resultant moment on smooth rigid wall for l-g static horizontal body force...distributions on smooth rigid wall for 1-g static horizontal body force clearly showed the limitations of Woods simplified procedure when this condi- tion is not
NASA Technical Reports Server (NTRS)
Green, Robert S.; Carson, George T., Jr.
1987-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel at static conditions to measure the pressure distributions inside a nonaxisymmetric nozzle with simultaneous partial thrust reversing (50-percent deployment) and thrust vectoring of the primary (forward-thrust) nozzle flow. Geometric forward-thrust-vector angles of 0 and 15 deg. were tested. Test data were obtained at static conditions while nozzle pressure ratio was varied from 2.0 to 4.0. Results indicate that, unlike the 0 deg. vector angle nozzle, a complicated, asymmetric exhaust flow pattern exists in the primary-flow exhaust duct of the 15 deg. vectored nozzle.
Design of on line detection system for static evaporation rate of LNG vehicle cylinders
NASA Astrophysics Data System (ADS)
Tang, P.; Wang, M.; Tan, W. H.; Ling, Z. W.; Li, F.
2017-06-01
In order to solve the problems existing in the regular inspection of LNG vehicle cylinders, the static evaporation rate on line detection system of LNG cylinders is discussed in this paper. A non-disassembling, short-term and high-efficiency on line detection system for LNG vehicle cylinders is proposed, which can meet the requirement of evaporation rate test under different media and different test pressures. And then test methods under the experimental conditions, atmospheric pressure and pressure are given respectively. This online detection system designed in this paper can effectively solve the technical problems during the inspection of the cylinder.
NASA Astrophysics Data System (ADS)
Iadicicco, Agostino; Cutolo, A.; Campopiano, Stefania
2014-05-01
This paper reports on the fabrication of Long Period Gratings (LPGs) in hollow-core air-silica photonic bandgap fibers (HC-PCFs) by using pressure assisted Electrode Arc Discharge (EAD) technique. In particular, the fabrication procedure relies on the combined use of EAD step, to locally heat the HC fiber, and of a static pressure (slightly higher than the external one) inside the fiber holes, to modify the holes. Here, the experimental fabrication of LPG prototypes with different periods and lengths are discussed. And, the sensitivity of LPGs in HC-PCF to environmental parameters such as strain, temperature and static pressure are presented and discussed.
NASA Technical Reports Server (NTRS)
Braddock, W. F.; Streby, G. D.
1977-01-01
The results of a pressure test of a .00548 scale 146 inch Space Shuttle Solid Rocket Booster (SRB) with and without protuberances, conducted in a 14 x 14 inch trisonic wind tunnel are presented. Static pressure distributions for the SRB at reentry attitudes and flight conditions were obtained. Local longitudinal and ring pressure distributions are presented in tabulated form. Integration of the pressure data was performed. The test was conducted at Mach numbers of 0.40 to 4.45 over an angle of attack range from 60 to 185 degrees. Roll angles of 0, 45, 90 and 315 degrees were investigated. Reynolds numbers per foot varied for selected Mach numbers.
Theory of viscous transonic flow over airfoils at high Reynolds number
NASA Technical Reports Server (NTRS)
Melnik, R. E.; Chow, R.; Mead, H. R.
1977-01-01
This paper considers viscous flows with unseparated turbulent boundary layers over two-dimensional airfoils at transonic speeds. Conventional theoretical methods are based on boundary layer formulations which do not account for the effect of the curved wake and static pressure variations across the boundary layer in the trailing edge region. In this investigation an extended viscous theory is developed that accounts for both effects. The theory is based on a rational analysis of the strong turbulent interaction at airfoil trailing edges. The method of matched asymptotic expansions is employed to develop formal series solutions of the full Reynolds equations in the limit of Reynolds numbers tending to infinity. Procedures are developed for combining the local trailing edge solution with numerical methods for solving the full potential flow and boundary layer equations. Theoretical results indicate that conventional boundary layer methods account for only about 50% of the viscous effect on lift, the remaining contribution arising from wake curvature and normal pressure gradient effects.
NASA Technical Reports Server (NTRS)
Potter, J. Leith; Barnett, R. Joel; Fisher, Carl E.; Koukousakis, Costas E.
1986-01-01
Experiments were conducted to determine if free-stream turbulence scale affects separation of turbulent boundary layers. In consideration of possible interrelation between scale and intensity of turbulence, the latter characteristic also was varied and its role was evaluated. Flow over a 2-dimensional airfoil in a subsonic wind tunnel was studied with the aid of hot-wire anemometry, liquid-film flow visualization, a Preston tube, and static pressure measurements. Profiles of velocity, relative turbulence intensity, and integral scale in the boundary layer were measured. Detachment boundary was determined for various angles of attack and free-stream turbulence. The free-stream turbulence intensity and scale were found to spread into the entire turbulent boundary layer, but the effect decreased as the airfoil surface was approached. When the changes in stream turbulence were such that the boundary layer velocity profiles were unchanged, detachment location was not significantly affected by the variations of intensity and scale. Pressure distribution remained the key factor in determining detachment location.
Asymptotic Spreading Rate of Initially Compressible Jets-Experiment and Analysis
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
1998-01-01
Experimental results for the spreading and centerline velocity decay rates for round, compressible jets, from a convergent and a convergent-divergent nozzle, are presented. The spreading rate is determined from the variation of streamwise mass flux obtained from Pitot probe surveys. Results for the far asymptotic region show that both spreading and centerline velocity decay rates, when nondimensionalized by parameters at the nozzle exit, decrease with increasing "jet Mach number" M(sub j). Dimensional analysis with the assumption of momentum conservation, together with compressible flow calculations for the conditions at the nozzle exit, predict this Mach number dependence well. The analysis also demonstrates that an increase in the "potential core length" of the jet occurring with increasing M(sub j), a commonly observed trend, is largely accounted for simply by the variations in the density and static pressure at the nozzle exit. The effect of decreasing mixing efficiency with increasing compressibility is inferred to contribute only partially to the latter trend.
Thermal stabilization of static single-mirror Fourier transform spectrometers
NASA Astrophysics Data System (ADS)
Schardt, Michael; Schwaller, Christian; Tremmel, Anton J.; Koch, Alexander W.
2017-05-01
Fourier transform spectroscopy has become a standard method for spectral analysis of infrared light. With this method, an interferogram is created by two beam interference which is subsequently Fourier-transformed. Most Fourier transform spectrometers used today provide the interferogram in the temporal domain. In contrast, static Fourier transform spectrometers generate interferograms in the spatial domain. One example of this type of spectrometer is the static single-mirror Fourier transform spectrometer which offers a high etendue in combination with a simple, miniaturized optics design. As no moving parts are required, it also features a high vibration resistance and high measurement rates. However, it is susceptible to temperature variations. In this paper, we therefore discuss the main sources for temperature-induced errors in static single-mirror Fourier transform spectrometers: changes in the refractive index of the optical components used, variations of the detector sensitivity, and thermal expansion of the housing. As these errors manifest themselves in temperature-dependent wavenumber shifts and intensity shifts, they prevent static single-mirror Fourier transform spectrometers from delivering long-term stable spectra. To eliminate these shifts, we additionally present a work concept for the thermal stabilization of the spectrometer. With this stabilization, static single-mirror Fourier transform spectrometers are made suitable for infrared process spectroscopy under harsh thermal environmental conditions. As the static single-mirror Fourier transform spectrometer uses the so-called source-doubling principle, many of the mentioned findings are transferable to other designs of static Fourier transform spectrometers based on the same principle.
Protecting the Turkish Straits from Maritime Terrorism: A Scheme to Impede Propeller Efficiency
2012-06-01
electric fence, fire nozzle with pressurized water, optical laser distracter (a dazzle gun), Long Range Acoustic Device (LRAD) and other types of non...are easily ignited by machinery, cigarettes, and static electricity . Static electricity discharged when one walks on a carpet or brushes his/her hair...formed in the first tank car due to the impact with a signaling stake. The pressurized LPG was released as a two-phase jet: the liquid phase formed a
Turbine Engine Control Synthesis. Volume 1. Optimal Controller Synthesis and Demonstration
1975-03-01
Nomenclature (Continued) Symbol Deseription M Matrix (of Table 12) M Mach number N Rotational speed, rpm N ’ Nonlinear rotational speed, rpm P Power lever... P Pressure, N /m 2; bfh/ft 2 PLA Power lever angle PR = PT3/PT2 Pressure ratio ( P Power, ft-lbf/sec Q Matrix (of Table 30) R Universal gas constant, 53...function, i = 1, 2, 3, ... in Inlet n Stage number designation out Outlet p Variable associated with particle s Static condition _se Static condition
Probe systems for measuring static pressure and turbulence intensity in fluid streams
NASA Technical Reports Server (NTRS)
Rossow, Vernon J. (Inventor)
1993-01-01
A method and an apparatus for measuring time-averaged static or ambient pressure and turbulence intensity in a turbulent stream are discussed. The procedure involves placing a plurality of probes in the stream. Each probe responds in a different manner to characteristics of the fluid stream, preferably as a result of having varying cross sections. The responses from the probes are used to eliminate unwanted components in the measured quantities for accurate determination of selected characteristics.
Standardization Tests of NACA No. 1 Wind Tunnel
NASA Technical Reports Server (NTRS)
Reid, Elliott G
1925-01-01
The tests described in this report were made in the 5-foot atmospheric wind tunnel of the National Advisory Committee for Aeronautics, at Langley Field. The primary objective of collecting data on the characteristics of this tunnel for comparison with those of others throughout the world, in order that, in the future, the results of tests made in all the principle laboratories may be interpreted, compared, and coordinated on a basis of scientifically established relationships, a process hitherto impossible due to the lack of comparable data. The work includes tests of a disk, spheres, cylinders, and airfoils, explorations of the test section for static pressure and velocity distribution, and determination of the variations of air flow direction throughout the operating range of the tunnel. (author)
AB INITIO STUDY OF PHONON DISPERSION AND ELASTIC PROPERTIES OF L12 INTERMETALLICS Ti3Al AND Y3Al
NASA Astrophysics Data System (ADS)
Arikan, N.; Ersen, M.; Ocak, H. Y.; Iyigör, A.; Candan, A.; UǦUR, Ş.; UǦUR, G.; Khenata, R.; Varshney, D.
2013-12-01
In this paper, the structural, elastic and phonon properties of Ti3Al and Y3Al in L12(Cu3Al) phase are studied by performing first-principles calculations within the generalized gradient approximation. The calculated lattice constants, static bulk moduli, first-order pressure derivative of bulk moduli and elastic constants for both compounds are reported. The phonon dispersion curves along several high-symmetry lines at the Brillouin zone, together with the corresponding phonon density of states, are determined using the first-principles linear-response approach of the density functional perturbation theory. Temperature variations of specific heat in the range of 0-500 K are obtained using the quasi-harmonic model.
NASA Technical Reports Server (NTRS)
Haas, J. E.; Kofskey, M. G.
1976-01-01
The aerodynamic performance of a low aspect ratio turbine vane designed with coolant flow ejection holes on the vane surfaces was experimentally determined in a full-annular cascade with the coolant ejection holes plugged. The purpose was to establish a baseline for comparison with tests where flow is ejected from the vane surfaces. The vanes were tested over a mean-section ideal critical velocity ratio range of 0.64 to 0.98. This ideal critical velocity ratio corresponds to the vane inlet total to vane aftermixed static pressure ratio at the mean section. The variations in vane efficiency and aftermixed flow conditions with circumferential and radial position were obtained.
Navier-Stokes analysis of an oxidizer turbine blade with tip clearance
NASA Technical Reports Server (NTRS)
Gibeling, Howard J.; Sabnis, Jayant S.
1992-01-01
The Gas Generator Oxidizer Turbine (GGOT) Blade is being analyzed by various investigators under the NASA MSFC sponsored Turbine Stage Technology Team design effort. The present work concentrates on the tip clearance region flow and associated losses; however, flow details for the passage region are also obtained in the simulations. The present calculations simulate the rotor blade row in a rotating reference frame with the appropriate coriolis and centrifugal acceleration terms included in the momentum equation. The upstream computational boundary is located about one axial chord from the blade leading edge. The boundary conditions at this location were determined by using a Euler analysis without the vanes to obtain approximately the same flow profiles at the rotor as were obtained with the Euler stage analysis including the vanes. Inflow boundary layer profiles are then constructed assuming the skin friction coefficient at both the hub and the casing. The downstream computational boundary is located about one axial chord from the blade trailing edge, and the circumferentially averaged static pressure at this location was also obtained from the Euler analysis. Results were obtained for the 3-D baseline GGOT geometry at the full scale design Reynolds number. Details of the clearance region flow behavior and blade pressure distributions were computed. The spanwise variation in blade loading distributions are shown, and circumferentially averaged spanwise distributions of total pressure, total temperature, Mach number, and flow angle are shown at several axial stations. The spanwise variation of relative total pressure loss shows a region of high loss in the region near the casing. Particle traces in the near tip region show vortical behavior of the fluid which passes through the clearance region and exits at the downstream edge of the gap.
Sarafidis, P A; Lazaridis, A A; Imprialos, K P; Georgianos, P I; Avranas, K A; Protogerou, A D; Doumas, M N; Athyros, V G; Karagiannis, A I
2016-12-01
Ambulatory blood pressure monitoring is an important tool in hypertension diagnosis and management. Although several ambulatory devices exist, comparative studies are scarce. This study aimed to compare for the first time brachial blood pressure levels of Spacelabs 90217A and Mobil-O-Graph NG, under static and ambulatory conditions. We examined 40 healthy individuals under static (study A) and ambulatory (study B) conditions. In study A, participants were randomized into two groups that included blood pressure measurements with mercury sphygmomanometer, Spacelabs and Mobil-O-Graph devices with reverse order of recordings. In study B, simultaneous 6-h recordings with both devices were performed with participants randomized in two sequences of device positioning with arm reversal at 3 h. Finally, all the participants filled in a questionnaire rating their overall preference for a device. In study A, brachial systolic blood pressure (117.2±10.3 vs 117.1±9.8 mm Hg, P=0.943) and diastolic blood pressure (73.3±9.4 mm Hg vs 74.1±9.4 mm Hg, P=0.611) did not differ between Spacelabs and Mobil-O-Graph or vs sphygmomanometer (117.8±11.1 mm Hg, P=0.791 vs Spacelabs, P=0.753 vs Mobil-O-Graph). Similarly, no differences were found in ambulatory systolic blood pressure (117.9±11.4 vs 118.3±11.0 mm Hg, P=0.864), diastolic blood pressure (73.7±7.4 vs 74.7±8.0 mm Hg, P=0.571), mean blood pressure and heart rate between Spacelabs and Mobil-O-Graph. Correlation analyses and Bland-Altman plots showed agreement between the monitors. Overall, the participants showed a preference for the Mobil-O-Graph. Spacelabs 90217A and Mobil-O-Graph NG provide practically identical measurements during the static and ambulatory conditions in healthy individuals and can be rather used interchangeably in clinical practice.
Bragin, Denis E; Statom, Gloria; Nemoto, Edwin M
2016-01-01
We previously suggested that the discrepancy between a critical cerebral perfusion pressure (CPP) of 30 mmHg, obtained by increasing intracranial pressure (ICP), and 60 mmHg, obtained by decreasing arterial pressure, was due to pathological microvascular shunting at high ICP [1], and that the determination of the critical CPP by the static cerebral blood flow (CBF) autoregulation curve is not valid with intracranial hypertension. Here, we demonstrated that induced dynamic ICP reactivity (iPRx), and cerebrovascular reactivity (CVRx) tests accurately identify the critical CPP in the hypertensive rat brain, which differs from that obtained by the static autoregulation curve. Step changes in CPP from 70 to 50 and 30 mmHg were made by increasing ICP using an artificial cerebrospinal fluid reservoir connected to the cisterna magna. At each CPP, a transient 10-mmHg increase in arterial pressure was induced by bolus intravenous dopamine. iPRx and iCVRx were calculated as ΔICP/Δ mean arterial pressure (MAP) and as ΔCBF/ΔMAP, respectively. The critical CPP at high ICP, obtained by iPRx and iCVRx, is 50 mmHg, where compromised capillary flow, transition of blood flow to nonnutritive microvascular shunts, tissue hypoxia, and brain-blood barrier leakage begin to occur, which is higher than the 30 mmHg determined by static autoregulation.
Global Pressure- and Temperature-Measurements in 1.27-m JAXA Hypersonic Wind Tunnel
NASA Astrophysics Data System (ADS)
Yamada, Y.; Miyazaki, T.; Nakagawa, M.; Tsuda, S.; Sakaue, H.
Pressure-sensitive paint (PSP) technique has been widely used in aerodynamic measurements. A PSP is a global optical sensor, which consists of a luminophore and binding material. The luminophore gives a luminescence related to an oxygen concentration known as oxygen quenching. In an aerodynamic measurement, the oxygen concentration is related to a partial pressure of oxygen and a static pressure, thus the luminescent signal can be related to a static pressure [1]. The PSP measurement system consists of a PSP coated model, an image acquisition unit, and an image processing unit (Fig. 1). For the image acquisition, an illumination source and a photo-detector are required. To separate the illumination and PSP emission detected by a photo-detector, appropriate band-pass filters are placed in front of the illumination and photo-detector. The image processing unit includes the calibration and computation. The calibration relates the luminescent signal to pressures and temperatures. Based on these calibrations, luminescent images are converted to a pressure map.
Effect of attack angle on flow characteristic of centrifugal fan
NASA Astrophysics Data System (ADS)
Wu, Y.; Dou, H. S.; Wei, Y. K.; Chen, X. P.; Chen, Y. N.; Cao, W. B.
2016-05-01
In this paper, numerical simulation is performed for the performance and internal flow of a centrifugal fan with different operating conditions using steady three-dimensional incompressible Navier-Stokes equations coupled with the RNG k-e turbulent model. The performance curves, the contours of static pressure, total pressure, radial velocity, relative streamlines and turbulence intensity at different attack angles are obtained. The distributions of static pressure and velocity on suction surface and pressure surface in the same impeller channel are compared for various attack angles. The research shows that the efficiency of the centrifugal fan is the highest when the attack angle is 8 degree. The main reason is that the vortex flow in the impeller is reduced, and the jet-wake pattern is weakened at the impeller outlet. The pressure difference between pressure side and suction side is smooth and the amplitude of the total pressure fluctuation is low along the circumferential direction. These phenomena may cause the loss reduced for the attack angle of about 8 degree.
An investigation of transient pressure and plasma properties in a pinched plasma column. M.S. Thesis
NASA Technical Reports Server (NTRS)
Stover, E. K.; York, T. M.
1971-01-01
The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with the following plasma diagnostics: a special rapid response pressure transducer, a magnetic field probe, a voltage probe and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior; they were in temporal sequence: strong axial pressure asymmetry noted early in plasma column lifetime followed by plasma heating in which there is a rapid rise in static pressure and a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating is attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity. Turbulent heating arising from discharge current excitation of the ion acoustic wave instability is also considered a possible heating mechanism.
Measuring Blast-Related Intracranial Pressure Within the Human Head
2010-08-01
an d stagnation pressures; stagnation pr essure , also called incident pre ssure, consists of static and dynamic pressure combined and subsequent da...represent a n oticeable decrease in IC pr essure that happened before the IC pressure started to increase. This behavior is very noticeable in all
Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations
NASA Astrophysics Data System (ADS)
Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.
2018-02-01
We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.
Simon, Scott Douglas; Grey, Casey Paul
2014-04-01
The Penumbra system uses a coaxial separator and continuous extracorporeal suction to remove a clot from a cerebral artery. Forced-suction thrombectomy (FST) involves aspirating clots through the same reperfusion catheter using only a syringe, decreasing the procedure time and supplies needed. To evaluate multiple combinations of catheters and syringes to determine the optimal pairing for use in FST. Tests were performed using both the Penumbra system and syringes to aspirate water through Penumbra 0.041 inch (041), 4Max, 0.054 inch (054) and 5Max reperfusion catheters and a shuttle sheath. Dynamic pressure and flow at the catheter tip were calculated from the fill times for each system. Static pressure and force for each aspiration source were determined with a vacuum gauge. All syringes provided significantly higher dynamic pressure at the catheter tip than the Penumbra system (p<0.001). Increasing syringe volume significantly increased static pressure (p<0.001). Both flow and aspiration force significantly increased with catheter size (p<0.001). Cases are presented to demonstrate the clinical value of the laboratory principles. Maximizing static and dynamic pressure when performing FST is achieved by aspirating with a syringe possessing both the largest volume and the largest inlet diameter available. Maximizing aspiration force and flow rate is achieved by using the largest catheter possible.
Effect of Sweep on Cavity Flow Fields at Subsonic and Transonic Speeds
NASA Technical Reports Server (NTRS)
Tracy, Maureen B.; Plentovich, Elizabeth B.; Hemsch, Michael J.; Wilcox, Floyd J.
2012-01-01
An experimental investigation was conducted in the NASA Langley 7 x 10-Foot High Speed Tunnel (HST) to study the effect of leading- and trailing-edge sweep on cavity flow fields for a range of cavity length-to-height (l/h) ratios. The free-stream Mach number was varied from 0.2 to 0.8. The cavity had a depth of 0.5 inches, a width of 2.5 inches, and a maximum length of 12.0 inches. The leading- and trailing-edge sweep was adjusted using block inserts to achieve leading edge sweep angles of 65 deg, 55 deg, 45 deg, 35 deg, and 0 deg. The fore and aft cavity walls were always parallel. The aft wall of the cavity was remotely positioned to achieve a range of length-to-depth ratios. Fluctuating- and static-pressure data were obtained on the floor of the cavity. The fluctuating pressure data were used to determine whether or not resonance occurred in the cavity rather than to provide a characterization of the fluctuating pressure field. Qualitative surface flow visualization was obtained using a technique in which colored water was introduced into the model through static-pressure orifices. A complete tabulation of the mean static-pressure data for the swept leading edge cavities is included.
Vibrational Spectroscopic Studies of Reduced-Sensitivity RDX under Static Compression
NASA Astrophysics Data System (ADS)
Wong, Chak
2005-07-01
Explosives formulations with Reduced- Sensitivity RDX showed reduced shock sensitivity using NOL Large Scale Gap Test, compared with similar formulations using normal RDX. Molecular processes responsible for the reduction of sensitivity are unknown and are crucial for formulation development. Vibrational spectroscopy at static high pressure may shed light to the mechanisms responsible for the reduced shock sensitivity as shown by the NOL Large Scale Gap Test. SIRDX, a form of Reduced- Sensitivity RDX, was subjected to static compression at ambient temperature in a Merrill-Bassett sapphire cell from ambient to about 6 GPa. The spectroscopic techniques used were Raman and Fourier-Transformed IR (FTIR). The pressure dependence of the Raman mode frequencies of SIRDX was determined and compared with that of normal RDX. The behavior of SIRDX near the pressure at which normal RDX, at ambient temperature, undergoes a phase transition from the α to the γ polymorph will be presented. Implications to the reduction in sensitivity will be discussed.
NASA Technical Reports Server (NTRS)
Brankovic, Andreja; Ryder, Robert C., Jr.; Hendricks, Robert C.; Liu, Nan-Suey; Gallagher, John R.; Shouse, Dale T.; Roquemore, W. Melvyn; Cooper, Clayton S.; Burrus, David L.; Hendricks, John A.
2002-01-01
The trapped vortex combustor (TVC) pioneered by Air Force Research Laboratories (AFRL) is under consideration as an alternative to conventional gas turbine combustors. The TVC has demonstrated excellent operational characteristics such as high combustion efficiency, low NO(x) emissions, effective flame stabilization, excellent high-altitude relight capability, and operation in the lean-burn or rich burn-quick quench-lean burn (RQL) modes of combustion. It also has excellent potential for lowering the engine combustor weight. This performance at low to moderate combustor mach numbers has stimulated interest in its ability to operate at higher combustion mach number, and for aerospace, this implies potentially higher flight mach numbers. To this end, a lobed diffuser-mixer that enhances the fuel-air mixing in the TVC combustor core was designed and evaluated, with special attention paid to the potential shock system entering the combustor core. For the present investigation, the lobed diffuser-mixer combustor rig is in a full annular configuration featuring sixfold symmetry among the lobes, symmetry within each lobe, and plain parallel, symmetric incident flow. During hardware cold-flow testing, significant discrepancies were found between computed and measured values for the pitot-probe-averaged static pressure profiles at the lobe exit plane. Computational fluid dynamics (CFD) simulations were initiated to determine whether the static pressure probe was causing high local flow-field disturbances in the supersonic flow exiting the diffuser-mixer and whether shock wave impingement on the pitot probe tip, pressure ports, or surface was the cause of the discrepancies. Simulations were performed with and without the pitot probe present in the modeling. A comparison of static pressure profiles without the probe showed that static pressure was off by nearly a factor of 2 over much of the radial profile, even when taking into account potential axial displacement of the probe by up to 0.25 in. (0.64 cm). Including the pitot probe in the CFD modeling and data interpretation lead to good agreement between measurement and prediction. Graphical inspection of the results showed that the shock waves impinging on the probe surface were highly nonuniform, with static pressure varying circumferentially among the pressure ports by over 10 percent in some cases. As part of the measurement methodology, such measurements should be routinely supplemented with CFD analyses that include the pitot probe as part of the flow-path geometry.
Romano, Michele; Carabalona, Roberta; Petrilli, Silvia; Sibilla, Paolo; Negrini, Stefano
2006-01-01
Objective To quantify and compare the forces exerted by scoliosis patients in fiberglass braces during exercises usually prescribed in departments where casts are made. The exercises are intended to increase corrective forces, activate muscles, stimulate ventilation and help the patient psychologically. Setting Outpatient care. Patients 17 consecutive adolescent patients wearing fiberglass brace for idiopathic scoliosis. Interventions Exercises (kyphotization, rotation, "escape from the pad") in different positions (sitting, supine, on all fours). Main outcome measure Pressure detected by the F-Socket System between the rib hump and the pad of the brace. Results In static and dynamic conditions, the position adopted did not alter the total pressure exerted by the brace, although the part of the sensor stimulated did vary. Kyphotization and rotation exercises produced a significant increase of pressure (+ 58.9% and +29.8%, respectively); however, the "escape from the pad" exercise, despite its name, did not produce any significant variation of pressure. Conclusion Exercises in the brace allow adjunctive forces to be applied on soft tissues and through them, presumably on the spine. Different exercises can be chosen to obtain different actions. Physical exercises and sporting activities are useful in mechanical terms, although other important actions should not be overlooked. PMID:16859544
NASA Technical Reports Server (NTRS)
Mckinzie, Daniel J., Jr.
1991-01-01
A vane oscillating about a fixed point at the inlet to a two-dimensional 20 degree rearward facing ramp has proven effective in delaying the separation of a turbulent boundary layer. Measurements of the ramp surface static pressure coefficient obtained under the condition of vane oscillation and constant inlet velocity revealed that two different effects occurred with surface distance along the ramp. In the vicinity of the oscillating vane, the pressure coefficients varied as a negative function of the vane's trailing edge rms velocity; the independent variable on which the rms velocity depends are the vane's oscillation frequency and its displacement amplitude. From a point downstream of the vane to the exit of the ramp; however, the pressure coefficient varied as a more complex function of the two independent variables. That is, it was found to vary as a function of the vane's oscillation frequency throughout the entire range of frequencies covered during the test, but over only a limited range of the trailing edge displacement amplitudes covered. More specifically, the value of the pressure coefficient was independent of increases in the vane's displacement amplitude above approximately 35 inner wall units of the boundary layer. Below this specific amplitude it varied as a function of the vane's trailing edge rms velocity. This height is close to the upper limit of the buffer layer. A parametric study was made to determine the variation of the maximum static pressure recovery as a function of the vane's oscillation frequency, for several ramp inlet velocities and a constant displacement amplitude of the vane's trailing edge. The results indicate that the phenomenon producing the optimum delay of separation may be Strouhal number dependent. Corona anemometer measurements obtained in the inner wall regions of the boundary layer for the excited case reveal a large range of unsteadiness in the local velocities. These measurements imply the existence of inflections in the profiles, which provide a mechanism for resulting inviscid flow instabilities to produce turbulence in the near wall region, thereby delaying separation of the boundary layer.
Comparison of Static Balance and the Role of Vision in Elite Athletes
Hammami, Raouf; Behm, David G; Chtara, Mokhtar; Ben Othman, Aymen; Chaouachi, Anis
2014-01-01
When prescribing balance exercises to athletes in different sports, it may be important to recognize performance variations. Indeed, how athletes from different sports perform on balance tests is not well understood. The goal of the present study was to compare static balance and the role of vision among elite sprinters, jumpers and rugby players. The modified clinical test of sensory interaction on balance (mCTSIB) was used to assess the velocity of the center-of-pressure (CoP) on a force platform during a 30 s bipedal quiet standing posture in 4 conditions: firm surface with opened and closed eyes, foam surface with opened and closed eyes. Three-factor ANOVA indicated a significant main effect for groups (F=21.69, df=2, p<0.001, η2 = 0.34). Significant main effect of vision (F=43.20, df=1, p<0.001, η2 = 0.34) and surface (F=193.41, df=1, p<0.001, η2 = 0.70) as well as an interaction between vision (eyes open, eyes closed) and surface (firm and foam) (F=21.79, df=1, p=0.001) were reported in all groups. The subsequent Bonferroni-Dunn post hoc test indicated that rugby players displayed better static balance than sprinters and jumpers (p=0.001). The comparison of sprinters and jumpers did not reveal significant differences (p>0.05). The nature of the sport practiced and the absence of visual control are linked to modify static balance in elite athletes. Coaches and strength and conditioning professionals are recommended to use a variety of exercises to improve balance, including both exercises with opened and closed eyes on progressively challenging surfaces in order to make decisions about tasks and sensory availability during assessment and training. PMID:25114729
Incidence loss for a core turbine rotor blade in a two-dimensional cascade
NASA Technical Reports Server (NTRS)
Stabe, R. G.; Kline, J. F.
1974-01-01
The effect of incidence angle on the aerodynamic performance of an uncooled core turbine rotor blade was investigated experimentally in a two-dimensional cascade. The cascade test covered a range of incidence angles from minus 15 deg to 15 deg in 5-degree increments and a range of pressure ratios corresponding to ideal exit critical velocity ratios of 0.6 to 0.95. The principal measurements were blade-surface static pressures and cross-channel surveys of exit total pressure, static pressure, and flow angle. The results of the investigation include blade-surface velocity distribution and overall performance in terms of weight flow and loss for the range of incidence angles and exit velocity ratios investigated. The measured losses are also compared with two common methods of predicting incidence loss.
NASA Astrophysics Data System (ADS)
Tomikawa, Y.; Yamanouchi, T.
2010-08-01
An analysis of the static stability and ozone vertical gradient in the ozone tropopause based (OTB) coordinate is applied to the ozonesonde data at 10 stations in the Southern Hemisphere (SH) extratropics. The tropopause inversion layer (TIL) with a static stability maximum just above the tropopause shows similar seasonal variations at two Antarctic stations, which are latitudinally far from each other. Since the sunshine hour varies with time in a quite different way between these two stations, it implies that the radiative heating due to solar ultraviolet absorption of ozone does not contribute to the seasonal variation of the TIL. A meridional section of the static stability in the OTB coordinate shows that the static stability just above the tropopause has a large latitudinal gradient between 60° S and 70° S in austral winter because of the absence of the TIL over the Antarctic. It is accompanied by an increase of westerly shear with height above the tropopause, so that the polar-night jet is formed above this latitude region. This result suggests a close relationship between the absence of the TIL and the stratospheric polar vortex in the Antarctic winter. A vertical gradient of ozone mixing ratio, referred to as ozone vertical gradient, around the tropopause shows similar latitudinal and seasonal variations with the static stability in the SH extratropics. In a height region above the TIL, a small ozone vertical gradient in the midlatitudes associated with the Antarctic ozone hole is observed in a height region of the subvortex but not around the polar vortex. This is a clear evidence of active latitudinal mixing between the midlatitudes and subvortex.
Optical pressure/density measuring means
Veligdan, James T.
1995-05-09
An apparatus and method for rapidly and accurately determining the pressure of a fluid medium in either a static or dynamic state. The pressure is determined by making a measurement of the velocity of a light beam that is directed through the fluid medium along a pathway that enables an integrated pressure measurement to be made along the pathway, rather than making such a measurement only at a single point in the medium. A HeNe laser is configured to emit a beam of two frequencies separated by about 2 MHz. One of these beam frequencies is directed through the fluid medium and is reflected back through the medium to a non-linear diode detector. The other beam frequency is passed directly to a diode detector without traversing said medium. The diode detector is operated to determine the frequency shift or beat frequency between the two beam frequencies. Any variation in the frequency of said reflected beam that is caused by a change in its velocity as it is passed through the fluid medium causes a change in the beat frequency. This beat frequency change is then converted to an output signal value corresponding to the pressure of the medium. The measurement instrument apparatus is remotely positioned relative to the medium being measured, thus the apparatus is immune from electro-magnetic interference and can operate in conditions of high radiation, corrosion and extraordinarily high temperature.
Optical pressure/density measuring means
Veligdan, J.T.
1995-05-09
An apparatus and method are disclosed for rapidly and accurately determining the pressure of a fluid medium in either a static or dynamic state. The pressure is determined by making a measurement of the velocity of a light beam that is directed through the fluid medium along a pathway that enables an integrated pressure measurement to be made along the pathway, rather than making such a measurement only at a single point in the medium. A HeNe laser is configured to emit a beam of two frequencies separated by about 2 MHz. One of these beam frequencies is directed through the fluid medium and is reflected back through the medium to a non-linear diode detector. The other beam frequency is passed directly to a diode detector without traversing said medium. The diode detector is operated to determine the frequency shift or beat frequency between the two beam frequencies. Any variation in the frequency of said reflected beam that is caused by a change in its velocity as it is passed through the fluid medium causes a change in the beat frequency. This beat frequency change is then converted to an output signal value corresponding to the pressure of the medium. The measurement instrument apparatus is remotely positioned relative to the medium being measured, thus the apparatus is immune from electro-magnetic interference and can operate in conditions of high radiation, corrosion and extraordinarily high temperature. 4 figs.
NASA Astrophysics Data System (ADS)
Rieker, G. B.; Li, H.; Liu, X.; Jeffries, J. B.; Hanson, R. K.; Allen, M. G.; Wehe, S. D.; Mulhall, P. A.; Kindle, H. S.
2007-05-01
A near-infrared diode laser sensor is presented that is capable of measuring time-varying gas temperature and water vapour concentration at temperatures up to 1050 K and pressures up to 25 atm with a bandwidth of 7.5 kHz. Measurements with noise-equivalent-absorbances of the order of 10-3 (10-5 Hz-1/2) are made possible in dynamic environments through the use of wavelength modulation spectroscopy (WMS) with second harmonic detection (2f) on two water vapour spectral features near 7203.9 and 7435.6 cm-1. Laser performance characteristics that become important at the large modulation depths needed at high pressures are accounted for in the WMS-2f signal analysis, and the utility of normalization by the 1f signal to correct for variations in laser intensity, transmission and detector gain is presented. Laboratory measurements with the sensor system in a static cell with known temperature and pressure agree to 3% RMS in temperature and 4% RMS in H2O mole fraction for 500 < T < 900 K and 1 < P < 25 atm. The sensor time response is demonstrated in a high-pressure shock tube where shock wave transients are successfully captured, the average measured post-shock temperature agrees within 1% of the expected value, and H2O mole fraction agrees within 8%.
Modified pressure loss model for T-junctions of engine exhaust manifold
NASA Astrophysics Data System (ADS)
Wang, Wenhui; Lu, Xiaolu; Cui, Yi; Deng, Kangyao
2014-11-01
The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have focused on constant pressure models, constant static pressure models and pressure loss models. However, low model precision is a common disadvantage when simulating engine exhaust manifolds, particularly for turbocharged systems. To study the performance of junction flow, a cold wind tunnel experiment with high velocities at the junction of a diesel exhaust manifold is performed, and the variation in the pressure loss in the T-junction under different flow conditions is obtained. Despite the trend of the calculated total pressure loss coefficient, which is obtained by using the original pressure loss model and is the same as that obtained from the experimental results, large differences exist between the calculated and experimental values. Furthermore, the deviation becomes larger as the flow velocity increases. By improving the Vazsonyi formula considering the flow velocity and introducing the distribution function, a modified pressure loss model is established, which is suitable for a higher velocity range. Then, the new model is adopted to solve one-dimensional, unsteady flow in a D6114 turbocharged diesel engine. The calculated values are compared with the measured data, and the result shows that the simulation accuracy of the pressure wave before the turbine is improved by 4.3% with the modified pressure loss model because gas compressibility is considered when the flow velocities are high. The research results provide valuable information for further junction flow research, particularly the correction of the boundary condition in one-dimensional simulation models.
Turbine airfoil with ambient cooling system
Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.
2016-06-07
A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.
NASA Astrophysics Data System (ADS)
Volpe, Peter A.
This thesis presents analytical models, finite element models and experimental data to investigate the response of the human eye to loads that can be experienced when in a non-supine sleeping position. The hypothesis being investigated is that non-supine sleeping positions can lead to stress, strain and deformation of the eye as well as changes in intraocular pressure (IOP) that may exacerbate vision loss in individuals who have glaucoma. To investigate the quasi-static changes in stress and internal pressure, a Fluid-Structure Interaction simulation was performed on an axisymmetrical model of an eye. Common Aerospace Engineering methods for analyzing pressure vessels and hyperelastic structural walls are applied to developing a suitable model. The quasi-static pressure increase was used in an iterative code to analyze changes in IOP over time.
High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors
NASA Technical Reports Server (NTRS)
Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender
2014-01-01
Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.
NASA Astrophysics Data System (ADS)
Phillips, Michael G.
Human exposure to blast waves, including blast-induced traumatic brain injury, is a developing field in medical research. Experiments with explosives have many disadvantages including safety, cost, and required area for trials. Shock tubes provide an alternative method to produce free field blast wave profiles. A compressed nitrogen shock tube experiment instrumented with static and reflective pressure taps is modeled using a numerical simulation. The geometry of the numerical model is simplified and blast wave characteristics are derived based upon static and pressure profiles. The pressure profiles are analyzed along the shock tube centerline and radially away from the tube axis. The blast wave parameters found from the pressure profiles provide guidelines for spatial location of a specimen. The location could be based on multiple parameters and provides a distribution of anticipated pressure profiles experience by the specimen.
Dynamic analysis of solid propellant grains subjected to ignition pressurization loading
NASA Astrophysics Data System (ADS)
Chyuan, Shiang-Woei
2003-11-01
Traditionally, the transient analysis of solid propellant grains subjected to ignition pressurization loading was not considered, and quasi-elastic-static analysis was widely adopted for structural integrity because the analytical task gets simplified. But it does not mean that the dynamic effect is not useful and could be neglected arbitrarily, and this effect usually plays a very important role for some critical design. In order to simulate the dynamic response for solid rocket motor, a transient finite element model, accompanied by concepts of time-temperature shift principle, reduced integration and thermorheologically simple material assumption, was used. For studying the dynamic response, diverse ignition pressurization loading cases were used and investigated in the present paper. Results show that the dynamic effect is important for structural integrity of solid propellant grains under ignition pressurization loading. Comparing the effective stress of transient analysis and of quasi-elastic-static analysis, one can see that there is an obvious difference between them because of the dynamic effect. From the work of quasi-elastic-static and transient analyses, the dynamic analysis highlighted several areas of interest and a more accurate and reasonable result could be obtained for the engineer.
NASA Technical Reports Server (NTRS)
Exton, R. J.; Hillard, M. E.
1986-01-01
Molecular flow velocity (one component), translational temperature, and static pressure of N2 are measured in a supersonic wind tunnel using inverse Raman spectroscopy. For velocity, the technique employs the large Doppler shift exhibited by the molecules when the pump and probe laser beams are counterpropagating (backward scattering). A retrometer system is employed to yield an optical configuration insensitive to mechanical vibration, which has the additional advantage of simultaneously obtaining both the forward and backward scattered spectra. The forward and backward line breadths and their relative Doppler shift can be used to determine the static pressure, translational temperature, and molecular flow velocity. A demonstration of the technique was performed in a continuous airflow supersonic wind tunnel in which data were obtained under the following conditions: (1) free-stream operation at five set Mach number levels over the 2.50-4.63 range; (2) free-stream operation over a range of Reynolds number (at a fixed Mach number) to vary systematically the static pressure; and (3) operation in the flow field of a simple aerodynamic model to assess beam steering effects in traversing the attached shock layer.
Serraes, Brecht; Beeckman, Dimitri
2016-01-01
The aim of this study was to investigate the incidence and risk factors for developing pressure injuries (PIs) in patients placed on a static air support surfaces: mattress overlay, heel wedge, and seat cushion. Multicenter cohort study. The sample comprised 176 residents; their mean age was 87 (SD = 6.76) years; their mean Braden Scale score was 14 (SD = 2.54). The study was performed on a convenience sample of 6 nursing homes in Belgium. Data were collected on 23 care units. The primary outcome measure, cumulative PI incidence (category [stage] II-IV) over a 30-day observation period, was calculated. Pressure injury occurrence was defined according to the 2014 European and US National Pressure Injury Advisory panels, Pan Pacific Pressure Injury Alliance classification system. The PI incidence for category (stage) II-IV was 5.1%. Six residents (3.4%) developed a category II PI, and 3 (1.7%) developed a category III PI; no category IV ulcers occurred. No significant risk factors for category II-IV PIs were identified using multivariate logistic regression. Time of sitting in a chair was found to be a risk factor for development of nonblanchable erythema (category I PI) (odds ratio = 21.608; 95% confidence interval [CI], 20.510-22.812; P = .013). The median time to develop a category II-IV PI was 16 days (interquartile range = 2-26). The interrater reliability between the observations of the researcher and nurses on-site was almost perfect (0.86; 95% CI, 0.81-0.91). We found a low incidence of PIs when using a static air overlay mattress for patients at risk in a nursing home population. Static air support surfaces, alongside patient-tailored patient repositioning protocols, should be considered to prevent PIs in this patient population.
NASA Technical Reports Server (NTRS)
Koch, D. E.; Stephenson, J. G.
1983-01-01
Hole sizes deduced from pressure measurements. Measuring apparatus consists of pitot tube attached to water-filled manometer. Compartment tested is pressurized with air. Pitot probe placed at known distance from leak. Dynamic pressure of jet measured at that point and static pressure measured in compartment. Useful in situations in which small leaks are tolerable but large leaks are not.
NASA Astrophysics Data System (ADS)
Patselov, A. M.; Gladkovskii, S. V.; Lavrikov, R. D.; Kamantsev, I. S.
2015-10-01
The static and cyclic fracture toughnesses of a Ti-Al3Ti-Al-Al3Ti laminate composite material containing at most 15 vol % intermetallic compound are studied. Composite specimens are prepared by terminating reaction sintering of titanium and aluminum foils under pressure. The fracture of the titanium layers is quasi-cleavage during cyclic crack growth and is ductile during subsequent static loading.
NASA Astrophysics Data System (ADS)
Kruszka, L.; Magier, M.
2012-08-01
The main aim of studies on dynamic behaviour of construction materials at high strain rates is to determine the variation of mechanical properties (strength, plasticity) in function of the strain rate and temperature. On the basis of results of dynamic tests on the properties of constructional materials the constitutive models are formulated to create numerical codes applied to solve constructional problems with computer simulation methods. In the case of military applications connected with the phenomena of gunshot and terminal ballistics it's particularly important to develop a model of strength and armour penetration with KE projectile founded on reliable results of dynamic experiments and constituting the base for further analyses and optimization of projectile designs in order to achieve required penetration depth. Static and dynamic results of strength investigations of the EN AW-7012 aluminium alloy (sabot) and tungsten alloy (penetrator) are discussed in this paper. Static testing was carried out with the INSTRON testing machine. Dynamic tests have been conducted using the split Hopkinson pressure bars technique at strain rates up to 1,2 ṡ 104s-1 (for aluminium alloy) and 6 ṡ 103s-1 (for tungsten alloy).
NASA Technical Reports Server (NTRS)
Gedzelman, S. D.
1983-01-01
Gravity waves for the one year period beginning 19 October 1976 around Palisades, New York, are investigated to determine their statistical properties and sources. The waves have typical periods of 10 min, pressure amplitudes of 3 Pa and velocities of 30 m/s. In general, the largest, amplitude waves occur during late fall and early winter when the upper tropospheric winds directly overhead are fastest and the static stability of the lower troposphere is greatest. Mean wave amplitudes correlate highly with the product of the mean maximum wind speed and the mean low level stratification directly aloft. A distinct diurnal variation of wave amplitudes with the largest waves occurring in the pre-dawn hours is also observed as a result of the increased static stability then. The majority of waves are generated by shear instability; however, a number of waves are generated by distant sources such as nuclear detonations or large thunderstorms. The waves with distant sources can be distinguished on the basis of their generally much higher coherency across the grid and velocities that depart markedly from the wind velocity at any point in the sounding.
14 CFR 23.1323 - Airspeed indicating system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... instrument calibration error when the corresponding pitot and static pressures are applied. (b) Each airspeed... positive drainage of moisture from the pitot static plumbing. (d) If certification for instrument flight rules or flight in icing conditions is requested, each airspeed system must have a heated pitot tube or...
NASA Astrophysics Data System (ADS)
Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.
2018-01-01
Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2000-01-01
A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10-by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor staff and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.
Wu, Jianfeng; Wang, Huatao; Su, Zhiwei; Zhang, Minghao; Hu, Xiaodong; Wang, Yijie; Wang, Ziao; Zhong, Bo; Zhou, Weiwei; Liu, Junpeng; Xing, Scott Guozhong
2017-11-08
Graphene and nanomaterials based flexible pressure sensors R&D activities are becoming hot topics due to the huge marketing demand on wearable devices and electronic skin (E-Skin) to monitor the human body's actions for dedicated healthcare. Herein, we report a facile and efficient fabrication strategy to construct a new type of highly flexible and sensitive wearable E-Skin based on graphite nanoplates (GNP) and polyurethane (PU) nanocomposite films. The developed GNP/PU E-Skin sensors are highly flexible with good electrical conductivity due to their unique binary microstructures with synergistic interfacial characteristics, which are sensitive to both static and dynamic pressure variation, and can even accurately and quickly detect the pressure as low as 0.005 N/50 Pa and momentum as low as 1.9 mN·s with a gauge factor of 0.9 at the strain variation of up to 30%. Importantly, our GNP/PU E-Skin is also highly sensitive to finger bending and stretching with a linear correlation between the relative resistance change and the corresponding bending angles or elongation percentage. In addition, our E-Skin shows excellent sensitivity to voice vibration when exposed to a volunteer's voice vibration testing. Notably, the entire E-Skin fabrication process is scalable, low cost, and industrially available. Our complementary experiments with comprehensive results demonstrate that the developed GNP/PU E-Skin is impressively promising for practical healthcare applications in wearable devices, and enables us to monitor the real-world force signals in real-time and in-situ mode from pressing, hitting, bending, stretching, and voice vibration.
Halawa, Mohammed R; Eid, Yara M; El-Hilaly, Rana A; Abdelsalam, Mona M; Amer, Amr H
Foot disease is a common complication of type 2 diabetes that can have tragic consequences. Abnormal plantar pressures are considered to play a major role in the pathologies of neuropathic ulcers in the diabetic foot. To examine Relationship of Planter Pressure and Glycemic Control in Type 2 Diabetic Patients with and without Neuropathy. The study was conducted on 50 type 2 diabetic patients and 30 healthy volunteers. BMI calculation, disease duration, Hemoglobin A1c and presence of neuropathy (by history, foot examination and DN4 questionnaire) were recorded. Plantar pressure was recorded for all patients using the Mat-scan (Tekscan, Inc.vers. 6.34 Boston USA) in static conditions (standing) and dynamic conditions (taking a step on the Mat-scan). Plantar pressures (kPa) were determined at the five metatarsal areas, mid foot area, medial and lateral heel areas and medial three toes. Static and dynamic plantar pressures in both right and left feet were significantly higher in diabetic with neuropathy group than in control group in measured areas (P<0.05). Static and dynamic pressures in right and left feet were significantly higher in diabetic with neuropathy group than in diabetic without neuropathy group in measured areas (P<0.05). On comparison between controls and diabetic without neuropathy group there was a significant difference in plantar pressures especially in metatarsal areas (P<0.05). No significant correlations were present between the studied variables age, disease duration, BMI and HbA1c and plantar pressures in all studied areas. Persons with diabetic neuropathy have elevated peak plantar pressure (PPP) compared to patients without neuropathy and control group. HbA1c% as a surrogate for glycemic control had no direct impact on peak planter pressure, yet it indirectly impacts neuropathy evolution through out disease duration eventually leading to the drastic planter pressure and gait biomechanics changes. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.
Oliveira-Costa, Clarice Daniele Alves de; Friedman, Gilberto; Vieira, Sílvia Regina Rios; Fialkow, Léa
2012-07-01
To determine the utility of pulse pressure variation (ΔRESP PP) in predicting fluid responsiveness in patients ventilated with low tidal volumes (V T) and to investigate whether a lower ΔRESP PP cut-off value should be used when patients are ventilated with low tidal volumes. This cross-sectional observational study included 37 critically ill patients with acute circulatory failure who required fluid challenge. The patients were sedated and mechanically ventilated with a V T of 6-7 ml/kg ideal body weight, which was monitored with a pulmonary artery catheter and an arterial line. The mechanical ventilation and hemodynamic parameters, including ΔRESP PP, were measured before and after fluid challenge with 1,000 ml crystalloids or 500 ml colloids. Fluid responsiveness was defined as an increase in the cardiac index of at least 15%. ClinicalTrial.gov: NCT01569308. A total of 17 patients were classified as responders. Analysis of the area under the ROC curve (AUC) showed that the optimal cut-off point for ΔRESP PP to predict fluid responsiveness was 10% (AUC = 0.74). Adjustment of the ΔRESP PP to account for driving pressure did not improve the accuracy (AUC = 0.76). A ΔRESP PP ≥ 10% was a better predictor of fluid responsiveness than central venous pressure (AUC = 0.57) or pulmonary wedge pressure (AUC = 051). Of the 37 patients, 25 were in septic shock. The AUC for ΔRESP PP ≥ 10% to predict responsiveness in patients with septic shock was 0.484 (sensitivity, 78%; specificity, 93%). The parameter D RESP PP has limited value in predicting fluid responsiveness in patients who are ventilated with low tidal volumes, but a ΔRESP PP>10% is a significant improvement over static parameters. A ΔRESP PP ≥ 10% may be particularly useful for identifying responders in patients with septic shock.
Static Posturography: A New Perspective in the Assessment of Lameness in a Canine Model
Manera, Maria E.; Carrillo, José M.; Batista, Miguel; Rubio, Monica; Sopena, Joaquin; Santana, Angelo
2017-01-01
The aim of this study was to assess the static posturography in dogs as a useful tool for diagnosis of lameness by means of the use of a pressure platform. For this purpose, a series of different parameters (pressure distribution, area of support, mean pressure, maximum pressure and statokinesiograms) were obtained from five lame dogs with unilateral elbow osteoarthritis treated with plasma rich in growth factors. Data were obtained before and 3 months after treatment, and results were compared with a control group of sound dogs of similar conformation. Significant differences were found in the above mentioned parameters between sound and lame limbs. Improvement after 3 months of treatment was also detected, demonstrating that this multi-parametric technique is an effective and reliable method for the assessment of lameness in dogs. PMID:28114312
Static Posturography: A New Perspective in the Assessment of Lameness in a Canine Model.
Manera, Maria E; Carrillo, José M; Batista, Miguel; Rubio, Monica; Sopena, Joaquin; Santana, Angelo; Vilar, José M
2017-01-01
The aim of this study was to assess the static posturography in dogs as a useful tool for diagnosis of lameness by means of the use of a pressure platform. For this purpose, a series of different parameters (pressure distribution, area of support, mean pressure, maximum pressure and statokinesiograms) were obtained from five lame dogs with unilateral elbow osteoarthritis treated with plasma rich in growth factors. Data were obtained before and 3 months after treatment, and results were compared with a control group of sound dogs of similar conformation. Significant differences were found in the above mentioned parameters between sound and lame limbs. Improvement after 3 months of treatment was also detected, demonstrating that this multi-parametric technique is an effective and reliable method for the assessment of lameness in dogs.
Stolwijk, Niki M.; Duysens, Jacques; Louwerens, Jan Willem K.; van de Ven, Yvonne HM.; Keijsers, Noël LW.
2013-01-01
In contrast to western countries, foot complaints are rare in Africa. This is remarkable, as many African adults walk many hours each day, often barefoot or with worn-out shoes. The reason why Africans can withstand such loading without developing foot complaints might be related to the way the foot is loaded. Therefore, static foot geometry and dynamic plantar pressure distribution of 77 adults from Malawi were compared to 77 adults from the Netherlands. None of the subjects had a history of foot complaints. The plantar pressure pattern as well as the Arch Index (AI) and the trajectory of the center of pressure during the stance phase were calculated and compared between both groups. Standardized pictures were taken from the feet to assess the height of the Medial Longitudinal Arch (MLA). We found that Malawian adults: (1) loaded the midfoot for a longer and the forefoot for a shorter period during roll off, (2) had significantly lower plantar pressures under the heel and a part of the forefoot, and (3) had a larger AI and a lower MLA compared to the Dutch. These findings demonstrate that differences in static foot geometry, foot loading, and roll off technique exist between the two groups. The advantage of the foot loading pattern as shown by the Malawian group is that the plantar pressure is distributed more equally over the foot. This might prevent foot complaints. PMID:23468936
Research on viscosity of metal at high pressure
NASA Astrophysics Data System (ADS)
Li, Y.; Liu, F.; Ma, X.; Zhang, M.
2016-11-01
A new experimental technique, the flyer-impact method, is proposed in this article to investigate the viscosity coefficient of shocked metals. In this technique, a shock wave with a sinusoidal perturbation on the front is induced by the sinusoidal profile of the impact surface of the sample by use of a two-stage light-gas gun, and the oscillatory damping process of the perturbation amplitude is monitored by electric pins. The damping processes of aluminum at 78 and 101 GPa and iron at 159 and 103 GPa are obtained by this technique, which supplement the existing data by measuring the viscosity coefficient via a dynamic high-pressure method. Applying the formula of Miller and Ahrens to fit the experimental data, the shear viscosity coefficients of aluminum at 78 and 101 GPa are 1350 ± 500 and 1200 ± 500 Pa s, respectively, and those of iron at 159 and 103 GPa are 1150 ± 1000 and 4800 ± 1000 Pa s, respectively. The values measured by the flyer-impact method, approximately 103 Pa s, are consistent with those measured by Sakharov's method, while still greatly differing from those measured by static high-pressure methods. In dynamic high-pressure experiments, the shear viscosity is related to dislocation motion in the solid material, while that in static high-pressure experiments is related to the diffusion motion of atoms or molecules in liquids. Therefore, there are different physical meanings of shear viscosity in dynamic and static high-pressure experiments, and there is no comparability among these results.
Noro, Takahiko; Nakamoto, Kenji; Sato, Makoto; Yasuda, Noriko; Ito, Yoshinori; Ogawa, Shumpei; Nakano, Tadashi; Tsuneoka, Hiroshi
2014-10-01
We retrospectively examined intraocular pressure variations after visual field examination in primary open angle glaucoma (POAG), together with its influencing factors and its association with 24-hour intraocular pressure variations. Subjects were 94 eyes (52 POAG patients) subjected to measurements of 24-hour intraocular pressure and of changes in intraocular pressure after visual field examination using a Humphrey Visual Field Analyzer. Subjects were classified into three groups according to the magnitude of variation (large, intermediate and small), and 24-hour intraocular pressure variations were compared among the three groups. Factors influencing intraocular pressure variations after visual field examination and those associated with the large variation group were investigated. Average intraocular pressure variation after visual field examination was -0.28 ± 1.90 (range - 6.0(-) + 5.0) mmHg. No significant influencing factors were identified. The intraocular pressure at 3 a.m. was significantly higher in the large variation group than other two groups (p < 0.001). Central corneal thickness was correlated with the large variation group (odds ratio = 1.04; 95% confidence interval, 1.01-1.07 ; p = 0.02). No particular tendencies in intraocular pressure variations were found after visual field examination. Increases in intraocular pressure during the night might be associated with large intraocular pressure variations after visual field examination.
Bragin, Denis E.; Statom, Gloria; Nemoto, Edwin M.
2016-01-01
SUMMARY We previously suggested that the discrepancy between the critical cerebral perfusion pressures (CPP) of 30 mmHg, obtained by increasing intracranial pressure (ICP), and 60 mmHg, obtained by decreasing arterial pressure, was due to pathological microvascular shunting at high ICP [1] and that the determination of the critical CPP by the static cerebral blood flow (CBF) autoregulation curve is not valid with intracranial hypertension. Here we demonstrated that critical CPP, measured by induced dynamic ICP reactivity (iPRx) and cerebrovascular reactivity (CVRx), accurately identifies the critical CPP in the hypertensive rat brain which differs from that obtained by the static autoregulation curve. Step changes in CPP from 70 to 50 and 30 mmHg were made by increasing ICP using an artificial cerebrospinal fluid reservoir connected to the cisterna magna. At each CPP, a transient 10-mmHg rise in arterial pressure was induced by bolus i.v. dopamine. iPRx and iCVRx were calculated as ΔICP/ΔMAP and as ΔCBF/ΔMAP, respectively. The critical CPP at high ICP, obtained by iPRx and iCVRx, is 50 mmHg, where compromised capillary flow, transition of blood flow to non-nutritive microvascular shunts, tissue hypoxia and BBB leakage begin to occur, which is higher than the 30 mmHg determined by static autoregulation. PMID:27165917
NASA Technical Reports Server (NTRS)
Tracy, M. B.; Plentovich, E. B.
1993-01-01
Static and fluctuating pressure distributions were obtained along the floor of a rectangular-box cavity in an experiment performed in the LaRC 0.3-Meter Transonic Cryogenic Tunnel. The cavity studied was 11.25 in. long and 2.50 in. wide with a variable height to obtain length-to-height ratios of 4.4, 6.7, 12.67, and 20.0. The data presented herein were obtained for yaw angles of 0 deg and 15 deg over a Mach number range from 0.2 to 0.9 at a Reynolds number of 30 x 10(exp 6) per ft with a boundary-layer thickness of approximately 0.5 in. The results indicated that open and transitional-open cavity flow supports tone generation at subsonic and transonic speeds at Mach numbers of 0.6 and above. Further, pressure fluctuations associated with acoustic tone generation can be sustained when static pressure distributions indicate that transitional-closed and closed flow fields exist in the cavity. Cavities that support tone generation at 0 deg yaw also supported tone generation at 15 deg yaw when the flow became transitional-closed. For the latter cases, a reduction in tone amplitude was observed. Both static and fluctuating pressure data must be considered when defining cavity flow fields, and the flow models need to be refined to accommodate steady and unsteady flows.
Investigation of Shock Diffusers at Mach Number 1.85. 1 - Projecting Single Shock Cones
1947-06-17
cylindrical simulated combustion chamber was used to vary the outlet area of the flow through the diffuser. The pitot -static rake , located as shown in the...Simulated combustion u chamber A 90° W •—Conical damper S Static-pressure orifice ps pitot -static "" rake ’ NATIONAL ADVISORY...recoveries were obtained with subsonic entrance flow. INTRODCJCTION For efficient conversion of the kinetic energy of a supersonic air stream into ram
Estimation of dynamic stability parameters from drop model flight tests
NASA Technical Reports Server (NTRS)
Chambers, J. R.; Iliff, K. W.
1981-01-01
The overall remotely piloted drop model operation, descriptions, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods are discussed. Static and dynamic stability derivatives were obtained for an angle attack range from -20 deg to 53 deg. It is indicated that the variations of the estimates with angle of attack are consistent for most of the static derivatives, and the effects of configuration modifications to the model were apparent in the static derivative estimates.
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2001-01-01
A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10- by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor stall and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.
Hydrostatic pressure modulates mRNA expressions for matrix proteins in human meniscal cells.
Suzuki, Toru; Toyoda, Takashi; Suzuki, Hiroshi; Hisamori, Noriyuki; Matsumoto, Hideo; Toyama, Yoshiaki
2006-01-01
There have been few reports describing the effects of mechanical loading on the metabolism of meniscal cells. The aim of this study was to investigate the effects of hydrostatic pressure on meniscal cell metabolism. Human meniscal cells were cultured in alginate beads for 3 days. They were then subjected to 4 MPa hydrostatic pressure for 4 hours in either a static or cyclic (1 Hz) mode using a specially designed and constructed system. Immediately after the pressure application, the messenger RNA levels for aggrecan, type I collagen, matrix metalloproteinases (MMP) -1, -3, -9, -13 and tissue inhibitors of metalloproteinases (TIMP) -1 and -2 were measured. It was found that the application of static hydrostatic pressure caused a significant decrease in mRNA expression for MMP-1 and -13 (p<0.05). In contrast, the application of cyclic hydrostatic pressure was associated with a significant increase in type I collagen (p<0.01), TIMP-1 and -2 mRNA expression (p<0.01). These results would suggest that hydrostatic pressure in isolation can modulate mRNA expressions for matrix proteins in meniscal cells.
NASA Technical Reports Server (NTRS)
Adamson, David; Boatright, William B
1957-01-01
An investigation of the nature of the flow field behind a rectangular wing of circular arc cross section has been conducted in the Langley 9-inch supersonic tunnel. Pitot- and static-pressure surveys covering a region of flow behind the wing have been made together with detailed pitot surveys throughout the region of the wake. In addition, the flow direction has been measured by means of a weathercocking vane. Theoretical calculations have been made to obtain the variation of both downwash and sidewash with angle of attack by using the superposition method of Lagerstrom, Graham, and Grosslight. In addition, the effect of wing thickness on the sidewash with the wing at 0 degree angle of attack has been evaluated.
Over-the-wing model thrust reverser noise tests
NASA Technical Reports Server (NTRS)
Goodykoontz, J.; Gutierrez, O.
1977-01-01
Static acoustic tests were conducted on a 1/12 scale model over-the-wing target type thrust reverser. The model configuration simulates a design that is applicable to the over-the-wing short-haul advanced technology engine. Aerodynamic screening tests of a variety of reverser designs identified configurations that satisfied a reverse thrust requirement of 35 percent of forward thrust at a nozzle pressure ratio of 1.29. The variations in the reverser configuration included, blocker door angle, blocker door lip angle and shape, and side skirt shape. Acoustic data are presented and compared for the various configurations. The model data scaled to a single full size engine show that peak free field perceived noise (PN) levels at a 152.4 meter sideline distance range from 98 to 104 PNdb.
Porous plug for reducing orifice induced pressure error in airfoils
NASA Technical Reports Server (NTRS)
Plentovich, Elizabeth B. (Inventor); Gloss, Blair B. (Inventor); Eves, John W. (Inventor); Stack, John P. (Inventor)
1988-01-01
A porous plug is provided for the reduction or elimination of positive error caused by the orifice during static pressure measurements of airfoils. The porous plug is press fitted into the orifice, thereby preventing the error caused either by fluid flow turning into the exposed orifice or by the fluid flow stagnating at the downstream edge of the orifice. In addition, the porous plug is made flush with the outer surface of the airfoil, by filing and polishing, to provide a smooth surface which alleviates the error caused by imperfections in the orifice. The porous plug is preferably made of sintered metal, which allows air to pass through the pores, so that the static pressure measurements can be made by remote transducers.
Zhang, Hong; Liu, Howe; Lin, Qing; Zhang, Guohui; Mason, David C
2016-08-26
Homeostasis imbalance of intracellular Ca(2+) is one of the key pathophysiological factors in skeletal muscle injuries. Such imbalance can cause significant change in the metabolism of Ca(2+)-related biomarkers in skeletal muscle, such as superoxide dismutase (SOD), malondialdehyde (MDA) and creatine kinase (CK). Measurements of these biomarkers can be used to evaluate the degree of damage to human skeletal muscle cells (HSKMCs) injury. Rolling manipulation is the most popular myofascial release technique in Traditional Chinese Medicine. The mechanism of how this technique works in ameliorating muscle injury is unknown. This study aimed to investigate the possible Ca(2+) mediated effects of intermittent pressure imitating rolling manipulation (IPIRM) of Traditional Chinese Medicine in the injured HSKMCs. The normal HSKMCs was used as control normal group (CNG), while the injured HSKMCs were further divided into five different groups: control injured group (CIG), Rolling manipulation group (RMG), Rolling manipulation-Verapamil group (RMVG), static pressure group (SPG) and static pressure-Verapamil group (SPVG). RMG and RMVG cells were cyclically exposed to 9.5-12.5 N/cm(2) of IPIRM at a frequency of 1.0 Hz for 10 min. SPG and SPVG were loaded to a continuous pressure of 12.5 N/cm(2) for 10 min. Verapamil, a calcium antagonist, was added into the culture mediums of both RMVG and SPVG groups to block the influx of calcium ion. Compared with the CNG (normal cells), SOD activity was remarkably decreased while both MDA content and CK activity were significantly increased in the CIG (injured cells). When the injured cells were treated with the intermittent rolling manipulation pressure (RMG), the SOD activity was significantly increased and MDA content and CK activity were remarkably decreased. These effects were suppressed by adding the calcium antagonist Verapamil into the culture medium in RMVG. On the other hand, exposure to static pressure in SPG and SPVG affected neither the SOD activity nor the MDA content and CK activity in the injured muscle cells regardless of the presence of verapamil or not in the culture medium. These data suggest that the intermittent rolling pressure with the manipulation could ameliorate HSKMCs injury through a Ca(2+) dependent pathway. Static pressure did not lead to the same results.
An improved method for predicting brittleness of rocks via well logs in tight oil reservoirs
NASA Astrophysics Data System (ADS)
Wang, Zhenlin; Sun, Ting; Feng, Cheng; Wang, Wei; Han, Chuang
2018-06-01
There can be no industrial oil production in tight oil reservoirs until fracturing is undertaken. Under such conditions, the brittleness of the rocks is a very important factor. However, it has so far been difficult to predict. In this paper, the selected study area is the tight oil reservoirs in Lucaogou formation, Permian, Jimusaer sag, Junggar basin. According to the transformation of dynamic and static rock mechanics parameters and the correction of confining pressure, an improved method is proposed for quantitatively predicting the brittleness of rocks via well logs in tight oil reservoirs. First, 19 typical tight oil core samples are selected in the study area. Their static Young’s modulus, static Poisson’s ratio and petrophysical parameters are measured. In addition, the static brittleness indices of four other tight oil cores are measured under different confining pressure conditions. Second, the dynamic Young’s modulus, Poisson’s ratio and brittleness index are calculated using the compressional and shear wave velocity. With combination of the measured and calculated results, the transformation model of dynamic and static brittleness index is built based on the influence of porosity and clay content. The comparison of the predicted brittleness indices and measured results shows that the model has high accuracy. Third, on the basis of the experimental data under different confining pressure conditions, the amplifying factor of brittleness index is proposed to correct for the influence of confining pressure on the brittleness index. Finally, the above improved models are applied to formation evaluation via well logs. Compared with the results before correction, the results of the improved models agree better with the experimental data, which indicates that the improved models have better application effects. The brittleness index prediction method of tight oil reservoirs is improved in this research. It is of great importance in the optimization of fracturing layer and fracturing construction schemes and the improvement of oil recovery.
46 CFR 153.940 - Standards for marking of cargo hose.
Code of Federal Regulations, 2012 CFR
2012-10-01
... abnormally distort under static liquid pressure at least as great as the recommended working pressure. [CGD... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Marking of... manufacture; (2) Working pressure discribed in paragraph (d) of this section; (3) Date of the last test made...
46 CFR 153.940 - Standards for marking of cargo hose.
Code of Federal Regulations, 2011 CFR
2011-10-01
... abnormally distort under static liquid pressure at least as great as the recommended working pressure. [CGD... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Marking of... manufacture; (2) Working pressure discribed in paragraph (d) of this section; (3) Date of the last test made...
46 CFR 153.940 - Standards for marking of cargo hose.
Code of Federal Regulations, 2013 CFR
2013-10-01
... abnormally distort under static liquid pressure at least as great as the recommended working pressure. [CGD... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Marking of... manufacture; (2) Working pressure discribed in paragraph (d) of this section; (3) Date of the last test made...
46 CFR 153.940 - Standards for marking of cargo hose.
Code of Federal Regulations, 2010 CFR
2010-10-01
... abnormally distort under static liquid pressure at least as great as the recommended working pressure. [CGD... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Marking of... manufacture; (2) Working pressure discribed in paragraph (d) of this section; (3) Date of the last test made...
46 CFR 153.940 - Standards for marking of cargo hose.
Code of Federal Regulations, 2014 CFR
2014-10-01
... abnormally distort under static liquid pressure at least as great as the recommended working pressure. [CGD... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Marking of... manufacture; (2) Working pressure described in paragraph (d) of this section; (3) Date of the last test made...
NASA Astrophysics Data System (ADS)
Adhikari, K.; Choudhury, S.; Mandal, R.; Barman, S.; Otani, Y.; Barman, A.
2017-01-01
Ferromagnetic nano-cross structures promise exotic static magnetic configurations and very rich and tunable magnetization dynamics leading towards potential applications in magnetic logic and communication devices. Here, we report an experimental study of external magnetic field tunable static magnetic configurations and magnetization dynamics in Ni80Fe20 nano-cross structures with varying arm lengths (L). Broadband ferromagnetic resonance measurements showed a strong variation in the number of spin-wave (SW) modes and mode frequencies (f) with bias field magnitude (H). Simulated static magnetic configurations and SW mode profiles explain the rich variation of the SW spectra, including mode softening, mode crossover, mode splitting, and mode merging. Such variation of SW spectra is further modified by the size of the nano-cross. Remarkably, with decreasing arm length of nano-cross structures, the onion magnetization ground state becomes more stable. Calculated magnetostatic field distributions support the above observations and revealed the non-collective nature of the dynamics in closely packed nano-cross structures. The latter is useful for their possible applications in magnetic storage and memory devices.
Aerodynamic characteristics of the National Launch System (NLS) 1 1/2 stage launch vehicle
NASA Technical Reports Server (NTRS)
Springer, A. M.; Pokora, D. C.
1994-01-01
The National Aeronautics and Space Administration (NASA) is studying ways of assuring more reliable and cost effective means to space. One launch system studied was the NLS which included the l l/2 stage vehicle. This document encompasses the aerodynamic characteristics of the 1 l/2 stage vehicle. To support the detailed configuration definition two wind tunnel tests were conducted in the NASA Marshall Space Flight Center's 14x14-Inch Trisonic Wind Tunnel during 1992. The tests were a static stability and a pressure test, each utilizing 0.004 scale models. The static stability test resulted in the forces and moments acting on the vehicle. The aerodynamics for the reference configuration with and without feedlines and an evaluation of three proposed engine shroud configurations were also determined. The pressure test resulted in pressure distributions over the reference vehicle with and without feedlines including the reference engine shrouds. These pressure distributions were integrated and balanced to the static stability coefficients resulting in distributed aerodynamic loads on the vehicle. The wind tunnel tests covered a Mach range of 0.60 to 4.96. These ascent flight aerodynamic characteristics provide the basis for trajectory and performance analysis, loads determination, and guidance and control evaluation.
NASA Astrophysics Data System (ADS)
Brown, M. R. M.; Ge, S.
2017-12-01
Increased pore pressure decreasing the effective stress on a critically stressed fault has been the accepted mechanism for injection-induced seismicity. This, however, is an over simplified approach that does not take into account the coupled hydro-mechanical effects. In addition, this approach leaves out a possible key stressor in the system, the earthquakes. Earthquakes are known to interact with each other by Coulomb static stress transfer, the process of permanent stress change caused by movement on a fault. In areas of induced seismicity, many small to moderate earthquakes can occur adding to the stress in the system via Coulomb static stress transfer. Here we ask: Is the Coulomb static stress transfer from the earthquakes as important as the pore pressure increase or stress changes caused by coupled hydro-mechanical processes? Is there a point where the Coulomb static stress transfer from the earthquakes becomes the controlling process for inducing future earthquakes? How does the effect of many small earthquakes compare to a few larger events in terms of Coulomb static stress transfer? In this study, we use hydrologic and coupled hydro-mechanical models and USGS Coulomb 3 to assess the importance of induced earthquakes in terms of the stress change in the system. Realistic scenarios of wastewater injection and earthquake magnitude-frequency distributions are used to develop generic models. Model variables and data are varied to evaluate the range of possible outcomes. Preliminary results show that the stress change associated with injection is of the same order of magnitude as the cumulative Coulomb static stress change of a series of small (1
Flight-test data on the static fore-and-aft stability of various German airplanes
NASA Technical Reports Server (NTRS)
Hubner, Walter
1933-01-01
The static longitudinal stability of an airplane with locked elevator is usually determined by analysis and model tests. The present report proposes to supply the results of such measurements. The method consisted of recording the dynamic pressure versus elevator displacement at different center-of-gravity positions in unaccelerated flight.
Experimental measurements of hydrodynamic stiffness matrices for a centrifugal pump impeller
NASA Technical Reports Server (NTRS)
Chamieh, D. S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.; Franz, R.
1982-01-01
The objective of the Rotor Force Test Facility at the California Institute of Technology is to artificially orbit the center of rotation of an impeller enclosed within a volute over a range of frequencies from zero to synchronous and to measure the resulting forces on the impeller. Preliminary data from the first stage experiments in which the shaft is orbited at low frequency is reported. Steady volute forces along with stiffness matrices due to the change in position of the rotor center are measured. Static pressure taps around the volute are used to obtain volute pressure distributions for various fixed positions of the impeller center and for various flow rates. Static pressure forces are calculated from these pressure distributions allowing a more complete analysis of the components of the impeller forces. Comparison is made with various existing theoretical and experimental results.
Cold flow testing of the Space Shuttle Main Engine high pressure fuel turbine model
NASA Technical Reports Server (NTRS)
Hudson, Susan T.; Gaddis, Stephen W.; Johnson, P. D.; Boynton, James L.
1991-01-01
In order to experimentally determine the performance of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) turbine, a 'cold' air flow turbine test program was established at NASA's Marshall Space Flight Center. As part of this test program, a baseline test of Rocketdyne's HPFTP turbine has been completed. The turbine performance and turbine diagnostics such as airfoil surface static pressure distributions, static pressure drops through the turbine, and exit swirl angles were investigated at the turbine design point, over its operating range, and at extreme off-design points. The data was compared to pretest predictions with good results. The test data has been used to improve meanline prediction codes and is now being used to validate various three-dimensional codes. The data will also be scaled to engine conditions and used to improve the SSME steady-state performance model.
NASA Technical Reports Server (NTRS)
Lagen, Nicholas; Seiner, John M.
1990-01-01
Water cooled supersonic probes are developed to investigate total pressure, static pressure, and total temperature in high-temperature jet plumes and thereby determine the mean flow properties. Two probe concepts, designed for operation at up to 1366 K in a Mach 2 flow, are tested on a water cooled nozzle. The two probe designs - the unsymmetric four-tube cooling configuration and the symmetric annular cooling design - take measurements at 755, 1089, and 1366 K of the three parameters. The cooled total and static pressure readings are found to agree with previous test results with uncooled configurations. The total-temperature probe, however, is affected by the introduction of water coolant, and effect which is explained by the increased heat transfer across the thermocouple-bead surface. Further investigation of the effect of coolant on the temperature probe is proposed to mitigate the effect and calculate more accurate temperatures in jet plumes.
NASA Technical Reports Server (NTRS)
Allison, Dennis O.; Cavallo, Peter A.
2003-01-01
An equivalent-plate structural deformation technique was coupled with a steady-state unstructured-grid three-dimensional Euler flow solver and a two-dimensional strip interactive boundary-layer technique. The objective of the research was to assess the extent to which a simple accounting for static model deformations could improve correlations with measured wing pressure distributions and lift coefficients at transonic speeds. Results were computed and compared to test data for a wing-fuselage model of a generic low-wing transonic transport at a transonic cruise condition over a range of Reynolds numbers and dynamic pressures. The deformations significantly improved correlations with measured wing pressure distributions and lift coefficients. This method provided a means of quantifying the role of dynamic pressure in wind-tunnel studies of Reynolds number effects for transonic transport models.
A design method for entrance sections of transonic wind tunnels with rectangular cross sections
NASA Technical Reports Server (NTRS)
Lionel, L.; Mcdevitt, J. B.
1975-01-01
A mathematical technique developed to design entrance sections for transonic or high-speed subsonic wind tunnels with rectangular cross sections is discribed. The transition from a circular cross-section setting chamber to a rectangular test section is accomplished smoothly so as not to introduce secondary flows (vortices or boundary-layer separation) into a uniform test stream. The results of static-pressure measurements in the transition region and of static and total-pressure surveys in the test section of a pilot model for a new facility at the Ames Research Center are presented.
Poroelastic metamaterials with negative effective static compressibility
NASA Astrophysics Data System (ADS)
Qu, Jingyuan; Kadic, Muamer; Wegener, Martin
2017-04-01
We suggest a three-dimensional metamaterial structure exhibiting an isotropic expansion in response to an increased hydrostatic pressure imposed by a surrounding gas or liquid. We show that this behavior corresponds to a negative absolute (rather than only differential) effective compressibility under truly static and stable conditions. The poroelastic metamaterial is composed of only a single ordinary constituent solid. By detailed numerical parameter studies, we find that a pressure increase of merely one bar can lead to a relative increase in the effective volume exceeding one percent for geometrical structure parameters that should be accessible to fabrication by 3D printing.
The numerical simulation based on CFD of hydraulic turbine pump
NASA Astrophysics Data System (ADS)
Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.
2016-05-01
As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.
NASA Technical Reports Server (NTRS)
Wing, David J.
1995-01-01
Distributions of static pressure coefficient over the afterbody and axisymmetric nozzles of a generic, twin-tail twin-engine fighter were obtained in the Langley 16-Foot Transonic Tunnel. The longitudinal positions of the vertical and horizontal tails were varied for a total of six aft-end configurations. Static pressure coefficients were obtained at Mach numbers between 0.6 and 1.2, angles of attack between 0 deg and 8 deg, and nozzle pressure ratios ranging from jet-off to 8. The results of this investigation indicate that the influence of the vertical and horizontal tails extends beyond the vicinity of the tail-afterbody juncture. The pressure distribution affecting the aft-end drag is influenced more by the position of the vertical tails than by the position of the horizontal tails. Transonic tail-interference effects are seen at lower free-stream Mach numbers at positive angles of attack than at an angle of attack of 0 deg.
Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar
Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Prakapenka, Vitali B; Abakumov, Artem M
2012-01-01
Since invention of the diamond anvil cell technique in the late 1950s for studying materials at extreme conditions, the maximum static pressure generated so far at room temperature was reported to be about 400 GPa. Here we show that use of micro-semi-balls made of nanodiamond as second-stage anvils in conventional diamond anvil cells drastically extends the achievable pressure range in static compression experiments to above 600 GPa. Micro-anvils (10–50 μm in diameter) of superhard nanodiamond (with a grain size below ∼50 nm) were synthesized in a large volume press using a newly developed technique. In our pilot experiments on rhenium and gold we have studied the equation of state of rhenium at pressures up to 640 GPa and demonstrated the feasibility and crucial necessity of the in situ ultra high-pressure measurements for accurate determination of material properties at extreme conditions. PMID:23093199
Measurements of Flow Turbulence in the NASA Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Wiesman, Carol D.; Sleeper, Robert K.
2005-01-01
An assessment of the flow turbulence in the NASA Langley Transonic Dynamics Tunnel (TDT) was conducted during calibration activities following the facility conversion from a Freon-12 heavy-gas test medium to an R134a heavy-gas test medium. Total pressure, static pressure, and acoustic pressure levels were measured at several locations on a stingmounted rake. The test measured wall static pressures at several locations although this paper presents only those from one location. The test used two data acquisition systems, one sampling at 1000 Hz and the second sampling at 125 000 Hz, for acquiring time-domain data. This paper presents standard deviations and power spectral densities of the turbulence points throughout the wind tunnel envelope in air and R134a. The objective of this paper is to present the turbulence characteristics for the test section. No attempt is made to assess the causes of the turbulence. The present paper looks at turbulence in terms of pressure fluctuations. Reference 1 looked at tunnel turbulence in terms of velocity fluctuations.
NASA Technical Reports Server (NTRS)
Debogdan, C. E.; Moss, J. E., Jr.; Braithwaite, W. M.
1977-01-01
The measured distribution of compressor interstage pressures and temperatures resulting from a 180 deg inlet-total-pressure distortion for a J85-13 turbojet engine is reported. Extensive inner stage instrumentation combined with stepwise rotation of the inlet distortion gave data of high circumferential resolution. The steady-state pressures and temperatures along with the amplitude, extent, and location of the distorted areas are given. Data for 80, 90, and 100 percent of rotor design speed are compared with clean (undistorted) inlet flow conditions to show pressure and temperature behavior within the compressor. Both overall and stagewise compressor performances vary only slightly when clean and distorted inlet conditions are compared. Total and static pressure distortions increase in amplitude in the first few stages of the compressor and then attenuate fairly uniformly to zero at the discharge. Total-temperature distortion induced by the pressure distortion reached a maximum amplitude by the first two stages and decayed only a little through the rest of the compressor. Distortion amplitude tended to peak in line with the screen edges, and, except for total and static pressure in the tip zone, there was little swirl in the axial direction.
Survival of Shewanella Oneidensis MR-1 to GPa pressures
NASA Astrophysics Data System (ADS)
Hazael, Rachael; Foglia, Fabrizia; Leighs, James; Appleby-Thomas, Gareth; Daniel, Isabelle; Eakins, Daniel; Meersman, Filip; McMillian, Paul
2013-06-01
Most life on Earth is thought to occupy near-surface environments under relatively mild conditions of temperature, pressure, pH, salinity etc. That view is changing following discovery of extremophile organisms that prefer environments based on high or low T, extreme chemistries, or very high pressures. Over the past three decades, geomicrobiologists have discovered an extensive subsurface biosphere, that may account for between 1/10 to 1/3 of Earth's living biomass. We subjected samples of Shewanella oneidensis to several pressure cycles to examine its survival to static high pressures to above 1.5 GPa. Shewanella forms part of a genus that contains several piezophile species like S. violacea and S. benthica. We have obtained growth curves for populations recovered from high P conditions and cultured in the laboratory, before being subjected to even higher pressures. We have also carried out dynamic shock experiments using a specially designed cell to maintain high-P, low-T conditions during shock-recovery experiments and observe colony formation among the survivors. Colony counts, shape and growth curves allow us to compare the static vs dynamic pressure resistance of wild type vs pressure-adapted strains. Leverhulme
Static and Dynamic Moduli of Malm Carbonate: A Poroelastic Correlation
NASA Astrophysics Data System (ADS)
Hassanzadegan, Alireza; Guérizec, Romain; Reinsch, Thomas; Blöcher, Guido; Zimmermann, Günter; Milsch, Harald
2016-08-01
The static and poroelastic moduli of a porous rock, e.g., the drained bulk modulus, can be derived from stress-strain curves in rock mechanical tests, and the dynamic moduli, e.g., dynamic Poisson's ratio, can be determined by acoustic velocity and bulk density measurements. As static and dynamic elastic moduli are different, a correlation is often required to populate geomechanical models. A novel poroelastic approach is introduced to correlate static and dynamic bulk moduli of outcrop analogues samples, representative of Upper-Malm reservoir rock in the Molasse basin, southwestern Germany. Drained and unjacketed poroelastic experiments were performed at two different temperature levels (30 and 60°C). For correlating the static and dynamic elastic moduli, a drained acoustic velocity ratio is introduced, corresponding to the drained Poisson's ratio in poroelasticity. The strength of poroelastic coupling, i.e., the product of Biot and Skempton coefficients here, was the key parameter. The value of this parameter decreased with increasing effective pressure by about 56 ~% from 0.51 at 3 MPa to 0.22 at 73 MPa. In contrast, the maximum change in P- and S-wave velocities was only 3 % in this pressure range. This correlation approach can be used in characterizing underground reservoirs, and can be employed to relate seismicity and geomechanics (seismo-mechanics).
Jiang, Qixia; Li, Xiaohua; Zhang, Aiqin; Guo, Yanxia; Liu, Yahong; Liu, Haiying; Qu, Xiaolong; Zhu, Yajun; Guo, Xiujun; Liu, Li; Zhang, Liyan; Bo, Suping; Jia, Jing; Chen, Yuejuan; Zhang, Rui; Wang, Jiandong
2014-01-01
Objective: Present study is designed to evaluate the effects of preventing pressure ulcer in surgical patients with two types of pressure-relieving mattresses. Methods: 1074 surgical patients from 12 hospitals in China were divided into A group (static air mattress with repositioning every 2 hours, n = 562) and B group (power pressure air mattress with repositioning every 2 hours, n = 512). The patient was subjected to a pressure-relieving mattress and observed from 0-5 days after surgery. Indications include the Braden scores, hospital-acquired pressure ulcers (HAPU) incidence and stage. Results: The Braden scores between two groups in five days after surgery were no significant (P > 0.05). The incidence of HAPU between two groups in same days also was no significant (1.07% vs. 0.98%, P > 0.05). The incidence of Stage I and stage II pressure ulcers in group A and B were 1.07% (6/562) and 0.98% (5/512), respectively (χ2 = 0.148, P = 0.882). Conclusion: The effects of preventing pressure ulcer in surgical patients with two types of pressure-relieving mattresses are similar, but the protocol by static air mattress with repositioning every 2 hours is benefit when no power. PMID:25356144
NASA Astrophysics Data System (ADS)
Zhang, Jiangbo; Li, Xingwen; Hang, Yuhua; Yang, Weihong
2018-06-01
In order to study the characteristics of electrothermal plasma interaction with energetic materials, especially the ignition ability, a novel model considering polyethylene and copper ablation is developed, and an ignition experiment system is set up. The parameters of the plasma and the surface conditions of the energetic materials are measured in the testing. The results show the measured first peak pressure to be ~2.2 MPa, the second peak pressure to be ~3.9 MPa, and the visible flame velocity to be ~2000 m s‑1. Circular pits of the order of microns and nanometers in size are observed on the surface of the energetic materials. Further, the parameters of the plasma, including static pressure, total pressure, density, temperature, velocity, copper concentration and PE concentration, are calculated and analyzed by the established model, under discharge currents of 9 kA. The simulation is similar to those of experimental results. A shock wave is observed in the experiment and is presented in the calculations; it plays an important role in the performance of the plasma in the nozzle region, where the parameters of the plasma variation trends are very complex. With the aim of obtaining the overall performance of the plasma, the coupling characteristics of multiple parameters must be taken into account, in accordance with the developed electrothermal plasma model.
On the relationship between ontogenetic and static allometry.
Pélabon, Christophe; Bolstad, Geir H; Egset, Camilla K; Cheverud, James M; Pavlicev, Mihaela; Rosenqvist, Gunilla
2013-02-01
Ontogenetic and static allometries describe how a character changes in size when the size of the organism changes during ontogeny and among individuals measured at the same developmental stage, respectively. Understanding the relationship between these two types of allometry is crucial to understanding the evolution of allometry and, more generally, the evolution of shape. However, the effects of ontogenetic allometry on static allometry remain largely unexplored. Here, we first show analytically how individual variation in ontogenetic allometry and body size affect static allometry. Using two longitudinal data sets on ontogenetic and static allometry, we then estimate variances and covariances for the different parameters of the ontogenetic allometry defined in our model and assess their relative contribution to the static allometric slope. The mean ontogenetic allometry is the main parameter that determines the static allometric slope, while the covariance between the ontogenetic allometric slope and body size generates most of the discrepancies between ontogenetic and static allometry. These results suggest that the apparent evolutionary stasis of the static allometric slope is not generated by internal (developmental) constraints but more likely results from external constraints imposed by selection.
NASA Astrophysics Data System (ADS)
Guo, Jinghui; Lin, Guiping; Bu, Xueqin; Fu, Shiming; Chao, Yanmeng
2017-07-01
The inflatable aerodynamic decelerator (IAD), which allows heavier and larger payloads and offers flexibility in landing site selection at higher altitudes, possesses potential superiority in next generation space transport system. However, due to the flexibilities of material and structure assembly, IAD inevitably experiences surface deformation during atmospheric entry, which in turn alters the flowfield around the vehicle and leads to the variations of aerodynamics and aerothermodynamics. In the current study, the effect of the static shape deformation on the hypersonic aerodynamics and aerothermodynamics of a stacked tori Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is demonstrated and analyzed in detail by solving compressible Navier-Stokes equations with Menter's shear stress transport (SST) turbulence model. The deformed shape is obtained by structural modeling in the presence of maximum aerodynamic pressure during entry. The numerical results show that the undulating shape deformation makes significant difference to flow structure. In particular, the more curved outboard forebody surface results in local flow separations and reattachments in valleys, which consequently yields remarkable fluctuations of surface conditions with pressure rising in valleys yet dropping on crests while shear stress and heat flux falling in valleys yet rising on crests. Accordingly, compared with the initial (undeformed) shape, the corresponding differences of surface conditions get more striking outboard, with maximum augmentations of 379 pa, 2224 pa, and 19.0 W/cm2, i.e., 9.8%, 305.9%, and 101.6% for the pressure, shear stress and heat flux respectively. Moreover, it is found that, with the increase of angle of attack, the aerodynamic characters and surface heating vary and the aeroheating disparities are evident between the deformed and initial shape. For the deformable HIAD model investigated in this study, the more intense surface conditions and changed flight aerodynamics are revealed, which is critical for the selection of structure material and design of flight control system.
Chang, Hsun-Wen; Chieh, Hsiao-Feng; Lin, Chien-Ju; Su, Fong-Chin; Tsai, Ming-June
2014-01-01
Objectives The purpose of this study was to examine the correlation between the foot arch volume measured from static positions and the plantar pressure distribution during walking. Methods A total of 27 children, two to six years of age, were included in this study. Measurements of static foot posture were obtained, including navicular height and foot arch volume in sitting and standing positions. Plantar pressure, force and contact areas under ten different regions of the foot were obtained during walking. Results The foot arch index was correlated (r = 0.32) with the pressure difference under the midfoot during the foot flat phase. The navicular heights and foot arch volumes in sitting and standing positions were correlated with the mean forces and pressures under the first (r = −0.296∼−0.355) and second metatarsals (r = −0.335∼−0.504) and midfoot (r = −0.331∼−0.496) during the stance phase of walking. The contact areas under the foot were correlated with the foot arch parameters, except for the area under the midfoot. Conclusions The foot arch index measured in a static position could be a functional index to predict the dynamic foot functions when walking. The foot arch is a factor which will influence the pressure distribution under the foot. Children with a lower foot arch demonstrated higher mean pressure and force under the medial forefoot and midfoot, and lower contact areas under the foot, except for the midfoot region. Therefore, children with flatfoot may shift their body weight to a more medial foot position when walking, and could be at a higher risk of soft tissue injury in this area. PMID:24736650
NASA Astrophysics Data System (ADS)
Hiyagon, H.; Sugiura, N.; Kita, N. T.; Kimura, M.; Morishita, Y.; Takehana, Y.
2016-08-01
In order to clarify the origin of the eclogitic clasts found in the NWA801 (CR2) chondrite (Kimura et al., 2013), especially, that of the high pressure and temperature (P-T) condition (∼3 GPa and ∼1000 °C), we conducted ion microprobe analyses of oxygen isotopes and rare earth element (REE) abundances in the clasts. Oxygen isotopic compositions of the graphite-bearing lithology (GBL) and graphite-free lithology (GFL) show a slope ∼0.6 correlation slightly below the CR-CH-CB chondrites field in the O three-isotope-diagram, with a large variation for the former and almost homogeneous composition for the latter. The average REE abundances of the two lithologies show almost unfractionated patterns. Based on these newly obtained data, as well as mineralogical observations, bulk chemistry, and considerations about diffusion timescales for various elements, we discuss in detail the formation history of the clasts. Consistency of the geothermobarometers used by Kimura et al. (2013), suggesting equilibration of various elements among different mineral pairs, provides a strong constraint for the duration of the high P-T condition. We suggest that the high P-T condition lasted 102-103 years. This clearly precludes a shock high pressure (HP) model, and hence, strongly supports a static HP model. A static HP model requires a Moon-sized planetary body of ∼1500 km in radius. Furthermore, it implies two successive violent collisions, first at the formation of the large planetary body, when the clasts were placed its deep interior, and second, at the disruption of the large planetary body, when the clasts were expelled out of the parent body and later on transported to the accretion region of the CR chondrites. We also discuss possible origin of O isotopic variations in GBL, and presence/absence of graphite in GBL/GFL, respectively, in relation to smelting possibly occurred during the igneous process(es) which formed the two lithologies. Finally we present a possible formation scenario of the eclogitic clasts.
Overview of the Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Chwalowski, Pawel; Florance, Jennifer P.; Wieseman, Carol D.; Schuster, David M.; Perry, Raleigh B.
2013-01-01
The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. This workshop's technical focus was prediction of unsteady pressure distributions resulting from forced motion, benchmarking the results first using unforced system data. The most challenging aspects of the physics were identified as capturing oscillatory shock behavior, dynamic shock-induced separated flow and tunnel wall boundary layer influences. The majority of the participants used unsteady Reynolds-averaged Navier Stokes codes. These codes were exercised at transonic Mach numbers for three configurations and comparisons were made with existing experimental data. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include wall effects and wall modeling, non-standardized convergence criteria, inclusion of static aeroelastic deflection, methodology for oscillatory solutions, post-processing methods. Contributing issues pertaining principally to the experimental data sets include the position of the model relative to the tunnel wall, splitter plate size, wind tunnel expansion slot configuration, spacing and location of pressure instrumentation, and data processing methods.
NASA Astrophysics Data System (ADS)
Viegas, G. F.; Urbancic, T.; Baig, A. M.
2014-12-01
In hydraulic fracturing completion programs fluids are injected under pressure into fractured rock formations to open escape pathways for trapped hydrocarbons along pre-existing and newly generated fractures. To characterize the failure process, we estimate static and dynamic source and rupture parameters, such as dynamic and static stress drop, radiated energy, seismic efficiency, failure modes, failure plane orientations and dimensions, and rupture velocity to investigate the rupture dynamics and scaling relations of micro-earthquakes induced during a hydraulic fracturing shale completion program in NE British Columbia, Canada. The relationships between the different parameters combined with the in-situ stress field and rock properties provide valuable information on the rupture process giving insights into the generation and development of the fracture network. Approximately 30,000 micro-earthquakes were recorded using three multi-sensor arrays of high frequency geophones temporarily placed close to the treatment area at reservoir depth (~2km). On average the events have low radiated energy, low dynamic stress and low seismic efficiency, consistent with the obtained slow rupture velocities. Events fail in overshoot mode (slip weakening failure model), with fluids lubricating faults and decreasing friction resistance. Events occurring in deeper formations tend to have faster rupture velocities and are more efficient in radiating energy. Variations in rupture velocity tend to correlate with variation in depth, fault azimuth and elapsed time, reflecting a dominance of the local stress field over other factors. Several regions with different characteristic failure modes are identifiable based on coherent stress drop, seismic efficiency, rupture velocities and fracture orientations. Variations of source parameters with rock rheology and hydro-fracture fluids are also observed. Our results suggest that the spatial and temporal distribution of events with similar characteristic rupture behaviors can be used to determine reservoir geophysical properties, constrain reservoir geo-mechanical models, classify dynamic rupture processes for fracture models and improve fracture treatment designs.
Formation of a disordered solid via a shock-induced transition in a dense particle suspension
NASA Astrophysics Data System (ADS)
Petel, Oren E.; Frost, David L.; Higgins, Andrew J.; Ouellet, Simon
2012-02-01
Shock wave propagation in multiphase media is typically dominated by the relative compressibility of the two components of the mixture. The difference in the compressibility of the components results in a shock-induced variation in the effective volume fraction of the suspension tending toward the random-close-packing limit for the system, and a disordered solid can take form within the suspension. The present study uses a Hugoniot-based model to demonstrate this variation in the volume fraction of the solid phase as well as a simple hard-sphere model to investigate the formation of disordered structures within uniaxially compressed model suspensions. Both models are discussed in terms of available experimental plate impact data in dense suspensions. Through coordination number statistics of the mesoscopic hard-sphere model, comparisons are made with the trends of the experimental pressure-volume fraction relationship to illustrate the role of these disordered structures in the bulk properties of the suspensions. A criterion for the dynamic stiffening of suspensions under high-rate dynamic loading is suggested as an analog to quasi-static jamming based on the results of the simulations.
NASA Technical Reports Server (NTRS)
Chan, David T.; Balakrishna, Sundareswara; Walker, Eric L.; Goodliff, Scott L.
2015-01-01
Recent data quality improvements at the National Transonic Facility have an intended goal of reducing the Mach number variation in a data point to within plus or minus 0.0005, with the ultimate goal of reducing the data repeatability of the drag coefficient for full-span subsonic transport models at transonic speeds to within half a drag count. This paper will discuss the Mach stability improvements achieved through the use of an existing second throat capability at the NTF to create a minimum area at the end of the test section. These improvements were demonstrated using both the NASA Common Research Model and the NTF Pathfinder-I model in recent experiments. Sonic conditions at the throat were verified using sidewall static pressure data. The Mach variation levels from both experiments in the baseline tunnel configuration and the choked tunnel configuration will be presented and the correlation between Mach number and drag will also be examined. Finally, a brief discussion is given on the consequences of using the second throat in its location at the end of the test section.
NASA Technical Reports Server (NTRS)
Chan, David T.
2015-01-01
Recent data quality improvements at the National Transonic Facility (NTF) have an intended goal of reducing the Mach number variation in a data point to within unit vector A plus or minus 0.0005, with the ultimate goal of reducing the data repeatability of the drag coefficient for full-span subsonic transport models at transonic speeds to within half of a drag count. This paper will discuss the Mach stability improvements achieved through the use of an existing second throat capability at the NTF to create a minimum area at the end of the test section. These improvements were demonstrated using both the NASA Common Research Model and the NTF Pathfinder-I model in recent experiments. Sonic conditions at the throat were verified using sidewall static pressure data. The Mach variation levels from both experiments in the baseline tunnel configuration and the choked tunnel configuration will be presented. Finally, a brief discussion is given on the consequences of using the second throat in its location at the end of the test section.
NASA Technical Reports Server (NTRS)
Pendergraft, O. C., Jr.
1979-01-01
Static pressure coefficient distributions on the forebody, afterbody, and nozzles of a 1/12 scale F-15 propulsion model were determined. The effects of nozzle power setting and horizontal tail deflection angle on the pressure coefficient distributions were investigated.
40 CFR 60.274 - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... that is important to the performance of the total capture system (i.e., pressure sensors, dampers, and... under paragraph (d) of this section; and (4) All pressure data obtained under paragraph (f) of this... provisions of this subpart shall check and record on a once-per-shift basis furnace static pressure (if a DEC...
Code of Federal Regulations, 2012 CFR
2012-10-01
... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH...
Code of Federal Regulations, 2013 CFR
2013-10-01
... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH...
Code of Federal Regulations, 2014 CFR
2014-10-01
... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH...
Code of Federal Regulations, 2010 CFR
2010-10-01
... respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... the facepiece shall not fall below atmospheric at inhalation airflows less than 115 liters (4 cubic...
Code of Federal Regulations, 2011 CFR
2011-10-01
... respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... the facepiece shall not fall below atmospheric at inhalation airflows less than 115 liters (4 cubic...
NASA Technical Reports Server (NTRS)
Haviland, J. K.; Schroeder, J. C.
1978-01-01
As part of an overall study of the scaling laws for the fluctuating pressures induced on the wings and flaps of STOL aircraft by jet engine impingement, an experimental investigation was made of the near field fluctuating pressures behind a cold circular jet, both when it was free and when it was impinging on a flat plate. Miniature static pressure probes were developed for measurements in the free jet and on the flat plate which were connected by plastic tubing to 1/8 inch microphones and acted as pressure transducers. Using a digital correlator together with an FFT program on the CDC 6400 computer, spectral densities, relative amplitudes, phase lags, and coherences were also obtained for the signals from pairs of these probes, and were used to calibrate these probes directly against microphones. This system of instrumentation was employed to obtain single point rms and third octave surveys of the static pressures in the free jet and on the surface of the plate.
NASA Technical Reports Server (NTRS)
Flegel-McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2013-01-01
Aerodynamic measurements obtained in a transonic linear cascade were used to assess the impact of large incidence angle and Reynolds number variations on the 3-D flow field and midspan loss and turning of a 2-D section of a variable-speed power-turbine (VSPT) rotor blade. Steady-state data were obtained for ten incidence angles ranging from +15.8 deg to -51.0 deg. At each angle, data were acquired at five flow conditions with the exit Reynolds number (based on axial chord) varying over an order-of-magnitude from 2.12×10(exp 5) to 2.12×10(exp 6). Data were obtained at the design exit Mach number of 0.72 and at a reduced exit Mach number of 0.35 as required to achieve the lowest Reynolds number. Midspan total-pressure and exit flow angle data were acquired using a five-hole pitch/yaw probe surveyed on a plane located 7.0 percent axial chord downstream of the blade trailing edge plane. The survey spanned three blade passages. Additionally, three-dimensional half-span flow fields were examined with additional probe survey data acquired at 26 span locations for two key incidence angles of +5.8 deg and -36.7 deg. Survey data near the endwall were acquired with a three-hole boundary-layer probe. The data were integrated to determine average exit total-pressure and flow angle as functions of incidence and flow conditions. The data set also includes blade static pressures measured on four spanwise planes and endwall static pressures. Tests were conducted in the NASA Glenn Transonic Turbine Blade Cascade Facility. The measurements reflect strong secondary flows associated with the high aerodynamic loading levels at large positive incidence angles and an increase in loss levels with decreasing Reynolds number. The secondary flows decrease with negative incidence as the blade becomes unloaded. Transitional flow is admitted in this low inlet turbulence dataset, making it a challenging CFD test case. The dataset will be used to advance understanding of the aerodynamic challenges associated with maintaining efficient power turbine operation over a wide shaft-speed range. deg
NASA Technical Reports Server (NTRS)
Gooderum, P. B.; Bushnell, D. M.
1972-01-01
Atomization, drop size, and penetration data are presented for cross stream water injection at conditions simulating high altitude reentry (low Weber number, high static temperature, high Knudsen number, and low static pressure). These results are applied to the RAM C-1 and C-3 flights. Two primary breakup modes are considered, vapor pressure or flashing and aerodynamic atomization. Results are given for breakup boundaries and mean drop size for each of these atomization mechanisms. Both standard and flight orifice geometries are investigated. The data were obtained in both a static environment and in conventional aerodynamic facilities at Mach numbers of 4.5 and 8. The high temperature aspects of reentry were simulated in a Mach 5.5 cyanogen-oxygen tunnel with total temperature of 4500 K.
Magma degassing triggered by static decompression at Kīlauea Volcano, Hawai‘i
Poland, Michael P.; Jeff, Sutton A.; Gerlach, Terrence M.
2009-01-01
During mid-June 2007, the summit of Kīlauea Volcano, Hawai‘i, deflated rapidly as magma drained from the subsurface to feed an east rift zone intrusion and eruption. Coincident with the deflation, summit SO2 emission rates rose by a factor of four before decaying to background levels over several weeks. We propose that SO2 release was triggered by static decompression caused by magma withdrawal from Kīlauea's shallow summit reservoir. Models of the deflation suggest a pressure drop of 0.5–3 MPa, which is sufficient to trigger exsolution of the observed excess SO2 from a relatively small volume of magma at the modeled source depth beneath Kīlauea's summit. Static decompression may also explain other episodes of deflation accompanied by heightened gas emission, including the precursory phases of Kīlauea's 2008 summit eruption. Hazards associated with unexpected volcanic gas emission argue for increased awareness of magma reservoir pressure fluctuations.
NASA Technical Reports Server (NTRS)
Hyun, J. M.
1981-01-01
Quasi-geostrophic disturbance instability characteristics are studied in light of a linearized, two-layer Eady model in which both the static stability and the zonal current shear are uniform but different in each layer. It is shown that the qualitative character of the instability is determined by the sign of the basic-state potential vorticity gradient at the layer interface, and that there is a qualitative similarity between the effects of Richardson number variations due to changes in static stability and those due to changes in shear. The two-layer model is also used to construct an analog of the Williams (1974) continuous model of generalized Eady waves, the basic state in that case having zero potential vorticity gradient in the interior. The model results are in good agreement with the earlier Williams findings.
NASA Technical Reports Server (NTRS)
Thornton, D. E.
1976-01-01
Tests were conducted in a 14 foot transonic wind tunnel to examine the feasibility of the auxiliary aerodynamic data system (AADS) for determining angles of attack and sideslip during boost flight. The model used was a 0.07 scale replica of the external tank forebody consisting of the nose portion and a 60 inch (full scale) cylindrical section of the ogive cylinder tangency point. The model terminated in a blunt base with a 320.0 inch diameter at external tank (ET) station 1120.37. Pressure data were obtained from five pressure orifices (one total and four statics) on the nose probe, and sixteen surface static pressure orifices along the ET forebody.
Incidence loss for fan turbine rotor blade in two-dimensional cascade
NASA Technical Reports Server (NTRS)
Kline, J. F.; Moffitt, T. P.; Stabe, R. G.
1983-01-01
The effect of incidence angle on the aerodynamic performance of a fan turbine rotor blade was investigated experimentally in a two dimensional cascade. The test covered a range of incidence angles from -15 deg to 10 deg and exit ideal critical velocity ratios from 0.75 to 0.95. The principal measurements were blade-surface static pressures and cross-channel survey of exit total pressure, static pressure, and flow angle. Flow adjacent to surfaces was examined using a visualization technique. The results of the investigation include blade-surface velocity distribution and overall kinetic energy loss coefficients for the incidence angles and exit velocity ratios tested. The measured losses are compared with those from a reference core turbine rotor blade and also with two common analytical methods of predicting incidence loss.
NASA Astrophysics Data System (ADS)
Sebold, Jean Eduardo; de Lacerda, Luiz Alkimin
2018-04-01
This paper describes a substantiated mathematical theory for Rayleigh waves propagated on some types of metal cylinders. More specifically, it presents not only a new way to express the dispersion relation of Rayleigh waves propagated on the cylindrical surface, but also how it can be used to construct a mathematical equation showing that the applied static mechanical pressure affects the shear modulus of the metal cylinder. All steps, required to conclude the process, consider the equation of motion as a function of radial and circumferential coordinates only, while the axial component can be overlooked without causing any problems. Some numerical experiments are done to illustrate the changes in the Rayleigh circumferential phase velocity in a metal cylindrical section due to static mechanical pressure around its external surface.
Bressel, Eadric; Yonker, Joshua C; Kras, John; Heath, Edward M
2007-01-01
Context: How athletes from different sports perform on balance tests is not well understood. When prescribing balance exercises to athletes in different sports, it may be important to recognize performance variations. Objective: To compare static and dynamic balance among collegiate athletes competing or training in soccer, basketball, and gymnastics. Design: A quasi-experimental, between-groups design. Independent variables included limb (dominant and nondominant) and sport played. Setting: A university athletic training facility. Patients or Other Participants: Thirty-four female volunteers who competed in National Collegiate Athletic Association Division I soccer (n = 11), basketball (n = 11), or gymnastics (n = 12). Intervention(s): To assess static balance, participants performed 3 stance variations (double leg, single leg, and tandem leg) on 2 surfaces (stiff and compliant). For assessment of dynamic balance, participants performed multidirectional maximal single-leg reaches from a unilateral base of support. Main Outcome Measure(s): Errors from the Balance Error Scoring System and normalized leg reach distances from the Star Excursion Balance Test were used to assess static and dynamic balance, respectively. Results: Balance Error Scoring System error scores for the gymnastics group were 55% lower than for the basketball group (P = .01), and Star Excursion Balance Test scores were 7% higher in the soccer group than the basketball group (P = .04). Conclusions: Gymnasts and soccer players did not differ in terms of static and dynamic balance. In contrast, basketball players displayed inferior static balance compared with gymnasts and inferior dynamic balance compared with soccer players. PMID:17597942
The ITSG-Grace2014 Gravity Field Model
NASA Astrophysics Data System (ADS)
Kvas, Andreas; Mayer-Gürr, Torsten; Zehenter, Norbert; Klinger, Beate
2015-04-01
The ITSG-Grace2014 GRACE-only gravity field model consists of a high resolution unconstrained static model (up to degree 200) with trend and annual signal, monthly unconstrained solutions with different spatial resolutions as well as daily snapshots derived by using a Kalman smoother. Apart from the estimated spherical harmonic coefficients, full variance-covariance matrices for the monthly solutions and the static gravity field component are provided. Compared to the previous release, multiple improvements in the processing chain are implemented: updated background models, better ionospheric modeling for GPS observations, an improved satellite attitude by combination of star camera and angular accelerations, estimation of K-band antenna center variations within the gravity field recovery process as well as error covariance function determination. Furthermore, daily gravity field variations have been modeled in the adjustment process to reduce errors caused by temporal leakage. This combined estimation of daily gravity variations field variations together with the static gravity field component represents a computational challenge due to the significantly increased parameter count. The modeling of daily variations up to a spherical harmonic degree of 40 for the whole GRACE observation period results in a system of linear equations with over 6 million unknown gravity field parameters. A least squares adjustment of this size is not solvable in a sensible time frame, therefore measures to reduce the problem size have to be taken. The ITSG-Grace2014 release is presented and selected parts of the processing chain and their effect on the estimated gravity field solutions are discussed.
NASA Astrophysics Data System (ADS)
Bergmann, P.; Kashubin, A.; Ivandic, M.; Lueth, S.; Juhlin, C.
2013-12-01
Statics are time-shifts that occur in reflection seismic trace data and are generally considered to be mainly due to shallow velocity variations. Since the refraction static correction is most often based on first break picking and subsequent velocity model estimation, it is even today a labor-consuming and error-prone procedure. Time-lapse seismic also faces this issue in a temporal sense, since changes in statics, due to temporally variable near-surface conditions, are known to be first-order contributors to time-lapse noise. Considerable changes in the statics of repeated on-shore seismic surveys can occur due to precipitation-related changes in soil moisture and in the groundwater table, or may be due to man-made earthworks. Production-related or injection-related processes can cause considerable velocity changes, which leave time-shift imprints on time-lapse seismic data that can be very similar to that of near-surface velocity variations. In this context it is crucial to consider that refraction static corrections are in many cases of limited use, as they aim to enhance the stack coherency of the individual time-lapse data sets only. As an alternative, we propose a time-lapse difference (TLD) static correction that is focused on the accommodation of static changes between the time-lapse data sets. This TLD static correction decomposes the static differences that are determined from cross-correlations in a surface-consistent manner. It therefore does not require first break picking and inversion for velocities from repeat data sets. We tested the TLD static correction for a 4D case study from the Ketzin CO2 storage site, Germany. As a reference we used the results that were obtained from a recent processing in which refraction static corrections were performed individually on the time-lapse data sets. Although the TLD static corrections method is considerably less time-consuming, we found that it is providing a stack difference with enhanced S/N. This is particularly demonstrated for a 4D seismic signature that is proven to be due to injected CO2. This Ketzin case study shows further that the pattern of the TLD statics is highly consistent with patterns in the cumulative precipitation data. This observation confirms that near-surface velocity changes are due to changes in the soil-moisture saturation and that an efficient compensation for them can be achieved by the TLD static correction.
Blast-Induced Acceleration in a Shock Tube: Distinguishing Primary and Tertiary Blast Injury
2015-10-01
these well-defined exposure conditions, anesthetized rats are used to simultaneously record intracranial pressure (ICP), intravascular pressure , and...blast flow conditions (e.g. peak static and total pressure , positive phase duration, and impulse) and acceleration and displacement of a wide range of...resultant pressure responses in varied compartments in concert with the neuropathological, neurochemical, and neurobehavioral consequences of exposures
NASA Astrophysics Data System (ADS)
Salminen, J.; Högström, R.; Saxholm, S.; Lakka, A.; Riski, K.; Heinonen, M.
2018-04-01
In this paper we present the development of a primary standard for dynamic pressures that is based on the drop weight method. At the moment dynamic pressure transducers are typically calibrated using reference transducers, which are calibrated against static pressure standards. Because dynamic and static characteristics of pressure transducers may significantly differ from each other, it is important that these transducers are calibrated against dynamic pressure standards. In a method developed in VTT Technical Research Centre of Finland Ltd, Centre for Metrology MIKES, a pressure pulse is generated by impact between a dropping weight and a piston of a liquid-filled piston-cylinder assembly. The traceability to SI-units is realized through interferometric measurement of the acceleration of the dropping weight during impact, the effective area of the piston-cylinder assembly and the mass of the weight. Based on experimental validation and an uncertainty evaluation, the developed primary standard provides traceability for peak pressures in the range from 10 MPa to 400 MPa with a few millisecond pulse width and a typical relative expanded uncertainty (k = 2) of 1.5%. The performance of the primary standard is demonstrated by test calibrations of two dynamic pressure transducers.
Preliminary Drag Tests in Flight of Low-Drag Wing on the Curtiss XP-60 Airplane
1941-12-01
y () Ho T Y absolute free q abaolute weke HI absolute wake Ho absolute free stream static p~. essure position static ~ essure position totel ~ressure...t’hetotal .hetidlev61- The stream stagnation ,pressure .Ho is found ay ‘addingthe .~ essure corresponding to the indicated deflection of “fourthtube 142..3
Adams, Ryan F.; Koebel, Carolyn M.; Morrow, William S.
2018-02-13
Multiple geophysical sensors were used to characterize the underwater pressure field and ground vibrations of a seismic water gun and its suitability to deter the movement of Asian carps (particularly the silver [Hypophthalmichthys molitrix] and bighead [Hypophthalmichthys nobilis] carps) while ensuring the integrity of surrounding structures. The sensors used to collect this information were blast-rated hydrophones, surface- and borehole-mounted geophones, and fixed accelerometers.Results from two separate studies are discussed in this report. The Brandon Road study took place in May 2014, in the Des Plaines River, in a concrete-walled channel downstream of the Brandon Road Lock and Dam near Joliet, Illinois. The Lemont study took place in June 2014, in a segment of the dolomite setblock-lined Chicago Sanitary and Ship Canal near Lemont, Illinois.Two criteria were evaluated to assess the potential deterrence to carp migration, and to minimize the expected effect on nearby structures from discharge of the seismic water gun. The first criterion was a 5-pound-per-square-inch (lb/in2) limit for dynamic underwater pressure variations. The second criterion was a maximum velocity and acceleration disturbance of 0.75 inch per second (in/s) for sensitive machinery (such as the lock gates and pumps) and 2.0 in/s adjacent to canal walls, respectively. The criteria were based on previous studies of fish responses to dynamic pressure variations, and effects of vibrations on the structural integrity of concrete walls.The Brandon Road study evaluated the magnitude and extent of the pressure field created by two water gun configurations in the concrete-walled channel downstream of the lock where channel depths ranged from 11 to 14 feet (ft). Data from a single 80-cubic-inch (in³) water gun set at 6 ft below water surface (bws) produced a roughly cylindrical 5-lb/in2 pressure field 20 ft in radius, oriented vertically, with the radius decreasing to less than 15 ft at the water surface. A combination of two 80-in3 water guns set at 6 and 8 ft, respectively, produced a similarly shaped 5 lb/in2 pressure field 30 ft in radius. Neither of the water gun configurations exceeded the given threshold of 5 lb/in2 above the static pressure along the walls of the canal at the 700 lb/in2 water gun input pressure. Velocity and acceleration data were collected simultaneously with the underwater pressure data to understand the response of adjacent canal walls to the water gun firings. Maximum velocity and acceleration were 0.239 in/s and 0.0188 feet per second squared (ft/s2), respectively.The Lemont study replicated and expanded upon work done in 2011. The pressure field created by the water gun was evaluated in a deeper environment (about 25 ft of water depth) than that of the Brandon Road study. To replicate the 2011 study, data were collected with the same water gun placements and input pressure, but static underwater pressure monitoring was added. Two 80-in3 water guns were suspended below a platform at depths of 4 and 14 ft bws. Pressure was lower when the gun suspended at 4 ft bws was fired as compared to firing the single gun suspended at 14 ft bws. Firing both guns simultaneously produced similar pressures to the single gun suspended at 14 ft bws. Data were collected to assess the pressure field produced by two 80-in3 water guns separated by 80 ft and suspended at a depth of 14 ft bws. The spatial extent of the 5-lb/in2 threshold varied substantially with gun input air pressure. Firing the water gun with an air pressure of 2,000 lb/in2 generated a pressure field greater than the threshold at all but one location in the measured region. Additionally, the water gun with an air pressure of 1,000 lb/in2 did not reach the threshold anywhere in the measured region. Maximum velocity and acceleration were 0.304 in/s and 0.015 ft/s2, respectively.
Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade
NASA Technical Reports Server (NTRS)
McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2013-01-01
Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83×10(exp 5) to 0.85×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.
NASA Technical Reports Server (NTRS)
McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2014-01-01
Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50 deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83×10 (exp 5) to 0.85×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.
Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade
NASA Technical Reports Server (NTRS)
McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2012-01-01
Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50% speed range from takeoff to altitude cruise. This results in 50 degrees or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83 × 10(exp 5) to 0.85 ×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6% axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition
Aerodynamic Measurements of an Incidence Tolerant Blade in a Transonic Turbine Cascade
NASA Technical Reports Server (NTRS)
McVetta, Ashlie B.; Giel, Paul W.
2012-01-01
An overview of the recent facility modifications to NASA s Transonic Turbine Blade Cascade Facility and aerodynamic measurements on the VSPT incidence-tolerant blade are presented. This work supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50% speed range from takeoff to altitude cruise. This results in 50 or more variations in VSPT blade incidence angles. The Transonic Turbine Blade Cascade Facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Details of the modifications are described. An incidence-tolerant blade was developed under an RTPAS study contract and tested in the cascade to look at the effects of large incidence angle and Reynolds number variations. Recent test results are presented which include midspan exit total pressure and flow angle measurements obtained at three inlet angles representing the cruise, take-off, and maximum incidence flight mission points. For each inlet angle, data were obtained at five flow conditions with exit Reynolds numbers varying from 2.12 106 to 2.12 105 and two isentropic exit Mach numbers of 0.72 and 0.35. Three-dimensional flowfield measurements were also acquired at the cruise and take-off points. The flowfield measurements were acquired using a five-hole and three-hole pneumatic probe located in a survey plane 8.6% axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.
Pratt, S D; Kaczka, D W; Hess, P E
2014-05-01
During an epidural blood patch, we inject blood until the patient describes mild back pressure, often leading to injection of more than 20 mL of blood. We undertook this study to measure the epidural pressures generated during an epidural blood patch and to identify the impact of volume on epidural elastance in obstetric patients. This study was performed in postpartum patients who presented for an epidural blood patch with symptoms consistent with a postdural puncture headache. After identification of the epidural space using loss of resistance to air or saline, we measured static epidural pressure after each 5-mL injection of blood. Models were then fitted to the data and the epidural elastance and compliance calculated. Eighteen blood patches were performed on 17 patients. The mean final volume injected was 18.9±7.8 mL [range 6-38 mL]. The mean final pressure generated was 13.1±13.4 mmHg [range 2-56 mmHg]. A curvilinear relationship existed between volume injected and pressure, which was described by two models: (1) pressure=0.0254×(mL injected)(2)+0.0297 mL, or (2) pressure=0.0679×mL(1.742). The value for r2 was approximately 0.57 for both models. We found no correlation between the final pressure generated and the success of the epidural blood patch. We found a curvilinear relationship between the volume of blood injected during an epidural blood patch and the pressure generated in the epidural space. However, there was a large variation in both the volume of blood and the epidural pressure generated. The clinical importance of this finding is not known. A larger study would be required to demonstrate whether pressure is a predictor of success. Copyright © 2014 Elsevier Ltd. All rights reserved.
Orifice-induced pressure error studies in Langley 7- by 10-foot high-speed tunnel
NASA Technical Reports Server (NTRS)
Plentovich, E. B.; Gloss, B. B.
1986-01-01
For some time it has been known that the presence of a static pressure measuring hole will disturb the local flow field in such a way that the sensed static pressure will be in error. The results of previous studies aimed at studying the error induced by the pressure orifice were for relatively low Reynolds number flows. Because of the advent of high Reynolds number transonic wind tunnels, a study was undertaken to assess the magnitude of this error at high Reynolds numbers than previously published and to study a possible method of eliminating this pressure error. This study was conducted in the Langley 7- by 10-Foot High-Speed Tunnel on a flat plate. The model was tested at Mach numbers from 0.40 to 0.72 and at Reynolds numbers from 7.7 x 1,000,000 to 11 x 1,000,000 per meter (2.3 x 1,000,000 to 3.4 x 1,000,000 per foot), respectively. The results indicated that as orifice size increased, the pressure error also increased but that a porous metal (sintered metal) plug inserted in an orifice could greatly reduce the pressure error induced by the orifice.
NASA Technical Reports Server (NTRS)
Boswinkle, Robert W JR; Keith, Arvid L JR
1948-01-01
A method for calculating the flow fields of axially symmetric bodies from their pressure distributions is reported in NACA RM No. L8I17. In order to facilitate application of this method to the important case of the cowling-spinner combination, for use in the design of propellers, the present paper presents static-pressure distributions on the tops of 79 high-critical-speed NACA 1-series cowling-spinner combinations over wide ranges of inlet-velocity ratio at angles of attack of 0 degrees, 2 degrees, 4 degrees, and 6 degrees. Static-pressure distributions around the nose sections of several cowlings are given in greater detail to aid in estimating the pressures near the stagnation points and to show the effect of changes in the internal lip shape. The effects of the operation of a typical propeller on the surface pressures on the cowling are shown for one configuration. The pressure distributions over the nine NACA 1-series nose inlets used as the basic components of these combinations are also presented ro supplement the existing open-nose-cowling data of NACA ACR No. L5F30a which are applicable to the case of the rotating cowling.
mTOR-INDEPENDENT INDUCTION OF AUTOPHAGY IN TRABECULAR MESHWORK CELLS SUBJECTED TO BIAXIAL STRETCH
Porter, Kristine M.; Jeyabalan, Nallathambi; Liton, Paloma B.
2014-01-01
The trabecular meshwork (TM) is part of a complex tissue that controls the exit of aqueous humor from the anterior chamber of the eye, and therefore helps maintaining intraocular pressure (IOP). Because of variations in IOP with changing pressure gradients and fluid movement, the TM and its contained cells undergo morphological deformations, resulting in distention and stretching. It is therefore essential for TM cells to continuously detect and respond to these mechanical forces and adapt their physiology to maintain proper cellular function and protect against mechanical injury. Here we demonstrate the activation of autophagy, a pro-survival pathway responsible for the degradation of long-lived proteins and organelles, in TM cells when subjected to biaxial static stretch (20 % elongation), as well as in high-pressure perfused eyes (30 mm Hg). Morphological and biochemical markers for autophagy found in the stretched cells include elevated LC3-II levels, increased autophagic flux, and the presence of autophagic figures in electron micrographs. Furthermore, our results indicate that the stretch-induced autophagy in TM cells occurs in an MTOR- and BAG3-independent manner. We hypothesize that activation of autophagy is part of the physiological response that allows TM cells to cope and adapt to mechanical forces. PMID:24583119
Jet noise suppression by porous plug nozzles
NASA Technical Reports Server (NTRS)
Bauer, A. B.; Kibens, V.; Wlezien, R. W.
1982-01-01
Jet noise suppression data presented earlier by Maestrello for porous plug nozzles were supplemented by the testing of a family of nozzles having an equivalent throat diameter of 11.77 cm. Two circular reference nozzles and eight plug nozzles having radius ratios of either 0.53 or 0.80 were tested at total pressure ratios of 1.60 to 4.00. Data were taken both with and without a forward motion or coannular flow jet, and some tests were made with a heated jet. Jet thrust was measured. The data were analyzed to show the effects of suppressor geometry on nozzle propulsive efficiency and jet noise. Aerodynamic testing of the nozzles was carried out in order to study the physical features that lead to the noise suppression. The aerodynamic flow phenomena were examined by the use of high speed shadowgraph cinematography, still shadowgraphs, extensive static pressure probe measurements, and two component laser Doppler velocimeter studies. The different measurement techniques correlated well with each other and demonstrated that the porous plug changes the shock cell structure of a standard nozzle into a series of smaller, periodic cell structures without strong shock waves. These structures become smaller in dimension and have reduced pressure variations as either the plug diameter or the porosity is increased, changes that also reduce the jet noise and decrease thrust efficiency.
NASA Astrophysics Data System (ADS)
Al-Ziayyir, Haitham; Hodgetts, David
2015-04-01
The main reservoir in Rumaila /West Qurna oilfields is the Zubair Formation of Hautervian and Barremian age. This silicilastic formation extends over the regions of central and southern Iraq. This study attempts to improve the understanding of the architectural elements and their control on fluid flow paths within the Zubair Formation. A significant source of uncertainty in the zubair formation is the control on hydrodynamic pressure distribution. The reasons for pressure variation in the Zubair are not well understood. This work aims to reduce this uncertainty by providing a more detailed knowledge of reservoir architecture, distribution of barriers and baffles, and reservoir compartmentalization. To characterize the stratigraphic architecture of the Zubair formation,high resolution reservoir models that incorporate dynamic and static data were built. Facies modelling is accomplished by means of stochastic modelling techniques.The work is based on a large data set collected from the Rumaila oilfields. These data, comprising conventional logs of varying vintages, NMR logs, cores from six wells, and pressure data, were used for performing geological and petrophysical analyses.Flow simulation studies have also been applied to examine the impact of architecture on recovery. Understanding of geology and reservoir performance can be greatly improved by using an efficient, quick and viable integrated analysis, interpretation, and modelling.
1944-11-01
SS SUBJECT HEADIN6S: Pressure distribution - Flow research - Methods (40950) Wings (74500); DMiion, Intolilfjonco Air Kkrtcricl Command AIQ TECHNICAL INDGK Wrl0ht- Patto *son Air Forco ( Dayton, Ohio ///¥
Vertical thermal structure of the Venus atmosphere from temperature and pressure measurements
NASA Technical Reports Server (NTRS)
Linkin, V. M.; Blamon, Z.; Lipatov, A. P.; Devyatkin, S. I.; Dyachkov, A. V.; Ignatova, S. I.; Kerzhanovich, V. V.; Malyk, K.; Stadny, V. I.; Sanotskiy, Y. V.
1986-01-01
Accurate temperature and pressure measurements were made on the Vega-2 lander during its entire descent. The temperature and pressure at the surface were 733 K and 89.3 bar, respectively. A strong temperature inversion was found in the upper troposphere. Several layers with differing static stability were visible in the atmospheric structure.
NASA Technical Reports Server (NTRS)
Tanner, J. A.
1973-01-01
An investigation was conducted to determine the fore-and-aft elastic response characteristics of aircraft tires of bias ply, bias-belted, and radial-belted design. The investigation consisted of: (1)static and rolling tests, (2)a statistical analysis which related the measured tire elastic characteristics to variations in the vertical load, inflation pressure, braking force and/or tire vertical deflection, and (3) a semi-empirical analysis which related the tire elastic behavior to measured wheel slippage during a steady-state braking. The results of this investigation indicate that the bias-belted tire has the largest spring constant value for most loading conditions and the radial-belted tire has the smallest spring constant value.
NASA Technical Reports Server (NTRS)
Jaeck, C. L.
1976-01-01
A test was conducted in the Boeing Large Anechoic Chamber to determine static jet noise source locations of six baseline and suppressor nozzle models, and establish a technique for extrapolating near field data into the far field. The test covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K.
Tests Of Array Of Flush Pressure Sensors
NASA Technical Reports Server (NTRS)
Larson, Larry J.; Moes, Timothy R.; Siemers, Paul M., III
1992-01-01
Report describes tests of array of pressure sensors connected to small orifices flush with surface of 1/7-scale model of F-14 airplane in wind tunnel. Part of effort to determine whether pressure parameters consisting of various sums, differences, and ratios of measured pressures used to compute accurately free-stream values of stagnation pressure, static pressure, angle of attack, angle of sideslip, and mach number. Such arrays of sensors and associated processing circuitry integrated into advanced aircraft as parts of flight-monitoring and -controlling systems.
Transient Pressure Test Article (TPTA) 1.1 and 1.1A, volume 1
NASA Technical Reports Server (NTRS)
Rebells, Clarence A.
1988-01-01
This final test report presents the results obtained during the static hot firing and cold-gas high Q tests of the first Transient Pressure Test Article (TPTA) 1.1. The TPTA consisted of field test joints A and B, which were the original RSRM J-insulation configuration, with a metal capture feature. It also consisted of a flight configuration nozzle-to-case test joint (Joint D) with shorter vent slots. Fluorocarbon O-rings were used in all the test joints. The purpose of the TPTA tests is to evaluate and characterize the RSMR field and nozzle-to-case joints under the influence of ignition and strut loads during liftoff anf high Q. All objectives of the cold-gas high Q (TPTA 1.1A) test were met and all measurements were close to predicted values. During the static hot-firing test (TPTA 1.1), the motor was inadvertently plugged by the quench injector plug, making it a more severe test, although no strut loads were applied. The motor was depressurized after approximately 11 min using an auxiliary system, and no anomalies were noted. In the static hot-firing test, pressure was incident on the insulation and the test joint gaps were within the predicted range. During the static hot-firing test, no strut loads were applied because the loading system malfunctioned. For this test, all measurements were within range of similar tests performed without strut loads.
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Brausch, J. F.; Price, A. O.
1984-01-01
Acoustic and diagnostic data that were obtained to determine the influence of selected geometric and aerodynamic flow variables of coannular nozzles with thermal acoustic shields are summarized in this comprehensive data report. A total of 136 static and simulated flight acoustic test points were conducted with 9 scale-model nozzles. Aerodynamic laser velocimeter measurements were made for four selected plumes. In addition, static pressure data in the chute base region of the suppressor configurations were obtained to assess the influence of the shield stream on the suppressor base drag.
Portable wastewater flow meter
Hunter, Robert M.
1999-02-02
A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.
Portable wastewater flow meter
Hunter, Robert M.
1990-01-01
A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.
NASA Astrophysics Data System (ADS)
Arts, T.; Lambertderouvroit, M.; Rutherford, A. W.
1990-09-01
An experimental aerothermal investigation of a highly loaded transonic turbine nozzle guide vane mounted in a linear cascade arrangement is presented. The measurements were performed in a short duration isentropic light piston compression tube facility, allowing a correct simulation of Mach and Reynolds numbers as well as of the gas to wall temperature ratio compared to the values currently observed in modern aeroengines. The experimental program consisted of the following: (1) flow periodicity checks by means of wall static pressure measurements and Schlieren flow visualizations; (2) blade velocity distribution measurements by means of static pressure tappings; (3) blade convective heat transfer measurements by means of static pressure tappings; (4) blade convective heat transfer measurements by means of platinium thin films; (5) downstream loss coefficient and exit flow angle determinations by using a new fast traversing mechanism; and (6) free stream turbulence intensity and spectrum measurements. These different measurements were performed for several combinations of the free stream flow parameters looking at the relative effects on the aerodynamic blade performance and blade convective heat transfer of Mach number, Reynolds number, and freestream turbulence intensity.
A review of wave celerity in frictionless and axisymmetrical steel-lined pressure tunnels
NASA Astrophysics Data System (ADS)
Hachem, F. E.; Schleiss, A. J.
2011-02-01
Generally applicable approaches for estimating the “quasi-static”, which means without fluid-structure interaction and frequency-dependent water-hammer wave speed in steel-lined pressure tunnels are analyzed. The external constraints and assumptions of these approaches are discussed in detail. The reformulated formulas are then compared to commonly used expressions. Some special cases of wave speed calculation such as unlined pressure tunnels and open-air penstocks are investigated. The quasi-static wave speed is significantly influenced by the state of the backfill concrete and the near-field rock zone (cracked or uncracked). In the case when these two layers are cracked, the quasi-static wave speed is overestimated in between 1% and 8% compared to uncracked concrete and near-field rock layers. Depending on the stiffness of steel liner and penstock, the fluid-structure interaction leads to significant difference in wave speeds values. Compared to the quasi-static case, the fluid-structure interaction approach, applied to steel-lined tunnels, results up to 13% higher wave speed values in the high-frequency range (higher than 600 Hz) and up to 150% lower values for frequencies between 150 and 300 Hz in the considered test case.
A GPS-Based Pitot-Static Calibration Method Using Global Output-Error Optimization
NASA Technical Reports Server (NTRS)
Foster, John V.; Cunningham, Kevin
2010-01-01
Pressure-based airspeed and altitude measurements for aircraft typically require calibration of the installed system to account for pressure sensing errors such as those due to local flow field effects. In some cases, calibration is used to meet requirements such as those specified in Federal Aviation Regulation Part 25. Several methods are used for in-flight pitot-static calibration including tower fly-by, pacer aircraft, and trailing cone methods. In the 1990 s, the introduction of satellite-based positioning systems to the civilian market enabled new inflight calibration methods based on accurate ground speed measurements provided by Global Positioning Systems (GPS). Use of GPS for airspeed calibration has many advantages such as accuracy, ease of portability (e.g. hand-held) and the flexibility of operating in airspace without the limitations of test range boundaries or ground telemetry support. The current research was motivated by the need for a rapid and statistically accurate method for in-flight calibration of pitot-static systems for remotely piloted, dynamically-scaled research aircraft. Current calibration methods were deemed not practical for this application because of confined test range size and limited flight time available for each sortie. A method was developed that uses high data rate measurements of static and total pressure, and GPSbased ground speed measurements to compute the pressure errors over a range of airspeed. The novel application of this approach is the use of system identification methods that rapidly compute optimal pressure error models with defined confidence intervals in nearreal time. This method has been demonstrated in flight tests and has shown 2- bounds of approximately 0.2 kts with an order of magnitude reduction in test time over other methods. As part of this experiment, a unique database of wind measurements was acquired concurrently with the flight experiments, for the purpose of experimental validation of the optimization method. This paper describes the GPS-based pitot-static calibration method developed for the AirSTAR research test-bed operated as part of the Integrated Resilient Aircraft Controls (IRAC) project in the NASA Aviation Safety Program (AvSP). A description of the method will be provided and results from recent flight tests will be shown to illustrate the performance and advantages of this approach. Discussion of maneuver requirements and data reduction will be included as well as potential applications.
Static and moving solid/gas interface modeling in a hybrid rocket engine
NASA Astrophysics Data System (ADS)
Mangeot, Alexandre; William-Louis, Mame; Gillard, Philippe
2018-07-01
A numerical model was developed with CFD-ACE software to study the working condition of an oxygen-nitrogen/polyethylene hybrid rocket combustor. As a first approach, a simplified numerical model is presented. It includes a compressible transient gas phase in which a two-step combustion mechanism is implemented coupled to a radiative model. The solid phase from the fuel grain is a semi-opaque material with its degradation process modeled by an Arrhenius type law. Two versions of the model were tested. The first considers the solid/gas interface with a static grid while the second uses grid deformation during the computation to follow the asymmetrical regression. The numerical results are obtained with two different regression kinetics originating from ThermoGravimetry Analysis and test bench results. In each case, the fuel surface temperature is retrieved within a range of 5% error. However, good results are only found using kinetics from the test bench. The regression rate is found within 0.03 mm s-1 and average combustor pressure and its variation over time have the same intensity than the measurements conducted on the test bench. The simulation that uses grid deformation to follow the regression shows a good stability over a 10 s simulated time simulation.
Deepa S. Pureswaran; Brian T. Sullivan; Matthew P. Ayres
2008-01-01
Aggregation via pheromone signaling is essential for tree-killing bark beetles to overcome tree defenses and reproduce within hosts. Pheromone production is a trait that is linked to fitness, so high individual variation is paradoxica1. One explanation is that the technique of measuring static pheromone pools overestimates true variation among individuals. An...
NASA Astrophysics Data System (ADS)
Adam, L.; Frehner, M.; Sauer, K. M.; Toy, V.; Guerin-Marthe, S.; Boulton, C. J.
2017-12-01
Reconciling experimental and static-dynamic numerical estimations of seismic anisotropy in Alpine Fault mylonitesLudmila Adam1, Marcel Frehner2, Katrina Sauer3, Virginia Toy3, Simon Guerin-Marthe4, Carolyn Boulton5(1) University of Auckland, New Zealand, (2) ETH Zurich, Switzerland, (3) University of Otago, New Zealand (4) Durham University, Earth Sciences, United Kingdom (5) Victoria University of Wellington, New Zealand Quartzo-feldspathic mylonites and schists are the main contributors to seismic wave anisotropy in the vicinity of the Alpine Fault (New Zealand). We must determine how the physical properties of rocks like these influence elastic wave anisotropy if we want to unravel both the reasons for heterogeneous seismic wave propagation, and interpret deformation processes in fault zones. To study such controls on velocity anisotropy we can: 1) experimentally measure elastic wave anisotropy on cores at in-situ conditions or 2) estimate wave velocities by static (effective medium averaging) or dynamic (finite element) modelling based on EBSD data or photomicrographs. Here we compare all three approaches in study of schist and mylonite samples from the Alpine Fault. Volumetric proportions of intrinsically anisotropic micas in cleavage domains and comparatively isotropic quartz+feldspar in microlithons commonly vary significantly within one sample. Our analysis examines the effects of these phases and their arrangement, and further addresses how heterogeneity influences elastic wave anisotropy. We compare P-wave seismic anisotropy estimates based on millimetres-scale ultrasonic waves under in situ conditions, with simulations that account for micrometre-scale variations in elastic properties of constitutent minerals with the MTEX toolbox and finite-element wave propagation on EBSD images. We observe that the sorts of variations in the distribution of micas and quartz+feldspar within any one of our real core samples can change the elastic wave anisotropy by 10%. In addition, at 60 MPa confining pressure, experimental elastic anisotropy is greater than modelled anisotropy, which could indicate that open microfractures dramatically influence seismic wave anisotropy in the top 3 to 4 km of the crust, or be related to the different resolutions of the two methods.
NASA Technical Reports Server (NTRS)
Pool, Kirby V.
1989-01-01
This volume summarizes the analysis used to assess the structural life of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbo-Pump (HPFTP) Third Stage Impeller. This analysis was performed in three phases, all using the DIAL finite element code. The first phase was a static stress analysis to determine the mean (non-varying) stress and static margin of safety for the part. The loads involved were steady state pressure and centrifugal force due to spinning. The second phase of the analysis was a modal survey to determine the vibrational modes and natural frequencies of the impeller. The third phase was a dynamic response analysis to determine the alternating component of the stress due to time varying pressure impulses at the outlet (diffuser) side of the impeller. The results of the three phases of the analysis show that the Third Stage Impeller operates very near the upper limits of its capability at full power level (FPL) loading. The static loading alone creates stresses in some areas of the shroud which exceed the yield point of the material. Additional cyclic loading due to the dynamic force could lead to a significant reduction in the life of this part. The cyclic stresses determined in the dynamic response phase of this study are based on an assumption regarding the magnitude of the forcing function.
The phase diagram of solid hydrogen at high pressure: A challenge for first principles calculations
NASA Astrophysics Data System (ADS)
Azadi, Sam; Foulkes, Matthew
2015-03-01
We present comprehensive results for the high-pressure phase diagram of solid hydrogen. We focus on the energetically most favorable molecular and atomic crystal structures. To obtain the ground-state static enthalpy and phase diagram, we use semi-local and hybrid density functional theory (DFT) as well as diffusion quantum Monte Carlo (DMC) methods. The closure of the band gap with increasing pressure is investigated utilizing quasi-particle many-body calculations within the GW approximation. The dynamical phase diagram is calculated by adding proton zero-point energies (ZPE) to static enthalpies. Density functional perturbation theory is employed to calculate the proton ZPE and the infra-red and Raman spectra. Our results clearly demonstrate the failure of DFT-based methods to provide an accurate static phase diagram, especially when comparing insulating and metallic phases. Our dynamical phase diagram obtained using fully many-body DMC calculations shows that the molecular-to-atomic phase transition happens at the experimentally accessible pressure of 374 GPa. We claim that going beyond mean-field schemes to obtain derivatives of the total energy and optimize crystal structures at the many-body level is crucial. This work was supported by the UK engineering and physics science research council under Grant EP/I030190/1, and made use of computing facilities provided by HECTOR, and by the Imperial College London high performance computing centre.
Experimental Investigation on Design Enhancement of Axial Fan Using Fixed Guide Vane
NASA Astrophysics Data System (ADS)
Munisamy, K. M.; Govindasamy, R.; Thangaraju, S. K.
2015-09-01
Airflow passes through the rotating blade in an axial flow fan will experience a helical flow pattern. This swirling effect leads the system to experience swirl energy losses or pressure drop yet reducing the total efficiency of the fan system. A robust tool to encounter this air spin past the blade is by introducing guide vane to the system. Owing to its importance, a new approach in designing outlet guide vane design for a commercial usage 1250mm diameter axial fan with a 30° pitch angle impeller has been introduced in this paper. A single line metal of proper curvature guide vane design technique has been adopted for this study. By choosing fan total efficiency as a target variable to be improved, the total and static pressure on the design point were set to be constraints. Therefore, the guide vane design was done based on the improvement target on the static pressure in system. The research shows that, with the improvement in static pressure by 29.63% through guide vane installation, the total fan efficiency is increased by 5.12%, thus reduces the fan power by 5.32%. Good agreement were found, that when the fan total efficiency increases, the power consumption of the fan is reduced. Therefore, this new approach of guide vane design can be applied to improve axial fan performance.
NASA Technical Reports Server (NTRS)
Harrington, Douglas (Technical Monitor); Schweiger, P.; Stern, A.; Gamble, E.; Barber, T.; Chiappetta, L.; LaBarre, R.; Salikuddin, M.; Shin, H.; Majjigi, R.
2005-01-01
Hot flow aero-acoustic tests were conducted with Pratt & Whitney's High-Speed Civil Transport (HSCT) Mixer-Ejector Exhaust Nozzles by General Electric Aircraft Engines (GEAE) in the GEAE Anechoic Freejet Noise Facility (Cell 41) located in Evendale, Ohio. The tests evaluated the impact of various geometric and design parameters on the noise generated by a two-dimensional (2-D) shrouded, 8-lobed, mixer-ejector exhaust nozzle. The shrouded mixer-ejector provides noise suppression by mixing relatively low energy ambient air with the hot, high-speed primary exhaust jet. Additional attenuation was obtained by lining the shroud internal walls with acoustic panels, which absorb acoustic energy generated during the mixing process. Two mixer designs were investigated, the high mixing "vortical" and aligned flow "axial", along with variations in the shroud internal mixing area ratios and shroud length. The shrouds were tested as hardwall or lined with acoustic panels packed with a bulk absorber. A total of 21 model configurations at 1:11.47 scale were tested. The models were tested over a range of primary nozzle pressure ratios and primary exhaust temperatures representative of typical HSCT aero thermodynamic cycles. Static as well as flight simulated data were acquired during testing. A round convergent unshrouded nozzle was tested to provide an acoustic baseline for comparison to the test configurations. Comparisons were made to previous test results obtained with this hardware at NASA Glenn's 9- by 15-foot low-speed wind tunnel (LSWT). Laser velocimetry was used to investigate external as well as ejector internal velocity profiles for comparison to computational predictions. Ejector interior wall static pressure data were also obtained. A significant reduction in exhaust system noise was demonstrated with the 2-D shrouded nozzle designs.
NASA Astrophysics Data System (ADS)
Lytra, A.; Pelekasis, N.
2018-03-01
The static response of coated microbubbles is investigated with a novel approach employed for modeling contact between a microbubble and the cantilever of an atomic force microscope. Elastic tensions and moments are described via appropriate constitutive laws. The encapsulated gas is assumed to undergo isothermal variations. Due to the hydrophilic nature of the cantilever, an ultrathin aqueous film is formed, which transfers the force onto the shell. An interaction potential describes the local pressure applied on the shell. The problem is solved in axisymmetric form with the finite element method. The response is governed by the dimensionless bending, k^ b=kb/(χ R02 ), pressure, P^ A=(PAR0 )/χ , and interaction potential, W ^ =w0/χ . Hard polymeric shells have negligible resistance to gas compression, while for the softer lipid shells gas compressibility is comparable with shell elasticity. As the external force increases, numerical simulations reveal that the force versus deformation (f vs d) curve of polymeric shells exhibits a transition from the linear O(d) (Reissner) regime, marked by flattened shapes around the contact region, to a non-linear O(d1/2) (Pogorelov) regime dominated by shapes exhibiting crater formation due to buckling. When lipid shells are tested, buckling is bypassed as the external force increases and flattened shapes prevail in an initially linear f vs d curve. Transition to a curved upwards regime is observed as the force increases, where gas compression and area dilatation form the dominant balance providing a nonlinear regime with an O(d3) dependence. Asymptotic analysis recovers the above patterns and facilitates estimation of the shell mechanical properties.
Wind pressure testing of tornado safe room components made from wood
Robert Falk; Deepak Shrestha
2016-01-01
To evaluate the ability of a wood tornado safe room to resist wind pressures produced by a tornado, two safe room com-ponents were tested for wind pressure strength. A tornado safe room ceiling panel and door were static-pressure-tested according to ASTM E 330 using a vacuum test system. Re-sults indicate that the panels had load capacities from 2.4 to 3.5 times that...