Method and appartus for converting static in-ground vehicle scales into weigh-in-motion systems
Muhs, Jeffrey D.; Scudiere, Matthew B.; Jordan, John K.
2002-01-01
An apparatus and method for converting in-ground static weighing scales for vehicles to weigh-in-motion systems. The apparatus upon conversion includes the existing in-ground static scale, peripheral switches and an electronic module for automatic computation of the weight. By monitoring the velocity, tire position, axle spacing, and real time output from existing static scales as a vehicle drives over the scales, the system determines when an axle of a vehicle is on the scale at a given time, monitors the combined weight output from any given axle combination on the scale(s) at any given time, and from these measurements automatically computes the weight of each individual axle and gross vehicle weight by an integration, integration approximation, and/or signal averaging technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endres, Florian, E-mail: florian.endres@ltm.uni-erlangen.de; Steinmann, Paul, E-mail: paul.steinmann@ltm.uni-erlangen.de
2016-01-14
Ferroelectric functional materials are of great interest in science and technology due to their electromechanically coupled material properties. Therefore, ferroelectrics, such as barium titanate, are modeled and simulated at the continuum scale as well as at the atomistic scale. Due to recent advancements in related manufacturing technologies the modeling and simulation of smart materials at the nanometer length scale is getting more important not only to predict but also fundamentally understand the complex material behavior of such materials. In this study, we analyze the size effects of 109° nanodomain walls in ferroelectric barium titanate single crystals in the rhombohedral phasemore » using a recently proposed extended molecular statics algorithm. We study the impact of domain thicknesses on the spontaneous polarization, the coercive field, and the lattice constants. Moreover, we discuss how the electromechanical coupling of an applied electric field and the introduced strain in the converse piezoelectric effect is affected by the thickness of nanodomains.« less
Motor starting a Brayton cycle power conversion system using a static inverter
NASA Technical Reports Server (NTRS)
Curreri, J. S.; Edkin, R. A.; Kruchowy, R.
1973-01-01
The power conversion module of a 2- to 15-kWe Brayton engine was motor started using a three-phase, 400-hertz static inverter as the power source. Motor-static tests were conducted for initial gas loop pressures of 10, 14, and 17 N/sq cm (15, 20, and 25 psia) over a range of initial turbine inlet temperatures from 366 to 550 K (200 to 530 F). The data are presented to show the effects of temperature and pressure on the motor-start characteristics of the rotating unit. Electrical characteristics during motoring are also discussed.
NASA Technical Reports Server (NTRS)
Eppel, J. C.; Shovlin, M. D.; Jaynes, D. N.; Englar, R. J.; Nichols, J. H., Jr.
1982-01-01
Full scale static investigations were conducted on the Quiet Short Haul Research Aircraft (QSRA) to determine the thrust deflecting capabilities of the circulation control wing/upper surface blowing (CCW/USB) concept. This scheme, which combines favorable characteristics of both the A-6/CCW and QSRA, employs the flow entrainment properties of CCW to pneumatically deflect engine thrust in lieu of the mechanical USB flap system. Results show that the no moving parts blown system produced static thrust deflections in the range of 40 deg to 97 deg (depending on thrust level) with a CCW pressure of 208,900 Pa (30.3 psig). In addition, the ability to vary horizontal forces from thrust to drag while maintaining a constant vertical (or lift) value was demonstrated by varying the blowing pressure. The versatility of the CCW/USB system, if applied to a STOL aircraft, was confirmed, where rapid conversion from a high drag approach mode to a thrust recovering waveoff or takeoff configuration could be achieved by nearly instantaneous blowing pressure variation.
Static and dynamic high power, space nuclear electric generating systems
NASA Technical Reports Server (NTRS)
Wetch, J. R.; Begg, L. L.; Koester, J. K.
1985-01-01
Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed.
NASA Astrophysics Data System (ADS)
Guan, Wei; Shi, Peng; Hu, Hengshan
2018-01-01
In this study, we theoretically analyse the contributions of the four poroelastic-wave potentials to seismoelectromagnetic (SEM) wavefields, verify the validity of the quasi-static calculation of the electric field and provide a method to calculate the magnetic field by using the curl-free electric field. Calculations show that both the fast and slow P waves and the SH and SV waves have non-negligible contributions to the SEM fields. The S waves have indirect contribution to the electric field through the EM conversion from the magnetic field, although the direct contribution due to streaming current is negligible if EM wavenumbers are much smaller than those of the S waves. The P waves have indirect contribution to the magnetic field through EM conversion from the electric field, although the direct contribution is absent. The quasi-static calculation of the electric field is practicable since it is normally satisfied in reality that the EM wavenumbers are much smaller than those of poroelastic waves. While the direct contribution of the S waves and the higher-order EM conversions are ignored, the first-order EM conversion from the S-wave-induced magnetic field is reserved through the continuity of the electric-current density. To calculate the magnetic field on this basis, we separate the quasi-static electric field into a rotational and an irrotational part. The magnetic-field solutions are derived through Hertz vectors in which the coefficients of the magnetic Hertz vector are determined from the magnetic-field continuities and those of the electric Hertz vector originate from the irrotational part of the quasi-static electric field.
NASA Astrophysics Data System (ADS)
Keshta, H. E.; Ali, A. A.; Saied, E. M.; Bendary, F. M.
2016-10-01
Large-scale integration of wind turbine generators (WTGs) may have significant impacts on power system operation with respect to system frequency and bus voltages. This paper studies the effect of Static Var Compensator (SVC) connected to wind energy conversion system (WECS) on voltage profile and the power generated from the induction generator (IG) in wind farm. Also paper presents, a dynamic reactive power compensation using Static Var Compensator (SVC) at the a point of interconnection of wind farm while static compensation (Fixed Capacitor Bank) is unable to prevent voltage collapse. Moreover, this paper shows that using advanced optimization techniques based on artificial intelligence (AI) such as Harmony Search Algorithm (HS) and Self-Adaptive Global Harmony Search Algorithm (SGHS) instead of a Conventional Control Method to tune the parameters of PI controller for SVC and pitch angle. Also paper illustrates that the performance of the system with controllers based on AI is improved under different operating conditions. MATLAB/Simulink based simulation is utilized to demonstrate the application of SVC in wind farm integration. It is also carried out to investigate the enhancement in performance of the WECS achieved with a PI Controller tuned by Harmony Search Algorithm as compared to a Conventional Control Method.
NASA Technical Reports Server (NTRS)
Wetch, J. R.
1988-01-01
The objective was to determine which reactor, conversion, and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. Specifically, the requirement was 10 megawatts for 5 years of full power operation and 10 years systems life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study. The concepts are: a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heat pipe and pumped tube-fin heat rejection; a lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator; a lithium cooled reactor with potassium Rankine turbine-alternator and heat pipe radiator; and a lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the lithium cooled incore thermionic reactor with heat pipe radiator.
Investigation of Shock Diffusers at Mach Number 1.85. 1 - Projecting Single Shock Cones
1947-06-17
cylindrical simulated combustion chamber was used to vary the outlet area of the flow through the diffuser. The pitot -static rake , located as shown in the...Simulated combustion u chamber A 90° W •—Conical damper S Static-pressure orifice ps pitot -static "" rake ’ NATIONAL ADVISORY...recoveries were obtained with subsonic entrance flow. INTRODCJCTION For efficient conversion of the kinetic energy of a supersonic air stream into ram
The Debye light scattering equation's scaling relation reveals the purity of synthetic dendrimers
NASA Astrophysics Data System (ADS)
Tseng, Hui-Yu; Chen, Hsiao-Ping; Tang, Yi-Hsuan; Chen, Hui-Ting; Kao, Chai-Lin; Wang, Shau-Chun
2016-03-01
Spherical dendrimer structures cannot be structurally modeled using conventional polymer models of random coil or rod-like configurations during the calibration of the static light scattering (LS) detectors used to determine the molecular weight (M.W.) of a dendrimer or directly assess the purity of a synthetic compound. In this paper, we used the Debye equation-based scaling relation, which predicts that the static LS intensity per unit concentration is linearly proportional to the M.W. of a synthetic dendrimer in a dilute solution, as a tool to examine the purity of high-generational compounds and to monitor the progress of dendrimer preparations. Without using expensive equipment, such as nuclear magnetic resonance or mass spectrometry, this method only required an affordable flow injection set-up with an LS detector. Solutions of the purified dendrimers, including the poly(amidoamine) (PAMAM) dendrimer and its fourth to seventh generation pyridine derivatives with size range of 5-9 nm, were used to establish the scaling relation with high linearity. The use of artificially impure mixtures of six or seven generations revealed significant deviations from linearity. The raw synthesized products of the pyridine-modified PAMAM dendrimer, which included incompletely reacted dendrimers, were also examined to gauge the reaction progress. As a reaction toward a particular generational derivative of the PAMAM dendrimers proceeded over time, deviations from the linear scaling relation decreased. The difference between the polydispersity index of the incompletely converted products and that of the pure compounds was only about 0.01. The use of the Debye equation-based scaling relation, therefore, is much more useful than the polydispersity index for monitoring conversion processes toward an indicated functionality number in a given preparation.
NASA Technical Reports Server (NTRS)
Wetch, J. R.
1988-01-01
A study was conducted by NASA Lewis Research Center for the Triagency SP-100 program office. The objective was to determine which reactor, conversion and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. The requirement was 10 megawatts for 5 years of full power operation and 10 years system life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study: (1) a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heatpipe and pumped tube fin rejection, (2) a Lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator,(3) a Lithium cooled reactor with a Potassium Rankine turbine-alternator and heat pipe radiator, and (4) a Lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the Lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the Lithium cooled incore thermionic reactor with heat pipe radiator.
A Static Picture of the Relaxation and Intersystem Crossing Mechanisms of Photoexcited 2-Thiouracil
2015-01-01
Accurate excited-state quantum chemical calculations on 2-thiouracil, employing large active spaces and up to quadruple-ζ quality basis sets in multistate complete active space perturbation theory calculations, are reported. The results suggest that the main relaxation path for 2-thiouracil after photoexcitation should be S2 → S1 → T2 → T1, and that this relaxation occurs on a subpicosecond time scale. There are two deactivation pathways from the initially excited bright S2 state to S1, one of which is nearly barrierless and should promote ultrafast internal conversion. After relaxation to the S1 minimum, small singlet–triplet energy gaps and spin–orbit couplings of about 130 cm–1 are expected to facilitate intersystem crossing to T2, from where very fast internal conversion to T1 occurs. An important finding is that 2-thiouracil shows strong pyramidalization at the carbon atom of the thiocarbonyl group in several excited states. PMID:26284285
Einstein's conversion from his static to an expanding universe
NASA Astrophysics Data System (ADS)
Nussbaumer, Harry
2014-02-01
In 1917 Einstein initiated modern cosmology by postulating, based on general relativity, a homogenous, static, spatially curved universe. To counteract gravitational contraction he introduced the cosmological constant. In 1922 Alexander Friedman showed that Albert Einstein's fundamental equations also allow dynamical worlds, and in 1927 Georges Lemaître, backed by observational evidence, concluded that our universe was expanding. Einstein impetuously rejected Friedman's as well as Lemaître's findings. However, in 1931 he retracted his former static model in favour of a dynamic solution. This investigation follows Einstein on his hesitating path from a static to the expanding universe. Contrary to an often advocated belief the primary motive for his switch was not observational evidence, but the realisation that his static model was unstable.
Hoffmann, Axel; Schultheiß, Helmut
2014-12-17
Magnetic interactions give rise to a surprising amount of complexity due to the fact that both static and dynamic magnetic properties are governed by competing short-range exchange interactions and long-range dipolar coupling. Even though the underlying dynamical equations are well established, the connection of magnetization dynamics to other degrees of freedom, such as optical excitations, charge and heat flow, or mechanical motion, make magnetism a mesoscale research problem that is still wide open for exploration. Synthesizing magnetic materials and heterostructures with tailored properties will allow to take advantage of magnetic interactions spanning many length-scales, which can be probed with advancedmore » spectroscopy and microscopy and modeled with multi-scale simulations. Finally, this paper highlights some of the current basic research topics in mesoscale magnetism, which beyond their fundamental science impact are also expected to influence applications ranging from information technologies to magnetism based energy conversion.« less
NASA Astrophysics Data System (ADS)
Gao, Zhenxun; Wang, Jingying; Jiang, Chongwen; Lee, Chunhian
2014-11-01
In the framework of Reynolds-averaged Navier-Stokes simulation, supersonic turbulent combustion flows at the German Aerospace Centre (DLR) combustor and Japan Aerospace Exploration Agency (JAXA) integrated scramjet engine are numerically simulated using the flamelet model. Based on the DLR combustor case, theoretical analysis and numerical experiments conclude that: the finite rate model only implicitly considers the large-scale turbulent effect and, due to the lack of the small-scale non-equilibrium effect, it would overshoot the peak temperature compared to the flamelet model in general. Furthermore, high-Mach-number compressibility affects the flamelet model mainly through two ways: the spatial pressure variation and the static enthalpy variation due to the kinetic energy. In the flamelet library, the mass fractions of the intermediate species, e.g. OH, are more sensible to the above two effects than the main species such as H2O. Additionally, in the combustion flowfield where the pressure is larger than the value adopted in the generation of the flamelet library or the conversion from the static enthalpy to the kinetic energy occurs, the temperature obtained by the flamelet model without taking compressibility effects into account would be undershot, and vice versa. The static enthalpy variation effect has only little influence on the temperature simulation of the flamelet model, while the effect of the spatial pressure variation may cause relatively large errors. From the JAXA case, it is found that the flamelet model cannot in general be used for an integrated scramjet engine. The existence of the inlet together with the transverse injection scheme could cause large spatial variations of pressure, so the pressure value adopted for the generation of a flamelet library should be fine-tuned according to a pre-simulation of pure mixing.
Power conversion distribution system using a resonant high-frequency AC link
NASA Technical Reports Server (NTRS)
Sood, P. K.; Lipo, T. A.
1986-01-01
Static power conversion systems based on a resonant high frequency (HF) link offers a significant reduction in the size and weight of the equipment over that achieved with conventional approaches, especially when multiple sources and loads are to be integrated. A faster system response and absence of audible noise are the other principal characteristics of such systems. A conversion configuration based on a HF link which is suitable for applications requiring distributed power is proposed.
Wind Tunnel to Atmospheric Mapping for Static Aeroelastic Scaling
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Spain, Charles V.; Rivera, J. A.
2004-01-01
Wind tunnel to Atmospheric Mapping (WAM) is a methodology for scaling and testing a static aeroelastic wind tunnel model. The WAM procedure employs scaling laws to define a wind tunnel model and wind tunnel test points such that the static aeroelastic flight test data and wind tunnel data will be correlated throughout the test envelopes. This methodology extends the notion that a single test condition - combination of Mach number and dynamic pressure - can be matched by wind tunnel data. The primary requirements for affecting this extension are matching flight Mach numbers, maintaining a constant dynamic pressure scale factor and setting the dynamic pressure scale factor in accordance with the stiffness scale factor. The scaling is enabled by capabilities of the NASA Langley Transonic Dynamics Tunnel (TDT) and by relaxation of scaling requirements present in the dynamic problem that are not critical to the static aeroelastic problem. The methodology is exercised in two example scaling problems: an arbitrarily scaled wing and a practical application to the scaling of the Active Aeroelastic Wing flight vehicle for testing in the TDT.
NASA Astrophysics Data System (ADS)
Lodhi, M. A. K.
2012-10-01
Static conversion systems are gaining importance in recent times because of newer applications of electricity like in spacecraft, hybrid-electric vehicles, military uses and domestic purposes. Of the many new static energy conversion systems that are being considered, one is the Alkali Metal Thermal Electric Converter (AMTEC). It is a thermally regenerative, electrochemical device for the direct conversion of heat to electrical power. As the name suggests, this system uses an alkali metal in its process. The electrochemical process involved in the working of AMTEC is ionization of alkali metal atoms at the interface of electrode and electrolyte. The electrons produced as a result flow through the external load thus doing work, and finally recombine with the metal ions at the cathode. AMTECs convert the work done during the nearly isothermal expansion of metal vapor to produce a high current and low voltage electron flow. Due to its principle of working it has many inherent advantages over other conventional generators. These will be discussed briefly.
Influence of static habitat attributes on local and regional Rocky intertidal community structure
Konar, B.; Iken, K.; Coletti, H.; Monson, Daniel H.; Weitzman, Ben P.
2016-01-01
Rocky intertidal communities are structured by local environmental drivers, which can be dynamic, fluctuating on various temporal scales, or static and not greatly varying across years. We examined the role of six static drivers (distance to freshwater, tidewater glacial presence, wave exposure, fetch, beach slope, and substrate composition) on intertidal community structure across the northern Gulf of Alaska. We hypothesized that community structure is less similar at the local scale compared with the regional scale, coinciding with static drivers being less similar on smaller than larger scales. We also hypothesized that static attributes mainly drive local biological community structure. For this, we surveyed five to six sites in each of the six regions in the mid and low intertidal strata. Across regions, static attributes were not consistently different and only small clusters of sites had similar attributes. Additionally, intertidal communities were less similar on the site compared with the region level. These results suggest that these biological communities are not strongly influenced by the local static attributes measured in this study. An alternative explanation is that static attributes among our regions are not different enough to influence the biological communities. This lack of evidence for a strong static driver may be a result of our site selection, which targeted rocky sheltered communities. This suggests that this habitat may be ideal to examine the influence of dynamic drivers. We recommend that future analyses of dynamic attributes may best be performed after analyses have demonstrated that sites do not differ in static attributes.
Scaling Effects in Carbon/Epoxy Laminates Under Transverse Quasi-Static Loading
NASA Technical Reports Server (NTRS)
Nettles, Alan T.; Douglas, Michael J.; Estes, Eric E.
1999-01-01
Scaling effects were considered for 8, 16, 32, and 64 ply IM-7/8551-7 carbon/epoxy composites plates transversely loaded to the first significant load drop by means of both a quasi-static and an equivalent impact force. The resulting damage was examined by x-ray and photomicroscopy analysis. Load-deflection curves were generated for the quasi-static tests and the resulting indentation depth was measured. Results showed that the load-deflection data scaled well for most of the various thicknesses of plates. However, damage did not scale as well. No correlation could be found between dent depth and any of the other parameters measured in this study. The impact test results showed that significantly less damage was formed compared to the quasi- static results for a given maximum transverse load. The criticality of ply-level scaling (grouping plies) was also examined.
Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics
NASA Technical Reports Server (NTRS)
Ericsson, L. E.; Reding, J. P.
1988-01-01
Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.
1990-01-01
Scale model technology represents one method of investigating the behavior of advanced, weight-efficient composite structures under a variety of loading conditions. It is necessary, however, to understand the limitations involved in testing scale model structures before the technique can be fully utilized. These limitations, or scaling effects, are characterized. in the large deflection response and failure of composite beams. Scale model beams were loaded with an eccentric axial compressive load designed to produce large bending deflections and global failure. A dimensional analysis was performed on the composite beam-column loading configuration to determine a model law governing the system response. An experimental program was developed to validate the model law under both static and dynamic loading conditions. Laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic were tested to examine a diversity of composite response and failure modes. The model beams were loaded under scaled test conditions until catastrophic failure. A large deflection beam solution was developed to compare with the static experimental results and to analyze beam failure. Also, the finite element code DYCAST (DYnamic Crash Analysis of STructure) was used to model both the static and impulsive beam response. Static test results indicate that the unidirectional and cross ply beam responses scale as predicted by the model law, even under severe deformations. In general, failure modes were consistent between scale models within a laminate family; however, a significant scale effect was observed in strength. The scale effect in strength which was evident in the static tests was also observed in the dynamic tests. Scaling of load and strain time histories between the scale model beams and the prototypes was excellent for the unidirectional beams, but inconsistent results were obtained for the angle ply, cross ply, and quasi-isotropic beams. Results show that valuable information can be obtained from testing on scale model composite structures, especially in the linear elastic response region. However, due to scaling effects in the strength behavior of composite laminates, caution must be used in extrapolating data taken from a scale model test when that test involves failure of the structure.
Driven, underdamped Frenkel-Kontorova model on a quasiperiodic substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanossi, A.; Ro''der, J.; Bishop, A. R.
2001-01-01
We consider the underdamped dynamics of a chain of atoms subject to a dc driving force and a quasiperiodic substrate potential. The system has three inherent length scales which we take to be mutually incommensurate. We find that when the length scales are related by the spiral mean (a cubic irrational) there exists a value of the interparticle interaction strength above which the static friction is zero. When the length scales are related by the golden mean (a quadratic irrational) the static friction is always nonzero. >From considerations based on the connection of this problem to standard map theory, wemore » postulate that zero static friction is generally possible for incommensurate ratios of the length scales involved. However, when the length scales are quadratic irrationals, or have some commensurability with each other, the static friction will be nonzero for all choices of interaction parameters. We also comment on the nature of the depinning mechanisms and the steady states achieved by the moving chain.« less
Analysis of the wind tunnel test of a tilt rotor power force model
NASA Technical Reports Server (NTRS)
Marr, R. L.; Ford, D. G.; Ferguson, S. W.
1974-01-01
Two series of wind tunnel tests were made to determine performance, stability and control, and rotor wake interaction on the airframe, using a one-tenth scale powered force model of a tilt rotor aircraft. Testing covered hover (IGE/OCE), helicopter, conversion, and airplane flight configurations. Forces and moments were recorded for the model from predetermined trim attitudes. Control positions were adjusted to trim flight (one-g lift, pitching moment and drag zero) within the uncorrected test data balance accuracy. Pitch and yaw sweeps were made about the trim attitudes with the control held at the trimmed settings to determine the static stability characteristics. Tail on, tail off, rotors on, and rotors off configurations were testes to determine the rotor wake effects on the empennage. Results are presented and discussed.
Content Validation of the Scale of Teachers' Attitudes towards Inclusive Classrooms (STATIC)
ERIC Educational Resources Information Center
Nishimura, Trisha Sugita; Busse, R. T.
2016-01-01
The purpose of this study was to examine the content validity of the Scale of Teachers' Attitudes towards Inclusive Classrooms (STATIC). An expert panel of 20 special education teachers and five university faculty members provided individual item ratings on a five-point scale regarding wording and content, along with comments. Item and comment…
Noise characteristics of upper surface blown configurations. Experimental program and results
NASA Technical Reports Server (NTRS)
Brown, W. H.; Searle, N.; Blakney, D. F.; Pennock, A. P.; Gibson, J. S.
1977-01-01
An experimental data base was developed from the model upper surface blowing (USB) propulsive lift system hardware. While the emphasis was on far field noise data, a considerable amount of relevant flow field data were also obtained. The data were derived from experiments in four different facilities resulting in: (1) small scale static flow field data; (2) small scale static noise data; (3) small scale simulated forward speed noise and load data; and (4) limited larger-scale static noise flow field and load data. All of the small scale tests used the same USB flap parts. Operational and geometrical variables covered in the test program included jet velocity, nozzle shape, nozzle area, nozzle impingement angle, nozzle vertical and horizontal location, flap length, flap deflection angle, and flap radius of curvature.
Structural modeling of aircraft tires
NASA Technical Reports Server (NTRS)
Clark, S. K.; Dodge, R. N.; Lackey, J. I.; Nybakken, G. H.
1973-01-01
A theoretical and experimental investigation of the feasibility of determining the mechanical properties of aircraft tires from small-scale model tires was accomplished. The theoretical results indicate that the macroscopic static and dynamic mechanical properties of aircraft tires can be accurately determined from the scale model tires although the microscopic and thermal properties of aircraft tires can not. The experimental investigation was conducted on a scale model of a 40 x 12, 14 ply rated, type 7 aircraft tire with a scaling factor of 8.65. The experimental results indicate that the scale model tire exhibited the same static mechanical properties as the prototype tire when compared on a dimensionless basis. The structural modeling concept discussed in this report is believed to be exact for mechanical properties of aircraft tires under static, rolling, and transient conditions.
Psychometric properties of Conversion Disorder Scale- Revised (CDS) for children.
Ijaz, Tazvin; Nasir, Attikah; Sarfraz, Naema; Ijaz, Shirmeen
2017-05-01
To revise conversion disorder scale and to establish the psychometric properties of the revised scale. This case-control study was conducted from February to June, 2014, at the Government College University, Lahore, Pakistan, and comprised schoolchildren and children with conversion disorder. In order to generate items for revised version of conversion disorder scale, seven practising mental health professionals were consulted. A list of 42 items was finalised for expert ratings. After empirical validation, a scale of 40 items was administered on the participants and factor analysis was conducted. Of the240 participants, 120(50%) were schoolchildren (controls group) and 120(50%)were children with conversion disorder (clinical group).The results of factor analysis revealed five factors (swallowing and speech symptoms, motor symptoms, sensory symptoms, weakness and fatigue, and mixed symptoms) and retention of all 40 items of revised version of conversion disorder scale. Concurrent validity of the revised scale was found to be 0.81 which was significantly high. Similarly, discriminant validity of the scale was also high as both clinical and control groups had significant difference (p<0.001) in scores. Cronbach's alpha of scale was a=0.91 while item total correlation ranged from 0.50 to 0.80. The sensitivity and specificity analysis indicated that the revised conversion disorder scale was 76% sensitive to predicting conversion disorder while specificity showed that the scale was 73% accurate in specifying participants of the control group. The revised version of conversion disorder scale was a reliable and valid tool to be used for screening of children with conversion disorder.
NASA Technical Reports Server (NTRS)
Sander, W. A., III
1973-01-01
Dc to dc static power conditioning systems on unmanned spacecraft have as their inputs highly fluctuating dc voltages which they condition to regulated dc voltages. These input voltages may be less than or greater than the desired regulated voltages. The design of two circuits which address specific problems in the design of these power conditioning systems and a nonlinear analysis of one of the circuits are discussed. The first circuit design is for a nondissipative active ripple filter which uses an operational amplifier to amplify and cancel the sensed ripple voltage. A dc to dc converter operating at a switching frequency of 1 MHz is the second circuit discussed. A nonlinear analysis of the type of dc to dc converter utilized in designing the 1 MHz converter is included.
Al-Roomi, Yousef Mohammad; Hussain, Kaneez Fatema
2017-04-01
Calcium sulfate is one of the dominant scales which, unlike carbonate scale, are not easily removable by acid. To inhibit CaSO 4 scale formation in artificial cooling water systems, well-defined low molecular weight maleic anhydride and n-alkylacrylamide copolymers (YMR-S series) were synthesized via nitroxide-mediated radical polymerization initiated by benzoyl peroxide in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxy at varying concentrations. These polymerizations exhibit living polymerization characteristics; that is, they show linear growth in chain length as a function of monomer conversion, and have narrow molecular weight distributions. Resultant polymers were characterized by means of 1 H-NMR and 13 C-NMR. The inhibition behavior of these YMR-S series polymers against CaSO 4 was evaluated using the static scale inhibition method and a dynamic tube block test. The inhibition ability on the CaSO 4 scale is 99.5% with 9 ppm dosage level at pH 10.45 and temperature 70°C. Scanning electronic microscope analysis proved the morphological changes of the CaSO 4 scales due to the strong inhibition action of YMR-S polymers. It is also observed that the antiscaling effect of the copolymers greatly depends on the molecular weight, and the optimum range is below 20,000 and approximately in the range 500-2000.
Oil well flow assurance through static electric potential: An experimental investigation
NASA Astrophysics Data System (ADS)
Hashmi, Muhammad Ihtsham Asmat
Flow assurance technology deals with the deposition of organic and inorganic solids in the oil flow path, which results in constriction of the production tubing and surface flow lines and drastically reduces the kinetic energy of the fluid. The major contributors to this flow restriction are inorganic scales, asphaltene, wax and gas hydrates, in addition to minor contribution from formation fines and corrosion products. Some of these materials (particularly asphaltene and inorganic scales) carry surface charges on their nuclei and seen to be attracted by electrode having opposite charge. The focus of the present research is to find the possibilities of inhibiting the deposition of asphaltene and inorganic scales in the production tubing by applying static electrical potential. With this objective, two flow set ups were made; one for asphaltene and the other for scale deposition studies, attached with precision pumps, pressure recording system and DC power supply. In each set up there were two flow loops, one was converted as Anode and the other as Cathode. A series of flow studies were conducted using the flow set ups, in which oil-dilution ratio, temperature and most importantly DC potential difference was varied and the deposition behavior of the asphaltene aggregates and calcium carbonate scale to the walls of the test loops were observed through rise of differential pressure across the loop due to possible deposition and constriction of the flow path. Two different sets of flow studies; one without oil dilution and other with the diluted oil (with n-heptane), were performed. Both experiments were investigated under the influence of static potential applied across the two test loops. Experimental results indicated that asphaltene deposition in the cathode can be retarded or stopped by applying a suitable negative potential; an increase in the static potential resulted in enhanced control over the asphaltene aggregation and hence the deposition. In the second study, scale deposition and retardation through static potential is studied through a series of flow experiments. Under the influence of static potential, scale deposition at the room temperature showed an increase in the deposition rates, whereas, at the elevated temperatures, scale deposition rates were observed to be retarded and delayed. Beyond a certain value of the static potential, this decreasing trend in deposition rates become directly proportional to the applied static potential. Results showed that the scale deposition may be controlled if not completely stopped, in the anode, if a suitable positive potential can be applied to it. The overall conclusion of this study is as follows: • Asphaltene deposition can be arrested almost completely by converting the production well into a cathode. • Scale deposition can be retarded or deposition rate can be much delayed by converting the production well into an anode.
Smithline, Howard A; Caglar, Selin; Blank, Fidela S J
2010-01-01
This study assessed the convergent validity of 2 dyspnea measures, the transition measure and the change measure, by comparing them with each other in patients admitted to the hospital with acute decompensated heart failure. Static measures of dyspnea were obtained at baseline (pre-static measure) and at time 1 hour and 4 hour (post-static measures). The change measure was calculated as the difference between the pre-static and post-static measures. Transition measures were obtained at time 1 hour and 4 hour. Visual analog scales and Likert scales were used. Both physicians and patients measured the dyspnea independently. A total of 112 patients had complete data sets at time 0 and 1 hour and 86 patients had complete data sets at all 3 time points. Correlations were calculated between the transition measures and static measures (pre-static, post-static, and change measure). Bland-Altman plots were generated and the mean difference and limits of agreement between the transition measures and the change measures were calculated. In general, short-term dyspnea assessment using transition measures and serial static measures can not be used to validate each other in this population of patients being admitted with acute decompensated heart failure. © 2010 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sasaki, Yutaka; Meju, Max A.
2006-05-01
Accurate interpretation of magnetotelluric (MT) data in the presence of static shift arising from near-surface inhomogeneities is an unresolved problem in three-dimensional (3-D) inversion. While it is well known in 1-D and 2-D studies that static shift can lead to erroneous interpretation, how static shift can influence the result of 3-D inversion is not fully understood and is relevant to improved subsurface analysis. Using the synthetic data generated from 3-D models with randomly distributed heterogeneous overburden and elongate homogeneous overburden that are consistent with geological observations, this paper examines the effects of near-surface inhomogeneity on the accuracy of 3-D inversion models. It is found that small-scale and shallow depth structures are severely distorted while the large-scale structure is marginally distorted in 3-D inversion not accounting for static shift; thus the erroneous near-surface structure does degrade the reconstruction of smaller-scale structure at any depth. However, 3-D joint inversion for resistivity and static shift significantly reduces the artifacts caused by static shifts and improves the overall resolution, irrespective of whether a zero-sum or Gaussian distribution of static shifts is assumed. The 3-D joint inversion approach works equally well for situations where the shallow bodies are of small size or long enough to allow some induction such that the effects of near-surface inhomogeneity are manifested as a frequency-dependent shift rather than a constant shift.
Brown, Roger F; Rahaman, Mohamed N; Dwilewicz, Agatha B; Huang, Wenhai; Day, Delbert E; Li, Yadong; Bal, B Sonny
2009-02-01
Glasses containing varying amounts of B(2)O(3) were prepared by partially or fully replacing the SiO(2) in silicate 45S5 bioactive glass with B(2)O(3). The effects of the B(2)O(3) content of the glass on its conversion to hydroxyapatite (HA) and on the proliferation of MC3T3-E1 cells were investigated in vitro. Conversion of the glasses to HA in dilute (20 mM) K(2)HPO(4) solution was monitored using weight loss and pH measurements. Proliferation of MC3T3-E1 cells was determined qualitatively by assay of cell density at the glass interface after incubation for 1 day and 3 days, and quantitatively by fluorescent measurements of total DNA in cultures incubated for 4 days. Higher B(2)O(3) content of the glass increased the conversion rate to HA, but also resulted in a greater inhibition of cell proliferation under static culture conditions. For a given mass of glass in the culture medium, the inhibition of cell proliferation was alleviated by using glasses with lower B(2)O(3) content, by incubating the cell cultures under dynamic rather than static conditions, or by partially converting the glass to HA prior to cell culture.
ERIC Educational Resources Information Center
School Science Review, 1982
1982-01-01
Demonstrations, procedures, games, teaching suggestions and information on a variety of physics topics are presented, including hydraulic rams, units and formulae, static electric motors, a computer graphics program, diffraction, adaptation of a basic meter, photoelasticity, photo-diodes, radioactive decay, and analog-digital conversions. (DC)
Novel, Integrated Reactor / Power Conversion System (LMR-AMTEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pablo Rubiolo, Principal Investigator
2003-03-21
The main features of this project were the development of a long life (up to 10 years) Liquid Metal Reactor (LMR) and a static conversion subsystem comprising an Alkali Metal Thermal-to-Electric (AMTEC) topping cycle and a ThermoElectric (TE) Bottom cycle. Various coupling options of the LMR with the energy conversion subsystem were explored and, base in the performances found in this analysis, an Indirect Coupling (IC) between the LMR and the AMTEC/TE converters with Alkali Metal Boilers (AMB) was chosen as the reference design. The performance model of the fully integrated sodium-and potassium-AMTEC/TE converters shows that a combined conversion efficiencymore » in excess of 30% could be achieved by the plant. (B204)« less
Evaluation of Geosynthetic-Reinforced Flexible Pavements using Static Plate Load Tests
DOT National Transportation Integrated Search
2010-01-01
This study focuses on the response of full-scale geogrid-reinforced flexible pavements to static surface loading. Specifically, static plate load (SPL) tests were performed on a low-volume, asphalt pavement frontage road in Eastern Arkansas, USA (the...
Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model
NASA Technical Reports Server (NTRS)
Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh
2014-01-01
This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.
LLNL small-scale static spark machine: static spark sensitivity test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltz, M F; Simpson, L R
1999-08-23
Small-scale safety testing of explosives and other energetic materials is done in order to determine their sensitivity to various stimuli, such as friction, static spark, and impact. Typically this testing is done to discover potential handling problems that may exist for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing ''Static Spark Test Apparatus'' at Lawrence Livermore National Laboratory (LLNL), as well as the method used to evaluate the relative static spark sensitivity of energetic materials. The basic design, originally developed by the Picatinny Arsenal inmore » New Jersey, is discussed. The accumulated data for the materials tested to date is not included here, with the exception of specific examples that have yielded interesting or unusual results during the tests.« less
Dickinson, R A; Morton, J M; Beggs, D S; Anderson, G A; Pyman, M F; Mansell, P D; Blackwood, C B
2013-07-01
Automated walk-over weighing systems can be used to monitor liveweights of cattle. Minimal literature exists to describe agreement between automated and static scales, and no known studies describe repeatability when used for daily measurements of dairy cows. This study establishes the repeatability of an automated walk-over cattle-weighing system, and agreement with static electronic scales, when used in a commercial dairy herd to weigh lactating cows. Forty-six lactating dairy cows from a seasonal calving, pasture-based dairy herd in southwest Victoria, Australia, were weighed once using a set of static scales and repeatedly using an automated walk-over weighing system at the exit of a rotary dairy. Substantial agreement was observed between the automated and static scales when assessed using Lin's concordance correlation coefficient. Weights measured by the automated walkover scales were within 5% of those measured by the static scales in 96% of weighings. Bland and Altman's 95% limits of agreement were -23.3 to 43.6 kg, a range of 66.9 kg. The 95% repeatability coefficient for automated weighings was 46.3 kg. Removal of a single outlier from the data set increased Lin's concordance coefficient, narrowed Bland and Altman's 95% limits of agreement to a range of 32.5 kg, and reduced the 95% repeatability coefficient to 18.7 kg. Cow misbehavior during walk-over weighing accounted for many of the larger weight discrepancies. The automated walk-over weighing system showed substantial agreement with the static scales when assessed using Lin's concordance correlation coefficient. This contrasted with limited agreement when assessed using Bland and Altman's method, largely due to poor repeatability. This suggests the automated weighing system is inadequate for detecting small liveweight differences in individual cows based on comparisons of single weights. Misbehaviors and other factors can result in the recording of spurious values on walk-over scales. Excluding outlier weights and comparing means of 7 consecutive daily weights may improve agreement sufficiently to allow meaningful assessment of small short-term changes in automated weights in individuals and groups of cows. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nejat, Cyrus; Nejat, Narsis; Nejat, Najmeh
2014-06-01
This research project is part of Narsis Nejat Master of Science thesis project that it is done at Shiraz University. The goals of this research are to make a computer model to evaluate the thermal power, electrical power, amount of emitted/absorbed dose, and amount of emitted/absorbed dose rate for static Radioisotope Thermoelectric Generators (RTG)s that is include a comprehensive study of the types of RTG systems and in particular RTG’s fuel resulting from both natural and artificial isotopes, calculation of the permissible dose radioisotope selected from the above, and conceptual design modeling and comparison between several NASA made RTGs with the project computer model pointing out the strong and weakness points for using this model in nuclear industries for simulation. The heat is being converted to electricity by two major methods in RTGs: static conversion and dynamic conversion. The model that is created for this project is for RTGs that heat is being converted to electricity statically. The model approximates good results as being compared with SNAP-3, SNAP-19, MHW, and GPHS RTGs in terms of electrical power, efficiency, specific power, and types of the mission and amount of fuel mass that is required to accomplish the mission.
Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors
Jolley, Katherine E
2015-01-01
Summary The continuous flow synthesis of a range of organic solutions of N,N-dialkyl-N-chloramines is described using either a bespoke meso-scale tubular reactor with static mixers or a continuous stirred tank reactor. Both reactors promote the efficient mixing of a biphasic solution of N,N-dialkylamine in organic solvent, and aqueous sodium hypochlorite to achieve near quantitative conversions, in 72–100% in situ yields, and useful productivities of around 0.05 mol/h with residence times from 3 to 20 minutes. Initial calorimetric studies have been carried out to inform on reaction exotherms, rates and safe operation. Amines which partition mainly in the organic phase require longer reaction times, provided by the CSTR, to compensate for low mass transfer rates in the biphasic system. The green metrics of the reaction have been assessed and compared to existing procedures and have shown the continuous process is improved over previous procedures. The organic solutions of N,N-dialkyl-N-chloramines produced continuously will enable their use in tandem flow reactions with a range of nucleophilic substrates. PMID:26734089
Space Shuttle Flight Support Motor no. 1 (FSM-1)
NASA Technical Reports Server (NTRS)
Hughes, Phil D.
1990-01-01
Space Shuttle Flight Support Motor No. 1 (FSM-1) was static test fired on 15 Aug. 1990 at the Thiokol Corporation Static Test Bay T-24. FSM-1 was a full-scale, full-duration static test fire of a redesigned solid rocket motor. FSM-1 was the first of seven flight support motors which will be static test fired. The Flight Support Motor program validates components, materials, and manufacturing processes. In addition, FSM-1 was the full-scale motor for qualification of Western Electrochemical Corporation ammonium perchlorate. This motor was subjected to all controls and documentation requirements CTP-0171, Revision A. Inspection and instrumentation data indicate that the FSM-1 static test firing was successful. The ambient temperature during the test was 87 F and the propellant mean bulk temperature was 82 F. Ballistics performance values were within the specified requirements. The overall performance of the FSM-1 components and test equipment was nominal.
Static Electricity-Responsive Supramolecular Assembly.
Jintoku, Hirokuni; Ihara, Hirotaka; Matsuzawa, Yoko; Kihara, Hideyuki
2017-12-01
Stimuli-responsive materials can convert between molecular scale and macroscopic scale phenomena. Two macroscopic static electricity-responsive phenomena based on nanoscale supramolecular assemblies of a zinc porphyrin derivative are presented. One example involves the movement of supramolecular assemblies in response to static electricity. The assembly of a pyridine (Py) complex of the above-mentioned derivative in cyclohexane is drawn to a positively charged material, whereas the assembly of a 3,5-dimethylpyridine complex is drawn to a negatively charged material. The second phenomenon involves the movement of a non-polar solvent in response to static electrical stimulation. A cyclohexane solution containing a small quantity of the Py-complexed assembly exhibited a strong movement response towards negatively charged materials. Based on spectroscopic measurements and electron microscope observations, it was revealed that the assembled formation generates the observed response to static electricity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multiple Views of Space: Continuous Visual Flow Enhances Small-Scale Spatial Learning
ERIC Educational Resources Information Center
Holmes, Corinne A.; Marchette, Steven A.; Newcombe, Nora S.
2017-01-01
In the real word, we perceive our environment as a series of static and dynamic views, with viewpoint transitions providing a natural link from one static view to the next. The current research examined if experiencing such transitions is fundamental to learning the spatial layout of small-scale displays. In Experiment 1, participants viewed a…
ERIC Educational Resources Information Center
Nishimura, Trisha Sugita; Busse, Randy T.
2015-01-01
General and special education teachers (N = 125) completed the Scale of Teachers' Attitudes towards Inclusive Classrooms (STATIC). The internal consistency of the instrument was strong with an alpha of 0.89. The measure demonstrated excellent test-retest reliability (r = 0.99) and a dependent t-test was non-significant, indicating mean group…
NASA Astrophysics Data System (ADS)
Guillon, Hervé; Mugnier, Jean-Louis; Buoncristiani, Jean-François
2016-04-01
Bedload transport is a stochastic process during which each particle hops for a random length then rests for a random duration. In recent years, this probabilistic approach was investigated by theoretical models, numerical simulations and laboratory experiments. These experiments are generally carried out on short time scales with sand, but underline the diffusive behaviour of the bedload. Conversely, marked pebbles in natural streams have mainly be used to infer about transport processes and transport time of the bedload. In this study, the stochastic characteristics of bedload transport are inferred from the radio-frequency identification (RFID) of pebbles. In particular, we provide insights for answering the following question : is the bedload transport sub-diffusive, normally diffusive or super-diffusive at the long time scale (i.e. global range)? Experiments designed to investigate the phenomenology of bedload transport have been carried out in the proglacial area of Bossons glacier. This 350 m long alluvial plain exhibits daily flood from the glacial system and is still redistributing material from catastrophic events pre-dating our investigations. From 2011 to 2014, the position of the ˜ 1000 RFID tracers have been measured by a mobile antenna and a differential GPS during 44 surveys providing ˜ 2500 tracer positions. Additionnaly, in 2014, 650 new tracers were seeded upstream from a static RFID antenna located at the outlet of the study area. For the 1 to 32 cm fraction surveyed, both mobile and static antenna results show no evidence for a significant export outside of the surveyed zone. Initial data have been maximized by using each possible campaign pairs leading to ˜700 campaign pairs and more than 18,000 displacement vectors. To our knowledge, this is one of the most extensive dataset of tracers positions measured in a natural stream using the RFID methodology. Using 152 campaigns pairs with at least 20 retrieved tracers,r standard probability distributions were tested against the observed travel distances. Regardless of the time scale, heavy- and light-tailed distributions provide a convincing statistical description of measured data. No single distribution is significantly better than the others. Conversely, the distribution of tracers positions in the system and its time evolution is best described by the normal distribution. Its standard deviation scales with time as σ ∝ t0.45±0.12 which suggests a nearly normal diffusive behaviour. The measured virtual velocities and a simple probabilistic model using the time evolution of the mean (i.e. drift) and standard deviation (i.e diffusion) show that the mean bedload transfer time is greater than 5 years. RFID tracers appear as a promising tool to investigate stochastic characteristics of bedload transport.
Solubility and conversion of carbamazepine polymorphs in supercritical carbon dioxide.
Bettini, R; Bonassi, L; Castoro, V; Rossi, A; Zema, L; Gazzaniga, A; Giordano, F
2001-06-01
The aim of this work was to investigate whether mixtures of carbamazepine polymorphs could be processed in supercritical (SC) CO(2) in order to obtain the pure stable crystalline phase. To accomplish this goal the solubility of carbamazepine polymorphs I and III in supercritical CO(2) was first assessed using a low solvent flux dynamic method. Mixtures of Form I and Form III were processed in dynamic or static conditions in SC-CO(2). Differential scanning calorimetry, Fourier transformed infrared spectroscopy, and powder X-ray diffractometry were used to analyse solid samples in terms of polymorph composition. It was found that Form I and Form III of carbamazepine have different solubility in supercritical CO(2) at 55 degrees C above 300 bar. Due to the transformation of the metastable form, conversion of Form I into Form III can be carried out on a binary mixture of the two polymorphs by treating the mixture at 55 degrees C and 350 bar, under both static and dynamic conditions, via its solubilization in supercritical CO(2).
Developmental model of static allometry in holometabolous insects.
Shingleton, Alexander W; Mirth, Christen K; Bates, Peter W
2008-08-22
The regulation of static allometry is a fundamental developmental process, yet little is understood of the mechanisms that ensure organs scale correctly across a range of body sizes. Recent studies have revealed the physiological and genetic mechanisms that control nutritional variation in the final body and organ size in holometabolous insects. The implications these mechanisms have for the regulation of static allometry is, however, unknown. Here, we formulate a mathematical description of the nutritional control of body and organ size in Drosophila melanogaster and use it to explore how the developmental regulators of size influence static allometry. The model suggests that the slope of nutritional static allometries, the 'allometric coefficient', is controlled by the relative sensitivity of an organ's growth rate to changes in nutrition, and the relative duration of development when nutrition affects an organ's final size. The model also predicts that, in order to maintain correct scaling, sensitivity to changes in nutrition varies among organs, and within organs through time. We present experimental data that support these predictions. By revealing how specific physiological and genetic regulators of size influence allometry, the model serves to identify developmental processes upon which evolution may act to alter scaling relationships.
Quasi-static evolution of coronal magnetic fields
NASA Technical Reports Server (NTRS)
Longcope, D. W.; Sudan, R. N.
1992-01-01
A formalism is developed to describe the purely quasi-static part of the evolution of a coronal loop driven by its footpoints. This is accomplished under assumptions of a long, thin loop. The quasi-static equations reveal the possibility for sudden 'loss of equilibrium' at which time the system evolves dynamically rather than quasi-statically. Such quasi-static crises produce high-frequency Alfven waves and, in conjunction with Alfven wave dissipation models, form a viable coronal heating mechanism. Furthermore, an approximate solution to the quasi-static equations by perturbation method verifies the development of small-scale spatial current structure.
Decoherence in quantum systems in a static gravitational field
NASA Astrophysics Data System (ADS)
Shariati, Ahmad; Khorrami, Mohammad; Loran, Farhang
2016-09-01
A small quantum system is studied which is a superposition of states localized in different positions in a static gravitational field. The time evolution of the correlation between different positions is investigated, and it is seen that there are two time scales for such an evolution (decoherence). Both time scales are inversely proportional to the red shift difference between the two points. These time scales correspond to decoherences which are linear and quadratic, respectively, in time.
NASA Astrophysics Data System (ADS)
Ducousso, M.; Bardy, S.; Rouchausse, Y.; Bergara, T.; Jenson, F.; Berthe, L.; Videau, L.; Cuvillier, N.
2018-03-01
Intense acoustic shock waves were applied to evaluate the mechanical strength of structural epoxy bonds between a TA6V4 titanium alloy and a 3D woven carbon/epoxy composite material. Two bond types with different mechanical strengths were obtained from two different adhesive reticulations, at 50% and 90% of conversion, resulting in longitudinal static strengths of 10 and 39 MPa and transverse strengths of 15 and 35 MPa, respectively. The GPa shock waves were generated using ns-scale intense laser pulses and reaction principles to a confined plasma expansion. Simulations taking into account the laser-matter interaction, plasma relaxation, and non-linear shock wave propagation were conducted to aid interpretation of the experiments. Good correlations were obtained between the experiments and the simulation and between different measurement methods of the mechanical strength (normalized tests vs laser-generated shock waves). Such results open the door toward certification of structural bonding.
Moens, Yves P S; Gootjes, Peter; Ionita, Jean-Claude; Heinonen, Erkki; Schatzmann, Urs
2009-05-01
To remodel and validate commercially available monitors and their Pitot tube-based flow sensors for use in large animals, using in vitro techniques. Prospective, in vitro experiment. Both the original and the remodelled sensor were studied with a reference flow generator. Measurements were taken of the static flow-pressure relationship and linearity of the flow signal. Sensor airway resistance was calculated. Following recalibration of the host monitor, volumes ranging from 1 to 7 L were generated by a calibration syringe, and bias and precision of spirometric volume was determined. Where manual recalibration was not available, a conversion factor for volume measurement was determined. The influence of gas composition mixture and peak flow on the conversion factor was studied. Both the original and the remodelled sensor showed similar static flow-pressure relationships and linearity of the flow signal. Mean bias (%) of displayed values compared with the reference volume of 3, 5 and 7 L varied between -0.4% and +2.4%, and this was significantly smaller than that for 1 L (4.8% to +5.0%). Conversion factors for 3, 5 and 7 L were very similar (mean 6.00 +/- 0.2, range 5.91-6.06) and were not significantly influenced by the gas mixture used. Increasing peak flow caused a small decrease in the conversion factor. Volume measurement error and conversion factors for inspiration and expiration were close to identity. The combination of the host monitor with the remodelled flow sensor allowed accurate in vitro measurement of flows and volumes in a range expected during large animal anaesthesia. This combination has potential as a reliable spirometric monitor for use during large animal anaesthesia.
The scope of the LeChatelier Principle
NASA Astrophysics Data System (ADS)
George M., Lady; Quirk, James P.
2007-07-01
LeChatelier [Comptes Rendus 99 (1884) 786; Ann. Mines 13 (2) (1888) 157] showed that a physical system's “adjustment” to a disturbance to its equilibrium tended to be smaller as constraints were added to the adjustment process. Samuelson [Foundations of Economic Analysis, Harvard University Press, Cambridge, 1947] applied this result to economics in the context of the comparative statics of the actions of individual agents characterized as the solutions to optimization problems; and later (1960), extended the application of the Principle to a stable, multi-market equilibrium and the case of all commodities gross substitutes [e.g., L. Metzler, Stability of multiple markets: the hicks conditions. Econometrica 13 (1945) 277-292]. Refinements and alternative routes of derivation have appeared in the literature since then, e.g., Silberberg [The LeChatelier Principle as a corollary to a generalized envelope theorem, J. Econ. Theory 3 (1971) 146-155; A revision of comparative statics methodology in economics, or, how to do comparative statics on the back of an envelope, J. Econ. Theory 7 (1974) 159-172], Milgrom and Roberts [The LeChatelier Principle, Am. Econ. Rev. 86 (1996) 173-179], W. Suen, E. Silberberg, P. Tseng [The LeChatelier Principle: the long and the short of it, Econ. Theory 16 (2000) 471-476], and Chavas [A global analysis of constrained behavior: the LeChatelier Principle ‘in the large’, South. Econ. J. 72 (3) (2006) 627-644]. In this paper, we expand the scope of the Principle in various ways keyed to Samuelson's proposed means of testing comparative statics results (optimization, stability, and qualitative analysis). In the optimization framework, we show that the converse LeChatelier Principle also can be found in constrained optimization problems and for not initially “conjugate” sensitivities. We then show how the Principle and its converse can be found through the qualitative analysis of any linear system. In these terms, the Principle and its converse also may be found in the same system at the same time with respect to the imposition of the same constraint. Based upon this, we expand the cases for which the Principle can be found based upon the stability hypothesis.
NASA Astrophysics Data System (ADS)
Wang, Zhen
Airborne aerosols are crucial atmospheric constituents that are involved in global climate change and human life qualities. Understanding the nature and magnitude of aerosol-cloud-precipitation interactions is critical in model predictions for atmospheric radiation budget and the water cycle. The interactions depend on a variety of factors including aerosol physicochemical complexity, cloud types, meteorological and thermodynamic regimes and data processing techniques. This PhD work is an effort to quantify the relationships among aerosol, clouds, and precipitation on both global and regional scales by using satellite retrievals and aircraft measurements. The first study examines spatial distributions of conversion rate of cloud water to rainwater in warm maritime clouds over the globe by using NASA A-Train satellite data. This study compares the time scale of the onset of precipitation with different aerosol categories defined by values of aerosol optical depth, fine mode fraction, and Angstrom Exponent. The results indicate that conversion time scales are actually quite sensitive to lower tropospheric static stability (LTSS) and cloud liquid water path (LWP), in addition to aerosol type. Analysis shows that tropical Pacific Ocean is dominated by the highest average conversion rate while subtropical warm cloud regions (far northeastern Pacific Ocean, far southeastern Pacific Ocean, Western Africa coastal area) exhibit the opposite result. Conversion times are mostly shorter for lower LTSS regimes. When LTSS condition is fixed, higher conversion rates coincide with higher LWP and lower aerosol index categories. After a general global view of physical property quantifications, the rest of the presented PhD studies is focused on regional airborne observations, especially bulk cloud water chemistry and aerosol aqueous-phase reactions during the summertime off the California coast. Local air mass origins are categorized into three distinct types (ocean, ships, and land) with their influences on cloud water composition examined and implications of wet deposition discussed. Chemical analysis of cloud water samples indicates a wide pH range between 2.92 and 7.58, with an average as 4.46. The highest pH values were observed north of San Francisco, coincident with the strongest land mass influence (e.g. Si, B, and Cs). Conversely, the lowest pH values were observed south of San Francisco where there is heavy ship traffic, resulting in the highest concentrations of sulfate, nitrate, V, Fe, Al, P, Cd, Ti, Sb, P, and Mn. The acidic cloud environment with influences from various air mass types can affect the California coastal aquatic ecosystem since it can promote the conversion of micronutrients to more soluble forms. Beyond characterization of how regional air mass sources affect cloud water composition, aircraft cloud water collection provides precious information on tracking cloud processing with specific species such as oxalic acid, which is the most abundant dicarboxylic acid in tropospheric aerosols. Particular attention is given to explore relationship between detected metals with oxalate aqueous-phase production mechanisms. A number of case flights show that oxalate concentrations drop by nearly an order of magnitude relative to samples in the same vicinity with similar environmental and cloud physical conditions. Such a unique feature was consistent with an inverse relationship between oxalate and Fe. In order to examine the hypothesis that oxalate decreasing is potentially related to existing of Fe, chemistry box model simulations were conducted. The prediction results show that the loss of oxalate due to the photolysis of iron oxalato complexes is likely a significant oxalate sink in the study region due to the ubiquity of oxalate precursors, clouds, and metal emissions from ships, the ocean, and continental sources.
AMTEC: High efficiency static conversion for space power
NASA Technical Reports Server (NTRS)
Bankston, C. P.; Shirbacheh, M.
1986-01-01
Future manned and unmanned space missions will require reliable, high efficiency energy conversion systems. For a manned Mars mission, power levels in the range of 10 to 100 kWe will be needed. The Alkali Metal Thermoelectric Converter (AMTEC) is a direct energy conversion technology with the potential to meet these needs. The AMTEC is a thermally regenerative electrochemical device that derives its operation from the sodium ion conducting properties of beta-alumina solid electrolyte (BASE). To date, an efficiency of 19%, area power density of 1 W/sq cm, and a lifetime of 10,000 hours at high temperature were demonstrated in laboratory devices. Systems studies show that projected AMTEC systems equal or surpass the performance of other static or dynamic systems in applications of 1 kWe-1 MWe. Thus, the laboratory experiments and applications studies conducted to date have shown that the AMTEC posseses great potential. In order to bring this technology to the stage where prototype units can be built and operated, several technical issues must be addressed. These include the need for long life, high power electrodes, minimization of radiative parasitic losses, and high temperature seals. In summary, the evidence shows that if AMTEC is developed, it can play a significant role in future space power applications.
Advantages of Live Microscope Video for Laboratory and Teaching Applications
ERIC Educational Resources Information Center
Michels, Kristin K.; Michels, Zachary D.; Hotchkiss, Sara C.
2016-01-01
Although spatial reasoning and penetrative thinking skills are essential for many disciplines, these concepts are difficult for students to comprehend. In microscopy, traditional educational materials (i.e., photographs) are static. Conversely, video-based training methods convey dimensionality. We implemented a real-time digital video imaging…
Trajectory Adjustments Underlying Task-Specific Intermittent Force Behaviors and Muscular Rhythms
Chen, Yi-Ching; Lin, Yen-Ting; Huang, Chien-Ting; Shih, Chia-Li; Yang, Zong-Ru; Hwang, Ing-Shiou
2013-01-01
Force intermittency is one of the major causes of motor variability. Focusing on the dynamics of force intermittency, this study was undertaken to investigate how force trajectory is fine-tuned for static and dynamic force-tracking of a comparable physical load. Twenty-two healthy adults performed two unilateral resistance protocols (static force-tracking at 75% maximal effort and dynamic force-tracking in the range of 50%–100% maximal effort) using the left hand. The electromyographic activity and force profile of the designated hand were monitored. Gripping force was off-line decomposed into a primary movement spectrally identical to the target motion and a force intermittency profile containing numerous force pulses. The results showed that dynamic force-tracking exhibited greater intermittency amplitude and force pulse but a smaller amplitude ratio of primary movement to force intermittency than static force-tracking. Multi-scale entropy analysis revealed that force intermittency during dynamic force-tracking was more complex on a low time scale but more regular on a high time scale than that of static force-tracking. Together with task-dependent force intermittency properties, dynamic force-tracking exhibited a smaller 8–12 Hz muscular oscillation but a more potentiated muscular oscillation at 35–50 Hz than static force-tracking. In conclusion, force intermittency reflects differing trajectory controls for static and dynamic force-tracking. The target goal of dynamic tracking is achieved through trajectory adjustments that are more intricate and more frequent than those of static tracking, pertaining to differing organizations and functioning of muscular oscillations in the alpha and gamma bands. PMID:24098640
Static friction boost in edge-driven incommensurate contacts
NASA Astrophysics Data System (ADS)
Mandelli, Davide; Guerra, Roberto; Ouyang, Wengen; Urbakh, Michael; Vanossi, Andrea
2018-04-01
We present a numerical investigation of the size scaling of static friction in incommensurate two-dimensional contacts performed for different lateral loading configurations. Results of model simulations show that both the absolute value of the force Fs and the scaling exponent γ strongly depend on the loading configuration adopted to drive the slider along the substrate. Under edge loading, a sharp increase of static friction is observed above a critical size corresponding to the appearance of a localized commensurate dislocation. Noticeably, the existence of sublinear scaling, which is a fingerprint of superlubricity, does not conflict with the possibility to observe shear-induced localized commensurate regions at the contact interface. Atomistic simulations of gold islands sliding over graphite corroborate these findings, suggesting that similar elasticity effects should be at play in real frictional contacts.
NASA Technical Reports Server (NTRS)
Kernick, A.
1977-01-01
Laminated bus strips and bifilar litz cable connectors for high-power rectifiers, thrisistors, and transistors provide low inductance and eliminate electromagnetic interference in high-power circuits. These techniques offer significant cost advantages because of ease of assembly and consistent high quality of product. Effectiveness makes general usage in static power conversion likely.
The Influence of Forward Flight on Propeller Noise
NASA Technical Reports Server (NTRS)
Magliozzi, B.
1977-01-01
The effect of flight on blade surface pressures and propeller noise was reported. There were significant differences in blade surface pressures and far-field noise between static and flight conditions. The static data showed many high-intensity, tone-like peaks whereas the flight data was generally free from tones. The turbulence ingested by the propeller operating statically was dominated by long, thin eddies. In flight the scale of the turbulence was greately reduced from that observed statically.
ERIC Educational Resources Information Center
Besson, Ugo; Viennot, Laurence
2004-01-01
This article examines the didactic suitability of introducing models at an intermediate (i.e. mesoscopic) scale in teaching certain subjects, at an early stage. The design and evaluation of two short sequences based on this rationale will be outlined: one bears on propulsion by solid friction, the other on fluid statics in the presence of gravity.…
Static Thrust and Power Characteristics of Six Full-Scale Propellers
NASA Technical Reports Server (NTRS)
Hartman, Erwin P; Biermann, David
1940-01-01
Static thrust and power measurements were made of six full-scale propellers. The propellers were mounted in front of a liquid-cooled-engine nacelle and were tested at 15 different blade angles in the range from -7 1/2 degrees to 35 degrees at 0.75r. The test rig was located outdoors and the tests were made under conditions of approximately zero wind velocity.
Heat and Mass Transfer Measurements for Tray-Fermented Fungal Products
NASA Astrophysics Data System (ADS)
Jou, R.-Y.; Lo, C.-T.
2011-01-01
In this study, heat and mass transfer in static tray fermentation, which is widely used in solid-state fermentation (SSF) to produce fungal products, such as enzymes or koji, is investigated. Specifically, kinetic models of transport phenomena in the whole-tray chamber are emphasized. The effects of temperature, moisture, and humidity on microbial growth in large-scale static tray fermentation are essential to scale-up SSF and achieve uniform fermentation. In addition, heat and mass transfer of static tray fermentation of Trichoderma fungi with two tray setups—traditional linen coverings and stacks in a temperature-humidity chamber is examined. In both these setups, the following factors of fermentation were measured: air velocity, air temperature, illumination, pH, carbon dioxide (CO2) concentration, and substrate temperature, and the effects of bed height, moisture of substrate, and relative humidity of air are studied. A thin (1 cm) bed at 28 °C and 95 % relative humidity is found to be optimum. Furthermore, mixing was essential for achieving uniform fermentation of Trichoderma fungi. This study has important applications in large-scale static tray fermentation of fungi.
Comparison of forward flight effects theory of A. Michalke and U. Michel with measured data
NASA Technical Reports Server (NTRS)
Rawls, J. W., Jr.
1983-01-01
The scaling laws of a Michalke and Michel predict flyover noise of a single stream shock free circular jet from static data or static predictions. The theory is based on a farfield solution to Lighthill's equation and includes density terms which are important for heated jets. This theory is compared with measured data using two static jet noise prediction methods. The comparisons indicate the theory yields good results when the static noise levels are accurately predicted.
Application of 1-hydroxyethylidene-1, 1-diphosphonic acid in boiler water for industrial boilers.
Zeng, Bin; Li, Mao-Dong; Zhu, Zhi-Ping; Zhao, Jun-Ming; Zhang, Hui
2013-01-01
The primary method used for boiler water treatment is the addition of chemicals to industrial boilers to prevent corrosion and scaling. The static scale inhibition method was used to evaluate the scale inhibition performance of 1-hydroxyethylidene-1, 1-diphosphonic acid (HEDP). Autoclave static experiments were used to study the corrosion inhibition properties of the main material for industrial boilers (20# carbon steel) with an HEDP additive in the industrial boiler water medium. The electrochemical behavior of HEDP on carbon steel corrosion control was investigated using electrochemical impedance spectroscopy and Tafel polarization techniques. Experimental results indicate that HEDP can have a good scale inhibition effect when added at a quantity of 5 to 7 mg/L at a test temperature of not more than 100 °C. To achieve a high scale inhibition rate, the HEDP dosage must be increased when the test temperature exceeds 100 °C. Electrochemical and autoclave static experimental results suggest that HEDP has a good corrosion inhibition effect on 20# carbon steel at a concentration of 25 mg/L. HEDP is an excellent water treatment agent.
Brief Report: A Scale for Rating Conversational Impairment in Autism Spectrum Disorder
ERIC Educational Resources Information Center
de Villiers, Jessica; Fine, Jonathan; Ginsberg, Gary; Vaccarella, Liezanne; Szatmari, Peter
2007-01-01
There are few well-standardized measures of conversational breakdown in Autism Spectrum Disorders (ASD). The study's objective was to develop a scale for measuring pragmatic impairments in conversations of individuals with ASD. We analyzed 46 semi-structured conversations of children and adolescents with high-functioning ASD using a functional…
Battistella, Elisa; Mele, Silvia; Foltran, Ismaela; Lesci, Isidoro Giorgio; Roveri, Norberto; Sabatino, Piera; Rimondini, Lia
2012-09-27
Natural resources are receiving growing interest because of their possible conversion from a cheap and easily available material into a biomedical product. Cuttlefish bone from Sepia Officinalis was investigated in order to obtain an hydroxyapatite porous scaffold using hydrothermal transformation. Complete conversion of the previous calcium carbonate (aragonite) phase into a calcium phosphate (hydroxyapatite) phase was performed with an hydrothermal transformation at 200 °C (~ 15 atm), for four hours, with an aqueous solution of KH2PO4 in order to set the molar ratio Ca/P = 10/6 in a reactor (Parr 4382). The complete conversion was then analyzed by TGA, ATR-FTIR, x-ray diffraction, and SEM. Moreover, the material was biologically investigated with MC3T3-E1 in static cultures, using both osteogenic and maintenance media. The expression of osteogenic markers as ALP and osteocalcin and the cell proliferation were investigated. Cuttlefish bone has been successfully transformed from calcium carbonate into calcium phosphate. Biological characterization revealed that osteogenic markers are expressed using both osteogenic and maintenance conditions. Cell proliferation is influenced by the static culture condition used for this three-dimensional scaffold. The new scaffold composed by hydroxyapatite and derived for a natural source presents good biocompatibility and can be used for further investigations using dynamic cultures in order to improve cell proliferation and differentiation for bone tissue engineering.
NASA Astrophysics Data System (ADS)
Chen, Dongju; Huo, Chen; Cui, Xianxian; Pan, Ri; Fan, Jinwei; An, Chenhui
2018-05-01
The objective of this work is to study the influence of error induced by gas film in micro-scale on the static and dynamic behavior of a shaft supported by the aerostatic bearings. The static and dynamic balance models of the aerostatic bearing are presented by the calculated stiffness and damping in micro scale. The static simulation shows that the deformation of aerostatic spindle system in micro scale is decreased. For the dynamic behavior, both the stiffness and damping in axial and radial directions are increased in micro scale. The experiments of the stiffness and rotation error of the spindle show that the deflection of the shaft resulting from the calculating parameters in the micro scale is very close to the deviation of the spindle system. The frequency information in transient analysis is similar to the actual test, and they are also higher than the results from the traditional case without considering micro factor. Therefore, it can be concluded that the value considering micro factor is closer to the actual work case of the aerostatic spindle system. These can provide theoretical basis for the design and machining process of machine tools.
Physics of Magnetospheric Variability
NASA Astrophysics Data System (ADS)
Vasyliūnas, Vytenis M.
2011-01-01
Many widely used methods for describing and understanding the magnetosphere are based on balance conditions for quasi-static equilibrium (this is particularly true of the classical theory of magnetosphere/ionosphere coupling, which in addition presupposes the equilibrium to be stable); they may therefore be of limited applicability for dealing with time-variable phenomena as well as for determining cause-effect relations. The large-scale variability of the magnetosphere can be produced both by changing external (solar-wind) conditions and by non-equilibrium internal dynamics. Its developments are governed by the basic equations of physics, especially Maxwell's equations combined with the unique constraints of large-scale plasma; the requirement of charge quasi-neutrality constrains the electric field to be determined by plasma dynamics (generalized Ohm's law) and the electric current to match the existing curl of the magnetic field. The structure and dynamics of the ionosphere/magnetosphere/solar-wind system can then be described in terms of three interrelated processes: (1) stress equilibrium and disequilibrium, (2) magnetic flux transport, (3) energy conversion and dissipation. This provides a framework for a unified formulation of settled as well as of controversial issues concerning, e.g., magnetospheric substorms and magnetic storms.
Converting positive and negative symptom scores between PANSS and SAPS/SANS.
van Erp, Theo G M; Preda, Adrian; Nguyen, Dana; Faziola, Lawrence; Turner, Jessica; Bustillo, Juan; Belger, Aysenil; Lim, Kelvin O; McEwen, Sarah; Voyvodic, James; Mathalon, Daniel H; Ford, Judith; Potkin, Steven G; Fbirn
2014-01-01
The Scale for the Assessment of Positive Symptoms (SAPS), the Scale for the Assessment of Negative Symptoms (SANS), and the Positive and Negative Syndrome Scale for Schizophrenia (PANSS) are the most widely used schizophrenia symptom rating scales, but despite their co-existence for 25 years no easily usable between-scale conversion mechanism exists. The aim of this study was to provide equations for between-scale symptom rating conversions. Two-hundred-and-five schizophrenia patients [mean age±SD=39.5±11.6, 156 males] were assessed with the SANS, SAPS, and PANSS. Pearson's correlations between symptom scores from each of the scales were computed. Linear regression analyses, on data from 176 randomly selected patients, were performed to derive equations for converting ratings between the scales. Intraclass correlations, on data from the remaining 29 patients, not part of the regression analyses, were performed to determine rating conversion accuracy. Between-scale positive and negative symptom ratings were highly correlated. Intraclass correlations between the original positive and negative symptom ratings and those obtained via conversion of alternative ratings using the conversion equations were moderate to high (ICCs=0.65 to 0.91). Regression-based equations may be useful for conversion between schizophrenia symptom severity as measured by the SANS/SAPS and PANSS, though additional validation is warranted. This study's conversion equations, implemented at http:/converteasy.org, may aid in the comparison of medication efficacy studies, in meta- and mega-analyses examining symptoms as moderator variables, and in retrospective combination of symptom data in multi-center data sharing projects that need to pool symptom rating data when such data are obtained using different scales. Copyright © 2013 Elsevier B.V. All rights reserved.
Entrainment of Prosody in the Interaction of Mothers with Their Young Children
ERIC Educational Resources Information Center
Ko, Eon-Suk; Seidl, Amanda; Cristia, Alejandrina; Reimchen, Melissa; Soderstrom, Melanie
2016-01-01
Caregiver speech is not a static collection of utterances, but occurs in "conversational exchanges," in which caregiver and child dynamically influence each other's speech. We investigate (a) whether children and caregivers modulate the prosody of their speech as a function of their interlocutor's speech, and (b) the influence of the…
Nonlinear generation of sum and difference frequency waves by two helicon waves in a semiconductor
NASA Astrophysics Data System (ADS)
Salimullah, M.; Ferdous, T.
1984-05-01
This paper presents a theoretical investigation of the nonlinear generation of electrostatic waves at the sum and the difference frequency when two high amplitude elliptically polarized helicon waves propagate along the direction of the externally applied static magnetic field in an n-type semiconductor. The nonlinearity arises through the ponderomotive force on electrons. It is noticed that the power conversion efficiency of the difference frequency generation is much larger than that of the sum frequency generation. The power conversion efficiency may be easily increased by increasing the density of electrons in the semiconductor.
Intercepting a sound without vision
Vercillo, Tiziana; Tonelli, Alessia; Gori, Monica
2017-01-01
Visual information is extremely important to generate internal spatial representations. In the auditory modality, the absence of visual cues during early infancy does not preclude the development of some spatial strategies. However, specific spatial abilities might result impaired. In the current study, we investigated the effect of early visual deprivation on the ability to localize static and moving auditory stimuli by comparing sighted and early blind individuals’ performance in different spatial tasks. We also examined perceptual stability in the two groups of participants by matching localization accuracy in a static and a dynamic head condition that involved rotational head movements. Sighted participants accurately localized static and moving sounds. Their localization ability remained unchanged after rotational movements of the head. Conversely, blind participants showed a leftward bias during the localization of static sounds and a little bias for moving sounds. Moreover, head movements induced a significant bias in the direction of head motion during the localization of moving sounds. These results suggest that internal spatial representations might be body-centered in blind individuals and that in sighted people the availability of visual cues during early infancy may affect sensory-motor interactions. PMID:28481939
Does a Growing Static Length Scale Control the Glass Transition?
NASA Astrophysics Data System (ADS)
Wyart, Matthieu; Cates, Michael E.
2017-11-01
Several theories of the glass transition propose that the structural relaxation time τα is controlled by a growing static length scale ξ that is determined by the free energy landscape but not by the local dynamic rules governing its exploration. We argue, based on recent simulations using particle-radius-swap dynamics, that only a modest factor in the increase in τα on approach to the glass transition may stem from the growth of a static length, with a vastly larger contribution attributable, instead, to a slowdown of local dynamics. This reinforces arguments that we base on the observed strong coupling of particle diffusion and density fluctuations in real glasses.
NASA Astrophysics Data System (ADS)
Wan, Xiang; Tse, Peter W.; Zhang, Xuhui; Xu, Guanghua; Zhang, Qing; Fan, Hongwei; Mao, Qinghua; Dong, Ming; Wang, Chuanwei; Ma, Hongwei
2018-04-01
Under the discipline of nonlinear ultrasonics, in addition to second harmonic generation, static component generation is another frequently used nonlinear ultrasonic behavior in non-destructive testing (NDT) and structural health monitoring (SHM) communities. However, most previous studies on static component generation are mainly based on using longitudinal waves. It is desirable to extend static component generation from primary longitudinal waves to primary Lamb waves. In this paper, static component generation from the primary Lamb waves is studied. Two major issues are numerically investigated. First, the mode of static displacement component generated from different primary Lamb wave modes is identified. Second, cumulative effect of static displacement component from different primary Lamb wave modes is also discussed. Our study results show that the static component wave packets generated from the primary S0, A0 and S1 modes share the almost same group velocity equal to the phase velocity of S0 mode tending to zero frequency c plate . The finding indicates that whether the primary mode is S0, A0 or S1, the static components generated from these primary modes always share the nature of S0 mode. This conclusion is also verified by the displacement filed of these static components that the horizontal displacement field is almost uniform and the vertical displacement filed is antisymmetric across the thickness of the plate. The uniform distribution of horizontal displacement filed enables the static component, regardless of the primary Lamb modes, to be a promising technique for evaluating microstructural damages buried in the interior of a structure. Our study also illustrates that the static components are cumulative regardless of whether the phase velocity of the primary and secondary waves is matched or not. This observation indicates that the static component overcomes the limitations of the traditional nonlinear Lamb waves satisfying phase velocity matching condition to achieve cumulative second harmonic generation. This nature also enables the primary Lamb waves excited at a low center frequency to generate static component used for inspecting large-scale structures with micro-scale damages.
NASA Technical Reports Server (NTRS)
Hofstetter, William R.
1957-01-01
The static longitudinal and lateral stability charaetefistics of an 0 .065-scale model of the XRSSM-N-9a (REGULUS II) Missile at Mach number range of 1.6 to 2.0 at a Reynolds number per foot of 2.0(exp 8)
Montes-Perez, J; Cruz-Vera, A; Herrera, J N
2011-12-01
This work presents the full analytic expressions for the thermodynamic properties and the static structure factor for a hard sphere plus 1-Yukawa fluid within the mean spherical approximation. To obtain these properties of the fluid type Yukawa analytically it was necessary to solve an equation of fourth order for the scaling parameter on a large scale. The physical root of this equation was determined by imposing physical conditions. The results of this work are obtained from seminal papers of Blum and Høye. We show that is not necessary the use the series expansion to solve the equation for the scaling parameter. We applied our theoretical result to find the thermodynamic and the static structure factor for krypton. Our results are in good agreement with those obtained in an experimental form or by simulation using the Monte Carlo method.
Sunderland, Matthew; Batterham, Philip J; Calear, Alison L; Carragher, Natacha
2017-12-01
A series of static and adaptive screeners for panic disorder, social anxiety disorder (SAD), and obsessive compulsive disorder (OCD) were developed and compared using data-driven methods to facilitate the measurement of each disorder in community samples. Data comprised 3175 respondents for the development sample and 3755 respondents for the validation sample, recruited independently using Facebook advertising. Item Response Theory (IRT) was utilized to develop static continuous screeners and to simulate computerized adaptive algorithms. The screeners consisted of a small subset of items from each bank (79% reduction in items for panic disorder, 85% reduction in items for SAD, and 84% reduction in items for OCD) that provided similar scores (r = 0.88-0.96). Both static and adaptive screeners were valid with respect to existing scales that purportedly measure similar constructs (r > 0.70 for panic disorder, r > 0.76 for SAD, and r > 0.68 for OCD). The adaptive scales were able to maintain a higher level of precision in comparison to the static scales and evidenced slightly higher concordance with scores generated by the full item banks. The screeners for panic disorder, SAD, and OCD could be used as a flexible approach to measure and monitor the severity of psychopathology in tailored treatment protocols. Copyright © 2017 John Wiley & Sons, Ltd.
Liu, Chengcheng; Ju, Jie; Zheng, Yongmei; Jiang, Lei
2014-02-25
Inspired by novel creatures, researchers have developed varieties of fog drop transport systems and made significant contributions to the fields of heat transferring, water collecting, antifogging, and so on. Up to now, most of the efforts in directional fog drop transport have been focused on static surfaces. Considering it is not practical to keep surfaces still all the time in reality, conducting investigations on surfaces that can transport fog drops in both static and dynamic states has become more and more important. Here we report the wings of Morpho deidamia butterflies can directionally transport fog drops in both static and dynamic states. This directional drop transport ability results from the micro/nano ratchet-like structure of butterfly wings: the surface of butterfly wings is composed of overlapped scales, and the scales are covered with porous asymmetric ridges. Influenced by this special structure, fog drops on static wings are transported directionally as a result of the fog drops' asymmetric growth and coalescence. Fog drops on vibrating wings are propelled directionally due to the fog drops' asymmetric dewetting from the wings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan
A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source tomore » enable use by others.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan
A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source tomore » enable use by others.« less
Technical Evaluation Motor No. 10 (TEM-10)
NASA Technical Reports Server (NTRS)
1993-01-01
Technical Evaluation Motor No. 10 (TEM-10) was static fired on 27 Apr. 1993 at the Thiokol Corporation full-scale motor static test bay, T-24. This final test report documents the procedures, performance, and results of the static test firing of TEM-10. All observations, discussions, conclusions, and recommendations contained are final. Included is a presentation and discussion of TEM-10 performance, anomalies, and test results in concurrence with the objectives outlined in CTP-0110, Revision D, Space Shuttle Technical Evaluation Motor No. 10 (TEM-10) Static Fire Test Plan.
A Linear Electromagnetic Piston Pump
NASA Astrophysics Data System (ADS)
Hogan, Paul H.
Advancements in mobile hydraulics for human-scale applications have increased demand for a compact hydraulic power supply. Conventional designs couple a rotating electric motor to a hydraulic pump, which increases the package volume and requires several energy conversions. This thesis investigates the use of a free piston as the moving element in a linear motor to eliminate multiple energy conversions and decrease the overall package volume. A coupled model used a quasi-static magnetic equivalent circuit to calculate the motor inductance and the electromagnetic force acting on the piston. The force was an input to a time domain model to evaluate the mechanical and pressure dynamics. The magnetic circuit model was validated with finite element analysis and an experimental prototype linear motor. The coupled model was optimized using a multi-objective genetic algorithm to explore the parameter space and maximize power density and efficiency. An experimental prototype linear pump coupled pistons to an off-the-shelf linear motor to validate the mechanical and pressure dynamics models. The magnetic circuit force calculation agreed within 3% of finite element analysis, and within 8% of experimental data from the unoptimized prototype linear motor. The optimized motor geometry also had good agreement with FEA; at zero piston displacement, the magnetic circuit calculates optimized motor force within 10% of FEA in less than 1/1000 the computational time. This makes it well suited to genetic optimization algorithms. The mechanical model agrees very well with the experimental piston pump position data when tuned for additional unmodeled mechanical friction. Optimized results suggest that an improvement of 400% of the state of the art power density is attainable with as high as 85% net efficiency. This demonstrates that a linear electromagnetic piston pump has potential to serve as a more compact and efficient supply of fluid power for the human scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clauss, D.B.
The analyses used to predict the behavior of a 1:8-scale model of a steel LWR containment building to static overpressurization are described and results are presented. Finite strain, large displacement, and nonlinear material properties were accounted for using finite element methods. Three-dimensional models were needed to analyze the penetrations, which included operable equipment hatches, personnel lock representations, and a constrained pipe. It was concluded that the scale model would fail due to leakage caused by large deformations of the equipment hatch sleeves. 13 refs., 34 figs., 1 tab.
MNASA as a Test for Carbon Fiber Thermal Barrier Development
NASA Technical Reports Server (NTRS)
Bauer, Paul; McCool, Alex (Technical Monitor)
2001-01-01
A carbon fiber rope thermal barrier is being evaluated as a replacement for the conventional room temperature vulcanizing (RTV) thermal barrier that is currently used to protect o-rings in Reusable Solid Rocket Motor (RSRM) nozzle joints. Performance requirements include its ability to cool any incoming, hot propellant gases that fill and pressurize the nozzle joints, filter slag and particulates, and to perform adequately in various joint assembly conditions as well as dynamic flight motion. Modified National Aeronautics and Space Administration (MNASA) motors, with their inherent and unique ability to replicate select RSRM internal environment features, were an integral step in the development path leading to full scale RSRM static test demonstration of the carbon fiber rope (CFR) joint concept. These 1/4 scale RSRM motors serve to bridge the gap between the other classes of subscale test motors (extremely small and moderate duration, or small scale and short duration) and the critical asset RSRM static test motors. A series of MNASA tests have been used to demonstrate carbon fiber rope performance and have provided rationale for implementation into a full-scale static motor and flight qualification.
Vu-Bac, N.; Bessa, M. A.; Rabczuk, Timon; ...
2015-09-10
In this paper, we present experimentally validated molecular dynamics predictions of the quasi- static yield and post-yield behavior for a highly cross-linked epoxy polymer under gen- eral stress states and for different temperatures. In addition, a hierarchical multiscale model is presented where the nano-scale simulations obtained from molecular dynamics were homogenized to a continuum thermoplastic constitutive model for the epoxy that can be used to describe the macroscopic behavior of the material. Three major conclusions were achieved: (1) the yield surfaces generated from the nano-scale model for different temperatures agree well with the paraboloid yield crite- rion, supporting previous macroscopicmore » experimental observations; (2) rescaling of the entire yield surfaces to the quasi-static case is possible by considering Argon’s theoretical predictions for pure compression of the polymer at absolute zero temperature; (3) nano- scale simulations can be used for an experimentally-free calibration of macroscopic con- tinuum models, opening new avenues for the design of materials and structures through multi-scale simulations that provide structure-property-performance relationships.« less
Display Considerations For Intravascular Ultrasonic Imaging
NASA Astrophysics Data System (ADS)
Gessert, James M.; Krinke, Charlie; Mallery, John A.; Zalesky, Paul J.
1989-08-01
A display has been developed for intravascular ultrasonic imaging. Design of this display has a primary goal of providing guidance information for therapeutic interventions such as balloons, lasers, and atherectomy devices. Design considerations include catheter configuration, anatomy, acoustic properties of normal and diseased tissue, catheterization laboratory and operating room environment, acoustic and electrical safety, acoustic data sampling issues, and logistical support such as image measurement, storage and retrieval. Intravascular imaging is in an early stage of development so design flexibility and expandability are very important. The display which has been developed is capable of acquisition and display of grey scale images at rates varying from static B-scans to 30 frames per second. It stores images in a 640 X 480 X 8 bit format and is capable of black and white as well as color display in multiplevideo formats. The design is based on the industry standard PC-AT architecture and consists of two AT style circuit cards, one for high speed sampling and the other for scan conversion, graphics and video generation.
Zhang, F.; Allen, A.J.; Levine, L.E.; Espinal, L.; Antonucci, J.M.; Skrtic, D.; O’Donnell, J.N.R.; Ilavsky, J.
2012-01-01
The local structural changes in amorphous calcium phosphate (ACP) based dental composites were studied under isothermal conditions using both static, bulk measurement techniques and a recently developed methodology based on combined ultra-small angle X-ray scattering – X-ray photon correlation spectroscopy (USAXS-XPCS), which permits a dynamic approach. While results from conventional bulk measurements do not show clear signs of structural change, USAXS-XPCS results reveal unambiguous evidence for local structural variations on a similar time scale to that of water loss in the ACP fillers. A thermal-expansion based simulation indicates that thermal behavior alone does not account for the observed dynamics. Together, these results suggest that changes in the water content of ACP affect the composite morphology due to changes in ACP structure that occur without an amorphous-to-crystalline conversion. It is also noted that biomedical materials research could benefit greatly from USAXS-XPCS, a dynamic approach. PMID:22374649
Propulsion simulator for magnetically-suspended wind tunnel models
NASA Technical Reports Server (NTRS)
Joshi, Prakash B.; Goldey, C. L.; Sacco, G. P.; Lawing, Pierce L.
1991-01-01
The objective of phase two of a current investigation sponsored by NASA Langley Research Center is to demonstrate the measurement of aerodynamic forces/moments, including the effects of exhaust gases, in magnetic suspension and balance system (MSBS) wind tunnels. Two propulsion simulator models are being developed: a small-scale and a large-scale unit, both employing compressed, liquified carbon dioxide as propellant. The small-scale unit was designed, fabricated, and statically-tested at Physical Sciences Inc. (PSI). The large-scale simulator is currently in the preliminary design stage. The small-scale simulator design/development is presented, and the data from its static firing on a thrust stand are discussed. The analysis of this data provides important information for the design of the large-scale unit. A description of the preliminary design of the device is also presented.
Quillin
1998-05-21
Soft-bodied organisms with hydrostatic skeletons range enormously in body size, both during the growth of individuals and in the comparison of species. Therefore, body size is an important consideration in an examination of the mechanical function of hydrostatic skeletons. The scaling of hydrostatic skeletons cannot be inferred from existing studies of the lever-like skeletons of vertebrates and arthropods because the two skeleton types function by different mechanisms. Hydrostats are constructed of an extensible body wall in tension surrounding a fluid or deformable tissue under compression. It is the pressurized internal fluid (rather than the rigid levers of vertebrates and arthropods) that enables the maintenance of posture, antagonism of muscles and transfer of muscle forces to the environment. The objectives of the present study were (1) to define the geometric, static stress and dynamic stress similarity scaling hypotheses for hydrostatic skeletons on the basis of their generalized form and function, and (2) to apply these similarity hypotheses in a study of the ontogenetic scaling of earthworms, Lumbricus terrestris, to determine which parameters of skeletal function are conserved or changed as a function of body mass during growth (from 0.01 to 8 g). Morphometric measurements on anesthetized earthworms revealed that the earthworms grew isometrically; the external proportions and number of segments were constant as a function of body size. Calculations of static stresses (forces per cross-sectional area in the body wall) during rest and dynamic stresses during peristaltic crawling (calculated from measurements of internal pressure and body wall geometry) revealed that the earthworms also maintained static and dynamic stress similarity, despite a slight increase in body wall thickness in segment 50 (but not in segment 15). In summary, the hydrostatic skeletons of earthworms differ fundamentally from the rigid, lever-like skeletons of their terrestrial counterparts in their ability to grow isometrically while maintaining similarity in both static and dynamic stresses.
Thermionic/AMTEC cascade converter concept for high-efficiency space power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, T.H. van; Smith, J.N. Jr.; Schuller, M.
1996-12-31
This paper presents trade studies that address the use of the thermionic/AMTEC cell--a cascaded, high-efficiency, static power conversion concept that appears well-suited to space power applications. Both the thermionic and AMTEC power conversion approaches have been shown to be promising candidates for space power. Thermionics offers system compactness via modest efficiency at high heat rejection temperatures, and AMTEC offers high efficiency at modest heat rejection temperature. From a thermal viewpoint the two are ideally suited for cascaded power conversion: thermionic heat rejection and AMTEC heat source temperatures are essentially the same. In addition to realizing conversion efficiencies potentially as highmore » as 35--40%, such a cascade offers the following perceived benefits: survivability; simplicity; technology readiness; and technology growth. Mechanical approaches and thermal/electric matching criteria for integrating thermionics and AMTEC into a single conversion device are described. Focusing primarily on solar thermal space power applications, parametric trends are presented to show the performance and cost potential that should be achievable with present-day technology in cascaded thermionic/AMTEC systems.« less
Luminance- and Texture-Defined Information Processing in School-Aged Children with Autism
Rivest, Jessica B.; Jemel, Boutheina; Bertone, Armando; McKerral, Michelle; Mottron, Laurent
2013-01-01
According to the complexity-specific hypothesis, the efficacy with which individuals with autism spectrum disorder (ASD) process visual information varies according to the extensiveness of the neural network required to process stimuli. Specifically, adults with ASD are less sensitive to texture-defined (or second-order) information, which necessitates the implication of several cortical visual areas. Conversely, the sensitivity to simple, luminance-defined (or first-order) information, which mainly relies on primary visual cortex (V1) activity, has been found to be either superior (static material) or intact (dynamic material) in ASD. It is currently unknown if these autistic perceptual alterations are present in childhood. In the present study, behavioural (threshold) and electrophysiological measures were obtained for static luminance- and texture-defined gratings presented to school-aged children with ASD and compared to those of typically developing children. Our behavioural and electrophysiological (P140) results indicate that luminance processing is likely unremarkable in autistic children. With respect to texture processing, there was no significant threshold difference between groups. However, unlike typical children, autistic children did not show reliable enhancements of brain activity (N230 and P340) in response to texture-defined gratings relative to luminance-defined gratings. This suggests reduced efficiency of neuro-integrative mechanisms operating at a perceptual level in autism. These results are in line with the idea that visual atypicalities mediated by intermediate-scale neural networks emerge before or during the school-age period in autism. PMID:24205355
Luminance- and texture-defined information processing in school-aged children with autism.
Rivest, Jessica B; Jemel, Boutheina; Bertone, Armando; McKerral, Michelle; Mottron, Laurent
2013-01-01
According to the complexity-specific hypothesis, the efficacy with which individuals with autism spectrum disorder (ASD) process visual information varies according to the extensiveness of the neural network required to process stimuli. Specifically, adults with ASD are less sensitive to texture-defined (or second-order) information, which necessitates the implication of several cortical visual areas. Conversely, the sensitivity to simple, luminance-defined (or first-order) information, which mainly relies on primary visual cortex (V1) activity, has been found to be either superior (static material) or intact (dynamic material) in ASD. It is currently unknown if these autistic perceptual alterations are present in childhood. In the present study, behavioural (threshold) and electrophysiological measures were obtained for static luminance- and texture-defined gratings presented to school-aged children with ASD and compared to those of typically developing children. Our behavioural and electrophysiological (P140) results indicate that luminance processing is likely unremarkable in autistic children. With respect to texture processing, there was no significant threshold difference between groups. However, unlike typical children, autistic children did not show reliable enhancements of brain activity (N230 and P340) in response to texture-defined gratings relative to luminance-defined gratings. This suggests reduced efficiency of neuro-integrative mechanisms operating at a perceptual level in autism. These results are in line with the idea that visual atypicalities mediated by intermediate-scale neural networks emerge before or during the school-age period in autism.
Dynamic and Quasi-Static Grade Crossing Collision Tests
DOT National Transportation Integrated Search
2009-03-02
To support the development of a proposed rule [1], a fullscale : dynamic test and two full-scale quasi-static tests have : been performed on the posts of a state-of-the-art (SOA) end : frame. These tests were designed to evaluate the dynamic and : qu...
Shin, Ji-won; Song, Gui-bin; Ko, Jooyeon
2017-01-01
[Purpose] The purpose of this case series was to examination the effects of trunk and neck stabilization exercise on the static, dynamic trunk balance abilities of children with cerebral palsy. [Subjects and Methods] The study included 11 school aged children diagnosed with paraplegia due to a premature birth. Each child engaged in exercise treatments twice per week for eight weeks; each treatment lasted for 45 minutes. After conducting a preliminary assessment, exercise treatments were designed based on each child’s level of functioning. Another assessment was conducted after the eight weeks of treatment. [Results] The Trunk Control Measurement Scale evaluation showed that the exercise treatments had a significant effect on static sitting balance, selective movement control, dynamic reaching, and total Trunk Control Measurement Scale scores. [Conclusion] The results indicate that neck and trunk stabilization exercises that require children’s active participation are helpful for improving static and dynamic balance ability among children diagnosed with cerebral palsy. PMID:28533628
Static Analysis of Large-Scale Multibody System Using Joint Coordinates and Spatial Algebra Operator
Omar, Mohamed A.
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations. PMID:25045732
Omar, Mohamed A
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations.
Jacobs, Matthieu; Grégoire, Nicolas; Couet, William; Bulitta, Jurgen B.
2016-01-01
Semi-mechanistic pharmacokinetic-pharmacodynamic (PK-PD) modeling is increasingly used for antimicrobial drug development and optimization of dosage regimens, but systematic simulation-estimation studies to distinguish between competing PD models are lacking. This study compared the ability of static and dynamic in vitro infection models to distinguish between models with different resistance mechanisms and support accurate and precise parameter estimation. Monte Carlo simulations (MCS) were performed for models with one susceptible bacterial population without (M1) or with a resting stage (M2), a one population model with adaptive resistance (M5), models with pre-existing susceptible and resistant populations without (M3) or with (M4) inter-conversion, and a model with two pre-existing populations with adaptive resistance (M6). For each model, 200 datasets of the total bacterial population were simulated over 24h using static antibiotic concentrations (256-fold concentration range) or over 48h under dynamic conditions (dosing every 12h; elimination half-life: 1h). Twelve-hundred random datasets (each containing 20 curves for static or four curves for dynamic conditions) were generated by bootstrapping. Each dataset was estimated by all six models via population PD modeling to compare bias and precision. For M1 and M3, most parameter estimates were unbiased (<10%) and had good imprecision (<30%). However, parameters for adaptive resistance and inter-conversion for M2, M4, M5 and M6 had poor bias and large imprecision under static and dynamic conditions. For datasets that only contained viable counts of the total population, common statistical criteria and diagnostic plots did not support sound identification of the true resistance mechanism. Therefore, it seems advisable to quantify resistant bacteria and characterize their MICs and resistance mechanisms to support extended simulations and translate from in vitro experiments to animal infection models and ultimately patients. PMID:26967893
NASA Astrophysics Data System (ADS)
Zamani Kouhpanji, Mohammad Reza; Behzadirad, Mahmoud; Busani, Tito
2017-12-01
We used the stable strain gradient theory including acceleration gradients to investigate the classical and nonclassical mechanical properties of gallium nitride (GaN) nanowires (NWs). We predicted the static length scales, Young's modulus, and shear modulus of the GaN NWs from the experimental data. Combining these results with atomic simulations, we also found the dynamic length scale of the GaN NWs. Young's modulus, shear modulus, static, and dynamic length scales were found to be 318 GPa, 131 GPa, 8 nm, and 8.9 nm, respectively, usable for demonstrating the static and dynamic behaviors of GaN NWs having diameters from a few nm to bulk dimensions. Furthermore, the experimental data were analyzed with classical continuum theory (CCT) and compared with the available literature to illustrate the size-dependency of the mechanical properties of GaN NWs. This practice resolves the previous published discrepancies that happened due to the limitations of CCT used for determining the mechanical properties of GaN NWs and their size-dependency.
Applying Online Monitoring for Nuclear Power Plant Instrumentation and Control
NASA Astrophysics Data System (ADS)
Hashemian, H. M.
2010-10-01
This paper presents a practical review of the state-of-the-art means for applying OLM data acquisition in nuclear power plant instrumentation and control, qualifying or validating the OLM data, and then analyzing it for static and dynamic performance monitoring applications. Whereas data acquisition for static or steady-state OLM applications can require sample rates of anywhere from 1 to 10 seconds to 1 minutes per sample, for dynamic data acquisition, higher sampling frequencies are required (e.g., 100 to 1000 Hz) using a dedicated data acquisition system capable of providing isolation, anti-aliasing and removal of extraneous noise, and analog-to-digital (A/D) conversion. Qualifying the data for use with OLM algorithms can involve removing data `dead' spots (for static data) and calculating, examining, and trending amplitude probability density, variance, skewness, and kurtosis. For static OLM applications with redundant signals, trending and averaging qualification techniques are used, and for single or non-redundant signals physical and empirical modeling are used. Dynamic OLM analysis is performed in the frequency domain and/or time domain, and is based on the assumption that sensors' or transmitters' dynamic characteristics are linear and that the input noise signal (i.e., the process fluctuations) has proper spectral characteristics.
Response, analysis, and design of pile groups subjected to static & dynamic lateral loads.
DOT National Transportation Integrated Search
2003-06-01
Static and dynamic lateral load tests were performed on four full-scale pile groups driven at four different spacings. P-multipliers to account for group : interaction effects were back-calculated for each test. P-multipliers were found to be a funct...
ERIC Educational Resources Information Center
Roesch Wagner, Sally; Eckler, Tori; Leighton, Maxinne Rhea
2013-01-01
Museums in the past have been static institutions, exhibiting their collections as public displays. Today, the public has come to expect more from these institutions, seeing them as safe havens where conversations can begin. As reproductive rights have moved to the forefront of political and social debate, dialogue seems to be a step in the right…
NASA Astrophysics Data System (ADS)
Yang, Ce; Liu, Yixiong; Yang, Dengfeng; Wang, Benjiang
2017-11-01
To achieve the rebalance of flow distributions of double-sided impellers, a method of improving the radius of rear impeller is presented in this paper. It is found that the flow distributions of front and rear impeller can be adjusted effectively by increasing the radius of rear impeller, thus improves the balance of flow distributions of front and rear impeller. Meanwhile, the working conversion mode process of double-sided centrifugal compressor is also changed. Further analysis shows that the flowrates of blade channels in front impeller are mainly influenced by the circumferential distributions of static pressure in the volute. But the flowrates of rear impeller blade channels are influenced by the outlet flow field of bent duct besides the effects of static pressure distributions in the volute. In the airflow interaction area downstream, the flowrate of blade channel is obviously smaller. By increasing the radius of rear impeller, the work capacity of rear impeller is enhanced, the working mode conversion process from parallel working mode of double-sided impeller to the single impeller working mode is delayed, and the stable working range of double-sided compressor is broadened.
NASA Technical Reports Server (NTRS)
Wolhart, Walter D.; Thomas, David F., Jr.
1955-01-01
An experimental investigation has been made in the Langley stability tunnel to determine the low-speed yawing, pitching, and static stability characteristics of a 1/10-scale model of the Grumman F9F-9 airplane. Tests were made to determine the effects of duct-entrance-fairing plugs on the static lateral and longitudinal stability characteristics of the complete model in the clean condition. The remaining tests were concerned with determining tail contributions as well as the effect of duct-entrance-fairing plugs, slats, flaps, and landing gear on the yawing and pitching stability derivatives. These data are presented without analysis in order to expedite distribution.
Flow Visualization on a Small Scale.
1988-03-01
1150 22.43 26 A good tunnel must have very uniform flow across the test section. The uniformity was checked using a seven tube pitot static rake ...calibration. il Figure 7. The Pitot Static Rake 27 To map the entire 15 x 24 inch cross section 84 individual readings and 12 rake locations were required... rake readings was taken, the micromanometer was reattached to the permanent pitot static probe to ensure calibration of the tunnel to .02 inches of
Static solutions for fourth order gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, William
2010-11-15
The Lichnerowicz and Israel theorems are extended to higher order theories of gravity. In particular it is shown that Schwarzschild is the unique spherically symmetric, static, asymptotically flat, black-hole solution, provided the spatial curvature is less than the quantum gravity scale outside the horizon. It is then shown that in the presence of matter (satisfying certain positivity requirements), the only static and asymptotically flat solutions of general relativity that are also solutions of higher order gravity are the vacuum solutions.
Dual redundant arm system operational quality measures and their applications - Static measures
NASA Technical Reports Server (NTRS)
Lee, Sukhan; Kim, Sungbok
1990-01-01
The authors present dual-arm system static operational quality measures which quantify the efficiency and capability of a dual-arm system in generating Cartesian velocities and static forces. First, they define and analyze the kinematic interactions between the two arms incurred by the various modes of dual-arm cooperation, such as transport, assembly, and grasping modes of cooperation, and specify the kinematic constraints imposed on individual arms in Cartesian space due to the kinematic interactions. Dual-arm static manipulability is presented. Finally, dual-arm operational quality is scaled by a task-oriented operational quality measure (TOQs) obtained by the comparison between the desired and actual static manipulabilities. TOQs is used in the optimization of dual-arm joint configurations. Simulation results are shown.
Self-forces on static bodies in arbitrary dimensions
NASA Astrophysics Data System (ADS)
Taylor, Peter
2016-03-01
I will present exact expressions for the scalar and electromagnetic self-forces and self-torques acting on arbitrary static extended bodies in arbitrary static spacetimes with any number of dimensions. Non-perturbatively, these results are identical in all dimensions. Meaningful point particle limits are quite different, however. I will discuss how such limits are defined and evaluated, resulting in simple ``regularization algorithms'' which can be used in concrete calculations. In them, self-interaction is shown to be progressively less important in higher numbers of dimensions, generically competing in magnitude with increasingly high-order extended-body effects. Conversely, self-interaction effects can be relatively large in 1 + 1 and 2 + 1 dimensions. It will further be shown that there is considerable freedom to use different ``effective fields'' in the laws of motion. Different choices give rise to different inertias, gravitational forces, and electromagnetic or scalar self-forces. However, the particular combinations of these quantities which are observable remain invariant under all possible field redefinitions.
19. HISTORIC VIEW OF MAX VALIER IN AN EARLY STATIC ...
19. HISTORIC VIEW OF MAX VALIER IN AN EARLY STATIC TEST. THE ROCKET IS SITTING ON A SCALE. VALIER IS MEASURING THRUST BY ADDING WEIGHT LIKE THE ONE IN HIS RIGHT HAND. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Riding on irrelevant operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Rham, Claudia; Ribeiro, Raquel H., E-mail: Claudia.deRham@case.edu, E-mail: RaquelHRibeiro@case.edu
2014-11-01
We investigate the stability of a class of derivative theories known as P(X) and Galileons against corrections generated by quantum effects. We use an exact renormalisation group approach to argue that these theories are stable under quantum corrections at all loops in regions where the kinetic term is large compared to the strong coupling scale. This is the regime of interest for screening or Vainshtein mechanisms, and in inflationary models that rely on large kinetic terms. Next, we clarify the role played by the symmetries. While symmetries protect the form of the quantum corrections, theories equipped with more symmetries domore » not necessarily have a broader range of scales for which they are valid. We show this by deriving explicitly the regime of validity of the classical solutions for P(X) theories including Dirac-Born-Infeld (DBI) models, both in generic and for specific background field configurations. Indeed, we find that despite the existence of an additional symmetry, the DBI effective field theory has a regime of validity similar to an arbitrary P(X) theory. We explore the implications of our results for both early and late universe contexts. Conversely, when applied to static and spherical screening mechanisms, we deduce that the regime of validity of typical power-law P(X) theories is much larger than that of DBI.« less
NASA Astrophysics Data System (ADS)
Tuck, A. F.; Hovde, S. J.; Lovejoy, S.; Schertzer, D.
2007-12-01
Application of generalized scale invariance to horizontal airborne observations of winds, temperature, ozone and humidity reveals the atmosphere as a random, non-Gaussian Levy process, having mean scaling exponents H (conservation), C1 (intermittency) and alpha (Levy) of 0.56, 0.05 and 1.6 respectively in the cases of winds and temperature. A correlation between the intermittency of temperature and the ozone photodissociation rate in the Arctic lower stratosphere is interpreted in terms of the ring currents of non-equilibrium statistical mechanics in which vortices, fluid dynamical behavior, emerge from thermalized populations of Maxwellian molecules subjected to an anisotropy in the form of a flux. The emergence of jet streams and the definition of atmospheric temperature are examined in the light of these results. The vertical scaling of wind, temperature and humidity is examined through the depth of the troposphere using data observed by GPS dropsondes from the NOAA Gulfstream 4 aircraft over the eastern Pacific Ocean in boreal winter. The results exclude isotropic turbulence in the atmosphere, and reveal the structure of static, moist static and dynamic (Richardson number) stabilities to be sparse fractal sets. Each stable layer contains a set of smaller scale unstable sublayers, each of which in turn contains a set of stable sub-sublayers and so on. The moist static stability scales differently to the dry static stability in the lower troposphere. As with the 'horizontal' data, the 'vertical' data reveal a correlation between H for horizontal wind and measures of jet stream strength. It is pointed out that these results provide potentially a new way of testing numerical models of the atmosphere.
Noise-Source Separation Using Internal and Far-Field Sensors for a Full-Scale Turbofan Engine
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.; Miles, Jeffrey H.
2009-01-01
Noise-source separation techniques for the extraction of the sub-dominant combustion noise from the total noise signatures obtained in static-engine tests are described. Three methods are applied to data from a static, full-scale engine test. Both 1/3-octave and narrow-band results are discussed. The results are used to assess the combustion-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP). A new additional phase-angle-based discriminator for the three-signal method is also introduced.
Effect of inlet disturbances on fan inlet noise during a static test
NASA Technical Reports Server (NTRS)
Bekofske, K. L.; Sheer, R. E., Jr.; Wang, J. C. F.
1977-01-01
Measurements of fan rotor inlet noise taken during static test situations are at variance with aircraft engine flight data. In particular, static tests generally yield a significantly higher tone at blade passage frequency than that measured during flight. To explain this discrepancy, the extent of the influence of inlet ground vortices and large-scale inlet turbulence on the forward-radiated fan noise measured at a static test facility was investigated. While such inlet disturbances were generated intentionally in an anechoic test chamber, far-field acoustic measurements and inlet flow-field hot-film mappings of a fan rotor were obtained. Experimental results indicate that the acoustic effect of such disturbances appears to be less severe for supersonic than for subsonic tip speeds. Further, a reverse flow that occurs on the exterior cowl in static test facilities appears to be an additional prime candidate for creating inlet disturbances and causing variance between flight and static acoustic data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan
A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source tomore » enable use by others.« less
Preda, Adrian; Nguyen, Dana D; Bustillo, Juan R; Belger, Aysenil; O'Leary, Daniel S; McEwen, Sarah; Ling, Shichun; Faziola, Lawrence; Mathalon, Daniel H; Ford, Judith M; Potkin, Steven G; van Erp, Theo G M
2018-06-20
To provide quantitative conversions between commonly used scales for the assessment of negative symptoms in schizophrenia. Linear regression analyses generated conversion equations between symptom scores from the Scale for the Assessment of Negative Symptoms (SANS), the Schedule for the Deficit Syndrome (SDS), the Positive and Negative Syndrome Scale (PANSS), or the Negative Symptoms Assessment (NSA) based on a cross sectional sample of 176 individuals with schizophrenia. Intraclass correlations assessed the rating conversion accuracy based on a separate sub-sample of 29 patients who took part in the initial study as well as an independent sample of 28 additional subjects with schizophrenia. Between-scale negative symptom ratings were moderately to highly correlated (r = 0.73-0.91). Intraclass correlations between the original negative symptom rating scores and those obtained via using the conversion equations were in the range of 0.61-0.79. While there is a degree of non-overlap, several negative symptoms scores reflect measures of similar constructs and may be reliably converted between some scales. The conversion equations are provided at http://www.converteasy.org and may be used for meta- and mega-analyses that examine negative symptoms. Copyright © 2018 Elsevier B.V. All rights reserved.
The adhesion performance of epoxy coating on AA6063 treated in Ti/Zr/V based solution
NASA Astrophysics Data System (ADS)
Zhu, Wen; Li, Wenfang; Mu, Songlin; Yang, Yunyu; Zuo, Xi
2016-10-01
An environment-friendly titanium/zirconium/vanadium-based (Ti/Zr/V) conversion coating was prepared on aluminum alloy 6063 (AA6063). The epoxy powder coatings were applied on the AA6063 samples with/without Ti/Zr/V conversion coatings via electrostatic spraying. The morphology and composition of the conversion coating were studied by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The surface free energy components of AA6063 samples were measured by a static contact angle measuring device with Owens method. The adhesion properties of the epoxy coating on AA6063 treated with different conversion times were evaluated using a pull-off tester. The Ti/Zr/V conversion coating was mainly composed of metal oxide (TiO2, ZrO2, V2O5, Al2O3, etc.), metal fluoride (ZrF4, AlF3, etc.) and metal organic complex. The formation time of this conversion coating was reduced to 50 s. After such surface treatment, the samples' surface roughness was increased and the contact angle with water was decreased. Both the surface free energy and the work of adhesion were increased. The adhesion strength between the epoxy coating and AA6063 was enhanced significantly.
ERIC Educational Resources Information Center
Watson, Gareth; Butterfield, Joe; Curran, Ricky; Craig, Cathy
2010-01-01
Recent studies exploring the effects of instructional animations on learning compared to static graphics have yielded mixed results. Few studies have explored their effectiveness in portraying procedural-motor information. Opportunities exist within an applied (manufacturing) context for instructional animations to be used to facilitate build…
NASA Technical Reports Server (NTRS)
Pennock, A. P.; Swift, G.; Marbert, J. A.
1975-01-01
Externally blown flap models were tested for noise and performance at one-fifth scale in a static facility and at one-tenth scale in a large acoustically-treated wind tunnel. The static tests covered two flap designs, conical and ejector nozzles, third-flap noise-reduction treatments, internal blowing, and flap/nozzle geometry variations. The wind tunnel variables were triple-slotted or single-slotted flaps, sweep angle, and solid or perforated third flap. The static test program showed the following noise reductions at takeoff: 1.5 PNdB due to treating the third flap; 0.5 PNdB due to blowing from the third flap; 6 PNdB at flyover and 4.5 PNdB in the critical sideline plane (30 deg elevation) due to installation of the ejector nozzle. The wind tunnel program showed a reduction of 2 PNdB in the sideline plane due to a forward speed of 43.8 m/s (85 kn). The best combination of noise reduction concepts reduced the sideline noise of the reference aircraft at constant field length by 4 PNdB.
Diurnal forcing of planetary atmospheres
NASA Technical Reports Server (NTRS)
Houben, Howard C.
1991-01-01
A free convection parameterization has been introduced into the Mars Planetary Boundary Layer Model (MPBL). Previously, the model would fail to generate turbulence under conditions of zero wind shear, even when statically unstable. This in turn resulted in erroneous results at the equator, for example, when the lack of Coriolis forcing allowed zero wind conditions. The underlying cause of these failures was the level 2 second-order turbulence closure scheme which derived diffusivities as algebraic functions of the Richardson number (the ratio of static stability to wind shear). In the previous formulation, the diffusivities were scaled by the wind shear--a convenient parameter since it is non-negative. This was the drawback that all diffusivities are zero under conditions of zero shear (viz., the free convection case). The new scheme tests for the condition of zero shear in conjunction with static instability and recalculates the diffusivities using a static stability scaling. The results for a simulation of the equatorial boundary layer at autumnal equinox are presented. (Note that after some wind shear is generated, the model reverts to the traditional diffusivity calculation.)
NASA Technical Reports Server (NTRS)
Palazzo, Edward B.; Spearman, M. Leroy
1954-01-01
An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 1.41 to determine the static stability and control and drag characteristics of a l/l5-scale model of the Grunman F9F-9 airplane. The effects of alternate fuselage shapes, wing camber, wing fences, and fuselage dive brakes on the aerodynamic characteristics were also investigated. These tests were made at a Reynolds number of 1.96 x l0 (exp 6) based on the wing mean aerodynamic chord of 0.545 foot. The basic configuration had a static margin of stability of 38.4 percent of the mean aerodynamic chord and a minimum drag coefficient of 0.049. For the maximum horizontal tail deflection investigated (-l0 deg), the maximum trim lift coefficient was 0.338. The basic configuration had positive static lateral stability at zero angle of attack and positive directional control throughout the angle-of-attack range investigated up to ll deg.
DuMont, Jaime W; Marquardt, Amy E; Cano, Austin M; George, Steven M
2017-03-22
The thermal atomic layer etching (ALE) of SiO 2 was performed using sequential reactions of trimethylaluminum (TMA) and hydrogen fluoride (HF) at 300 °C. Ex situ X-ray reflectivity (XRR) measurements revealed that the etch rate during SiO 2 ALE was dependent on reactant pressure. SiO 2 etch rates of 0.027, 0.15, 0.20, and 0.31 Å/cycle were observed at static reactant pressures of 0.1, 0.5, 1.0, and 4.0 Torr, respectively. Ex situ spectroscopic ellipsometry (SE) measurements were in agreement with these etch rates versus reactant pressure. In situ Fourier transform infrared (FTIR) spectroscopy investigations also observed SiO 2 etching that was dependent on the static reactant pressures. The FTIR studies showed that the TMA and HF reactions displayed self-limiting behavior at the various reactant pressures. In addition, the FTIR spectra revealed that an Al 2 O 3 /aluminosilicate intermediate was present after the TMA exposures. The Al 2 O 3 /aluminosilicate intermediate is consistent with a "conversion-etch" mechanism where SiO 2 is converted by TMA to Al 2 O 3 , aluminosilicates, and reduced silicon species following a family of reactions represented by 3SiO 2 + 4Al(CH 3 ) 3 → 2Al 2 O 3 + 3Si(CH 3 ) 4 . Ex situ X-ray photoelectron spectroscopy (XPS) studies confirmed the reduction of silicon species after TMA exposures. Following the conversion reactions, HF can fluorinate the Al 2 O 3 and aluminosilicates to species such as AlF 3 and SiO x F y . Subsequently, TMA can remove the AlF 3 and SiO x F y species by ligand-exchange transmetalation reactions and then convert additional SiO 2 to Al 2 O 3 . The pressure-dependent conversion reaction of SiO 2 to Al 2 O 3 and aluminosilicates by TMA is critical for thermal SiO 2 ALE. The "conversion-etch" mechanism may also provide pathways for additional materials to be etched using thermal ALE.
NASA Astrophysics Data System (ADS)
Delhaye, Robert; Rath, Volker; Jones, Alan G.; Muller, Mark R.; Reay, Derek
2017-05-01
Galvanic distortions of magnetotelluric (MT) data, such as the static-shift effect, are a known problem that can lead to incorrect estimation of resistivities and erroneous modelling of geometries with resulting misinterpretation of subsurface electrical resistivity structure. A wide variety of approaches have been proposed to account for these galvanic distortions, some depending on the target area, with varying degrees of success. The natural laboratory for our study is a hydraulically permeable volume of conductive sediment at depth, the internal resistivity structure of which can be used to estimate reservoir viability for geothermal purposes; however, static-shift correction is required in order to ensure robust and precise modelling accuracy.We present here a possible method to employ frequency-domain electromagnetic data in order to correct static-shift effects, illustrated by a case study from Northern Ireland. In our survey area, airborne frequency domain electromagnetic (FDEM) data are regionally available with high spatial density. The spatial distributions of the derived static-shift corrections are analysed and applied to the uncorrected MT data prior to inversion. Two comparative inversion models are derived, one with and one without static-shift corrections, with instructive results. As expected from the one-dimensional analogy of static-shift correction, at shallow model depths, where the structure is controlled by a single local MT site, the correction of static-shift effects leads to vertical scaling of resistivity-thickness products in the model, with the corrected model showing improved correlation to existing borehole wireline resistivity data. In turn, as these vertical scalings are effectively independent of adjacent sites, lateral resistivity distributions are also affected, with up to half a decade of resistivity variation between the models estimated at depths down to 2000 m. Simple estimation of differences in bulk porosity, derived using Archie's Law, between the two models reinforces our conclusion that the suborder of magnitude resistivity contrasts induced by the correction of static shifts correspond to similar contrasts in estimated porosities, and hence, for purposes of reservoir investigation or similar cases requiring accurate absolute resistivity estimates, galvanic distortion correction, especially static-shift correction, is essential.
ERIC Educational Resources Information Center
Guo, Hongwen; Puhan, Gautam; Walker, Michael
2013-01-01
In this study we investigated when an equating conversion line is problematic in terms of gaps and clumps. We suggest using the conditional standard error of measurement (CSEM) to measure the scale scores that are inappropriate in the overall raw-to-scale transformation.
Incongruity between Prion Conversion and Incubation Period following Coinfection.
Langenfeld, Katie A; Shikiya, Ronald A; Kincaid, Anthony E; Bartz, Jason C
2016-06-15
When multiple prion strains are inoculated into the same host, they can interfere with each other. Strains with long incubation periods can suppress conversion of strains with short incubation periods; however, nothing is known about the conversion of the long-incubation-period strain during strain interference. To investigate this, we inoculated hamsters in the sciatic nerve with long-incubation-period strain 139H prior to superinfection with the short-incubation-period hyper (HY) strain of transmissible mink encephalopathy (TME). First, we found that 139H is transported along the same neuroanatomical tracks as HY TME, adding to the growing body of evidence indicating that PrP(Sc) favors retrograde transneuronal transport. In contrast to a previous report, we found that 139H interferes with HY TME infection, which is likely due to both strains targeting the same population of neurons following sciatic nerve inoculation. Under conditions where 139H blocked HY TME from causing disease, the strain-specific properties of PrP(Sc) corresponded with the strain that caused disease, consistent with our previous findings. In the groups of animals where incubation periods were not altered, we found that the animals contained a mixture of 139H and HY TME PrP(Sc) This finding expands the definition of strain interference to include conditions where PrP(Sc) formation is altered yet disease outcome is unaltered. Overall, these results contradict the premise that prion strains are static entities and instead suggest that strain mixtures are dynamic regardless of incubation period or clinical outcome of disease. Prions can exist as a mixture of strains in naturally infected animals, where they are able to interfere with the conversion of each other and to extend incubation periods. Little is known, however, about the dynamics of strain conversion under conditions where incubation periods are not affected. We found that inoculation of the same animal with two strains can result in the alteration of conversion of both strains under conditions where the resulting disease was consistent with infection with only a single strain. These data challenge the idea that prion strains are static and suggests that strain mixtures are more dynamic than previously appreciated. This observation has significant implications for prion adaptation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Meso-scopic Densification in Brittle Granular Materials
NASA Astrophysics Data System (ADS)
Neal, William; Appleby-Thomas, Gareth; Collins, Gareth
2013-06-01
Particulate materials are ideally suited to shock absorbing applications due to the large amounts of energy required to deform their inherently complex meso-structure. Significant effort is being made to improve macro-scale material models to represent these atypical materials. On the long road towards achieving this capability, an important milestone would be to understand how particle densification mechanisms are affected by loading rate. In brittle particulate materials, the majority of densification is caused by particle fracture. Macro-scale quasi-static and dynamic compaction curves have been measured that show good qualitative agreement. There are, however, some differences that appear to be dependent on the loading rate that require further investigation. This study aims to investigate the difference in grain-fracture behavior between the quasi-static and shock loading response of brittle glass microsphere beds using a combination of quasi-static and dynamic loading techniques. Results from pressure-density measurements, sample recovery, and meso-scale hydrocode models (iSALE, an in-house simulation package) are discussed to explain the differences in particle densification mechanisms between the two loading rate regimes. Gratefully funded by AWE.plc.
A KPI-based process monitoring and fault detection framework for large-scale processes.
Zhang, Kai; Shardt, Yuri A W; Chen, Zhiwen; Yang, Xu; Ding, Steven X; Peng, Kaixiang
2017-05-01
Large-scale processes, consisting of multiple interconnected subprocesses, are commonly encountered in industrial systems, whose performance needs to be determined. A common approach to this problem is to use a key performance indicator (KPI)-based approach. However, the different KPI-based approaches are not developed with a coherent and consistent framework. Thus, this paper proposes a framework for KPI-based process monitoring and fault detection (PM-FD) for large-scale industrial processes, which considers the static and dynamic relationships between process and KPI variables. For the static case, a least squares-based approach is developed that provides an explicit link with least-squares regression, which gives better performance than partial least squares. For the dynamic case, using the kernel representation of each subprocess, an instrument variable is used to reduce the dynamic case to the static case. This framework is applied to the TE benchmark process and the hot strip mill rolling process. The results show that the proposed method can detect faults better than previous methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Pheromone Static Routing Strategy for Complex Networks
NASA Astrophysics Data System (ADS)
Hu, Mao-Bin; Henry, Y. K. Lau; Ling, Xiang; Jiang, Rui
2012-12-01
We adopt the concept of using pheromones to generate a set of static paths that can reach the performance of global dynamic routing strategy [Phys. Rev. E 81 (2010) 016113]. The path generation method consists of two stages. In the first stage, a pheromone is dropped to the nodes by packets forwarded according to the global dynamic routing strategy. In the second stage, pheromone static paths are generated according to the pheromone density. The output paths can greatly improve traffic systems' overall capacity on different network structures, including scale-free networks, small-world networks and random graphs. Because the paths are static, the system needs much less computational resources than the global dynamic routing strategy.
Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam
2016-10-26
Sulfur exhibits a high theoretical capacity of 1675 mA h g -1 via a distinct conversion reaction, which is different from the insertion reactions in commercial lithium-ion batteries. In consideration of its conversion reaction battery chemistry, a custom design for electrode materials could establish the way for attaining high-loading capability while simultaneously maintaining high electrochemical utilization and stability. In this study, this process is undertaken by introducing carbon cotton as an attractive electrode-containment material for enhancing the dynamic and static stabilities of lithium-sulfur (Li-S) batteries. The carbon cotton possessing a hierarchical macro-/microporous architecture exhibits a high surface area of 805more » m 2 g -1 and high microporosity with a micropore area of 557 m 2 g -1. The macroporous channels allow the carbon cotton to load and stabilize a high amount of active material. The abundant microporous reaction sites spread throughout the carbon cotton facilitate the redox chemistry of the high-loading/content Li-S system. As a result, the high-loading carbon-cotton cathode exhibits (i) enhanced cycle stability with a good dynamic capacity retention of 70% after 100 cycles and (ii) improved cellstorage stability with a high static capacity retention of above 93% and a low time-dependent self-discharge rate of 0.12% per day after storing for a long period of 60 days. In conclusion, these carbon-cotton cathodes with the remarkably highest values reported so far of both sulfur loading (61.4 mg cm -2) and sulfur content (80 wt %) demonstrate enhanced electrochemical utilization with the highest areal, volumetric, and gravimetric capacities simultaneously.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam
Sulfur exhibits a high theoretical capacity of 1675 mA h g -1 via a distinct conversion reaction, which is different from the insertion reactions in commercial lithium-ion batteries. In consideration of its conversion reaction battery chemistry, a custom design for electrode materials could establish the way for attaining high-loading capability while simultaneously maintaining high electrochemical utilization and stability. In this study, this process is undertaken by introducing carbon cotton as an attractive electrode-containment material for enhancing the dynamic and static stabilities of lithium-sulfur (Li-S) batteries. The carbon cotton possessing a hierarchical macro-/microporous architecture exhibits a high surface area of 805more » m 2 g -1 and high microporosity with a micropore area of 557 m 2 g -1. The macroporous channels allow the carbon cotton to load and stabilize a high amount of active material. The abundant microporous reaction sites spread throughout the carbon cotton facilitate the redox chemistry of the high-loading/content Li-S system. As a result, the high-loading carbon-cotton cathode exhibits (i) enhanced cycle stability with a good dynamic capacity retention of 70% after 100 cycles and (ii) improved cellstorage stability with a high static capacity retention of above 93% and a low time-dependent self-discharge rate of 0.12% per day after storing for a long period of 60 days. In conclusion, these carbon-cotton cathodes with the remarkably highest values reported so far of both sulfur loading (61.4 mg cm -2) and sulfur content (80 wt %) demonstrate enhanced electrochemical utilization with the highest areal, volumetric, and gravimetric capacities simultaneously.« less
Terenzi, Camilla; Bouguet-Bonnet, Sabine; Canet, Daniel
2015-05-07
We report that at ambient temperature and with 100% enriched para-hydrogen (p-H2) dissolved in organic solvents, paramagnetic spin catalysis of para → ortho hydrogen conversion is accompanied at the onset by a negative ortho-hydrogen (o-H2) proton NMR signal. This novel finding indicates an electron spin polarization transfer, and we show here that this can only occur if the H2 molecule is dissociated upon its transient adsorption by the paramagnetic catalyst. Following desorption, o-H2 is created until the thermodynamic equilibrium is reached. A simple theory confirms that in the presence of a static magnetic field, the hyperfine coupling between unpaired electrons and nuclear spins is responsible for the observed polarization transfer. Owing to the negative electron gyromagnetic ratio, this explains the experimental results and ascertains an as yet unexplored mechanism for para → ortho conversion. Finally, we show that the recovery of o-H2 magnetization toward equilibrium can be simply modeled, leading to the para → ortho conversion rate.
Induced matter brane gravity and Einstein static universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydarzade, Y.; Darabi, F., E-mail: heydarzade@azaruniv.edu, E-mail: f.darabi@azaruniv.edu
We investigate stability of the Einstein static universe against the scalar, vector and tensor perturbations in the context of induced matter brane gravity. It is shown that in the framework of this model, the Einstein static universe has a positive spatial curvature. In contrast to the classical general relativity, it is found that a stable Einstein static universe against the scalar perturbations does exist provided that the variation of time dependent geometrical equation of state parameter is proportional to the minus of the variation of the scale factor, δ ω{sub g}(t) = −Cδ a(t). We obtain neutral stability against the vector perturbations, and themore » stability against the tensor perturbations is guaranteed due to the positivity of the spatial curvature of the Einstein static universe in induced matter brane gravity.« less
NASA Technical Reports Server (NTRS)
Jaeck, C. L.
1976-01-01
A test was conducted in the Boeing Large Anechoic Chamber to determine static jet noise source locations of six baseline and suppressor nozzle models, and establish a technique for extrapolating near field data into the far field. The test covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K.
Electron heating in the laser and static electric and magnetic fields
NASA Astrophysics Data System (ADS)
Zhang, Yanzeng; Krasheninnikov, S. I.
2018-01-01
A 2D slab approximation of the interactions of electrons with intense linearly polarized laser radiation and static electric and magnetic fields is widely used for both numerical simulations and simplified semi-analytical models. It is shown that in this case, electron dynamics can be conveniently described in the framework of the 3/2 dimensional Hamiltonian approach. The electron acceleration beyond a standard ponderomotive scaling, caused by the synergistic effects of the laser and static electro-magnetic fields, is due to an onset of stochastic electron motion.
Performance comparison of flat static and adjustable angle solar panels for sunny weather
NASA Astrophysics Data System (ADS)
Chua, Yaw Long; Yong, Yoon Kuang
2017-04-01
Nowadays solar panels are commonly used to collect sunlight so that it could convert solar energy into electrical energy. The power generated by the solar panels depends on the amount of sunlight collected on the solar panels. This paper presents a study that was carried out to study how changing the angle of the solar panels will impact the amount of electrical energy collected after conversion and the efficiencies of the solar panels. In this paper, the solar panels were placed at 30°, 35° and 40° angles throughout different days. The energy collected is then compared with energy collected by a flat static solar panel. It turns out that the solar panels with 40° angle performed best among the other angle solar panels.
NASA Technical Reports Server (NTRS)
Cannon, Michael D.
1956-01-01
Static longitudinal and lateral stability and control data are presented of an investigation on a l/15-scale model of the Goodyear XZP5K airship over a pitch and yaw range of +/-20 deg and 0 deg to 30 deg, respectively, for various rudder and elevator deflections. Two tail configurations of different plan forms were tested and wake and boundary-layer surveys were conducted. Testing was conducted in the Langley full-scale tunnel at a Reynolds number of approximately 16.5 x 10(exp 6) based on hull length, and corresponds to a Mach number of about 0.12.
Vibrational Spectroscopic Studies of Reduced-Sensitivity RDX under Static Compression
NASA Astrophysics Data System (ADS)
Wong, Chak P.; Gump, Jared C.
2006-07-01
Explosive formulations with reduced-sensitivity RDX showed reduced shock sensitivity using Naval Ordnance Laboratory (NOL) Large Scale Gap Test, compared with similar formulations using standard RDX. Molecular processes responsible for the reduction of sensitivity are unknown and are crucial for formulation development. Vibrational spectroscopy at static high pressure may shed light on the mechanisms responsible for the reduced shock sensitivity as shown by the NOL Large Scale Gap Test. I-RDX®, a form of reduced- sensitivity RDX was subjected to static compression at ambient temperature in a Merrill-Bassett sapphire cell from ambient to about 6 GPa. The spectroscopic techniques used were Raman and Fourier-Transform IR (FTIR). The pressure dependence of the Raman mode frequencies of I-RDX® was determined and compared with that of standard RDX. The behavior of I-RDX® near the pressure at which standard RDX, at ambient temperature, undergoes a phase transition from the α to the γ polymorph is presented.
Static and dynamic properties of two-dimensional Coulomb clusters.
Ash, Biswarup; Chakrabarti, J; Ghosal, Amit
2017-10-01
We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.
Prediction of flyover jet noise spectra from static tests
NASA Astrophysics Data System (ADS)
Michel, U.; Michalke, A.
A scaling law for predicting the overall flyover noise of a single stream shock-free circular jet from static experiments is outlined. It is valid for isothermal and hot jets. It assumes that the jet flow and turbulence field are axially stretched in flight. Effects of the boundary layer within the nozzle and along the engine nacelle are neglected. The scaling laws for the power spectral density and spectra with constant relative bandwidth can be derived. In order to compare static and inflight directivities, the far field point relative to the source position must be denoted by the emission angle and the wave normal distance. From the solution of the convective Lighthill equation in a coordinate system fixed to the jet nozzle (wind tunnel case), the power spectral density of sound pressure at a given frequency is found. Predictions for Aerotrain compare well with measured values.
Prediction of flyover jet noise spectra from static tests
NASA Technical Reports Server (NTRS)
Michel, U.; Michalke, A.
1981-01-01
A scaling law is derived for predicting the flyover noise spectra of a single-stream shock-free circular jet from static experiments. The theory is based on the Lighthill approach to jet noise. Density terms are retained to include the effects of jet heating. The influence of flight on the turbulent flow field is considered by an experimentally supported similarity assumption. The resulting scaling laws for the difference between one-third-octave spectra and the overall sound pressure level compare very well with flyover experiments with a jet engine and with wind tunnel experiments with a heated model jet.
Applying Rasch Model and Generalizability Theory to Study Modified-Angoff Cut Scores
ERIC Educational Resources Information Center
Arce, Alvaro J.; Wang, Ze
2012-01-01
The traditional approach to scale modified-Angoff cut scores transfers the raw cuts to an existing raw-to-scale score conversion table. Under the traditional approach, cut scores and conversion table raw scores are not only seen as interchangeable but also as originating from a common scaling process. In this article, we propose an alternative…
Upton, Richard G.
1978-01-01
A digital scale converter is provided for binary coded decimal (BCD) conversion. The converter may be programmed to convert a BCD value of a first scale to the equivalent value of a second scale according to a known ratio. The value to be converted is loaded into a first BCD counter and counted down to zero while a second BCD counter registers counts from zero or an offset value depending upon the conversion. Programmable rate multipliers are used to generate pulses at selected rates to the counters for the proper conversion ratio. The value present in the second counter at the time the first counter is counted to the zero count is the equivalent value of the second scale. This value may be read out and displayed on a conventional seven-segment digital display.
Mental imagery. Effects on static balance and attentional demands of the elderly.
Hamel, M F; Lajoie, Yves
2005-06-01
Several studies have demonstrated the effectiveness of mental imagery in improving motor performance. However, no research has studied the effectiveness of such a technique on static balance in the elderly. This study evaluated the efficiency of a mental imagery technique, aimed at improving static balance by reducing postural oscillations and attentional demands in the elderly. Twenty subjects aged 65 to 90 years old, divided into two groups (8 in Control group and 12 in Experimental group) participated in the study. The experimental participants underwent daily mental imagery training for a period of six weeks. Antero-posterior and lateral oscillations, reaction times during the use of the double-task paradigm were measured, and the Berg Balance Scale, Activities-specific Balance Confidence Scale, and VMIQ questionnaire were answered during both pre-test and post-test. Attentional demands and postural oscillations (antero-posterior) decreased significantly in the group with mental imagery training compared with those of the Control group. Subjects in the mental imagery group became significantly better in their aptitudes to generate clear vivid mental images, as indicated by the VMIQ questionnaire, whereas no significant difference was observed for the Activities-specific Balance Confidence Scale or Berg Scale. The results support psychoneuromuscular and motor coding theories associated with mental imagery.
Static non-reciprocity in mechanical metamaterials.
Coulais, Corentin; Sounas, Dimitrios; Alù, Andrea
2017-02-23
Reciprocity is a general, fundamental principle governing various physical systems, which ensures that the transfer function-the transmission of a physical quantity, say light intensity-between any two points in space is identical, regardless of geometrical or material asymmetries. Breaking this transmission symmetry offers enhanced control over signal transport, isolation and source protection. So far, devices that break reciprocity (and therefore show non-reciprocity) have been mostly considered in dynamic systems involving electromagnetic, acoustic and mechanical wave propagation associated with fields varying in space and time. Here we show that it is possible to break reciprocity in static systems, realizing mechanical metamaterials that exhibit vastly different output displacements under excitation from different sides, as well as one-way displacement amplification. This is achieved by combining large nonlinearities with suitable geometrical asymmetries and/or topological features. In addition to extending non-reciprocity and isolation to statics, our work sheds light on energy propagation in nonlinear materials with asymmetric crystalline structures and topological properties. We anticipate that breaking reciprocity will open avenues for energy absorption, conversion and harvesting, soft robotics, prosthetics and optomechanics.
PSP Measurement of Stator Vane Surface Pressures in a High Speed Fan
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan
1998-01-01
This paper presents measurements of static pressures on the stator vane suction side of a high-speed single stage fan using the technique of pressure sensitive paint (PSP). The paper illustrates development in application of the relatively new experimental technique to the complex environment of internal flows in turbomachines. First, there is a short explanation of the physics of the PSP technique and a discussion of calibration methods for pressure sensitive paint in the turbomachinery environment. A description of the image conversion process follows. The recorded image of the stator vane pressure field is skewed due to the limited optical access and must be converted to the meridional plane projection for comparison with analytical predictions. The experimental results for seven operating conditions along an off-design rotational speed line are shown in a concise form, including performance map points, mindspan static tap pressure distributions, and vane suction side pressure fields. Then, a comparison between static tap and pressure sensitive paint data is discussed. Finally, the paper lists shortcomings of the pressure sensitive paint technology and lessons learned in this high-speed fan application.
Constraints and vibrations in static packings of ellipsoidal particles.
Schreck, Carl F; Mailman, Mitch; Chakraborty, Bulbul; O'Hern, Corey S
2012-06-01
We numerically investigate the mechanical properties of static packings of frictionless ellipsoidal particles in two and three dimensions over a range of aspect ratio and compression Δφ. While amorphous packings of spherical particles at jamming onset (Δφ=0) are isostatic and possess the minimum contact number z_{iso} required for them to be collectively jammed, amorphous packings of ellipsoidal particles generally possess fewer contacts than expected for collective jamming (z
Xu, Lin; Ophir, Noam; Menard, Michael; Lau, Ryan Kin Wah; Turner-Foster, Amy C; Foster, Mark A; Lipson, Michal; Gaeta, Alexander L; Bergman, Keren
2011-06-20
We experimentally demonstrate four-wave-mixing (FWM)-based continuous wavelength conversion of optical differential-phase-shift-keyed (DPSK) signals with large wavelength conversion ranges as well as simultaneous wavelength conversion of dual-wavelength channels with mixed modulation formats in 1.1-cm-long dispersion-engineered silicon waveguides. We first validate up to 100-nm wavelength conversion range for 10-Gb/s DPSK signals, showcasing the capability to perform phase-preserving operations at high bit rates in chip-scale devices over wide conversion ranges. We further validate the wavelength conversion of dual-wavelength channels modulated with 10-Gb/s packetized phase-shift-keyed (PSK) and amplitude-shift-keyed (ASK) signals; demonstrate simultaneous operation on multiple channels with mixed formats in chip-scale devices. For both configurations, we measure the spectral and temporal responses and evaluate the performances using bit-error-rate (BER) measurements.
Children Use Nonverbal Cues to Make Inferences About Social Power
Brey, Elizabeth; Shutts, Kristin
2016-01-01
Four studies (N=192) tested whether young children use nonverbal information to make inferences about differences in social power. Five- and 6-year-old children were able to determine which of two adults was “in charge” in dynamic videotaped conversations (Study 1) and in static photographs (Study 4) using only nonverbal cues. Younger children (3–4 years) were not successful in Study 1 or Study 4. Removing irrelevant linguistic information from conversations did not improve the performance of 3–4-year-old children (Study 3), but including relevant linguistic cues did (Study 2). Thus, at least by 5 years of age, children show sensitivity to some of the same nonverbal cues adults use to determine other people’s social roles. PMID:25521913
NASA Astrophysics Data System (ADS)
Mignan, Arnaud
2018-03-01
The aftershock productivity law is an exponential function of the form K ∝ exp(αM), with K being the number of aftershocks triggered by a given mainshock of magnitude M and α ≈ ln(10) being the productivity parameter. This law remains empirical in nature although it has also been retrieved in static stress simulations. Here, we parameterize this law using the solid seismicity postulate (SSP), the basis of a geometrical theory of seismicity where seismicity patterns are described by mathematical expressions obtained from geometric operations on a permanent static stress field. We first test the SSP that relates seismicity density to a static stress step function. We show that it yields a power exponent q = 1.96 ± 0.01 for the power-law spatial linear density distribution of aftershocks, once uniform noise is added to the static stress field, in agreement with observations. We then recover the exponential function of the productivity law with a break in scaling obtained between small and large M, with α = 1.5ln(10) and ln(10), respectively, in agreement with results from previous static stress simulations. Possible biases of aftershock selection, proven to exist in epidemic-type aftershock sequence (ETAS) simulations, may explain the lack of break in scaling observed in seismicity catalogues. The existence of the theoretical kink, however, remains to be proven. Finally, we describe how to estimate the solid seismicity parameters (activation density δ+, aftershock solid envelope r∗ and background stress amplitude range Δo∗) for large M values.
Technical Evaluation Motor No. 7 (TEM-07)
NASA Technical Reports Server (NTRS)
Hugh, Phil
1991-01-01
Technical Evaluation Motor Number 7 (TEM-7) was a full scale, full-duration static test firing of a high performance motor (HPM) configuration solid rocket motor (SRM) with nozzle vectoring. The static test fire occurred on 11 December 1990 at the Thiokol Corporation Static Test Bay T-97. Documented here are the procedures, performance, and results available through 22 January 1991. Critical post test hardware activities and assessment of the test data are not complete. A completed test report will be submitted 60 days after the test date. Included here is a presentation and discussion of the TEM-7 performance, anomalies, and test result concurrence with the objectives outlined in CTP-0107 Revision A, Space Shuttle Technical Evaluation Motor number 7 (TEM-07) Static Fire Test Plan.
Method and apparatus for optical encoding with compressible imaging
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
2006-01-01
The present invention presents an optical encoder with increased conversion rates. Improvement in the conversion rate is a result of combining changes in the pattern recognition encoder's scale pattern with an image sensor readout technique which takes full advantage of those changes, and lends itself to operation by modern, high-speed, ultra-compact microprocessors and digital signal processors (DSP) or field programmable gate array (FPGA) logic elements which can process encoder scale images at the highest speeds. Through these improvements, all three components of conversion time (reciprocal conversion rate)--namely exposure time, image readout time, and image processing time--are minimized.
An examination of the interrater reliability between practitioners and researchers on the static-99.
Quesada, Stephen P; Calkins, Cynthia; Jeglic, Elizabeth L
2014-11-01
Many studies have validated the psychometric properties of the Static-99, the most widely used measure of sexual offender recidivism risk. However much of this research relied on instrument coding completed by well-trained researchers. This study is the first to examine the interrater reliability (IRR) of the Static-99 between practitioners in the field and researchers. Using archival data from a sample of 1,973 formerly incarcerated sex offenders, field raters' scores on the Static-99 were compared with those of researchers. Overall, clinicians and researchers had excellent IRR on Static-99 total scores, with IRR coefficients ranging from "substantial" to "outstanding" for the individual 10 items of the scale. The most common causes of discrepancies were coding manual errors, followed by item subjectivity, inaccurate item scoring, and calculation errors. These results offer important data with regard to the frequency and perceived nature of scoring errors. © The Author(s) 2013.
ERIC Educational Resources Information Center
Petersen, Douglas B.; Allen, Melissa M.; Spencer, Trina D.
2016-01-01
The purpose of this study was to examine and compare the classification accuracy of early static prereading measures and early dynamic assessment reading measures administered to 600 kindergarten students. At the beginning of kindergarten, all of the participants were administered two commonly used static prereading measures. The participants were…
Calibration of a pitot-static rake
NASA Technical Reports Server (NTRS)
Stump, H. P.
1977-01-01
A five-element pitot-static rake was tested to confirm its accuracy and determine its suitability for use at Langley during low-speed tunnel calibration primarily at full-scale tunnel. The rake was tested at one airspeed of 74 miles per hour (33 meters per second) and at pitch and yaw angles of 0 to + or - 20 degrees in 4 deg increments.
NASA Technical Reports Server (NTRS)
Johnson, Joseph L.
1954-01-01
An investigation has been conducted to determine the static stability and control and damping in roll and yaw of a 0.13-scale model of the Convair XFY-1 airplane with propellers off from 0 deg to 90 deg angle of attack. The tests showed that a slightly unstable pitch-up tendency occurred simultaneously with a break in the normal-force curve in the angle-of-attack range from about 27 deg to 36 deg. The top vertical tail contributed positive values of static directional stability and effective dihedral up to an angle of attack of about 35 deg. The bottom tail contributed positive values of static directional stability but negative values of effective dihedral throughout the angle-of-attack range. Effectiveness of the control surfaces decreased to very low values at the high angles of attack, The model had positive damping in yaw and damping in roll about the body axes over the angle-of-attack range but the damping in yaw decreased to about zero at 90 deg angle of attack.
NASA Technical Reports Server (NTRS)
Thornton, D. E.
1976-01-01
Tests were conducted in a 14 foot transonic wind tunnel to examine the feasibility of the auxiliary aerodynamic data system (AADS) for determining angles of attack and sideslip during boost flight. The model used was a 0.07 scale replica of the external tank forebody consisting of the nose portion and a 60 inch (full scale) cylindrical section of the ogive cylinder tangency point. The model terminated in a blunt base with a 320.0 inch diameter at external tank (ET) station 1120.37. Pressure data were obtained from five pressure orifices (one total and four statics) on the nose probe, and sixteen surface static pressure orifices along the ET forebody.
A Commercialization Roadmap for Carbon-Negative Energy Systems
NASA Astrophysics Data System (ADS)
Sanchez, D.
2016-12-01
The Intergovernmental Panel on Climate Change (IPCC) envisages the need for large-scale deployment of net-negative CO2 emissions technologies by mid-century to meet stringent climate mitigation goals and yield a net drawdown of atmospheric carbon. Yet there are few commercial deployments of BECCS outside of niche markets, creating uncertainty about commercialization pathways and sustainability impacts at scale. This uncertainty is exacerbated by the absence of a strong policy framework, such as high carbon prices and research coordination. Here, we propose a strategy for the potential commercial deployment of BECCS. This roadmap proceeds via three steps: 1) via capture and utilization of biogenic CO2 from existing bioenergy facilities, notably ethanol fermentation, 2) via thermochemical co-conversion of biomass and fossil fuels, particularly coal, and 3) via dedicated, large-scale BECCS. Although biochemical conversion is a proven first market for BECCS, this trajectory alone is unlikely to drive commercialization of BECCS at the gigatonne scale. In contrast to biochemical conversion, thermochemical conversion of coal and biomass enables large-scale production of fuels and electricity with a wide range of carbon intensities, process efficiencies and process scales. Aside from systems integration, primarily technical barriers are involved in large-scale biomass logistics, gasification and gas cleaning. Key uncertainties around large-scale BECCS deployment are not limited to commercialization pathways; rather, they include physical constraints on biomass cultivation or CO2 storage, as well as social barriers, including public acceptance of new technologies and conceptions of renewable and fossil energy, which co-conversion systems confound. Despite sustainability risks, this commercialization strategy presents a pathway where energy suppliers, manufacturers and governments could transition from laggards to leaders in climate change mitigation efforts.
Directing Matter: Toward Atomic-Scale 3D Nanofabrication.
Jesse, Stephen; Borisevich, Albina Y; Fowlkes, Jason D; Lupini, Andrew R; Rack, Philip D; Unocic, Raymond R; Sumpter, Bobby G; Kalinin, Sergei V; Belianinov, Alex; Ovchinnikova, Olga S
2016-06-28
Enabling memristive, neuromorphic, and quantum-based computing as well as efficient mainstream energy storage and conversion technologies requires the next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed toward this goal through various lithographies and scanning-probe-based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron- and ion-based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3D structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano- and atomic scales and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis, and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. In this paper, we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large-scale data analysis with theory, and discuss future prospects of these technologies.
Directing Matter: Toward Atomic-Scale 3D Nanofabrication
Jesse, Stephen; Borisevich, Albina Y.; Fowlkes, Jason D.; ...
2016-05-16
Here we report that enabling memristive, neuromorphic, and quantum based computing as well as efficient mainstream energy storage and conversion technologies requires next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed towards this goal through various lithographies and scanning probe based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron and ion based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3Dmore » structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano and atomic scales, and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for new approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. Lastly, in this perspective we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large scale data analysis with theory, and discuss future prospects of these technologies.« less
Yuan, Ye; Liu, Chang-hong; Dai, Xiao-qin; Wang, Hui-min
2015-01-01
In this study, the CO2 and CH4 fluxes in the first year after land use conversion from paddy rice to vegetables were measured by static opaque chamber and gas-chromatograph (GC) method to investigate the land conversion effects on soil CO2 and CH4 emissions. Our results showed that the differences in CO2 fluxes depended on the vegetable types, growing status and seasons. The CO2 flux from the vegetable field was greater than that from the paddy rice field when cowpea was planted, but was lower when pepper was planted. The CH4 flux significantly decreased from 6.96 mg C . m-2 . h-1 to -0.004 mg C . m-2 . h-1 with the land use conversion from rice to vegetables.The net carbon absorption ( CO2 + CH4) of the vegetable fields was 543 kg C . hm-2, significantly lower than that (3641 kg C . hm-2) of the rice paddies. However, no significant difference was found in their global warming impact. In addition, soil carbon content increased in vegetable fields compared to the paddy rice fields after a year of conversion, especially in the 10-20 cm soil layer.
Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P; Schrooten, Jan Ir
2015-06-01
As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required.
Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P.
2015-01-01
As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue™, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required. PMID:25336207
NASA Astrophysics Data System (ADS)
Frabboni, S.; Grillo, V.; Gazzadi, G. C.; Balboni, R.; Trotta, R.; Polimeni, A.; Capizzi, M.; Martelli, F.; Rubini, S.; Guzzinati, G.; Glas, F.
2012-09-01
Hydrogen incorporation in diluted nitride semiconductors dramatically modifies the electronic and structural properties of the crystal through the creation of nitrogen-hydrogen complexes. We report a convergent beam electron-diffraction characterization of diluted nitride semiconductor-heterostructures patterned at a sub-micron scale and selectively exposed to hydrogen. We present a method to determine separately perpendicular mismatch and static disorder in pristine and hydrogenated heterostructures. The roles of chemical composition and strain on static disorder have been separately assessed.
NASA Technical Reports Server (NTRS)
George, Jeffrey A.
2012-01-01
A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.
A Pedagogical Look at Jeans' Density Scale
ERIC Educational Resources Information Center
Chu, Kwang-Hua W.
2007-01-01
We illustrate the derivations of Jeans' criteria for the gravitational instabilities in a static homogeneous Newtonian system for pedagogical objectives. The critical Jeans density surface is presented in terms of dimensionless sound speeds and (characteristic) length scales. (Contains 1 figure.)
NASA Astrophysics Data System (ADS)
Wang, Xi-guang; Chotorlishvili, L.; Guo, Guang-hua; Berakdar, J.
2018-04-01
Conversion of thermal energy into magnonic spin currents and/or effective electric polarization promises new device functionalities. A versatile approach is presented here for generating and controlling open circuit magnonic spin currents and an effective multiferroicity at a uniform temperature with the aid of spatially inhomogeneous, external, static electric fields. This field applied to a ferromagnetic insulator with a Dzyaloshinskii-Moriya type coupling changes locally the magnon dispersion and modifies the density of thermally excited magnons in a region of the scale of the field inhomogeneity. The resulting gradient in the magnon density can be viewed as a gradient in the effective magnon temperature. This effective thermal gradient together with local magnon dispersion result in an open-circuit, electric field controlled magnonic spin current. In fact, for a moderate variation in the external electric field the predicted magnonic spin current is on the scale of the spin (Seebeck) current generated by a comparable external temperature gradient. Analytical methods supported by full-fledge numerics confirm that both, a finite temperature and an inhomogeneous electric field are necessary for this emergent non-equilibrium phenomena. The proposal can be integrated in magnonic and multiferroic circuits, for instance to convert heat into electrically controlled pure spin current using for example nanopatterning, without the need to generate large thermal gradients on the nanoscale.
Generous, Mark Alan; Keeley, Maureen P
2014-01-01
Final conversations (FCs) are defined as the communicative interactions, both verbal and nonverbal, that occur between terminally ill patients and relational partners. In this study, the "Final Conversations Scale" was developed and tested. A total of 152 participants that had engaged in final conversations with individuals that were terminally ill completed the newly developed instrument. Factor analysis produced a five-factor structure, including: messages of spirituality/religion; expressions of love; proactive difficult relationship talk; everyday communication; and talk about illness/death. Participants' perceptions of the relational closeness and difficulty with the deceased significantly influenced the individuals' recalled frequency of FCs messages. Practical and scholarly implications focus on the needs of the family members regarding their communication with terminally ill individuals, as well as directions for future research with the FCs Scale.
NASA Technical Reports Server (NTRS)
Houser, J. F.; Runciman, W. H.
1971-01-01
Experimental aerodynamic investigations were made in the Grumman 36-inch hypersonic wind tunnel on a .00435 scale model of the H-32 reusable space shuttle booster. The objectives of the test were to determine the static stability characteristics and control surface effectiveness at hypersonic speeds. Data were taken at M = 8.12 over a range of angles of attack between -5 and 85 deg at beta = 0 deg and over a range of side slip angles between -10 and 10 deg at alpha = 0 and 70 deg. Six component balance data and base-cavity pressure data were recorded.
Lim, Wootaek; Park, Hyunju
2017-10-01
[Purpose] The purpose of this study was to determine whether the intensity of static stretching measured quantitatively is related to subjects' perception of pain. [Subjects and Methods] Sixty-eight participants were recruited. Static stretching was performed once for 30 seconds while maintaining the knee at 0° flexion and was continued to the point where pain was recognized. The intensity of stretching exerted by the practitioner was quantitatively measured by using a handheld dynamometer (HHD). A subject's pain scaled on one's perception was measured by using the visual analog scale (VAS). [Results] No significant correlation was found between the intensity of stretching and the VAS score representing the subject's pain scaled on one's perception. In this study, the most frequent VAS score was 7, and the mean VAS score was 5.57 ± 1.77. The stretching intensity measured by using a HHD ranged from 28.4 to 133.0 N (mean, 72.04 ± 22.37 N). [Conclusion] This study showed that the intensity of stretching quantitatively measured by using HHD did not correlate with the degree of pain reported by the subjects. Therefore, subjective responses cannot guarantee a consistent application of intensity.
SP-100 multimegawatt scaleup to meet electric propulsion mission requirements
NASA Astrophysics Data System (ADS)
Newkirk, D. W.; Salamah, S. A.; Stewart, S. L.; Pluta, P. R.
The SP-100 nuclear heat source technology, utilizing uranium nitride fuel clad in PWC-11 in a fast reactor with lithium coolant circulated by an electromagnetic pump, is shown to be directly extrapolatable to thermal power levels that meet NASA nuclear electric propulsion requirements using different power conversion techniques. The SP-100 nuclear technology can be applied to missions with NEP (nuclear electric propulsion) requirements as low as tens of kWe to tens of MWe. It is pointed out that the SP-100 heat source has a great advantage of very long lifetime capability, since it utilizes very rugged refractory metal fuel pins and is independent of the power conversion scheme chosen for a given mission. The only moving parts in the nuclear subsystems are the control rods moved to compensate for fuel enrichment degradation due to fission and for power shutdown. Lowest alpha values in the range of interest for potential NASA missions are predicted for the dynamic Rankine and static HYTEC conversion systems.
Solar Modulation of the MJO on Intraseasonal Time Scales
NASA Astrophysics Data System (ADS)
Hood, L. L.
2017-12-01
During the last two years, several groups have reported evidence for an influence of the stratospheric quasi-biennial oscillation (QBO) on the boreal winter Madden-Julian Oscillation (MJO). Specifically, DJF mean MJO amplitudes are somewhat larger on average during the easterly QBO phase at 50 hPa (QBOE) than during the westerly phase (QBOW). A possible mechanism is decreased static stability in the tropical lowermost stratosphere caused by increased upwelling associated with the QBO mean meridional circulation during periods of easterly vertical wind shear. It has also been recently proposed that interannual variability of the boreal winter MJO is influenced by tropical upwelling changes associated with the 11-year solar cycle. The modulation is such that MJO amplitudes are especially large under QBOE/SMIN conditions and especially small under QBOW/SMAX conditions (Hood, GRL, 2017). Here, evidence is presented of a modulation of MJO amplitudes under solar maximum conditions by solar variability on the time scale of the solar rotation period (about 27 days). Specifically, normalized occurrence rates of MJO events with amplitudes greater than a chosen threshold are calculated as a function of phase lag relative to peaks in solar UV flux occurring on the solar rotational time scale. All MJO phases and four solar maximum periods are considered (1979-83; 1989-93; 1999-03; 2011-15). The data are further edited to eliminate periods with relatively weak UV variations. About 130 strong "cycles" remain after editing. When MJO events with amplitudes greater than 1.5 are considered, significant reductions of MJO occurrence rates and associated increases in static stability in the tropical lower stratosphere over the warm pool region are obtained several days following solar UV peaks. The reductions in occurrence rate occur during the December to May period when the MJO is most active and are largest when the QBO is in its easterly phase. For example, under the latter conditions, the mean occurrence rate for MJO amplitudes greater than 2 is reduced from the long-term mean of about 21 per cent to about 7 per cent 2 to 4 days following the UV peak, significant at 95 per cent confidence as estimated from Monte Carlo simulations. Conversely, mean occurrence rates are significantly increased five to ten days following solar UV minima.
Static Schedulers for Embedded Real-Time Systems
1989-12-01
Because of the need for having efficient scheduling algorithms in large scale real time systems , software engineers put a lot of effort on developing...provide static schedulers for he Embedded Real Time Systems with single processor using Ada programming language. The independent nonpreemptable...support the Computer Aided Rapid Prototyping for Embedded Real Time Systems so that we determine whether the system, as designed, meets the required
NASA Technical Reports Server (NTRS)
Jackson, A. C.; Dorwald, F.
1982-01-01
The ground tests conducted on the advanced composite vertical fin (ACVF) program are described. The design and fabrication of the test fixture and the transition structure, static test of Ground Test Article (GTA) No. 1, rework of GTA No. 2, and static, damage tolerance, fail-safe and residual strength tests of GTA No. 2 are described.
2014-01-01
Background Bioethanol production from biomass is becoming a hot topic internationally. Traditional static solid state fermentation (TS-SSF) for bioethanol production is similar to the traditional method of intermittent operation. The main problems of its large-scale intensive production are the low efficiency of mass and heat transfer and the high ethanol inhibition effect. In order to achieve continuous production and high conversion efficiency, gas stripping solid state fermentation (GS-SSF) for bioethanol production from sweet sorghum stalk (SSS) was systematically investigated in the present study. Results TS-SSF and GS-SSF were conducted and evaluated based on different SSS particle thicknesses under identical conditions. The ethanol yield reached 22.7 g/100 g dry SSS during GS-SSF, which was obviously higher than that during TS-SSF. The optimal initial gas stripping time, gas stripping temperature, fermentation time, and particle thickness of GS-SSF were 10 h, 35°C, 28 h, and 0.15 cm, respectively, and the corresponding ethanol stripping efficiency was 77.5%. The ethanol yield apparently increased by 30% with the particle thickness decreasing from 0.4 cm to 0.05 cm during GS-SSF. Meanwhile, the ethanol yield increased by 6% to 10% during GS-SSF compared with that during TS-SSF under the same particle thickness. The results revealed that gas stripping removed the ethanol inhibition effect and improved the mass and heat transfer efficiency, and hence strongly enhanced the solid state fermentation (SSF) performance of SSS. GS-SSF also eliminated the need for separate reactors and further simplified the bioethanol production process from SSS. As a result, a continuous conversion process of SSS and online separation of bioethanol were achieved by GS-SSF. Conclusions SSF coupled with gas stripping meet the requirements of high yield and efficient industrial bioethanol production. It should be a novel bioconversion process for bioethanol production from SSS biomass. PMID:24713041
Formation of Electrostatic Potential Drops in the Auroral Zone
NASA Technical Reports Server (NTRS)
Schriver, D.; Ashour-Abdalla, M.; Richard, R. L.
2001-01-01
In order to examine the self-consistent formation of large-scale quasi-static parallel electric fields in the auroral zone on a micro/meso scale, a particle in cell simulation has been developed. The code resolves electron Debye length scales so that electron micro-processes are included and a variable grid scheme is used such that the overall length scale of the simulation is of the order of an Earth radii along the magnetic field. The simulation is electrostatic and includes the magnetic mirror force, as well as two types of plasmas, a cold dense ionospheric plasma and a warm tenuous magnetospheric plasma. In order to study the formation of parallel electric fields in the auroral zone, different magnetospheric ion and electron inflow boundary conditions are used to drive the system. It has been found that for conditions in the primary (upward) current region an upward directed quasi-static electric field can form across the system due to magnetic mirroring of the magnetospheric ions and electrons at different altitudes. For conditions in the return (downward) current region it is shown that a quasi-static parallel electric field in the opposite sense of that in the primary current region is formed, i.e., the parallel electric field is directed earthward. The conditions for how these different electric fields can be formed are discussed using satellite observations and numerical simulations.
Estimation of Handgrip Force from SEMG Based on Wavelet Scale Selection.
Wang, Kai; Zhang, Xianmin; Ota, Jun; Huang, Yanjiang
2018-02-24
This paper proposes a nonlinear correlation-based wavelet scale selection technology to select the effective wavelet scales for the estimation of handgrip force from surface electromyograms (SEMG). The SEMG signal corresponding to gripping force was collected from extensor and flexor forearm muscles during the force-varying analysis task. We performed a computational sensitivity analysis on the initial nonlinear SEMG-handgrip force model. To explore the nonlinear correlation between ten wavelet scales and handgrip force, a large-scale iteration based on the Monte Carlo simulation was conducted. To choose a suitable combination of scales, we proposed a rule to combine wavelet scales based on the sensitivity of each scale and selected the appropriate combination of wavelet scales based on sequence combination analysis (SCA). The results of SCA indicated that the scale combination VI is suitable for estimating force from the extensors and the combination V is suitable for the flexors. The proposed method was compared to two former methods through prolonged static and force-varying contraction tasks. The experiment results showed that the root mean square errors derived by the proposed method for both static and force-varying contraction tasks were less than 20%. The accuracy and robustness of the handgrip force derived by the proposed method is better than that obtained by the former methods.
ERIC Educational Resources Information Center
Liu, Jinghua; Guo, Hongwen; Dorans, Neil J.
2014-01-01
Maintaining score interchangeability and scale consistency is crucial for any testing programs that administer multiple forms across years. The use of a multiple linking design, which involves equating a new form to multiple old forms and averaging the conversions, has been proposed to control scale drift. However, the use of multiple linking…
Enhancement of sedimentation and coagulation with static magnetic field
NASA Astrophysics Data System (ADS)
Zieliński, Marcin; Dębowski, Marcin; Hajduk, Anna; Rusanowska, Paulina
2017-11-01
The static magnetic field can be an alternative method for wastewater treatment. It has been proved that this physical factor, accelerates the biochemical processes, catalyzes advanced oxidation, intensifies anaerobic and aerobic processes or reduces swelling of activated sludge. There are also reports proving the positive impact of the static magnetic field on the coagulation and sedimentation, as well as the conditioning and dewatering of sludge. In order to be applied in larger scale the published results should be verified and confirmed. In the studies, the enhancement of sedimentation by the static magnetic field was observed. The best sedimentation was noted in the experiment, where magnetizers were placed on activated sludge bioreactor and secondary settling tank. No effect of the static magnetic field on coagulation with the utilization of PIX 113 was observed. However, the static magnetic field enhanced coagulation with the utilization of PAX-XL9. The results suggest that increased sedimentation of colloids and activated sludge, can in practice mean a reduction in the size of the necessary equipment for sedimentation with an unchanged efficiency of the process.
Vibrational Spectroscopic Studies of Reduced-Sensitivity RDX under Static Compression
NASA Astrophysics Data System (ADS)
Wong, Chak
2005-07-01
Explosives formulations with Reduced- Sensitivity RDX showed reduced shock sensitivity using NOL Large Scale Gap Test, compared with similar formulations using normal RDX. Molecular processes responsible for the reduction of sensitivity are unknown and are crucial for formulation development. Vibrational spectroscopy at static high pressure may shed light to the mechanisms responsible for the reduced shock sensitivity as shown by the NOL Large Scale Gap Test. SIRDX, a form of Reduced- Sensitivity RDX, was subjected to static compression at ambient temperature in a Merrill-Bassett sapphire cell from ambient to about 6 GPa. The spectroscopic techniques used were Raman and Fourier-Transformed IR (FTIR). The pressure dependence of the Raman mode frequencies of SIRDX was determined and compared with that of normal RDX. The behavior of SIRDX near the pressure at which normal RDX, at ambient temperature, undergoes a phase transition from the α to the γ polymorph will be presented. Implications to the reduction in sensitivity will be discussed.
NASA Technical Reports Server (NTRS)
Hunt, D.; Clinglan, J.; Salemann, V.; Omar, E.
1977-01-01
Ground static and wind tunnel test of a scale model modified T-39 airplane are reported. The configuration in the nose and replacement of the existing nacelles with tilting lift/cruise fans. The model was powered with three 14 cm diameter tip driven turbopowered simulators. Forces and moments were measured by an internal strain guage balance. Engine simulator thrust and mass flow were measured by calibrated pressure and temperature instrumentation mounted downstream of the fans. The low speed handling qualities and general aerodynamic characteristics of the modified T-39 were defined. Test variables include thrust level and thrust balance, forward speed, model pitch and sideslip angle at forward speeds, model pitch, roll, and ground height during static tests, lift/cruise fan tilt angle, flap and aileron deflection angle, and horizonal stabilizer angle. The effects of removing the landing gear, the lift/cruise fans, and the tail surfaces were also investigated.
A study of digital gyro compensation loops. [data conversion routines and breadboard models
NASA Technical Reports Server (NTRS)
1975-01-01
The feasibility is discussed of replacing existing state-of-the-art analog gyro compensation loops with digital computations. This was accomplished by designing appropriate compensation loops for the dry turned TDF gyro, selecting appropriate data conversion and processing techniques and algorithms, and breadboarding the design for laboratory evaluation. A breadboard design was established in which one axis of a Teledyne turned-gimbal TDF gyro was caged digitally while the other was caged using conventional analog electronics. The digital loop was designed analytically to closely resemble the analog loop in performance. The breadboard was subjected to various static and dynamic tests in order to establish the relative stability characteristics and frequency responses of the digital and analog loops. Several variations of the digital loop configuration were evaluated. The results were favorable.
Non-linear wave interaction in a magnetoplasma column. I - Theory. II Experiment
NASA Technical Reports Server (NTRS)
Larsen, J.-M.; Crawford, F. W.
1979-01-01
The paper presents an analysis of non-linear three-wave interaction for propagation along a cylindrical plasma column surrounded either by a metallic boundary, or by an infinite dielectric, and immersed in an infinite, static, axial magnetic field. An averaged Lagrangian method is used and the results are specialized to parametric amplification and mode conversion, assuming an undepleted pump wave. Computations are presented for a magneto-plasma column surrounded by free space, indicating that parametric growth rates of the order of a fraction of a decibel per centimeter should be obtainable for plausible laboratory plasma parameters. In addition, experiments on non-linear mode conversion in a cylindrical magnetoplasma column are described. The results are compared with the theoretical predictions and good qualitative agreement is demonstrated.
A study of electric transmission lines for use on the lunar surface
NASA Technical Reports Server (NTRS)
Gaustad, Krista L.; Gordon, Lloyd B.; Weber, Jennifer R.
1994-01-01
The sources for electrical power on a lunar base are said to include solar/chemical, nuclear (static conversion), and nuclear (dynamic conversion). The transmission of power via transmission lines is more practical than power beaming or superconducting because of its low cost and reliable, proven technology. Transmission lines must have minimum mass, maximum efficiency, and the ability to operate reliably in the lunar environment. The transmission line design includes conductor material, insulator material, conductor geometry, conductor configuration, line location, waveform, phase selection, and frequency. This presentation oulines the design. Liquid and gaseous dielectrics are undesirable for long term use in the lunar vacuum due to a high probability of loss. Thus, insulation for high voltage transmission line will most likely be solid dielectric or vacuum insulation.
Laso, Manuel; Karayiannis, Nikos Ch
2008-05-07
We present predictions for the static scaling exponents and for the cross-over polymer volumetric fractions in the marginal and concentrated solution regimes. Corrections for finite chain length are made. Predictions are based on an analysis of correlated fluctuations in density and chain length, in a semigrand ensemble in which mers and solvent sites exchange identities. Cross-over volumetric fractions are found to be chain length independent to first order, although reciprocal-N corrections are also estimated. Predicted scaling exponents and cross-over regimes are compared with available data from extensive off-lattice Monte Carlo simulations [Karayiannis and Laso, Phys. Rev. Lett. 100, 050602 (2008)] on freely jointed, hard-sphere chains of average lengths from N=12-500 and at packing densities from dilute ones up to the maximally random jammed state.
NASA Astrophysics Data System (ADS)
Yang, Hong-Yong; Lu, Lan; Cao, Ke-Cai; Zhang, Si-Ying
2010-04-01
In this paper, the relations of the network topology and the moving consensus of multi-agent systems are studied. A consensus-prestissimo scale-free network model with the static preferential-consensus attachment is presented on the rewired link of the regular network. The effects of the static preferential-consensus BA network on the algebraic connectivity of the topology graph are compared with the regular network. The robustness gain to delay is analyzed for variable network topology with the same scale. The time to reach the consensus is studied for the dynamic network with and without communication delays. By applying the computer simulations, it is validated that the speed of the convergence of multi-agent systems can be greatly improved in the preferential-consensus BA network model with different configuration.
Top-down influences on visual attention during listening are modulated by observer sex.
Shen, John; Itti, Laurent
2012-07-15
In conversation, women have a small advantage in decoding non-verbal communication compared to men. In light of these findings, we sought to determine whether sex differences also existed in visual attention during a related listening task, and if so, if the differences existed among attention to high-level aspects of the scene or to conspicuous visual features. Using eye-tracking and computational techniques, we present direct evidence that men and women orient attention differently during conversational listening. We tracked the eyes of 15 men and 19 women who watched and listened to 84 clips featuring 12 different speakers in various outdoor settings. At the fixation following each saccadic eye movement, we analyzed the type of object that was fixated. Men gazed more often at the mouth and women at the eyes of the speaker. Women more often exhibited "distracted" saccades directed away from the speaker and towards a background scene element. Examining the multi-scale center-surround variation in low-level visual features (static: color, intensity, orientation, and dynamic: motion energy), we found that men consistently selected regions which expressed more variation in dynamic features, which can be attributed to a male preference for motion and a female preference for areas that may contain nonverbal information about the speaker. In sum, significant differences were observed, which we speculate arise from different integration strategies of visual cues in selecting the final target of attention. Our findings have implications for studies of sex in nonverbal communication, as well as for more predictive models of visual attention. Published by Elsevier Ltd.
Development of a Character Simulator for Battlefield Virtual Environments
2010-04-01
existent. Second, human muscle strength is highly idealized. It is usually measured under static (“ isometric ”) conditions (i.e., body does not move and...28, No. 1 Suppl, pp. S116-S124, January 1988. 8 R.D. Eisler, et al, Improved Fibers and Material Systems for Personnel Ballistic Armor, Final...043, January 1988. 11 Undocumented conversation on 17 December 1996 with Callis Goodrich at NRaD in San Diego and Chris Field a contract employee
1993-01-22
AUGLPITCHROLLCONTROLa ttitude .-ontrol_roll_command, MAX..STABAUG3_PITCH-.ROLL..CONTROL); return ( attitude -.control-roll-commuand); static REAL set...pitch...if any). V V RETURNS: TRUE if successful, FALSE if not. V * PURPOSE: This routine performs the functions V V specifically related to the firing of a...specifically related to the flying a ADAT * missile. * void missile _adaLfly (aptr, sightiocation, locqsightto.world, tube, veh_list) ADATMISSILE
Alexithymia in patients with conversion disorder.
Gulpek, Demet; Kelemence Kaplan, Figen; Kesebir, Sermin; Bora, Ozlem
2014-07-01
In the recent years, it has been observed that alexithymia is not specified for the psychosomatic disorders. It is known that alexithymia is observed frequently in various psychiatric disorders especially in the somatoform disorders. The aim of this study is to evaluate alexithymia in the patients with the conversion disorder. The study was performed in the Psychiatry Outpatients Clinics of the Izmir Atatürk Training and Research Hospital and Erenköy Psychiatry Education and Research Hospital. A total of 93 cases-47 outpatients who were diagnosed with conversion disorder according to the DSM-IV criteria and 46 age, gender and educational level matched healthy controls-were included in the study. All the cases were assessed by a Structured Clinical Interview for DSM-IV and were evaluated with a questionnaire (which included demographics and clinical data), the Toronto Alexithymia Scale and the Somatosensory Amplification Scale. When the two groups were compared, the Toronto Alexithymia Scale scores (except "externally oriented thinking" subscale) and the Somatosensory Amplification Scale score of the conversion disorder group were statistically significantly higher than the control group. The number of the alexithymic cases of the patient group was significantly higher than the control group's. The level of alexithymia in conversion disorder patients, without any other psychiatric disorder, is higher than that of the healthy controls. During the evaluation of the psychological state of patients with conversion disorder, it could be useful to keep in mind the probability of them having alexithymia to determine the type of suitable therapy.
Technical Evaluation Motor No. 7 (TEM-7)
NASA Technical Reports Server (NTRS)
Hughes, Phil
1991-01-01
The Technical Evaluation Motor No. 7 (TEM-7) test was a full-scale, full duration static test firing of a high performance motor-configuration solid rocket motor with nozzle vectoring. The final test report documents the procedures, performance, and results of the static test firing of TEM-7. All observations, discussions, conclusions, and recommendations included in the report are complete and final except for the TEM-7 fixed housing unbond investigation. A presentation and discussion of TEM-7 performance, anomalies, and test result concurrence with the objectives outlined in CTP-0107, Rev A, Space Shuttle Technical Evaluation Motor No. 7 (TEM-7) Static Fire Test Plan are included.
Large-Scale Multiobjective Static Test Generation for Web-Based Testing with Integer Programming
ERIC Educational Resources Information Center
Nguyen, M. L.; Hui, Siu Cheung; Fong, A. C. M.
2013-01-01
Web-based testing has become a ubiquitous self-assessment method for online learning. One useful feature that is missing from today's web-based testing systems is the reliable capability to fulfill different assessment requirements of students based on a large-scale question data set. A promising approach for supporting large-scale web-based…
Predictability of Conversation Partners
NASA Astrophysics Data System (ADS)
Takaguchi, Taro; Nakamura, Mitsuhiro; Sato, Nobuo; Yano, Kazuo; Masuda, Naoki
2011-08-01
Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information-theoretic method to the spatiotemporal data of cell-phone locations, [C. Song , ScienceSCIEAS0036-8075 327, 1018 (2010)] found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one’s conversation partners is defined as the degree to which one’s next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between sensor nodes in close proximity. We find that the conversation events are predictable to a certain extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the contribution of their long-tailed nature. In addition, an individual’s predictability is correlated with the position of the individual in the static social network derived from the data. Individuals confined in a community—in the sense of an abundance of surrounding triangles—tend to have low predictability, and those bridging different communities tend to have high predictability.
Scale-up of wheat straw conversion to fuel ethanol at 100 liter scale
USDA-ARS?s Scientific Manuscript database
Wheat straw can serve as low cost feedstock for conversion to ethanol. Pretreatment is crucial prior to enzymatic hydrolysis. We have used dilute H2SO4 pretreatment at a high temperature for pretreatment of wheat straw. The pretreated hydrolyzate was bioabated using a novel fungal strain able to ...
Dubey, Swati; Singh, Jyoti; Singh, R P
2018-01-01
Herein, sweet lime pulp waste (SLPW) was utilized as a low- or no-cost feedstock for the production of bacterial nanocellulose (BNC) alone and in amalgamation with other nutritional supplements by the isolate K. europaeus SGP37 under static batch and static intermittent fed-batch cultivation. The highest yield (26.2±1.50gL -1 ) was obtained in the hot water extract of SLPW supplemented with the components of HS medium, which got further boosted to 38±0.85gL -1 as the cultivation strategy was shifted from static batch to static intermittent fed-batch. BNC obtained from various SLPW medium was similar or even superior to that obtained with standard HS medium in terms of its physicochemical properties. The production yields of BNC thus obtained are significantly higher and fit well in terms of industrial scale production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Crash Testing of Helicopter Airframe Fittings
NASA Technical Reports Server (NTRS)
Clarke, Charles W.; Townsend, William; Boitnott, Richard
2004-01-01
As part of the Rotary Wing Structures Technology Demonstration (RWSTD) program, a surrogate RAH-66 seat attachment fitting was dynamically tested to assess its response to transient, crash impact loads. The dynamic response of this composite material fitting was compared to the performance of an identical fitting subjected to quasi-static loads of similar magnitude. Static and dynamic tests were conducted of both smaller bench level and larger full-scale test articles. At the bench level, the seat fitting was supported in a steel fixture, and in the full-scale tests, the fitting was integrated into a surrogate RAH-66 forward fuselage. Based upon the lessons learned, an improved method to design, analyze, and test similar composite material fittings is proposed.
USB environment measurements based on full-scale static engine ground tests
NASA Technical Reports Server (NTRS)
Sussman, M. B.; Harkonen, D. L.; Reed, J. B.
1976-01-01
Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle, and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data, and to establish a basis for future flight test comparisons.
Dynamic Forces Between Two Deformable Oil Droplets in Water
NASA Astrophysics Data System (ADS)
Dagastine, Raymond R.; Manica, Rogério; Carnie, Steven L.; Chan, D. Y. C.; Stevens, Geoffrey W.; Grieser, Franz
2006-07-01
The understanding of static interactions in colloidal suspensions is well established, whereas dynamic interactions more relevant to biological and other suspended soft-matter systems are less well understood. We present the direct force measurement and quantitative theoretical description for dynamic forces for liquid droplets in another immiscible fluid. Analysis of this system demonstrates the strong link between interfacial deformation, static surface forces, and hydrodynamic drainage, which govern dynamic droplet-droplet interactions over the length scale of nanometers and over the time scales of Brownian collisions. The results and analysis have direct bearing on the control and manipulation of suspended droplets in soft-matter systems ranging from the emulsions in shampoo to cellular interactions.
Effect of Rocket-Motor Operation on the Drag of Three 1/5-Scale Hermes A-3A Models in Free Flight
NASA Technical Reports Server (NTRS)
Jackson, H. Herbert
1954-01-01
Three 1/5-scale models of the Hermes A-3A missile have been flown to determine the effect of rocket-motor operation on the drag corresponding to various altitude and Mach number combinations. The flights covered a Mach number range from 0.5 to 1.8, and ratios of jet-exit static pressure to free-stream static pressure from 0.8 to 1.8. The results indicate that the power-on drag of the missile should be the same as the power-off drag at Mach number 1.3 and slightly less than the power-off drag at Mach number 1.55.
2001-05-01
This appendix presents tables of some of the more common conversion factors for units of measure used throughout Current Protocols manuals, as well as prefixes indicating powers of ten for SI units. Another table gives conversions between temperatures on the Celsius (Centigrade) and Fahrenheit scales.
Farin, Erik; Nagl, Michaela; Gramm, Lukas; Heyduck, Katja; Glattacker, Manuela
2014-05-01
Study aim was to translate the PROMIS(®) pain interference (PI) item bank (41 items) into German, test its psychometric properties in patients with chronic low back pain and develop static subforms. We surveyed N = 262 patients undergoing rehabilitation who were asked to fill out questionnaires at the beginning and 2 weeks after the end of rehabilitation, applying the Oswestry Disability Index (ODI) and Pain Disability Index (PDI) in addition to the PROMIS(®) PI items. For psychometric testing, a 1-parameter item response theory (IRT) model was used. Exploratory and confirmatory factor analyses as well as reliability and construct validity analyses were conducted. The assumptions regarding IRT scaling of the translated PROMIS(®) PI item bank as a whole were not confirmed. However, we succeeded in devising three static subforms (PI-G scales: PI mental 13 items, PI functional 11 items, PI physical 4 items), revealing good psychometric properties. The PI-G scales in their static form can be recommended for use in German-speaking countries. Their strengths versus the ODI and PDI are that pain interference is assessed in a differentiated manner and that several psychometric values are somewhat better than those associated with the ODI and PDI (distribution properties, IRT model fit, reliability). To develop an IRT-scaled item bank of the German translations of the PROMIS(®) PI items, it would be useful to have additional studies (e.g., with larger sample sizes and using a 2-parameter IRT model).
Static network structure can stabilize human cooperation.
Rand, David G; Nowak, Martin A; Fowler, James H; Christakis, Nicholas A
2014-12-02
The evolution of cooperation in network-structured populations has been a major focus of theoretical work in recent years. When players are embedded in fixed networks, cooperators are more likely to interact with, and benefit from, other cooperators. In theory, this clustering can foster cooperation on fixed networks under certain circumstances. Laboratory experiments with humans, however, have thus far found no evidence that fixed network structure actually promotes cooperation. Here, we provide such evidence and help to explain why others failed to find it. First, we show that static networks can lead to a stable high level of cooperation, outperforming well-mixed populations. We then systematically vary the benefit that cooperating provides to one's neighbors relative to the cost required to cooperate (b/c), as well as the average number of neighbors in the network (k). When b/c > k, we observe high and stable levels of cooperation. Conversely, when b/c ≤ k or players are randomly shuffled, cooperation decays. Our results are consistent with a quantitative evolutionary game theoretic prediction for when cooperation should succeed on networks and, for the first time to our knowledge, provide an experimental demonstration of the power of static network structure for stabilizing human cooperation.
Static network structure can stabilize human cooperation
Rand, David G.; Nowak, Martin A.; Fowler, James H.; Christakis, Nicholas A.
2014-01-01
The evolution of cooperation in network-structured populations has been a major focus of theoretical work in recent years. When players are embedded in fixed networks, cooperators are more likely to interact with, and benefit from, other cooperators. In theory, this clustering can foster cooperation on fixed networks under certain circumstances. Laboratory experiments with humans, however, have thus far found no evidence that fixed network structure actually promotes cooperation. Here, we provide such evidence and help to explain why others failed to find it. First, we show that static networks can lead to a stable high level of cooperation, outperforming well-mixed populations. We then systematically vary the benefit that cooperating provides to one’s neighbors relative to the cost required to cooperate (b/c), as well as the average number of neighbors in the network (k). When b/c > k, we observe high and stable levels of cooperation. Conversely, when b/c ≤ k or players are randomly shuffled, cooperation decays. Our results are consistent with a quantitative evolutionary game theoretic prediction for when cooperation should succeed on networks and, for the first time to our knowledge, provide an experimental demonstration of the power of static network structure for stabilizing human cooperation. PMID:25404308
Effect of hand-arm exercise on venous blood constituents during leg exercise
NASA Technical Reports Server (NTRS)
Wong, N.; Silver, J. E.; Greenawalt, S.; Kravik, S. E.; Geelen, G.
1985-01-01
Contributions by ancillary hand and arm actions to the changes in blood constituents effected by leg exercises on cycle ergometer were assessed. Static or dynamic hand-arm exercises were added to the leg exercise (50 percent VO2 peak)-only control regimens for the subjects (19-27 yr old men) in the two experimental groups. Antecubital venous blood was analyzed at times 0, 15, and 30 min (T0, T15, and T30) for serum Na(+), K(+), osmolality, albumin, total CA(2+), and glucose; blood hemoglobin, hematocrit, and lactic acid; and change in plasma volume. Only glucose and lactate values were affected by additional arm exercise. Glucose decreased 4 percent at T15 and T30 after static exercise, and by 2 percent at T15 (with no change at T30) after dynamic arm exercise. Conversely, lactic acid increased by 20 percent at T30 after static exercise, and by 14 percent by T15 and 6 percent at T30 after dynamic arm exercise. It is concluded that additional arm movements, performed usually when gripping the handle-bar on the cycle ergometer, could introduce significant errors in measured venous concentrations of glucose and lactate in the leg-exercised subjects.
Liquidity crises on different time scales
NASA Astrophysics Data System (ADS)
Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano
2015-12-01
We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.
Liquidity crises on different time scales.
Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano
2015-12-01
We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.
Modelling multimodal expression of emotion in a virtual agent.
Pelachaud, Catherine
2009-12-12
Over the past few years we have been developing an expressive embodied conversational agent system. In particular, we have developed a model of multimodal behaviours that includes dynamism and complex facial expressions. The first feature refers to the qualitative execution of behaviours. Our model is based on perceptual studies and encompasses several parameters that modulate multimodal behaviours. The second feature, the model of complex expressions, follows a componential approach where a new expression is obtained by combining facial areas of other expressions. Lately we have been working on adding temporal dynamism to expressions. So far they have been designed statically, typically at their apex. Only full-blown expressions could be modelled. To overcome this limitation, we have defined a representation scheme that describes the temporal evolution of the expression of an emotion. It is no longer represented by a static definition but by a temporally ordered sequence of multimodal signals.
Principle research on a single mass piezoelectric six-degrees-of-freedom accelerometer.
Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng
2013-08-16
A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work.
Principle Research on a Single Mass Piezoelectric Six-Degrees-of-Freedom Accelerometer
Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng
2013-01-01
A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work. PMID:23959243
Seol, Ye-In; Kim, Young-Kuk
2014-01-01
Power-aware scheduling reduces CPU energy consumption in hard real-time systems through dynamic voltage scaling (DVS). In this paper, we deal with pinwheel task model which is known as static and predictable task model and could be applied to various embedded or ubiquitous systems. In pinwheel task model, each task's priority is static and its execution sequence could be predetermined. There have been many static approaches to power-aware scheduling in pinwheel task model. But, in this paper, we will show that the dynamic priority scheduling results in power-aware scheduling could be applied to pinwheel task model. This method is more effective than adopting the previous static priority scheduling methods in saving energy consumption and, for the system being still static, it is more tractable and applicable to small sized embedded or ubiquitous computing. Also, we introduce a novel power-aware scheduling algorithm which exploits all slacks under preemptive earliest-deadline first scheduling which is optimal in uniprocessor system. The dynamic priority method presented in this paper could be applied directly to static systems of pinwheel task model. The simulation results show that the proposed algorithm with the algorithmic complexity of O(n) reduces the energy consumption by 10-80% over the existing algorithms.
2014-01-01
Power-aware scheduling reduces CPU energy consumption in hard real-time systems through dynamic voltage scaling (DVS). In this paper, we deal with pinwheel task model which is known as static and predictable task model and could be applied to various embedded or ubiquitous systems. In pinwheel task model, each task's priority is static and its execution sequence could be predetermined. There have been many static approaches to power-aware scheduling in pinwheel task model. But, in this paper, we will show that the dynamic priority scheduling results in power-aware scheduling could be applied to pinwheel task model. This method is more effective than adopting the previous static priority scheduling methods in saving energy consumption and, for the system being still static, it is more tractable and applicable to small sized embedded or ubiquitous computing. Also, we introduce a novel power-aware scheduling algorithm which exploits all slacks under preemptive earliest-deadline first scheduling which is optimal in uniprocessor system. The dynamic priority method presented in this paper could be applied directly to static systems of pinwheel task model. The simulation results show that the proposed algorithm with the algorithmic complexity of O(n) reduces the energy consumption by 10–80% over the existing algorithms. PMID:25121126
Interaction of a cumulus cloud ensemble with the large-scale environment
NASA Technical Reports Server (NTRS)
Arakawa, A.; Schubert, W.
1973-01-01
Large-scale modification of the environment by cumulus clouds is discussed in terms of entrainment, detrainment, evaporation, and subsidence. Drying, warming, and condensation by vertical displacement of air are considered as well as budget equations for mass, static energy, water vapor, and liquid water.
Stress drop with constant, scale independent seismic efficiency and overshoot
Beeler, N.M.
2001-01-01
To model dissipated and radiated energy during earthquake stress drop, I calculate dynamic fault slip using a single degree of freedom spring-slider block and a laboratory-based static/kinetic fault strength relation with a dynamic stress drop proportional to effective normal stress. The model is scaled to earthquake size assuming a circular rupture; stiffness varies inversely with rupture radius, and rupture duration is proportional to radius. Calculated seismic efficiency, the ratio of radiated to total energy expended during stress drop, is in good agreement with laboratory and field observations. Predicted overshoot, a measure of how much the static stress drop exceeds the dynamic stress drop, is higher than previously published laboratory and seismic observations and fully elasto-dynamic calculations. Seismic efficiency and overshoot are constant, independent of normal stress and scale. Calculated variation of apparent stress with seismic moment resembles the observational constraints of McGarr [1999].
NASA Technical Reports Server (NTRS)
Aiken, T. N.; Falarski, M. D.; Koenin, D. G.
1979-01-01
The aerodynamic characteristics of the augmentor wing concept with hypermixing primary nozzles were investigated. A large-scale semispan model in the Ames 40- by 80-Foot Wind Tunnel and Static Test Facility was used. The trailing edge, augmentor flap system occupied 65% of the span and consisted of two fixed pivot flaps. The nozzle system consisted of hypermixing, lobe primary nozzles, and BLC slot nozzles at the forward inlet, both sides and ends of the throat, and at the aft flap. The entire wing leading edge was fitted with a 10% chord slat and a blowing slot. Outboard of the flap was a blown aileron. The model was tested statically and at forward speed. Primary parameters and their ranges included angle of attack from -12 to 32 degrees, flap angles of 20, 30, 45, 60 and 70 degrees, and deflection and diffuser area ratios from 1.16 to 2.22. Thrust coefficients ranged from 0 to 2.73, while nozzle pressure ratios varied from 1.0 to 2.34. Reynolds number per foot varied from 0 to 1.4 million. Analysis of the data indicated a maximum static, gross augmentation of 1.53 at a flap angle of 45 degrees. Analysis also indicated that the configuration was an efficient powered lift device and that the net thrust was comparable with augmentor wings of similar static performance. Performance at forward speed was best at a diffuser area ratio of 1.37.
NASA Technical Reports Server (NTRS)
Cole, T. W.; Rathburn, E. A.
1974-01-01
A static acoustic and propulsion test of a small radius Jacobs-Hurkamp and a large radius Flex Flap combined with four upper surface blowing (USB) nozzles was performed. Nozzle force and flow data, flap trailing edge total pressure survey data, and acoustic data were obtained. Jacobs-Hurkamp flap surface pressure data, flow visualization photographs, and spoiler acoustic data from the limited mid-year tests are reported. A pressure ratio range of 1.2 to 1.5 was investigated for the USB nozzles and for the auxiliary blowing slots. The acoustic data were scaled to a four-engine STOL airplane of roughly 110,000 kilograms or 50,000 pounds gross weight, corresponding to a model scale of approximately 0.2 for the nozzles without deflector. The model nozzle scale is actually reduced to about .17 with deflector although all results in this report assume 0.2 scale factor. Trailing edge pressure surveys indicated that poor flow attachment was obtained even at large flow impingement angles unless a nozzle deflector plate was used. Good attachment was obtained with the aspect ratio four nozzle with deflector, confirming the small scale wind tunnel tests.
Jones, Brandon W; Venditti, Richard; Park, Sunkyu; Jameel, Hasan
2014-09-01
Mechanical refining has been shown to improve biomass enzymatic digestibility. In this study industrial high-yield sodium carbonate hardwood pulp was subjected to lab, pilot and industrial refining to determine if the mechanical refining improves the enzymatic hydrolysis sugar conversion efficiency differently at different refining scales. Lab, pilot and industrial refining increased the biomass digestibility for lignocellulosic biomass relative to the unrefined material. The sugar conversion was increased from 36% to 65% at 5 FPU/g of biomass with industrial refining at 67.0 kWh/t, which was more energy efficient than lab and pilot scale refining. There is a maximum in the sugar conversion with respect to the amount of refining energy. Water retention value is a good predictor of improvements in sugar conversion for a given fiber source and composition. Improvements in biomass digestibility with refining due to lab, pilot plant and industrial refining were similar with respect to water retention value. Published by Elsevier Ltd.
CO2 CH4 and N20 fluxes during land conversion in early bioenergy systems
NASA Astrophysics Data System (ADS)
Zenone, T.
2012-04-01
CO2 CH4 and N20 fluxes during land conversion in early bioenergy systems Terenzio Zenone1-2, Jiquan Chen1-2, Ilya Gelfand3-4, G. Philip Robertson3-4 1 Department of Environmental Sciences, University of Toledo, Toledo, OH USA 2 Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA 3 W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI USA 4Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI USA Environmental sustainability of bioenergy crop cultivation represents an important challenge and is a topic of intensive scientific and political debate worldwide due to increasing societal needs for renewable energy. Despite the increasing knowledge related to potential bioenergy systems, the effect of land use change (LUC) on GHG fluxes during the conversion remains poorly understood but is likely to be substantial. In order to tackle this issue the Great lake Bioenergy Research Center (GLBRC) of the US Department of Energy (DOE) has established a field experiment and deployed a cluster of eddy-covariance towers to quantify the magnitude and changes of ecosystem carbon assimilation, loss, and balance during the conversion and establishment years in a permanent prairie and four types of candidate biofuel systems [Conservation Reserve Program (CRP) grassland, switchgrass, mixed-species restored prairie and corn]. Six sites were converted to soybean in 2009 before establishing the bioenergy systems in 2010 while one site was kept grassland as reference. Soil N2O and CH4 fluxes were measured biweekly with static chambers in four replicate locations in each fields, within the footprint of the eddy covariance tower using static chamber GHG flux protocols of the KBS LTER site. Our field observations, made between January 2009 through December 2010, showed that conversion of CRP to soybean induced net C emissions during the conversion year that ranging from 288 g C m-2, to 173 g C m-2 . while at the reference CRP grassland site net C balance were -42.9 and - 16.1 g C m-2 yr-1 in 2009 and 2010, respectively. N20 emissions were larger at the former grassland converted to bioenergy crops 12.3 (±3.4) N2O-N (g ha-1d-1 compare to unmanaged grassland 2.7 (±0.7) g ha-1d-1. CH4 emission were considerable lower and ranged from -0.7 (±0.4) CH4-C g ha-1d-1 at the sites converted to 0.8 (±1.8) CH4-C g ha-1d-1 at unmanaged grassland. The conversion of CRP lands has induced major CO2 emission over the two-year study period that can take many years to recover. The cumulative C balance of the ecosystems in the years after the conversion was under the strong influence of the C lost during the conversion phase and the C balance of the new biofuel crops. The carbon lost during the conversion year cannot be detected by variations of SOC (the conversion phase is too short of a period) or by simply measuring the biomass production before and after the conversion. EC technique was able to detect short term C change necessary to evaluate C debt in converted biofuel systems. For better understanding the complex mechanisms that influence the C balance during the LUC, this study underlines the need to study the GHG fluxes during the conversion phases of permanent ecosystems (e.g., permanent grassland, forests, etc.) into agricultural or bioenergy crops.
Sensitivity analysis for large-scale problems
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Whitworth, Sandra L.
1987-01-01
The development of efficient techniques for calculating sensitivity derivatives is studied. The objective is to present a computational procedure for calculating sensitivity derivatives as part of performing structural reanalysis for large-scale problems. The scope is limited to framed type structures. Both linear static analysis and free-vibration eigenvalue problems are considered.
Gaze Behavior of Children with ASD toward Pictures of Facial Expressions.
Matsuda, Soichiro; Minagawa, Yasuyo; Yamamoto, Junichi
2015-01-01
Atypical gaze behavior in response to a face has been well documented in individuals with autism spectrum disorders (ASDs). Children with ASD appear to differ from typically developing (TD) children in gaze behavior for spoken and dynamic face stimuli but not for nonspeaking, static face stimuli. Furthermore, children with ASD and TD children show a difference in their gaze behavior for certain expressions. However, few studies have examined the relationship between autism severity and gaze behavior toward certain facial expressions. The present study replicated and extended previous studies by examining gaze behavior towards pictures of facial expressions. We presented ASD and TD children with pictures of surprised, happy, neutral, angry, and sad facial expressions. Autism severity was assessed using the Childhood Autism Rating Scale (CARS). The results showed that there was no group difference in gaze behavior when looking at pictures of facial expressions. Conversely, the children with ASD who had more severe autistic symptomatology had a tendency to gaze at angry facial expressions for a shorter duration in comparison to other facial expressions. These findings suggest that autism severity should be considered when examining atypical responses to certain facial expressions.
Gaze Behavior of Children with ASD toward Pictures of Facial Expressions
Matsuda, Soichiro; Minagawa, Yasuyo; Yamamoto, Junichi
2015-01-01
Atypical gaze behavior in response to a face has been well documented in individuals with autism spectrum disorders (ASDs). Children with ASD appear to differ from typically developing (TD) children in gaze behavior for spoken and dynamic face stimuli but not for nonspeaking, static face stimuli. Furthermore, children with ASD and TD children show a difference in their gaze behavior for certain expressions. However, few studies have examined the relationship between autism severity and gaze behavior toward certain facial expressions. The present study replicated and extended previous studies by examining gaze behavior towards pictures of facial expressions. We presented ASD and TD children with pictures of surprised, happy, neutral, angry, and sad facial expressions. Autism severity was assessed using the Childhood Autism Rating Scale (CARS). The results showed that there was no group difference in gaze behavior when looking at pictures of facial expressions. Conversely, the children with ASD who had more severe autistic symptomatology had a tendency to gaze at angry facial expressions for a shorter duration in comparison to other facial expressions. These findings suggest that autism severity should be considered when examining atypical responses to certain facial expressions. PMID:26090223
NASA Technical Reports Server (NTRS)
Parsons, John F
1936-01-01
Surveys of the air flow over the upper surface of four different airfoils were made in the full-scale wind tunnel to determine a satisfactory location for a fixed Pitot-static tube on a low-wing monoplane. The selection was based on small interference errors, less than 5 percent, and on a consideration of structural and ground handling problems. The most satisfactory location on the airfoils without flaps that were investigated was 10 percent of the chord aft and 25 percent of the chord above the trailing edge of a section approximately 40 percent of the semispan inboard of the wing tip. No satisfactory location was found near the wing when the flaps were deflected.
Effective model hierarchies for dynamic and static classical density functional theories
NASA Astrophysics Data System (ADS)
Majaniemi, S.; Provatas, N.; Nonomura, M.
2010-09-01
The origin and methodology of deriving effective model hierarchies are presented with applications to solidification of crystalline solids. In particular, it is discussed how the form of the equations of motion and the effective parameters on larger scales can be obtained from the more microscopic models. It will be shown that tying together the dynamic structure of the projection operator formalism with static classical density functional theories can lead to incomplete (mass) transport properties even though the linearized hydrodynamics on large scales is correctly reproduced. To facilitate a more natural way of binding together the dynamics of the macrovariables and classical density functional theory, a dynamic generalization of density functional theory based on the nonequilibrium generating functional is suggested.
Gravitational field of static p -branes in linearized ghost-free gravity
NASA Astrophysics Data System (ADS)
Boos, Jens; Frolov, Valeri P.; Zelnikov, Andrei
2018-04-01
We study the gravitational field of static p -branes in D -dimensional Minkowski space in the framework of linearized ghost-free (GF) gravity. The concrete models of GF gravity we consider are parametrized by the nonlocal form factors exp (-□/μ2) and exp (□2/μ4) , where μ-1 is the scale of nonlocality. We show that the singular behavior of the gravitational field of p -branes in general relativity is cured by short-range modifications introduced by the nonlocalities, and we derive exact expressions of the regularized gravitational fields, whose geometry can be written as a warped metric. For large distances compared to the scale of nonlocality, μ r →∞ , our solutions approach those found in linearized general relativity.
NASA Technical Reports Server (NTRS)
Sussman, M. B.; Harkonen, D. L.; Reed, J. B.
1976-01-01
Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive-lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data and to establish a basis for future flight test comparisons.
NASA Technical Reports Server (NTRS)
Dodge, R. N.; Clark, S. K.
1981-01-01
The properties were measured during static, slow rolling, and high-speed tests, and comparisons were made between data as acquired on indoor drum dynamometers and on an outdoor test track. In addition, mechanical properties were also obtained from scale model tires and compared with corresponding properties from full-size tires. While the tests covered a wide range of tire properties, results seem to indicate that speed effects are not large, scale models may be used for obtaining some but not all tire properties, and that predictive equations developed in NASA TR R-64 are still useful in estimating most mechanical properties.
Decorrelation of the static and dynamic length scales in hard-sphere glass formers.
Charbonneau, Patrick; Tarjus, Gilles
2013-04-01
We show that, in the equilibrium phase of glass-forming hard-sphere fluids in three dimensions, the static length scales tentatively associated with the dynamical slowdown and the dynamical length characterizing spatial heterogeneities in the dynamics unambiguously decorrelate. The former grow at a much slower rate than the latter when density increases. This observation is valid for the dynamical range that is accessible to computer simulations, which roughly corresponds to that accessible in colloidal experiments. We also find that, in this same range, no one-to-one correspondence between relaxation time and point-to-set correlation length exists. These results point to the coexistence of several relaxation mechanisms in the dynamically accessible regime of three-dimensional hard-sphere glass formers.
NASA Technical Reports Server (NTRS)
George, Jeffrey
2014-01-01
Thermionic (TI) power conversion is a promising technology first investigated for power conversion in the 1960's, and of renewed interest due to modern advances in nanotechnology, MEMS, materials and manufacturing. Benefits include high conversion efficiency (20%), static operation with no moving parts and potential for high reliability, greatly reduced plant complexity, and the potential for reduced development costs. Thermionic emission, credited to Edison in 1880, forms the basis of vacuum tubes and much of 20th century electronics. Heat can be converted into electricity when electrons emitted from a hot surface are collected across a small gap. For example, two "small" (6 kWe) Thermionic Space Reactors were flown by the USSR in 1987-88 for ocean radar reconnaissance. Higher powered Nuclear-Thermionic power systems driving Electric Propulsion (Q-thruster, VASIMR, etc.) may offer the breakthrough necessary for human Mars missions of < 1 yr round trip. Power generation on Earth could benefit from simpler, moe economical nuclear plants, and "topping" of more fuel and emission efficient fossil-fuel plants.
NASA Technical Reports Server (NTRS)
Alford, William J., Jr.
1952-01-01
The static longitudinal stability characteristics of a 0.15-scale model of the Hermes A-lE2 missile have been determined in the Langley high-speed 7- by 10-foot tunnel over a Mach number range of 0.50 to 0.98, corresponding to Reynolds numbers, based on body length, of 12.3 x 10(exp 6) to 17.1 x 10(exp 6). This paper presents results obtained with body alone and body-fins combinations at 0 degrees (one set of fins vertical and the other set horizontal) and 45 degree angle of roll. The results indicate that the addition of the fins to the body insures static longitudinal stability and provides essentially linear variations of the lift and pitching moment at small angles of attack throughout the Mach number range. The slopes of the lift and pitching-moment curves vary slightly with Mach number and show only small effects due to the angle of roll.
MATLAB Stability and Control Toolbox Trim and Static Stability Module
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Crespo, Luis
2012-01-01
MATLAB Stability and Control Toolbox (MASCOT) utilizes geometric, aerodynamic, and inertial inputs to calculate air vehicle stability in a variety of critical flight conditions. The code is based on fundamental, non-linear equations of motion and is able to translate results into a qualitative, graphical scale useful to the non-expert. MASCOT was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental nonlinear equations of motion, MASCOT then calculates vehicle trim and static stability data for the desired flight condition(s). Available flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind, and sideslip, plus three take-off rotation conditions. Results are displayed through a unique graphical interface developed to provide the non-stability and control expert conceptual design engineer a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. If desired, the user can also examine the detailed, quantitative results.
Conversion of board foot scaled logs to cubic meters in Washington State, 1970–1998
Henry Spelter
2002-01-01
The conversion factor generally used to convert logs measured in board feet to cubic meters has traditionally been set at 4.53. Because of diminishing old growth, large diameter trees, the average conversion factor has risen, as illustrated in this analysis of Washington state sawmill data over the period 1970â1998. Conversion factors for coastal and interior...
LES Modeling of Lateral Dispersion in the Ocean on Scales of 10 m to 10 km
2015-10-20
ocean on scales of 0.1-10 km that can be implemented in larger-scale ocean models. These parameterizations will incorporate the effects of local...ocean on scales of 0.1-10 km that can be implemented in larger-scale ocean models. These parameterizations will incorporate the effects of local...www.fields.utoronto.ca/video-archive/static/2013/06/166-1766/mergedvideo.ogv) and at the Nonlinear Effects in Internal Waves Conference held at Cornell University
A dynamic routing strategy with limited buffer on scale-free network
NASA Astrophysics Data System (ADS)
Wang, Yufei; Liu, Feng
2016-04-01
In this paper, we propose an integrated routing strategy based on global static topology information and local dynamic data packet queue lengths to improve the transmission efficiency of scale-free networks. The proposed routing strategy is a combination of a global static routing strategy (based on the shortest path algorithm) and local dynamic queue length management, in which, instead of using an infinite buffer, the queue length of each node i in the proposed routing strategy is limited by a critical queue length Qic. When the network traffic is lower and the queue length of each node i is shorter than its critical queue length Qic, it forwards packets according to the global routing table. With increasing network traffic, when the buffers of the nodes with higher degree are full, they do not receive packets due to their limited buffers and the packets have to be delivered to the nodes with lower degree. The global static routing strategy can shorten the transmission time that it takes a packet to reach its destination, and the local limited queue length can balance the network traffic. The optimal critical queue lengths of nodes have been analysed. Simulation results show that the proposed routing strategy can get better performance than that of the global static strategy based on topology, and almost the same performance as that of the global dynamic routing strategy with less complexity.
Voje, Kjetil L; Hansen, Thomas F
2013-02-01
Julian Huxley showed that within-species (static) allometric (power-law) relations can arise from proportional growth regulation with the exponent in the power law equaling the factor of proportionality. Allometric exponents may therefore be hard to change and act as constraints on the independent evolution of traits. In apparent contradiction to this, many empirical studies have concluded that static allometries are evolvable. Many of these studies have been based, however, on a broad definition of allometry that includes any monotonic shape change with size, and do not falsify the hypothesis of constrained narrow-sense allometry. Here, we present the first phylogenetic comparative study of narrow-sense allometric exponents based on a reanalysis of data on eye span and body size in stalk-eyed flies (Diopsidae). Consistent with a role in sexual selection, we found strong evidence that male slopes were tracking "optima" based on sexual dimorphism and relative male trait size. This tracking was slow, however, with estimated times of 2-3 million years for adaptation to exceed ancestral influence on the trait. Our results are therefore consistent with adaptive evolution on million-year time scales, but cannot rule out that static allometry may act as a constraint on eye-span adaptation at shorter time scales. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Dibai-Filho, Almir Vieira; de Oliveira, Alessandra Kelly; Girasol, Carlos Eduardo; Dias, Fabiana Rodrigues Cancio; Guirro, Rinaldo Roberto de Jesus
2017-04-01
To assess the additional effect of static ultrasound and diadynamic currents on myofascial trigger points in a manual therapy program to treat individuals with chronic neck pain. A single-blind randomized trial was conducted. Both men and women, between ages 18 and 45, with chronic neck pain and active myofascial trigger points in the upper trapezius were included in the study. Subjects were assigned to 3 different groups: group 1 (n = 20) was treated with manual therapy; group 2 (n = 20) was treated with manual therapy and static ultrasound; group 3 (n = 20) was treated with manual therapy and diadynamic currents. Individuals were assessed before the first treatment session, 48 hours after the first treatment session, 48 hours after the tenth treatment session, and 4 weeks after the last session. There was no group-versus-time interaction for Numeric Rating Scale, Neck Disability Index, Pain-Related Self-Statement Scale, pressure pain threshold, cervical range of motion, and skin temperature (F-value range, 0.089-1.961; P-value range, 0.106-0.977). Moreover, we found no differences between groups regarding electromyographic activity (P > 0.05). The use of static ultrasound or diadynamic currents on myofascial trigger points in upper trapezius associated with a manual therapy program did not generate greater benefits than manual therapy alone.
Ye, Yong; Deng, Jiahao; Shen, Sanmin; Hou, Zhuo; Liu, Yuting
2016-01-01
A novel method for proximity detection of moving targets (with high dielectric constants) using a large-scale (the size of each sensor is 31 cm × 19 cm) planar capacitive sensor system (PCSS) is proposed. The capacitive variation with distance is derived, and a pair of electrodes in a planar capacitive sensor unit (PCSU) with a spiral shape is found to have better performance on sensitivity distribution homogeneity and dynamic range than three other shapes (comb shape, rectangular shape, and circular shape). A driving excitation circuit with a Clapp oscillator is proposed, and a capacitance measuring circuit with sensitivity of 0.21 Vp−p/pF is designed. The results of static experiments and dynamic experiments demonstrate that the voltage curves of static experiments are similar to those of dynamic experiments; therefore, the static data can be used to simulate the dynamic curves. The dynamic range of proximity detection for three projectiles is up to 60 cm, and the results of the following static experiments show that the PCSU with four neighboring units has the highest sensitivity (the sensitivities of other units are at least 4% lower); when the attack angle decreases, the intensity of sensor signal increases. This proposed method leads to the design of a feasible moving target detector with simple structure and low cost, which can be applied in the interception system. PMID:27196905
Construction of Penrose Diagrams for Dynamic Black Holes
NASA Technical Reports Server (NTRS)
Brown, Beth A.; Lindesay, James
2008-01-01
A set of Penrose diagrams is constructed in order to examine the large-scale causal structure of black holes with dynamic horizons. Coordinate dependencies of significant features, such as the event horizon and radial mass scale, are demonstrated on the diagrams. Unlike in static Schwarzschild geometries, the radial mass scale is clearly seen to differ from the horizon. Trajectories for photons near the horizon are briefly discussed.
ERIC Educational Resources Information Center
Olver, Mark E.; Wong, Stephen C. P.; Nicholaichuk, Terry; Gordon, Audrey
2007-01-01
The Violence Risk Scale-Sexual Offender version (VRS-SO) is a rating scale designed to assess risk and predict sexual recidivism, to measure and link treatment changes to sexual recidivism, and to inform the delivery of sexual offender treatment. The VRS-SO comprises 7 static and 17 dynamic items empirically or conceptually linked to sexual…
Zhang, Ke; Tang, Yiwen; Meng, Jinsong; Wang, Ge; Zhou, Han; Fan, Tongxiang; Zhang, Di
2014-11-03
Polarization-sensitive color originates from polarization-dependent reflection or transmission, exhibiting abundant light information, including intensity, spectral distribution, and polarization. A wide range of butterflies are physiologically sensitive to polarized light, but the origins of polarized signal have not been fully understood. Here we systematically investigate the colorful scales of six species of butterfly to reveal the physical origins of polarization-sensitive color. Microscopic optical images under crossed polarizers exhibit their polarization-sensitive characteristic, and micro-structural characterizations clarify their structural commonality. In the case of the structural scales that have deep ridges, the polarization-sensitive color related with scale azimuth is remarkable. Periodic ridges lead to the anisotropic effective refractive indices in the parallel and perpendicular grating orientations, which achieves form-birefringence, resulting in the phase difference of two different component polarized lights. Simulated results show that ridge structures with reflecting elements reflect and rotate the incident p-polarized light into s-polarized light. The dimensional parameters and shapes of grating greatly affect the polarization conversion process, and the triangular deep grating extends the outstanding polarization conversion effect from the sub-wavelength period to the period comparable to visible light wavelength. The parameters of ridge structures in butterfly scales have been optimized to fulfill the polarization-dependent reflection for secret communication. The structural and physical origin of polarization conversion provides a more comprehensive perspective on the creation of polarization-sensitive color in butterfly wing scales. These findings show great potential in anti-counterfeiting technology and advanced optical material design.
Zebedin, Eva; Sandtner, Walter; Galler, Stefan; Szendroedi, Julia; Just, Herwig; Todt, Hannes; Hilber, Karlheinz
2004-08-01
Each skeletal muscle of the body contains a unique composition of "fast" and "slow" muscle fibers, each of which is specialized for certain challenges. This composition is not static, and the muscle fibers are capable of adapting their molecular composition by altered gene expression (i.e., fiber type conversion). Whereas changes in the expression of contractile proteins and metabolic enzymes in the course of fiber type conversion are well described, little is known about possible adaptations in the electrophysiological properties of skeletal muscle cells. Such adaptations may involve changes in the expression and/or function of ion channels. In this study, we investigated the effects of fast-to-slow fiber type conversion on currents via voltage-gated Na+ channels in the C(2)C(12) murine skeletal muscle cell line. Prolonged treatment of cells with 25 nM of the Ca2+ ionophore A-23187 caused a significant shift in myosin heavy chain isoform expression from the fast toward the slow isoform, indicating fast-to-slow fiber type conversion. Moreover, Na+ current inactivation was significantly altered. Slow inactivation less strongly inhibited the Na+ currents of fast-to-slow fiber type-converted cells. Compared with control cells, the Na+ currents of converted cells were more resistant to block by tetrodotoxin, suggesting enhanced relative expression of the cardiac Na+ channel isoform Na(v)1.5 compared with the skeletal muscle isoform Na(v)1.4. These results imply that fast-to-slow fiber type conversion of skeletal muscle cells involves functional adaptation of their electrophysiological properties.
Azarpaikan, Atefeh; Taheri Torbati, Hamidreza
2017-10-23
The aim of this study was to assess the effectiveness of balance training with somatosensory and neurofeedback training on dynamic and static balance in healthy, elderly adults. The sample group consisted of 45 healthy adults randomly assigned to one of the three test groups: somatosensory, neurofeedback, and a control. Individualization of the balance program started with pre-tests for static and dynamic balances. Each group had 15- and 30-min training sessions. All groups were tested for static (postural stability) and dynamic balances (Berg Balance Scale) in acquisition and transfer tests (fall risk of stability and timed up and go). Improvements in static and dynamic balances were assessed by somatosensory and neurofeedback groups and then compared with the control group. Results indicated significant improvements in static and dynamic balances in both test groups in the acquisition test. Results revealed a significant improvement in the transfer test in the neurofeedback and somatosensory groups, in static and dynamic conditions, respectively. The findings suggest that these methods of balance training had a significant influence on balance. Both the methods are appropriate to prevent falling in adults. Neurofeedback training helped the participants to learn static balance, while somatosensory training was effective on dynamic balance learning. Further research is needed to assess the effects of longer and discontinuous stimulation with somatosensory and neurofeedback training on balance in elderly adults.
A chip-scale, telecommunications-band frequency conversion interface for quantum emitters.
Agha, Imad; Ates, Serkan; Davanço, Marcelo; Srinivasan, Kartik
2013-09-09
We describe a chip-scale, telecommunications-band frequency conversion interface designed for low-noise operation at wavelengths desirable for common single photon emitters. Four-wave-mixing Bragg scattering in silicon nitride waveguides is used to demonstrate frequency upconversion and downconversion between the 980 nm and 1550 nm wavelength regions, with signal-to-background levels > 10 and conversion efficiency of ≈ -60 dB at low continuous wave input pump powers (< 50 mW). Finite element simulations and the split-step Fourier method indicate that increased input powers of ≈ 10 W (produced by amplified nanosecond pulses, for example) will result in a conversion efficiency > 25 % in existing geometries. Finally, we present waveguide designs that can be used to connect shorter wavelength (637 nm to 852 nm) quantum emitters with 1550 nm.
Wake flow control using a dynamically controlled wind turbine
NASA Astrophysics Data System (ADS)
Castillo, Ricardo; Wang, Yeqin; Pol, Suhas; Swift, Andy; Hussain, Fazle; Westergaard, Carsten; Texas Tech University Team
2016-11-01
A wind tunnel based "Hyper Accelerated Wind Farm Kinematic-Control Simulator" (HAWKS) is being built at Texas Tech University to emulate controlled wind turbine flow physics. The HAWKS model turbine has pitch, yaw and speed control which is operated in real model time, similar to that of an equivalent full scale turbine. Also, similar to that of a full scale wind turbine, the controls are developed in a Matlab Simulink environment. The current diagnostic system consists of power, rotor position, rotor speed measurements and PIV wake characterization with four cameras. The setup allows up to 7D downstream of the rotor to be mapped. The purpose of HAWKS is to simulate control strategies at turnaround times much faster than CFD and full scale testing. The fundamental building blocks of the simulator have been tested, and demonstrate wake steering for both static and dynamic turbine actuation. Parameters which have been studied are yaw, rotor speed and combinations hereof. The measured wake deflections for static yaw cases are in agreement with previously reported research implying general applicability of the HAWKS platform for the purpose of manipulating the wake. In this presentation the general results will be introduced followed by an analysis of the wake turbulence and coherent structures when comparing static and dynamic flow cases. The outcome of such studies could ultimately support effective wind farm wake flow control strategies. Texas Emerging Technology Fund (ETF).
Bodin, Paul; Gomberg, Joan
1994-01-01
This article presents evidence for the channeling of strain energy released by the Ms = 7.4 Landers, California, earthquake within the eastern California shear zone (ECSZ). We document an increase in seismicity levels during the 22-hr period starting with the Landers earthquake and culminating 22 hr later with the Ms = 5.4 Little Skull Mountain (LSM), Nevada, earthquake. We evaluate the completeness of regional seismicity catalogs during this period and find that the continuity of post-Landers strain release within the ECSZ is even more pronounced than is evident from the catalog data. We hypothesize that regional-scale connectivity of faults within the ECSZ and LSM region is a critical ingredient in the unprecedented scale and distribution of remotely triggered earthquakes and geodetically manifest strain changes that followed the Landers earthquake. The viability of static strain changes as triggering agents is tested using numerical models. Modeling results illustrate that regional-scale fault connectivity can increase the static strain changes by approximately an order of magnitude at distances of at least 280 km, the distance between the Landers and LSM epicenters. This is possible for models that include both a network of connected faults that slip “sympathetically” and realistic levels of tectonic prestrain. Alternatively, if dynamic strains are a more significant triggering agent than static strains, ECSZ structure may still be important in determining the distribution of triggered seismic and aseismic deformation.
Development of a Reactor Model for Chemical Conversion of Lunar Regolith
NASA Technical Reports Server (NTRS)
Hegde, U.; Balasubramaniam, R.; Gokoglu, S.
2009-01-01
Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite-containing regolith by a continuous flow of hydrogen in a flow-through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the time for hydrogen to diffuse into the pores of the regolith particles and the chemical reaction time. The paper investigates the relationships between these quantities and their impact on the regolith conversion. Application of the model to various chemical reactor types, such as fluidized-bed, packed-bed, and rotary-bed configurations, are discussed.
Development of a Reactor Model for Chemical Conversion of Lunar Regolith
NASA Technical Reports Server (NTRS)
Hedge, uday; Balasubramaniam, R.; Gokoglu, S.
2007-01-01
Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite-containing regolith by a continuous flow of hydrogen in a flow-through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the time for hydrogen to diffuse into the pores of the regolith particles and the chemical reaction time. The paper investigates the relationships between these quantities and their impact on the regolith conversion. Application of the model to various chemical reactor types, such as fluidized-bed, packed-bed, and rotary-bed configurations, are discussed.
NASA Technical Reports Server (NTRS)
Pendergraft, O. C., Jr.
1979-01-01
Static pressure coefficient distributions on the forebody, afterbody, and nozzles of a 1/12 scale F-15 propulsion model were determined. The effects of nozzle power setting and horizontal tail deflection angle on the pressure coefficient distributions were investigated.
Criticality of Low-Energy Protons in Single-Event Effects Testing of Highly-Scaled Technologies
NASA Technical Reports Server (NTRS)
Pellish, Jonathan Allen; Marshall, Paul W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.;
2014-01-01
We report low-energy proton and alpha particle SEE data on a 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) static random access memory (SRAM) that demonstrates the criticality of understanding and using low-energy protons for SEE testing of highly-scaled technologies
NASA Astrophysics Data System (ADS)
Leone, Frank A., Jr.; Ozevin, Didem; Mosinyi, Bao; Bakuckas, John G., Jr.; Awerbuch, Jonathan; Lau, Alan; Tan, Tein-Min
2008-03-01
Preliminary tests were conducted using frequency response (FR) characteristics to determine damage initiation and growth in a honeycomb sandwich graphite/epoxy curved panel. This investigation was part of a more general study investigating the damage tolerance characteristics of several such panels subjected to quasi-static internal pressurization combined with hoop and axial loading. The panels were tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center in Atlantic City, NJ. The overall program objective was to investigate the damage tolerance characteristics of full-scale composite curved aircraft fuselage panels and the evolution of damage under quasi-static loading up to failure. This paper focuses on one aspect of this comprehensive investigation: the effect of state-of-damage on the characteristics of the frequency response of the subject material. The results presented herein show that recording the frequency response could be used for real-time monitoring of damage growth and in determining damage severity in full-scale composites fuselage aircraft structures.
Universal statistics of vortex tangles in three-dimensional random waves
NASA Astrophysics Data System (ADS)
Taylor, Alexander J.
2018-02-01
The tangled nodal lines (wave vortices) in random, three-dimensional wavefields are studied as an exemplar of a fractal loop soup. Their statistics are a three-dimensional counterpart to the characteristic random behaviour of nodal domains in quantum chaos, but in three dimensions the filaments can wind around one another to give distinctly different large scale behaviours. By tracing numerically the structure of the vortices, their conformations are shown to follow recent analytical predictions for random vortex tangles with periodic boundaries, where the local disorder of the model ‘averages out’ to produce large scale power law scaling relations whose universality classes do not depend on the local physics. These results explain previous numerical measurements in terms of an explicit effect of the periodic boundaries, where the statistics of the vortices are strongly affected by the large scale connectedness of the system even at arbitrarily high energies. The statistics are investigated primarily for static (monochromatic) wavefields, but the analytical results are further shown to directly describe the reconnection statistics of vortices evolving in certain dynamic systems, or occurring during random perturbations of the static configuration.
Finch, Emma; Cameron, Ashley; Fleming, Jennifer; Lethlean, Jennifer; Hudson, Kyla; McPhail, Steven
2017-07-01
Aphasia is a common consequence of stroke. Despite receiving specialised training in communication, speech-language pathology students may lack confidence when communicating with People with Aphasia (PWA). This paper reports data from secondary outcome measures from a randomised controlled trial. The aim of the current study was to examine the effects of communication partner training on the communication skills of speech-language pathology students during conversations with PWA. Thirty-eight speech-language pathology students were randomly allocated to trained and untrained groups. The first group received a lecture about communication strategies for communicating with PWA then participated in a conversation with PWA (Trained group), while the second group of students participated in a conversation with the PWA without receiving the lecture (Untrained group). The conversations between the groups were analysed according to the Measure of skill in Supported Conversation (MSC) scales, Measure of Participation in Conversation (MPC) scales, types of strategies used in conversation, and the occurrence and repair of conversation breakdowns. The trained group received significantly higher MSC Revealing Competence scores, used significantly more props, and introduced significantly more new ideas into the conversation than the untrained group. The trained group also used more gesture and writing to facilitate the conversation, however, the difference was not significant. There was no significant difference between the groups according to MSC Acknowledging Competence scores, MPC Interaction or Transaction scores, or in the number of interruptions, minor or major conversation breakdowns, or in the success of strategies initiated to repair the conversation breakdowns. Speech-language pathology students may benefit from participation in communication partner training programs. Copyright © 2017 Elsevier Inc. All rights reserved.
Conversion to Organic Dairy Production in the Netherlands: Opportunities and Constraints
ERIC Educational Resources Information Center
Smit, Arnoud A. H.; Driessen, Peter P. J.; Glasbergen, Pieter
2009-01-01
Organic agriculture is perceived as being more sustainable than conventional agriculture. However, while there is a growing interest in, and market for, organic products, large-scale conversion to organic agriculture is not taking place. Even though conversion from conventional to organic dairy production is not especially difficult in theory,…
Absolute Position Encoders With Vertical Image Binning
NASA Technical Reports Server (NTRS)
Leviton, Douglas B.
2005-01-01
Improved optoelectronic patternrecognition encoders that measure rotary and linear 1-dimensional positions at conversion rates (numbers of readings per unit time) exceeding 20 kHz have been invented. Heretofore, optoelectronic pattern-recognition absoluteposition encoders have been limited to conversion rates <15 Hz -- too low for emerging industrial applications in which conversion rates ranging from 1 kHz to as much as 100 kHz are required. The high conversion rates of the improved encoders are made possible, in part, by use of vertically compressible or binnable (as described below) scale patterns in combination with modified readout sequences of the image sensors [charge-coupled devices (CCDs)] used to read the scale patterns. The modified readout sequences and the processing of the images thus read out are amenable to implementation by use of modern, high-speed, ultra-compact microprocessors and digital signal processors or field-programmable gate arrays. This combination of improvements makes it possible to greatly increase conversion rates through substantial reductions in all three components of conversion time: exposure time, image-readout time, and image-processing time.
Agricultural conversion reduces biospheric vegetation productivity in the absence of external inputs
NASA Astrophysics Data System (ADS)
Smith, W. K.; Cleveland, C. C.; Reed, S.; Running, S. W.
2013-12-01
Increasing global population, energy demand, and standard of living has driven humanity to co-opt a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. Here, we explored the impact of global-scale agricultural production on a basic resource fundamental to life on Earth: global terrestrial vegetation growth (net primary production; NPP). First, we compared current rates of agricultural NPP - derived from crop-specific agricultural statistics - with rates of natural NPP - derived from satellite measurements. Next, we disaggregated our results by climate zone, conversion type, crop type, management intensity, and region to identify where agricultural conversion has driven significant degradation of biospheric NPP. At the global-scale, our data indicate that agricultural conversion has resulted in a ~7% reduction in biospheric NPP (ΔNPP), although the impact varied widely at the pixel level. Positive ΔNPP values, signifying an increase in NPP due to agricultural conversion, occurred only in areas receiving significant external water and nutrient inputs (i.e., intensively managed areas). Conversely, negative ΔNPP values, signifying a reduction in NPP due to agricultural conversion, occurred over ~90% of agricultural lands globally, with the largest reductions in areas formerly occupied by tropical forests and savannas (71% and 66% reductions in NPP, respectively). Without new global-scale policies that explicitly consider changes in NPP due to land cover conversion, future demand-driven increases in agricultural output - likely dependent on some level of expansion into natural ecosystems - could continue to drive net declines in biospheric NPP, with potential detrimental consequences for global carbon storage. A spatially explicit estimate of the effect of agricultural land cover conversion on natural primary production for 20 staple crops. ΔNPP was estimated independently for a) irrigated, b) high input, c) low input, and d) subsistence management intensities. All remaining vegetated land is represented in grey, while barren land is represented in white. Globally, agricultural land cover conversion has reduced natural primary production by 3.0 × 0.68 Pg C y-1 (i.e., a ~7% reduction in biospheric NPP), with a disproportionately large percentage of this reduction attributable to the conversion of temperate (~44%) and tropical (~50%) ecosystems.
NASA Technical Reports Server (NTRS)
Giles, G. L.; Rogers, J. L., Jr.
1982-01-01
The implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calclating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of the system are also discussed.
Vanegas-Acosta, J C; Garzón-Alvarado, D A; Lancellotti, V
2013-12-01
The insertion of a dental implant activates a sequence of wound healing events ending with bone formation and implant osseointegration. This sequence starts with the blood coagulation process and the formation of a fibrin network that detains spilt blood. Fibrin formation can be simplified as the kinetic reaction between thrombin and fibrinogen preceding the conversion of fibrinogen into fibrin. Based on experimental observations of the electrical properties of these molecules, we present a hypothesis for the mechanism of a static electrical stimulus in controlling the formation of the blood clot. Specifically, the electrical stimulus increases the fibrin network formation in such a way that a preferential region of higher fibrin density is obtained. This hypothesis is validated by means of a numerical model for the blood clot formation at the bone-dental implant interface. Numerical results compare favorably to experimental observations for blood clotting with and without the static electrical stimulus. It is concluded that the density of the fibrin network depends on the strength of the static electrical stimulus, and that the blood clot formation has a preferential direction of formation in the presence of the electrical signal. © 2013 Published by Elsevier Ltd. All rights reserved.
Contagion processes on the static and activity-driven coupling networks
NASA Astrophysics Data System (ADS)
Lei, Yanjun; Jiang, Xin; Guo, Quantong; Ma, Yifang; Li, Meng; Zheng, Zhiming
2016-03-01
The evolution of network structure and the spreading of epidemic are common coexistent dynamical processes. In most cases, network structure is treated as either static or time-varying, supposing the whole network is observed in the same time window. In this paper, we consider the epidemics spreading on a network which has both static and time-varying structures. Meanwhile, the time-varying part and the epidemic spreading are supposed to be of the same time scale. We introduce a static and activity-driven coupling (SADC) network model to characterize the coupling between the static ("strong") structure and the dynamic ("weak") structure. Epidemic thresholds of the SIS and SIR models are studied using the SADC model both analytically and numerically under various coupling strategies, where the strong structure is of homogeneous or heterogeneous degree distribution. Theoretical thresholds obtained from the SADC model can both recover and generalize the classical results in static and time-varying networks. It is demonstrated that a weak structure might make the epidemic threshold low in homogeneous networks but high in heterogeneous cases. Furthermore, we show that the weak structure has a substantive effect on the outbreak of the epidemics. This result might be useful in designing some efficient control strategies for epidemics spreading in networks.
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O. (Editor); Housner, Jerrold M. (Editor)
1993-01-01
Computing speed is leaping forward by several orders of magnitude each decade. Engineers and scientists gathered at a NASA Langley symposium to discuss these exciting trends as they apply to parallel computational methods for large-scale structural analysis and design. Among the topics discussed were: large-scale static analysis; dynamic, transient, and thermal analysis; domain decomposition (substructuring); and nonlinear and numerical methods.
NASA Technical Reports Server (NTRS)
Haynes, Jared; Kenny, R. Jeremy
2010-01-01
Recently, members of the Marshall Space Flight Center (MSFC) Fluid Dynamics Branch and Wyle Labs measured far-field acoustic data during a series of three Reusable Solid Rocket Motor (RSRM) horizontal static tests conducted in Promontory, Utah. The test motors included the Technical Evaluation Motor 13 (TEM-13), Flight Verification Motor 2 (FVM-2), and the Flight Simulation Motor 15 (FSM-15). Similar far-field data were collected during horizontal static tests of sub-scale solid rocket motors at MSFC. Far-field acoustical measurements were taken at multiple angles within a circular array centered about the nozzle exit plane, each positioned at a radial distance of 80 nozzle-exit-diameters from the nozzle. This type of measurement configuration is useful for calculating rocket noise characteristics such as those outlined in the NASA SP-8072 "Acoustic Loads Generated by the Propulsion System." Acoustical scaling comparisons are made between the test motors, with particular interest in the Overall Sound Power, Acoustic Efficiency, Non-dimensional Relative Sound Power Spectrum, and Directivity. Since most empirical data in the NASA SP-8072 methodology is derived from small rockets, this investigation provides an opportunity to check the data collapse between a sub-scale and full-scale rocket motor.
Accuracy of a Digital Weight Scale Relative to the Nintendo Wii in Measuring Limb Load Asymmetry
Kumar, NS Senthil; Omar, Baharudin; Joseph, Leonard H; Hamdan, Nor; Htwe, Ohnmar; Hamidun, Nursalbiyah
2014-01-01
[Purpose] The aim of the present study was to investigate the accuracy of a digital weight scale relative to the Wii in limb loading measurement during static standing. [Methods] This was a cross-sectional study conducted at a public university teaching hospital. The sample consisted of 24 participants (12 with osteoarthritis and 12 healthy) recruited through convenient sampling. Limb loading measurements were obtained using a digital weight scale and the Nintendo Wii in static standing with three trials under an eyes-open condition. The limb load asymmetry was computed as the symmetry index. [Results] The accuracy of measurement with the digital weight scale relative to the Nintendo Wii was analyzed using the receiver operating characteristic (ROC) curve and Kolmogorov-Smirnov test (K-S test). The area under the ROC curve was found to be 0.67. Logistic regression confirmed the validity of digital weight scale relative to the Nintendo Wii. The D statistics value from the K-S test was found to be 0.16, which confirmed that there was no significant difference in measurement between the equipment. [Conclusion] The digital weight scale is an accurate tool for measuring limb load asymmetry. The low price, easy availability, and maneuverability make it a good potential tool in clinical settings for measuring limb load asymmetry. PMID:25202181
Accuracy of a digital weight scale relative to the nintendo wii in measuring limb load asymmetry.
Kumar, Ns Senthil; Omar, Baharudin; Joseph, Leonard H; Hamdan, Nor; Htwe, Ohnmar; Hamidun, Nursalbiyah
2014-08-01
[Purpose] The aim of the present study was to investigate the accuracy of a digital weight scale relative to the Wii in limb loading measurement during static standing. [Methods] This was a cross-sectional study conducted at a public university teaching hospital. The sample consisted of 24 participants (12 with osteoarthritis and 12 healthy) recruited through convenient sampling. Limb loading measurements were obtained using a digital weight scale and the Nintendo Wii in static standing with three trials under an eyes-open condition. The limb load asymmetry was computed as the symmetry index. [Results] The accuracy of measurement with the digital weight scale relative to the Nintendo Wii was analyzed using the receiver operating characteristic (ROC) curve and Kolmogorov-Smirnov test (K-S test). The area under the ROC curve was found to be 0.67. Logistic regression confirmed the validity of digital weight scale relative to the Nintendo Wii. The D statistics value from the K-S test was found to be 0.16, which confirmed that there was no significant difference in measurement between the equipment. [Conclusion] The digital weight scale is an accurate tool for measuring limb load asymmetry. The low price, easy availability, and maneuverability make it a good potential tool in clinical settings for measuring limb load asymmetry.
Self-induced flavor conversion of supernova neutrinos on small scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, S.; Hansen, R. S.; Izaguirre, I.
2016-01-15
Self-induced flavor conversion of supernova (SN) neutrinos is a generic feature of neutrino-neutrino dispersion. The corresponding run-away modes in flavor space can spontaneously break the original symmetries of the neutrino flux and in particular can spontaneously produce small-scale features as shown in recent schematic studies. However, the unavoidable “multi-angle matter effect” shifts these small-scale instabilities into regions of matter and neutrino density which are not encountered on the way out from a SN. The traditional modes which are uniform on the largest scales are most prone for instabilities and thus provide the most sensitive test for the appearance of self-inducedmore » flavor conversion. As a by-product we clarify the relation between the time evolution of an expanding neutrino gas and the radial evolution of a stationary SN neutrino flux. Our results depend on several simplifying assumptions, notably stationarity of the solution, the absence of a “backward” neutrino flux caused by residual scattering, and global spherical symmetry of emission.« less
Self-induced flavor conversion of supernova neutrinos on small scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, S.; Izaguirre, I.; Raffelt, G.G.
2016-01-01
Self-induced flavor conversion of supernova (SN) neutrinos is a generic feature of neutrino-neutrino dispersion. The corresponding run-away modes in flavor space can spontaneously break the original symmetries of the neutrino flux and in particular can spontaneously produce small-scale features as shown in recent schematic studies. However, the unavoidable ''multi-angle matter effect'' shifts these small-scale instabilities into regions of matter and neutrino density which are not encountered on the way out from a SN. The traditional modes which are uniform on the largest scales are most prone for instabilities and thus provide the most sensitive test for the appearance of self-inducedmore » flavor conversion. As a by-product we clarify the relation between the time evolution of an expanding neutrino gas and the radial evolution of a stationary SN neutrino flux. Our results depend on several simplifying assumptions, notably stationarity of the solution, the absence of a ''backward'' neutrino flux caused by residual scattering, and global spherical symmetry of emission.« less
Bellman Ford algorithm - in Routing Information Protocol (RIP)
NASA Astrophysics Data System (ADS)
Krianto Sulaiman, Oris; Mahmud Siregar, Amir; Nasution, Khairuddin; Haramaini, Tasliyah
2018-04-01
In a large scale network need a routing that can handle a lot number of users, one of the solutions to cope with large scale network is by using a routing protocol, There are 2 types of routing protocol that is static and dynamic, Static routing is manually route input based on network admin, while dynamic routing is automatically route input formed based on existing network. Dynamic routing is efficient used to network extensively because of the input of route automatic formed, Routing Information Protocol (RIP) is one of dynamic routing that uses the bellman-ford algorithm where this algorithm will search for the best path that traversed the network by leveraging the value of each link, so with the bellman-ford algorithm owned by RIP can optimize existing networks.
NASA Technical Reports Server (NTRS)
Wolhart, Walter D.; Thomas, David F., Jr.
1955-01-01
An experimental investigation has been made in the Langley stability tunnel to determine the low-speed yawing, pitching, and static stability characteristics of a 1/10-scale model of the Grumman F9F-9 airplane. Tests were made to determine the effects of duct-entrance-fairing plugs on the static lateral and longitudinal stability characteristics of the complete model in the clean condition. The remaining tests were concerned with determining tail contributions as well as the effect of duct-entrance-fairing plugs, slats, flaps, and landing gear on the yawing and pitching stability derivatives. These data are presented without analysis in order to expedite distribution.
The Dynamic Tensile Behavior of Railway Wheel Steel at High Strain Rates
NASA Astrophysics Data System (ADS)
Jing, Lin; Han, Liangliang; Zhao, Longmao; Zhang, Ying
2016-11-01
The dynamic tensile tests on D1 railway wheel steel at high strain rates were conducted using a split Hopkinson tensile bar (SHTB) apparatus, compared to quasi-static tests. Three different types of specimens, which were machined from three different positions (i.e., the rim, web and hub) of a railway wheel, were prepared and examined. The rim specimens were checked to have a higher yield stress and ultimate tensile strength than those web and hub specimens under both quasi-static and dynamic loadings, and the railway wheel steel was demonstrated to be strain rate dependent in dynamic tension. The dynamic tensile fracture surfaces of all the wheel steel specimens are cup-cone-shaped morphology on a macroscopic scale and with the quasi-ductile fracture features on the microscopic scale.
A New Piezoelectric Actuator Induces Bone Formation In Vivo: A Preliminary Study
Reis, Joana; Frias, Clara; Canto e Castro, Carlos; Botelho, Maria Luísa; Marques, António Torres; Simões, José António Oliveira; Capela e Silva, Fernando; Potes, José
2012-01-01
This in vivo study presents the preliminary results of the use of a novel piezoelectric actuator for orthopedic application. The innovative use of the converse piezoelectric effect to mechanically stimulate bone was achieved with polyvinylidene fluoride actuators implanted in osteotomy cuts in sheep femur and tibia. The biological response around the osteotomies was assessed through histology and histomorphometry in nondecalcified sections and histochemistry and immunohistochemistry in decalcified sections, namely, through Masson's trichrome, and labeling of osteopontin, proliferating cell nuclear antigen, and tartrate-resistant acid phosphatase. After one-month implantation, total bone area and new bone area were significantly higher around actuators when compared to static controls. Bone deposition rate was also significantly higher in the mechanically stimulated areas. In these areas, osteopontin increased expression was observed. The present in vivo study suggests that piezoelectric materials and the converse piezoelectric effect may be used to effectively stimulate bone growth. PMID:22701304
Blanchard, Otis L; Smoliga, James M
2015-05-01
Body surface area (BSA) scaling has been used for prescribing individualized dosages of various drugs and has also been recommended by the U.S. Food and Drug Administration as one method for using data from animal model species to establish safe starting dosages for first-in-human clinical trials. Although BSA conversion equations have been used in certain clinical applications for decades, recent recommendations to use BSA to derive interspecies equivalents for therapeutic dosages of drug and natural products are inappropriate. A thorough review of the literature reveals that BSA conversions are based on antiquated science and have little justification in current translational medicine compared to more advanced allometric and physiologically based pharmacokinetic modeling. Misunderstood and misinterpreted use of BSA conversions may have disastrous consequences, including underdosing leading to abandonment of potentially efficacious investigational drugs, and unexpected deadly adverse events. We aim to demonstrate that recent recommendations for BSA are not appropriate for animal-to-human dosage conversions and use pharmacokinetic data from resveratrol studies to demonstrate how confusion between the "human equivalent dose" and "pharmacologically active dose" can lead to inappropriate dose recommendations. To optimize drug development, future recommendations for interspecies scaling must be scientifically justified using physiologic, pharmacokinetic, and toxicology data rather than simple BSA conversion. © FASEB.
ERIC Educational Resources Information Center
Guo, Hongwen; Liu, Jinghua; Curley, Edward; Dorans, Neil
2012-01-01
This study examines the stability of the "SAT Reasoning Test"™ score scales from 2005 to 2010. A 2005 old form (OF) was administered along with a 2010 new form (NF). A new conversion for OF was derived through direct equipercentile equating. A comparison of the newly derived and the original OF conversions showed that Critical Reading…
Nathaniel Anderson; J. Greg Jones; Deborah Page-Dumroese; Daniel McCollum; Stephen Baker; Daniel Loeffler; Woodam Chung
2013-01-01
Thermochemical biomass conversion systems have the potential to produce heat, power, fuels and other products from forest biomass at distributed scales that meet the needs of some forest industry facilities. However, many of these systems have not been deployed in this sector and the products they produce from forest biomass have not been adequately described or...
Pretest Round Robin Analysis of 1:4-Scale Prestressed Concrete Containment Vessel Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
HESSHEIMER,MICHAEL F.; LUK,VINCENT K.; KLAMERUS,ERIC W.
The purpose of the program is to investigate the response of representative scale models of nuclear containment to pressure loading beyond the design basis accident and to compare analytical predictions to measured behavior. This objective is accomplished by conducting static, pneumatic overpressurization tests of scale models at ambient temperature. This research program consists of testing two scale models: a steel containment vessel (SCV) model (tested in 1996) and a prestressed concrete containment vessel (PCCV) model, which is the subject of this paper.
Yuan, Ye; Dai, Xiaoqin; Wang, Huimin; Xu, Ming; Fu, Xiaoli; Yang, Fengting
2016-01-01
Compared with CO2, methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases in terms of their global warming potentials. Previous studies have indicated that land-use conversion has a significant impact on greenhouse gas emissions. However, little is known regarding the impact of converting rice (Oryza sativa L.) to vegetable fields, an increasing trend in land-use change in southern China, on CH4 and N2O fluxes. The effects of converting double rice cropping to vegetables on CH4 and N2O fluxes were examined using a static chamber method in southern China from July 2012 to July 2013. The results indicate that CH4 fluxes could reach 31.6 mg C m−2 h−1 under rice before land conversion. The cumulative CH4 emissions for fertilized and unfertilized rice were 348.9 and 321.0 kg C ha−1 yr−1, respectively. After the land conversion, the cumulative CH4 emissions were −0.4 and 1.4 kg C ha−1 yr−1 for the fertilized and unfertilized vegetable fields, respectively. Similarly, the cumulative N2O fluxes under rice were 1.27 and 0.56 kg N ha−1 yr−1 for the fertilized and unfertilized treatments before the land conversion and 19.2 and 8.5 kg N ha−1 yr−1, respectively, after the land conversion. By combining the global warming potentials (GWPs) of both gases, the overall land-use conversion effect was minor (P = 0.36) with fertilization, but the conversion reduced GWP by 63% when rice and vegetables were not fertilized. Increase in CH4 emissions increased GWP under rice compared with vegetables with non-fertilization, but increased N2O emissions compensated for similar GWPs with fertilization under rice and vegetables. PMID:27195497
Yuan, Ye; Dai, Xiaoqin; Wang, Huimin; Xu, Ming; Fu, Xiaoli; Yang, Fengting
2016-01-01
Compared with CO2, methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases in terms of their global warming potentials. Previous studies have indicated that land-use conversion has a significant impact on greenhouse gas emissions. However, little is known regarding the impact of converting rice (Oryza sativa L.) to vegetable fields, an increasing trend in land-use change in southern China, on CH4 and N2O fluxes. The effects of converting double rice cropping to vegetables on CH4 and N2O fluxes were examined using a static chamber method in southern China from July 2012 to July 2013. The results indicate that CH4 fluxes could reach 31.6 mg C m-2 h-1 under rice before land conversion. The cumulative CH4 emissions for fertilized and unfertilized rice were 348.9 and 321.0 kg C ha-1 yr-1, respectively. After the land conversion, the cumulative CH4 emissions were -0.4 and 1.4 kg C ha-1 yr-1 for the fertilized and unfertilized vegetable fields, respectively. Similarly, the cumulative N2O fluxes under rice were 1.27 and 0.56 kg N ha-1 yr-1 for the fertilized and unfertilized treatments before the land conversion and 19.2 and 8.5 kg N ha-1 yr-1, respectively, after the land conversion. By combining the global warming potentials (GWPs) of both gases, the overall land-use conversion effect was minor (P = 0.36) with fertilization, but the conversion reduced GWP by 63% when rice and vegetables were not fertilized. Increase in CH4 emissions increased GWP under rice compared with vegetables with non-fertilization, but increased N2O emissions compensated for similar GWPs with fertilization under rice and vegetables.
2012-01-01
Background Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure. One such sub-canopy disturbance in tropical forests is abscising leaves of large arborescent palm (Arececeae) trees. These leaves can weigh up to 15 kg and cause physical damage and mortality to juvenile plants. Previous studies examining this question suffered from the use of static data at small spatial scales. Here we use data from a large permanent forest plot combined with dynamic data on the survival and growth of > 66,000 individuals over a seven-year period to address whether falling palm fronds do impact neighboring seedling and sapling communities, or whether there is an interaction between the palms and peccaries rooting for fallen palm fruit in the same area as falling leaves. We tested the wider generalisation of these hypotheses by comparing seedling and sapling survival under fruiting and non-fruiting trees in another family, the Myristicaceae. Results We found a spatially-restricted but significant effect of large arborescent fruiting palms on the spatial structure, population dynamics and species diversity of neighbouring sapling and seedling communities. However, these effects were not found around slightly smaller non-fruiting palm trees, suggesting it is seed predators such as peccaries rather than falling leaves that impact on the communities around palm trees. Conversely, this hypothesis was not supported in data from other edible species, such as those in the family Myristicaceae. Conclusions Given the abundance of arborescent palm trees in Amazonian forests, it is reasonable to conclude that their presence does have a significant, if spatially-restricted, impact on juvenile plants, most likely on the survival and growth of seedlings and saplings damaged by foraging peccaries. Given the abundance of fruit produced by each palm, the widespread effects of these small-scale disturbances appear, over long time-scales, to cause directional changes in community structure at larger scales. PMID:22429883
Queenborough, Simon A; Metz, Margaret R; Wiegand, Thorsten; Valencia, Renato
2012-03-19
Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure. One such sub-canopy disturbance in tropical forests is abscising leaves of large arborescent palm (Arececeae) trees. These leaves can weigh up to 15 kg and cause physical damage and mortality to juvenile plants. Previous studies examining this question suffered from the use of static data at small spatial scales. Here we use data from a large permanent forest plot combined with dynamic data on the survival and growth of > 66,000 individuals over a seven-year period to address whether falling palm fronds do impact neighboring seedling and sapling communities, or whether there is an interaction between the palms and peccaries rooting for fallen palm fruit in the same area as falling leaves. We tested the wider generalisation of these hypotheses by comparing seedling and sapling survival under fruiting and non-fruiting trees in another family, the Myristicaceae. We found a spatially-restricted but significant effect of large arborescent fruiting palms on the spatial structure, population dynamics and species diversity of neighbouring sapling and seedling communities. However, these effects were not found around slightly smaller non-fruiting palm trees, suggesting it is seed predators such as peccaries rather than falling leaves that impact on the communities around palm trees. Conversely, this hypothesis was not supported in data from other edible species, such as those in the family Myristicaceae. Given the abundance of arborescent palm trees in Amazonian forests, it is reasonable to conclude that their presence does have a significant, if spatially-restricted, impact on juvenile plants, most likely on the survival and growth of seedlings and saplings damaged by foraging peccaries. Given the abundance of fruit produced by each palm, the widespread effects of these small-scale disturbances appear, over long time-scales, to cause directional changes in community structure at larger scales.
Assessment at full scale of exhaust nozzle-to-wing size on STOL-OTW acoustic characteristics
NASA Technical Reports Server (NTRS)
Von Glahn, U.; Groesbeck, D.
1979-01-01
On the basis of static zero/acoustic data obtained at model scale, the effect of exhaust nozzle size on flyover noise is evaluated at full scale for different STOL-OTW nozzle configurations. Three types of nozzles are evaluated: a circular/deflector nozzle mounted above the wing, a slot/deflector nozzle mounted on the wing, and a slot nozzle mounted on the wing. The nozzle exhaust plane location, measured from the wing leading edge was varied from 10 to 46 percent of the wing chord (flaps retracted). Flap angles of 20 deg (takeoff) and 60 deg (approach) are included in the study. Initially, perceived noise levels (PNL) are calculated as a function of flyover distance at 152 m altitude. From these plots static EPNL values, defined as flyover relative noise levels, then are obtained as functions of nozzle size for equal aerodynamic performance (lift and thrust). On the basis of these calculations, the acoustic benefits attributable to nozzle size relative to a given wing chord size are assessed.
Assessment at full scale of exhaust nozzle to wing size on STOL-OTW acoustic characteristics
NASA Technical Reports Server (NTRS)
Vonglahn, U.; Grosbeck, D.
1979-01-01
On the basis of static aero/acoustic data obtained at model scale, the effect of exhaust nozzle size on flyover noise is evaluated at full scale for different STOL-OTW nozzle configurations. Three types of nozzles are evaluated: a circular/deflector nozzle mounted above the wing; a slot/deflector nozzle mounted on the wing; and a slot nozzle mounted on the wing. The nozzle exhaust plane location, measured from the wing leading edge, was varied from 10 to 46 percent of the wing chord (flaps retracted). Flap angles of 20 deg (takeoff) and 60 deg (approach) are included in the study. Initially, perceived noise levels (PNL) are calculated as a function flyover distance at 152m altitude. From these plots, static EPNL values (defined as flyover relative noise levels), are obtained as functions of nozzle size for equal aerodynamic performance (lift and thrust). The acoustic benefits attributable to nozzle size relative to a given wing chord size are assessed.
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2000-01-01
A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10-by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor staff and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.
NASA Technical Reports Server (NTRS)
Ammer, R. C.; Kutney, J. T.
1977-01-01
A static scale model test program was conducted in the static test area of the NASA-Langley 9.14- by 18.29 m(30- by 60-ft) Full-Scale Wind Tunnel Facility to develop an over-the-wing (OTW) nozzle and reverser configuration for the Quiet Clean Short-Haul Experimental Engine (QCSEE). Three nozzles and one basic reverser configuration were tested over the QCSEE takeoff and approach power nozzle pressure ratio range between 1.1 and 1.3. The models were scaled to 8.53% of QCSEE engine size and tested behind two 13.97-cm (5.5-in.) diameter tip-turbine-driven fan simulators coupled in tandem. An OTW nozzle and reverser configuration was identified which satisfies the QCSEE experimental engine requirements in terms of nozzle cycle area variation capability and reverse thrust level, and provides good jet flow spreading over a wing upper surface for achievement of high propulsive lift performance.
Study on film resistivity of Energy Conversion Components for MEMS Initiating Explosive Device
NASA Astrophysics Data System (ADS)
Ren, Wei; Zhang, Bin; Zhao, Yulong; Chu, Enyi; Yin, Ming; Li, Hui; Wang, Kexuan
2018-03-01
Resistivity of Plane-film Energy Conversion Components is a key parameter to influence its resistance and explosive performance, and also it has important relations with the preparation of thin film technology, scale, structure and etc. In order to improve the design of Energy Conversion Components for MEMS Initiating Explosive Device, and reduce the design deviation of Energy Conversion Components in microscale, guarantee the design resistance and ignition performance of MEMS Initiating Explosive Device, this paper theoretically analyzed the influence factors of film resistivity in microscale, through the preparation of Al film and Ni-Cr film at different thickness with micro/nano, then obtain the film resistivity parameter of the typical metal under different thickness, and reveals the effect rule of the scale to the resistivity in microscale, at the same time we obtain the corresponding inflection point data.
Self-forces on static bodies in arbitrary dimensions
NASA Astrophysics Data System (ADS)
Harte, Abraham I.; Flanagan, Éanna É.; Taylor, Peter
2016-06-01
We derive exact expressions for the scalar and electromagnetic self-forces and self-torques acting on arbitrary static extended bodies in arbitrary static spacetimes with any number of dimensions. Nonperturbatively, our results are identical in all dimensions. Meaningful point particle limits are quite different in different dimensions, however. These limits are defined and evaluated, resulting in simple "regularization algorithms" which can be used in concrete calculations. In these limits, self-interaction is shown to be progressively less important in higher numbers of dimensions; it generically competes in magnitude with increasingly high-order extended-body effects. Conversely, we show that self-interaction effects can be relatively large in 1 +1 and 2 +1 dimensions. Our motivations for this work are twofold: First, no previous derivation of the self-force has been provided in arbitrary dimensions, and heuristic arguments presented by different authors have resulted in conflicting conclusions. Second, the static self-force problem in arbitrary dimensions provides a valuable test bed with which to continue the development of general, nonperturbative methods in the theory of motion. Several new insights are obtained in this direction, including a significantly improved understanding of the renormalization process. We also show that there is considerable freedom to use different "effective fields" in the laws of motion—a freedom which can be exploited to optimally simplify specific problems. Different choices give rise to different inertias, gravitational forces, and electromagnetic or scalar self-forces, but there is a sense in which none of these quantities are individually accessible to experiment. Certain combinations are observable, however, and these remain invariant under all possible field redefinitions.
Energy Conversion in High Enthalpy Flows and Non-equilibrium Plasmas
2014-01-01
walls of the supersonic test section after the nozzle exit diverge at a 1.5 degree angle each to provide boundary- layer relief. The static pressure in...the supersonic section is measured using a wall pressure tap in the side wall at the end of the nozzle . A 4 cm long, 5 mm diameter quartz cylinder...model is mounted in the center of the 7 cm long supersonic test section, i.e., 3.5 cm downstream of the end of the nozzle . The model extends wall-to
SQUID-based microwave cavity search for dark-matter axions.
Asztalos, S J; Carosi, G; Hagmann, C; Kinion, D; van Bibber, K; Hotz, M; Rosenberg, L J; Rybka, G; Hoskins, J; Hwang, J; Sikivie, P; Tanner, D B; Bradley, R; Clarke, J
2010-01-29
Axions in the microeV mass range are a plausible cold dark-matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. We report the first result from such an axion search using a superconducting first-stage amplifier (SQUID) replacing a conventional GaAs field-effect transistor amplifier. This experiment excludes KSVZ dark-matter axions with masses between 3.3 microeV and 3.53 microeV and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.
Measurements of Flow Turbulence in the NASA Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Wiesman, Carol D.; Sleeper, Robert K.
2005-01-01
An assessment of the flow turbulence in the NASA Langley Transonic Dynamics Tunnel (TDT) was conducted during calibration activities following the facility conversion from a Freon-12 heavy-gas test medium to an R134a heavy-gas test medium. Total pressure, static pressure, and acoustic pressure levels were measured at several locations on a stingmounted rake. The test measured wall static pressures at several locations although this paper presents only those from one location. The test used two data acquisition systems, one sampling at 1000 Hz and the second sampling at 125 000 Hz, for acquiring time-domain data. This paper presents standard deviations and power spectral densities of the turbulence points throughout the wind tunnel envelope in air and R134a. The objective of this paper is to present the turbulence characteristics for the test section. No attempt is made to assess the causes of the turbulence. The present paper looks at turbulence in terms of pressure fluctuations. Reference 1 looked at tunnel turbulence in terms of velocity fluctuations.
Stress analysis of 27% scale model of AH-64 main rotor hub
NASA Technical Reports Server (NTRS)
Hodges, R. V.
1985-01-01
Stress analysis of an AH-64 27% scale model rotor hub was performed. Component loads and stresses were calculated based upon blade root loads and motions. The static and fatigue analysis indicates positive margins of safety in all components checked. Using the format developed here, the hub can be stress checked for future application.
ERIC Educational Resources Information Center
Song, Jia
2016-01-01
The current study aims to evaluate teachers' self-efficacy and attitudes towards inclusive classrooms in Japan and Korea. Teachers' Sense of Efficacy Scale (TSES; Tschannen-Moran and Woolfolk, [Tschannen-Moran, M., 2001]) and Scale of Teachers' Attitudes Towards Inclusive Classrooms (STATIC; Cochran, [Cochran, H., 1998]) were completed by 191…
Alkaline static feed electrolyzer based oxygen generation system
NASA Technical Reports Server (NTRS)
Noble, L. D.; Kovach, A. J.; Fortunato, F. A.; Schubert, F. H.; Grigger, D. J.
1988-01-01
In preparation for the future deployment of the Space Station, an R and D program was established to demonstrate integrated operation of an alkaline Water Electrolysis System and a fuel cell as an energy storage device. The program's scope was revised when the Space Station Control Board changed the energy storage baseline for the Space Station. The new scope was aimed at the development of an alkaline Static Feed Electrolyzer for use in an Environmental Control/Life Support System as an oxygen generation system. As a result, the program was divided into two phases. The phase 1 effort was directed at the development of the Static Feed Electrolyzer for application in a Regenerative Fuel Cell System. During this phase, the program emphasized incorporation of the Regenerative Fuel Cell System design requirements into the Static Feed Electrolyzer electrochemical module design and the mechanical components design. The mechanical components included a Pressure Control Assembly, a Water Supply Assembly and a Thermal Control Assembly. These designs were completed through manufacturing drawing during Phase 1. The Phase 2 effort was directed at advancing the Alkaline Static Feed Electrolyzer database for an oxygen generation system. This development was aimed at extending the Static Feed Electrolyzer database in areas which may be encountered from initial fabrication through transportation, storage, launch and eventual Space Station startup. During this Phase, the Program emphasized three major areas: materials evaluation, electrochemical module scaling and performance repeatability and Static Feed Electrolyzer operational definition and characterization.
Relationship between antigravity control and postural control in young children.
Sellers, J S
1988-04-01
The purposes of this study were 1) to determine the relationship between antigravity control (supine flexion and prone extension) and postural control (static and dynamic balance), 2) to determine the quality of antigravity and postural control, and 3) to determine whether sex and ethnic group differences correlate with differences in antigravity control and postural control in young children. I tested 107 black, Hispanic, and Caucasian children in a Head Start program, with a mean age of 61 months. The study results showed significant relationships between antigravity control and postural control. Subjects' supine flexion performance was significantly related to the quantity and quality of their static and dynamic balance performance, whereas prone extension performance was related only to the quality of dynamic balance performance. Quality scale measurements (r = .90) indicated that the children in this study had not yet developed full antigravity or postural control. The study results revealed differences between sexes in the quality of static balance and prone extension performance and ethnic differences in static balance, dynamic balance, and prone extension performance.
Gatica-Rojas, Valeska; Cartes-Velásquez, Ricardo; Méndez-Rebolledo, Guillermo; Guzman-Muñoz, Eduardo; Lizama, L Eduardo Cofré
2017-08-01
This study sought to evaluate the effects of a Nintendo Wii Balance Board (NWBB) intervention on ankle spasticity and static standing balance in young people with spastic cerebral palsy (SCP). Ten children and adolescents (aged 72-204 months) with SCP participated in an exercise program with NWBB. The intervention lasted 6 weeks, 3 sessions per week, 25 minutes for each session. Ankle spasticity was assessed using the Modified Modified Ashworth Scale (MMAS), and static standing balance was quantified using posturographic measures (center-of-pressure [CoP] measures). Pre- and post-intervention measures were compared. Significant decreases of spasticity in the ankle plantar flexor muscles (p < 0.01). There was also a significant reduction in the CoP sway area (p = 0.04), CoP mediolateral velocity (p =0.03), and CoP anterior-posterior velocity (p = 0.03). A 6-session NWBB program reduces the spasticity at the ankle plantar flexors and improves the static standing balance in young people with SCP.
NASA Technical Reports Server (NTRS)
Clark, L. E.; Richie, C. B.
1977-01-01
The hypersonic aerodynamic characteristics of an air-launched, delta-wing research aircraft concept were investigated at Mach 6. The effect of various components such as nose shape, wing camber, wing location, center vertical tail, wing tip fins, forward delta wing, engine nacelle, and speed brakes was also studied. Tests were conducted with a 0.021 scale model at a Reynolds number, based on model length, of 10.5 million and over an angel of attack range from -4 deg to 20 deg. Results show that most configurations with a center vertical tail have static longitudinal stability at trim, static directional stability at angles of attack up to 12 deg, and static lateral stability throughout the angle of attack range. Configurations with wing tip fins generally have static longitudinal stability at trim, have lateral stability at angles of attack above 8 deg, and are directionally unstable over the angle of attack range.
Kaluza-Klein two-brane-worlds cosmology at low energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feranie, S.; Arianto; Zen, Freddy P.
2010-04-15
We study two (4+n)-dimensional branes embedded in (5+n)-dimensional spacetime. Using the gradient expansion approximation, we find that the effective theory is described by (4+n)-dimensional scalar-tensor gravity with a specific coupling function. Based on this theory we investigate the Kaluza-Klein two-brane-worlds cosmology at low energy, in both the static and the nonstatic internal dimensions. In the case of the static internal dimensions, the effective gravitational constant in the induced Friedmann equation depends on the equations of state of the brane matter, and the dark radiation term naturally appears. In the nonstatic case we take a relation between the external and internalmore » scale factors of the form b(t)=a{sup {gamma}(t)} in which the brane world evolves with two scale factors. In this case, the induced Friedmann equation on the brane is modified in the effective gravitational constant and the term proportional to a{sup -4{beta}.} For dark radiation, we find {gamma}=-2/(1+n). Finally, we discuss the issue of conformal frames which naturally arises with scalar-tensor theories. We find that the static internal dimensions in the Jordan frame may become nonstatic in the Einstein frame.« less
Measuring contact area in a sliding human finger-pad contact.
Liu, X; Carré, M J; Zhang, Q; Lu, Z; Matcher, S J; Lewis, R
2018-02-01
The work outlined in this paper was aimed at achieving further understanding of skin frictional behaviour by investigating the contact area between human finger-pads and flat surfaces. Both the static and the dynamic contact areas (in macro- and micro-scales) were measured using various techniques, including ink printing, optical coherence tomography (OCT) and Digital Image Correlation (DIC). In the studies of the static measurements using ink printing, the experimental results showed that the apparent and the real contact area increased with load following a piecewise linear correlation function for a finger-pad in contact with paper sheets. Comparisons indicated that the OCT method is a reliable and effective method to investigate the real contact area of a finger-pad and allow micro-scale analysis. The apparent contact area (from the DIC measurements) was found to reduce with time in the transition from the static phase to the dynamic phase while the real area of contact (from OCT) increased. The results from this study enable the interaction between finger-pads and contact object surface to be better analysed, and hence improve the understanding of skin friction. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Multiple Changes to Reusable Solid Rocket Motors, Identifying Hidden Risks
NASA Technical Reports Server (NTRS)
Greenhalgh, Phillip O.; McCann, Bradley Q.
2003-01-01
The Space Shuttle Reusable Solid Rocket Motor (RSRM) baseline is subject to various changes. Changes are necessary due to safety and quality improvements, environmental considerations, vendor changes, obsolescence issues, etc. The RSRM program has a goal to test changes on full-scale static test motors prior to flight due to the unique RSRM operating environment. Each static test motor incorporates several significant changes and numerous minor changes. Flight motors often implement multiple changes simultaneously. While each change is individually verified and assessed, the potential for changes to interact constitutes additional hidden risk. Mitigating this risk depends upon identification of potential interactions. Therefore, the ATK Thiokol Propulsion System Safety organization initiated the use of a risk interaction matrix to identify potential interactions that compound risk. Identifying risk interactions supports flight and test motor decisions. Uncovering hidden risks of a full-scale static test motor gives a broader perspective of the changes being tested. This broader perspective compels the program to focus on solutions for implementing RSRM changes with minimal/mitigated risk. This paper discusses use of a change risk interaction matrix to identify test challenges and uncover hidden risks to the RSRM program.
Walters, Glenn D; Deming, Adam; Casbon, Todd
2015-04-01
The purpose of this study was to determine whether the Psychological Inventory of Criminal Thinking Styles (PICTS) was capable of predicting recidivism in 322 male sex offenders released from prison-based sex offender programs in a Midwestern state. The Static-99R and PICTS General Criminal Thinking (GCT), Reactive (R), and Entitlement (En) scores all correlated significantly with general recidivism, the Static-99R correlated significantly with violent recidivism, and the Static-99R score and PICTS GCT, Proactive (P), and En scores correlated significantly with failure to register as a sex offender (FTR) recidivism. Area under the curve effect size estimates varied from small to large, and Cox regression analyses revealed that the PICTS En score achieved incremental validity relative to the Static-99R in predicting general recidivism and the PICTS GCT, P, and En scores achieved incremental validity relative to the Static-99R in predicting FTR recidivism. It is speculated that the PICTS in general and the En scale in particular may have utility in risk management and treatment planning for sex offenders by virtue of their focus on antisocial thinking. © The Author(s) 2014.
Static structure of a pointed charged drop
NASA Astrophysics Data System (ADS)
Fernandez de La Mora, Juan
2017-11-01
The static equilibrium structure of an equipotential drop with two symmetric Taylor cones is computed by assigning a charge distribution along the z axis q (z) = ∑Bn (L2 -z2)n + 1 / 2 . Taylor's local equilibrium at the poles z = L , - L fixes two of the Bn coefficients as a function of the other, determined by minimizing stress imbalance. Just two optimally chosen terms in the Bn expansion yield imperceptible errors. Prior work has argued that an exploding drop initially carrying Rayleigh's charge qR is quasi static. Paradoxically, quasi-static predictions on the size of the progeny drops emitted during a Coulombic explosion disagree with observations. The static drop structure found here also models poorly a Coulomb explosion having an equatorial over polar length ratio (0.42) and the a drop charge exceeding those observed (0.28-0.36 and qR / 2). Our explanation for this paradox is that, while the duration tc of a Coulomb explosion is much larger than the charge relaxation time, the dynamic time scale for drop elongation is typically far longer than tc. Therefore, the pressure distribution within the exploding drop is not uniform. A similar analysis for a drop in an external field fits well the experimental shape.
Dynamic assessment of word learning skills of pre-school children with primary language impairment.
Camilleri, Bernard; Law, James
2014-10-01
Dynamic assessment has been shown to have considerable theoretical and clinical significance in the assessment of socially disadvantaged and culturally and linguistically diverse children. In this study it is used to enhance assessment of pre-school children with primary language impairment. The purpose of the study was to determine whether a dynamic assessment (DA) has the potential to enhance the predictive capacity of a static measure of receptive vocabulary in pre-school children. Forty pre-school children were assessed using the static British Picture Vocabulary Scale (BPVS), a DA of word learning potential and an assessment of non-verbal cognitive ability. Thirty-seven children were followed up 6 months later and re-assessed using the BPVS. Although the predictive capacity of the static measure was found to be substantial, the DA increased this significantly especially for children with static scores below the 25th centile. The DA of children's word learning has the potential to add value to the static assessment of the child with low language skills, to predict subsequent receptive vocabulary skills and to increase the chance of correctly identifying children in need of ongoing support.
team. His primary responsibilities include mechanical component design, test instrumentation and layout design, and data analysis for static and fatigue tests on full-scale wind turbine blades. Education B.S
Monitoring dynamic loads on wind tunnel force balances
NASA Technical Reports Server (NTRS)
Ferris, Alice T.; White, William C.
1989-01-01
Two devices have been developed at NASA Langley to monitor the dynamic loads incurred during wind-tunnel testing. The Balance Dynamic Display Unit (BDDU), displays and monitors the combined static and dynamic forces and moments in the orthogonal axes. The Balance Critical Point Analyzer scales and sums each normalized signal from the BDDU to obtain combined dynamic and static signals that represent the dynamic loads at predefined high-stress points. The display of each instrument is a multiplex of six analog signals in a way that each channel is displayed sequentially as one-sixth of the horizontal axis on a single oscilloscope trace. Thus this display format permits the operator to quickly and easily monitor the combined static and dynamic level of up to six channels at the same time.
ERIC Educational Resources Information Center
Wielaert, Sandra M.; Berns, Philine; van de Sandt-Koenderman, Mieke W. M. E.; Dammers, Nina; Sage, Karen
2017-01-01
Background: The increase in the number of reported conversation partner programmes for conversation partners of people with aphasia demonstrates increased awareness of partner needs and the positive effect of trained partners on the communicative abilities of the person with aphasia. Predominantly small-scale studies describe the effectiveness of…
Hodgkiss, Alex; Gilligan, Katie A; Tolmie, Andrew K; Thomas, Michael S C; Farran, Emily K
2018-01-22
Prior longitudinal and correlational research with adults and adolescents indicates that spatial ability is a predictor of science learning and achievement. However, there is little research to date with primary-school aged children that addresses this relationship. Understanding this association has the potential to inform curriculum design and support the development of early interventions. This study examined the relationship between primary-school children's spatial skills and their science achievement. Children aged 7-11 years (N = 123) completed a battery of five spatial tasks, based on a model of spatial ability in which skills fall along two dimensions: intrinsic-extrinsic; static-dynamic. Participants also completed a curriculum-based science assessment. Controlling for verbal ability and age, mental folding (intrinsic-dynamic spatial ability), and spatial scaling (extrinsic-static spatial ability) each emerged as unique predictors of overall science scores, with mental folding a stronger predictor than spatial scaling. These spatial skills combined accounted for 8% of the variance in science scores. When considered by scientific discipline, mental folding uniquely predicted both physics and biology scores, and spatial scaling accounted for additional variance in biology and variance in chemistry scores. The children's embedded figures task (intrinsic-static spatial ability) only accounted for variance in chemistry scores. The patterns of association were consistent across the age range. Spatial skills, particularly mental folding, spatial scaling, and disembedding, are predictive of 7- to 11-year-olds' science achievement. These skills make a similar contribution to performance for each age group. © 2018 The Authors. British Journal of Education Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Biological Conversion of Sugars to Hydrocarbons Technology Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Ryan; Biddy, Mary J.; Tan, Eric
2013-03-31
In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derivedmore » sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.« less
Postoperative Conversion Disorder in Elderly Oral Cancer Patient.
Yakushiji, Takashi; Hayashi, Kamichika; Morikawa, Takamichi; Migita, Masashi; Ogane, Satoru; Muramatsu, Kyotaro; Kamio, Takashi; Shibahara, Takahiko; Takano, Nobuo
2016-01-01
Conversion disorder is a condition in which psychological stress in response to difficult situations manifests as physical symptoms. Here, we report a case of postoperative coma due to conversion disorder in an elderly oral cancer patient. An 82-year-old woman was referred to Tokyo Dental College Chiba Hospital with a mass lesion on the tongue. A biopsy revealed a well-differentiated squamous cell carcinoma. Surgical treatment was performed for the tongue carcinoma and tracheotomy for management of the airway. On postoperative day 5, the patient exhibited loss of consciousness (Glasgow Coma Scale: E1, VT, M1; Japan Coma Scale: III-300). The patient's vital signs were all normal, as were the results of a full blood count, brain-CT, MRI, and MRA. Only the arm dropping test was positive. Therefore, the cause of the coma was diagnosed as conversion disorder. Seven hours later, the patient showed a complete recovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowe, N.
2014-05-01
This research program will convert acid pretreated corn stover to sugars at the National Renewable Energy Laboratory (NREL) and then transfer these sugars to Honda R&D and its partner the Green Earth Institute (GEI) for conversion to ethanol via a novel fermentation organism. In phase one, NREL will adapt its pretreatment and saccharification process to the unique attributes of this organism, and Honda R&D/GEI will increase the sugar conversion rate as well as the yield and titer of the resulting ethanol. In later phases, NREL, Honda R&D, and GEI will work together at NREL to optimize and scale-up to pilot-scalemore » the Honda R&D/GEI bioethanol production process. The final stage will be to undertake a pilot-scale test at NREL of the optimized bioethanol conversion process.« less
NASA Technical Reports Server (NTRS)
Braddock, W. F.; Streby, G. D.
1977-01-01
The results of a pressure test of a .00548 scale 146 inch Space Shuttle Solid Rocket Booster (SRB) with and without protuberances, conducted in a 14 x 14 inch trisonic wind tunnel are presented. Static pressure distributions for the SRB at reentry attitudes and flight conditions were obtained. Local longitudinal and ring pressure distributions are presented in tabulated form. Integration of the pressure data was performed. The test was conducted at Mach numbers of 0.40 to 4.45 over an angle of attack range from 60 to 185 degrees. Roll angles of 0, 45, 90 and 315 degrees were investigated. Reynolds numbers per foot varied for selected Mach numbers.
NASA Technical Reports Server (NTRS)
Pendergraft, O. C., Jr.; Carson, G. T., Jr.
1984-01-01
Static pressure coefficient distributions on the forebody, afterbody, and nozzles of a 1/12 scale F-15 propulsion model was determined in the 16 foot transonic tunnel for Mach numbers from 0.60 to 1.20, angles of attack from -2 deg to 7 deg and ratio of jet total pressure to free stream static pressure from 1 up to about 7, depending on Mach number. The effects of nozzle geometry and horizontal tail deflection on the pressure distributions were investigated. Boundary layer total pressure profiles were determined at two locations ahead of the nozzles on the top nacelle surface. Reynolds number varied from about 1.0 x 10 to the 7th power per meter, depending on Mach number.
Active Chevrons for Jet Noise Reduction
NASA Technical Reports Server (NTRS)
Depuru-Mohan, N. K.; Doty, M. J.
2017-01-01
Jet noise is often a dominant component of aircraft noise, particularly at takeoff. To meet the stringent noise regulations, the aircraft industry is in a pressing need of advanced noise reduction concepts. In the present study, the potential of piezoelectrically-activated chevrons for jet noise reduction was experimentally investigated. The perturbations near the nozzle exit caused by piezoelectrically-activated chevrons could be used to modify the growth rate of the mixing layer and thereby potentially reduce jet noise. These perturbations are believed to increase the production of small-scale disturbances at the expense of large-scale turbulent structures. These large-scale turbulent structures are responsible for the dominant portion of the jet mixing noise, particularly low-frequency noise. Therefore, by exciting the static chevron geometry through piezoelectric actuators, an additional acoustic benefit could possibly be achieved. To aid in the initial implementation of this concept, several flat-faced faceted nozzles (four, six, and eight facets) were investigated. Among the faceted nozzles, it was found that the eight-faceted nozzle behaves very similarly to the round nozzle. Furthermore, among the faceted nozzles with static chevrons, the four-faceted nozzle with static chevrons was found to be most effective in terms of jet noise reduction. The piezoelectrically-activated chevrons reduced jet noise up to 2 dB compared to the same nozzle geometry without excitation. This benefit was observed over a wide range of excitation frequencies by applying very low voltages to the piezoelectric actuators.
An Overlooked Source of Auroral Arc Field-Aligned Current
NASA Astrophysics Data System (ADS)
Knudsen, D. J.
2017-12-01
The search for the elusive generator of quiet auroral arcs often focuses on magnetospheric pressure gradients, based on the static terms in the so-called Vaslyiunas equation [Vasyliunas, in "Magneospheric Currents", Geophysical Monograph 28, 1984]. However, magnetospheric pressure gradient scale sizes are much larger than the width of individual auroral arcs. This discrepancy was noted by Atkinson [JGR, 27, p4746, 1970], who proposed that the auroral arcs are fed instead by steady-state polarization currents, in which large-scale convection across quasi-static electric field structures leads to an apparent time dependence in the frame co-moving with the plasma, and therefore to the generation of ion polarization currents. This mechanism has been adopted by a series of authors over several decades, relating to studies of the ionospheric feedback instability, or IFI. However, the steady-state polarization current mechanism does not require the IFI, nor even the ionsophere. Specifically, any quasi-static electric field structure that is stationary relative to large-scale plasma convection is subject to the generation this current. This talk demonstrates that assumed convection speeds of the order of a 100 m/s across typical arc fields structures can lead to the generation FAC magintudes of several μA/m2, typical of values observed at the ionospheric footpoint of auoral arcs. This current can be viewed as originating within the M-I coupling medium, along the entire field line connecting an auroral arc to its root in the magnetosphere.
NASA Technical Reports Server (NTRS)
Allen, E.
1974-01-01
Experimental aerodynamic investigations of the configuration 4 space shuttle orbiter were conducted in the 14-inch trisonic wind tunnel during November and December 1973. Elevon, aileron, bodyflap, speedbrake, rudder effectiveness, and effects of ventral fins were investigated at angles of attack from -10 deg to 40 deg, angles of sideslip from -10 deg to +10 deg, and Mach numbers from 0.6 to 4.96. Resulting six-component static stability data and associated test information are presented.
Technical Evaluation Motor no. 5 (TEM-5)
NASA Technical Reports Server (NTRS)
Cook, M.
1990-01-01
Technical Evaluation Motor No. 5 (TEM-5) was static test fired at the Thiokol Corporation Static Test Bay T-97. TEM-5 was a full scale, full duration static test fire of a high performance motor (HPM) configuration solid rocket motor (SRM). The primary purpose of TEM static tests is to recover SRM case and nozzle hardware for use in the redesigned solid rocket motor (RSRM) flight program. Inspection and instrumentation data indicate that the TEM-5 static test firing was successful. The ambient temperature during the test was 41 F and the propellant mean bulk temperature (PMBT) was 72 F. Ballistics performance values were within the specified requirements. The overall performance of the TEM-5 components and test equipment was nominal. Dissembly inspection revealed that joint putty was in contact with the inner groove of the inner primary seal of the ignitor adapter-to-forward dome (inner) joint gasket; this condition had not occurred on any previous static test motor or flight RSRM. While no qualification issues were addressed on TEM-5, two significant component changes were evaluated. Those changes were a new vented assembly process for the case-to-nozzle joint and the installation of two redesigned field joint protection systems. Performance of the vented case-to-nozzle joint assembly was successful, and the assembly/performance differences between the two field joint protection system (FJPS) configurations were compared.
McAuley, Emily M; Bertram, Susan M
2016-01-01
The evolution of multiple sexual signals presents a dilemma since individuals selecting a mate should pay attention to the most honest signal and ignore the rest; however, multiple signals may evolve if, together, they provide more information to the receiver than either one would alone. Static and dynamic signals, for instance, can act as multiple messages, providing information on different aspects of signaller quality that reflect condition at different time scales. While the nature of static signals makes them difficult or impossible for individuals to augment, dynamic signals are much more susceptible to temporary fluctuations in effort. We investigated whether male Texas field crickets, Gryllus texensis, that produce unattractive static signals compensate by dynamically increasing their calling effort. Our findings lend partial support to the compensation hypothesis, as males that called at unattractive carrier frequencies (a static trait) spent more time calling each night (a dynamic trait). Interestingly, this finding was most pronounced in males that called with attractive pulse characteristics (static traits) but did not occur in males that called with unattractive pulse characteristics. Males that signalled with unattractive pulse characteristics (duration and pause) spent less time calling through the night. Our correlative findings on wild caught males suggest that only males that signal with attractive pulse characteristics may be able to afford to pay the costs of both trait exaggeration and increased calling effort to compensate for poor carrier frequencies.
The role of large-scale eddies in the climate equilibrium. Part 2: Variable static stability
NASA Technical Reports Server (NTRS)
Zhou, Shuntai; Stone, Peter H.
1993-01-01
Lorenz's two-level model on a sphere is used to investigate how the results of Part 1 are modified when the interaction of the vertical eddy heat flux and static stability is included. In general, the climate state does not depend very much on whether or not this interaction is included, because the poleward eddy heat transport dominates the eddy forcing of mean temperature and wind fields. However, the climatic sensitivity is significantly affected. Compared to two-level model results with fixed static stability, the poleward eddy heat flux is less sensitive to the meridional temperature gradient and the gradient is more sensitive to the forcing. For example, the logarithmic derivative of the eddy flux with respect to the gradient has a slope that is reduced from approximately 15 on a beta-plane with fixed static stability and approximately 6 on a sphere with fixed static stability, to approximately 3 to 4 in the present model. This last result is more in line with analyses from observations. The present model also has a stronger baroclinic adjustment than that in Part 1, more like that in two-level beta-plane models with fixed static stability, that is, the midlatitude isentropic slope is very insensitive to the forcing, the diabatic heating, and the friction, unless the forcing is very weak.
NASA Astrophysics Data System (ADS)
Grise, K. M.; Thompson, D. W.; Birner, T.
2009-12-01
Static stability is a fundamental dynamical quantity that measures the vertical temperature stratification of the atmosphere. The long-term mean static stability field is characterized by the well-known transition from low values in the troposphere to high values in the stratosphere. However, the magnitude and structure of fine-scale static stability features near the tropopause are difficult to discern in temperature data with low vertical resolution. In this study, the authors apply over six years of high vertical resolution Global Positioning System radio occultation temperature profiles to document the long-term mean structure and variability of static stability in the global upper troposphere and lower stratosphere (UTLS). The results of this study demonstrate that a shallow but pronounced maximum in static stability exists just above the tropopause at all latitudes (i.e., the “tropopause inversion layer,” or TIL). This study also uncovers two novel aspects of static stability in the global UTLS. In the tropical lower stratosphere, the results reveal a unique vertically and horizontally varying static stability structure, with maxima located at ~17 km and ~19 km. The upper feature peaks during the NH cold season and has its largest magnitude between 10 and 15 degrees latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The results also demonstrate that the strength of the TIL is closely tied to stratospheric dynamic variability. The magnitude of the TIL is enhanced following sudden stratospheric warmings in the polar regions and the easterly phase of the quasi-biennial oscillation in the tropics.
NASA Astrophysics Data System (ADS)
Grise, Kevin M.; Thompson, David W. J.; Birner, Thomas
2010-05-01
Static stability is a fundamental dynamical quantity that measures the vertical temperature stratification of the atmosphere. The long-term mean static stability field is characterized by the well-known transition from low values in the troposphere to high values in the stratosphere. However, the magnitude and structure of fine-scale static stability features near the tropopause are difficult to discern in temperature data with low vertical resolution. In this study, the authors apply over six years of high vertical resolution Global Positioning System radio occultation temperature profiles to document the long-term mean structure and variability of static stability in the global upper troposphere and lower stratosphere (UTLS). The results of this study demonstrate that a shallow but pronounced maximum in static stability exists just above the tropopause at all latitudes (i.e., the "tropopause inversion layer," or TIL). This study also uncovers two novel aspects of static stability in the global UTLS. In the tropical lower stratosphere, the results reveal a unique vertically and horizontally varying static stability structure, with maxima located at ~17 km and ~19 km. The upper feature peaks during the NH cold season and has its largest magnitude between 10 and 15 degrees latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The results also demonstrate that the strength of the TIL is closely tied to stratospheric dynamic variability. The magnitude of the TIL is enhanced following sudden stratospheric warmings in the polar regions and the easterly phase of the quasi-biennial oscillation in the tropics.
Volovets, S A; Sergeenko, E Y; Darinskaya, L Y; Polyaev, B A; Yashinina, Y A; Isaeva, M A; Zhitareva, I V; Lobov, A N; Panova, T I
2018-05-21
the most frequent and severe consequences of an acute cerebrovascular accident (CVA) are locomotor and coordination disorders which significantly increase the risk of falling in a static position and when walking. The methods used for the rehabilitation of the affected patients are designed in the first place to enable the patients to acquire the skills necessary for maintaining the static balance. The modern equipment allows to carry out coordination training in the static position and also during walking. The objective of the present study was to evaluate, based on the results of our original research, the feasibility and effectiveness of the application of the «Balance tutor» system developed for the restoration of static and dynamic balance in the framework of the combined rehabilitation treatment of the patients suffering from impaired postural balance as a consequence of acute cerebrovascular accident (CVA). A total of 56 patients presenting with impaired postural balance following CVA were available for the examination. All of them underwent functional testing to assess the static and dynamic balance, walking abilities, and the risk of falling down including the study with the use of computer-assisted stabilometry. The study has demonstrated that the inclusion of the «Balance tutor» system for the restoration of the static and dynamic balance in the combined rehabilitative treatment of the patients having postural balance disorders after the CVA reduces the risk of fall for a walking patient, improves his (her) static and dynamic balance, increases the patient's ability to move without exterior help. The patients comprising the main study group were found to experience a decrease of statokinesiogram space in the «eyes are open» position (p = 0.0576, the Mann-Whitney U test) as well as a reliable decrease of the statokinesiogram space in the «eyes are closed» position (p=0.0063, the Mann-Whitney U test). Similar changes occurred in speed of pressure center relocation. By the end of the rehabilitation course, the patients of the main group exhibited a reliable enhancement in the dynamic balance rates estimated with the use of the Berg Balance Scale (p=0.028, Tukey's criterion), an increase in stability based at the Tinneti scale, p=0.0291; Tukey's criterion), and a decrease of the risk of falling during walk assessed with the application of Dynamic Gait Index scale (p = 0.0001, Tukey's criterion). The results of the present study with the inclusion of the «Balance tutor» system in the program of combined rehabilitation of the patients suffering from the consequences of CVA in the form of the postural balance impairment give evidence of the feasibility and effectiveness of this approach. There is reason to believe that its application is likely to reduce the risk of falling down and to improve characteristics of static and dynamic balance. The inclusion of the «Balance tutor» system in the program of combined rehabilitation of the patients suffering from the consequences of CVA in the form of the postural balance impairment is both feasible and effective.
NASA Astrophysics Data System (ADS)
Fang, Min; Xu, Ke-Jun; Zhu, Wen-Jiao; Shen, Zi-Wen
2016-01-01
Most of the ultrasonic gas flow-meters measure the gas flow rate by calculating the ultrasonic transmission time difference between the downstream and upstream. Ultrasonic energy attenuation occurs in the processes of the ultrasonic generation, conversion, transmission, and reception. Additionally, at the same time, the gas flow will also affect the ultrasonic propagation during the measurement, which results in the ultrasonic energy attenuation and the offset of ultrasonic propagation path. Thus, the ultrasonic energy received by the transducer is weaker. When the gas flow rate increases, this effect becomes more apparent. It leads to the measurement accuracy reduced, and the measurement range narrowed. An energy transfer model, where the ultrasonic gas flow-meter under without/with the gas flow, is established by adopting the statistical analysis and curve fitting based on a large amount of experimental data. The static sub model without the gas flow expresses the energy conversion efficiency of ultrasonic gas transducers, and the dynamic sub model with the gas flow reflects the energy attenuation pattern following the flow rate variations. The mathematical model can be used to determine the minimum energy of the excitation signal for meeting the requirement of specific measurement range, and predict the maximum measurable flow rate in the case of fixed energy of excitation signal. Based on the above studies, a method to enhance the excitation signal energy is proposed under the output power of the transmitting circuit being a finite value so as to extend the measurement rage of ultrasonic gas flow-meter.
Expanding the scale of forest management: allocating timber harvests in time and space
Eric J. Gustafson
1996-01-01
This study examined the effect of clustering timber harvest zones and of changing the land use categories of zones (dynamic zoning) over varying temporal and spatial scales. Focusing on the Hoosier National Forest (HNF) in Indiana, USA as a study area, I used a timber harvest allocation model to simulate four management alternatives. In the static zoning alternative,...
VCE early acoustic test results of General Electric's high-radius ratio coannular plug nozzle
NASA Technical Reports Server (NTRS)
Knott, P. R.; Brausch, J. F.; Bhutiani, P. K.; Majjigi, R. K.; Doyle, V. L.
1980-01-01
Results of variable cycle engine (VCE) early acoustic engine and model scale tests are presented. A summary of an extensive series of far field acoustic, advanced acoustic, and exhaust plume velocity measurements with a laser velocimeter of inverted velocity and temperature profile, high radius ratio coannular plug nozzles on a YJ101 VCE static engine test vehicle are reviewed. Select model scale simulated flight acoustic measurements for an unsuppressed and a mechanical suppressed coannular plug nozzle are also discussed. The engine acoustic nozzle tests verify previous model scale noise reduction measurements. The engine measurements show 4 to 6 PNdB aft quadrant jet noise reduction and up to 7 PNdB forward quadrant shock noise reduction relative to a fully mixed conical nozzle at the same specific thrust and mixed pressure ratio. The influences of outer nozzle radius ratio, inner stream velocity ratio, and area ratio are discussed. Also, laser velocimeter measurements of mean velocity and turbulent velocity of the YJ101 engine are illustrated. Select model scale static and simulated flight acoustic measurements are shown which corroborate that coannular suppression is maintained in forward speed.
A Comparison of Martian Transient Wave Energetics in High and Low Optical Depth Environments
NASA Astrophysics Data System (ADS)
Battalio, J. M.; Szunyogh, I.; Lemmon, M. T.
2016-12-01
The local energetics of individual transient eddies from the Mars Analysis Correction Data Assimilation (MACDA) is compared between a year with a global-scale dust storm (MY 25) and two years of relatively low optical depth conditions. Eddies in each year are considered from a period of strong wave activity in the northern hemisphere before the winter solstice (Ls=170-240°). The local growth of eddies is typically triggered by geopotential flux convergence. While all waves exhibit some baroclinic growth, baroclinic energy conversion is weaker in the waves that occur during the global-scale dust storm. The weaker baroclinic energy conversion in these waves, however, is compensated by a more intense barotropic transfer of the kinetic energy from the mean flow to the waves: the contribution from barotropic energy conversion allows eddies during the global-scale dust storm to attain roughly the same maximum eddy kinetic energy as eddies during the low optical depth years. Individual eddies in the waves decay through a combination of barotropic conversion of the kinetic energy from the waves to the mean flow, geopotential flux divergence, and dissipation in both the high- and the low-optical-depth years.
Revised Mulliken Electronegativities I. Calculation and Conversion to Pauling Units.
ERIC Educational Resources Information Center
Bratsch, Steven G.
1988-01-01
Discusses a revision and extension of the Mulliken electronegativity scale to consider 50 elements. Describes the calculation of valence-state promotion energies and Mulliken atomic electronegativities and the conversion of Mulliken electronegativities to Pauling units. (CW)
Conversion system overview assessment. Volume 1: solar thermoelectrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayadev, T. S.; Henderson, J.; Finegold, J.
1979-08-01
An assessment of thermoelectrics for solar energy conversion is given. There is significant potential for solar thermoelectrics in solar technologies where collector costs are low; e.g., Ocean Thermal Energy Conversion (OTEC) and solar ponds. Reports of two studies by manufacturers assessing the cost of thermoelectric generators in large scale production are included in the appendix and several new concepts thermoelectric systems are presented. (WHK)
SEE induced in SRAM operating in a superconducting electron linear accelerator environment
NASA Astrophysics Data System (ADS)
Makowski, D.; Mukherjee, Bhaskar; Grecki, M.; Simrock, Stefan
2005-02-01
Strong fields of bremsstrahlung photons and photoneutrons are produced during the operation of high-energy electron linacs. Therefore, a mixed gamma and neutron radiation field dominates the accelerators environment. The gamma radiation induced Total Ionizing Dose (TID) effect manifests the long-term deterioration of the electronic devices operating in accelerator environment. On the other hand, the neutron radiation is responsible for Single Event Effects (SEE) and may cause a temporal loss of functionality of electronic systems. This phenomenon is known as Single Event Upset (SEU). The neutron dose (KERMA) was used to scale the neutron induced SEU in the SRAM chips. Hence, in order to estimate the neutron KERMA conversion factor for Silicon (Si), dedicated calibration experiments using an Americium-Beryllium (241Am/Be) neutron standard source was carried out. Single Event Upset (SEU) influences the short-term operation of SRAM compared to the gamma induced TID effect. We are at present investigating the feasibility of an SRAM based real-time beam-loss monitor for high-energy accelerators utilizing the SEU caused by fast neutrons. This paper highlights the effects of gamma and neutron radiations on Static Random Access Memory (SRAM), placed at selected locations near the Superconducting Linear Accelerator driving the Vacuum UV Free Electron Laser (VUVFEL) of DESY.
Classical and quantum simulations of warm dense carbon
NASA Astrophysics Data System (ADS)
Whitley, Heather; Sanchez, David; Hamel, Sebastien; Correa, Alfredo; Benedict, Lorin
We have applied classical and DFT-based molecular dynamics (MD) simulations to study the equation of state of carbon in the warm dense matter regime (ρ = 3.7 g/cc, 0.86 eV
NASA Astrophysics Data System (ADS)
Hussein, Rafid M.; Chandrashekhara, K.
2017-11-01
A multi-scale modeling approach is presented to simulate and validate thermo-oxidation shrinkage and cracking damage of a high temperature polymer composite. The multi-scale approach investigates coupled transient diffusion-reaction and static structural at macro- to micro-scale. The micro-scale shrinkage deformation and cracking damage are simulated and validated using 2D and 3D simulations. Localized shrinkage displacement boundary conditions for the micro-scale simulations are determined from the respective meso- and macro-scale simulations, conducted for a cross-ply laminate. The meso-scale geometrical domain and the micro-scale geometry and mesh are developed using the object oriented finite element (OOF). The macro-scale shrinkage and weight loss are measured using unidirectional coupons and used to build the macro-shrinkage model. The cross-ply coupons are used to validate the macro-shrinkage model by the shrinkage profiles acquired using scanning electron images at the cracked surface. The macro-shrinkage model deformation shows a discrepancy when the micro-scale image-based cracking is computed. The local maximum shrinkage strain is assumed to be 13 times the maximum macro-shrinkage strain of 2.5 × 10-5, upon which the discrepancy is minimized. The microcrack damage of the composite is modeled using a static elastic analysis with extended finite element and cohesive surfaces by considering the modulus spatial evolution. The 3D shrinkage displacements are fed to the model using node-wise boundary/domain conditions of the respective oxidized region. Microcrack simulation results: length, meander, and opening are closely matched to the crack in the area of interest for the scanning electron images.
Panichi, Roberto; Botti, Fabio Massimo; Ferraresi, Aldo; Faralli, Mario; Kyriakareli, Artemis; Schieppati, Marco; Pettorossi, Vito Enrico
2011-04-01
Self-motion perception and vestibulo-ocular reflex (VOR) were studied during whole body yaw rotation in the dark at different static head positions. Rotations consisted of four cycles of symmetric sinusoidal and asymmetric oscillations. Self-motion perception was evaluated by measuring the ability of subjects to manually track a static remembered target. VOR was recorded separately and the slow phase eye position (SPEP) was computed. Three different head static yaw deviations (active and passive) relative to the trunk (0°, 45° to right and 45° to left) were examined. Active head deviations had a significant effect during asymmetric oscillation: the movement perception was enhanced when the head was kept turned toward the side of body rotation and decreased in the opposite direction. Conversely, passive head deviations had no effect on movement perception. Further, vibration (100 Hz) of the neck muscles splenius capitis and sternocleidomastoideus remarkably influenced perceived rotation during asymmetric oscillation. On the other hand, SPEP of VOR was modulated by active head deviation, but was not influenced by neck muscle vibration. Through its effects on motion perception and reflex gain, head position improved gaze stability and enhanced self-motion perception in the direction of the head deviation. Copyright © 2010 Elsevier B.V. All rights reserved.
Real-Time Inhibitor Recession Measurements in Two Space Shuttle Reusable Solid Rocket Motors
NASA Technical Reports Server (NTRS)
McWhorter, B. B.; Ewing, M. E.; Bolton, D. E.; Albrechtsen, K. U.; Earnest, T. E.; Noble, T. C.; Longaker, M.
2003-01-01
Real-time internal motor insulation char line recession measurements have been evaluated for two full-scale static tests of the Space Shuttle Reusable Solid Rocket Motor (RSRM). These char line recession measurements were recorded on the forward facing propellant grain inhibitors to better understand the thermal performance of these inhibitors. The RSRM propellant grain inhibitors are designed to erode away during motor operation, thus making it difficult to use post-fire observations to determine inhibitor thermal performance. Therefore, this new internal motor instrumentation is invaluable in establishing an accurate understanding of inhibitor recession versus motor operation time. The data for the first test was presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (AIAA 2001-3280) in July 2001. Since that time, a second full scale static test has delivered additional real-time data on inhibitor thermal performance. The evaluation of this data is presented in this paper. The second static test, in contrast to the first test, used a slightly different arrangement of instrumentation in the inhibitors. This instrumentation has yielded a better understanding of the inhibitor time dependent inboard tip recession. Graphs of inhibitor recession profiles with time are presented. Inhibitor thermal ablation models have been created from theoretical principals. The model predictions compare favorably with data from both tests. This verified modeling effort is important to support new inhibitor designs for a five segment Space Shuttle solid rocket motor. The internal instrumentation project on RSRM static tests is providing unique opportunities for other real-time internal motor measurements that could not otherwise be directly quantified.
The relationship between temperament and character in conversion disorder and comorbid depression.
Erten, Evrim; Yenilmez, Yelda; Fistikci, Nurhan; Saatcioglu, Omer
2013-05-01
The aim of this study was to compare conversion disorder patients with healthy controls in terms of temperament and character, and to determine the effect of these characteristics on comorbid depression, based on the idea that conversion disorder patients may have distinctive temperament and character qualities. The study involved 58 patients diagnosed with conversion disorder, based on the DSM-IV diagnostic criteria, under observation at the Bakırköy Psychiatric and Neurological Disorders Outpatient Center, Istanbul. The patients were interviewed with a Structured Clinical Interview (SCID-I) and 57 healthy volunteers, matched for age, sex and education level, were interviewed with a Structured Clinical Interview for people without a psychiatric disorder (SCID-I/NP). All the participants completed a sociodemographic form, the Hamilton Depression Rating Scale, the Hamilton Anxiety Scale and the Temperament and Character Inventory. The conversion disorder patients displayed more harm avoidance (P<.001), more impulsivity (P<.01) and more sentimentality (P<.01) than the healthy controls, but were less persistent (P<.05). In terms of character qualities, conversion disorder patients had high self-transcendence (P<.05), but were inadequate in terms of self-directedness (P<.001) and took on less responsibility (P<.05) than the healthy controls. Conversion disorder patients are significantly different from healthy controls on temperament and character measures of harm avoidance, persistence, self-transcendence and self-directedness. Copyright © 2013 Elsevier Inc. All rights reserved.
Visual display and alarm system for wind tunnel static and dynamic loads
NASA Technical Reports Server (NTRS)
Hanly, Richard D.; Fogarty, James T.
1987-01-01
A wind tunnel balance monitor and alarm system developed at NASA Ames Research Center will produce several beneficial results. The costs of wind tunnel delays because of inadvertent balance damage and the costs of balance repair or replacement can be greatly reduced or eliminated with better real-time information on the balance static and dynamic loading. The wind tunnel itself will have enhanced utility with the elimination of overly cautious limits on test conditions. The microprocessor-based system features automatic scaling and 16 multicolored LED bargraphs to indicate both static and dynamic components of the signals from eight individual channels. Five individually programmable alarm levels are available with relay closures for internal or external visual and audible warning devices and other functions such as automatic activation of external recording devices, model positioning mechanisms, or tunnel shutdown.
Visual display and alarm system for wind tunnel static and dynamic loads
NASA Technical Reports Server (NTRS)
Hanly, Richard D.; Fogarty, James T.
1987-01-01
A wind tunnel balance monitor and alarm system developed at NASA Ames Research Center will produce several beneficial results. The costs of wind tunnel delays because of inadvertent balance damage and the costs of balance repair or replacement can be greatly reduced or eliminated with better real-time information on the balance static and dynamic loading. The wind tunnel itself will have enhanced utility with the elimination of overly cautious limits on test conditions. The microprocessor-based system features automatic scaling and 16 multicolored LED bargraphs to indicate both static and dynamic components of the signals from eight individual channels. Five individually programmable alarm levels are available with relay closures for internal or external visual and audible warning devices and other functions such as automatic activation of external recording devices, model positioning mechanism, or tunnel shutdown.
Results of the first complete static calibration of the RSRA rotor-load-measurement system
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.
1984-01-01
The compound Rotor System Research Aircraft (RSRA) is designed to make high-accuracy, simultaneous measurements of all rotor forces and moments in flight. Physical calibration of the rotor force- and moment-measurement system when installed in the aircraft is required to account for known errors and to ensure that measurement-system accuracy is traceable to the National Bureau of Standards. The first static calibration and associated analysis have been completed with good results. Hysteresis was a potential cause of static calibration errors, but was found to be negligible in flight compared to full-scale loads, and analytical methods have been devised to eliminate hysteresis effects on calibration data. Flight tests confirmed that the calibrated rotor-load-measurement system performs as expected in flight and that it can dependably make direct measurements of fuselage vertical drag in hover.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Heng; Gustafson, Jr., William I.; Hagos, Samson M.
2015-04-18
With this study, to better understand the behavior of quasi-equilibrium-based convection parameterizations at higher resolution, we use a diagnostic framework to examine the resolution-dependence of subgrid-scale vertical transport of moist static energy as parameterized by the Zhang-McFarlane convection parameterization (ZM). Grid-scale input to ZM is supplied by coarsening output from cloud-resolving model (CRM) simulations onto subdomains ranging in size from 8 × 8 to 256 × 256 km 2s.
RSRA sixth scale wind tunnel test. [of scale model of Sikorsky Whirlwind Helicopter
NASA Technical Reports Server (NTRS)
Flemming, R.; Ruddell, A.
1974-01-01
The sixth scale model of the Sikorsky/NASA/Army rotor systems research aircraft was tested in an 18-foot section of a large subsonic wind tunnel for the purpose of obtaining basic data in the areas of performance, stability, and body surface loads. The model was mounted in the tunnel on the struts arranged in tandem. Basic testing was limited to forward flight with angles of yaw from -20 to +20 degrees and angles of attack from -20 to +25 degrees. Tunnel test speeds were varied up to 172 knots (q = 96 psf). Test data were monitored through a high speed static data acquisition system, linked to a PDP-6 computer. This system provided immediate records of angle of attack, angle of yaw, six component force and moment data, and static and total pressure information. The wind tunnel model was constructed of aluminum structural members with aluminum, fiberglass, and wood skins. Tabulated force and moment data, flow visualization photographs, tabulated surface pressure data are presented for the basic helicopter and compound configurations. Limited discussions of the results of the test are included.
Flight service evaluation of composite helicopter components
NASA Technical Reports Server (NTRS)
Mardoian, George H.; Ezzo, Maureen B.
1990-01-01
An assessment is presented of ten composite tail rotor spars and four horizontal stabilizers exposed to the effects of in-flight commercial service for up to nine years to establish realistic environmental factors for use in future designs. This evaluation is supported by test results of helicopter components and panels which have been exposed to outdoor environmental effects since 1979. Full scale static and fatigue tests were conducted on graphite/epoxy and Kevlar/epoxy composite components removed from Sikorsky Model S-76 helicopters in commercial operations off the Gulf Coast of Louisiana. Small scale static and fatigue tests were conducted on coupons obtained from panels exposed to outdoor conditions in Stratford, CT and West Palm Beach, Florida. The panel materials and ply configurations were representative of the S-76 components. The results are discussed of moisture analyses and strength tests on both the S-76 components and composite panels after up to nine years of outdoor exposure. Full scale tests performed on the helicopter components did not disclose any significant reductions from the baseline strengths. The results increased confidence in the long term durability of advanced composite materials in helicopter structural applications.
Biricocchi, Charlanne; Drake, JaimeLynn; Svien, Lana
2014-01-01
This case report describes the effects of a 6-week progressive tap dance program on static and dynamic balance for a child with type 1 congenital myotonic muscular dystrophy (congenital MMD1). A 6-year-old girl with congenital MMD1 participated in a 1-hour progressive tap dance program. Classes were held once a week for 6 consecutive weeks and included 3 children with adaptive needs and 1 peer with typical development. The Bruininks-Oseretsky Test of Motor Proficiency, second edition (BOT-2) balance subsection and the Pediatric Balance Scale were completed at the beginning of the first class and the sixth class. The participant's BOT-2 score improved from 3 to 14. Her Pediatric Balance Scale score did not change. Participation in a progressive tap dance class by a child with congenital MMD1 may facilitate improvements in static and dynamic balance.
Hot-flow tests of a series of 10-percent-scale turbofan forced mixing nozzles
NASA Technical Reports Server (NTRS)
Head, V. L.; Povinelli, L. A.; Gerstenmaier, W. H.
1984-01-01
An approximately 1/10-scale model of a mixed-flow exhaust system was tested in a static facility with fully simulated hot-flow cruise and takeoff conditions. Nine mixer geometries with 12 to 24 lobes were tested. The areas of the core and fan stream were held constant to maintain a bypass ratio of approximately 5. The research results presented in this report were obtained as part of a program directed toward developing an improved mixer design methodology by using a combined analytical and experimental approach. The effects of lobe spacing, lobe penetration, lobe-to-centerbody gap, lobe contour, and scalloping of the radial side walls were investigated. Test measurements included total pressure and temperature surveys, flow angularity surveys, and wall and centerbody surface static pressure measurements. Contour plots at various stations in the mixing region are presented to show the mixing effectiveness for the various lobe geometries.
Double symbolic joint entropy in nonlinear dynamic complexity analysis
NASA Astrophysics Data System (ADS)
Yao, Wenpo; Wang, Jun
2017-07-01
Symbolizations, the base of symbolic dynamic analysis, are classified as global static and local dynamic approaches which are combined by joint entropy in our works for nonlinear dynamic complexity analysis. Two global static methods, symbolic transformations of Wessel N. symbolic entropy and base-scale entropy, and two local ones, namely symbolizations of permutation and differential entropy, constitute four double symbolic joint entropies that have accurate complexity detections in chaotic models, logistic and Henon map series. In nonlinear dynamical analysis of different kinds of heart rate variability, heartbeats of healthy young have higher complexity than those of the healthy elderly, and congestive heart failure (CHF) patients are lowest in heartbeats' joint entropy values. Each individual symbolic entropy is improved by double symbolic joint entropy among which the combination of base-scale and differential symbolizations have best complexity analysis. Test results prove that double symbolic joint entropy is feasible in nonlinear dynamic complexity analysis.
Solute segregation kinetics and dislocation depinning in a binary alloy
NASA Astrophysics Data System (ADS)
Dontsova, E.; Rottler, J.; Sinclair, C. W.
2015-06-01
Static strain aging, a phenomenon caused by diffusion of solute atoms to dislocations, is an important contributor to the strength of substitutional alloys. Accurate modeling of this complex process requires both atomic spatial resolution and diffusional time scales, which is very challenging to achieve with commonly used atomistic computational methods. In this paper, we use the recently developed "diffusive molecular dynamics" (DMD) method that is capable of describing the kinetics of the solute segregation process at the atomic level while operating on diffusive time scales in a computationally efficient way. We study static strain aging in the Al-Mg system and calculate the depinning shear stress between edge and screw dislocations and their solute atmospheres formed for various waiting times with different solute content and for a range of temperatures. A simple phenomenological model is also proposed that describes the observed behavior of the critical shear stress as a function of segregation level.
Upper surface blowing noise of the NASA-Ames quiet short-haul research aircraft
NASA Technical Reports Server (NTRS)
Bohn, A. J.; Shovlin, M. D.
1980-01-01
An experimental study of the propulsive-lift noise of the NASA-Ames quiet short-haul research aircraft (QSRA) is described. Comparisons are made of measured QSRA flyover noise and model propulsive-lift noise data available in references. Developmental tests of trailing-edge treatments were conducted using sawtooth-shaped and porous USB flap trailing-edge extensions. Small scale parametric tests were conducted to determine noise reduction/design relationships. Full-scale static tests were conducted with the QSRA preparatory to the selection of edge treatment designs for flight testing. QSRA flight and published model propulsive-lift noise data have similar characteristics. Noise reductions of 2 to 3 dB were achieved over a wide range of frequency and directivity angles in static tests of the QSRA. These noise reductions are expected to be achieved or surpassed in flight tests planned by NASA in 1980.
NASA Astrophysics Data System (ADS)
Peng, Heng; Liu, Yinghua; Chen, Haofeng
2018-05-01
In this paper, a novel direct method called the stress compensation method (SCM) is proposed for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to solve the specific mathematical programming problem, the SCM is a two-level iterative procedure based on a sequence of linear elastic finite element solutions where the global stiffness matrix is decomposed only once. In the inner loop, the static admissible residual stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing load multipliers are updated to approach to the shakedown limit multiplier by using an efficient and robust iteration control technique, where the static shakedown theorem is adopted. Three numerical examples up to about 140,000 finite element nodes confirm the applicability and efficiency of this method for two-dimensional and three-dimensional elastoplastic structures, with detailed discussions on the convergence and the accuracy of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Omrani, Elahe; Hasani, Hossein; Dibajian, Sayed Houssain
2018-02-01
Textile composites of 3D integrated spacer configurations have been recently focused by several researchers all over the world. In the present study, newly-designed tubular composites reinforced with 3D spacer weft knitted fabrics were considered and the effects of their structural parameters on some applicable mechanical properties were investigated. For this purpose, two different samples of 3D spacer weft knitted textile types in tubular form were produced on an electronic flat knitting machine, using glass/nylon hybrid yarns. Thermoset tubular-shaped composite parts were manufactured via vacuum infusion molding process using epoxy resin. The mechanical properties of the produced knitted composites in term of external static and internal hydrostatic pressures were evaluated. Resistance of the produced composites against the external static and internal hydrostatic pressures was numerically simulated using multi-scale modeling method. The finding revealed that there is acceptable correlation between experimental and theoretical results.
NASA Technical Reports Server (NTRS)
Scholl, R. E. (Editor)
1979-01-01
Earthquake engineering research capabilities of the National Aeronautics and Space Administration (NASA) facilities at George C. Marshall Space Flight Center (MSFC), Alabama, were evaluated. The results indicate that the NASA/MSFC facilities and supporting capabilities offer unique opportunities for conducting earthquake engineering research. Specific features that are particularly attractive for large scale static and dynamic testing of natural and man-made structures include the following: large physical dimensions of buildings and test bays; high loading capacity; wide range and large number of test equipment and instrumentation devices; multichannel data acquisition and processing systems; technical expertise for conducting large-scale static and dynamic testing; sophisticated techniques for systems dynamics analysis, simulation, and control; and capability for managing large-size and technologically complex programs. Potential uses of the facilities for near and long term test programs to supplement current earthquake research activities are suggested.
Dynamics of liquid spreading on solid surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalliadasis, S.; Chang, H.C.
1996-09-01
Using simple scaling arguments and a precursor film model, the authors show that the appropriate macroscopic contact angle {theta} during the slow spreading of a completely or partially wetting liquid under conditions of viscous flow and small slopes should be described by tan {theta} = [tan{sup 3} {theta}{sub e} {minus} 9 log {eta}Ca]{sup 1/3} where {theta}{sub e} is the static contact angle, Ca is the capillary number, and {eta} is a scaled Hamaker constant. Using this simple relation as a boundary condition, the authors are able to quantitatively model, without any empirical parameter, the spreading dynamics of several classical spreadingmore » phenomena (capillary rise, sessile, and pendant drop spreading) by simply equating the slope of the leading order static bulk region to the dynamic contact angle boundary condition without performing a matched asymptotic analysis for each case independently as is usually done in the literature.« less
Flight service evaluation of composite helicopter components
NASA Technical Reports Server (NTRS)
Mardoian, G. H.; Ezzo, M. B.
1986-01-01
This report presents an assessment of composite helicopter tail rotor spars and horizontal stabilizers, exposed to the effects of the environment, after up to five and a half years of commercial service. This evaluation is supported by test results of helicopter components and panels which have been exposed to outdoor environmental effects since September 1979. Full scale static and fatigue tests have been conducted on graphite/epoxy and Kevlar/epoxy composite components obtained from Sikorsky Model S-76 helicopters in commercial operations in the Gulf Coast region of Louisiana. Small scale static and fatigue tests are being conducted on coupons obtained from panels under exposure to outdoor conditions in Stratford, Connecticut and West Palm, Florida. The panel layups are representative of the S-76 components. Additionally, this report discusses the results of moisture absorption evaluations and strength tests on the S-76 components and composite panels with up to five years of outdoor exposure.
NASA Technical Reports Server (NTRS)
Johnson, J. D.; Braddock, W. F.
1974-01-01
A test of a 0.563 percent scale space shuttle Solid Rocket Booster (SRB) model, MSFC Model 449, was conducted in a trisonic wind tunnel. Test Mach numbers were 0.4, 0.6, 0.9, 1.2, 1.96, 3.48, 4.0, 4.45, and 4.96. Test angles-of-attack ranged from minus 10 degrees to 190 degrees. Test Reynolds numbers ranged from 3.0 million per foot to 8.6 million per foot. Test roll angles were 0, 11.25, 22.5, 45, and 90 degrees. In addition to the static stability evaluation of the primary SRB configuration, five parametric investigations were made: (1) effect of Reynolds number, (2) effect of engine shroud flare angle, (3) effect of engine shroud length, (4) effect of engine shroud strakes, and (5) effect of engine shroud strakes and trust vector control bottles.
Architectural switches in plant thylakoid membranes.
Kirchhoff, Helmut
2013-10-01
Recent progress in elucidating the structure of higher plants photosynthetic membranes provides a wealth of information. It allows generation of architectural models that reveal well-organized and complex arrangements not only on whole membrane level, but also on the supramolecular level. These arrangements are not static but highly responsive to the environment. Knowledge about the interdependency between dynamic structural features of the photosynthetic machinery and the functionality of energy conversion is central to understanding the plasticity of photosynthesis in an ever-changing environment. This review summarizes the architectural switches that are realized in thylakoid membranes of green plants.
A solar simulator-pumped atomic iodine laser
NASA Technical Reports Server (NTRS)
Lee, J. H.; Weaver, W. R.
1981-01-01
An atomic iodine laser, a candidate for the direct solar-pumped gas laser, was excited with a 4-kW beam from a xenon arc solar simulator. Continuous lasing at 1.315 micron for over 10 ms was obtained for static filling of n-C3F7I vapor. By momentarily flowing the lasant, a 30-Hz pulsed output was obtained for about 200 ms. The peak laser power observed was 4 W for which the system efficiency reached 0.1%. These results indicate that direct solar pumping of a gas laser for power conversion in space is indeed feasible.
NASA Technical Reports Server (NTRS)
Robertson, G.
1982-01-01
Calibration was performed on the shuttle upper atmosphere mass spectrometer (SUMS). The results of the calibration and the as run test procedures are presented. The output data is described, and engineering data conversion factors, tables and curves, and calibration on instrument gauges are included. Static calibration results which include: instrument sensitive versus external pressure for N2 and O2, data from each scan of calibration, data plots from N2 and O2, and sensitivity of SUMS at inlet for N2 and O2, and ratios of 14/28 for nitrogen and 16/32 for oxygen are given.
Advanced refractory metals and composites for extraterrestrial power systems
NASA Technical Reports Server (NTRS)
Titran, R. H.; Grobstein, Toni L.
1990-01-01
Concepts for future space power systems include nuclear and focused solar heat sources coupled to static and dynamic power-conversion devices; such systems must be designed for service lives as long as 30 years, despite service temperatures of the order of 1600 K. Materials are a critical technology-development factor in such aspects of these systems as reactor fuel containment, environmental protection, power management, and thermal management. Attention is given to the prospective performance of such refractory metals as Nb, W, and Mo alloys, W fiber-reinforced Nb-matrix composites, and HfC precipitate-strengthened W-Re alloys.
Non-linear wave interaction in a plasma column
NASA Technical Reports Server (NTRS)
Larsen, J.-M.; Crawford, F. W.
1979-01-01
Non-linear three-wave interaction is analysed for propagation along a cylindrical plasma column surrounded by an infinite dielectric, in the absence of a static magnetic field. An averaged-Lagrangian method is used, and the results are specialized to parametric interaction and mode conversion, assuming an undepleted pump wave. The theory for these two types of interactions is extended to include imperfect synchronism, and the effects of loss. Computations are presented indicating that parametric growth rates of the order of a fraction of a decibel per centimeter should be obtainable for plausible laboratory plasma column parameters.
Charles B. Yackulic; Janice Reid; James D. Nichols; James E. Hines; Raymond Davis; Eric Forsman
2014-01-01
The role of competition in structuring biotic communities at fine spatial scales is well known from detailed process-based studies. Our understanding of competitionâs importance at broader scales is less resolved and mainly based on static species distribution maps. Here, we bridge this gap by examining the joint occupancy dynamics of an invading species (Barred Owl,...
NASA Astrophysics Data System (ADS)
Kokorian, Jaap; Merlijn van Spengen, W.
2017-11-01
In this paper we demonstrate a new method for analyzing and visualizing friction force measurements of meso-scale stick-slip motion, and introduce a method for extracting two separate dissipative energy components. Using a microelectromechanical system tribometer, we execute 2 million reciprocating sliding cycles, during which we measure the static friction force with a resolution of \
ERIC Educational Resources Information Center
De Rosnay, Marc; Fink, Elian; Begeer, Sander; Slaughter, Virginia; Peterson, Candida
2014-01-01
Links between young children's everyday use of mindful conversational skills and their success on laboratory tests of theory of mind understanding (ToM) were evaluated. Using published scales, teachers rated the conversational behavior and shyness of 129 children aged 60 to 101 months (M = 78·8 months) who were in their first years of primary…
Moon, Jong Hoon; Jung, Jin-Hwa; Won, Young Sik; Cho, Hwi-Young
2017-01-01
[Purpose] The purpose of this study was to analyze the effect of Graston Technique on hamstring extensibility and pain intensity in patients with nonspecific low back pain. [Subjects and Methods] Twenty-four patients with nonspecific low back pain (27–46 years of age) enrolled in the study. All participants were randomly assigned to one of two groups: Graston technique group (n=12) and a static stretching group (n=12). The Graston Technique was used on the hamstring muscles of the experimental group, while the static stretching group performed static stretching. Hamstring extensibility was recorded using the sit and reach test, and a visual analog scale was used to measure pain intensity. [Results] Both groups showed a significant improvement after intervention. In comparison to the static stretching group, the Graston technique group had significantly more improvement in hamstring extensibility. [Conclusion] The Graston Technique is a simple and effective intervention in nonspecific low back pain patients to improve hamstring extensibility and lower pain intensity, and it would be beneficial in clinical practice. PMID:28265144
Moon, Jong Hoon; Jung, Jin-Hwa; Won, Young Sik; Cho, Hwi-Young
2017-02-01
[Purpose] The purpose of this study was to analyze the effect of Graston Technique on hamstring extensibility and pain intensity in patients with nonspecific low back pain. [Subjects and Methods] Twenty-four patients with nonspecific low back pain (27-46 years of age) enrolled in the study. All participants were randomly assigned to one of two groups: Graston technique group (n=12) and a static stretching group (n=12). The Graston Technique was used on the hamstring muscles of the experimental group, while the static stretching group performed static stretching. Hamstring extensibility was recorded using the sit and reach test, and a visual analog scale was used to measure pain intensity. [Results] Both groups showed a significant improvement after intervention. In comparison to the static stretching group, the Graston technique group had significantly more improvement in hamstring extensibility. [Conclusion] The Graston Technique is a simple and effective intervention in nonspecific low back pain patients to improve hamstring extensibility and lower pain intensity, and it would be beneficial in clinical practice.
Nonlinear resonance of the rotating circular plate under static loads in magnetic field
NASA Astrophysics Data System (ADS)
Hu, Yuda; Wang, Tong
2015-11-01
The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.
NASA Astrophysics Data System (ADS)
Benmokrane, B.; Debaiky, A.; El-Ragaby, A.; Roy, R.; El-Gamal, S.; El-Salakawy, E.
2006-03-01
There is a growing need for designing and constructing innovative concrete bridges using FRP reinforcing bars as internal reinforcement to avoid the corrosion problems and high costs of maintenance and repair. For efficient use and to increase the lifetime of these bridges, it is important to develop efficient monitoring systems for such innovative structures. Fabry-Perot and Bragg fibre optic sensors (FOS) that can measure the strains and temperature are promising candidates for life-long health monitoring of these structures. This article reports laboratory and field performance of Fabry-Perot and Bragg FOS sensors as well as electrical strain gauges in static and dynamic strain monitoring in concrete bridge decks. The laboratory tests include tensile testing of glass FRP bars and testing of full-scale concrete bridge deck slabs reinforced with glass and carbon FRP bars under static and cyclic concentrated loads. The field tests include static and dynamic testing of two bridges reinforced with steel and glass FRP bars. The obtained strain results showed satisfactory agreement between the different gauges.
Dynamic Pressure Probes Developed for Supersonic Flow-Field Measurements
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2001-01-01
A series of dynamic flow-field pressure probes were developed for use in large-scale supersonic wind tunnels at the NASA Glenn Research Center. These flow-field probes include pitot and static pressure probes that can capture fast-acting flow-field pressure transients occurring on a millisecond timescale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The flow-field pressure probe contains four major components: 1) Static pressure aerodynamic tip; 2) Pressure-sensing cartridge assembly; 3) Pitot pressure aerodynamic tip; 4) Mounting stem. This modular design allows for a variety of probe tips to be used for a specific application. Here, the focus is on flow-field pressure measurements in supersonic flows, so we developed a cone-cylinder static pressure tip and a pitot pressure tip. Alternatively, probe tips optimized for subsonic and transonic flows could be used with this design. The pressure-sensing cartridge assembly allows the simultaneous measurement of steady-state and transient pressure which allows continuous calibration of the dynamic pressure transducer.
NASA Astrophysics Data System (ADS)
Sela, S.; Woodbury, P. B.; van Es, H. M.
2018-05-01
The US Midwest is the largest and most intensive corn (Zea mays, L.) production region in the world. However, N losses from corn systems cause serious environmental impacts including dead zones in coastal waters, groundwater pollution, particulate air pollution, and global warming. New approaches to reducing N losses are urgently needed. N surplus is gaining attention as such an approach for multiple cropping systems. We combined experimental data from 127 on-farm field trials conducted in seven US states during the 2011–2016 growing seasons with biochemical simulations using the PNM model to quantify the benefits of a dynamic location-adapted management approach to reduce N surplus. We found that this approach allowed large reductions in N rate (32%) and N surplus (36%) compared to existing static approaches, without reducing yield and substantially reducing yield-scaled N losses (11%). Across all sites, yield-scaled N losses increased linearly with N surplus values above ~48 kg ha‑1. Using the dynamic model-based N management approach enabled growers to get much closer to this target than using existing static methods, while maintaining yield. Therefore, this approach can substantially reduce N surplus and N pollution potential compared to static N management.
NARC Rayon Replacement Program for the RSRM Nozzle, Phase IV Qualification and Implementation Status
NASA Technical Reports Server (NTRS)
Haddock, M. Reed; Wendel, Gary M.; Cook, Roger V.
2005-01-01
The Space Shuttle NARC Rayon Replacement Program has down-selected Enka rayon as a replacement for the obsolete NARC rayon in the nozzle carbon cloth phenolic (CCP) ablative insulators. Full qualification testing of the Enka rayon-based carbon cloth phenolic is underway, including processing, thmal/structural properties, and hot-fire subscale tests. Required thermal-structural capabilities, together with confidence in erosio/char performance in simulated and subscale hot fire tests such as Wright-Patterson Air Force Base Laser Hardened Materials Evaluation Laboratory testing, NASA-MSFC 24-inch motor tests, NASA-MSFC Solid Fuel Torch - Super Sonic Blast Tube, NASA-MSFC Plasma Torch Test Bed, ATK Thiokol Forty Pound Charge and NASA-MSFC MNASA justified the testing of the new Enka-rayon candidate on full-scale static test motors. The first RSRM full-scale static test motor nozzle, fabricated using the new Enka rayon-based CCP, was successfully demonstrated in June 2004. Two additional static test motors are planned with the new Enka rayon in the next two years along with additional A-basis property characterization. Process variation or "corner-of-the-box" testing together with cured and uncured aging studies are also planned as some of the pre-flight implementation activities with 5-year cured aging studies over-lapping flight hardware fabrication.
MODIS Vegetative Cover Conversion and Vegetation Continuous Fields
NASA Astrophysics Data System (ADS)
Carroll, Mark; Townshend, John; Hansen, Matthew; DiMiceli, Charlene; Sohlberg, Robert; Wurster, Karl
Land cover change occurs at various spatial and temporal scales. For example, large-scale mechanical removal of forests for agro-industrial activities contrasts with the small-scale clearing of subsistence farmers. Such dynamics vary in spatial extent and rate of land conversion. Such changes are attributable to both natural and anthropogenic factors. For example, lightning- or human-ignited fires burn millions of acres of land surface each year. Further, land cover conversion requires contrasting with the land cover modification. In the first instance, the dynamic represents extensive categorical change between two land cover types. Land cover modification mechanisms such as selective logging and woody encroachment depict changes within a given land cover type rather than a conversion from one land cover type to another. This chapter describes the production of two standard MODIS land products used to document changes in global land cover. The Vegetative Cover Conversion (VCC) product is designed primarily to serve as a global alarm for areas where land cover change occurs rapidly (Zhan et al. 2000). The Vegetation Continuous Fields (VCF) product is designed to continuously represent ground cover as a proportion of basic vegetation traits. Terra's launch in December 1999 afforded a new opportunity to observe the entire Earth every 1.2 days at 250-m spatial resolution. The MODIS instrument's appropriate spatial and temporal resolutions provide the opportunity to substantially improve the characterization of the land surface and changes occurring thereupon (Townshend et al. 1991).
A new dawn for industrial photosynthesis.
Robertson, Dan E; Jacobson, Stuart A; Morgan, Frederick; Berry, David; Church, George M; Afeyan, Noubar B
2011-03-01
Several emerging technologies are aiming to meet renewable fuel standards, mitigate greenhouse gas emissions, and provide viable alternatives to fossil fuels. Direct conversion of solar energy into fungible liquid fuel is a particularly attractive option, though conversion of that energy on an industrial scale depends on the efficiency of its capture and conversion. Large-scale programs have been undertaken in the recent past that used solar energy to grow innately oil-producing algae for biomass processing to biodiesel fuel. These efforts were ultimately deemed to be uneconomical because the costs of culturing, harvesting, and processing of algal biomass were not balanced by the process efficiencies for solar photon capture and conversion. This analysis addresses solar capture and conversion efficiencies and introduces a unique systems approach, enabled by advances in strain engineering, photobioreactor design, and a process that contradicts prejudicial opinions about the viability of industrial photosynthesis. We calculate efficiencies for this direct, continuous solar process based on common boundary conditions, empirical measurements and validated assumptions wherein genetically engineered cyanobacteria convert industrially sourced, high-concentration CO(2) into secreted, fungible hydrocarbon products in a continuous process. These innovations are projected to operate at areal productivities far exceeding those based on accumulation and refining of plant or algal biomass or on prior assumptions of photosynthetic productivity. This concept, currently enabled for production of ethanol and alkane diesel fuel molecules, and operating at pilot scale, establishes a new paradigm for high productivity manufacturing of nonfossil-derived fuels and chemicals.
McAuley, Emily M.
2016-01-01
The evolution of multiple sexual signals presents a dilemma since individuals selecting a mate should pay attention to the most honest signal and ignore the rest; however, multiple signals may evolve if, together, they provide more information to the receiver than either one would alone. Static and dynamic signals, for instance, can act as multiple messages, providing information on different aspects of signaller quality that reflect condition at different time scales. While the nature of static signals makes them difficult or impossible for individuals to augment, dynamic signals are much more susceptible to temporary fluctuations in effort. We investigated whether male Texas field crickets, Gryllus texensis, that produce unattractive static signals compensate by dynamically increasing their calling effort. Our findings lend partial support to the compensation hypothesis, as males that called at unattractive carrier frequencies (a static trait) spent more time calling each night (a dynamic trait). Interestingly, this finding was most pronounced in males that called with attractive pulse characteristics (static traits) but did not occur in males that called with unattractive pulse characteristics. Males that signalled with unattractive pulse characteristics (duration and pause) spent less time calling through the night. Our correlative findings on wild caught males suggest that only males that signal with attractive pulse characteristics may be able to afford to pay the costs of both trait exaggeration and increased calling effort to compensate for poor carrier frequencies. PMID:27936045
Hart, Roger C; Herring, G C; Balla, R Jeffrey
2007-06-15
Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
Coil extensions improve line shapes by removing field distortions
NASA Astrophysics Data System (ADS)
Conradi, Mark S.; Altobelli, Stephen A.; McDowell, Andrew F.
2018-06-01
The static magnetic susceptibility of the rf coil can substantially distort the field B0 and be a dominant source of line broadening. A scaling argument shows that this may be a particular problem in microcoil NMR. We propose coil extensions to reduce the distortion. The actual rf coil is extended to a much longer overall length by abutted coil segments that do not carry rf current. The result is a long and nearly uniform sheath of copper wire, in terms of the static susceptibility. The line shape improvement is demonstrated at 43.9 MHz and in simulation calculations.
NASA Technical Reports Server (NTRS)
Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.
2007-01-01
Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
Pinch current limitation effect in plasma focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.; Saw, S. H.; INTI International University College, 71800 Nilai
The Lee model couples the electrical circuit with plasma focus dynamics, thermodynamics, and radiation. It is used to design and simulate experiments. A beam-target mechanism is incorporated, resulting in realistic neutron yield scaling with pinch current and increasing its versatility for investigating all Mather-type machines. Recent runs indicate a previously unsuspected 'pinch current limitation' effect. The pinch current does not increase beyond a certain value however low the static inductance is reduced to. The results indicate that decreasing the present static inductance of the PF1000 machine will neither increase the pinch current nor the neutron yield, contrary to expectations.
The morphing of geographical features by Fourier transformation.
Li, Jingzhong; Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang
2018-01-01
This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features' continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable.
Franklin, Kimberly; Molina-Freaner, Francisco
2010-12-01
In large parts of northern Mexico native plant communities are being converted to non-native buffelgrass (Pennisetum ciliare) pastures, and this conversion could fundamentally alter primary productivity and species richness. In Sonora, Mexico land conversion is occurring at a regional scale along a rainfall-driven gradient of primary productivity, across which native plant communities transition from desert scrub to thorn scrub. We used a paired sampling design to compare a satellite-derived index of primary productivity, richness of perennial plant species, and canopy-height profiles of native plant communities with buffelgrass pastures. We sampled species richness across a gradient of primary productivity in desert scrub and thorn scrub vegetation to examine the influence of site productivity on the outcomes of land conversion. We also examined the influence of pasture age on species richness of perennial plants. Index values of primary productivity were lower in buffelgrass pastures than in native vegetation, which suggests a reduction in primary productivity. Land conversion reduced species richness by approximately 50% at local and regional scales, reduced tree and shrub cover by 78%, and reduced canopy height. Land conversion disproportionately reduced shrub species richness, which reflects the common practice among Sonoran ranchers of conserving certain tree and cactus species. Site productivity did not affect the outcomes of land conversion. The age of a buffelgrass pasture was unrelated to species richness within the pasture, which suggests that passive recovery of species richness to preconversion levels is unlikely. Our findings demonstrate that land conversion can result in large losses of plant species richness at local and regional scales and in substantial changes to primary productivity and vegetation structure, which casts doubt on the feasibility of restoring native plant communities without active intervention on the part of land managers. © 2010 Society for Conservation Biology.
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath
NASA Astrophysics Data System (ADS)
Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.
2018-05-01
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath.
Phan, T D; Eastwood, J P; Shay, M A; Drake, J F; Sonnerup, B U Ö; Fujimoto, M; Cassak, P A; Øieroset, M; Burch, J L; Torbert, R B; Rager, A C; Dorelli, J C; Gershman, D J; Pollock, C; Pyakurel, P S; Haggerty, C C; Khotyaintsev, Y; Lavraud, B; Saito, Y; Oka, M; Ergun, R E; Retino, A; Le Contel, O; Argall, M R; Giles, B L; Moore, T E; Wilder, F D; Strangeway, R J; Russell, C T; Lindqvist, P A; Magnes, W
2018-05-01
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region 1,2 . On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed 3-5 . Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales 7-11 . However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
Thermal energy conversion by coupled shape memory and piezoelectric effects
NASA Astrophysics Data System (ADS)
Zakharov, Dmitry; Lebedev, Gor; Cugat, Orphee; Delamare, Jerome; Viala, Bernard; Lafont, Thomas; Gimeno, Leticia; Shelyakov, Alexander
2012-09-01
This work gives experimental evidence of a promising method of thermal-to-electric energy conversion by coupling shape memory effect (SME) and direct piezoelectric effect (DPE) for harvesting quasi-static ambient temperature variations. Two original prototypes of thermal energy harvesters have been fabricated and tested experimentally. The first is a hybrid laminated composite consisting of TiNiCu shape memory alloy (SMA) and macro fiber composite piezoelectric. This composite comprises 0.1 cm3 of active materials and harvests 75 µJ of energy for each temperature variation of 60 °C. The second prototype is a SME/DPE ‘machine’ which uses the thermally induced linear strains of the SMA to bend a bulk PZT ceramic plate through a specially designed mechanical structure. The SME/DPE ‘machine’ with 0.2 cm3 of active material harvests 90 µJ over a temperature increase of 35 °C (60 µJ when cooling). In contrast to pyroelectric materials, such harvesters are also compatible with both small and slow temperature variations.
Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.
Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J
2015-06-01
A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.
Gjini, Erida; Haydon, Daniel T.; Barry, J. David; Cobbold, Christina A.
2012-01-01
Patterns of genetic diversity in parasite antigen gene families hold important information about their potential to generate antigenic variation within and between hosts. The evolution of such gene families is typically driven by gene duplication, followed by point mutation and gene conversion. There is great interest in estimating the rates of these processes from molecular sequences for understanding the evolution of the pathogen and its significance for infection processes. In this study, a series of models are constructed to investigate hypotheses about the nucleotide diversity patterns between closely related gene sequences from the antigen gene archive of the African trypanosome, the protozoan parasite causative of human sleeping sickness in Equatorial Africa. We use a hidden Markov model approach to identify two scales of diversification: clustering of sequence mismatches, a putative indicator of gene conversion events with other lower-identity donor genes in the archive, and at a sparser scale, isolated mismatches, likely arising from independent point mutations. In addition to quantifying the respective probabilities of occurrence of these two processes, our approach yields estimates for the gene conversion tract length distribution and the average diversity contributed locally by conversion events. Model fitting is conducted using a Bayesian framework. We find that diversifying gene conversion events with lower-identity partners occur at least five times less frequently than point mutations on variant surface glycoprotein (VSG) pairs, and the average imported conversion tract is between 14 and 25 nucleotides long. However, because of the high diversity introduced by gene conversion, the two processes have almost equal impact on the per-nucleotide rate of sequence diversification between VSG subfamily members. We are able to disentangle the most likely locations of point mutations and conversions on each aligned gene pair. PMID:22735079
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2016-01-01
The test results for Salt Spray Resistance, Static Heat and Humidity and Marine Environment can be found in Sections 3.1.3.3, 3.1.4.3 and 3.1.5.3 respectively. In summary, both the Metalast TCP and SurTec 650 Type 2 conversion coatings perform very similar to the incumbent Type 1 conversion coating against both 6061 and 5052 aluminum under all three test conditions. Significant prior work was performed to select the aluminum and conversion coating included within this test cycle; Reference - NASA GSDO Program Hexavalent Chrome Alternatives Final Pretreatments Test Report Task Order: NNH12AA45D September 01, 2013. As illustrated in the data, the 6061 aluminum panels SLIGHTLY out-performed the 5052 aluminum panels. Individual shielding effectiveness graphs for each panel are included within Appendix C and D. One other notable effect found during review of the data is that the Test Panels exposed to B117 Salt Fog reduced in shielding effectiveness significantly more than the Marine Environment Test Panels. The shielding effectiveness of the Marine Test Panels was approximately 20dB higher than the Test Panels that underwent B117 Salt Fog Exposure. The intent of this evaluation was not to maximize shielding effectiveness values. The same Parker Chomerics Cho-Seal 6503 gasket material was used for all panels with aluminum and conversion coating variants. A typical EMI gasket design for corrosive environments would be done quite differently. The intent was to execute a test that would provide the best possible evaluation of different aluminum materials and conversion coatings in corrosive environments. The test program achieved this intent. The fact that the two aluminums and two Type II conversion coatings performed similar to the incumbent Type 1 conversion coating is a positive outcome. It was desired to have an outcome that further differentiation the performance of two aluminum types and two conversion coating types but this could not be extracted by the test results. Further analysis of the test plates may be done by X-Ray Photoelectron Spectroscopy (XPS) or Electrochemical Impedance Spectroscopy (EIS). Feasibility of this is under review.
Efficient electrochemical CO2 conversion powered by renewable energy.
Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao
2015-07-22
The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO2 conversion systems.
Three junction holographic micro-scale PV system
NASA Astrophysics Data System (ADS)
Wu, Yuechen; Vorndran, Shelby; Ayala Pelaez, Silvana; Kostuk, Raymond K.
2016-09-01
In this work a spectrum splitting micro-scale concentrating PV system is evaluated to increase the conversion efficiency of flat panel PV systems. In this approach, the dispersed spectrum splitting concentration systems is scaled down to a small size and structured in an array. The spectrum splitting configuration allows the use of separate single bandgap PV cells that increase spectral overlap with the incident solar spectrum. This results in an overall increase in the spectral conversion efficiency of the resulting system. In addition other benefits of the micro-scale PV system are retained such reduced PV cell material requirements, more versatile interconnect configurations, and lower heat rejection requirements that can lead to a lower cost system. The system proposed in this work consists of two cascaded off-axis holograms in combination with a micro lens array, and three types of PV cells. An aspherical lens design is made to minimize the dispersion so that higher concentration ratios can be achieved for a three-junction system. An analysis methodology is also developed to determine the optical efficiency of the resulting system, the characteristics of the dispersed spectrum, and the overall system conversion efficiency for a combination of three types of PV cells.
Iijima, Hirotaka; Fukutani, Naoto; Fukumoto, Takahiko; Uritani, Daisuke; Kaneda, Eishi; Ota, Kazuo; Kuroki, Hiroshi; Matsuda, Shuichi
2015-01-01
Objective To investigate the association between knee pain during gait and 4 clinical phenotypes based on static varus alignment and varus thrust in patients with medial knee osteoarthritis (OA). Methods Patients in an orthopedic clinic (n = 266) diagnosed as having knee OA (Kellgren/Lawrence [K/L] grade ≥1) were divided into 4 phenotype groups according to the presence or absence of static varus alignment and varus thrust (dynamic varus): no varus (n = 173), dynamic varus (n = 17), static varus (n = 50), and static varus + dynamic varus (n = 26). The knee range of motion, spatiotemporal gait parameters, visual analog scale scores for knee pain, and scores on the Japanese Knee Osteoarthritis Measure were used to assess clinical outcomes. Multiple logistic regression analyses identified the relationship between knee pain during gait and the 4 phenotypes, adjusted for possible risk factors, including age, sex, body mass index, K/L grade, and gait velocity. Results Multiple logistic regression analysis showed that varus thrust without varus alignment was associated with knee pain during gait (odds ratio [OR] 3.30, 95% confidence interval [95% CI] 1.08–12.4), and that varus thrust combined with varus alignment was strongly associated with knee pain during gait (OR 17.1, 95% CI 3.19–320.0). Sensitivity analyses applying alternative cutoff values for defining static varus alignment showed comparable results. Conclusion Varus thrust with or without static varus alignment was associated with the occurrence of knee pain during gait. Tailored interventions based on individual malalignment phenotypes may improve clinical outcomes in patients with knee OA. PMID:26017348
NASA Astrophysics Data System (ADS)
Ordway, E.; Lambin, E.; Asner, G. P.
2015-12-01
The changing structure of demand for commodities associated with food security and energy has had a startling impact on land use change in tropical forests in recent decades. Yet, the composition of conversion in the Congo basin remains a major uncertainty, particularly with regards to the scale of drivers of change. Owing to rapid expansion of production globally and longstanding historical production locally in the Congo basin, oil palm offers a lens through which to evaluate local land use decisions across a spectrum of small- to large-scales of production as well as interactions with regional and global supply chains. We examined the effect of global commodity crop expansion on land use change in Southwest Cameroon using a mixed-methods approach to integrate remote sensing, field surveys and socioeconomic data. Southwest Cameroon (2.5 Mha) has a long history of large- and small-scale agriculture, ranging from mixed crop subsistence agriculture to large monocrop plantations of oil palm, cocoa, and rubber. Trends and spatial patterns of forest conversion and agricultural transitions were analyzed from 2000-2015 using satellite imagery. We used economic, demographic and field survey datasets to assess how regional and global market factors and local commodity crop decisions affect land use patterns. Our results show that oil palm is a major commodity crop expanding in this region, and that conversion is occurring primarily through expansion by medium-scale producers and local elites. Results also indicate that global and regional supply chain dynamics influence local land use decision making. This research contributes new information on land use patterns and dynamics in the Congo basin, an understudied region. More specifically, results from this research contribute information on recent trends of oil palm expansion in Cameroon that will be used in national land use planning strategies.
Nandi, Anirban; Pan, Sharadwata; Potumarthi, Ravichandra; Danquah, Michael K; Sarethy, Indira P
2014-01-01
Six Sigma methodology has been successfully applied to daily operations by several leading global private firms including GE and Motorola, to leverage their net profits. Comparatively, limited studies have been conducted to find out whether this highly successful methodology can be applied to research and development (R&D). In the current study, we have reviewed and proposed a process for a probable integration of Six Sigma methodology to large-scale production of Penicillin G and its subsequent conversion to 6-aminopenicillanic acid (6-APA). It is anticipated that the important aspects of quality control and quality assurance will highly benefit from the integration of Six Sigma methodology in mass production of Penicillin G and/or its conversion to 6-APA.
Nandi, Anirban; Danquah, Michael K.
2014-01-01
Six Sigma methodology has been successfully applied to daily operations by several leading global private firms including GE and Motorola, to leverage their net profits. Comparatively, limited studies have been conducted to find out whether this highly successful methodology can be applied to research and development (R&D). In the current study, we have reviewed and proposed a process for a probable integration of Six Sigma methodology to large-scale production of Penicillin G and its subsequent conversion to 6-aminopenicillanic acid (6-APA). It is anticipated that the important aspects of quality control and quality assurance will highly benefit from the integration of Six Sigma methodology in mass production of Penicillin G and/or its conversion to 6-APA. PMID:25057428
Improved actions and asymptotic scaling in lattice Yang-Mills theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langfeld, Kurt
2007-11-01
Improved actions in SU(2) and SU(3) lattice gauge theories are investigated with an emphasis on asymptotic scaling. A new scheme for tadpole improvement is proposed. The standard but heuristic tadpole improvement emerges from a mean field approximation from the new approach. Scaling is investigated by means of the large distance static quark potential. Both the generic and the new tadpole scheme yield significant improvements on asymptotic scaling when compared with loop improved actions. A study of the rotational symmetry breaking terms, however, reveals that only the new improvement scheme efficiently eliminates the leading irrelevant term from the action.
Effects of combustibles on internal quasi-static loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandoval, N.R.; Hokanson, J.C.; Esparza, E.D.
1984-08-01
The phenomenon of quasi-static pressure enhancement produced when combustible materials are placed near HE sources has been recently discovered. The effects of placing solid and liquid combustible materials near detonating explosives on internal blast loading was measured during tests conducted in a one-eighth scale model of a containment structure. In many cases, dramatic increases in gas pressures resulted. Principal conclusions of this study are: combustible materials near explosives can markedly increase gas pressures in enclosed structures; there is a lack of data on HE-combustible combinations; quasi-static loading calculations should include estimates of contributions from the burning of combustible materials whenevermore » such materials are expected to be in intimate contact with HE sources; and effects of combustibles should be investigated further to determine methods for prediction. Variations in charge to combustible mass, charge type, structure volume, degree of venting and degree of contact between HE and combustible sbould be studied.« less
NASA Technical Reports Server (NTRS)
Smith, P. M.
1978-01-01
Tests have been conducted to extend the existing low speed aerodynamic data base of advanced supersonic-cruise arrow wing configurations. Principle configuration variables included wing leading-edge flap deflection, wing trailing-edge flap deflection, horizontal tail effectiveness, and fuselage forebody strakes. A limited investigation was also conducted to determine the low speed aerodynamic effects due to slotted training-edge flaps. Results of this investigation demonstrate that deflecting the wing leading-edge flaps downward to suppress the wing apex vortices provides improved static longitudinal stability; however, it also results in significantly reduced static directional stability. The use of a selected fuselage forebody strakes is found to be effective in increasing the level of positive static directional stability. Drooping the fuselage nose, which is required for low-speed pilot vision, significantly improves the later-directional trim characteristics.
Depth interval estimates from motion parallax and binocular disparity beyond interaction space.
Gillam, Barbara; Palmisano, Stephen A; Govan, Donovan G
2011-01-01
Static and dynamic observers provided binocular and monocular estimates of the depths between real objects lying well beyond interaction space. On each trial, pairs of LEDs were presented inside a dark railway tunnel. The nearest LED was always 40 m from the observer, with the depth separation between LED pairs ranging from 0 up to 248 m. Dynamic binocular viewing was found to produce the greatest (ie most veridical) estimates of depth magnitude, followed next by static binocular viewing, and then by dynamic monocular viewing. (No significant depth was seen with static monocular viewing.) We found evidence that both binocular and monocular dynamic estimates of depth were scaled for the observation distance when the ground plane and walls of the tunnel were visible up to the nearest LED. We conclude that both motion parallax and stereopsis provide useful long-distance depth information and that motion-parallax information can enhance the degree of stereoscopic depth seen.
Lin, Shisheng; Li, Xiaoqiang; Wang, Peng; Xu, Zhijuan; Zhang, Shengjiao; Zhong, Huikai; Wu, Zhiqian; Xu, Wenli; Chen, Hongsheng
2015-01-01
MoS2 is a layered two-dimensional semiconductor with a direct band gap of 1.8 eV. The MoS2/bulk semiconductor system offers a new platform for solar cell device design. Different from the conventional bulk p-n junctions, in the MoS2/bulk semiconductor heterostructure, static charge transfer shifts the Fermi level of MoS2 toward that of bulk semiconductor, lowering the barrier height of the formed junction. Herein, we introduce hexagonal boron nitride (h-BN) into MoS2/GaAs heterostructure to suppress the static charge transfer, and the obtained MoS2/h-BN/GaAs solar cell exhibits an improved power conversion efficiency of 5.42%. More importantly, the sandwiched h-BN makes the Fermi level tuning of MoS2 more effective. By employing chemical doping and electrical gating into the solar cell device, PCE of 9.03% is achieved, which is the highest among all the reported monolayer transition metal dichalcogenide based solar cells. PMID:26458358
NASA Astrophysics Data System (ADS)
Razzak, M. Abdur; Takamura, Shuichi; Uesugi, Yoshihiko; Ohno, Noriyasu
A radio frequency (rf) inductive discharge in atmospheric pressure range requires high voltage in the initial startup phase and high power during the steady state sustainment phase. It is, therefore, necessary to inject high rf power into the plasma ensuring the maximum use of the power source, especially where the rf power is limited. In order to inject the maximum possible rf power into the plasma with a moderate rf power source of few kilowatts range, we employ the immittance conversion topology by converting a constant voltage source into a constant current source to generate efficient rf discharge by inductively coupled plasma (ICP) technique at a gas pressure with up to one atmosphere in argon. A novel T-LCL immittance circuit is designed for constant-current high-power operation, which is practically very important in the high-frequency range, to provide high effective rf power to the plasma. The immittance conversion system combines the static induction transistor (SIT)-based radio frequency (rf) high-power inverter circuit and the immittance conversion elements including the rf induction coil. The basic properties of the immittance circuit are studied by numerical analysis and verified the results by experimental measurements with the inductive plasma as a load at a relatively high rf power of about 4 kW. The performances of the immittance circuit are also evaluated and compared with that of the conventional series resonance circuit in high-pressure induction plasma generation. The experimental results reveal that the immittance conversion circuit confirms injecting higher effective rf power into the plasma as much as three times than that of the series resonance circuit under the same operating conditions and same dc supply voltage to the inverter, thereby enhancing the plasma heating efficiency to generate efficient rf inductive discharges.
Zheng, Yun; Wang, Jianchen; Yu, Bo; Zhang, Wenqiang; Chen, Jing; Qiao, Jinli; Zhang, Jiujun
2017-03-06
High-temperature solid oxide electrolysis cells (SOECs) are advanced electrochemical energy storage and conversion devices with high conversion/energy efficiencies. They offer attractive high-temperature co-electrolysis routes that reduce extra CO 2 emissions, enable large-scale energy storage/conversion and facilitate the integration of renewable energies into the electric grid. Exciting new research has focused on CO 2 electrochemical activation/conversion through a co-electrolysis process based on the assumption that difficult C[double bond, length as m-dash]O double bonds can be activated effectively through this electrochemical method. Based on existing investigations, this paper puts forth a comprehensive overview of recent and past developments in co-electrolysis with SOECs for CO 2 conversion and utilization. Here, we discuss in detail the approaches of CO 2 conversion, the developmental history, the basic principles, the economic feasibility of CO 2 /H 2 O co-electrolysis, and the diverse range of fuel electrodes as well as oxygen electrode materials. SOEC performance measurements, characterization and simulations are classified and presented in this paper. SOEC cell and stack designs, fabrications and scale-ups are also summarized and described. In particular, insights into CO 2 electrochemical conversions, solid oxide cell material behaviors and degradation mechanisms are highlighted to obtain a better understanding of the high temperature electrolysis process in SOECs. Proposed research directions are also outlined to provide guidelines for future research.
ERIC Educational Resources Information Center
Lewis, Kathy; Olver, Mark E.; Wong, Stephen C. P.
2013-01-01
The Violence Risk Scale (VRS) uses ratings of static and dynamic risk predictors to assess violence risk, identify targets for treatment, and assess changes in risk following treatment. The VRS was rated pre- and posttreatment on a sample of 150 males, mostly high-risk violent offenders many with psychopathic personality traits. These individuals…
Viscous-resistive layer in Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Silveira, F. E. M.; Orlandi, H. I.
2017-03-01
In this work, new scaling laws of the time growth rate γ of the Rayleigh-Taylor instability with the plasma resistivity η, kinematic viscosity ν, and electron number density ne are derived. A viscosity scale is defined in terms of the time decay of the perturbative fluid flow perpendicular to the equilibrium magnetic field, at the quasi-static approximation. Such a scale provides the identification of a viscous layer that can be combined with the resistive layer to produce a viscous-resistive layer. The latter, in turn, is found to satisfy an algebraic biquadratic equation. When viscous effects are negligible, it is shown that the viscous-resistive layer is given by the resistive layer. Somewhat surprisingly, when viscous effects cannot be neglected, it is shown that the viscous-resistive layer is given by the geometric mean of the resistive and viscous layers. A dispersion relation for the time growth rate is derived in terms of the viscous-resistive layer. When viscous effects cannot be neglected, two new scaling laws are found. At the quasi-static approximation, it is shown that γ ˜ (ην)1/4. However, on account of a finite electron mass, it is shown that γ˜(ν/ne ) 1 /3 . Further developments of our formulation are addressed in connection with a finite compressibility in the perturbative flow.
NASA Astrophysics Data System (ADS)
Hempel, F.; Davies, P. B.; Loffhagen, D.; Mechold, L.; Röpcke, J.
2003-11-01
Tunable infrared diode laser absorption spectroscopy has been used to detect the methyl radical and nine stable molecules, CH4, CH3OH, C2H2, C2H4, C2H6, NH3, HCN, CH2O and C2N2, in H2-Ar-N2 microwave plasmas containing up to 7% of methane or methanol, under both flowing and static conditions. The degree of dissociation of the hydrocarbon precursor molecules varied between 20% and 97%. The methyl radical concentration was found to be in the range 1012-1013 molecules cm-3. By analysing the temporal development of the molecular concentrations under static conditions it was found that HCN and NH3 are the final products of plasma chemical conversion. The fragmentation rates of methane and methanol (RF(CH4) = (2-7) × 1015 molecules J-1, RF(CH3OH) = (6-9) × 1015 molecules J-1) and the respective conversion rates to methane, hydrogen cyanide and ammonia (RCmax(CH4) = 1.2 × 1015 molecules J-1, RCmax(HCN) = 1.3 × 1015 molecules J-1, RCmax(NH3) = 1 × 1014 molecules J-1) have been determined for different hydrogen to nitrogen concentration ratios. An extensive model of the chemical reactions involved in the H2-N2-Ar-CH4 plasma has been developed. Model calculations were performed by including 22 species, 145 chemical reactions and appropriate electron impact dissociation rate coefficients. The results of the model calculations showed satisfactory agreement between calculated and measured concentrations. The most likely main chemical pathways involved in these plasmas are discussed and an appropriate reaction scheme is proposed.
Resonant conversions of QCD axions into hidden axions and suppressed isocurvature perturbations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitajima, Naoya; Takahashi, Fuminobu, E-mail: kitajima@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp
2015-01-01
We study in detail MSW-like resonant conversions of QCD axions into hidden axions, including cases where the adiabaticity condition is only marginally satisfied, and where anharmonic effects are non-negligible. When the resonant conversion is efficient, the QCD axion abundance is suppressed by the hidden and QCD axion mass ratio. We find that, when the resonant conversion is incomplete due to a weak violation of the adiabaticity, the CDM isocurvature perturbations can be significantly suppressed, while non-Gaussianity of the isocurvature perturbations generically remain unsuppressed. The isocurvature bounds on the inflation scale can therefore be relaxed by the partial resonant conversion ofmore » the QCD axions into hidden axions.« less
NASA Astrophysics Data System (ADS)
Hulikal, Srivatsan; Lapusta, Nadia; Bhattacharya, Kaushik
2018-07-01
Friction in static and sliding contact of rough surfaces is important in numerous physical phenomena. We seek to understand macroscopically observed static and sliding contact behavior as the collective response of a large number of microscopic asperities. To that end, we build on Hulikal et al. (2015) and develop an efficient numerical framework that can be used to investigate how the macroscopic response of multiple frictional contacts depends on long-range elastic interactions, different constitutive assumptions about the deforming contacts and their local shear resistance, and surface roughness. We approximate the contact between two rough surfaces as that between a regular array of discrete deformable elements attached to a elastic block and a rigid rough surface. The deformable elements are viscoelastic or elasto/viscoplastic with a range of relaxation times, and the elastic interaction between contacts is long-range. We find that the model reproduces the main macroscopic features of evolution of contact and friction for a range of constitutive models of the elements, suggesting that macroscopic frictional response is robust with respect to the microscopic behavior. Viscoelasticity/viscoplasticity contributes to the increase of friction with contact time and leads to a subtle history dependence. Interestingly, long-range elastic interactions only change the results quantitatively compared to the meanfield response. The developed numerical framework can be used to study how specific observed macroscopic behavior depends on the microscale assumptions. For example, we find that sustained increase in the static friction coefficient during long hold times suggests viscoelastic response of the underlying material with multiple relaxation time scales. We also find that the experimentally observed proportionality of the direct effect in velocity jump experiments to the logarithm of the velocity jump points to a complex material-dependent shear resistance at the microscale.
Pore-scale modeling of moving contact line problems in immiscible two-phase flow.
NASA Astrophysics Data System (ADS)
Kucala, A.; Noble, D.; Martinez, M. J.
2016-12-01
Two immiscible fluids in static equilibrium form a common interface along a solid surface, characterized as the static contact (wetting) angle and is a function of surface geometry, intermolecular forces, and interfacial surface energies manifested as interfacial tension. This static configuration may become perturbed due to external force imbalances (mass injection, pressure gradients, buoyancy, etc.) and the contact line location and interface curvature becomes dynamic. Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. The moving two-phase interface is tracked using the level set method and discretized with the conformal decomposition finite element method (CDFEM), allowing for surface tension effects to be computed at the exact interface location. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000
The morphing of geographical features by Fourier transformation
Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang
2018-01-01
This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features’ continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable. PMID:29351344
A Historical Review of Brayton and Stirling Power Conversion Technologies for Space Applications
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Schreiber, Jeffrey G.
2007-01-01
Dynamic power conversion technologies, such as closed Brayton and free-piston Stirling, offer many advantages for space power applications including high efficiency, long life, and attractive scaling characteristics. This paper presents a historical review of Brayton and Stirling power conversion technology for space and discusses on-going development activities in order to illustrate current technology readiness. The paper also presents a forecast of potential future space uses of these power technologies.
Multiscale soil moisture estimates using static and roving cosmic-ray soil moisture sensors
NASA Astrophysics Data System (ADS)
McJannet, David; Hawdon, Aaron; Baker, Brett; Renzullo, Luigi; Searle, Ross
2017-12-01
Soil moisture plays a critical role in land surface processes and as such there has been a recent increase in the number and resolution of satellite soil moisture observations and the development of land surface process models with ever increasing resolution. Despite these developments, validation and calibration of these products has been limited because of a lack of observations on corresponding scales. A recently developed mobile soil moisture monitoring platform, known as the rover
, offers opportunities to overcome this scale issue. This paper describes methods, results and testing of soil moisture estimates produced using rover surveys on a range of scales that are commensurate with model and satellite retrievals. Our investigation involved static cosmic-ray neutron sensors and rover surveys across both broad (36 × 36 km at 9 km resolution) and intensive (10 × 10 km at 1 km resolution) scales in a cropping district in the Mallee region of Victoria, Australia. We describe approaches for converting rover survey neutron counts to soil moisture and discuss the factors controlling soil moisture variability. We use independent gravimetric and modelled soil moisture estimates collected across both space and time to validate rover soil moisture products. Measurements revealed that temporal patterns in soil moisture were preserved through time and regression modelling approaches were utilised to produce time series of property-scale soil moisture which may also have applications in calibration and validation studies or local farm management. Intensive-scale rover surveys produced reliable soil moisture estimates at 1 km resolution while broad-scale surveys produced soil moisture estimates at 9 km resolution. We conclude that the multiscale soil moisture products produced in this study are well suited to future analysis of satellite soil moisture retrievals and finer-scale soil moisture models.
Geomechanical Anisotropy and Rock Fabric in Shales
NASA Astrophysics Data System (ADS)
Huffman, K. A.; Connolly, P.; Thornton, D. A.
2017-12-01
Digital rock physics (DRP) is an emerging area of qualitative and quantitative scientific analysis that has been employed on a variety of rock types at various scales to characterize petrophysical, mechanical, and hydraulic rock properties. This contribution presents a generic geomechanically focused DRP workflow involving image segmentation by geomechanical constituents, generation of finite element (FE) meshes, and application of various boundary conditions (i.e. at the edge of the domain and at boundaries of various components such as edges of individual grains). The generic workflow enables use of constituent geological objects and relationships in a computational based approach to address specific questions in a variety of rock types at various scales. Two examples are 1) modeling stress dependent permeability, where it occurs and why it occurs at the grain scale; 2) simulating the path and complexity of primary fractures and matrix damage in materials with minerals or intervals of different mechanical behavior. Geomechanical properties and fabric characterization obtained from 100 micron shale SEM images using the generic DRP workflow are presented. Image segmentation and development of FE simulation composed of relatively simple components (elastic materials, frictional contacts) and boundary conditions enable the determination of bulk static elastic properties. The procedure is repeated for co-located images at pertinent orientations to determine mechanical anisotropy. The static moduli obtained are benchmarked against lab derived measurements since material properties (esp. frictional ones) are poorly constrained at the scale of investigation. Once confidence in the input material parameters is gained, the procedure can be used to characterize more samples (i.e. images) than is possible from rock samples alone. Integration of static elastic properties with grain statistics and geologic (facies) conceptual models derived from core and geophysical logs enables quantification of the impact that variations in rock fabric and grain interactions have on bulk mechanical rock behavior. When considered in terms of the stratigraphic framework of two different shale reservoirs it is found that silica distribution, clay content and orientation play a first order role in mechanical anisotropy.
A Dual-Mode Bioreactor System for Tissue Engineered Vascular Models.
Bono, N; Meghezi, S; Soncini, M; Piola, M; Mantovani, D; Fiore, Gianfranco Beniamino
2017-06-01
In the past decades, vascular tissue engineering has made great strides towards bringing engineered vascular tissues to the clinics and, in parallel, obtaining in-lab tools for basic research. Herein, we propose the design of a novel dual-mode bioreactor, useful for the fabrication (construct mode) and in vitro stimulation (culture mode) of collagen-based tubular constructs. Collagen-based gels laden with smooth muscle cells (SMCs) were molded directly within the bioreactor culture chamber. Based on a systematic characterization of the bioreactor culture mode, constructs were subjected to 10% cyclic strain at 0.5 Hz for 5 days. The effects of cyclic stimulation on matrix re-arrangement and biomechanical/viscoelastic properties were examined and compared vs. statically cultured constructs. A thorough comparison of cell response in terms of cell localization and expression of contractile phenotypic markers was carried out as well. We found that cyclic stimulation promoted cell-driven collagen matrix bi-axial compaction, enhancing the mechanical strength of strained samples with respect to static controls. Moreover, cyclic strain positively affected SMC behavior: cells maintained their contractile phenotype and spread uniformly throughout the whole wall thickness. Conversely, static culture induced a noticeable polarization of cell distribution to the outer rim of the constructs and a sharp reduction in total cell density. Overall, coupling the use of a novel dual-mode bioreactor with engineered collagen-gel-based tubular constructs demonstrated to be an interesting technology to investigate the modulation of cell and tissue behavior under controlled mechanically conditioned in vitro maturation.
NASA Astrophysics Data System (ADS)
Hood, Lon L.
2017-04-01
The Madden-Julian oscillation (MJO), also known as the 30-60 day oscillation, is the strongest of the intraseasonal climate oscillations in the tropics and has significant derivative effects on extratropical circulation and intraseasonal climate. It has recently been shown that the stratospheric quasi-biennial oscillation (QBO) modulates the amplitude of the boreal winter MJO such that MJO amplitudes are larger on average during the easterly phase (QBOE) than during the westerly phase (QBOW). A major possible mechanism is the decrease in static stability in the lowermost stratosphere under QBOE conditions resulting from relative upwelling associated with the QBO-induced meridional circulation. Here evidence is presented that tropical upwelling changes related to the 11 year solar cycle also modulate the boreal winter MJO. Based on 37.3 years of MJO amplitude data, the largest amplitudes and occurrence rates, and the weakest static stabilities in the tropical lower stratosphere, occur during the QBOE phase under solar minimum (SMIN) conditions while the smallest amplitudes and strongest static stabilities occur during the QBOW phase under solar maximum (SMAX) conditions. Conversely, when the QBO and solar forcings are opposed (QBOW/SMIN and QBOE/SMAX), the difference in occurrence rates becomes statistically insignificant. During the coming solar minimum, at least one additional winter in the QBOE/SMIN category should occur (possibly as early as 2017/2018) during which especially large MJO amplitudes are expected and an initial test of these results will be possible.
Chiu, Tsz-chun Roxy; Ngo, Hiu-ching; Lau, Lai-wa; Leung, King-wah; Lo, Man-him; Yu, Ho-fai; Ying, Michael
2016-01-01
Aims This study was undertaken to investigate the immediate effect of static stretching on normal Achilles tendon morphology and stiffness, and the different effect on dominant and non-dominant legs; and to evaluate inter-operator and intra-operator reliability of using shear-wave elastography in measuring Achilles tendon stiffness. Methods 20 healthy subjects (13 males, 7 females) were included in the study. Thickness, cross-sectional area and stiffness of Achilles tendons in both legs were measured before and after 5-min static stretching using grey-scale ultrasound and shear-wave elastography. Inter-operator and intra-operator reliability of tendon stiffness measurements of six operators were evaluated. Results Result showed that there was no significant change in the thickness and cross-sectional area of Achilles tendon after static stretching in both dominant and non-dominant legs (p > 0.05). Tendon stiffness showed a significant increase in non-dominant leg (p < 0.05) but not in dominant leg (p > 0.05). The inter-operator reliability of shear-wave elastography measurements was 0.749 and the intra-operator reliability ranged from 0.751 to 0.941. Conclusion Shear-wave elastography is a useful and non-invasive imaging tool to assess the immediate stiffness change of Achilles tendon in response to static stretching with high intra-operator and inter-operator reliability. PMID:27120097
NASA Technical Reports Server (NTRS)
Strout, F. G.
1978-01-01
A JT8D-17R engine with inverted primary and fan flows was tested under static conditions as well as in the NASA Ames 40 by 80 Foot Wind Tunnel to determine static and flight noise characteristics, and flow profile of a large scale engine. Test and analysis techniques developed by a previous model and JT8D engine test program were used to determine the in-flight noise. The engine with inverted flow was tested with a conical nozzle and with a plug nozzle, 20 lobe nozzle, and an acoustic shield. Wind tunnel results show that forward velocity causes significant reduction in peak PNL suppression relative to uninverted flow. The loss of EPNL suppression is relatively modest. The in-flight peak PNL suppression of the inverter with conical nozzle was 2.5 PNdb relative to a static value of 5.5 PNdb. The corresponding EPNL suppression was 4.0 EPNdb for flight and 5.0 EPNdb for static operation. The highest in-flight EPNL suppression was 7.5 EPNdb obtained by the inverter with 20 lobe nozzle and acoustic shield. When compared with the JT8D engine with internal mixer, the inverted flow configuration provides more EPNL suppression under both static and flight conditions.
The impact of dynamic balance measures on walking performance in multiple sclerosis.
Fritz, Nora E; Marasigan, Rhul Evans R; Calabresi, Peter A; Newsome, Scott D; Zackowski, Kathleen M
2015-01-01
Static posture imbalance and gait dysfunction are common in individuals with multiple sclerosis (MS). Although the impact of strength and static balance on walking has been examined, the impact of dynamic standing balance on walking in MS remains unclear. To determine the impact of dynamic balance, static balance, sensation, and strength measures on walking in individuals with MS. Fifty-two individuals with MS (27 women; 26 relapsing-remitting; mean age = 45.6 ± 10.3 years; median Expanded Disability Status Scale score = 3.5) participated in posturography testing (Kistler-9281 force plate), hip flexion, hip extension, ankle dorsiflexion strength (Microfet2 hand-held dynamometer), sensation (Vibratron II), and walk velocity (Optotrak Motion Analysis System). Analyses included, Mann-Whitney, Spearman correlation coefficients, and multiple regression. All measures were abnormal in individuals with MS when compared with norms (P < .05). Static balance (eyes open, feet together [EOFT]), anterior-posterior (AP) dynamic sway, and hip extension strength were strongly correlated with walking velocity (AP sway r = 0.68; hip extension strength r = 0.73; EOFT r = -0.40). Together, AP dynamic sway (ρr = 0.71; P < .001), hip extension strength (ρr = 0.54; P < .001), and EOFT static balance (ρr = -0.41; P = .01) explained more than 70% of the variance in walking velocity (P < .001). AP dynamic sway affects walking performance in MS. A combined evaluation of dynamic balance, static balance, and strength may lead to a better understanding of walking mechanisms and the development of strategies to improve walking. © The Author(s) 2014.
Atomic Resolution Imaging of Nanoscale Chemical Expansion in PrxCe1-xO2-δ during In Situ Heating.
Swallow, Jessica G; Lee, Ja Kyung; Defferriere, Thomas; Hughes, Gareth M; Raja, Shilpa N; Tuller, Harry L; Warner, Jamie H; Van Vliet, Krystyn J
2018-02-27
Thin film nonstoichiometric oxides enable many high-temperature applications including solid oxide fuel cells, actuators, and catalysis. Large concentrations of point defects (particularly, oxygen vacancies) enable fast ionic conductivity or gas exchange kinetics in these materials but also manifest as coupling between lattice volume and chemical composition. This chemical expansion may be either detrimental or useful, especially in thin film devices that may exhibit enhanced performance through strain engineering or decreased operating temperatures. However, thin film nonstoichiometric oxides can differ from bulk counterparts in terms of operando defect concentrations, transport properties, and mechanical properties. Here, we present an in situ investigation of atomic-scale chemical expansion in Pr x Ce 1-x O 2-δ (PCO), a mixed ionic-electronic conducting oxide relevant to electrochemical energy conversion and high-temperature actuation. Through a combination of electron energy loss spectroscopy and transmission electron microscopy with in situ heating, we characterized chemical strains and changes in oxidation state in cross sections of PCO films grown on yttria-stabilized zirconia (YSZ) at temperatures reaching 650 °C. We quantified, both statically and dynamically, the nanoscale chemical expansion induced by changes in PCO redox state as a function of position and direction relative to the film-substrate interface. Additionally, we observed dislocations at the film-substrate interface, as well as reduced cation localization to threading defects within PCO films. These results illustrate several key aspects of atomic-scale structure and mechanical deformation in nonstoichiometric oxide films that clarify distinctions between films and bulk counterparts and that hold several implications for operando chemical expansion or "breathing" of such oxide films.
NASA Astrophysics Data System (ADS)
Chen, R.; Xi, X.; Zhao, X.; He, L.; Yao, H.; Shen, R.
2016-12-01
Dense 3D magnetotelluric (MT) data acquisition owns the benefit of suppressing the static shift and topography effect, can achieve high precision and high resolution inversion for underground structure. This method may play an important role in mineral exploration, geothermal resources exploration, and hydrocarbon exploration. It's necessary to reduce the power consumption greatly of a MT signal receiver for large-scale 3D MT data acquisition while using sensor network to monitor data quality of deployed MT receivers. We adopted a series of technologies to realized above goal. At first, we designed an low-power embedded computer which can couple with other parts of MT receiver tightly and support wireless sensor network. The power consumption of our embedded computer is less than 1 watt. Then we designed 4-channel data acquisition subsystem which supports 24-bit analog-digital conversion, GPS synchronization, and real-time digital signal processing. Furthermore, we developed the power supply and power management subsystem for MT receiver. At last, a series of software, which support data acquisition, calibration, wireless sensor network, and testing, were developed. The software which runs on personal computer can monitor and control over 100 MT receivers on the field for data acquisition and quality control. The total power consumption of the receiver is about 2 watts at full operation. The standby power consumption is less than 0.1 watt. Our testing showed that the MT receiver can acquire good quality data at ground with electrical dipole length as 3 m. Over 100 MT receivers were made and used for large-scale geothermal exploration in China with great success.
Expressed parental concern regarding childhood stuttering and the Test of Childhood Stuttering.
Tumanova, Victoria; Choi, Dahye; Conture, Edward G; Walden, Tedra A
The purpose of the present study was to determine whether the Test of Childhood Stuttering observational rating scales (TOCS; Gillam et al., 2009) (1) differed between parents who did versus did not express concern (independent from the TOCS) about their child's speech fluency; (2) correlated with children's frequency of stuttering measured during a child-examiner conversation; and (3) correlated with the length and complexity of children's utterances, as indexed by mean length of utterance (MLU). Participants were 183 young children ages 3:0-5:11. Ninety-one had parents who reported concern about their child's stuttering (65 boys, 26 girls) and 92 had parents who reported no such concern (50 boys, 42 girls). Participants' conversational speech during a child-examiner conversation was analyzed for (a) frequency of occurrence of stuttered and non-stuttered disfluencies, and (b) MLU. Besides expressing concern or lack thereof about their child's speech fluency, parents completed the TOCS observational rating scales documenting how often they observe different disfluency types in speech of their children, as well as disfluency-related consequences. There were three main findings. First, parents who expressed concern (independently from the TOCS) about their child's stuttering reported significantly higher scores on the TOCS Speech Fluency and Disfluency-Related Consequences rating scales. Second, children whose parents rated them higher on the TOCS Speech Fluency rating scale produced more stuttered disfluencies during a child-examiner conversation. Third, children with higher scores on the TOCS Disfluency-Related Consequences rating scale had shorter MLU during child-examiner conversation, across age and level of language ability. Findings support the use of the TOCS observational rating scales as one documentable, objective means to determine parental perception of and concern about their child's stuttering. Findings also support the notion that parents are reasonably accurate, if not reliable, judges of the quantity and quality (i.e., stuttered vs. non-stuttered) of their child's speech disfluencies. Lastly, findings that some children may decrease their verbal output in attempts to minimize instances of stuttering - as indexed by relatively low MLU and a high TOCS Disfluency-Related Consequences scores - provides strong support for sampling young children's speech and language across various situations to obtain the most representative index possible of the child's MLU and associated instances of stuttering. Copyright © 2018 Elsevier Inc. All rights reserved.
The Oregon DOT Slow-Speed Weigh-in-Motion (SWIM) Project : final report
DOT National Transportation Integrated Search
1998-12-01
Weigh-in-motion (WIM) systems have been increasingly used to screen potentially overweight vehicles. However, under slow speed conditions (less than 10 mph), WIM scales appear to be capable of estimating static gross vehicle weight to within 110% wit...
EVALUATION OF EMISSIONS FROM PAVING ASPHALTS
The report provides data from pilot-scale measurements of the emissions of specific air pollutants from paving asphalt both with and without recycled crumb rubber additives. The methods used in this work measured emissions from a static layer of asphalt maintained for several hou...
Aero-acoustic tests of duct-burning turbofan exhaust nozzles
NASA Technical Reports Server (NTRS)
Kozlowski, H.; Packman, A. B.
1976-01-01
The acoustic and aerodynamic characteristics of several exhaust systems suitable for duct burning turbofan engines are evaluated. Scale models representing unsuppressed coannular exhaust systems are examined statically under varying exhaust conditions. Ejectors with both hardwall and acoustically treated inserts are investigated.
Aggregate-scale heterogeneity in iron (hydr)oxide reductive transformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tufano, K.J.; Benner, S.G.; Mayer, K.U.
There is growing awareness of the complexity of potential reaction pathways and the associated solid-phase transformations during the reduction of Fe (hydr)oxides, especially ferrihydrite. An important observation in static and advective-dominated systems is that microbially produced Fe(II) accelerates Ostwald ripening of ferrihydrite, thus promoting the formation of thermodynamically more stable ferric phases (lepidocrocite and goethite) and, at higher Fe(II) surface loadings, the precipitation of magnetite; high Fe(II) levels can also lead to green rust formation, and with high carbonate levels siderite may also be formed. This study expands this emerging conceptual model to a diffusion-dominated system that mimics an idealizedmore » micropore of a ferrihydrite-coated soil aggregate undergoing reduction. Using a novel diffusion cell, coupled with micro-x-ray fluorescence and absorption spectroscopies, we determined that diffusion-controlled gradients in Fe{sup 2+}{sub (aq)} result in a complex array of spatially distributed secondary mineral phases. At the diffusive pore entrance, where Fe{sup 2+} concentrations are highest, green rust and magnetite are the dominant secondary Fe (hydr)oxides (30 mol% Fe each). At intermediate distances from the inlet, green rust is not observed and the proportion of magnetite decreases from approximately 30 to <10%. Across this same transect, the proportion of goethite increases from undetectable up to >50%. At greater distances from the advective-diffusive boundary, goethite is the dominant phase, comprising between 40 and 95% of the Fe. In the presence of magnetite, lepidocrocite forms as a transient-intermediate phase during ferrihydrite-to-goethite conversion; in the absence of magnetite, conversion to goethite is more limited. These experimental observations, coupled with results of reactive transport modeling, confirm the conceptual model and illustrate the potential importance of diffusion-generated concentration gradients in dissolved Fe{sup 2+} on the fate of ferrihydrite during reduction in structured soils.« less
Psychiatric symptoms and dissociation in conversion, somatization and dissociative disorders.
Espirito-Santo, Helena; Pio-Abreu, Jose Luis
2009-03-01
Conversion, dissociation and somatization are historically related in the long established concept of hysteria. Somewhere along the way they were separated due to the Cartesian dualistic view. The aim of the present study was to compare these pathologies and investigate whether symptoms of these pathologies overlap in their clinical appearance in a Portuguese sample. Twenty-six patients with conversion disorder, 38 with dissociative disorders, 40 with somatization disorder, and a comparison group of 46 patients having other psychiatric disorders answered questions about dissociation (Dissociative Experiences Scale), somatoform dissociation (Somatoform Dissociation Questionnaire), and psychopathological symptoms (Brief Symptom Inventory). Dissociative and somatoform symptoms were significantly more frequent in dissociative and conversion disorder than in somatization disorder and controls. There were no significant differences between dissociative and conversion patients. Conversion disorder is closely related to dissociative disorders. These results support the ICD-10 categorization of conversion disorder among dissociative disorders and the hypothesis of analogous psychopathological processes in conversion and dissociative disorders versus somatization disorder.
Large scale static tests of a tilt-nacelle V/STOL propulsion/attitude control system
NASA Technical Reports Server (NTRS)
1978-01-01
The concept of a combined V/STOL propulsion and aircraft attitude control system was subjected to large scale engine tests. The tilt nacelle/attitude control vane package consisted of the T55 powered Hamilton Standard Q-Fan demonstrator. Vane forces, moments, thermal and acoustic characteristics as well as the effects on propulsion system performance were measured under conditions simulating hover in and out of ground effect.
NASA Technical Reports Server (NTRS)
Martindale, W. R.; Carter, L. D.
1975-01-01
Pitot pressure and total-temperature measurements were made in the windward surface shock layer of two 0.0175-scale space shuttle orbiter models at simulated re-entry conditions. Corresponding surface static pressure measurements were also made. Flow properties at the edge of the model boundary layer were derived from these measurements and compared with values calculated using conventional methods.
Large-Scale Fabrication of Silicon Nanowires for Solar Energy Applications.
Zhang, Bingchang; Jie, Jiansheng; Zhang, Xiujuan; Ou, Xuemei; Zhang, Xiaohong
2017-10-11
The development of silicon (Si) materials during past decades has boosted up the prosperity of the modern semiconductor industry. In comparison with the bulk-Si materials, Si nanowires (SiNWs) possess superior structural, optical, and electrical properties and have attracted increasing attention in solar energy applications. To achieve the practical applications of SiNWs, both large-scale synthesis of SiNWs at low cost and rational design of energy conversion devices with high efficiency are the prerequisite. This review focuses on the recent progresses in large-scale production of SiNWs, as well as the construction of high-efficiency SiNW-based solar energy conversion devices, including photovoltaic devices and photo-electrochemical cells. Finally, the outlook and challenges in this emerging field are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablonowski, Christiane
The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively withmore » advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project demonstrate significant advances in all six research areas. The major conclusions are that statically-adaptive variable-resolution modeling is currently becoming mature in the climate sciences, and that AMR holds outstanding promise for future-generation weather and climate models on high-performance computing architectures.« less
NASA Technical Reports Server (NTRS)
Whitesides, R. H.; Ghosh, A.; Jenkins, S. L.; Bacchus, D. L.
1989-01-01
A series of subscale cold flow tests was performed to quantify the gas flow characteristics at the aft end of the Space Shuttle Solid Rocket Motor. This information was used to support the analyses of the redesigned nozzle/case joint. A portion of the thermal loads at the joint are due to the circumferential velocities and pressure gradients caused primarily by the gimbaling of the submerged nose TVC nozzle. When the nozzle centerline is vectored with respect to the motor centerline, asymmetries are set up in the flow field under the submerged nozzle and immediately adjacent to the nozzle/case joint. Specific program objectives included: determination of the effects of nozzle gimbal angle and propellant geometry on the circumferential flow field; measurement of the static pressure and gas velocities in the vicinity of the nozzle/case joint; use of scaling laws to apply the subscale cold flow data to the full scale SRM; and generation of data for use in validation of 3-D computational fluid dynamic, CFD, models of the SRM flow field. These tests were conducted in the NASA Marshall Space Flight Center Airflow Facility with a 7.5 percent scale model of the aft segment of the SRM. Static and dynamic pressures were measured in the model to quantify the flow field. Oil flow data was also acquired to obtain qualitative visual descriptions of the flow field. Nozzle gimbal angles of 0, 3.5, and 7 deg were used with propellant grain configurations corresponding to motor burn times of 0, 9, 19, and 114 seconds. This experimental program was successful in generating velocity and pressure gradient data for the flow field around the submerged nose nozzle of the Space Shuttle SRM at various burn times and gimbal angles. The nature of the flow field adjacent to the nozzle/case joint was determined with oil droplet streaks, and the velocity and pressure gradients were quantified with pitot probes and wall static pressure measurements. The data was applied to the full scale SRM thru a scaling analysis and the results compared well with the 3-D computational fluid dynamics computer model.
NASA Astrophysics Data System (ADS)
Jafari, M.; Cao, S. C.; Jung, J.
2017-12-01
Goelogical CO2 sequestration (GCS) has been recently introduced as an effective method to mitigate carbon dioxide emission. CO2 from main producer sources is collected and then is injected underground formations layers to be stored for thousands to millions years. A safe and economical storage project depends on having an insight of trapping mechanisms, fluids dynamics, and interaction of fluids-rocks. Among different forces governing fluids mobility and distribution in GCS condition, capillary pressure is of importance, which, in turn, wettability (measured by contact angel (CA)) is the most controversial parameters affecting it. To explore the sources of discrepancy in the literature for CA measurement, we conducted a series of conventional captive bubble test on glass plates under high pressure condition. By introducing a shape factor, we concluded that surface imperfection can distort the results in such tests. Since the conventional methods of measuring the CA is affected by gravity and scale effect, we introduced a different technique to measure pore-scale CA inside a transparent glass microchip. Our method has the ability to consider pore sizes and simulate static and dynamics CA during dewetting and imbibition. Glass plates shows a water-wet behavior (CA 30° - 45°) by a conventional experiment consistent with literature. However, CA of miniature bubbles inside of the micromodel can have a weaker water-wet behavior (CA 55° - 69°). In a more realistic pore-scale condition, water- CO2 interface covers whole width of a pore throats. Under this condition, the receding CA, which is used for injectability and capillary breakthrough pressure, increases with decreasing pores size. On the other hand, advancing CA, which is important for residual or capillary trapping, does not show a correlation with throat sizes. Static CA measured in the pores during dewetting is lower than static CA on flat plate, but it is much higher when measured during imbibition implying weaker water-wet behavior. Pore-scale CA, which realistically represents rocks wettability behavior, shows weaker water-wet behavior than conventional measurement methods, which must be considered for safety of geological storage.
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Brausch, J. F.; Price, A. O.
1984-01-01
Acoustic and diagnostic data that were obtained to determine the influence of selected geometric and aerodynamic flow variables of coannular nozzles with thermal acoustic shields are summarized in this comprehensive data report. A total of 136 static and simulated flight acoustic test points were conducted with 9 scale-model nozzles. Aerodynamic laser velocimeter measurements were made for four selected plumes. In addition, static pressure data in the chute base region of the suppressor configurations were obtained to assess the influence of the shield stream on the suppressor base drag.
Baity-Jesi, Marco; Calore, Enrico; Cruz, Andres; Fernandez, Luis Antonio; Gil-Narvión, José Miguel; Gordillo-Guerrero, Antonio; Iñiguez, David; Maiorano, Andrea; Marinari, Enzo; Martin-Mayor, Victor; Monforte-Garcia, Jorge; Muñoz Sudupe, Antonio; Navarro, Denis; Parisi, Giorgio; Perez-Gaviro, Sergio; Ricci-Tersenghi, Federico; Ruiz-Lorenzo, Juan Jesus; Schifano, Sebastiano Fabio; Tarancón, Alfonso; Tripiccione, Raffaele; Yllanes, David
2017-01-01
We have performed a very accurate computation of the nonequilibrium fluctuation–dissipation ratio for the 3D Edwards–Anderson Ising spin glass, by means of large-scale simulations on the special-purpose computers Janus and Janus II. This ratio (computed for finite times on very large, effectively infinite, systems) is compared with the equilibrium probability distribution of the spin overlap for finite sizes. Our main result is a quantitative statics-dynamics dictionary, which could allow the experimental exploration of important features of the spin-glass phase without requiring uncontrollable extrapolations to infinite times or system sizes. PMID:28174274
NASA Technical Reports Server (NTRS)
Schnell, W. C.
1982-01-01
The jet induced effects of several exhaust nozzle configurations (axisymmetric, and vectoring/modulating varients) on the aeropropulsive performance of a twin engine V/STOL fighter design was determined. A 1/8 scale model was tested in an 11 ft transonic tunnel at static conditions and over a range of Mach Numbers from 0.4 to 1.4. The experimental aspects of the static and wind-on programs are discussed. Jet effects test techniques in general, fow through balance calibrations and tare force corrections, ASME nozzle thrust and mass flow calibrations, test problems and solutions are emphasized.
Subpercent-Scale Control of 3D Low Modes of Targets Imploded in Direct-Drive Configuration on OMEGA
NASA Astrophysics Data System (ADS)
Michel, D. T.; Igumenshchev, I. V.; Davis, A. K.; Edgell, D. H.; Froula, D. H.; Jacobs-Perkins, D. W.; Goncharov, V. N.; Regan, S. P.; Shvydky, A.; Campbell, E. M.
2018-03-01
Multiple self-emission x-ray images are used to measure tomographically target modes 1, 2, and 3 up to the end of the target acceleration in direct-drive implosions on OMEGA. Results show that the modes consist of two components: the first varies linearly with the laser beam-energy balance and the second is static and results from physical effects including beam mistiming, mispointing, and uncertainty in beam energies. This is used to reduce the target low modes of low-adiabat implosions from 2.2% to 0.8% by adjusting the beam-energy balance to compensate these static modes.
Static performance tests of a flight-type STOVL ejector
NASA Technical Reports Server (NTRS)
Barankiewicz, Wendy S.
1991-01-01
The design and development of thrust augmenting STOVL ejectors has typically been based on experimental iteration (i.e., trial and error). Static performance tests of a full scale vertical lift ejector were performed at primary flow temperatures up to 1560 R (1100 F). Flow visualization (smoke generators and yarn tufts) were used to view the inlet air flow, especially around the primary nozzle and end plates. Performance calculations are presented for ambient temperatures close to 480 R (20 F) and 535 R (75 F) which simulate seasonal aircraft operating conditions. Resulting thrust augmentation ratios are presented as functions of nozzle pressure ratio and temperature.
NASA Technical Reports Server (NTRS)
Giles, G. L.; Rogers, J. L., Jr.
1982-01-01
The methodology used to implement structural sensitivity calculations into a major, general-purpose finite-element analysis system (SPAR) is described. This implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calculating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of SPAR are also discussed.
A microcomputer-based testing station for dynamic and static testing of protective relay systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.J.; Li, R.J.; Gu, J.C.
1995-12-31
Dynamic and static relay performance testing before installation in the field is a subject of great interest to utility relay engineers. The common practice in utility testing of new relays is to put the new unit to be tested in parallel with an existing functioning relay in the system, wait until an actual transient occurs and then observe and analyze the performance of new relay. It is impossible to have a thorough test of the protective relay system through this procedure. An equipment, Microcomputer-Based Testing Station (or PC-Based Testing Station), that can perform both static and dynamic testing of themore » relay is described in this paper. The Power System Simulation Laboratory at the University of Texas at Arlington is a scaled-down, three-phase, physical power system which correlates well with the important components for a real power system and is an ideal facility for the dynamic and static testing of protective relay systems. A brief introduction to the configuration of this laboratory is presented. Test results of several protective functions by using this laboratory illustrate the usefulness of this test set-up.« less
NASA Astrophysics Data System (ADS)
Ng, C. S.; Rosenberg, D.; Pouquet, A.; Germaschewski, K.; Bhattacharjee, A.
2009-04-01
A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)] is applied to simulate the problem of MHD island coalescence instability (\\ci) in two dimensions. \\ci is a fundamental MHD process that can produce sharp current layers and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Due to the formation of thin current layers, it is highly desirable to use adaptively or statically refined grids to resolve them, and to maintain accuracy at the same time. The output of the spectral-element static adaptive refinement simulations are compared with simulations using a finite difference method on the same refinement grids, and both methods are compared to pseudo-spectral simulations with uniform grids as baselines. It is shown that with the statically refined grids roughly scaling linearly with effective resolution, spectral element runs can maintain accuracy significantly higher than that of the finite difference runs, in some cases achieving close to full spectral accuracy.
Dynamic XRD, Shock and Static Compression of CaF2
NASA Astrophysics Data System (ADS)
Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew; Smith, Jesse; Sinogeikin, Stanislav
2017-06-01
The high-pressure behavior of CaF2 is probed with x-ray diffraction (XRD) combined with both dynamic compression, using a two-stage light gas gun, and static compression, using diamond anvil cells. We use XRD to follow the unfolding of a shock-driven, fluorite to cotunnite phase transition, on the timescale of nanoseconds. The dynamic behavior of CaF2 under shock loading is contrasted with that under static compression. This work leverages experimental capabilities at the Advanced Photon Source: dynamic XRD and shock experiments at the Dynamic Compression Sector, as well as XRD and static compression in diamond anvil cell at the High-Pressure Collaborative Access Team. These experiments and cross-platform comparisons, open the door to an unprecedented understanding of equations of state and phase transitions at the microstructural level and at different time scales and will ultimately improve our capability to simulate the behavior of materials at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
The Indeterminate Case of Classical Static Friction When Coupled with Tension
NASA Astrophysics Data System (ADS)
Hahn, Kenneth D.; Russell, Jacob M.
2018-02-01
It has been noted that the static friction force poses challenges for students and, at times, even their instructors. Unlike the gravitational force, which has a precise and unambiguous magnitude (FG = mg), the magnitude and direction of the static friction force depend on other forces at play. Friction can be understood rather well in terms of complicated atomic-scale interactions between surfaces. Ringlein and Robbins survey aspects of the atomic origins of friction, and Folkerts explores factors that affect the value of static friction. However, what students typically encounter in an introductory course ignores the atomic origins of friction (beyond perhaps a brief overview of the atomic model). The rules of dry friction (i.e., non-lubricated surfaces in contact) taught in introductory physics were originally published in 1699 by Guillaume Amontons. Amontons's first law states that the force of friction is directly proportional to the applied load, i.e., f = μFN, where FN is the normal force and μ is the coefficient of friction. His second law states that the force of friction is independent of the macroscopic area of contact. These laws were verified by Coulomb in 1781.
Static critical behavior of the q-states Potts model: High-resolution entropic study
NASA Astrophysics Data System (ADS)
Caparica, A. A.; Leão, Salviano A.; DaSilva, Claudio J.
2015-11-01
Here we report a precise computer simulation study of the static critical properties of the two-dimensional q-states Potts model using very accurate data obtained from a modified Wang-Landau (WL) scheme proposed by Caparica and Cunha-Netto (2012). This algorithm is an extension of the conventional WL sampling, but the authors changed the criterion to update the density of states during the random walk and established a new procedure to windup the simulation run. These few changes have allowed a more precise microcanonical averaging which is essential to a reliable finite-size scaling analysis. In this work we used this new technique to determine the static critical exponents β, γ, and ν, in an unambiguous fashion. The static critical exponents were determined as β = 0.10811(77) , γ = 1.4459(31) , and ν = 0.8197(17) , for the q = 3 case, and β = 0.0877(37) , γ = 1.3161(69) , and ν = 0.7076(10) , for the q = 4 Potts model. A comparison of the present results with conjectured values and with those obtained from other well established approaches strengthens this new way of performing WL simulations.
The Effects of Shoulder Slings on Balance in Patients With Hemiplegic Stroke.
Sohn, Min Kyun; Jee, Sung Ju; Hwang, Pyoungsik; Jeon, Yumi; Lee, Hyunkeun
2015-12-01
To investigate the effects of a shoulder sling on balance in patients with hemiplegia. Twenty-seven hemiplegic stroke patients (right 13, left 14) were enrolled in this study. The subjects' movement in their centers of gravity (COGs) during their static and dynamic balance tests was measured with their eyes open in each sling condition-without a sling, with Bobath's axillary support (Bobath sling), and with a simple arm sling. The percent times in quadrant, overall, anterior/posterior, and medial/lateral stability indexes were measured using a posturography platform (Biodex Balance System SD). Functional balance was evaluated using the Berg Balance Scale and the Trunk Impairment Scale. All balance tests were performed with each sling in random order. The COGs of right hemiplegic stroke patients and all hemiplegic stroke patients shifted to, respectively, the right and posterior quadrants during the static balance test without a sling (p<0.05). This weight asymmetry pattern did not improve with either the Bobath or the simple arm sling. There was no significant improvement in any stability index during either the static or the dynamic balance tests in any sling condition. The right and posterior deviations of the hemiplegic stroke patients' COGs were maintained during the application of the shoulder slings, and there were no significant effects of the shoulder slings on the patients' balance in the standing still position.
The Effects of Shoulder Slings on Balance in Patients With Hemiplegic Stroke
Sohn, Min Kyun; Jee, Sung Ju; Hwang, Pyoungsik; Jeon, Yumi
2015-01-01
Objective To investigate the effects of a shoulder sling on balance in patients with hemiplegia. Methods Twenty-seven hemiplegic stroke patients (right 13, left 14) were enrolled in this study. The subjects' movement in their centers of gravity (COGs) during their static and dynamic balance tests was measured with their eyes open in each sling condition-without a sling, with Bobath's axillary support (Bobath sling), and with a simple arm sling. The percent times in quadrant, overall, anterior/posterior, and medial/lateral stability indexes were measured using a posturography platform (Biodex Balance System SD). Functional balance was evaluated using the Berg Balance Scale and the Trunk Impairment Scale. All balance tests were performed with each sling in random order. Results The COGs of right hemiplegic stroke patients and all hemiplegic stroke patients shifted to, respectively, the right and posterior quadrants during the static balance test without a sling (p<0.05). This weight asymmetry pattern did not improve with either the Bobath or the simple arm sling. There was no significant improvement in any stability index during either the static or the dynamic balance tests in any sling condition. Conclusion The right and posterior deviations of the hemiplegic stroke patients' COGs were maintained during the application of the shoulder slings, and there were no significant effects of the shoulder slings on the patients' balance in the standing still position. PMID:26798614
Converting an intranet site to the cloud: using CampusGuides to refresh a library portal.
Osterhaus Trzasko, Leah C; Farrell, Ann M; Rethlefsen, Melissa L
2012-01-01
After a major redesign project in 2002, Mayo Clinic Libraries' heavily used intranet portal remained largely static. Library staff were unable to make substantive design changes or introduce tools that would make the content more dynamic. CampusGuides offered a practical, user-friendly, web-based solution to add dynamic content to the library site. A task force was formed both to establish design and style guidelines that would integrate with the library site and to plan the conversion of content to CampusGuides. Converting intranet site content to CampusGuides gave the task force the opportunity to examine, re-imagine, and revitalize site content.
Technical, analytical and computer support
NASA Technical Reports Server (NTRS)
1972-01-01
The development of a rigorous mathematical model for the design and performance analysis of cylindrical silicon-germanium thermoelectric generators is reported that consists of two parts, a steady-state (static) and a transient (dynamic) part. The material study task involves the definition and implementation of a material study that aims to experimentally characterize the long term behavior of the thermoelectric properties of silicon-germanium alloys as a function of temperature. Analytical and experimental efforts are aimed at the determination of the sublimation characteristics of silicon germanium alloys and the study of sublimation effects on RTG performance. Studies are also performed on a variety of specific topics on thermoelectric energy conversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.
The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.
The Family Constellation Scale.
ERIC Educational Resources Information Center
Lemire, David
The Family Constellation Scale (FC Scale) is an instrument that assesses perceived birth order in families. It can be used in counseling to help initiate conversations about various traits and assumptions that tend to characterize first-born, middle-born children, youngest-born, and only children. It provides both counselors and clients insights…
NASA Technical Reports Server (NTRS)
Schlundt, D. W.
1976-01-01
The installed performance degradation of a swivel nozzle thrust deflector system obtained during increased vectoring angles of a large-scale test program was investigated and improved. Small-scale models were used to generate performance data for analyzing selected swivel nozzle configurations. A single-swivel nozzle design model with five different nozzle configurations and a twin-swivel nozzle design model, scaled to 0.15 size of the large-scale test hardware, were statically tested at low exhaust pressure ratios of 1.4, 1.3, 1.2, and 1.1 and vectored at four nozzle positions from 0 deg cruise through 90 deg vertical used for the VTOL mode.
NASA Astrophysics Data System (ADS)
Lee, Minsuk; Won, Youngjae; Park, Byungjun; Lee, Seungrag
2017-02-01
Not only static characteristics but also dynamic characteristics of the red blood cell (RBC) contains useful information for the blood diagnosis. Quantitative phase imaging (QPI) can capture sample images with subnanometer scale depth resolution and millisecond scale temporal resolution. Various researches have been used QPI for the RBC diagnosis, and recently many researches has been developed to decrease the process time of RBC information extraction using QPI by the parallel computing algorithm, however previous studies are interested in the static parameters such as morphology of the cells or simple dynamic parameters such as root mean square (RMS) of the membrane fluctuations. Previously, we presented a practical blood test method using the time series correlation analysis of RBC membrane flickering with QPI. However, this method has shown that there is a limit to the clinical application because of the long computation time. In this study, we present an accelerated time series correlation analysis of RBC membrane flickering using the parallel computing algorithm. This method showed consistent fractal scaling exponent results of the surrounding medium and the normal RBC with our previous research.
Evolution and selection of river networks: Statics, dynamics, and complexity
Rinaldo, Andrea; Rigon, Riccardo; Banavar, Jayanth R.; Maritan, Amos; Rodriguez-Iturbe, Ignacio
2014-01-01
Moving from the exact result that drainage network configurations minimizing total energy dissipation are stationary solutions of the general equation describing landscape evolution, we review the static properties and the dynamic origins of the scale-invariant structure of optimal river patterns. Optimal channel networks (OCNs) are feasible optimal configurations of a spanning network mimicking landscape evolution and network selection through imperfect searches for dynamically accessible states. OCNs are spanning loopless configurations, however, only under precise physical requirements that arise under the constraints imposed by river dynamics—every spanning tree is exactly a local minimum of total energy dissipation. It is remarkable that dynamically accessible configurations, the local optima, stabilize into diverse metastable forms that are nevertheless characterized by universal statistical features. Such universal features explain very well the statistics of, and the linkages among, the scaling features measured for fluvial landforms across a broad range of scales regardless of geology, exposed lithology, vegetation, or climate, and differ significantly from those of the ground state, known exactly. Results are provided on the emergence of criticality through adaptative evolution and on the yet-unexplored range of applications of the OCN concept. PMID:24550264
Duque-Ramos, Astrid; Quesada-Martínez, Manuel; Iniesta-Moreno, Miguela; Fernández-Breis, Jesualdo Tomás; Stevens, Robert
2016-10-17
The biomedical community has now developed a significant number of ontologies. The curation of biomedical ontologies is a complex task and biomedical ontologies evolve rapidly, so new versions are regularly and frequently published in ontology repositories. This has the implication of there being a high number of ontology versions over a short time span. Given this level of activity, ontology designers need to be supported in the effective management of the evolution of biomedical ontologies as the different changes may affect the engineering and quality of the ontology. This is why there is a need for methods that contribute to the analysis of the effects of changes and evolution of ontologies. In this paper we approach this issue from the ontology quality perspective. In previous work we have developed an ontology evaluation framework based on quantitative metrics, called OQuaRE. Here, OQuaRE is used as a core component in a method that enables the analysis of the different versions of biomedical ontologies using the quality dimensions included in OQuaRE. Moreover, we describe and use two scales for evaluating the changes between the versions of a given ontology. The first one is the static scale used in OQuaRE and the second one is a new, dynamic scale, based on the observed values of the quality metrics of a corpus defined by all the versions of a given ontology (life-cycle). In this work we explain how OQuaRE can be adapted for understanding the evolution of ontologies. Its use has been illustrated with the ontology of bioinformatics operations, types of data, formats, and topics (EDAM). The two scales included in OQuaRE provide complementary information about the evolution of the ontologies. The application of the static scale, which is the original OQuaRE scale, to the versions of the EDAM ontology reveals a design based on good ontological engineering principles. The application of the dynamic scale has enabled a more detailed analysis of the evolution of the ontology, measured through differences between versions. The statistics of change based on the OQuaRE quality scores make possible to identify key versions where some changes in the engineering of the ontology triggered a change from the OQuaRE quality perspective. In the case of the EDAM, this study let us to identify that the fifth version of the ontology has the largest impact in the quality metrics of the ontology, when comparative analyses between the pairs of consecutive versions are performed.
Evaluation of the reliability and validity for X16 balance testing scale for the elderly.
Ju, Jingjuan; Jiang, Yu; Zhou, Peng; Li, Lin; Ye, Xiaolei; Wu, Hongmei; Shen, Bin; Zhang, Jialei; He, Xiaoding; Niu, Chunjin; Xia, Qinghua
2018-05-10
Balance performance is considered as an indicator of functional status in the elderly, a large scale population screening and evaluation in the community context followed by proper interventions would be of great significance at public health level. However, there has been no suitable balance testing scale available for large scale studies in the unique community context of urban China. A balance scale named X16 balance testing scale was developed, which was composed of 3 domains and 16 items. A total of 1985 functionally independent and active community-dwelling elderly adults' balance abilities were tested using the X16 scale. The internal consistency, split-half reliability, content validity, construct validity, discriminant validity of X16 balance testing scale were evaluated. Factor analysis was performed to identify alternative factor structure. The Eigenvalues of factors 1, 2, and 3 were 8.53, 1.79, and 1.21, respectively, and their cumulative contribution to the total variance reached 72.0%. These 3 factors mainly represented domains static balance, postural stability, and dynamic balance. The Cronbach alpha coefficient for the scale was 0.933. The Spearman correlation coefficients between items and its corresponding domains were ranged from 0.538 to 0.964. The correlation coefficients between each item and its corresponding domain were higher than the coefficients between this item and other domains. With the increase of age, the scores of balance performance, domains static balance, postural stability, and dynamic balance in the elderly declined gradually (P < 0.001). With the increase of age, the proportion of the elderly with intact balance performance decreased gradually (P < 0.001). The reliability and validity of the X16 balance testing scale is both adequate and acceptable. Due to its simple and quick use features, it is practical to be used repeatedly and routinely especially in community setting and on large scale screening.
Properties of 83mKr conversion electrons and their use in the KATRIN experiment
NASA Astrophysics Data System (ADS)
Vénos, D.; Sentkerestiová, J.; Dragoun, O.; Slezák, M.; Ryšavý, M.; Špalek, A.
2018-02-01
The gaseous 83mKr will be used as a source of monoenergetic conversion electrons for systematic studies and calibration of the energy scale in the KArlsruhe TRItium Neutrino experiment (KATRIN). Using all existing experimental data the adopted values of the electron binding energies for free krypton were established and the basic conversion electron properties in 83mKr decay were compiled. Modes of the measurements with gaseous 83mKr were suggested for KATRIN.
NASA Technical Reports Server (NTRS)
Marr, R. L.; Sambell, K. W.; Neal, G. T.
1973-01-01
Stability and control tests of a scale model of a tilt rotor research aircraft were conducted. The characteristics of the model for hover, low speed, and conversion flight were analyzed. Hover tests were conducted in a rotor whirl cage. Helicopter and conversion tests were conducted in a low speed wind tunnel. Data obtained from the tests are presented as tables and graphs. Diagrams and illustrations of the test equipment are provided.
Davis, Tyson C; Bang, Jae Jin; Brooks, Jacob T; McMillan, David G; Claridge, Shelley A
2018-01-30
Noncovalent monolayer chemistries are often used to functionalize 2D materials. Nanoscopic ligand ordering has been widely demonstrated (e.g., lying-down lamellar phases of functional alkanes); however, combining this control with micro- and macroscopic patterning for practical applications remains a significant challenge. A few reports have demonstrated that standing phase Langmuir films on water can be converted into nanoscopic lying-down molecular domains on 2D substrates (e.g., graphite), using horizontal dipping (Langmuir-Schaefer, LS, transfer). Molecular patterns are known to form at scales up to millimeters in Langmuir films, suggesting the possibility of transforming such structures into functional patterns on 2D materials. However, to our knowledge, this approach has not been investigated, and the rules governing LS conversion are not well understood. In part, this is because the conversion process is mechanistically very different from classic LS transfer of standing phases; challenges also arise due to the need to characterize structure in noncovalently adsorbed ligand layers <0.5 nm thick, at scales ranging from millimeters to nanometers. Here, we show that scanning electron microscopy enables diynoic acid lying-down phases to be imaged across this range of scales; using this structural information, we establish conditions for LS conversion to create hierarchical microscopic and nanoscopic functional patterns. Such control opens the door to tailoring noncovalent surface chemistry of 2D materials to pattern local interactions with the environment.
Rehabilitation of coastal wetland forests degraded through their conversion to shrimp farms
Peter R. Burbridge; Daniel C. Hellin
2000-01-01
International demand for shrimp has stimulated large-scale conversion of mangrove and other coastal wetlands into brackish water aquaculture ponds. Poor site selection, coupled with poor management and over-intensive development of individual sites, has led to nonsustainable production and often, wholesale abandonment of ponds. This has been followed by further...
Peterson, Candida C; Garnett, Michelle; Kelly, Adrian; Attwood, Tony
2009-02-01
Children with autism-spectrum disorders (ASD) often fail laboratory false-belief tests of theory of mind (ToM). Yet how this impacts on their everyday social behavior is less clear, partly owing to uncertainty over which specific everyday conversational and social skills require ToM understanding. A new caregiver-report scale of these everyday applications of ToM was developed and validated in two studies. Study 1 obtained parent ratings of 339 children (85 with autism; 230 with Asperger's; 24 typically-developing) on the new scale and results revealed (a) that the scale had good psychometric properties and (b) that children with ASD had significantly more everyday mindreading difficulties than typical developers. In Study 2, we directly tested links between laboratory ToM and everyday mindreading using teacher ratings on the new scale. The sample of 25 children included 15 with autism and 10 typical developers aged 5-12 years. Children in both groups who passed laboratory ToM tests had fewer everyday mindreading difficulties than those of the same diagnosis who failed. Yet, intriguingly, autistic ToM-passers still had more problems with everyday mindreading than younger typically-developing ToM-failers. The possible roles of family conversation and peer interaction, along with ToM, in everyday social functioning were considered.
Conversion of paper sludge to ethanol, II: process design and economic analysis.
Fan, Zhiliang; Lynd, Lee R
2007-01-01
Process design and economics are considered for conversion of paper sludge to ethanol. A particular site, a bleached kraft mill operated in Gorham, NH by Fraser Papers (15 tons dry sludge processed per day), is considered. In addition, profitability is examined for a larger plant (50 dry tons per day) and sensitivity analysis is carried out with respect to capacity, tipping fee, and ethanol price. Conversion based on simultaneous saccharification and fermentation with intermittent feeding is examined, with ethanol recovery provided by distillation and molecular sieve adsorption. It was found that the Fraser plant achieves positive cash flow with or without xylose conversion and mineral recovery. Sensitivity analysis indicates economics are very sensitive to ethanol selling price and scale; significant but less sensitive to the tipping fee, and rather insensitive to the prices of cellulase and power. Internal rates of return exceeding 15% are projected for larger plants at most combinations of scale, tipping fee, and ethanol price. Our analysis lends support to the proposition that paper sludge is a leading point-of-entry and proving ground for emergent industrial processes featuring enzymatic hydrolysis of cellulosic biomass.
The Griffiss Institute Summer Faculty Program
2013-05-01
can inherit the advantages of the static approach while overcoming its drawbacks . Our solution is centered on the following: (i) application-layer web...inverted pendulum balancing problem. In these challenging environments we show that our algorithm not only allows NEAT to scale to high-dimensional spaces
Plume Particle Collection and Sizing from Static Firing of Solid Rocket Motors
NASA Technical Reports Server (NTRS)
Sambamurthi, Jay K.
1995-01-01
Thermal radiation from the plume of any solid rocket motor, containing aluminum as one of the propellant ingredients, is mainly from the microscopic, hot aluminum oxide particles in the plume. The plume radiation to the base components of the flight vehicle is primarily determined by the plume flowfield properties, the size distribution of the plume particles, and their optical properties. The optimum design of a vehicle base thermal protection system is dependent on the ability to accurately predict this intense thermal radiation using validated theoretical models. This article describes a successful effort to collect reasonably clean plume particle samples from the static firing of the flight simulation motor (FSM-4) on March 10, 1994 at the T-24 test bed at the Thiokol space operations facility as well as three 18.3% scaled MNASA motors tested at NASA/MSFC. Prior attempts to collect plume particles from the full-scale motor firings have been unsuccessful due to the extremely hostile thermal and acoustic environment in the vicinity of the motor nozzle.
Rate Dependence in Force Networks of Sheared Granular Materials
NASA Astrophysics Data System (ADS)
Hartley, Robert; Behringer, Robert P.
2003-03-01
We describe experiments that explore rate dependence in force networks of dense granular materials undergoing slow deformation by shear and by compression. The experiments were carried out using 2D photoelastic particles so that it was possible to visualize forces at the grain scale. Shear experiments were carried out in a Couette geometry with a rate Ω. Compression experiments were carried out by repetitive compaction via a piston in a rigid chamber at comparable rates to the shear experiments. Under shearing the mean stress/force grew logarithmically with Ω for at least four decades. For compression, no dependence of the mean stress on rate was observed. In related measurements, we observed relaxation of stress in static samples that had been sheared and where the shearing was abruptly stopped. Relaxation of the force network occured over time scales of days. No relaxation of the force network was observable for uniformly compressed static samples. These results are of particular interest because they provide insight into creep and failure in granular materials.
Full-Scale Turbofan Engine Noise-Source Separation Using a Four-Signal Method
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.; Arechiga, Rene O.
2016-01-01
Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and expected advances in mitigation of other noise sources. During on-ground, static-engine acoustic tests, combustor noise is generally sub-dominant to other engine noise sources because of the absence of in-flight effects. Consequently, noise-source separation techniques are needed to extract combustor-noise information from the total noise signature in order to further progress. A novel four-signal source-separation method is applied to data from a static, full-scale engine test and compared to previous methods. The new method is, in a sense, a combination of two- and three-signal techniques and represents an attempt to alleviate some of the weaknesses of each of those approaches. This work is supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject and the NASA Glenn Faculty Fellowship Program.
NASA Technical Reports Server (NTRS)
Pepper, Edward; Foster, Gerald V.
1946-01-01
The XF-12 airplane is a high performance, photo-reconnaissance aircraft designed by the Republic Aviation Corporation for Army Air Forces. A series of tests of a 1/8.33-scale powered model was conducted in the Langley 9-foot pressure tunnel to obtain information relative to the aerodynamic design of the airplane. This report presents the results of tests to determine the static longitudinal stability and stalling characteristics of the model. From this investigation it was indicated that the airplane will possess a positive static margin for all probable flight conditions. The stalling characteristics are considered satisfactory in that the stall initiates near the root section and progresses toward the tips. Early root section stalling occurs, with the flaps retracted and may cause undesirable tail buffeting and erratic elevator control in the normal flight range. From considerations of sinking speed landing flap deflections of 40 degrees may be preferable to 55 degrees of 65 degrees.
Frankel, A.
1991-01-01
The high-frequency falloff ??-y of earthquake displacement spectra and the b value of aftershock sequences are attributed to the character of spatially varying strength along fault zones. I assume that the high frequency energy of a main shock is produced by a self-similar distribution of subevents, where the number of subevents with radii greater than R is proportional to R-D, D being the fractal dimension. In the model, an earthquake is composed of a hierarchical set of smaller earthquakes. The static stress drop is parameterized to be proportional to R??, and strength is assumed to be proportional to static stress drop. I find that a distribution of subevents with D = 2 and stress drop independent of seismic moment (?? = 0) produces a main shock with an ??-2 falloff, if the subevent areas fill the rupture area of the main shock. By equating subevents to "islands' of high stress of a random, self-similar stress field on a fault, I relate D to the scaling of strength on a fault, such that D = 2 - ??. Thus D = 2 corresponds to constant stress drop scaling (?? = 0) and scale-invariant fault strength. A self-similar model of aftershock rupture zones on a fault is used to determine the relationship between the b value, the size distribution of aftershock rupture zones, and the scaling of strength on a fault. -from Author
Togher, Leanne; McDonald, Skye; Tate, Robyn; Power, Emma; Rietdijk, Rachael
2013-07-01
To determine effectiveness of communication training for partners of people with severe traumatic brain injury. Three arm non-randomized controlled trial comparing communication partner training (JOINT) with individual treatment (TBI SOLO) and a waitlist control group with 6 month follow-up. Forty-four outpatients with severe chronic traumatic brain injuries were recruited. Ten-week conversational skills treatment program encompassing weekly group and individual sessions for both treatment groups. The JOINT condition focused on both the partner and the person with traumatic brain injury while the TBI SOLO condition focused on the individual with TBI only. Primary outcomes were blind ratings of the person with traumatic brain injury's level of participation during conversation on the Measure of Participation in Communication Adapted Kagan scales. Communication partner training improved conversational performance relative to training the person with traumatic brain injury alone and a waitlist control group on the primary outcome measures. Results were maintained at six months post-training. Training communication partners of people with chronic severe traumatic brain injury was more efficacious than training the person with traumatic brain injury alone. The Adapted Kagan scales proved to be a robust and sensitive outcome measure for a conversational skills training program.
Matsubara, Takeo; Hamada, Shohei; Wakabayashi, Ayaka; Kishida, Masao
2016-11-01
The GAR1 gene, encoding d-galacturonate reductase in Cryptococcus diffluens, was isolated, and the GAR1-expression plasmid was constructed by insertion of GAR1 downstream of the yeast constitutive promoter in the yeast-integrating vector. Recombinant Saccharomyces cerevisiae expressing C. diffluensd-galacturonate reductase from a genome integrated copy of the gene was cultured for use the conversion of d-galacturonic acid to l-galactonic acid. The optimum conditions for l-galactonic acid production were determined in terms of the initial concentration of d-galacturonic acid, fermentation pH, and mixed sugars. The following conditions yielded high efficiency in the conversion of d-galacturonic acid to l-galactonic acid in large-scale cultures: 0.1% initial d-galacturonic acid concentration, pH 3.5, and glucose as additional sugar. The aerobic condition was necessary for the conversion of d-galacturonic acid. Subculture of that recombinant was not showing to decrease of the d-galacturonic acid conversion rate even though it was repeated in ten generations. Culturing in scale-up, the conversion rate of d-galacturonic acid to l-galactonic acid was increased. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamaguchi, T.; Kimura, Y.; Hirota, N.
1999-09-01
We have performed molecular dynamics (MD) simulations of the nonpolar solvation dynamics in simple fluids composed of particles interacting through the Lennard-Jones (LJ) 12-6 potential or its repulsive part. The attractive or the repulsive part of the solute-solvent interaction is assumed to change on the excitation of a solute. We have followed the transition energy fluctuation of the solute by the equilibrium simulation. The division of the LJ potential followed the method of WCA [J. W. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971)]. We have surveyed over a wide solvent density region from gas-like to liquid-like densities at the constant temperature. When the attractive part changes, the relaxation becomes faster with an increase of the solvent density. This result contradicts with previous theories that treat the nonpolar solvation dynamics in terms of the diffusion of solvent particles. The time scale of the initial part of the relaxation is well correlated with the static fluctuation divided by the static average, which suggests the importance of the curvature of the free energy surface in the initial part of the solvation. When the repulsive part changes, the initial part of the relaxation is almost density independent, determined by the binary motion between solute and solvent. It is consistent with the result that the static fluctuation is almost proportional to the static average, which indicates the absence of the static correlation between solvent particles. On the other hand, the solvation correlation function shows rather complicated density dependence at the longer time scale. In the case of the binary mixture solvent, the relaxation time is inversely proportional to the diffusion coefficient. On the basis of the nonpolar solvation dynamics, the validity of the isolated binary collision model for the vibrational energy relaxation is also discussed, and the recent hydrodynamic theory on the vibrational energy relaxation [B. J. Cherayil and M. D. Feyer, J. Chem. Phys. 107, 7642 (1997)] is critically examined.
Efficient electrochemical CO 2 conversion powered by renewable energy
Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; ...
2015-06-29
Here, the catalytic conversion of CO 2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO 2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO 2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au 25 nanoclusters as renewably powered CO 2 conversion electrocatalysts with CO 2 → CO reaction rates between 400 and 800 L of CO 2 per gram of catalytic metal per hour and product selectivities betweenmore » 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8–1.6 kg of CO 2 per gram of catalytic metal per hour. We also present data showing CO 2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10 6 mol CO 2 molcatalyst–1 during a multiday (36 hours total hours) CO 2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10 6 and 4 × 10 6 molCO 2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO 2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO 2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO 2 conversion systems will produce a net increase in CO 2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO 2 conversion systems.« less
Rumor evolution in social networks
NASA Astrophysics Data System (ADS)
Zhang, Yichao; Zhou, Shi; Zhang, Zhongzhi; Guan, Jihong; Zhou, Shuigeng
2013-03-01
The social network is a main tunnel of rumor spreading. Previous studies concentrated on a static rumor spreading. The content of the rumor is invariable during the whole spreading process. Indeed, the rumor evolves constantly in its spreading process, which grows shorter, more concise, more easily grasped, and told. In an early psychological experiment, researchers found about 70% of details in a rumor were lost in the first six mouth-to-mouth transmissions. Based on these observations, we investigate rumor spreading on social networks, where the content of the rumor is modified by the individuals with a certain probability. In the scenario, they have two choices, to forward or to modify. As a forwarder, an individual disseminates the rumor directly to their neighbors. As a modifier, conversely, an individual revises the rumor before spreading it out. When the rumor spreads on the social networks, for instance, scale-free networks and small-world networks, the majority of individuals actually are infected by the multirevised version of the rumor, if the modifiers dominate the networks. The individuals with more social connections have a higher probability to receive the original rumor. Our observation indicates that the original rumor may lose its influence in the spreading process. Similarly, a true information may turn out to be a rumor as well. Our result suggests the rumor evolution should not be a negligible question, which may provide a better understanding of the generation and destruction of a rumor.
Barbara L. Illman; Julia Sedlmair; Miriam Unger; Carol Hirschmugl
2013-01-01
Chemical images help understanding of wood properties, durability, and cell wall deconstruction for conversion of lignocellulose to biofuels, nanocellulose and other value added chemicals in forest biorefineries. We describe here a new method for nondestructive chemical imaging of wood and wood-based materials at the micro-scale to complement macro-scale methods based...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, P; Lowenstein, J; Kry, S
Purpose: To compare the CT Number (CTN) to Relative Linear Stopping Power (RLSP) conversion curves used by 14 proton institutions in their dose calculations. Methods: The proton institution’s CTN to RLSP conversion curves were collected by the Imaging and Radiation Oncology Core (IROC) Houston QA Center during its on-site dosimetry review audits. The CTN values were converted to scaled CT Numbers. The scaling assigns a CTN of 0 to air and 1000 to water to allow intercomparison. The conversion curves were compared and the mean curve was calculated based on institutions’ predicted RLSP values for air (CTN 0), lung (CTNmore » 250), fat (CTN 950), water (1000), liver (CTN 1050), and bone (CTN 2000) points. Results: One institution’s curve was found to have a unique curve shape between the scaled CTN of 1025 to 1225. This institution modified its curve based on the findings. Another institution had higher RLSP values than expected for both low and high CTNs. This institution recalibrated their two CT scanners and the new data placed their curve closer to the mean of all institutions. After corrections were made to several conversion curves, four institutions still fall outside 2 standard deviations at very low CTNs (100–200), and two institutions fall outside between CTN 850–900. The largest percent difference in RLSP values between institutions for the specific tissues reviewed was 22% for the lung point. Conclusion: The review and comparison of CTN to RLSP conversion curves allows IROC Houston to identify any outliers and make recommendations for improvement. Several institutions improved their clinical dose calculation accuracy as a Result of this review. There is still area for improvement, particularly in the lung area of the curve. The IROC Houston QA Center is supported by NCI grant CA180803.« less
Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Charles; Beery, Kyle; Orth, Rick
2007-09-28
The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50%more » of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.« less
Photodynamics of oxybenzone sunscreen: Nonadiabatic dynamics simulations.
Li, Chun-Xiang; Guo, Wei-Wei; Xie, Bin-Bin; Cui, Ganglong
2016-08-21
Herein we have used combined static electronic structure calculations and "on-the-fly" global-switching trajectory surface-hopping dynamics simulations to explore the photochemical mechanism of oxybenzone sunscreen. We have first employed the multi-configurational CASSCF method to optimize minima, conical intersections, and minimum-energy reaction paths related to excited-state intramolecular proton transfer (ESIPT) and excited-state decays in the (1)ππ(∗), (1)nπ(∗), and S0 states (energies are refined at the higher MS-CASPT2 level). According to the mapped potential energy profiles, we have identified two ultrafast excited-state deactivation pathways for the initially populated (1)ππ(∗) system. The first is the diabatic ESIPT process along the (1)ππ(∗) potential energy profile. The generated (1)ππ(∗) keto species then decays to the S0 state via the keto (1)ππ(∗)/gs conical intersection. The second is internal conversion to the dark (1)nπ(∗) state near the (1)ππ(∗) /(1)nπ(∗) crossing point in the course of the diabatic (1)ππ(∗) ESIPT process. Our following dynamics simulations have shown that the ESIPT and (1)ππ(∗) → S0 internal conversion times are 104 and 286 fs, respectively. Finally, our present work demonstrates that in addition to the ESIPT process and the (1)ππ(∗) → S0 internal conversion in the keto region, the (1)ππ(∗) → (1)nπ(∗) internal conversion in the enol region plays as well an important role for the excited-state relaxation dynamics of oxybenzone.
Photodynamics of oxybenzone sunscreen: Nonadiabatic dynamics simulations
NASA Astrophysics Data System (ADS)
Li, Chun-Xiang; Guo, Wei-Wei; Xie, Bin-Bin; Cui, Ganglong
2016-08-01
Herein we have used combined static electronic structure calculations and "on-the-fly" global-switching trajectory surface-hopping dynamics simulations to explore the photochemical mechanism of oxybenzone sunscreen. We have first employed the multi-configurational CASSCF method to optimize minima, conical intersections, and minimum-energy reaction paths related to excited-state intramolecular proton transfer (ESIPT) and excited-state decays in the 1ππ∗, 1nπ∗, and S0 states (energies are refined at the higher MS-CASPT2 level). According to the mapped potential energy profiles, we have identified two ultrafast excited-state deactivation pathways for the initially populated 1ππ∗ system. The first is the diabatic ESIPT process along the 1ππ∗ potential energy profile. The generated 1ππ∗ keto species then decays to the S0 state via the keto 1ππ∗/gs conical intersection. The second is internal conversion to the dark 1nπ∗ state near the 1ππ∗ /1nπ∗ crossing point in the course of the diabatic 1ππ∗ ESIPT process. Our following dynamics simulations have shown that the ESIPT and 1ππ∗ → S0 internal conversion times are 104 and 286 fs, respectively. Finally, our present work demonstrates that in addition to the ESIPT process and the 1ππ∗ → S0 internal conversion in the keto region, the 1ππ∗ → 1nπ∗ internal conversion in the enol region plays as well an important role for the excited-state relaxation dynamics of oxybenzone.
Importance of curvature evaluation scale for predictive simulations of dynamic gas-liquid interfaces
NASA Astrophysics Data System (ADS)
Owkes, Mark; Cauble, Eric; Senecal, Jacob; Currie, Robert A.
2018-07-01
The effect of the scale used to compute the interfacial curvature on the prediction of dynamic gas-liquid interfaces is investigated. A new interface curvature calculation methodology referred to herein as the Adjustable Curvature Evaluation Scale (ACES) is proposed. ACES leverages a weighted least squares regression to fit a polynomial through points computed on the volume-of-fluid representation of the gas-liquid interface. The interface curvature is evaluated from this polynomial. Varying the least squares weight with distance from the location where the curvature is being computed, adjusts the scale the curvature is evaluated on. ACES is verified using canonical static test cases and compared against second- and fourth-order height function methods. Simulations of dynamic interfaces, including a standing wave and oscillating droplet, are performed to assess the impact of the curvature evaluation scale for predicting interface motions. ACES and the height function methods are combined with two different unsplit geometric volume-of-fluid (VoF) schemes that define the interface on meshes with different levels of refinement. We find that the results depend significantly on curvature evaluation scale. Particularly, the ACES scheme with a properly chosen weight function is accurate, but fails when the scale is too small or large. Surprisingly, the second-order height function method is more accurate than the fourth-order variant for the dynamic tests even though the fourth-order method performs better for static interfaces. Comparing the curvature evaluation scale of the second- and fourth-order height function methods, we find the second-order method is closer to the optimum scale identified with ACES. This result suggests that the curvature scale is driving the accuracy of the dynamics. This work highlights the importance of studying numerical methods with realistic (dynamic) test cases and that the interactions of the various discretizations is as important as the accuracy of one part of the discretization.
Symeonidis, Vasileios; Em Karniadakis, George; Caswell, Bruce
2005-08-12
Dissipative particle dynamics simulations of several bead-spring representations of polymer chains in dilute solution are used to demonstrate the correct static scaling laws for the radius of gyration. Shear flow results for the wormlike chain simulating single DNA molecules compare well with average extensions from experiments, irrespective of the number of beads. However, coarse graining with more than a few beads degrades the agreement of the autocorrelation of the extension.
Ralph Alig; Darius Adams; John Mills; Richard Haynes; Peter Ince; Robert Moulton
2001-01-01
The TAMM/NAPAP/ATLAS/AREACHANGE(TNAA) system and the Forest and Agriculture Sector Optimization Model (FASOM) are two large-scale forestry sector modeling systems that have been employed to analyze the U.S. forest resource situation. The TNAA system of static, spatial equilibrium models has been applied to make SO-year projections of the U.S. forest sector for more...
NASA Astrophysics Data System (ADS)
Dai, A. J.; Chen, Z. Y.; Huang, D. W.; Tong, R. H.; Zhang, J.; Wei, Y. N.; Ma, T. K.; Wang, X. L.; Yang, H. Y.; Gao, H. L.; Pan, Y.; the J-TEXT Team
2018-05-01
A large number of runaway electrons (REs) with energies as high as several tens of mega-electron volt (MeV) may be generated during disruptions on a large-scale tokamak. The kinetic energy carried by REs is eventually deposited on the plasma-facing components, causing damage and posing a threat on the operation of the tokamak. The remaining magnetic energy following a thermal quench is significant on a large-scale tokamak. The conversion of magnetic energy to runaway kinetic energy will increase the threat of runaway electrons on the first wall. The magnetic energy dissipated inside the vacuum vessel (VV) equals the decrease of initial magnetic energy inside the VV plus the magnetic energy flowing into the VV during a disruption. Based on the estimated magnetic energy, the evolution of magnetic-kinetic energy conversion are analyzed through three periods in disruptions with a runaway current plateau.
Hu, Ying; Li, Zhe; Lan, Tian; Chen, Wei
2016-12-01
Photoactuators with integrated optical-to-mechanical energy conversion capacity have attracted growing research interest in the last few decades due to their unique features of remote control and their wide applications ranging from bionic robots, biomedical devices, and switches to motors. For the photoactuator design, the energy conversion route and structure assembly are two important parts, which directly affect the performance of the photoactuators. In particular, the architectural designs at the molecular, nano-, micro-, and macro- level, are found to play a significant role in accumulating molecular-scale strain/stress to macroscale strain/stress. Here, recent progress on photoactuators based on photochemical and photothermal effects is summarized, followed by a discussion of the important assembly strategies for the amplification of the photoresponsive components at nanoscale to macroscopic scale motions. The application advancement of current photoactuators is also presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy conversion at dipolarization fronts
NASA Astrophysics Data System (ADS)
Khotyaintsev, Yu. V.; Divin, A.; Vaivads, A.; André, M.; Markidis, S.
2017-02-01
We use multispacecraft observations by Cluster in the Earth's magnetotail and 3-D particle-in-cell simulations to investigate conversion of electromagnetic energy at the front of a fast plasma jet. We find that the major energy conversion is happening in the Earth (laboratory) frame, where the electromagnetic energy is being transferred from the electromagnetic field to particles. This process operates in a region with size of the order several ion inertial lengths across the jet front, and the primary contribution to E·j is coming from the motional electric field and the ion current. In the frame of the front we find fluctuating energy conversion with localized loads and generators at sub-ion scales which are primarily related to the lower hybrid drift instability excited at the front; however, these provide relatively small net energy conversion.
LaZerte, Stefanie E; Reudink, Matthew W; Otter, Ken A; Kusack, Jackson; Bailey, Jacob M; Woolverton, Austin; Paetkau, Mark; de Jong, Adriaan; Hill, David J
2017-10-01
Radio frequency identification (RFID) provides a simple and inexpensive approach for examining the movements of tagged animals, which can provide information on species behavior and ecology, such as habitat/resource use and social interactions. In addition, tracking animal movements is appealing to naturalists, citizen scientists, and the general public and thus represents a tool for public engagement in science and science education. Although a useful tool, the large amount of data collected using RFID may quickly become overwhelming. Here, we present an R package (feedr) we have developed for loading, transforming, and visualizing time-stamped, georeferenced data, such as RFID data collected from static logger stations. Using our package, data can be transformed from raw RFID data to visits, presence (regular detections by a logger over time), movements between loggers, displacements, and activity patterns. In addition, we provide several conversion functions to allow users to format data for use in functions from other complementary R packages. Data can also be visualized through static or interactive maps or as animations over time. To increase accessibility, data can be transformed and visualized either through R directly, or through the companion site: http://animalnexus.ca, an online, user-friendly, R-based Shiny Web application. This system can be used by professional and citizen scientists alike to view and study animal movements. We have designed this package to be flexible and to be able to handle data collected from other stationary sources (e.g., hair traps, static very high frequency (VHF) telemetry loggers, observations of marked individuals in colonies or staging sites), and we hope this framework will become a meeting point for science, education, and community awareness of the movements of animals. We aim to inspire citizen engagement while simultaneously enabling robust scientific analysis.
ERIC Educational Resources Information Center
Hayashi, Yugo
2015-01-01
The present study investigates web-based learning activities of undergraduate students who generate explanations about a key concept taught in a large-scale classroom. The present study used an online system with Pedagogical Conversational Agent (PCA), asked to explain about the key concept from different points and provided suggestions and…
Conversational Behaviors in Youth with High-Functioning ASD and Asperger Syndrome
ERIC Educational Resources Information Center
Paul, Rhea; Orlovski, Stephanie Miles; Marcinko, Hillary Chuba; Volkmar, Fred
2009-01-01
Twenty-nine youth with autism spectrum disorders and 26 with typical development between 12 and 18 years of age were engaged in structured interviews (ADOS). The interviews were videotaped and rated for atypical conversational behaviors by trained raters, using the Pragmatic Rating Scale (Landa et al. "Psychol Med" 22:245-254, 1992). The ASD group…
Scaling Studies of Efficient Raman Converters.
1983-07-01
allowed without deleterious effects due to competing processes. These processes include amplified spontaneous emission (Raman superfluorescence...tively introducing noise injection that could potentially degrade conversion efficiency and/or beam quality. The conditions under which these competing ...good beam qual- ity. Section 5.1 discusses Stokes injection level requirements in terms of suppressing competing effects which can reduce conversion
Direct test of static stress versus dynamic stress triggering of aftershocks
Pollitz, F.F.; Johnston, M.J.S.
2006-01-01
Aftershocks observed over time scales of minutes to months following a main shock are plausibly triggered by the static stress change imparted by the main shock, dynamic shaking effects associated with passage of seismic waves from the main shock, or a combination of the two. We design a direct test of static versus dynamic triggering of aftershocks by comparing the near-field temporal aftershock patterns generated by aseismic and impulsive events occurring in the same source area. The San Juan Bautista, California, area is ideally suited for this purpose because several events of both types of M???5 have occurred since 1974. We find that aftershock rates observed after impulsive events are much higher than those observed after aseismic events, and this pattern persists for several weeks after the event. This suggests that, at least in the near field, dynamic triggering is the dominant cause of aftershocks, and that it generates both immediate and delayed aftershock activity.
Spectra of turbulent static pressure fluctuations in jet mixing layers
NASA Technical Reports Server (NTRS)
Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.
1977-01-01
Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.
Analysis of Wind Tunnel Longitudinal Static and Oscillatory Data of the F-16XL Aircraft
NASA Technical Reports Server (NTRS)
Klein, Vladislav; Murphy, Patrick C.; Curry, Timothy J.; Brandon, Jay M.
1997-01-01
Static and oscillatory wind tunnel data are presented for a 10-percent-scale model of an F-16XL aircraft. Static data include the effect of angle of attack, sideslip angle, and control surface deflections on aerodynamic coefficients. Dynamic data from small-amplitude oscillatory tests are presented at nominal values of angle of attack between 20 and 60 degrees. Model oscillations were performed at five frequencies from 0.6 to 2.9 Hz and one amplitude of 5 degrees. A simple harmonic analysis of the oscillatory data provided Fourier coefficients associated with the in-phase and out-of-phase components of the aerodynamic coefficients. A strong dependence of the oscillatory data on frequency led to the development of models with unsteady terms in the form of indicial functions. Two models expressing the variation of the in-phase and out-of-phase components with angle of attack and frequency were proposed and their parameters estimated from measured data.
Propfan test assessment propfan propulsion system static test report
NASA Technical Reports Server (NTRS)
Orourke, D. M.
1987-01-01
The propfan test assessment (PTA) propulsion system successfully completed over 50 hours of extensive static ground tests, including a 36 hour endurance test. All major systems performed as expected, verifying that the large-scale 2.74 m diameter propfan, engine, gearbox, controls, subsystems, and flight instrumentation will be satisfactory with minor modifications for the upcoming PTA flight tests on the GII aircraft in early 1987. A test envelope was established for static ground operation to maintain propfan blade stresses within limits for propfan rotational speeds up to 105 percent and power levels up to 3880 kW. Transient tests verified stable, predictable response of engine power and propfan speed controls. Installed engine TSFC was better than expected, probably due to the excellent inlet performance coupled with the supercharging effect of the propfan. Near- and far-field noise spectra contained three dominant components, which were dependent on power, tip speed, and direction. The components were propfan blade tones, propfan random noise, and compressor/propfan interaction noise. No significant turbine noise or combustion noise was evident.
The fluid trampoline: droplets bouncing on a soap film
NASA Astrophysics Data System (ADS)
Bush, John; Gilet, Tristan
2008-11-01
We present the results of a combined experimental and theoretical investigation of droplets falling onto a horizontal soap film. Both static and vertically vibrated soap films are considered. A quasi-static description of the soap film shape yields a force-displacement relation that provides excellent agreement with experiment, and allows us to model the film as a nonlinear spring. This approach yields an accurate criterion for the transition between droplet bouncing and crossing on the static film; moreover, it allows us to rationalize the observed constancy of the contact time and scaling for the coefficient of restitution in the bouncing states. On the vibrating film, a variety of bouncing behaviours were observed, including simple and complex periodic states, multiperiodicity and chaos. A simple theoretical model is developed that captures the essential physics of the bouncing process, reproducing all observed bouncing states. Quantitative agreement between model and experiment is deduced for simple periodic modes, and qualitative agreement for more complex periodic and chaotic bouncing states.
Lundy, Mark E.; Parrella, Michael P.
2015-01-01
It has been suggested that the ecological impact of crickets as a source of dietary protein is less than conventional forms of livestock due to their comparatively efficient feed conversion and ability to consume organic side-streams. This study measured the biomass output and feed conversion ratios of house crickets (Acheta domesticus) reared on diets that varied in quality, ranging from grain-based to highly cellulosic diets. The measurements were made at a much greater population scale and density than any previously reported in the scientific literature. The biomass accumulation was strongly influenced by the quality of the diet (p<0.001), with the nitrogen (N) content, the ratio of N to acid detergent fiber (ADF) content, and the crude fat (CF) content (y=N/ADF+CF) explaining most of the variability between feed treatments (p = 0.02; R2 = 0.96). In addition, for populations of crickets that were able to survive to a harvestable size, the feed conversion ratios measured were higher (less efficient) than those reported from studies conducted at smaller scales and lower population densities. Compared to the industrial-scale production of chickens, crickets fed a poultry feed diet showed little improvement in protein conversion efficiency, a key metric in determining the ecological footprint of grain-based livestock protein. Crickets fed the solid filtrate from food waste processed at an industrial scale via enzymatic digestion were able to reach a harvestable size and achieve feed and protein efficiencies similar to that of chickens. However, crickets fed minimally-processed, municipal-scale food waste and diets composed largely of straw experienced >99% mortality without reaching a harvestable size. Therefore, the potential for A. domesticus to sustainably supplement the global protein supply, beyond what is currently produced via grain-fed chickens, will depend on capturing regionally scalable organic side-streams of relatively high-quality that are not currently being used for livestock production. PMID:25875026
Lundy, Mark E; Parrella, Michael P
2015-01-01
It has been suggested that the ecological impact of crickets as a source of dietary protein is less than conventional forms of livestock due to their comparatively efficient feed conversion and ability to consume organic side-streams. This study measured the biomass output and feed conversion ratios of house crickets (Acheta domesticus) reared on diets that varied in quality, ranging from grain-based to highly cellulosic diets. The measurements were made at a much greater population scale and density than any previously reported in the scientific literature. The biomass accumulation was strongly influenced by the quality of the diet (p<0.001), with the nitrogen (N) content, the ratio of N to acid detergent fiber (ADF) content, and the crude fat (CF) content (y=N/ADF+CF) explaining most of the variability between feed treatments (p = 0.02; R2 = 0.96). In addition, for populations of crickets that were able to survive to a harvestable size, the feed conversion ratios measured were higher (less efficient) than those reported from studies conducted at smaller scales and lower population densities. Compared to the industrial-scale production of chickens, crickets fed a poultry feed diet showed little improvement in protein conversion efficiency, a key metric in determining the ecological footprint of grain-based livestock protein. Crickets fed the solid filtrate from food waste processed at an industrial scale via enzymatic digestion were able to reach a harvestable size and achieve feed and protein efficiencies similar to that of chickens. However, crickets fed minimally-processed, municipal-scale food waste and diets composed largely of straw experienced >99% mortality without reaching a harvestable size. Therefore, the potential for A. domesticus to sustainably supplement the global protein supply, beyond what is currently produced via grain-fed chickens, will depend on capturing regionally scalable organic side-streams of relatively high-quality that are not currently being used for livestock production.
Light bending, static dark energy, and related uniqueness of Schwarzschild-de Sitter spacetime
NASA Astrophysics Data System (ADS)
Ali, Md Sabir; Bhattacharya, Sourav
2018-01-01
Since the Schwarzschild-de Sitter spacetime is static inside the cosmological event horizon, if the dark energy state parameter is sufficiently close to -1 , apparently one could still expect an effectively static geometry, in the attraction dominated region inside the maximum turnaround radius, RTA ,max, of a cosmic structure. We take the first order metric derived recently assuming a static and ideal dark energy fluid with equation of state P (r )=α ρ (r ) as a source in Bhattacharya and Tomaras [Eur. Phys. J. C 77, 526 (2017), 10.1140/epjc/s10052-017-5102-4], which reproduced the expression for RTA ,max found earlier in the cosmological McVittie spacetime. Here we show that the equality originates from the equivalence of geodesic motion in these two backgrounds, in the nonrelativistic regime. We extend this metric up to the third order and compute the bending of light using the Rindler-Ishak method. For α ≠-1 , a dark energy dependent term appears in the bending equation, unlike the case of the cosmological constant, α =-1 . Because of this new term in particular, existing data for the light bending at galactic scales yields (1 +α )≲O (10-14), thereby practically ruling out any such static and inhomogeneous dark energy fluid we started with. Implication of this result pertaining to the uniqueness of the Schwarzschild-de Sitter spacetime in such an inhomogeneous dark energy background is discussed.
Investigation of Gearbox Vibration Transmission Paths on Gear Condition Indicator Performance
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Islam, AKM Anwarul; Feldman, Jason; Larsen, Chris
2013-01-01
Helicopter health monitoring systems use vibration signatures generated from damaged components to identify transmission faults. For damaged gears, these signatures relate to changes in dynamics due to the meshing of the damaged tooth. These signatures, referred to as condition indicators (CI), can perform differently when measured on different systems, such as a component test rig, or a full-scale transmission test stand, or an aircraft. These differences can result from dissimilarities in systems design and environment under dynamic operating conditions. The static structure can also filter the response between the vibration source and the accelerometer, when the accelerometer is installed on the housing. To assess the utility of static vibration transfer paths for predicting gear CI performance, measurements were taken on the NASA Glenn Spiral Bevel Gear Fatigue Test Rig. The vibration measurements were taken to determine the effect of torque, accelerometer location and gearbox design on accelerometer response. Measurements were taken at the housing and compared while impacting the gear set near mesh. These impacts were made at gear mesh to simulate gear meshing dynamics. Data measured on a helicopter gearbox installed in a static fixture were also compared to the test rig. The behavior of the structure under static conditions was also compared to CI values calculated under dynamic conditions. Results indicate that static vibration transfer path measurements can provide some insight into spiral bevel gear CI performance by identifying structural characteristics unique to each system that can affect specific CI response.
Kuo, Mario Meng-Chiang; Baker, Kent A; Wong, Lee; Choe, Senyon
2007-02-13
The crystal structure of the RCK-containing MthK provides a molecular framework for understanding the ligand gating mechanisms of K+ channels. Here we examined the macroscopic currents of MthK in enlarged Escherichia coli membrane by patch clamp and rapid perfusion techniques and showed that the channel undergoes desensitization in seconds after activation by Ca2+ or Cd2+. Additionally, MthK is inactivated by slightly acidic pH only from the cytoplasmic side. Examinations of isolated RCK domain by size-exclusion chromatography, static light scattering, analytical sedimentation, and stopped-flow spectroscopy show that Ca2+ rapidly converts isolated RCK monomers to multimers at alkaline pH. In contrast, the RCK domain at acidic pH remains firmly dimeric regardless of Ca2+ but restores predominantly to multimer or monomer at basic pH with or without Ca2+, respectively. These functional and biochemical analyses correlate the four functional states of the MthK channel with distinct oligomeric states of its RCK domains and indicate that the RCK domains undergo oligomeric conversions in modulating MthK activities.
Yang, Jun; Fan, Shangchun; Li, Cheng; Guo, Zhanshe; Li, Bo; Shi, Bo
2016-12-01
A new method with laser interferometry is used to enhance the traceability for sinusoidal pressure calibration in water. The laser vibrometer measures the dynamic pressure based on the acousto-optic effect. The relation of the refractive index of water and the optical path length with the pressure's change is built based on the Lorentz-Lorenz equation, and the conversion coefficients are tested by static calibration in situ. A device with a piezoelectric transducer and resonant pressure pipe with water is set up to generate sinusoidal pressure up to 20 kHz. With the conversion coefficients, the reference sinusoidal pressure is measured by the laser interferometer for pressure sensors' dynamic calibration. The experiment results show that under 10 kHz, the measurement results between the laser vibrometer and a piezoelectric sensor are in basic agreement and indicate that this new method and its measurement system are feasible in sinusoidal pressure calibration. Some disturbing components including small amplitude, temperature change, pressure maldistribution, and glass windows' vibration are also analyzed, especially for the dynamic calibrations above 10 kHz.
Statistical analysis of subjective preferences for video enhancement
NASA Astrophysics Data System (ADS)
Woods, Russell L.; Satgunam, PremNandhini; Bronstad, P. Matthew; Peli, Eli
2010-02-01
Measuring preferences for moving video quality is harder than for static images due to the fleeting and variable nature of moving video. Subjective preferences for image quality can be tested by observers indicating their preference for one image over another. Such pairwise comparisons can be analyzed using Thurstone scaling (Farrell, 1999). Thurstone (1927) scaling is widely used in applied psychology, marketing, food tasting and advertising research. Thurstone analysis constructs an arbitrary perceptual scale for the items that are compared (e.g. enhancement levels). However, Thurstone scaling does not determine the statistical significance of the differences between items on that perceptual scale. Recent papers have provided inferential statistical methods that produce an outcome similar to Thurstone scaling (Lipovetsky and Conklin, 2004). Here, we demonstrate that binary logistic regression can analyze preferences for enhanced video.
Wang, Hongqing; Piazza, Sarai C.; Sharp, Leigh A.; Stagg, Camille L.; Couvillion, Brady R.; Steyer, Gregory D.; McGinnis, Thomas E.
2016-01-01
Soil bulk density (BD), soil organic matter (SOM) content, and a conversion factor between SOM and soil organic carbon (SOC) are often used in estimating SOC sequestration and storage. Spatial variability in BD, SOM, and the SOM–SOC conversion factor affects the ability to accurately estimate SOC sequestration, storage, and the benefits (e.g., land building area and vertical accretion) associated with wetland restoration efforts, such as marsh creation and sediment diversions. There are, however, only a few studies that have examined large-scale spatial variability in BD, SOM, and SOM–SOC conversion factors in coastal wetlands. In this study, soil cores, distributed across the entire coastal Louisiana (approximately 14,667 km2) were used to examine the regional-scale spatial variability in BD, SOM, and the SOM–SOC conversion factor. Soil cores for BD and SOM analyses were collected during 2006–09 from 331 spatially well-distributed sites in the Coastwide Reference Monitoring System network. Soil cores for the SOM–SOC conversion factor analysis were collected from 15 sites across coastal Louisiana during 2006–07. Results of a split-plot analysis of variance with incomplete block design indicated that BD and SOM varied significantly at a landscape level, defined by both hydrologic basins and vegetation types. Vertically, BD and SOM varied significantly among different vegetation types. The SOM–SOC conversion factor also varied significantly at the landscape level. This study provides critical information for the assessment of the role of coastal wetlands in large regional carbon budgets and the estimation of carbon credits from coastal restoration.
Dynamics of static friction between steel and silicon
Yang, Zhiping; Zhang, H. P.; Marder, M.
2008-01-01
We conducted experiments in which steel and silicon or quartz are clamped together. Even with the smallest tangential forces we could apply, we always found reproducible sliding motions on the nanometer scale. The velocities we study are thousands of times smaller than in previous investigations. The samples first slide and then lock up even when external forces hold steady. One might call the result “slip-stick” friction. We account for the results with a phenomenological theory that results from considering the rate and state theory of dynamic friction at low velocities. Our measurements lead us to set the instantaneous coefficient of static friction that normally enters rate and state theories to zero. PMID:18768792
Crashworthy airframe design concepts: Fabrication and testing
NASA Technical Reports Server (NTRS)
Cronkhite, J. D.; Berry, V. L.
1982-01-01
Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. The floors featured an upper high strength platform with an energy absorbing, crushable structure underneath. Eighteen floors were fabricated that incorporated five different crushable subfloor concepts. The floors were then evaluated through static and dynamic testing. Computer programs NASTRAN and KRASH were used for the static and dynamic analysis of the floor section designs. Two twin engine airplane fuselages were modified to incorporate the most promising crashworthy floor sections for test evaluation.
Experimental static aerodynamics of a regular hexagonal prism in a low density hypervelocity flow
NASA Technical Reports Server (NTRS)
Guy, R. W.; Mueller, J. N.; Lee, L. P.
1972-01-01
A regular hexagonal prism, having a fineness ratio of 1.67, has been tested in a wind tunnel to determine its static aerodynamic characteristics in a low-density hypervelocity flow. The prism tested was a 1/4-scale model of the graphite heat shield which houses the radioactive fuel for the Viking spacecraft auxiliary power supply. The basic hexagonal prism was also modified to simulate a prism on which ablation of one of the six side flats had occurred. This modified hexagonal prism was tested to determine the effects on the aerodynamic characteristics of a shape change caused by ablation during a possible side-on stable reentry.
NASA Technical Reports Server (NTRS)
Allen, E. C.; Eder, F. W.
1972-01-01
Experimental aerodynamic investigations have been made on a .0035 scale model North American Rockwell/General Dynamics version of the space shuttle. Static stability and control data were obtained on the delta wing booster alone (B-20) and with the delta wing orbiter (134D) mounted in various positions on the booster. Six component aerodynamic force and moment data were recorded over an angle of attack range from -10 deg to 24 deg at 0 deg and 6 deg sideslip angles and from -10 deg to +10 deg sideslip at 0 deg angle of attack. Mach number ranged from 0.6 to 4.96.
Hybrid massively parallel fast sweeping method for static Hamilton-Jacobi equations
NASA Astrophysics Data System (ADS)
Detrixhe, Miles; Gibou, Frédéric
2016-10-01
The fast sweeping method is a popular algorithm for solving a variety of static Hamilton-Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.
Photonic jet μ-etching: from static to dynamic process
NASA Astrophysics Data System (ADS)
Abdurrochman, A.; Lecler, S.; Zelgowski, J.; Mermet, F.; Fontaine, J.; Tumbelaka, B. Y.
2017-05-01
Photonic jet etching is a direct-laser etching method applying photonic jet phenomenon to concentrate the laser beam onto the proceeded material. We call photonic jet the phenomenon of the localized sub-wavelength propagative beam generated at the shadow-side surfaces of micro-scale dielectric cylinders or spheres, when they are illuminated by an electromagnetic plane-wave or laser beam. This concentration has made possible the laser to yield sub-μ etching marks, despite the laser was a near-infrared with nano-second pulses sources. We will present these achievements from the beginning when some spherical glasses were used for static etching to dynamic etching using an optical fiber with a semi-elliptical tip.
Mach 6 flow field surveys beneath the forebody of an airbreathing missile
NASA Technical Reports Server (NTRS)
Johnson, P. J.; Hunt, J. L.
1986-01-01
Wall static, local stream static, and pitot pressure surveys were made on the windward side of a hypersonic airbreathing missile at full-scale length Reynolds numbers. In the inviscid part of the flow field, the experimental massflow ratios agreed with trends predicted by a three-dimensional method-of-characteristics solution. At a longitudinal station 3.5 diameters downstrea of the nose, the boundary layer was transitional or turbulent at zero incidence but became laminar as the angle of attack increased. The bell-shaped distribution of the boundary layer across the width of the body affected the mass flow distribution out to the bow shock and decreased the mass flow available the engine inlet.
A static investigation of several STOVL exhaust system concepts
NASA Technical Reports Server (NTRS)
Romine, B. M., Jr.; Meyer, B. E.; Re, R. J.
1989-01-01
A static cold flow scale model test was performed in order to determine the internal performance characteristics of various STOVL exhaust systems. All of the concepts considered included a vectorable cruise nozzle and a separate vectorable vertical thrust ventral nozzle mounted on the tailpipe. The two ventral nozzle configurations tested featured vectorable constant thickness cascade vanes for area control and improved performance during transition and vertical lift flight. The best transition performance was achieved using a butterfly door type ventral nozzle and a pitch vectoring 2DCD or axisymmetric cruise nozzle. The clamshell blocker type of ventral nozzle had reduced transition performance due to the choking of the tailpipe flow upstream of the cruise nozzle.
Computational Simulation of Composite Structural Fatigue
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2005-01-01
Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.
Computational Simulation of Composite Structural Fatigue
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
2004-01-01
Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.
AB INITIO Molecular Dynamics Simulations of Water Under Static and Shock Compressed Conditions
NASA Astrophysics Data System (ADS)
Goldman, Nir; Fried, Laurence E.; Mundy, Christopher J.; Kuo, I.-F. William; Curioni, Alessandro; Reed, Evan J.
2007-12-01
We report herein a series of ab initio simulations of water under both static and shocked conditions. We have calculated the coherent x-ray scattering intensity of several phases of water under high pressure, using ab initio Density Functional Theory (DFT). We provide new atomic scattering form factors for water at extreme conditions, which take into account frequently neglected changes in ionic charge and electron delocalization. We have also simulated liquid water undergoing shock loading of velocities from 5-11 km/s using the Multi-Scale Shock Technique (MSST). We show that Density Functional Theory (DFT) molecular dynamics results compare extremely well to experiments on the water shock Hugoniot.
NASA Technical Reports Server (NTRS)
Ramsey, P. E.; Winkler, G. W.
1975-01-01
Static pressure distributions for the external tank (ET) at reentry conditions are presented. Basic configuration of the model was the MCR 0200 ET modified to include a rectangular crossbar at the aft ET/orbiter attach point. Mach numbers were 1.96, 3.48, and 4.96. Reynolds number per foot at these Mach numbers were 6.95 million, 6.42 million, and 4.95 million, respectively. Angle of attack range was -8 to 100 degrees and roll angle was 0 to 315 degrees.
NASA Astrophysics Data System (ADS)
Ivashchuk, V. D.; Ernazarov, K. K.
2017-01-01
A (n + 1)-dimensional gravitational model with cosmological constant and Gauss-Bonnet term is studied. The ansatz with diagonal cosmological metrics is adopted and solutions with exponential dependence of scale factors: ai ˜ exp (vit), i = 1, …, n, are considered. The stability analysis of the solutions with non-static volume factor is presented. We show that the solutions with v 1 = v 2 = v 3 = H > 0 and small enough variation of the effective gravitational constant G are stable if certain restriction on (vi ) is obeyed. New examples of stable exponential solutions with zero variation of G in dimensions D = 1 + m + 2 with m > 2 are presented.
ERIC Educational Resources Information Center
Dorans, Neil J.
2002-01-01
The history of SAT® score scales is summarized, and the need for realigning SAT score scales is demonstrated. The process employed to produce the conversions that take scores from the original SAT scales to recentered scales in which reference group scores are centered near the midpoint of the score-reporting range is laid out. For the purposes of…
NASA Astrophysics Data System (ADS)
Kurganova, Irina; Prishchepov, Alexander V.; Schierhorn, Florian; Lopes de Gerenyu, Valentin; Müller, Daniel; Kuzyakov, Yakov
2016-04-01
Land use change is a major driver of land-atmosphere carbon (C) fluxes. The largest net C fluxes caused by LUC are attributed to the conversion of native unmanaged ecosystems to croplands and vice versa. Here, we present the changes of soil organic carbon (SOC) stocks in response to large-scale land use changes in the former Soviet Union from 1953-2012. Widespread and rapid conversion of native ecosystems to croplands occurred in the course of the Virgin Lands Campaign (VLC) between 1954 to 1963 in the Soviet Union, when more than 45 million hectares (Mha) were ploughed in south-eastern Russia and northern Kazakhstan in order to expand domestic food production. After 1991, the collapse of the Soviet Union triggered the abandonment of around 75 Mha across the post-Soviet states. To assess SOC dynamics, we generated a static cropland mask for 2009 based on three global cropland maps. We used the cropland mask to spatially disaggregate annual sown area statistics at province level based on the suitability of each plot for crop production, which yielded land use maps for each year from 1954 to 2012 for all post-Soviet states. To estimate the SOC-dynamics due to the VLC and post-Soviet croplands abandonment, we used available experimental data, own field measurements, and soil maps. A bookkeeping approach was applied to assess the total changes in SOC-stocks in response to large-scale land use changes in the former Soviet Union. The massive croplands expansion during VLC resulted in a substantial loss of SOC - 611±47 Mt C and 241±11 Mt C for the upper 0-50 cm soil layer during the first 20 years of cultivation for Russia and Kazakhstan, respectively. These magnitudes are similar to C losses due to the plowing up of the prairies in USA in the mid-1930s. The total SOC sequestration due to post-Soviet croplands abandonment was estimated at 72.2±6.0 Mt C per year from 1991 to 2010. This amount of carbon equals about 40% of the current fossil fuel emission for this territory or about 7% of global C loss due to land-use change. However, recent recultivation of abandoned croplands in Russia and Kazakhstan can lead to release more labile forms of SOC stored on abandoned lands during last two decades. Since 2001, about 80 Mt of new sequestered SOC has been lost due to current programs on agricultural development in Russia and Kazakhstan. Our results demonstrate the large effects of land-use policies and institutional changes for the national and global C budgets during the last century.
Motor and somatosensory conversion disorder: a functional unawareness syndrome?
Perez, David L; Barsky, Arthur J; Daffner, Kirk; Silbersweig, David A
2012-01-01
Although conversion disorder is closely connected to the origins of neurology and psychiatry, it remains poorly understood. In this article, the authors discuss neural and clinical parallels between lesional unawareness disorders and unilateral motor and somatosensory conversion disorder, emphasizing functional neuroimaging/disease correlates. Authors suggest that a functional-unawareness neurobiological framework, mediated by right hemisphere-lateralized, large-scale brain network dysfunction, may play a significant role in the neurobiology of conversion disorder. The perigenual anterior cingulate and the posterior parietal cortices are detailed as important in disease pathophysiology. Further investigations will refine the functional-unawareness concept, clarify the role of affective circuits, and delineate the process through which functional neurologic symptoms emerge.
NASA Astrophysics Data System (ADS)
Waddle, D. B.; Perlack, R. D.; Wimberly, J.
Biomass plays a significant role in energy use in developing countries: however, these resources are often used very inefficiently. Recent technology developments have made possible improved conversion efficiencies for utility scale technologies. These developments may be of interest in the wake of recent policy changes occurring in several developing countries, with respect to independent power production. Efforts are also being directed at developing biomass conversion technologies that can interface and/or compete with internal combustion engines for small, isolated loads. The technological status is reviewed of biomass conversion technologies appropriate for commercial, industrial, and small utility applications in developing countries. Market opportunities, constraints, and technology developments are also discussed.
A Fast Turn-Around Facility for Very Large Scale Integration (VLSI)
1982-06-01
statistics determination, the first test mask set will use the MATRIX chip design which was recently developed here at Stanford. This chip provides...reached when the basewidth is reduced to zero. Such devices, variably known as depleted- base transistors or bipolar static-induction transitors , have been
Hypertext: Behind the Hype. ERIC Digest.
ERIC Educational Resources Information Center
Bevilacqua, Ann F.
This digest begins by defining the concept of hypertext and describing the two types of hypertext--static and dynamic. Three prototype applications are then discussed: (1) Intermedia, a large-scale multimedia system at Brown University; (2) the Perseus Project at Harvard University, which is developing interactive courseware on classical Greek…
Stress-Rupture and Stress-Relaxation of SiC/SiC Composites at Intermediate Temperature
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Hurst, Janet; Levine, Stanley (Technical Monitor)
2001-01-01
Tensile static stress and static strain experiments were performed on woven Sylramic (Dow Corning, Midland, MI) and Hi-Nicalon (Nippon Carbon, Japan) fiber reinforced, BN interphase, melt-infiltrated SiC matrix composites at 815 C. Acoustic emission was used to monitor the damage accumulation during the test. The stress-rupture properties of Sylramic composites were superior to that of Hi-Nicalon Tm composites. Conversely, the applied strain levels that Hi-Nicalon composites can withstand for stress-relaxation experiments were superior to Sylramic composites; however, at a cost of poor retained strength properties for Hi-Nicalon composites. Sylramic composites exhibited much less stress-oxidation induced matrix cracking compared to Hi-Nicalon composites. This was attributed to the greater stiffness and roughness of Sylramic fibers themselves and the lack of a carbon layer between the fiber and the BN interphase for Sylramic composites, which existed in Hi-Nicalon composites. Due to the lack of stress-relief for Sylramic composites, time to failure for Sylramic composite stress-relaxation experiments was not much longer than for stress-rupture experiments when comparing the peak stress condition for stress-relaxation with the applied stress of stress-rupture.