Earthquake triggering by transient and static deformations
Gomberg, J.; Beeler, N.M.; Blanpied, M.L.; Bodin, P.
1998-01-01
Observational evidence for both static and transient near-field and far-field triggered seismicity are explained in terms of a frictional instability model, based on a single degree of freedom spring-slider system and rate- and state-dependent frictional constitutive equations. In this study a triggered earthquake is one whose failure time has been advanced by ??t (clock advance) due to a stress perturbation. Triggering stress perturbations considered include square-wave transients and step functions, analogous to seismic waves and coseismic static stress changes, respectively. Perturbations are superimposed on a constant background stressing rate which represents the tectonic stressing rate. The normal stress is assumed to be constant. Approximate, closed-form solutions of the rate-and-state equations are derived for these triggering and background loads, building on the work of Dieterich [1992, 1994]. These solutions can be used to simulate the effects of static and transient stresses as a function of amplitude, onset time t0, and in the case of square waves, duration. The accuracies of the approximate closed-form solutions are also evaluated with respect to the full numerical solution and t0. The approximate solutions underpredict the full solutions, although the difference decreases as t0, approaches the end of the earthquake cycle. The relationship between ??t and t0 differs for transient and static loads: a static stress step imposed late in the cycle causes less clock advance than an equal step imposed earlier, whereas a later applied transient causes greater clock advance than an equal one imposed earlier. For equal ??t, transient amplitudes must be greater than static loads by factors of several tens to hundreds depending on t0. We show that the rate-and-state model requires that the total slip at failure is a constant, regardless of the loading history. Thus a static load applied early in the cycle, or a transient applied at any time, reduces the stress at the initiation of failure, whereas static loads that are applied sufficiently late raise it. Rate-and-state friction predictions differ markedly from those based on Coulomb failure stress changes (??CFS) in which ??t equals the amplitude of the static stress change divided by the background stressing rate. The ??CFS model assumes a stress failure threshold, while the rate-and-state equations require a slip failure threshold. The complete rale-and-state equations predict larger ??t than the ??CFS model does for static stress steps at small t0, and smaller ??t than the ??CFS model for stress steps at large t0. The ??CFS model predicts nonzero ??t only for transient loads that raise the stress to failure stress levels during the transient. In contrast, the rate-and-state model predicts nonzero ??t for smaller loads, and triggered failure may occur well after the transient is finished. We consider heuristically the effects of triggering on a population of faults, as these effects might be evident in seismicity data. Triggering is manifest as an initial increase in seismicity rate that may be followed by a quiescence or by a return to the background rate. Available seismicity data are insufficient to discriminate whether triggered earthquakes are "new" or clock advanced. However, if triggering indeed results from advancing the failure time of inevitable earthquakes, then our modeling suggests that a quiescence always follows transient triggering and that the duration of increased seismicity also cannot exceed the duration of a triggering transient load. Quiescence follows static triggering only if the population of available faults is finite.
Aftershocks halted by static stress shadows
Toda, Shinji; Stein, Ross S.; Beroza, Gregory C.; Marsan, David
2012-01-01
Earthquakes impart static and dynamic stress changes to the surrounding crust. Sudden fault slip causes small but permanent—static—stress changes, and passing seismic waves cause large, but brief and oscillatory—dynamic—stress changes. Because both static and dynamic stresses can trigger earthquakes within several rupture dimensions of a mainshock, it has proven difficult to disentangle their contributions to the triggering process1–3. However, only dynamic stress can trigger earthquakes far from the source4,5, and only static stress can create stress shadows, where the stress and thus the seismicity rate in the shadow area drops following an earthquake6–9 . Here we calculate the stress imparted by the magnitude 6.1 Joshua Tree and nearby magnitude 7.3 Landers earthquakes that occurred in California in April and June 1992, respectively, and measure seismicity through time. We show that, where the aftershock zone of the first earthquake was subjected to a static stress increase from the second, the seismicity rate jumped. In contrast, where the aftershock zone of the first earthquake fell under the stress shadow of the second and static stress dropped, seismicity shut down. The arrest of seismicity implies that static stress is a requisite element of spatial clustering of large earthquakes and should be a constituent of hazard assessment.
A hypothesis for delayed dynamic earthquake triggering
Parsons, T.
2005-01-01
It's uncertain whether more near-field earthquakes are triggered by static or dynamic stress changes. This ratio matters because static earthquake interactions are increasingly incorporated into probabilistic forecasts. Recent studies were unable to demonstrate all predictions from the static-stress-change hypothesis, particularly seismicity rate reductions. However, current dynamic stress change hypotheses do not explain delayed earthquake triggering and Omori's law. Here I show numerically that if seismic waves can alter some frictional contacts in neighboring fault zones, then dynamic triggering might cause delayed triggering and an Omori-law response. The hypothesis depends on faults following a rate/state friction law, and on seismic waves changing the mean critical slip distance (Dc) at nucleation zones.
On to what extent stresses resulting from the earth's surface trigger earthquakes
NASA Astrophysics Data System (ADS)
Klose, C. D.
2009-12-01
The debate on static versus dynamic earthquake triggering mainly concentrates on endogenous crustal forces, including fault-fault interactions or seismic wave transients of remote earthquakes. Incomprehensibly, earthquake triggering due to surface processes, however, still receives little scientific attention. This presentation continues a discussion on the hypothesis of how “tiny” stresses stemming from the earth's surface can trigger major earthquakes, such as for example, China's M7.9 Wenchuan earthquake of May 2008. This seismic event is thought to be triggered by up to 1.1 billion metric tons of water (~130m) that accumulated in the Minjiang River Valley at the eastern margin of the Longmen Shan. Specifically, the water level rose by ~80m (static), with additional seasonal water level changes of ~50m (dynamic). Two and a half years prior to mainshock, static and dynamic Coulomb failure stresses were induced on the nearby Beichuan thrust fault system at <17km depth. Triggering stresses were equivalent to levels of daily tides and perturbed a fault area measuring 416+/-96km^2. The mainshock ruptured after 2.5 years when only the static stressing regime was predominant and the transient stressing (seasonal water level) was infinitesimal small. The short triggering delay of about 2 years suggests that the Beichuan fault might have been near the end of its seismic cycle, which may also confirm what previous geological findings have indicated. This presentation shows on to what extend the static and 1-year periodic triggering stress perturbations a) accounted for equivalent tectonic loading, given a 4-10kyr earthquake cycle and b) altered the background seismicity beneath the valley, i.e., daily event rate and earthquake size distribution.
Decay of aftershock density with distance indicates triggering by dynamic stress
Felzer, K.R.; Brodsky, E.E.
2006-01-01
The majority of earthquakes are aftershocks, yet aftershock physics is not well understood. Many studies suggest that static stress changes trigger aftershocks, but recent work suggests that shaking (dynamic stresses) may also play a role. Here we measure the decay of aftershocks as a function of distance from magnitude 2-6 mainshocks in order to clarify the aftershock triggering process. We find that for short times after the mainshock, when low background seismicity rates allow for good aftershock detection, the decay is well fitted by a single inverse power law over distances of 0.2-50 km. The consistency of the trend indicates that the same triggering mechanism is working over the entire range. As static stress changes at the more distant aftershocks are negligible, this suggests that dynamic stresses may be triggering all of these aftershocks. We infer that the observed aftershock density is consistent with the probability of triggering aftershocks being nearly proportional to seismic wave amplitude. The data are not fitted well by models that combine static stress change with the evolution of frictionally locked faults. ?? 2006 Nature Publishing Group.
The failure of earthquake failure models
Gomberg, J.
2001-01-01
In this study I show that simple heuristic models and numerical calculations suggest that an entire class of commonly invoked models of earthquake failure processes cannot explain triggering of seismicity by transient or "dynamic" stress changes, such as stress changes associated with passing seismic waves. The models of this class have the common feature that the physical property characterizing failure increases at an accelerating rate when a fault is loaded (stressed) at a constant rate. Examples include models that invoke rate state friction or subcritical crack growth, in which the properties characterizing failure are slip or crack length, respectively. Failure occurs when the rate at which these grow accelerates to values exceeding some critical threshold. These accelerating failure models do not predict the finite durations of dynamically triggered earthquake sequences (e.g., at aftershock or remote distances). Some of the failure models belonging to this class have been used to explain static stress triggering of aftershocks. This may imply that the physical processes underlying dynamic triggering differs or that currently applied models of static triggering require modification. If the former is the case, we might appeal to physical mechanisms relying on oscillatory deformations such as compaction of saturated fault gouge leading to pore pressure increase, or cyclic fatigue. However, if dynamic and static triggering mechanisms differ, one still needs to ask why static triggering models that neglect these dynamic mechanisms appear to explain many observations. If the static and dynamic triggering mechanisms are the same, perhaps assumptions about accelerating failure and/or that triggering advances the failure times of a population of inevitable earthquakes are incorrect.
Long- and short-term triggering and modulation of mud volcano eruptions by earthquakes
NASA Astrophysics Data System (ADS)
Bonini, Marco; Rudolph, Maxwell L.; Manga, Michael
2016-03-01
Earthquakes can trigger the eruption of mud. We use eruptions in Azerbaijan, Italy, Romania, Japan, Andaman Islands, Pakistan, Taiwan, Indonesia, and California to probe the nature of stress changes that induce new eruptions and modulate ongoing eruptions. Dynamic stresses produced by earthquakes are usually inferred to be the dominant triggering mechanism; however static stress changes acting on the feeder systems of mud volcanoes may also play a role. In Azerbaijan, eruptions within 2-10 fault lengths from the epicenter are favored in the year following earthquakes where the static stress changes cause compression of the mud source and unclamp feeder dikes. In Romania, Taiwan, and some Italian sites, increased activity is also favored where the static stress changes act to unclamp feeder dikes, but responses occur within days. The eruption in the Andaman Islands, and those of the Niikappu mud volcanoes, Japan are better correlated with amplitude of dynamic stresses produced by seismic waves. Similarly, a new island that emerged off the coast of Pakistan in 2013 was likely triggered by dynamic stresses, enhanced by directivity. At the southern end of the Salton Sea, California earthquakes increase the gas flux at small mud volcanoes. Responses are best correlated with dynamic stresses. The comparison of responses in these nine settings indicates that dynamic stresses are most often correlated with triggering, although permanent stress changes as small as, and possibly smaller than, 0.1 bar may be sufficient to also influence eruptions. Unclamping stresses with magnitude similar to Earth tides (0.01 bar) persist over time and may play a role in triggering delayed responses. Unclamping stresses may be important contributors to short-term triggering only if they exceed 0.1-1 bar.
Meng, Xiaoteng; Peng, Zhigang; Hardebeck, Jeanne L.
2013-01-01
Earthquakes trigger other earthquakes, but the physical mechanism of the triggering is currently debated. Most studies of earthquake triggering rely on earthquakes listed in catalogs, which are known to be incomplete around the origin times of large earthquakes and therefore missing potentially triggered events. Here we apply a waveform matched-filter technique to systematically detect earthquakes along the Parkfield section of the San Andreas Fault from 46 days before to 31 days after the nearby 2003 Mw6.5 San Simeon earthquake. After removing all possible false detections, we identify ~8 times more earthquakes than in the Northern California Seismic Network catalog. The newly identified events along the creeping section of the San Andreas Fault show a statistically significant decrease following the San Simeon main shock, which correlates well with the negative static stress changes (i.e., stress shadow) cast by the main shock. In comparison, the seismicity rate around Parkfield increased moderately where the static stress changes are positive. The seismicity rate changes correlate well with the static shear stress changes induced by the San Simeon main shock, suggesting a low friction in the seismogenic zone along the Parkfield section of the San Andreas Fault.
Statistics of Static Stress Earthquake Triggering
NASA Astrophysics Data System (ADS)
Nandan, S.; Ouillon, G.; Woessner, J.; Sornette, D.; Wiemer, S.
2014-12-01
A likely source of earthquake clustering is static and/or dynamic stresses transferred by individual events. Previous attempts to quantify the role of static stress generally considered only the stress changes caused by large events, and often discarded data uncertainties. We test the static stress change hypothesis empirically by considering all events of magnitude M≥ 2.1 and the uncertainties in location and focal mechanism in the focal mechanism catalog for Southern California between 1981 and 2010 (Yang et al., 2011). We quantify: How the waiting time between earthquakes (1) relates to the Coulomb stress change (2) induced by event Ei at the location of Ej; How significant is the Coulomb Index (CI), fraction of source-receiver pairs with positive ΔCFS interactions, conditioned on time and amplitude of ΔCFS, compared to a mean-field CI derived from the time-independent structure of the fault network. We approximate the waiting time distributions empirically by (3), which respectively consists of triggering and background rate components, tapered by an exponential term to model the finiteness of the catalog. We observe that K/(Bc^p ) (the ratio of the triggering to the background rates at t=0), the exponent p, and the Maxwell time τ all increase with |ΔCFS| and are significantly larger for positive than for negative ΔCFS's. τ varies between ~90 days and ~150 days (approximately 0.3 decades over 6 decades of variation in stress). It defines the time beyond which the memory of stress is overprinted by occurrence of other events. The CI values become significant above a threshold |ΔCFS|. The mean-field CI is 52%, while the maximum observed CI value is ~60%. Correcting for the focal plane ambiguity, those values become respectively ~55% and ~72%. Lastly, the CI values decrease with the waiting time and converge to the mean-field CI value. The increase of p-value and K/(Bc^p ) with |ΔCFS| contradicts the prediction of stress shadow regions where seismicity is suppressed if ΔCFS<0. Our results rather suggest a spatially ubiquitous triggering process compatible with dynamic triggering, modulated by the sign and amplitude of the static stress field. We also conclude that static stress-based forecasts should not be performed over time scales much larger than τ, which is of the order of few hundred days.
Direct test of static stress versus dynamic stress triggering of aftershocks
Pollitz, F.F.; Johnston, M.J.S.
2006-01-01
Aftershocks observed over time scales of minutes to months following a main shock are plausibly triggered by the static stress change imparted by the main shock, dynamic shaking effects associated with passage of seismic waves from the main shock, or a combination of the two. We design a direct test of static versus dynamic triggering of aftershocks by comparing the near-field temporal aftershock patterns generated by aseismic and impulsive events occurring in the same source area. The San Juan Bautista, California, area is ideally suited for this purpose because several events of both types of M???5 have occurred since 1974. We find that aftershock rates observed after impulsive events are much higher than those observed after aseismic events, and this pattern persists for several weeks after the event. This suggests that, at least in the near field, dynamic triggering is the dominant cause of aftershocks, and that it generates both immediate and delayed aftershock activity.
Unraveling earthquake stresses: Insights from dynamically triggered and induced earthquakes
NASA Astrophysics Data System (ADS)
Velasco, A. A.; Alfaro-Diaz, R. A.
2017-12-01
Induced seismicity, earthquakes caused by anthropogenic activity, has more than doubled in the last several years resulting from practices related to oil and gas production. Furthermore, large earthquakes have been shown to promote the triggering of other events within two fault lengths (static triggering), due to static stresses caused by physical movement along the fault, and also remotely from the passage of seismic waves (dynamic triggering). Thus, in order to understand the mechanisms for earthquake failure, we investigate regions where natural, induced, and dynamically triggered events occur, and specifically target Oklahoma. We first analyze data from EarthScope's USArray Transportable Array (TA) and local seismic networks implementing an optimized (STA/LTA) detector in order to develop local detection and earthquake catalogs. After we identify triggered events through statistical analysis, and perform a stress analysis to gain insight on the stress-states leading to triggered earthquake failure. We use our observations to determine the role of different transient stresses in contributing to natural and induced seismicity by comparing these stresses to regional stress orientation. We also delineate critically stressed regions of triggered seismicity that may indicate areas susceptible to earthquake hazards associated with sustained fluid injection in provinces of induced seismicity. Anthropogenic injection and extraction activity can alter the stress state and fluid flow within production basins. By analyzing the stress release of these ancient faults caused by dynamic stresses, we may be able to determine if fluids are solely responsible for increased seismic activity in induced regions.
On near-source earthquake triggering
Parsons, T.; Velasco, A.A.
2009-01-01
When one earthquake triggers others nearby, what connects them? Two processes are observed: static stress change from fault offset and dynamic stress changes from passing seismic waves. In the near-source region (r ??? 50 km for M ??? 5 sources) both processes may be operating, and since both mechanisms are expected to raise earthquake rates, it is difficult to isolate them. We thus compare explosions with earthquakes because only earthquakes cause significant static stress changes. We find that large explosions at the Nevada Test Site do not trigger earthquakes at rates comparable to similar magnitude earthquakes. Surface waves are associated with regional and long-range dynamic triggering, but we note that surface waves with low enough frequency to penetrate to depths where most aftershocks of the 1992 M = 5.7 Little Skull Mountain main shock occurred (???12 km) would not have developed significant amplitude within a 50-km radius. We therefore focus on the best candidate phases to cause local dynamic triggering, direct waves that pass through observed near-source aftershock clusters. We examine these phases, which arrived at the nearest (200-270 km) broadband station before the surface wave train and could thus be isolated for study. Direct comparison of spectral amplitudes of presurface wave arrivals shows that M ??? 5 explosions and earthquakes deliver the same peak dynamic stresses into the near-source crust. We conclude that a static stress change model can readily explain observed aftershock patterns, whereas it is difficult to attribute near-source triggering to a dynamic process because of the dearth of aftershocks near large explosions.
Aron, A.; Hardebeck, J.L.
2009-01-01
We investigated the relationship between seismicity rate changes and modeled Coulomb static stress changes from the 2003 M 6.5 San Simeon and the 2004 M 6.0 Parkfield earthquakes in central California. Coulomb stress modeling indicates that the San Simeon mainshock loaded parts of the Rinconada, Hosgri, and San Andreas strike-slip faults, along with the reverse faults of the southern Los Osos domain. All of these loaded faults, except for the San Andreas, experienced a seismicity rate increase at the time of the San Simeon mainshock. The Parkfield earthquake occurred 9 months later on the loaded portion of the San Andreas fault. The Parkfield earthquake unloaded the Hosgri fault and the reverse faults of the southern Los Osos domain, which both experienced seismicity rate decreases at the time of the Parkfield event, although the decreases may be related to the decay of San Simeon-triggered seismicity. Coulomb stress unloading from the Parkfield earthquake appears to have altered the aftershock decay rate of the southern cluster of San Simeon after-shocks, which is deficient compared to the expected number of aftershocks from the Omori decay parameters based on the pre-Parkfield aftershocks. Dynamic stress changes cannot explain the deficiency of aftershocks, providing evidence that static stress changes affect earthquake occurrence. However, a burst of seismicity following the Parkfield earthquake at Ragged Point, where the static stress was decreased, provides evidence for dynamic stress triggering. It therefore appears that both Coulomb static stress changes and dynamic stress changes affect the seismicity rate.
The Viscoelastic Effect of Triggered Earthquakes in Various Tectonic Regions On a Global Scale
NASA Astrophysics Data System (ADS)
Sunbul, F.
2015-12-01
The relation between static stress changes and earthquake triggering has important implications for seismic hazard analysis. Considering long time difference between triggered events, viscoelastic stress transfer plays an important role in stress accumulation along the faults. Developing a better understanding of triggering effects may contribute to improvement of quantification of seismic hazard in tectonically active regions. Parsons (2002) computed the difference between the rate of earthquakes occurring in regions where shear stress increased and those regions where the shear stress decreased on a global scale. He found that 61% of the earthquakes occurred in regions with a shear stress increase, while 39% of events occurred in areas of shear stress decrease. Here, we test whether the inclusion of viscoelastic stress transfer affects the results obtained by Parsons (2002) for static stress transfer. Doing such a systematic analysis, we use Global Centroid Moment Tensor (CMT) catalog selecting 289 Ms>7 main shocks with their ~40.500 aftershocks located in ±2° circles for 5 years periods. For the viscoelastic post seismic calculations, we adapt 12 different published rheological models for 5 different tectonic regions. In order to minimise the uncertainties in this CMT catalog, we use the Frohlich and Davis (1999) statistical approach simultaneously. Our results shows that the 5590 aftershocks are triggered by the 289 Ms>7 earthquakes. 3419 of them are associated with calculated shear stress increase, while 2171 are associated with shear stress decrease. The summation of viscoelastic stress shows that, of the 5840 events, 3530 are associated with shear stress increases, and 2312 with shear stress decrease. This result shows an average 4.5% increase in total, the rate of increase in positive and negative areas are 3.2% and 6.5%, respectively. Therefore, over long time periods viscoelastic relaxation represents a considerable contribution to the total stress on neighbouring faults.
NASA Astrophysics Data System (ADS)
Shen, W. H.; Luo, Y.; Jiao, Q. S.
2018-04-01
On August 8, 2017, an earthquake of M 7.0 occurred at Jiuzhaigou. Based on the Sentinel-1 satellite InSAR data, we obtained coseismic deformation field and inverted the source slip model. Results show that this event is dominated by strike slip, and the total released seismic moment is 8.06 × 1018 Nm, equivalent to an earthquake of Mw 6.57. We calculated static stress changes along strike and dip direction, and the static stress analysis show that the average stress drop are at low level, which may be responsible for the low level of ground motion during Jiuzhaigou earthquake. The coseismic Coulomb stress changes are calculated base on the inverted slip model, which revealed that 82.59 % of aftershocks are located in the Coulomb stress increasing area, 78.42 % of total aftershocks may be triggered by the mainshock aftershock, indicating that the mainshock has a significant triggering effect on the subsequent aftershocks. Based on stochastic finite fault model, we simulated regional peak ground acceleration (PGA), peak ground velocity (PGV) and the intensity, and results could capture basic features associated with the ground motion patterns. Moreover, the simulated results reflect the obvious rupture directivity effect.
NASA Astrophysics Data System (ADS)
Meade, Brendan J.; DeVries, Phoebe M. R.; Faller, Jeremy; Viegas, Fernanda; Wattenberg, Martin
2017-11-01
Aftershocks may be triggered by the stresses generated by preceding mainshocks. The temporal frequency and maximum size of aftershocks are well described by the empirical Omori and Bath laws, but spatial patterns are more difficult to forecast. Coulomb failure stress is perhaps the most common criterion invoked to explain spatial distributions of aftershocks. Here we consider the spatial relationship between patterns of aftershocks and a comprehensive list of 38 static elastic scalar metrics of stress (including stress tensor invariants, maximum shear stress, and Coulomb failure stress) from 213 coseismic slip distributions worldwide. The rates of true-positive and false-positive classification of regions with and without aftershocks are assessed with receiver operating characteristic analysis. We infer that the stress metrics that are most consistent with observed aftershock locations are maximum shear stress and the magnitude of the second and third invariants of the stress tensor. These metrics are significantly better than random assignment at a significance level of 0.005 in over 80% of the slip distributions. In contrast, the widely used Coulomb failure stress criterion is distinguishable from random assignment in only 51-64% of the slip distributions. These results suggest that a number of alternative scalar metrics are better predictors of aftershock locations than classic Coulomb failure stress change.
Combining stress transfer and source directivity: the case of the 2012 Emilia seismic sequence
Convertito, Vincenzo; Catalli, Flaminia; Emolo, Antonio
2013-01-01
The Emilia seismic sequence (Northern Italy) started on May 2012 and caused 17 casualties, severe damage to dwellings and forced the closure of several factories. The total number of events recorded in one month was about 2100, with local magnitude ranging between 1.0 and 5.9. We investigate potential mechanisms (static and dynamic triggering) that may describe the evolution of the sequence. We consider rupture directivity in the dynamic strain field and observe that, for each main earthquake, its aftershocks and the subsequent large event occurred in an area characterized by higher dynamic strains and corresponding to the dominant rupture direction. We find that static stress redistribution alone is not capable of explaining the locations of subsequent events. We conclude that dynamic triggering played a significant role in driving the sequence. This triggering was also associated with a variation in permeability and a pore pressure increase in an area characterized by a massive presence of fluids. PMID:24177982
Observing earthquakes triggered in the near field by dynamic deformations
Gomberg, J.; Bodin, P.; Reasenberg, P.A.
2003-01-01
We examine the hypothesis that dynamic deformations associated with seismic waves trigger earthquakes in many tectonic environments. Our analysis focuses on seismicity at close range (within the aftershock zone), complementing published studies of long-range triggering. Our results suggest that dynamic triggering is not confined to remote distances or to geothermal and volcanic regions. Long unilaterally propagating ruptures may focus radiated dynamic deformations in the propagation direction. Therefore, we expect seismicity triggered dynamically by a directive rupture to occur asymmetrically, with a majority of triggered earthquakes in the direction of rupture propagation. Bilaterally propagating ruptures also may be directive, and we propose simple criteria for assessing their directivity. We compare the inferred rupture direction and observed seismicity rate change following 15 earthquakes (M 5.7 to M 8.1) that occured in California and Idaho in the United States, the Gulf of Aqaba, Syria, Guatemala, China, New Guinea, Turkey, Japan, Mexico, and Antarctica. Nine of these mainshocks had clearly directive, unilateral ruptures. Of these nine, seven apparently induced an asymmetric increase in seismicity rate that correlates with the rupture direction. The two exceptions include an earthquake preceded by a comparable-magnitude event on a conjugate fault and another for which data limitations prohibited conclusive results. Similar (but weaker) correlations were found for the bilaterally rupturing earthquakes we studied. Although the static stress change also may trigger seismicity, it and the seismicity it triggers are expected to be similarly asymmetric only if the final slip is skewed toward the rupture terminus. For several of the directive earthquakes, we suggest that the seismicity rate change correlates better with the dynamic stress field than the static stress change.
Aftershock triggering by complete Coulomb stress changes
Kilb, Debi; Gomberg, J.; Bodin, P.
2002-01-01
We examine the correlation between seismicity rate change following the 1992, M7.3, Landers, California, earthquake and characteristics of the complete Coulomb failure stress (CFS) changes (??CFS(t)) that this earthquake generated. At close distances the time-varying "dynamic" portion of the stress change depends on how the rupture develops temporally and spatially and arises from radiated seismic waves and from permanent coseismic fault displacement. The permanent "static" portion (??CFS) depends only on the final coseismic displacement. ??CFS diminishes much more rapidly with distance than the transient, dynamic stress changes. A common interpretation of the strong correlation between ??CFS and aftershocks is that load changes can advance or delay failure. Stress changes may also promote failure by physically altering properties of the fault or its environs. Because it is transient, ??CFS(t) can alter the failure rate only by the latter means. We calculate both ??CFS and the maximum positive value of ??CFS(t) (peak ??CFS(t)) using a reflectivity program. Input parameters are constrained by modeling Landers displacement seismograms. We quantify the correlation between maps of seismicity rate changes and maps of modeled ??CFS and peak ??CFS(t) and find agreement for both models. However, rupture directivity, which does not affect ??CFS, creates larger peak ??CFS(t) values northwest of the main shock. This asymmetry is also observed in seismicity rate changes but not in ??CFS. This result implies that dynamic stress changes are as effective as static stress changes in triggering aftershocks and may trigger earthquakes long after the waves have passed.
Hardebeck, Jeanne L.
2014-01-01
The focal mechanisms of earthquakes in Southern California before and after four M ≥ 6.7 main shocks provide insight into how fault systems respond to stress and changes in stress. The main shock static stress changes have two observed impacts on the seismicity: changing the focal mechanisms in a given location to favor those aligned with the static stress change and changing the spatial distribution of seismicity to favor locations where the static stress change aligns with the background stress. The aftershock focal mechanisms are significantly aligned with the static stress changes for absolute stress changes of ≥ 0.02 MPa, for up to ~20 years following the main shock. The dynamic stress changes have similar, although smaller, effects on the local focal mechanisms and the spatial seismicity distribution. Dynamic stress effects are best observed at long periods (30–60 s) and for metrics based on repeated stress cycling in the same direction. This implies that dynamic triggering operates, at least in part, through cyclic shear stress loading in the direction of fault slip. The background stress also strongly controls both the preshock and aftershock mechanisms. While most aftershock mechanisms are well oriented in the background stress field, 10% of aftershocks are identified as poorly oriented outliers, which may indicate limited heterogeneity in the postmain shock stress field. The fault plane orientations of the outliers are well oriented in the background stress, while their slip directions are not, implying that the background stress restricts the distribution of available fault planes.
Earthquake triggering by seismic waves following the landers and hector mine earthquakes
Gomberg, J.; Reasenberg, P.A.; Bodin, P.; Harris, R.A.
2001-01-01
The proximity and similarity of the 1992, magnitude 7.3 Landers and 1999, magnitude 7.1 Hector Mine earthquakes in California permit testing of earthquake triggering hypotheses not previously possible. The Hector Mine earthquake confirmed inferences that transient, oscillatory 'dynamic' deformations radiated as seismic waves can trigger seismicity rate increases, as proposed for the Landers earthquake1-6. Here we quantify the spatial and temporal patterns of the seismicity rate changes7. The seismicity rate increase was to the north for the Landers earthquake and primarily to the south for the Hector Mine earthquake. We suggest that rupture directivity results in elevated dynamic deformations north and south of the Landers and Hector Mine faults, respectively, as evident in the asymmetry of the recorded seismic velocity fields. Both dynamic and static stress changes seem important for triggering in the near field with dynamic stress changes dominating at greater distances. Peak seismic velocities recorded for each earthquake suggest the existence of, and place bounds on, dynamic triggering thresholds. These thresholds vary from a few tenths to a few MPa in most places, depend on local conditions, and exceed inferred static thresholds by more than an order of magnitude. At some sites, the onset of triggering was delayed until after the dynamic deformations subsided. Physical mechanisms consistent with all these observations may be similar to those that give rise to liquefaction or cyclic fatigue.
NASA Astrophysics Data System (ADS)
Velasco, A. A.; Cerda, I.; Linville, L.; Kilb, D. L.; Pankow, K. L.
2013-05-01
Changes in field stress required to trigger earthquakes have been classified in two basic ways: static and dynamic triggering. Static triggering occurs when an earthquake that releases accumulated strain along a fault stress loads a nearby fault. Dynamic triggering occurs when an earthquake is induced by the passing of seismic waves from a large mainshock located at least two or more fault lengths from the epicenter of the main shock. We investigate details of dynamic triggering using data collected from EarthScope's USArray and regional seismic networks located in the United States. Triggered events are identified using an optimized automated detector based on the ratio of short term to long term average (Antelope software). Following the automated processing, the flagged waveforms are individually analyzed, in both the time and frequency domains, to determine if the increased detection rates correspond to local earthquakes (i.e., potentially remotely triggered aftershocks). Here, we show results using this automated schema applied to data from four large, but characteristically different, earthquakes -- Chile (Mw 8.8 2010), Tokoku-Oki (Mw 9.0 2011), Baja California (Mw 7.2 2010) and Wells Nevada (Mw 6.0 2008). For each of our four mainshocks, the number of detections within the 10 hour time windows span a large range (1 to over 200) and statistically >20% of the waveforms show evidence of anomalous signals following the mainshock. The results will help provide for a better understanding of the physical mechanisms involved in dynamic earthquake triggering and will help identify zones in the continental U.S. that may be more susceptible to dynamic earthquake triggering.
Stress shadows - a controversial topic
NASA Astrophysics Data System (ADS)
Lasocki, Stanislaw; Karakostas, Vassilis G.; Papadimitriou, Eletheria E.; Orlecka-Sikora, Beata
2010-05-01
The spatial correlation between the positive Coulomb stress changes and the subsequent seismic activity has been firmly confirmed in many recent studies. If, however, the static stress transfer is a consistent expression of interaction between earthquakes one should also observe a decrease of the activity in the zones of negative stress changes. Instead, the existence of stress shadows is poorly evidenced and may be questioned. We tested the influence of the static stress changes associated with the coseismic slip of the 1995 Mw6.5 Kozani-Grevena (Greece) earthquake on locations of its aftershocks. The study was based on a detailed slip model for the main shock and accurate locations and reliable fault plane solutions of an adequate number of the aftershocks. We developed a statistical testing method, which tested whether the proportions of aftershocks located inside areas determined by a selected criterion on the static stress change could be attained if there were no effect of the stress change due to the main shock on aftershock locations. The areas of stress change were determined at the focus of every aftershock. The distribution of test statistic was constructed with the use of a two-dimensional nonparametric, kernel density estimator of the reference epicenter distribution. The tests highly confidently indicated a rise in probability to locate aftershocks inside areas of positive static stress change, which supported the hypothesis on the triggering effect in these areas. Furthermore, it was evidenced that a larger stress increase caused a stronger triggering effect. The analysis, however, did not evidence the existence of stress shadows inside areas of negative stress change. Contrary to expectations, the tests indicated a significant increase of the probability of event location in the areas of a stress decrease of more than or equal to 5.0 and 10.0 bar. It turned out that for areas of larger absolute stress change this probability increased regardless of the sign of the change though distinctly more in areas of positive than of negative change. In the case of seismicity accompanying underground mining exploitation the coseismic stress changes expressed in terms of the Coulomb failure function are at least of one order smaller than those for earthquakes. Furthermore, they are only a small component of the total stress field variations in mining rockmass, which are mainly controlled by the mining process. Nevertheless, our studies of the induced seismicity in the Rudna mine in the Legnica-Głogow Copper District in Poland showed that the influence of the Coulomb stress changes on locations of subsequent events was statistically significant. We analyzed series of seismic events quantifying the triggering and inhibiting effect by the proportion of events in the series whose locations were consistent with the stress increased and stress decreased zones, respectively. It was found out that more than 60 per-cent of the analyzed seismic events occurred in areas where stress was enhanced due to the occurrence of previous events. The significance of this result was determined by comparing it with 2000 results of the same analysis carried out on the random permutations of the original series of events. The test indicated that the locations in positive stress changes areas were preferred statistically significantly when the stress changes exceeded 0.05 bar. However, no statistically significant inhibiting effect of negative static stress changes, within the considered range of these changes, was ascertained. Here we present details of these two studies and discuss possible reasons behind the negative conclusions on the existence of stress shadows.
NASA Astrophysics Data System (ADS)
Mignan, Arnaud
2018-03-01
The aftershock productivity law is an exponential function of the form K ∝ exp(αM), with K being the number of aftershocks triggered by a given mainshock of magnitude M and α ≈ ln(10) being the productivity parameter. This law remains empirical in nature although it has also been retrieved in static stress simulations. Here, we parameterize this law using the solid seismicity postulate (SSP), the basis of a geometrical theory of seismicity where seismicity patterns are described by mathematical expressions obtained from geometric operations on a permanent static stress field. We first test the SSP that relates seismicity density to a static stress step function. We show that it yields a power exponent q = 1.96 ± 0.01 for the power-law spatial linear density distribution of aftershocks, once uniform noise is added to the static stress field, in agreement with observations. We then recover the exponential function of the productivity law with a break in scaling obtained between small and large M, with α = 1.5ln(10) and ln(10), respectively, in agreement with results from previous static stress simulations. Possible biases of aftershock selection, proven to exist in epidemic-type aftershock sequence (ETAS) simulations, may explain the lack of break in scaling observed in seismicity catalogues. The existence of the theoretical kink, however, remains to be proven. Finally, we describe how to estimate the solid seismicity parameters (activation density δ+, aftershock solid envelope r∗ and background stress amplitude range Δo∗) for large M values.
Decay of aftershock density with distance does not indicate triggering by dynamic stress
Richards-Dinger, K.; Stein, R.S.; Toda, S.
2010-01-01
Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. Felzer and Brodsky examined the distance distribution of earthquakes occurring in the first five minutes after 2 ≤ M M M ≥ 2 aftershocks showed a uniform power-law decay with slope −1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2 ≤ M< 3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case.
NASA Astrophysics Data System (ADS)
Cocco, M.
2001-12-01
Earthquake stress changes can promote failures on favorably oriented faults and modify the seismicity pattern over broad regions around the causative faults. Because the induced stress perturbations modify the rate of production of earthquakes, they alter the probability of seismic events in a specified time window. Comparing the Coulomb stress changes with the seismicity rate changes and aftershock patterns can statistically test the role of stress transfer in earthquake occurrence. The interaction probability may represent a further tool to test the stress trigger or shadow model. The probability model, which incorporate stress transfer, has the main advantage to include the contributions of the induced stress perturbation (a static step in its present formulation), the loading rate and the fault constitutive properties. Because the mechanical conditions of the secondary faults at the time of application of the induced load are largely unkown, stress triggering can only be tested on fault populations and not on single earthquake pairs with a specified time delay. The interaction probability can represent the most suitable tool to test the interaction between large magnitude earthquakes. Despite these important implications and the stimulating perspectives, there exist problems in understanding earthquake interaction that should motivate future research but at the same time limit its immediate social applications. One major limitation is that we are unable to predict how and if the induced stress perturbations modify the ratio between small versus large magnitude earthquakes. In other words, we cannot distinguish between a change in this ratio in favor of small events or of large magnitude earthquakes, because the interaction probability is independent of magnitude. Another problem concerns the reconstruction of the stressing history. The interaction probability model is based on the response to a static step; however, we know that other processes contribute to the stressing history perturbing the faults (such as dynamic stress changes, post-seismic stress changes caused by viscolelastic relaxation or fluid flow). If, for instance, we believe that dynamic stress changes can trigger aftershocks or earthquakes years after the passing of the seismic waves through the fault, the perspective of calculating interaction probability is untenable. It is therefore clear we have learned a lot on earthquake interaction incorporating fault constitutive properties, allowing to solve existing controversy, but leaving open questions for future research.
Seismicity remotely triggered by the magnitude 7.3 landers, california, earthquake
Hill, D.P.; Reasenberg, P.A.; Michael, A.; Arabaz, W.J.; Beroza, G.; Brumbaugh, D.; Brune, J.N.; Castro, R.; Davis, S.; Depolo, D.; Ellsworth, W.L.; Gomberg, J.; Harmsen, S.; House, L.; Jackson, S.M.; Johnston, M.J.S.; Jones, L.; Keller, Rebecca Hylton; Malone, S.; Munguia, L.; Nava, S.; Pechmann, J.C.; Sanford, A.; Simpson, R.W.; Smith, R.B.; Stark, M.; Stickney, M.; Vidal, A.; Walter, S.; Wong, V.; Zollweg, J.
1993-01-01
The magnitude 7.3 Landers earthquake of 28 June 1992 triggered a remarkably sudden and widespread increase in earthquake activity across much of the western United States. The triggered earthquakes, which occurred at distances up to 1250 kilometers (17 source dimensions) from the Landers mainshock, were confined to areas of persistent seismicity and strike-slip to normal faulting. Many of the triggered areas also are sites of geothermal and recent volcanic activity. Static stress changes calculated for elastic models of the earthquake appear to be too small to have caused the triggering. The most promising explanations involve nonlinear interactions between large dynamic strains accompanying seismic waves from the mainshock and crustal fluids (perhaps including crustal magma).
NASA Astrophysics Data System (ADS)
Dianala, J. D. B.; Aurelio, M.; Rimando, J. M.; Taguibao, K.
2015-12-01
In a region with little understanding in terms of active faults and seismicity, two large-magnitude reverse-fault related earthquakes occurred within 100km of each other in separate islands of the Central Philippines—the Mw=6.7 February 2012 Negros earthquake and the Mw=7.2 October 2013 Bohol earthquake. Based on source faults that were defined using onshore, offshore seismic reflection, and seismicity data, stress transfer models for both earthquakes were calculated using the software Coulomb. Coulomb stress triggering between the two main shocks is unlikely as the stress change caused by Negros earthquake on the Bohol fault was -0.03 bars. Correlating the stress changes on optimally-oriented reverse faults with seismicity rate changes shows that areas that decreased both in static stress and seismicity rate after the first earthquake were then areas with increased static stress and increased seismicity rate caused by the second earthquake. These areas with now increased stress, especially those with seismicity showing reactivity to static stress changes caused by the two earthquakes, indicate the presence of active structures in the island of Cebu. Comparing the history of instrumentally recorded seismicity and the recent large earthquakes of Negros and Bohol, these structures in Cebu have the potential to generate large earthquakes. Given that the Philippines' second largest metropolitan area (Metro Cebu) is in close proximity, detailed analysis of the earthquake potential and seismic hazards in these areas should be undertaken.
NASA Astrophysics Data System (ADS)
Meng, X.; Peng, Z.; Deng, S.; Castro, R. R.
2015-12-01
The 2010 Mw7.2 El Mayor-Cucapah earthquake occurred southwest of the Pacific-North America plate boundary in north Baja California. It was preceded by an intensive foreshock sequence, and was followed by numerous aftershocks both on and off the mainshock rupture zone, hence providing us a great opportunity to study the physical mechanisms of foreshock and aftershock triggering. In our previously published work (Meng and Peng, GJI, 2014), we focused on the seismicity rate changes around the Salton Sea Geothermal Field (SSGF) and along the San Jacinto Fault (SJF) following the mainshock. Based on a recently developed matched filter technique, we were able to detect up to 20 times more events than listed in the SCSN catalog. We found that the seismicity rate near SSGF and SJF both experienced significant increase immediately following the mainshock. However, the seismicity rate near SSGF, where static Coulomb stress decreased, dropped below the pre-mainshock level after ~50 days. On the other hand, the seismicity rate near SJF, where static Coulomb stress increased, remained high till the end of our detecting time window. Such pattern indicates that both static and dynamic triggering may coexist, but dominate in different time scales. Motivated by this success, we shift our focus to the foreshock and aftershock sequence of the El Mayor-Cucapah event. We utilize available seismic stations immediately north to US-Mexico boarder and a few stations within Mexico to conduct a similar detection ~40 days before to 40 days after the mainshock. We aim to obtain a complete foreshock sequence and investigate its spatio-temporal evolutions before the mainshock. Moreover, we plan to study similar patterns for aftershocks and the corresponding triggering mechanisms. Updated results will be presented at the meeting.
NASA Astrophysics Data System (ADS)
Farías, Cristian; Galván, Boris; Miller, Stephen A.
2017-09-01
Earthquake triggering of hydrothermal and volcanic systems is ubiquitous, but the underlying processes driving these systems are not well-understood. We numerically investigate the influence of seismic wave interaction with volcanic systems simulated as a trapped, high-pressure fluid reservoir connected to a fluid-filled fault system in a 2-D poroelastic medium. Different orientations and earthquake magnitudes are studied to quantify dynamic and static stress, and pore pressure changes induced by a seismic event. Results show that although the response of the system is mainly dominated by characteristics of the radiated seismic waves, local structures can also play an important role on the system dynamics. The fluid reservoir affects the seismic wave front, distorts the static overpressure pattern induced by the earthquake, and concentrates the kinetic energy of the incoming wave on its boundaries. The static volumetric stress pattern inside the fault system is also affected by the local structures. Our results show that local faults play an important role in earthquake-volcanic systems dynamics by concentrating kinetic energy inside and acting as wave-guides that have a breakwater-like behavior. This generates sudden changes in pore pressure, volumetric expansion, and stress gradients. Local structures also influence the regional Coulomb yield function. Our results show that local structures affect the dynamics of volcanic and hydrothermal systems, and should be taken into account when investigating triggering of these systems from nearby or distant earthquakes.
Stress/strain changes and triggered seismicity at The Geysers, California
Gomberg, J.; Davis, S.
1996-01-01
The principal results of this study of remotely triggered seismicity in The Geysers geothermal field are the demonstration that triggering (initiation of earthquake failure) depends on a critical strain threshold and that the threshold level increases with decreasing frequency or equivalently, depends on strain rate. This threshold function derives from (1) analyses of dynamic strains associated with surface waves of the triggering earthquakes, (2) statistically measured aftershock zone dimensions, and (3) analytic functional representations of strains associated with power production and tides. The threshold is also consistent with triggering by static strain changes and implies that both static and dynamic strains may cause aftershocks. The observation that triggered seismicity probably occurs in addition to background activity also provides an important constraint on the triggering process. Assuming the physical processes underlying earthquake nucleation to be the same, Gomberg [this issue] discusses seismicity triggered by the MW 7.3 Landers earthquake, its constraints on the variability of triggering thresholds with site, and the implications of time delays between triggering and triggered earthquakes. Our results enable us to reject the hypothesis that dynamic strains simply nudge prestressed faults over a Coulomb failure threshold sooner than they would have otherwise. We interpret the rate-dependent triggering threshold as evidence of several competing processes with different time constants, the faster one(s) facilitating failure and the other(s) inhibiting it. Such competition is a common feature of theories of slip instability. All these results, not surprisingly, imply that to understand earthquake triggering one must consider not only simple failure criteria requiring exceedence of some constant threshold but also the requirements for generating instabilities.
Stress/strain changes and triggered seismicity at The Geysers, California
NASA Astrophysics Data System (ADS)
Gomberg, Joan; Davis, Scott
1996-01-01
The principal results of this study of remotely triggered seismicity in The Geysers geothermal field are the demonstration that triggering (initiation of earthquake failure) depends on a critical strain threshold and that the threshold level increases with decreasing frequency, or, equivalently, depends on strain rate. This threshold function derives from (1) analyses of dynamic strains associated with surface waves of the triggering earthquakes, (2) statistically measured aftershock zone dimensions, and (3) analytic functional representations of strains associated with power production and tides. The threshold is also consistent with triggering by static strain changes and implies that both static and dynamic strains may cause aftershocks. The observation that triggered seismicity probably occurs in addition to background activity also provides an important constraint on the triggering process. Assuming the physical processes underlying earthquake nucleation to be the same, Gomberg [this issue] discusses seismicity triggered by the MW 7.3 Landers earthquake, its constraints on the variability of triggering thresholds with site, and the implications of time delays between triggering and triggered earthquakes. Our results enable us to reject the hypothesis that dynamic strains simply nudge prestressed faults over a Coulomb failure threshold sooner than they would have otherwise. We interpret the rate-dependent triggering threshold as evidence of several competing processes with different time constants, the faster one(s) facilitating failure and the other(s) inhibiting it. Such competition is a common feature of theories of slip instability. All these results, not surprisingly, imply that to understand earthquake triggering one must consider not only simple failure criteria requiring exceedence of some constant threshold but also the requirements for generating instabilities.
Connecting crustal seismicity and earthquake-driven stress evolution in Southern California
Pollitz, Fred; Cattania, Camilla
2017-01-01
Tectonic stress in the crust evolves during a seismic cycle, with slow stress accumulation over interseismic periods, episodic stress steps at the time of earthquakes, and transient stress readjustment during a postseismic period that may last months to years. Static stress transfer to surrounding faults has been well documented to alter regional seismicity rates over both short and long time scales. While static stress transfer is instantaneous and long lived, postseismic stress transfer driven by viscoelastic relaxation of the ductile lower crust and mantle leads to additional, slowly varying stress perturbations. Both processes may be tested by comparing a decade-long record of regional seismicity to predicted time-dependent seismicity rates based on a stress evolution model that includes viscoelastic stress transfer. Here we explore crustal stress evolution arising from the seismic cycle in Southern California from 1981 to 2014 using five M≥6.5 source quakes: the M7.3 1992 Landers, M6.5 1992 Big Bear, M6.7 1994 Big Bear, M7.1 1999 Hector Mine, and M7.2 2010 El Mayor-Cucapah earthquakes. We relate the stress readjustment in the surrounding crust generated by each quake to regional seismicity using rate-and-state friction theory. Using a log likelihood approach, we quantify the potential to trigger seismicity of both static and viscoelastic stress transfer, finding that both processes have systematically shaped the spatial pattern of Southern California seismicity since 1992.
Triggering of repeating earthquakes in central California
Wu, Chunquan; Gomberg, Joan; Ben-Naim, Eli; Johnson, Paul
2014-01-01
Dynamic stresses carried by transient seismic waves have been found capable of triggering earthquakes instantly in various tectonic settings. Delayed triggering may be even more common, but the mechanisms are not well understood. Catalogs of repeating earthquakes, earthquakes that recur repeatedly at the same location, provide ideal data sets to test the effects of transient dynamic perturbations on the timing of earthquake occurrence. Here we employ a catalog of 165 families containing ~2500 total repeating earthquakes to test whether dynamic perturbations from local, regional, and teleseismic earthquakes change recurrence intervals. The distance to the earthquake generating the perturbing waves is a proxy for the relative potential contributions of static and dynamic deformations, because static deformations decay more rapidly with distance. Clear changes followed the nearby 2004 Mw6 Parkfield earthquake, so we study only repeaters prior to its origin time. We apply a Monte Carlo approach to compare the observed number of shortened recurrence intervals following dynamic perturbations with the distribution of this number estimated for randomized perturbation times. We examine the comparison for a series of dynamic stress peak amplitude and distance thresholds. The results suggest a weak correlation between dynamic perturbations in excess of ~20 kPa and shortened recurrence intervals, for both nearby and remote perturbations.
NASA Astrophysics Data System (ADS)
Parameswaran, Revathy M.; Rajendran, Kusala
2017-04-01
The Great Himalayan earthquakes are believed to originate on the Main Himalayan Thrust, and their ruptures lead to deformation along the Main Frontal Thrust (MFT). The rupture of the April 25, 2015 (Mw 7.8), earthquake was east-directed, with no part relayed to the MFT. The aftershock distribution, coseismic elevation change of 1 m inferred from the InSAR image, and the spatial correspondence of the subtle surface deformations with PT2, a previously mapped out-of-sequence thrust, lead us to explore the role of structural heterogeneities in constraining the rupture progression. We used teleseismic moment inversion of P- and SH-waves, and Coulomb static stress changes to map the slip distribution, and growth of aftershock area, to understand their relation to the thrust systems. Most of the aftershocks were sourced outside the stress shadows (slip >1.65 m) of the April 25 earthquake. The May 12 (Mw 7.3) earthquake that sourced on a contiguous patch coincides with regions of increased stress change and therefore is the first known post-instrumentation example of a late, distant, and large triggered aftershock associated with any large earthquake in the Nepal Himalaya. The present study relates the slip, aftershock productivity, and triggering of unbroken stress barriers, to potential out-of-sequence thrusts, and suggests the role of stress transfer in generating large/great earthquakes.
The 1999 Mw 7.1 Hector Mine, California, earthquake: A test of the stress shadow hypothesis?
Harris, R.A.; Simpson, R.W.
2002-01-01
We test the stress shadow hypothesis for large earthquake interactions by examining the relationship between two large earthquakes that occurred in the Mojave Desert of southern California, the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes. We want to determine if the 1999 Hector Mine earthquake occurred at a location where the Coulomb stress was increased (earthquake advance, stress trigger) or decreased (earthquake delay, stress shadow) by the previous large earthquake. Using four models of the Landers rupture and a range of possible hypocentral planes for the Hector Mine earthquake, we discover that most scenarios yield a Landers-induced relaxation (stress shadow) on the Hector Mine hypocentral plane. Although this result would seem to weigh against the stress shadow hypothesis, the results become considerably more uncertain when the effects of a nearby Landers aftershock, the 1992 ML 5.4 Pisgah earthquake, are taken into account. We calculate the combined static Coulomb stress changes due to the Landers and Pisgah earthquakes to range from -0.3 to +0.3 MPa (- 3 to +3 bars) at the possible Hector Mine hypocenters, depending on choice of rupture model and hypocenter. These varied results imply that the Hector Mine earthquake does not provide a good test of the stress shadow hypothesis for large earthquake interactions. We use a simple approach, that of static dislocations in an elastic half-space, yet we still obtain a wide range of both negative and positive Coulomb stress changes. Our findings serve as a caution that more complex models purporting to explain the triggering or shadowing relationship between the 1992 Landers and 1999 Hector Mine earthquakes need to also consider the parametric and geometric uncertainties raised here.
Effects of acoustic waves on stick-slip in granular media and implications for earthquakes
Johnson, P.A.; Savage, H.; Knuth, M.; Gomberg, J.; Marone, Chris
2008-01-01
It remains unknown how the small strains induced by seismic waves can trigger earthquakes at large distances, in some cases thousands of kilometres from the triggering earthquake, with failure often occurring long after the waves have passed. Earthquake nucleation is usually observed to take place at depths of 10-20 km, and so static overburden should be large enough to inhibit triggering by seismic-wave stress perturbations. To understand the physics of dynamic triggering better, as well as the influence of dynamic stressing on earthquake recurrence, we have conducted laboratory studies of stick-slip in granular media with and without applied acoustic vibration. Glass beads were used to simulate granular fault zone material, sheared under constant normal stress, and subject to transient or continuous perturbation by acoustic waves. Here we show that small-magnitude failure events, corresponding to triggered aftershocks, occur when applied sound-wave amplitudes exceed several microstrain. These events are frequently delayed or occur as part of a cascade of small events. Vibrations also cause large slip events to be disrupted in time relative to those without wave perturbation. The effects are observed for many large-event cycles after vibrations cease, indicating a strain memory in the granular material. Dynamic stressing of tectonic faults may play a similar role in determining the complexity of earthquake recurrence. ??2007 Nature Publishing Group.
Stress/strain changes and triggered seismicity following the MW7.3 Landers, California, earthquake
Gomberg, J.
1996-01-01
Calculations of dynamic stresses and strains, constrained by broadband seismograms, are used to investigate their role in generating the remotely triggered seismicity that followed the June 28, 1992, MW7.3 Landers, California earthquake. I compare straingrams and dynamic Coulomb failure functions calculated for the Landers earthquake at sites that did experience triggered seismicity with those at sites that did not. Bounds on triggering thresholds are obtained from analysis of dynamic strain spectra calculated for the Landers and MW,6.1 Joshua Tree, California, earthquakes at various sites, combined with results of static strain investigations by others. I interpret three principal results of this study with those of a companion study by Gomberg and Davis [this issue]. First, the dynamic elastic stress changes themselves cannot explain the spatial distribution of triggered seismicity, particularly the lack of triggered activity along the San Andreas fault system. In addition to the requirement to exceed a Coulomb failure stress level, this result implies the need to invoke and satisfy the requirements of appropriate slip instability theory. Second, results of this study are consistent with the existence of frequency- or rate-dependent stress/strain triggering thresholds, inferred from the companion study and interpreted in terms of earthquake initiation involving a competition of processes, one promoting failure and the other inhibiting it. Such competition is also part of relevant instability theories. Third, the triggering threshold must vary from site to site, suggesting that the potential for triggering strongly depends on site characteristics and response. The lack of triggering along the San Andreas fault system may be correlated with the advanced maturity of its fault gouge zone; the strains from the Landers earthquake were either insufficient to exceed its larger critical slip distance or some other critical failure parameter; or the faults failed stably as aseismic creep events. Variations in the triggering threshold at sites of triggered seismicity may be attributed to variations in gouge zone development and properties. Finally, these interpretations provide ready explanations for the time delays between the Landers earthquake and the triggered events.
Ma, K.-F.; Chan, C.-H.; Stein, R.S.
2005-01-01
The correlation between static Coulomb stress increases and aftershocks has thus far provided the strongest evidence that stress changes promote seismicity, a correlation that the Chi-Chi earthquake well exhibits. Several studies have deepened the argument by resolving stress changes on aftershock focal mechanisms, which removes the assumption that the aftershocks are optimally oriented for failure. Here one compares the percentage of planes on which failure is promoted after the main shock relative to the percentage beforehand. For Chi-Chi we find a 28% increase for thrust and an 18% increase for strike-slip mechanisms, commensurate with increases reported for other large main shocks. However, perhaps the chief criticism of static stress triggering is the difficulty in observing predicted seismicity rate decreases in the stress shadows, or sites of Coulomb stress decrease. Detection of sustained drops in seismicity rate demands a long catalog with a low magnitude of completeness and a high seismicity rate, conditions that are met at Chi-Chi. We find four lobes with statistically significant seismicity rate declines of 40-90% for 50 months, and they coincide with the stress shadows calculated for strike-slip faults, the dominant faulting mechanism. The rate drops are evident in uniform cell calculations, 100-month time series, and by visual inspection of the M ??? 3 seismicity. An additional reason why detection of such declines has proven so rare emerges from this study: there is a widespread increase in seismicity rate during the first 3 months after Chi-Chi, and perhaps many other main shocks, that might be associated with a different mechanism. Copyright 2005 by the American Geophysical Union.
The influence of one earthquake on another
NASA Astrophysics Data System (ADS)
Kilb, Deborah Lyman
1999-12-01
Part one of my dissertation examines the initiation of earthquake rupture. We study the initial subevent (ISE) of the Mw 6.7 1994 Northridge, California earthquake to distinguish between two end-member hypotheses of an organized and predictable earthquake rupture initiation process or, alternatively, a random process. We find that the focal mechanisms of the ISE and mainshock are indistinguishable, and both events may have nucleated on and ruptured the same fault plane. These results satisfy the requirements for both end-member models, and do not allow us to distinguish between them. However, further tests show the ISE's waveform characteristics are similar to those of typical nearby small earthquakes (i.e., dynamic ruptures). The second part of my dissertation examines aftershocks of the M 7.1 1989 Loma Prieta, California earthquake to determine if theoretical models of static Coulomb stress changes correctly predict the fault plane geometries and slip directions of Loma Prieta aftershocks. Our work shows individual aftershock mechanisms cannot be successfully predicted because a similar degree of predictability can be obtained using a randomized catalogue. This result is probably a function of combined errors in the models of mainshock slip distribution, background stress field, and aftershock locations. In the final part of my dissertation, we test the idea that earthquake triggering occurs when properties of a fault and/or its loading are modified by Coulomb failure stress changes that may be transient and oscillatory (i.e., dynamic) or permanent (i.e., static). We propose a triggering threshold failure stress change exists, above which the earthquake nucleation process begins although failure need not occur instantaneously. We test these ideas using data from the 1992 M 7.4 Landers earthquake and its aftershocks. Stress changes can be categorized as either dynamic (generated during the passage of seismic waves), static (associated with permanent fault offsets caused by fault slip) or complete (including both static and dynamic). We examine theoretically calculated Coulomb failure stress changes for the static (DeltaCFS) and complete (DeltaCFS(t)) cases, and statistically test for a correlation with spatially varying post-Landers seismicity rate changes. We find that directivity, which was required to model waveforms of the 1992 Landers earthquake, creates an asymmetry in mapped peak DeltaCFS(t). A similar asymmetry is apparent in the seismicity rate change map but not in the DeltaCFS map. Statistical analyses show that peak DeltaCFS(t) correlates as well or better with seismicity rate change as DeltaCFS, and qualitatively peak DeltaCFS(t) is the preferred model. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Staszek, Monika; Orlecka-Sikora, Beata; Lasocki, Stanislaw; Kwiatek, Grzegorz; Leptokaropoulos, Konstantinos; Martinez-Garzon, Patricia
2017-04-01
One of the major environmental impacts of shale gas exploitation is triggered and induced seismicity. Due to the similarity of fluid injection process data from geothermal fields can be used as a proxy for shale gas exploitation associated seismicity. Therefore, in this paper we utilize 'The Geysers' dataset compiled within SHale gas Exploration and Exploitation induced Risks (SHEER) project. The dependence of earthquake static stress drops on pore pressure in the medium was previously suggested by Goertz-Allmann et al. (2011), who observed an increase of the static stress drop with the distance from injection well during reservoir stimulation at Deep Heat Mining project in Basel, Switzerland. Similar observation has been done by Kwiatek et al. (2014) in Berlín geothermal field, El Salvador. In this study, we use a high-quality data from The Geysers geothermal field to determine whether the static stress drops and the stress drop distributions change statistically significantly in time or not, and how such changes are correlated with the values of hypocenter depth, water injection rate, and distance from injection well. For the analyses we use a group of 354 earthquakes, which occurred in the proximity of Prati-9 and Prati-29 injection wells. Spectral parameters of these earthquakes were determined using mesh spectral ratio technique. Our results indicate that: (1) the static stress drop variation in time is statistically significant, (2) median static stress drop is inversely related to median injection rate. Therefore, it is highly expected that static stress drop is influenced by pore pressure in underground fluid injection conditions. References: Goertz-Allmann B., Goertz A., Wiemer S. (2011), Stress drop variations of induced earthquakes at the Basel geothermal site. Geophysical Research Letters, 38, L09308, doi:10.1029/2011GL047498. Kwiatek G., Bulut F., Bohnhoff M., Dresen G. (2014), High-resolution analysis of seismicity induced at Berlin geothermal field, El Salvador. Geothermics, 52, 98-111, doi: 10.1016/j.geothermics.2013.09.008. Acknowledgements: This work was supported under SHEER: "Shale Gas Exploration and Exploitation Induced Risks" project funded from Horizon 2020 - R&I Framework Programme, call H2020-LCE-2014-1 and by the Ministry of Science and Higher Education of Poland under project no. 500-10-27.
Mechanical stress as a regulator of cell motility
NASA Astrophysics Data System (ADS)
Putelat, T.; Recho, P.; Truskinovsky, L.
2018-01-01
The motility of a cell can be triggered or inhibited not only by an applied force but also by a mechanically neutral force couple. This type of loading, represented by an applied stress and commonly interpreted as either squeezing or stretching, can originate from extrinsic interaction of a cell with its neighbors. To quantify the effect of applied stresses on cell motility we use an analytically transparent one-dimensional model accounting for active myosin contraction and induced actin turnover. We show that stretching can polarize static cells and initiate cell motility while squeezing can symmetrize and arrest moving cells. We show further that sufficiently strong squeezing can lead to the loss of cell integrity. The overall behavior of the system depends on the two dimensionless parameters characterizing internal driving (chemical activity) and external loading (applied stress). We construct a phase diagram in this parameter space distinguishing between static, motile, and collapsed states. The obtained results are relevant for the mechanical understanding of contact inhibition and the epithelial-to-mesenchymal transition.
Sumy, Danielle F.; Cochran, Elizabeth S.; Keranen, Katie M.; Wei, Maya; Abers, Geoffrey A.
2014-01-01
In November 2011, a M5.0 earthquake occurred less than a day before a M5.7 earthquake near Prague, Oklahoma, which may have promoted failure of the mainshock and thousands of aftershocks along the Wilzetta fault, including a M5.0 aftershock. The M5.0 foreshock occurred in close proximity to active fluid injection wells; fluid injection can cause a buildup of pore fluid pressure, decrease the fault strength, and may induce earthquakes. Keranen et al. [2013] links the M5.0 foreshock with fluid injection, but the relationship between the foreshock and successive events has not been investigated. Here we examine the role of coseismic Coulomb stress transfer on earthquakes that follow the M5.0 foreshock, including the M5.7 mainshock. We resolve the static Coulomb stress change onto the focal mechanism nodal plane that is most consistent with the rupture geometry of the three M ≥ 5.0 earthquakes, as well as specified receiver fault planes that reflect the regional stress orientation. We find that Coulomb stress is increased, e.g., fault failure is promoted, on the nodal planes of ~60% of the events that have focal mechanism solutions, and more specifically, that the M5.0 foreshock promoted failure on the rupture plane of the M5.7 mainshock. We test our results over a range of effective coefficient of friction values. Hence, we argue that the M5.0 foreshock, induced by fluid injection, potentially triggered a cascading failure of earthquakes along the complex Wilzetta fault system.
Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions
NASA Astrophysics Data System (ADS)
Vilotte, J. P.; Scala, A.; Festa, G.
2017-12-01
We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.
Triggering of destructive earthquakes in El Salvador
NASA Astrophysics Data System (ADS)
Martínez-Díaz, José J.; Álvarez-Gómez, José A.; Benito, Belén; Hernández, Douglas
2004-01-01
We investigate the existence of a mechanism of static stress triggering driven by the interaction of normal faults in the Middle American subduction zone and strike-slip faults in the El Salvador volcanic arc. The local geology points to a large strike-slip fault zone, the El Salvador fault zone, as the source of several destructive earthquakes in El Salvador along the volcanic arc. We modeled the Coulomb failure stress (CFS) change produced by the June 1982 and January 2001 subduction events on planes parallel to the El Salvador fault zone. The results have broad implications for future risk management in the region, as they suggest a causative relationship between the position of the normal-slip events in the subduction zone and the strike-slip events in the volcanic arc. After the February 2001 event, an important area of the El Salvador fault zone was loaded with a positive change in Coulomb failure stress (>0.15 MPa). This scenario must be considered in the seismic hazard assessment studies that will be carried out in this area.
NASA Astrophysics Data System (ADS)
Wallace, Laura M.; Hreinsdóttir, Sigrún; Ellis, Susan; Hamling, Ian; D'Anastasio, Elisabetta; Denys, Paul
2018-05-01
The 2016 MW7.8 Kaikōura earthquake ruptured a complex sequence of strike-slip and reverse faults in New Zealand's northeastern South Island. In the months following the earthquake, time-dependent inversions of Global Positioning System and interferometric synthetic aperture radar data reveal up to 0.5 m of afterslip on the subduction interface beneath the northern South Island underlying the crustal faults that ruptured in the earthquake. This is clear evidence that the far southern end of the Hikurangi subduction zone accommodates plate motion. The MW7.8 earthquake also triggered widespread slow slip over much of the subduction zone beneath the North Island. The triggered slow slip included immediate triggering of shallow (<15 km), short (2-3 weeks) slow slip events along much of the east coast, and deep (>30 km), long-term (>1 year) slow slip beneath the southern North Island. The southern Hikurangi slow slip was likely triggered by large (0.5-1.0 MPa) static Coulomb stress increases.
NASA Astrophysics Data System (ADS)
Lupi, M.; Fuchs, Florian; Pacheco, Javier F.
2014-06-01
The M7.6 Nicoya earthquake struck at the interface between the Cocos plate and the Caribbean plate on 5 September 2012 inducing a ground acceleration of 0.5 m s-2 at the Irazú-Turrialba volcanic complex. We use data from six seismic stations deployed around and atop the Irazú-Turrialba volcanic complex to show the increase of local seismic activity after the M7.6 Nicoya earthquake. The response consists in more than 300 locatable earthquakes occurring in swarm sequences along a fault system that intersects the Irazú-Turrialba volcanic complex. In addition, we point out that major aftershocks are followed by increases of seismic activity in the same region. The weak static stress variation imposed by the main slip of the Nicoya earthquake at the Irazú-Turrialba volcanic complex suggests a dynamic triggering mechanism. We expand this concept suggesting that this behavior may be similar to the one observed in the Chilean and Japanese volcanic arcs during the M8.8 2010 Maule, Chile, and M9.0 2011 Tohoku, Japan, earthquakes. Finally, we highlight that the combined action of dynamic stress and short-lived coseismic relaxation may trigger seismic activity in geological systems in near-critical conditions.
Delayed seismicity rate changes controlled by static stress transfer
Kroll, Kayla A.; Richards-Dinger, Keith B.; Dieterich, James H.; Cochran, Elizabeth S.
2017-01-01
On 15 June 2010, a Mw5.7 earthquake occurred near Ocotillo, California, in the Yuha Desert. This event was the largest aftershock of the 4 April 2010 Mw7.2 El Mayor-Cucapah (EMC) earthquake in this region. The EMC mainshock and subsequent Ocotillo aftershock provide an opportunity to test the Coulomb failure hypothesis (CFS). We explore the spatiotemporal correlation between seismicity rate changes and regions of positive and negative CFS change imparted by the Ocotillo event. Based on simple CFS calculations we divide the Yuha Desert into three subregions, one triggering zone and two stress shadow zones. We find the nominal triggering zone displays immediate triggering, one stress shadowed region experiences immediate quiescence, and the other nominal stress shadow undergoes an immediate rate increase followed by a delayed shutdown. We quantitatively model the spatiotemporal variation of earthquake rates by combining calculations of CFS change with the rate-state earthquake rate formulation of Dieterich (1994), assuming that each subregion contains a mixture of nucleation sources that experienced a CFS change of differing signs. Our modeling reproduces the observations, including the observed delay in the stress shadow effect in the third region following the Ocotillo aftershock. The delayed shadow effect occurs because of intrinsic differences in the amplitude of the rate response to positive and negative stress changes and the time constants for return to background rates for the two populations. We find that rate-state models of time-dependent earthquake rates are in good agreement with the observed rates and thus explain the complex spatiotemporal patterns of seismicity.
Delayed Seismicity Rate Changes Controlled by Static Stress Transfer
NASA Astrophysics Data System (ADS)
Kroll, Kayla A.; Richards-Dinger, Keith B.; Dieterich, James H.; Cochran, Elizabeth S.
2017-10-01
On 15 June 2010, a Mw5.7 earthquake occurred near Ocotillo, California, in the Yuha Desert. This event was the largest aftershock of the 4 April 2010 Mw7.2 El Mayor-Cucapah (EMC) earthquake in this region. The EMC mainshock and subsequent Ocotillo aftershock provide an opportunity to test the Coulomb failure hypothesis (CFS). We explore the spatiotemporal correlation between seismicity rate changes and regions of positive and negative CFS change imparted by the Ocotillo event. Based on simple CFS calculations we divide the Yuha Desert into three subregions, one triggering zone and two stress shadow zones. We find the nominal triggering zone displays immediate triggering, one stress shadowed region experiences immediate quiescence, and the other nominal stress shadow undergoes an immediate rate increase followed by a delayed shutdown. We quantitatively model the spatiotemporal variation of earthquake rates by combining calculations of CFS change with the rate-state earthquake rate formulation of Dieterich (1994), assuming that each subregion contains a mixture of nucleation sources that experienced a CFS change of differing signs. Our modeling reproduces the observations, including the observed delay in the stress shadow effect in the third region following the Ocotillo aftershock. The delayed shadow effect occurs because of intrinsic differences in the amplitude of the rate response to positive and negative stress changes and the time constants for return to background rates for the two populations. We find that rate-state models of time-dependent earthquake rates are in good agreement with the observed rates and thus explain the complex spatiotemporal patterns of seismicity.
NASA Astrophysics Data System (ADS)
Kariche, Jughurta; Meghraoui, Mustapha; Ayadi, Abdelhakim; Salah Boughacha, Mohamed
2017-04-01
We study the role and distribution of stress transfer that may trigger destructive earthquakes in the Central Tell Atlas (Algeria). A sequence of historical events reaching Ms 7.3 and related stress tensors with thrust faulting mechanisms allows the modeling of the Coulomb Failure Function (deltaCFF). We explore here the physical parameters for a stress transfer along the Tell thrust-and-fold belt taking into account an eastward trending earthquake migration from 1891 to 2003. The Computation integrated the seismicity rate in the deltaCFF computation, which is in good agreement with the migration seismicity. The stress transfer progression and increase of 0.1 to 0.8 bar are obtained on fault planes at 7-km-depth with a friction coefficient µ' 0.4 showing stress loading lobes on targeted coseismic fault zone and location of stress shadow across other thrust-and-fold regions. The Coulomb modeling suggests a distinction in earthquake triggering between zones with moderate-sized and large earthquake ruptures. Recent InSAR and levelling studies and aftershocks that document postseismic deformation of major earthquakes are integrated into the static stress change calculations. The presence of fluid and related poroelastic deformation can be considered as an open question with regards to their contribution to major earthquakes and their implications in the seismic hazard assessment of northern Algeria.
Static Stress Transfers Causes Delayed Seismicity Shutdown
NASA Astrophysics Data System (ADS)
Kroll, K.; Richards-Dinger, K. B.; Dieterich, J. H.; Cochran, E. S.
2015-12-01
It has been long debated what role static stress changes play in the enhancement and suppression of seismicity in the near-field region of large earthquakes. While numerous observations have correlated earthquake triggering and elevated seismicity rates with regions of increased Coulomb failure stress (CFS), observations of seismic quiescence in stress shadow regions are more controversial. When observed, seismicity shutdowns are often delayed by days to months following a negative stress perturbation. Some studies propose that the delay in the seismic shutdown can be caused by rupture promoting failure on one fault type while suppressing activity on another; thus the observed seismicity reflects the weighted contribution of the two faulting populations. For example, it was noted that in the 75 years following the 1906 San Francisco earthquake, strike-slip faulting earthquakes were inhibited, while thrust faulting events were promoted. However, definitive observations supporting this delayed shutdown mechanism are rare. In this study, we report seismicity rate increases and decreases that correlate with regions of Coulomb stress transfer, and show observations of a delayed shutdown in the Yuha Desert, California. We use a Coulomb stress change model coupled with a rate-and state- earthquake model to show that the delay in the shutdown is due to the combined changes in the rates of normal and strike-slip faulting events following the 2010 M5.72 Ocotillo aftershock of the 2010 El Mayor-Cucapah earthquake.
Sevilgen, Volkan; Stein, Ross S.; Pollitz, Fred F.
2012-01-01
The origin and prevalence of triggered seismicity and remote aftershocks are under debate. As a result, they have been excluded from probabilistic seismic hazard assessment and aftershock hazard notices. The 2004 M = 9.2 Sumatra earthquake altered seismicity in the Andaman backarc rift-transform system. Here we show that over a 300-km-long largely transform section of the backarc, M≥4.5 earthquakes stopped for five years, and over a 750-km-long backarc section, the rate of transform events dropped by two-thirds, while the rate of rift events increased eightfold. We compute the propagating dynamic stress wavefield and find the peak dynamic Coulomb stress is similar on the rifts and transforms. Long-period dynamic stress amplitudes, which are thought to promote dynamic failure, are higher on the transforms than on the rifts, opposite to the observations. In contrast to the dynamic stress, we calculate that the mainshock brought the transform segments approximately 0.2 bar (0.02 MPa) farther from static Coulomb failure and the rift segments approximately 0.2 bar closer to static failure, consistent with the seismic observations. This accord means that changes in seismicity rate are sufficiently predictable to be included in post-mainshock hazard evaluations.
Sevilgen, Volkan; Stein, Ross S.; Pollitz, Fred F.
2012-01-01
The origin and prevalence of triggered seismicity and remote aftershocks are under debate. As a result, they have been excluded from probabilistic seismic hazard assessment and aftershock hazard notices. The 2004 M = 9.2 Sumatra earthquake altered seismicity in the Andaman backarc rift-transform system. Here we show that over a 300-km-long largely transform section of the backarc, M ≥ 4.5 earthquakes stopped for five years, and over a 750-km-long backarc section, the rate of transform events dropped by two-thirds, while the rate of rift events increased eightfold. We compute the propagating dynamic stress wavefield and find the peak dynamic Coulomb stress is similar on the rifts and transforms. Long-period dynamic stress amplitudes, which are thought to promote dynamic failure, are higher on the transforms than on the rifts, opposite to the observations. In contrast to the dynamic stress, we calculate that the mainshock brought the transform segments approximately 0.2 bar (0.02 MPa) farther from static Coulomb failure and the rift segments approximately 0.2 bar closer to static failure, consistent with the seismic observations. This accord means that changes in seismicity rate are sufficiently predictable to be included in post-mainshock hazard evaluations.
Static stress changes and the triggering of earthquakes
King, Geoffrey C.P.; Stein, Ross S.; Lin, Jian
1994-01-01
To understand whether the 1992 M = 7.4 Landers earthquake changed the proximity to failure on the San Andreas fault system, we examine the general problem of how one earthquake might trigger another. The tendency of rocks to fail in a brittle manner is thought to be a function of both shear and confining stresses, commonly formulated as the Coulomb failure criterion. Here we explore how changes in Coulomb conditions associated with one or more earthquakes may trigger subsequent events. We first consider a Coulomb criterion appropriate for the production of aftershocks, where faults most likely to slip are those optimally orientated for failure as a result of the prevailing regional stress field and the stress change caused by the mainshock. We find that the distribution of aftershocks for the Landers earthquake, as well as for several other moderate events in its vicinity, can be explained by the Coulomb criterion as follows: aftershocks are abundant where the Coulomb stress on optimally orientated faults rose by more than one-half bar, and aftershocks are sparse where the Coulomb stress dropped by a similar amount. Further, we find that several moderate shocks raised the stress at the future Landers epicenter and along much of the Landers rupture zone by about a bar, advancing the Landers shock by 1 to 3 centuries. The Landers rupture, in turn, raised the stress at site of the future M = 6.5 Big Bear aftershock site by 3 bars. The Coulomb stress change on a specified fault is independent of regional stress but depends on the fault geometry, sense of slip, and the coefficient of friction. We use this method to resolve stress changes on the San Andreas and San Jacinto faults imposed by the Landers sequence. Together the Landers and Big Bear earthquakes raised the stress along the San Bernardino segment of the southern San Andreas fault by 2 to 6 bars, hastening the next great earthquake there by about a decade.
Long Range Earthquake Interaction in Iceland
NASA Astrophysics Data System (ADS)
Goltz, C.
2003-12-01
It has been observed that earthquakes can be triggered by similarly sized events at large distances. The phenomenon has recently been shown to be statistically significant at a range up to several source dimensions in global earthquake data. The most appropriate explanation of the phenomenon seems to be criticality of the Earth's crust as e.g. changes in static and dynamic stresses would otherwise be too small to trigger remote events. I present results for a regional (as opposed to global) study of seismicity in Iceland which is based on a high quality reprocessed catalogue. Results include the time-dependent determination of the maximum range of interaction and the correlation length and also address the question whether small events can trigger larger ones. Pitfalls such as data accuracy and geometry as well as boundary effects are thoroughly discussed. A comparison with surrogate data helps to assess the statistical significance of the results.
NASA Astrophysics Data System (ADS)
Hobbs, T. E.; Cassidy, J. F.; Dosso, S. E.
2014-12-01
This paper examines the effect of the October 2012 Mw 7.8 Haida Gwaii earthquake on aftershock nodal planes and the neighboring Queen Charlotte Fault (QCF) through Coulomb modeling and directivity analysis. The Haida Gwaii earthquake was the largest thrust event recorded in this region and ruptured an area of ~150 by 40 km on a gently NE-dipping fault off the west coast of Moresby Island, British Columbia. It is particularly interesting as it is located just to the west of the QCF, the predominantly right-lateral strike-slip fault separating the Pacific and North American plates. The QCF was the site of the largest recorded earthquake in Canada: the 1949 Ms 8.1 strike-slip earthquake whose rupture extended as far south as this 2012 event and roughly as far north as an Mw7.5 strike slip event at Craig, Alaska, which occurred just two months later in January 2013. The 75 km long portion of the QCF south of the 1949 rupture has not had a large (M ≥ 7) earthquake in over 116 years, representing a significant seismic gap. Coulomb stress transfer analysis is performed using finite fault models which incorporate seismic and geodetic data. Static stress changes are projected onto aftershock nodal planes and the QCF, including an inferred southern seismic gap. We find up to 86% of aftershocks are consistent with triggering, and as high as 96% for normal faulting events. The QCF experiences static stress changes greater than the empirically-determined threshold for triggering, with positive stress changes predicted for roughly half of the seismic gap region. Added stress from the mainshock and a lack of post-mainshock events make this seismic gap a likely location for future earthquakes. Empirical Green's function and directivity analyses are also performed to constrain rupture kinematics of the mainshock using systematic azimuthal variations in relative source time functions. Results indicate rupture progressed mainly to the northwest within 15o of the direction of the 2013 Craig epicenter, with at least two sources of significant moment release. These results explain observed surface wave amplification at Alaskan seismic stations and support the idea that strong surface wave shaking may be linked to the possible delayed triggering of the Mw 7.5 Craig event, through an unknown intermediate mechanism that accounts for the two-month hiatus.
Quake clamps down on slow slip
NASA Astrophysics Data System (ADS)
Wallace, Laura M.; Bartlow, Noel; Hamling, Ian; Fry, Bill
2014-12-01
Using continuous GPS (cGPS) data from the Hikurangi subduction zone in New Zealand, we show for the first time that stress changes induced by a local earthquake can arrest an ongoing slow slip event (SSE). The cGPS data show that the slip rate in the northern portion of the 2013/2014 Kapiti SSE decreased abruptly following a nearby intraslab earthquake. We suggest that deceleration of the Kapiti SSE in early 2014 occurred due to a tenfold increase in the normal stress relative to shear stress in the SSE source, induced by the nearby Mw 6.3 earthquake, consistent with expectations of rate and state friction. Our observation of an abrupt halting/slowing of the SSE in response to stress changes imposed by a local earthquake has implications for the strength of fault zones hosting SSEs and supports the premise that static stress changes are an important ingredient in triggering (or delaying) fault slip.
NASA Astrophysics Data System (ADS)
Hodgkinson, Kathleen M.; Stein, Ross S.; King, Geoffrey C. P.
1996-11-01
In 1954, four earthquakes of M > 6.0 occurred within a 30 km radius in a period of six months. The Rainbow Mountain-Fairview Peak-Dixie Valley earthquakes are among the largest to have been recorded geodetically in the Basin and Range province. The Fairview Peak earthquake (M = 7.2, December 12, 1954) followed two events in the Rainbow Mountains (M = 6.2, July 6, and M = 6.5, August 24, 1954) by 6 months. Four minutes later the Dixie Valley fault ruptured (M = 6.7, December 12, 1954). The changes in static stresses caused by the events are calculated using the Coulomb-Navier failure criterion and assuming uniform slip on rectangular dislocations embedded in an elastic half-space. Coulomb stress changes are resolved on optimally oriented faults and on each of the faults that ruptured in the chain of events. These calculations show that each earthquake in the Rainbow Mountain-Fairview Peak-Dixie Valley sequence was preceded by a static stress change that encouraged failure. The magnitude of the stress increases transferred from one earthquake to another ranged from 0.01 MPa (0.1 bar) to over 0.1 MPa (1 bar). Stresses were reduced by up to 0.1 MPa over most of the Rainbow Mountain-Fairview Peak area as a result of the earthquake sequence.
Sevilgen, Volkan; Stein, Ross S.; Pollitz, Fred F.
2012-01-01
The origin and prevalence of triggered seismicity and remote aftershocks are under debate. As a result, they have been excluded from probabilistic seismic hazard assessment and aftershock hazard notices. The 2004 M = 9.2 Sumatra earthquake altered seismicity in the Andaman backarc rift-transform system. Here we show that over a 300-km-long largely transform section of the backarc, M≥4.5 earthquakes stopped for five years, and over a 750-km-long backarc section, the rate of transform events dropped by two-thirds, while the rate of rift events increased eightfold. We compute the propagating dynamic stress wavefield and find the peak dynamic Coulomb stress is similar on the rifts and transforms. Long-period dynamic stress amplitudes, which are thought to promote dynamic failure, are higher on the transforms than on the rifts, opposite to the observations. In contrast to the dynamic stress, we calculate that the mainshock brought the transform segments approximately 0.2 bar (0.02 MPa) farther from static Coulomb failure and the rift segments approximately 0.2 bar closer to static failure, consistent with the seismic observations. This accord means that changes in seismicity rate are sufficiently predictable to be included in post-mainshock hazard evaluations. PMID:22949694
Hodgkinson, K.M.; Stein, R.S.; King, G.C.P.
1996-01-01
In 1954, four earthquakes of M > 6.0 occurred within a 30 km radius in a period of six months. The Rainbow Mountain-Fairview Peak-Dixie Valley earthquakes are among the largest to have been recorded geodetically in the Basin and Range province. The Fairview Peak earthquake (M=7.2, December 12, 1954) followed two events in the Rainbow Mountains (M=6.2, July 6, and M=6.5, August 24, 1954) by 6 months. Four minutes later the Dixie Valley fault ruptured (M=6.7, December 12, 1954). The changes in static stresses caused by the events are calculated using the Coulomb-Navier failure criterion and assuming uniform slip on rectangular dislocations embedded in an elastic half-space. Coulomb stress changes are resolved on optimally oriented faults and on each of the faults that ruptured in the chain of events. These calculations show that each earthquake in the Rainbow Mountain-Fairview Peak-Dixie Valley sequence was preceded by a static stress change that encouraged failure. The magnitude of the stress increases transferred from one earthquake to another ranged from 0.01 MPa (0.1 bar) to over 0.1 MPa (1 bar). Stresses were reduced by up to 0.1 MPa over most of the Rainbow Mountain-Fairview Peak area as a result of the earthquake sequence. Copyright 1996 by the American Geophysical Union.
Testing the stress shadow hypothesis
NASA Astrophysics Data System (ADS)
Felzer, Karen R.; Brodsky, Emily E.
2005-05-01
A fundamental question in earthquake physics is whether aftershocks are predominantly triggered by static stress changes (permanent stress changes associated with fault displacement) or dynamic stresses (temporary stress changes associated with earthquake shaking). Both classes of models provide plausible explanations for earthquake triggering of aftershocks, but only the static stress model predicts stress shadows, or regions in which activity is decreased by a nearby earthquake. To test for whether a main shock has produced a stress shadow, we calculate time ratios, defined as the ratio of the time between the main shock and the first earthquake to follow it and the time between the last earthquake to precede the main shock and the first earthquake to follow it. A single value of the time ratio is calculated for each 10 × 10 km bin within 1.5 fault lengths of the main shock epicenter. Large values of the time ratio indicate a long wait for the first earthquake to follow the main shock and thus a potential stress shadow, whereas small values indicate the presence of aftershocks. Simulations indicate that the time ratio test should have sufficient sensitivity to detect stress shadows if they are produced in accordance with the rate and state friction model. We evaluate the 1989 MW 7.0 Loma Prieta, 1992 MW 7.3 Landers, 1994 MW 6.7 Northridge, and 1999 MW 7.1 Hector Mine main shocks. For each main shock, there is a pronounced concentration of small time ratios, indicating the presence of aftershocks, but the number of large time ratios is less than at other times in the catalog. This suggests that stress shadows are not present. By comparing our results to simulations we estimate that we can be at least 98% confident that the Loma Prieta and Landers main shocks did not produce stress shadows and 91% and 84% confident that stress shadows were not generated by the Hector Mine and Northridge main shocks, respectively. We also investigate the long hypothesized existence of a stress shadow following the 1906 San Francisco Bay area earthquake. We find that while Bay Area catalog seismicity rates are lower in the first half of the twentieth century than in the last half of the nineteenth, this seismicity contrast is also true outside of the Bay Area, in regions not expected to contain a stress shadow. This suggests that the rate change is due to a more system wide effect, such as errors in the historical catalog or the decay of aftershocks of the larger 1857 Fort Tejon earthquake.
The role of shear and tensile failure in dynamically triggered landslides
Gipprich, T.L.; Snieder, R.K.; Jibson, R.W.; Kimman, W.
2008-01-01
Dynamic stresses generated by earthquakes can trigger landslides. Current methods of landslide analysis such as pseudo-static analysis and Newmark's method focus on the effects of earthquake accelerations on the landslide mass to characterize dynamic landslide behaviour. One limitation of these methods is their use Mohr-Coulomb failure criteria, which only accounts for shear failure, but the role of tensile failure is not accounted for. We develop a limit-equilibrium model to investigate the dynamic stresses generated by a given ground motion due to a plane wave and use this model to assess the role of shear and tensile failure in the initiation of slope instability. We do so by incorporating a modified Griffith failure envelope, which combines shear and tensile failure into a single criterion. Tests of dynamic stresses in both homogeneous and layered slopes demonstrate that two modes of failure exist, tensile failure in the uppermost meters of a slope and shear failure at greater depth. Further, we derive equations that express the dynamic stress in the near-surface in the acceleration measured at the surface. These equations are used to approximately define the depth range for each mechanism of failure. The depths at which these failure mechanisms occur suggest that shear and tensile failure might collaborate in generating slope failure. ?? 2007 The Authors Journal compilation ?? 2007 RAS.
Yerkes, R.F.; Ellsworth, W.L.; Tinsley, J.C.
1983-01-01
A reverse-right-oblique surface rupture, associated with a ML 2.5 earthquake, formed in a diatomite quarry near Lompoc, California, in the northwesternmost Transverse Ranges on April 7, 1981. The 575-m-long narrow zone of ruptures formed in clay interbeds in diatomite and diatomaceous shale of the Neogene Monterey Formation. The ruptures parallel bedding, dip 39o-59oS, and trend about N84oE on the north limb of an open symmetrical syncline. Maximum net slip was 25 cm; maximum reverse dip slip was 23 cm, maximum right-lateral strike slip was about 9 cm, and average net slip was about 12 cm. The seismic moment of the earthquake is estimated at 1 to 2 X 1018 dyne/cm and the static stress drop at about 3 bar. The removal of an average of about 44 m of diatomite resulted in an average load reduction of about 5 bar, which decreased the normal stress by about 3.5 bar and increased the shear stress on the tilted bedding plane by about 2 bar. The April 7, 1981, event was a very shallow bedding-plane rupture, apparently triggered by crustal unloading. -Authors
Pollitz, F.F.; Sacks, I.S.
2002-01-01
The M 7.3 June 28, 1992 Landers and M 7.1 October 16, 1999 Hector Mine earthquakes, California, both right lateral strike-slip events on NNW-trending subvertical faults, occurred in close proximity in space and time in a region where recurrence times for surface-rupturing earthquakes are thousands of years. This suggests a causal role for the Landers earthquake in triggering the Hector Mine earthquake. Previous modeling of the static stress change associated with the Landers earthquake shows that the area of peak Hector Mine slip lies where the Coulomb failure stress promoting right-lateral strike-slip failure was high, but the nucleation point of the Hector Mine rupture was neutrally to weakly promoted, depending on the assumed coefficient of friction. Possible explanations that could account for the 7-year delay between the two ruptures include background tectonic stressing, dissipation of fluid pressure gradients, rate- and state-dependent friction effects, and post-Landers viscoelastic relaxation of the lower crust and upper mantle. By employing a viscoelastic model calibrated by geodetic data collected during the time period between the Landers and Hector Mine events, we calculate that postseismic relaxation produced a transient increase in Coulomb failure stress of about 0.7 bars on the impending Hector Mine rupture surface. The increase is greatest over the broad surface that includes the 1999 nucleation point and the site of peak slip further north. Since stress changes of magnitude greater than or equal to 0.1 bar are associated with documented causal fault interactions elsewhere, viscoelastic relaxation likely contributed to the triggering of the Hector Mine earthquake. This interpretation relies on the assumption that the faults occupying the central Mojave Desert (i.e., both the Landers and Hector Mine rupturing faults) were critically stressed just prior to the Landers earthquake.
Testing Earthquake Links in Mexico From 1978 to the 2017 M = 8.1 Chiapas and M = 7.1 Puebla Shocks
NASA Astrophysics Data System (ADS)
Segou, Margarita; Parsons, Tom
2018-01-01
The
Testing earthquake links in Mexico from 1978 up to the 2017 M=8.1 Chiapas and M=7.1 Puebla shocks
Segou, Margarita; Parsons, Thomas E.
2018-01-01
The M = 8.1 Chiapas and the M = 7.1 Puebla earthquakes occurred in the bending part of the subducting Cocos plate 11 days and ~600 km apart, a range that puts them well outside the typical aftershock zone. We find this to be a relatively common occurrence in Mexico, with 14% of M > 7.0 earthquakes since 1900 striking more than 300 km apart and within a 2 week interval, not different from a randomized catalog. We calculate the triggering potential caused by crustal stress redistribution from large subduction earthquakes over the last 40 years. There is no evidence that static stress transfer or dynamic triggering from the 8 September Chiapas earthquake promoted the 19 September earthquake. Both recent earthquakes were promoted by past thrust events instead, including delayed afterslip from the 2012 M = 7.5 Oaxaca earthquake. A repeated pattern of shallow thrust events promoting deep intraslab earthquakes is observed over the past 40 years.
NASA Astrophysics Data System (ADS)
Sivagurunathan, Rubentheran; Lau Tze Way, Saijod; Sivagurunathan, Linkesvaran; Yaakob, Mohd. Yuhazri
2018-01-01
The usage of composite materials have been improving over the years due to its superior mechanical properties such as high tensile strength, high energy absorption capability, and corrosion resistance. In this present study, the energy absorption capability of circular jute/epoxy composite tubes were tested and evaluated. To induce the progressive crushing of the composite tubes, four different types of triggering mechanisms were used which were the non-trigger, single chamfered trigger, double chamfered trigger and tulip trigger. Quasi-static axial loading test was carried out to understand the deformation patterns and the load-displacement characteristics for each composite tube. Besides that, the influence of energy absorption, crush force efficiency, peak load, mean load and load-displacement history were examined and discussed. The primary results displayed a significant influence on the energy absorption capability provided that stable progressive crushing occurred mostly in the triggered tubes compared to the non-triggered tubes. Overall, the tulip trigger configuration attributed the highest energy absorption.
Electrorheological suspensions of laponite in oil: rheometry studies.
Parmar, K P S; Méheust, Y; Schjelderupsen, Børge; Fossum, J O
2008-03-04
We have studied the effect of an external direct current (DC) electric field ( approximately 1 kV/mm) on the rheological properties of colloidal suspensions consisting of aggregates of laponite particles in a silicone oil. Microscopy observations show that, under application of an electric field greater than a triggering electric field Ec approximately 0.6 kV/mm, laponite aggregates assemble into chain- and/or columnlike structures in the oil. Without an applied electric field, the steady-state shear behavior of such suspensions is Newtonian-like. Under application of an electric field larger than Ec, it changes dramatically as a result of the changes in the microstructure: a significant yield stress is measured, and under continuous shear the fluid is shear-thinning. The rheological properties, in particular the dynamic and static shear stress, were studied as a function of particle volume fraction for various strengths (including null) of the applied electric field. The flow curves at constant shear rate can be scaled with respect to both the particle fraction and electric field strength onto a master curve. This scaling is consistent with simple scaling arguments. The shape of the master curve accounts for the system's complexity; it approaches a standard power-law model at high Mason numbers. Both dynamic and static yield stresses are observed to depend on the particle fraction Phi and electric field E as PhibetaEalpha, with alpha approximately 1.85 and beta approximately 1 and 1.70 for the dynamic and static yield stresses, respectively. The yield stress was also determined as the critical stress at which there occurs a bifurcation in the rheological behavior of suspensions that are submitted to a constant shear stress; a scaling law with alpha approximately 1.84 and beta approximately 1.70 was obtained. The effectiveness of the latter technique confirms that such electrorheological (ER) fluids can be studied in the framework of thixotropic fluids. The method is very reproducible; we suggest that it could be used routinely for studying ER fluids. The measured overall yield stress behavior of the suspensions may be explained in terms of standard conduction models for electrorheological systems. Interesting prospects include using such systems for guided self-assembly of clay nanoparticles.
NASA Astrophysics Data System (ADS)
Kilb, Debi
2003-01-01
The 1992 M7.3 Landers earthquake may have played a role in triggering the 1999 M7.1 Hector Mine earthquake as suggested by their close spatial (˜20 km) proximity. Current investigations of triggering by static stress changes produce differing conclusions when small variations in parameter values are employed. Here I test the hypothesis that large-amplitude dynamic stress changes, induced by the Landers rupture, acted to promote the Hector Mine earthquake. I use a flat layer reflectivity method to model the Landers earthquake displacement seismograms. By requiring agreement between the model seismograms and data, I can constrain the Landers main shock parameters and velocity model. A similar reflectivity method is used to compute the evolution of stress changes. I find a strong positive correlation between the Hector Mine hypocenter and regions of large (>4 MPa) dynamic Coulomb stress changes (peak Δσf(t)) induced by the Landers main shock. A positive correlation is also found with large dynamic normal and shear stress changes. Uncertainties in peak Δσf(t) (1.3 MPa) are only 28% of the median value (4.6 MPa) determined from an extensive set (160) of model parameters. Therefore the correlation with dynamic stresses is robust to a range of Hector Mine main shock parameters, as well as to variations in the friction and Skempton's coefficients used in the calculations. These results imply dynamic stress changes may be an important part of earthquake trigging, such that large-amplitude stress changes alter the properties of an existing fault in a way that promotes fault failure.
Post-Injection Induced Seismicity in EGS: Triggering Mechanisms and Mitigation.
NASA Astrophysics Data System (ADS)
De Simone, S.; Carrera, J.; Vilarrasa, V.
2017-12-01
Induced microseismicity is a controversial issue related to Enhanced Geothermal Systems (EGS) and in general with fluid injection into deep geological formations. The occurring of felt earthquakes after stopping injection especially generates concern, because the correlation between injection and seismic activity is unclear. The aim of this work is to advance in the understanding of the processes that may induce or trigger co- and post-injection seismicity. To this end we investigate the thermo-hydro-mechanical coupling by means of numerical simulations of hydraulic stimulation of deep geothermal systems. We find that preferential flow through conductive fractures or fault zones provokes pressure and temperature perturbations that result in not only heterogeneous variation of the stress field, but also highly anisotropic variations of the local stress tensor. Anisotropic variations tend to stabilize some fractures, but destabilize others. Moreover, activation of shear slip causes a significant variation of the stress field that enlarges the range of critical fracture orientations. We find that post-injection seismicity may occur on non-critically oriented faults that were originally stable. During injection, such faults become destabilized by thermal and shear slip stress changes, but remain static by the superposition of the stabilizing effect of pressure forces. However, these fractures become unstable and fail when the pressure forcing dissipates shortly after injection stops abruptly, which suggests that a slow reduction in injection rate may mitigate post-injection seismicity.
Analysing the 1811-1812 New Madrid earthquakes with recent instrumentally recorded aftershocks
Mueller, K.; Hough, S.E.; Bilham, R.
2004-01-01
Although dynamic stress changes associated with the passage of seismic waves are thought to trigger earthquakes at great distances, more than 60 per cent of all aftershocks appear to be triggered by static stress changes within two rupture lengths of a mainshock. The observed distribution of aftershocks may thus be used to infer details of mainshock rupture geometry. Aftershocks following large mid-continental earthquakes, where background stressing rates are low, are known to persist for centuries, and models based on rate-and-state friction laws provide theoretical support for this inference. Most past studies of the New Madrid earthquake sequence have indeed assumed ongoing microseismicity to be a continuing aftershock sequence. Here we use instrumentally recorded aftershock locations and models of elastic stress change to develop a kinematically consistent rupture scenario for three of the four largest earthquakes of the 1811-1812 New Madrid sequence. Our results suggest that these three events occurred on two contiguous faults, producing lobes of increased stress near fault intersections and end points, in areas where present-day microearthquakes have been hitherto interpreted as evidence of primary mainshock rupture. We infer that the remaining New Madrid mainshock may have occurred more than 200 km north of this region in the Wabash Valley of southern Indiana and Illinois-an area that contains abundant modern microseismicity, and where substantial liquefaction was documented by historic accounts. Our results suggest that future large midplate earthquake sequences may extend over a much broader region than previously suspected.
NASA Astrophysics Data System (ADS)
Segou, Margarita
2016-01-01
I perform a retrospective forecast experiment in the most rapid extensive continental rift worldwide, the western Corinth Gulf (wCG, Greece), aiming to predict shallow seismicity (depth <15 km) with magnitude M ≥ 3.0 for the time period between 1995 and 2013. I compare two short-term earthquake clustering models, based on epidemic-type aftershock sequence (ETAS) statistics, four physics-based (CRS) models, combining static stress change estimations and the rate-and-state laboratory law and one hybrid model. For the latter models, I incorporate the stress changes imparted from 31 earthquakes with magnitude M ≥ 4.5 at the extended area of wCG. Special attention is given on the 3-D representation of active faults, acting as potential receiver planes for the estimation of static stress changes. I use reference seismicity between 1990 and 1995, corresponding to the learning phase of physics-based models, and I evaluate the forecasts for six months following the 1995 M = 6.4 Aigio earthquake using log-likelihood performance metrics. For the ETAS realizations, I use seismic events with magnitude M ≥ 2.5 within daily update intervals to enhance their predictive power. For assessing the role of background seismicity, I implement a stochastic reconstruction (aka declustering) aiming to answer whether M > 4.5 earthquakes correspond to spontaneous events and identify, if possible, different triggering characteristics between aftershock sequences and swarm-type seismicity periods. I find that: (1) ETAS models outperform CRS models in most time intervals achieving very low rejection ratio RN = 6 per cent, when I test their efficiency to forecast the total number of events inside the study area, (2) the best rejection ratio for CRS models reaches RN = 17 per cent, when I use varying target depths and receiver plane geometry, (3) 75 per cent of the 1995 Aigio aftershocks that occurred within the first month can be explained by static stress changes, (4) highly variable performance on behalf of both statistical and physical models is suggested by large confidence intervals of information gain per earthquake and (5) generic ETAS models can adequately predict the temporal evolution of seismicity during swarms. Furthermore, stochastic reconstruction of seismicity makes possible the identification of different triggering processes between specific seismic crises (2001, 2003-04, 2006-07) and the 1995 aftershock sequence. I find that: (1) seismic events with M ≥ 5.0 are not a part of a preceding earthquake cascade, since they are characterized by high probability being a background event (average Pback > 0.8) and (2) triggered seismicity within swarms is characterized by lower event productivity when compared with the corresponding value during aftershock sequences. I conclude that physics-based models contribute on the determination of the `new-normal' seismicity rate at longer time intervals and that their joint implementation with statistical models is beneficial for future operational forecast systems.
Development, Integration and Testing of Automated Triggering Circuit for Hybrid DC Circuit Breaker
NASA Astrophysics Data System (ADS)
Kanabar, Deven; Roy, Swati; Dodiya, Chiragkumar; Pradhan, Subrata
2017-04-01
A novel concept of Hybrid DC circuit breaker having combination of mechanical switch and static switch provides arc-less current commutation into the dump resistor during quench in superconducting magnet operation. The triggering of mechanical and static switches in Hybrid DC breaker can be automatized which can effectively reduce the overall current commutation time of hybrid DC circuit breaker and make the operation independent of opening time of mechanical switch. With this view, a dedicated control circuit (auto-triggering circuit) has been developed which can decide the timing and pulse duration for mechanical switch as well as static switch from the operating parameters. This circuit has been tested with dummy parameters and thereafter integrated with the actual test set up of hybrid DC circuit breaker. This paper deals with the conceptual design of the auto-triggering circuit, its control logic and operation. The test results of Hybrid DC circuit breaker using this circuit have also been discussed.
The 2008 M7.9 Wenchuan earthquake - a human-caused event
NASA Astrophysics Data System (ADS)
Klose, C. D.
2013-12-01
A catalog of global human-caused earthquakes shows statistical evidence that the triggering of earthquakes by large-scale geoengineering activities depends on geological and tectonic constrains (in Klose 2013). Such geoengineering activities also include the filling of water reservoirs. This presentation illuminates mechanical and statistical aspects of the 2008 M7.9 Wenchuan earthquake in light of the hypothesis of being NOT human-caused. However, available data suggest that the Wenchuan earthquake was triggered by the filling of the Zipungpu water reservoir 30 months prior to the mainshock. The reservoir spatially extended parallel and near to the main Beichuan fault zone in a highly stressed reverse fault regime. It is mechanically evident that reverse faults tend to be very trigger-sensitive due to mass shifts (static loads) that occur on the surface of the Earth's crust. These circumstances made a triggering of a seismic event of this magnitude at this location possible (in Klose 2008, 2012). The data show that the Wenchuan earthquake is not an outlier. From a statistical view point, the earthquake falls into the upper range of the family of reverse fault earthquakes that were caused by humans worldwide.
More major earthquakes at the Nepal Himalaya? - Study on Coulomb stress perspective
NASA Astrophysics Data System (ADS)
Som, S. K.; Sarkar, Subhrasuchi; Dasgupta, Soumitra
2018-07-01
On April 2015 a major earthquake of 7.9 Mw occurred in the Nepal Himalaya, followed by 553 earthquakes of local magnitude greater than 4.0 within the first 43 days including another major event of 7.3 Mw. We resolve the static coulomb failure stress (CFS) change onto the finite fault models of 7.9 Mw after Elliott et al. (2016) and Galezka et al. (2015) and its effect on associated receiver faults. Correlation of aftershocks with the enhanced CFS condition shows that the Elliott et al. (2016) model explains 60.4% and the Galezka et al. (2015) model explains about 47.7% of the aftershocks in high stress regions. Aftershocks were poorly spatially correlated with the enhanced CFS condition after the 7.9 Mw main shock and can be explained by correlation with release of seismic energy from the associated secondarily stressed prominent thrust planes and transverse faults. Stress resolved on the associated receiver faults show increased stress on both transverse and thrust fault systems with the potential of triggering significant aftershocks or subsequent main shocks.
The dynamic instability in the hook/flagellum system that triggers bacterial flicks
NASA Astrophysics Data System (ADS)
Jabbarzadeh, Mehdi; Fu, Henry
2017-11-01
Dynamical bending, buckling, and polymorphic transformations of the flagellum are known to affect bacterial motility, but run-reverse-flick motility of monotrichous bacteria also involves the even more flexible hook, which connects the flagellum to the cell body. Here, we identify the dynamic buckling mechanism that produces flicks in Vibrio alginolyticus. Estimates of forces and torques on the hook from experimental observations suggest that flicks are triggered at stresses below the hook's static Euler buckling criterion. Using an accurate linearization of the Kirchoff rod model for the hook in a model of a swimming bacterium with rigid flagellum, we show that as hook stiffness decreases there is a transition from on-axis flagellar rotation with small hook deflections to flagellar precession with large deflections. When flagellum flexibility is incorporated, the precession is disrupted by significant flagellar bending - i.e., incipient flicks. The predicted onset of dynamic instabilities corresponds well with experimentally observed flick events.
NASA Astrophysics Data System (ADS)
Staszek, M.; Orlecka-Sikora, B.; Leptokaropoulos, K.; Kwiatek, G.; Martínez-Garzón, P.
2017-07-01
We use a high-quality data set from the NW part of The Geysers geothermal field to determine statistical significance of temporal static stress drop variations and their relation to injection rate changes. We use a group of 322 seismic events which occurred in the proximity of Prati-9 and Prati-29 injection wells to examine the influence of parameters such as moment magnitude, focal mechanism, hypocentral depth, and normalized hypocentral distances from open-hole sections of injection wells on static stress drop changes. Our results indicate that (1) static stress drop variations in time are statistically significant, (2) statistically significant static stress drop changes are inversely related to injection rate fluctuations. Therefore, it is highly expected that static stress drop of seismic events is influenced by pore pressure in underground fluid injection conditions and depends on the effective normal stress and strength of the medium.
Tectonic tremor activity associated with teleseismic and nearby earthquakes
NASA Astrophysics Data System (ADS)
Chao, K.; Obara, K.; Peng, Z.; Pu, H. C.; Frank, W.; Prieto, G. A.; Wech, A.; Hsu, Y. J.; Yu, C.; Van der Lee, S.; Apley, D. W.
2016-12-01
Tectonic tremor is an extremely stress-sensitive seismic phenomenon located in the brittle-ductile transition section of a fault. To better understand the stress interaction between tremor and earthquake, we conduct the following studies: (1) search for triggered tremor globally, (2) examine ambient tremor activities associated with distant earthquakes, and (3) quantify the temporal variation of ambient tremor activity before and after nearby earthquakes. First, we developed a Matlab toolbox to enhance the searching of triggered tremor globally. We have discovered new tremor sources in the inland faults in Kyushu, Kanto, and Hokkaido in Japan, southern Chile, Ecuador, and central Colombia in South America, and in South Italy. Our findings suggest that tremor is more common than previously believed and indicate the potential existence of ambient tremor in the triggered tremor active regions. Second, we adapt the statistical analysis to examine whether the long-term ambient tremor rate may affect by the dynamic stress of teleseismic earthquakes. We analyzed the data in Nankai, Hokkaido, Cascadia, and Taiwan. Our preliminary results did not show an apparent increase of ambient tremor rate after the passing of surface waves. Third, we quantify temporal changes in ambient tremor activity before and after the occurrence of local earthquakes under the southern Central Range of Taiwan with magnitudes of >=5.5 from 2004 to 2016. For a particular case, we found a temporal variation of tremor rate before and after the 2010/03/04 Mw6.3 earthquake, located about 20 km away from the active tremor source. The long-term increase in the tremor rate after the earthquake could have been caused by an increase in static stress following the mainshock. For comparison, clear evidence from seismic and GPS observations indicate a short-term increase in the tremor rate a few weeks before the mainshock. The increase in the tremor rate before the mainshock could correlate with stress changes in the earthquake rupture zone. Our study provides direct observations to imply that the stress-sensitive tectonic tremor may reflect stress variation during the nucleation process of a nearby earthquake.
NASA Astrophysics Data System (ADS)
Kozłowska, Maria; Orlecka-Sikora, Beata; Kwiatek, Grzegorz; Boettcher, Margaret S.; Dresen, Georg
2015-01-01
Static stress changes following large earthquakes are known to affect the rate and distribution of aftershocks, yet this process has not been thoroughly investigated for nanoseismicity and picoseismicity at centimeter length scales. Here we utilize a unique data set of M ≥ -3.4 earthquakes following a Mw 2.2 earthquake in Mponeng gold mine, South Africa, that was recorded during a quiet interval in the mine to investigate if rate- and state-based modeling is valid for shallow, mining-induced seismicity. We use Dieterich's (1994) rate- and state-dependent formulation for earthquake productivity, which requires estimation of four parameters: (1) Coulomb stress changes due to the main shock, (2) the reference seismicity rate, (3) frictional resistance parameter, and (4) the duration of aftershock relaxation time. Comparisons of the modeled spatiotemporal patterns of seismicity based on two different source models with the observed distribution show that while the spatial patterns match well, the rate of modeled aftershocks is lower than the observed rate. To test our model, we used three metrics of the goodness-of-fit evaluation. The null hypothesis, of no significant difference between modeled and observed seismicity rates, was only rejected in the depth interval containing the main shock. Results show that mining-induced earthquakes may be followed by a stress relaxation expressed through aftershocks located on the rupture plane and in regions of positive Coulomb stress change. Furthermore, we demonstrate that the main features of the temporal and spatial distributions of very small, mining-induced earthquakes can be successfully determined using rate- and state-based stress modeling.
Magma degassing triggered by static decompression at Kīlauea Volcano, Hawai‘i
Poland, Michael P.; Jeff, Sutton A.; Gerlach, Terrence M.
2009-01-01
During mid-June 2007, the summit of Kīlauea Volcano, Hawai‘i, deflated rapidly as magma drained from the subsurface to feed an east rift zone intrusion and eruption. Coincident with the deflation, summit SO2 emission rates rose by a factor of four before decaying to background levels over several weeks. We propose that SO2 release was triggered by static decompression caused by magma withdrawal from Kīlauea's shallow summit reservoir. Models of the deflation suggest a pressure drop of 0.5–3 MPa, which is sufficient to trigger exsolution of the observed excess SO2 from a relatively small volume of magma at the modeled source depth beneath Kīlauea's summit. Static decompression may also explain other episodes of deflation accompanied by heightened gas emission, including the precursory phases of Kīlauea's 2008 summit eruption. Hazards associated with unexpected volcanic gas emission argue for increased awareness of magma reservoir pressure fluctuations.
Aftershocks and triggering processes in rock fracture
NASA Astrophysics Data System (ADS)
Davidsen, J.; Kwiatek, G.; Goebel, T.; Stanchits, S. A.; Dresen, G.
2017-12-01
One of the hallmarks of our understanding of seismicity in nature is the importance of triggering processes, which makes the forecasting of seismic activity feasible. These triggering processes by which one earthquake induces (dynamic or static) stress changes leading to potentially multiple other earthquakes are at the core relaxation processes. A specic example of triggering are aftershocks following a large earthquake, which have been observed to follow certain empirical relationships such as the Omori-Utsu relation. Such an empirical relation should arise from the underlying microscopic dynamics of the involved physical processes but the exact connection remains to be established. Simple explanations have been proposed but their general applicability is unclear. Many explanations involve the picture of an earthquake as a purely frictional sliding event. Here, we present experimental evidence that these empirical relationships are not limited to frictional processes but also arise in fracture zone formation and are mostly related to compaction-type events. Our analysis is based on tri-axial compression experiments under constant displacement rate on sandstone and granite samples using spatially located acoustic emission events and their focal mechanisms. More importantly, we show that event-event triggering plays an important role in the presence of large-scale or macrocopic imperfections while such triggering is basically absent if no signicant imperfections are present. We also show that spatial localization and an increase in activity rates close to failure do not necessarily imply triggering behavior associated with aftershocks. Only if a macroscopic crack is formed and its propagation remains subcritical do we observe significant triggering.
Tests of remote aftershock triggering by small mainshocks using Taiwan's earthquake catalog
NASA Astrophysics Data System (ADS)
Peng, W.; Toda, S.
2014-12-01
To understand earthquake interaction and forecast time-dependent seismic hazard, it is essential to evaluate which stress transfer, static or dynamic, plays a major role to trigger aftershocks and subsequent mainshocks. Felzer and Brodsky focused on small mainshocks (2≤M<3) and their aftershocks, and then argued that only dynamic stress change brings earthquake-to-earthquake triggering, whereas Richards-Dingers et al. (2010) claimed that those selected small mainshock-aftershock pairs were not earthquake-to-earthquake triggering but simultaneous occurrence of independent aftershocks following a larger earthquake or during a significant swarm sequence. We test those hypotheses using Taiwan's earthquake catalog by taking the advantage of lacking any larger event and the absence of significant seismic swarm typically seen with active volcano. Using Felzer and Brodsky's method and their standard parameters, we only found 14 mainshock-aftershock pairs occurred within 20 km distance in Taiwan's catalog from 1994 to 2010. Although Taiwan's catalog has similar number of earthquakes as California's, the number of pairs is about 10% of the California catalog. It may indicate the effect of no large earthquakes and no significant seismic swarm in the catalog. To fully understand the properties in the Taiwan's catalog, we loosened the screening parameters to earn more pairs and then found a linear aftershock density with a power law decay of -1.12±0.38 that is very similar to the one in Felzer and Brodsky. However, none of those mainshock-aftershock pairs were associated with a M7 rupture event or M6 events. To find what mechanism controlled the aftershock density triggered by small mainshocks in Taiwan, we randomized earthquake magnitude and location. We then found that those density decay in a short time period is more like a randomized behavior than mainshock-aftershock triggering. Moreover, 5 out of 6 pairs were found in a swarm-like temporal seismicity rate increase. They locate mostly in high geothermal gradient areas, which are probably triggered by a small-scale aseismic process. Thus it rather supports the argument of Richards-Dingers et al. in which dynamic triggering by small mainshock is untenable.
Dibai-Filho, Almir Vieira; de Oliveira, Alessandra Kelly; Girasol, Carlos Eduardo; Dias, Fabiana Rodrigues Cancio; Guirro, Rinaldo Roberto de Jesus
2017-04-01
To assess the additional effect of static ultrasound and diadynamic currents on myofascial trigger points in a manual therapy program to treat individuals with chronic neck pain. A single-blind randomized trial was conducted. Both men and women, between ages 18 and 45, with chronic neck pain and active myofascial trigger points in the upper trapezius were included in the study. Subjects were assigned to 3 different groups: group 1 (n = 20) was treated with manual therapy; group 2 (n = 20) was treated with manual therapy and static ultrasound; group 3 (n = 20) was treated with manual therapy and diadynamic currents. Individuals were assessed before the first treatment session, 48 hours after the first treatment session, 48 hours after the tenth treatment session, and 4 weeks after the last session. There was no group-versus-time interaction for Numeric Rating Scale, Neck Disability Index, Pain-Related Self-Statement Scale, pressure pain threshold, cervical range of motion, and skin temperature (F-value range, 0.089-1.961; P-value range, 0.106-0.977). Moreover, we found no differences between groups regarding electromyographic activity (P > 0.05). The use of static ultrasound or diadynamic currents on myofascial trigger points in upper trapezius associated with a manual therapy program did not generate greater benefits than manual therapy alone.
NASA Astrophysics Data System (ADS)
Brown, M. R. M.; Ge, S.
2017-12-01
Increased pore pressure decreasing the effective stress on a critically stressed fault has been the accepted mechanism for injection-induced seismicity. This, however, is an over simplified approach that does not take into account the coupled hydro-mechanical effects. In addition, this approach leaves out a possible key stressor in the system, the earthquakes. Earthquakes are known to interact with each other by Coulomb static stress transfer, the process of permanent stress change caused by movement on a fault. In areas of induced seismicity, many small to moderate earthquakes can occur adding to the stress in the system via Coulomb static stress transfer. Here we ask: Is the Coulomb static stress transfer from the earthquakes as important as the pore pressure increase or stress changes caused by coupled hydro-mechanical processes? Is there a point where the Coulomb static stress transfer from the earthquakes becomes the controlling process for inducing future earthquakes? How does the effect of many small earthquakes compare to a few larger events in terms of Coulomb static stress transfer? In this study, we use hydrologic and coupled hydro-mechanical models and USGS Coulomb 3 to assess the importance of induced earthquakes in terms of the stress change in the system. Realistic scenarios of wastewater injection and earthquake magnitude-frequency distributions are used to develop generic models. Model variables and data are varied to evaluate the range of possible outcomes. Preliminary results show that the stress change associated with injection is of the same order of magnitude as the cumulative Coulomb static stress change of a series of small (1
Fault Interaction and Stress Accumulation in Chaman Fault System, Balouchistan, Pakistan, Since 1892
NASA Astrophysics Data System (ADS)
Riaz, M. S.; Shan, B.; Xiong, X.; Xie, Z.
2017-12-01
The curved-shaped left-lateral Chaman fault is the Western boundary of the Indian plate, which is approximately 1000 km long. The Chaman fault is an active fault and also locus of many catastrophic earthquakes. Since the inception of strike-slip movement at 20-25Ma along the western collision boundary between Indian and Eurasian plates, the average geologically constrained slip rate of 24 to 35 mm/yr accounts for a total displacement of 460±10 km along the Chaman fault system (Beun et al., 1979; Lawrence et al., 1992). Based on earthquake triggering theory, the change in Coulomb Failure Stress (DCFS) either halted (shadow stress) or advances (positive stress) the occurrence of subsequent earthquakes. Several major earthquakes occurred in Chaman fault system, and this region is poorly studied to understand the earthquake/fault interaction and hazard assessment. In order to do so, we have analyzed the earthquakes catalog and collected significant earthquakes with M ≥6.2 since 1892. We then investigate the evolution of DCFS in the Chaman fault system is computed by integration of coseismic static and postseismic viscoelastic relaxation stress transfer since the 1892, using the codePSGRN/PSCMP (Wang et al., 2006). Moreover, for postseismic stress transfer simulation, we adopted linear Maxwell rheology to calculate the viscoelastic effects in this study. Our results elucidate that three out of four earthquakes are triggered by the preceding earthquakes. The 1892-earthquake with magnitude Mw6.8, which occurred on the North segment of Chaman fault has not influence the 1935-earthquake which occurred on Ghazaband fault, a parallel fault 20km east to Chaman fault. The 1935-earthquake with magnitude Mw7.7 significantly loaded the both ends of rupture with positive stress (CFS ≥0.01 Mpa), which later on triggered the 1975-earthquake with 23% of its rupture length where CFS ≥0.01 Mpa, on Chaman fault, and 1990-earthquke with 58% of its rupture length where CFS ≥0.01 Mpa, on Ghazaband fault. Since the 1935-earthquke significantly increased the stress on both ends of its rupture, the 2013-earthquake with magnitude Mw7.7 occurred on Hoshab fault in the positive stress zone with 26% of its rupture length where CFS ≥0.01 Mpa, Fig 1. Our results revealed the interaction among the earthquakes as well as faults in the study region.
Static Fatigue of a Siliconized Silicon Carbide
1987-03-01
flexitral stress rupture and stepped temperature stress rupture (STSR) testing were performed to assess the static fatigue and creep resistances. Isothermal... stress rupture experiments were performed at 1200 0C in air for com- parison to previous results. - 10 STSR experiments 15 were under deadweight...temperature and stress levels that static fatigue and creep processes are active. The applied stresses were computed on the basis of the elastic
Fault interaction and stress triggering of twentieth century earthquakes in Mongolia
Pollitz, F.; Vergnolle, M.; Calais, E.
2003-01-01
A cluster of exceptionally large earthquakes in the interior of Asia occurred from 1905 to 1967: the 1905 M7.9 Tsetserleg and M8.4 Bolnai earthquakes, the 1931 M8.0 Fu Yun earthquake, the 1957 M8.1 Gobi-Altai earthquake, and the 1967 M7.1 Mogod earthquake (sequence). Each of the larger (M ??? 8) earthquakes involved strike-slip faulting averaging more than 5 m and rupture lengths of several hundred kilometers. Available geologic data indicate that recurrence intervals on the major source faults are several thousands of years and distances of about 400 km separate the respective rupture areas. We propose that the occurrences of these and many smaller earthquakes are related and controlled to a large extent by stress changes generated by the compounded static deformation of the preceding earthquakes and subsequent viscoelastic relaxation of the lower crust and upper mantle beneath Mongolia. We employ a spherically layered viscoelastic model constrained by the 1994-2002 GPS velocity field in western Mongolia [Vergnolle et al., 2003]. Using the succession of twentieth century earthquakes as sources of deformation, we then analyze the time-dependent change in Coulomb failure stress (????f). At remote interaction distances, static ????f values are small. However, modeled postseismic stress changes typically accumulate to several tenths of a bar over time intervals of decades. Almost all significant twentieth century regional earthquakes (M ??? 6) with well-constrained fault geometry lie in positive ????f lobes of magnitude about +0.5 bar. Our results suggest that significant stress transfer is possible among continental faults separated by hundreds of kilometers and on timescales of decades. Copyright 2003 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Yoshida, Keisuke; Hasegawa, Akira
2018-05-01
We investigated the distribution and migration of hypocenters of an earthquake swarm that occurred in Sendai-Okura (NE Japan) 15 days after the 2011 M9.0 Tohoku-Oki earthquake, despite the decrease in shear stress due to the static stress change. Hypocenters of 2476 events listed in the JMA catalogue were relocated based on the JMA unified catalogue data in conjunction with data obtained by waveform cross correlation. Hypocenter relocation was successful in delineating several thin planar structures, although the original hypocenters presented a cloud-like distribution. The hypocenters of this swarm event migrated along several planes from deeper to shallower levels rather than diffusing three-dimensionally. One of the nodal planes of the focal mechanisms was nearly parallel to the planar structure of the hypocenters, supporting the idea that each earthquake occurred by causing slip on parts of the same plane. The overall migration velocity of the hypocenters could be explained by the fluid diffusion model with a typical value of hydraulic diffusivity (0.15 m2/s); however, the occurrence of some burst-like activity with much higher migration velocity suggests the possibility that aseismic slip also contributed to triggering the earthquakes. We suggest that the 2011 Sendai-Okura earthquake swarm was generated as follows. (1) The 2011 Tohoku-Oki earthquake caused WNW-ESE extension in the focal region of the swarm, which accordingly reduced shear stress on the fault planes. However, the WNW-ESE extension allowed fluids to move upward from the S-wave reflectors in the mid-crust immediately beneath the focal region. (2) The fluids rising from the mid-crust intruded into several existing planes, which reduced their frictional strengths and caused the observed earthquake swarm. (3) The fluids, and accordingly, the hypocenters of the triggered earthquakes, migrated upward along the fault planes. It is possible that the fluids also triggered aseismic slip, which caused intermittent burst-like activity.
Increases in seismicity rate in the Tokyo Metropolitan area after the 2011 Tohoku Earthquake
NASA Astrophysics Data System (ADS)
Ishibe, T.; Satake, K.; Sakai, S.; Shimazaki, K.; Tsuruoka, H.; Nakagawa, S.; Hirata, N.
2013-12-01
Abrupt increases in seismicity rate have been observed in the Kanto region, where the Tokyo Metropolitan area is located, after the 2011 off the Pacific coast of Tohoku earthquake (M9.0) on March 11, 2011. They are well explained by the static increases in the Coulomb Failure Function (ΔCFF) imparted by the gigantic thrusting while some other possible factors (e.g., dynamic stress changes, excess of fluid dehydration, post-seismic slip) may also contribute the rate changes. Because of various types of earthquakes with different focal mechanisms occur in the Kanto region, the receiver faults for the calculation of ΔCFF were assumed to be two nodal planes of small earthquakes before and after the Tohoku earthquake. The regions where seismicity rate increased after the Tohoku earthquake well correlate with concentration on positive ΔCFF (i.e., southwestern Ibaraki and northern Chiba prefectures where intermediate-depth earthquakes occur, and in the shallow crust of western Kanagawa, eastern Shizuoka, and southeastern Yamanashi including the Izu and Hakone regions). The seismicity rate has increased since March 11, 2011 with respect to the Epidemic Type Aftershock Sequence (ETAS) model (Ogata, 1988), suggesting that the rate increase was due to the stress increase by the Tohoku earthquake. Furthermore, the z-values immediately after the Tohoku earthquake show the minimum values during the recent 10 years, indicating significant increases in seismicity rate. At intermediate depth, abrupt increases in thrust faulting earthquakes are well consistent with the Coulomb stress increase. At shallow depth, the earthquakes with the T-axes of roughly NE-SW were activated probably due to the E-W extension of the overriding continental plate, and this is also well explained by the Coulomb stress increase. However, the activated seismicity in the Izu and Hakone regions rapidly decayed following the Omori-Utsu formula, while the increased rate of seismicity in the southwestern Ibaraki and northern Chiba prefectures is still continuing. The ΔCFF values for the earthquakes after March 2011 show more positive values than those before March 2011, supporting a triggering hypothesis that the 2011 Tohoku earthquake triggered the seismicity changes in the Kanto region. Dynamic stress changes due to the passage of seismic waves would also contribute the rate changes. Indeed, many remotely-triggered local events, whose occurrence times are well correlated with the arrival times of impulsive P-wave or large amplitudes of Rayleigh or Love waves, were identified from densely distributed seismograms in Japanese islands (e.g., Yukutake et al., 2011; Miyazawa, 2012). Indirectly triggered earthquakes also contribute because stress changes from neighboring indirect aftershocks could be comparable with or larger than those from a distant mainshock. Post-seismic slip and viscoelastic effects will increase the importance of earthquake triggering.
Bodin, Paul; Gomberg, Joan
1994-01-01
This article presents evidence for the channeling of strain energy released by the Ms = 7.4 Landers, California, earthquake within the eastern California shear zone (ECSZ). We document an increase in seismicity levels during the 22-hr period starting with the Landers earthquake and culminating 22 hr later with the Ms = 5.4 Little Skull Mountain (LSM), Nevada, earthquake. We evaluate the completeness of regional seismicity catalogs during this period and find that the continuity of post-Landers strain release within the ECSZ is even more pronounced than is evident from the catalog data. We hypothesize that regional-scale connectivity of faults within the ECSZ and LSM region is a critical ingredient in the unprecedented scale and distribution of remotely triggered earthquakes and geodetically manifest strain changes that followed the Landers earthquake. The viability of static strain changes as triggering agents is tested using numerical models. Modeling results illustrate that regional-scale fault connectivity can increase the static strain changes by approximately an order of magnitude at distances of at least 280 km, the distance between the Landers and LSM epicenters. This is possible for models that include both a network of connected faults that slip “sympathetically” and realistic levels of tectonic prestrain. Alternatively, if dynamic strains are a more significant triggering agent than static strains, ECSZ structure may still be important in determining the distribution of triggered seismic and aseismic deformation.
NASA Astrophysics Data System (ADS)
Kozlowska, M.; Orlecka-Sikora, B.; Kwiatek, G.; Boettcher, M. S.; Dresen, G. H.
2014-12-01
Static stress changes following large earthquakes are known to affect the rate and spatio-temporal distribution of the aftershocks. Here we utilize a unique dataset of M ≥ -3.4 earthquakes following a MW 2.2 earthquake in Mponeng gold mine, South Africa, to investigate this process for nano- and pico- scale seismicity at centimeter length scales in shallow, mining conditions. The aftershock sequence was recorded during a quiet interval in the mine and thus enabled us to perform the analysis using Dietrich's (1994) rate and state dependent friction law. The formulation for earthquake productivity requires estimation of Coulomb stress changes due to the mainshock, the reference seismicity rate, frictional resistance parameter, and the duration of aftershock relaxation time. We divided the area into six depth intervals and for each we estimated the parameters and modeled the spatio-temporal patterns of seismicity rates after the stress perturbation. Comparing the modeled patterns of seismicity with the observed distribution we found that while the spatial patterns match well, the rate of modeled aftershocks is lower than the observed rate. To test our model, we used four metrics of the goodness-of-fit evaluation. Testing procedure allowed rejecting the null hypothesis of no significant difference between seismicity rates only for one depth interval containing the mainshock, for the other, no significant differences have been found. Results show that mining-induced earthquakes may be followed by a stress relaxation expressed through aftershocks located on the rupture plane and in regions of positive Coulomb stress change. Furthermore, we demonstrate that the main features of the temporal and spatial distribution of very small, mining-induced earthquakes at shallow depths can be successfully determined using rate- and state-based stress modeling.
A study on off-fault aftershock pattern at N-Adria microplate
NASA Astrophysics Data System (ADS)
Bressan, Gianni; Barnaba, Carla; Magrin, Andrea; Rossi, Giuliana
2018-03-01
The spatial features of the aftershock sequences triggered by three moderate magnitude events with coda-duration magnitudes 4.1, 5.1 and 5.6, which occurred in Northeastern Italy and Western Slovenia, were investigated. The fractal dimension and the orientations of the planar features fitting the hypocentral data have been inferred. The spatial organization is articulated through two temporal phases. The first phase is characterized by the decreasing of the fractal dimension and by vertically oriented planes fitting the hypocentral foci. The second phase is marked by an increase of the fractal dimension and by the activation of different planes, with more widespread orientation. The aftershock temporal distribution is analysed with a model based on a static fatigue process. The process is favoured by the decrease of the overburden pressure, the sharp variations of the mechanical properties of the medium and the unclamping effect resulting from positive normal stress changes caused by the mainshock stress step.
Simpson, R.W.; Schulz, S.S.; Dietz, L.D.; Burford, R.O.
1988-01-01
Rates of shallow slip on creeping sections of the San Andreas fault have been perturbed on a number of occasions by earthquakes occurring on nearby faults. One example of such perturbations occurred during the 26 January 1986 magnitude 5.3 Tres Pinos earthquake located about 10 km southeast of Hollister, California. Seven creepmeters on the San Andreas fault showed creep steps either during or soon after the shock. Both left-lateral (LL) and right-lateral (RL) steps were observed. A rectangular dislocation in an elastic half-space was used to model the coseismic fault offset at the hypocenter. For a model based on the preliminary focal mechanism, the predicted changes in static shear stress on the plane of the San Andreas fault agreed in sense (LL or RL) with the observed slip directions at all seven meters; for a model based on a refined focal mechanism, six of the seven meters showed the correct sense of motion. Two possible explanations for such coseismic and postseismic steps are (1) that slip was triggered by the earthquake shaking or (2) that slip occurred in response to the changes in static stress fields accompanying the earthquake. In the Tres Pinos example, the observed steps may have been of both the triggered and responsive kinds. A second example is provided by the 2 May 1983 magnitude 6.7 Coalinga earthquake, which profoundly altered slip rates at five creepmeters on the San Andreas fault for a period of months to years. The XMM1 meter 9 km northwest of Parkfield, California recorded LL creep for more than a year after the event. To simulate the temporal behavior of the XMM1 meter and to view the stress perturbation provided by the Coalinga earthquake in the context of steady-state deformation on the San Andreas fault, a simple time-evolving dislocation model was constructed. The model was driven by a single long vertical dislocation below 15 km in depth, that was forced to slip at 35 mm/yr in a RL sense. A dislocation element placed in the seismogenic layer under XMM1 was given a finite breaking strength of sufficient magnitude to produce a Parkfield-like earthquake every 22 years. When stress changes equivalent to a Coalinga earthquake were superposed on the model running in a steady state mode, the effect was to make a segment under XMM1, that could slip in a linear viscous fashion, creep LL and to delay the onset of the next Parkfield-like earthquake by a year or more. If static stress changes imposed by earthquakes off the San Andreas can indeed advance or delay earthquakes on the San Andreas by months or years, then such changes must be considered in intermediate-term prediction efforts. ?? 1988 Birkha??user Verlag.
Chapter two: Phenomenology of tsunamis II: scaling, event statistics, and inter-event triggering
Geist, Eric L.
2012-01-01
Observations related to tsunami catalogs are reviewed and described in a phenomenological framework. An examination of scaling relationships between earthquake size (as expressed by scalar seismic moment and mean slip) and tsunami size (as expressed by mean and maximum local run-up and maximum far-field amplitude) indicates that scaling is significant at the 95% confidence level, although there is uncertainty in how well earthquake size can predict tsunami size (R2 ~ 0.4-0.6). In examining tsunami event statistics, current methods used to estimate the size distribution of earthquakes and landslides and the inter-event time distribution of earthquakes are first reviewed. These methods are adapted to estimate the size and inter-event distribution of tsunamis at a particular recording station. Using a modified Pareto size distribution, the best-fit power-law exponents of tsunamis recorded at nine Pacific tide-gauge stations exhibit marked variation, in contrast to the approximately constant power-law exponent for inter-plate thrust earthquakes. With regard to the inter-event time distribution, significant temporal clustering of tsunami sources is demonstrated. For tsunami sources occurring in close proximity to other sources in both space and time, a physical triggering mechanism, such as static stress transfer, is a likely cause for the anomalous clustering. Mechanisms of earthquake-to-earthquake and earthquake-to-landslide triggering are reviewed. Finally, a modification of statistical branching models developed for earthquake triggering is introduced to describe triggering among tsunami sources.
A note on adding viscoelasticity to earthquake simulators
Pollitz, Fred
2017-01-01
Here, I describe how time‐dependent quasi‐static stress transfer can be implemented in an earthquake simulator code that is used to generate long synthetic seismicity catalogs. Most existing seismicity simulators use precomputed static stress interaction coefficients to rapidly implement static stress transfer in fault networks with typically tens of thousands of fault patches. The extension to quasi‐static deformation, which accounts for viscoelasticity of Earth’s ductile lower crust and mantle, involves the precomputation of additional interaction coefficients that represent time‐dependent stress transfer among the model fault patches, combined with defining and evolving additional state variables that track this stress transfer. The new approach is illustrated with application to a California‐wide synthetic fault network.
Relating stick-slip friction experiments to earthquake source parameters
McGarr, Arthur F.
2012-01-01
Analytical results for parameters, such as static stress drop, for stick-slip friction experiments, with arbitrary input parameters, can be determined by solving an energy-balance equation. These results can then be related to a given earthquake based on its seismic moment and the maximum slip within its rupture zone, assuming that the rupture process entails the same physics as stick-slip friction. This analysis yields overshoots and ratios of apparent stress to static stress drop of about 0.25. The inferred earthquake source parameters static stress drop, apparent stress, slip rate, and radiated energy are robust inasmuch as they are largely independent of the experimental parameters used in their estimation. Instead, these earthquake parameters depend on C, the ratio of maximum slip to the cube root of the seismic moment. C is controlled by the normal stress applied to the rupture plane and the difference between the static and dynamic coefficients of friction. Estimating yield stress and seismic efficiency using the same procedure is only possible when the actual static and dynamic coefficients of friction are known within the earthquake rupture zone.
NASA Astrophysics Data System (ADS)
Shreedharan, S.; Riviere, J.; Marone, C.
2017-12-01
We report on a suite of laboratory friction experiments conducted on saw-cut Westerly Granite surfaces to probe frictional response to step changes in normal stress and loading rate. The experiments are conducted to illuminate the fundamental processes that yield friction rate and state dependence. We quantify the microphysical frictional response of the simulated fault surfaces to normal stress steps, in the range of 1% - 600% step increases and decreases from a nominal baseline normal stress. We measure directly the fault slip rate and account for changes in slip rate with changes in normal stress and complement mechanical data acquisition by continuously probing the faults with ultrasonic pulses. We conduct the experiments at room temperature and humidity conditions in a servo controlled biaxial testing apparatus in the double direct shear configuration. The samples are sheared over a range of velocities, from 0.02 - 100 μm/s. We report observations of a transient shear stress and friction evolution with step increases and decreases in normal stress. Specifically, we show that, at low shear velocities and small increases in normal stress (<5% increase), the shear stress on the fault does not increase instantaneously with the normal stress step while the ultrasonic wave amplitude and normal displacement do. In other words, the shear stress does not follow the load point stiffness curve. At high shear velocities and larger normal stress steps (> 5% increases), the shear stress evolves immediately with normal stress. We show that the excursions in slip rate resulting from the changes in normal stress must be accounted for in order to predict fault strength evolution. Ultrasonic wave amplitudes which first increase immediately in response to normal stress steps, then decrease approximately linearly to a new steady state value, in part due to changes in fault slip rate. Previous descriptions of frictional state evolution during normal stress perturbations have not adequately accounted for the effect of large slip velocity excursions. Here, we attempt to do so by using the measured ultrasonic amplitudes as a proxy for frictional state during transient shear stress evolution. Our work aims to improve understanding of induced and triggered seismicity with focus on simulating static triggering using rate and state friction.
Security Implications of Induced Earthquakes
NASA Astrophysics Data System (ADS)
Jha, B.; Rao, A.
2016-12-01
The increase in earthquakes induced or triggered by human activities motivates us to research how a malicious entity could weaponize earthquakes to cause damage. Specifically, we explore the feasibility of controlling the location, timing and magnitude of an earthquake by activating a fault via injection and production of fluids into the subsurface. Here, we investigate the relationship between the magnitude and trigger time of an induced earthquake to the well-to-fault distance. The relationship between magnitude and distance is important to determine the farthest striking distance from which one could intentionally activate a fault to cause certain level of damage. We use our novel computational framework to model the coupled multi-physics processes of fluid flow and fault poromechanics. We use synthetic models representative of the New Madrid Seismic Zone and the San Andreas Fault Zone to assess the risk in the continental US. We fix injection and production flow rates of the wells and vary their locations. We simulate injection-induced Coulomb destabilization of faults and evolution of fault slip under quasi-static deformation. We find that the effect of distance on the magnitude and trigger time is monotonic, nonlinear, and time-dependent. Evolution of the maximum Coulomb stress on the fault provides insights into the effect of the distance on rupture nucleation and propagation. The damage potential of induced earthquakes can be maintained even at longer distances because of the balance between pressure diffusion and poroelastic stress transfer mechanisms. We conclude that computational modeling of induced earthquakes allows us to measure feasibility of weaponzing earthquakes and developing effective defense mechanisms against such attacks.
NASA Astrophysics Data System (ADS)
Ratzov, Gueorgui; Cattaneo, Antonio; Babonneau, Nathalie; Déverchere, Jacques; Yelles, Karim; Bracene, Rabah
2013-04-01
According to simple models, stress build-up along a given fault is proportional to the time elapsed since the previous earthquake. Although the resulting « seismic gap » hypothesis suits well for moderate magnitude earthquake (Mw 4-5), large events (Mw>6) are hardly predictable and show great variation in recurrence intervals. Thus, models based on stress transfer and interactions between faults suggest that an earthquake may haste or delay the occurrence of next earthquake on adjacent fault by increasing or lowering the level of static stress. Here, we show that meaningful information of large earthquakes recurrence intervals over several seismic cycles may be obtained using turbidite record offshore the Algerian margin (Mediterranean Sea), an area prone to relatively large (M~7) earthquakes in historical times. Indeed, as evidenced on the Cascadia subduction zone, synchroneous turbidites over a large area and originated from independent sources, are most likely triggered by an earthquake. To test the method on this slowly convergent margin, we analysed turbidites in 3 sediment cores collected off the area shaken by the 1980 Ms 7.3 El Asnam and 1954 M6.7 Orléansville earthquakes. We used X-ray radioscopy, XRF major elements counter, magnetic susceptibility, and grain-size distribution to accurately discriminate turbidites (~instantaneous deposit) from hemipelagites (continuous background sedimentation). We dated turbidites by calculating hemipelagic sedimentation rates obtained with AMS radiocarbon ages, and applied the rates between turbidites. Finally, the age of events was compared to the only paleoseismic investigation available onland. We found that 10 to 25 turbidites deposited as single or multiple pulses over the last ~8ka. Once correlated from site to site, they support 14 seismic events. Most events are correlated with the paleoseismic record of the El Asnam fault, but uncorrelated events support that other faults were active. Only the first of the two major events of 1954 and 1980 triggered a turbidity current, implying that the sediment buffer on the continental shelf could not be reloaded in 26 years thus giving information on the minimum time resolution of our method. The new paleoseismic catalog shows a recurrence interval of 300-700 years for most events, but also a great interval of >1200 years without any major earthquake. This result suggest that the level of static stress may have drastically dropped as a result of three main events occurring within the 800 years prior the quiescence period. The quiescent period also supports a stress transfer and interaction between neighbouring faults.
Tectonic stressing in California modeled from GPS observations
Parsons, T.
2006-01-01
What happens in the crust as a result of geodetically observed secular motions? In this paper we find out by distorting a finite element model of California using GPS-derived displacements. A complex model was constructed using spatially varying crustal thickness, geothermal gradient, topography, and creeping faults. GPS velocity observations were interpolated and extrapolated across the model and boundary condition areas, and the model was loaded according to 5-year displacements. Results map highest differential stressing rates in a 200-km-wide band along the Pacific-North American plate boundary, coinciding with regions of greatest seismic energy release. Away from the plate boundary, GPS-derived crustal strain reduces modeled differential stress in some places, suggesting that some crustal motions are related to topographic collapse. Calculated stressing rates can be resolved onto fault planes: useful for addressing fault interactions and necessary for calculating earthquake advances or delays. As an example, I examine seismic quiescence on the Garlock fault despite a calculated minimum 0.1-0.4 MPa static stress increase from the 1857 M???7.8 Fort Tejon earthquake. Results from finite element modeling show very low to negative secular Coulomb stress growth on the Garlock fault, suggesting that the stress state may have been too low for large earthquake triggering. Thus the Garlock fault may only be stressed by San Andreas fault slip, a loading pattern that could explain its erratic rupture history.
Tilted orthodontic micro implants: a photoelastic stress analysis.
Çehreli, Seçil; Özçırpıcı, Ayça Arman; Yılmaz, Alev
2013-10-01
The aim of this study was to examine peri-implant stresses around orthodontic micro implants upon torque-tightening and static load application by quasi-three-dimensional photoelastic stress analysis. Self-tapping orthodontic micro implants were progressively inserted into photoelastic models at 30, 45, 70, and 90 degrees and insertion torques were measured. Stress patterns (isochromatic fringe orders) were recorded by the quasi-three-dimensional photoelastic method using a circular polariscope after insertion and 250 g static force application. Torque-tightening of implants generated peri-implant stresses. Upon insertion, 90 degree placed implants displayed the lowest and homogeneous stress distribution followed by 30, 70, and 45 degree tilted implants. Static loading did not dramatically alter stress fields around the implants tested. The highest alteration in stress distribution was observed for the 90 degree placed implant, while 70 degree tilted implant had the lowest stresses among tilted implants. Torque-tightening of orthodontic micro implants creates a stress field that is not dramatically altered after application of static lateral moderate orthodontic loads, particularly at the cervical region of tilted implants.
Premonitory slip and tidal triggering of earthquakes
Lockner, D.A.; Beeler, N.M.
1999-01-01
We have conducted a series of laboratory simulations of earthquakes using granite cylinders containing precut bare fault surfaces at 50 MPa confining pressure. Axial shortening rates between 10-4 and 10-6 mm/s were imposed to simulate tectonic loading. Average loading rate was then modulated by the addition of a small-amplitude sine wave to simulate periodic loading due to Earth tides or other sources. The period of the modulating signal ranged from 10 to 10,000 s. For each combination of amplitude and period of the modulating signal, multiple stick-slip events were recorded to determine the degree of correlation between the timing of simulated earthquakes and the imposed periodic loading function. Over the range of parameters studied, the degree of correlation of earthquakes was most sensitive to the amplitude of the periodic loading, with weaker dependence on the period of oscillations and the average loading rate. Accelerating premonitory slip was observed in these experiments and is a controlling factor in determining the conditions under which correlated events occur. In fact, some form of delayed failure is necessary to produce the observed correlations between simulated earthquake timing and characteristics of the periodic loading function. The transition from strongly correlated to weakly correlated model earthquake populations occurred when the amplitude of the periodic loading was approximately 0.05 to 0.1 MPa shear stress (0.03 to 0.06 MPa Coulomb failure function). Lower-amplitude oscillations produced progressively lower correlation levels. Correlations between static stress increases and earthquake aftershocks are found to degrade at similar stress levels. Typical stress variations due to Earth tides are only 0.001 to 0.004 MPa, so that the lack of correlation between Earth tides and earthquakes is also consistent with our findings. A simple extrapolation of our results suggests that approximately 1% of midcrustal earthquakes should be correlated with Earth tides. Triggered seismicity has been reported resulting from the passage of surface waves excited by the Landers earthquake. These transient waves had measured amplitudes in excess of 0.1 MPa at frequencies of 0.05 to 0.2 Hz in regions of notable seismicity increase. Similar stress oscillations in our laboratory experiments produced strongly correlated stick-slip events. We suggest that seemingly inconsistent natural observations of triggered seismicity and absence of tidal triggering indicate that failure is amplitude and frequency dependent. This is the expected result if, as in our laboratory experiments, the rheology of the Earth's crust permits delayed failure.
Hill, David P.; Prejean, Stephanie; Schubert, Gerald
2015-01-01
Dynamic stresses propagating as seismic waves from large earthquakes trigger a spectrum of responses at global distances. In addition to locally triggered earthquakes in a variety of tectonic environments, dynamic stresses trigger tectonic (nonvolcanic) tremor in the brittle–plastic transition zone along major plate-boundary faults, activity changes in hydrothermal and volcanic systems, and, in hydrologic domains, changes in spring discharge, water well levels, soil liquefaction, and the eruption of mud volcanoes. Surface waves with periods of 15–200 s are the most effective triggering agents; body-wave trigger is less frequent. Triggering dynamic stresses can be < 1 kPa.
Investigation of Potential Triggered Tremor in Latin America and the Caribbean
NASA Astrophysics Data System (ADS)
Gonzalez-Huizar, H.; Velasco, A. A.; Peng, Z.
2012-12-01
Recent observations have shown that seismic waves generate transient stresses capable of triggering earthquakes and tectonic (or non-volcanic) tremor far away from the original earthquake source. However, the mechanisms behind remotely triggered seismicity still remain unclear. Triggered tremor signals can be particularly useful in investigating remote triggering processes, since in many cases, the tremor pulses are very clearly modulated by the passing surface waves. The temporal stress changes (magnitude and orientation) caused by seismic waves at the tremor source region can be calculated and correlated with tremor pulses, which allows for exploring the stresses involved in the triggering process. Some observations suggest that triggered and ambient tremor signals are generated under similar physical conditions; thus, investigating triggered tremor might also provide important clues on how and under what conditions ambient tremor signals generate. In this work we present some of the results and techniques we employ in the research of potential cases of triggered tectonic tremor in Latin America and the Caribbean. This investigation includes: (1) the triggered tremor detection, with the use of specific signal filters; (2) localization of the sources, using uncommon techniques like time reversal signals; (3) and the analysis of the stress conditions under which they are generated, by modeling the triggering waves related dynamic stress. Our results suggest that tremor can be dynamically triggered by both Love and Rayleigh waves and in broad variety of tectonic environments depending strongly on the dynamic stress amplitude and orientation. Investigating remotely triggered seismicity offers the opportunity to improve our knowledge about deformation mechanisms and the physics of rupture.
Earthquake nucleation by transient deformations caused by the M = 7.9 Denali, Alaska, earthquake
Gomberg, J.; Bodin, P.; Larson, K.; Dragert, H.
2004-01-01
The permanent and dynamic (transient) stress changes inferred to trigger earthquakes are usually orders of magnitude smaller than the stresses relaxed by the earthquakes themselves, implying that triggering occurs on critically stressed faults. Triggered seismicity rate increases may therefore be most likely to occur in areas where loading rates are highest and elevated pore pressures, perhaps facilitated by high-temperature fluids, reduce frictional stresses and promote failure. Here we show that the 2002 magnitude M = 7.9 Denali, Alaska, earthquake triggered wide-spread seismicity rate increases throughout British Columbia and into the western United States. Dynamic triggering by seismic waves should be enhanced in directions where rupture directivity focuses radiated energy, and we verify this using seismic and new high-sample GPS recordings of the Denali mainshock. These observations are comparable in scale only to the triggering caused by the 1992 M = 7.4 Landers, California, earthquake, and demonstrate that Landers triggering did not reflect some peculiarity of the region or the earthquake. However, the rate increases triggered by the Denali earthquake occurred in areas not obviously tectonically active, implying that even in areas of low ambient stressing rates, faults may still be critically stressed and that dynamic triggering may be ubiquitous and unpredictable.
NASA Astrophysics Data System (ADS)
Sedov, A. V.; Kalinchuk, V. V.; Bocharova, O. V.
2018-01-01
The evaluation of static stresses and strength of units and components is a crucial task for increasing reliability in the operation of vehicles and equipment, to prevent emergencies, especially in structures made of metal and composite materials. At the stage of creation and commissioning of structures to control the quality of manufacturing of individual elements and components, diagnostic control methods are widely used. They are acoustic, ultrasonic, X-ray, radiation methods and others. The using of these methods to control the residual life and the degree of static stresses of units and parts during operation is fraught with great difficulties both in methodology and in instrumentation. In this paper, the authors propose an effective approach of operative control of the degree of static stresses of units and parts of mechanical structures which are in working condition, based on recording the changing in the surface wave properties of a system consisting of a sensor and a controlled environment (unit, part). The proposed approach of low-frequency diagnostics of static stresses presupposes a new adaptive-spectral analysis of a surface wave created by external action (impact). It is possible to estimate implicit stresses of structures in the experiment due to this approach.
Doser, D.I.; Olsen, K.B.; Pollitz, F.F.; Stein, R.S.; Toda, S.
2009-01-01
The occurrence of a right-lateral strike-slip earthquake in 1911 is inconsistent with the calculated 0.2-2.5 bar static stress decrease imparted by the 1906 rupture at that location on the Calaveras fault, and 5 yr of calculated post-1906 viscoelastic rebound does little to reload the fault. We have used all available first-motion, body-wave, and surface-wave data to explore possible focal mechanisms for the 1911 earthquake. We find that the event was most likely a right-lateral strikeslip event on the Calaveras fault, larger than, but otherwise resembling, the 1984 Mw 6.1 Morgan Hill earthquake in roughly the same location. Unfortunately, we could recover no unambiguous surface fault offset or geodetic strain data to corroborate the seismic analysis despite an exhaustive archival search. We calculated the static and dynamic Coulomb stress changes for three 1906 source models to understand stress transfer to the 1911 site. In contrast to the static stress shadow, the peak dynamic Coulomb stress imparted by the 1906 rupture promoted failure at the site of the 1911 earthquake by 1.4-5.8 bar. Perhaps because the sample is small and the aftershocks are poorly located, we find no correlation of 1906 aftershock frequency or magnitude with the peak dynamic stress, although all aftershocks sustained a calculated dynamic stress of ???3 bar. Just 20 km to the south of the 1911 epicenter, we find that surface creep of the Calaveras fault at Hollister paused for ~17 yr after 1906, about the expected delay for the calculated static stress drop imparted by the 1906 earthquake when San Andreas fault postseismic creep and viscoelastic relaxation are included. Thus, the 1911 earthquake may have been promoted by the transient dynamic stresses, while Calaveras fault creep 20 km to the south appears to have been inhibited by the static stress changes.
Finite element modeling of ROPS in static testing and rear overturns.
Harris, J R; Mucino, V H; Etherton, J R; Snyder, K A; Means, K H
2000-08-01
Even with the technological advances of the last several decades, agricultural production remains one of the most hazardous occupations in the United States. Death due to tractor rollover is a prime contributor to this hazard. Standards for rollover protective structures (ROPS) performance and certification have been developed by groups such as the Society of Automotive Engineers (SAE) and the American Society of Agricultural Engineers (ASAE) to combat these problems. The current ROPS certification standard, SAE J2194, requires either a dynamic or static testing sequence or both. Although some ROPS manufacturers perform both the dynamic and static phases of SAE J2194 testing, it is possible for a ROPS to be certified for field operation using static testing alone. This research compared ROPS deformation response from a simulated SAE J2194 static loading sequence to ROPS deformation response as a result of a simulated rearward tractor rollover. Finite element analysis techniques for plastic deformation were used to simulate both the static and dynamic rear rollover scenarios. Stress results from the rear rollover model were compared to results from simulated static testing per SAE J2194. Maximum stress values from simulated rear rollovers exceeded maximum stress values recorded during simulated static testing for half of the elements comprising the uprights. In the worst case, the static model underpredicts dynamic model results by approximately 7%. In the best case, the static model overpredicts dynamic model results by approximately 32%. These results suggest the need for additional experimental work to characterize ROPS stress levels during staged overturns and during testing according to the SAE standard.
Healthy Lifestyle Stress management Job stress can be all-consuming — but it doesn't have to be. Address your triggers, keep perspective and ... stress triggers, it's often helpful to improve time management skills — especially if you tend to feel overwhelmed ...
NASA Astrophysics Data System (ADS)
Fischer, T.; Hainzl, S.; Horalek, J.; Michalek, J.
2009-04-01
The distribution of West-Bohemia/Vogtland seismicity is clustered both in time and space. The time occurrence is manifested in a variety of forms including both swarms with fast and with slow energy release that last from hours to months and also solitary events. The lateral distribution of seismicity is limited to a small number of focal zones, which have been periodically reactivated during the past 18 years of instrumental observations. We don't observe an apparent migration of seismic activity. Instead, the activity has been switching between the focal zones with its largest part residing in the area of Nový Kostel, which dominates with 85% of energy release. Analysis of the activity in the period 1991-2007 has revealed that the interevent times of the seismic activity measured between events in separated focal zones show increased occurrence for time intervals below 8 hours. This fast switching of activity among focal zones with mutual distances above 10 km shows that the seismicity is correlated in a broader area and points to a common triggering force acting in the whole region of West-Bohemia/Vogtland. This force could be stress changes due to earth tides, barometric pressure disturbances, or an abrupt change of the crustal fluid pore pressure. It would trigger the activity in the focal zones which are close to failure. Depending on the local stress and mechanical conditions in each zone, the activity could either cease or an earthquake swarm could be initiated. To disclose the forces governing the already running swarm activity we investigated the space-time relations between consecutive earthquakes of the 2000 swarm. The swarm lasted four months and consisted of more that 8000 M=3.3 strike-slip microearthquakes, which were located along a fault plane at depths 6.5-10.5 km and showed a common rake angle of 30°. We found that the relative positions of consecutive event pairs showed maximum occurrence in the slip-parallel directions. Comparison with the complete Coulomb stress change upon the fault plane due to a typical rupture showed that the observed elongation of the space-time distribution of the relative positions can be explained by a common effect of both static and dynamic stress changes, which act on different distance and timescale. The relatively small magnitudes of the Coulomb stress changes upon the fault plane in the order of 10 kPa, which are supposed to trigger the swarm events, support the idea that high pressurized crustal fluids increase the pore pressure and bring the fault close to its critical state. This is in accordance with the results of our model of the 2000 swarm which took into account both the fluid diffusion and stress triggering. The model consisted of a planar brittle patch placed in a 3-D elastic half-space divided into the number of cells with variable strength. The individual cells rupture when the Coulomb failure criterion including both shear stress and pore pressure is fulfilled. The initial tectonic loading of the patch is presumed subcritical until the pore pressure of diffused fluids brings it into a critical state. Then the earthquake activity is governed by the stress changes due to the co-seismic and post-seismic slip, so that mutual triggering between ruptured cells occurs. It turns out that once the pressurized crustal fluids bring a fault from a subcritical steady-state into a critical state, the self-organization prevails in governing the swarm activity. This is in accordance with the possible effect of a regionally scaled force bringing one or multiple focal zones to the critical state and trigger seismicity. The recent M=3.7 swarm from October 2008 occurred at the identical fault plane as the 2000 swarm and showed a similar areal extent of the ruptured area. The overall migration of activity with first events at the bottom of the activated fault patch and the last events in the northward tail at its top indicates similar triggering scenario. However, the step-wise monotonous event migration in the first swarm period differs significantly from the complex migration patterns of the 2000 swarm, A further analysis is needed to learn if such a pattern could be due to a fluid or magma propagation along the fault plane.
Dynamic stresses, coulomb failure, and remote triggering: corrected
Hill, David P.
2012-01-01
Dynamic stresses associated with crustal surface waves with 15–30 s periods and peak amplitudes <1 MPa are capable of triggering seismicity at sites remote from the generating mainshock under appropriate conditions. Coulomb failure models based on a frictional strength threshold offer one explanation for instances of rapid‐onset triggered seismicity that develop during the surface‐wave peak dynamic stressing. Evaluation of the triggering potential of surface‐wave dynamic stresses acting on critically stressed faults using a Mohr’s circle representation together with the Coulomb failure criteria indicates that Love waves should have a higher triggering potential than Rayleigh waves for most fault orientations and wave incidence angles. That (1) the onset of triggered seismicity often appears to begin during the Rayleigh wave rather than the earlier arriving Love wave, and (2) Love‐wave amplitudes typically exceed those for Rayleigh waves suggests that the explanation for rapid‐onset dynamic triggering may not reside solely with a simple static‐threshold friction mode. The results also indicate that normal faults should be more susceptible to dynamic triggering by 20‐s Rayleigh‐wave stresses than thrust faults in the shallow seismogenic crust (<10 km) while the advantage tips in favor of reverse faults greater depths. This transition depth scales with wavelength and coincides roughly with the transition from retrograde‐to‐prograde particle motion. Locally elevated pore pressures may have a role in the observed prevalence of dynamic triggering in extensional regimes and geothermal/volcanic systems. The result is consistent with the apparent elevated susceptibility of extensional or transtensional tectonic regimes to remote triggering by Rayleigh‐wave dynamic stresses than compressional or transpressional regimes.
NASA Astrophysics Data System (ADS)
Wallace, L. M.; Hreinsdottir, S.; Hamling, I. J.; D'Anastasio, E.; Bartlow, N. M.
2017-12-01
Just after midnight on 14 Nov 2016 (NZ Local time), the M7.8 Kaikoura earthquake ruptured a complex sequence of strike-slip and reverse faults over an approximately 150 km length in the northeastern South Island of New Zealand (Hamling et al., 2017, Science). In the months following the earthquake, time-dependent inversions of InSAR observations and continuous and semi-continuous GPS measurements reveal up to 0.5 m of afterslip on the subduction interface beneath the northern South Island underlying the region of large coseismic slip on crustal faults in the M7.8 earthquake. The geodetic data also require significant afterslip on a subset of the crustal faults that ruptured in the earthquake, including the Needles, Jordan Thrust, and Kekerengu faults. Our best-fitting models also suggest significant afterslip on an offshore reverse fault, in a similar position to one inferred by Clark et al. (2017, EPSL) from coseismic coastal uplift data. The M7.8 earthquake also triggered widespread slow slip occurring over much of the Hikurangi subduction zone beneath the North Island. Immediately following the earthquake, continuous GPS sites operated by GeoNet (www.geonet.org.nz) along the North Island's east coast (above the Hikurangi subduction zone) detected several to 30 mm of eastward motion over the two-week period immediately following the M7.8 event. These sites are located 350-650 km from the M7.8 earthquake. Such large eastward motion along the North Island's east coast following the earthquake is consistent with the initiation of a large slow slip event along the shallow, offshore portion of the Hikurangi subduction zone. In addition to shallow slow slip (<15 km depth) triggered offshore the east coast, we also observe deeper slow slip (>30 km depth) triggered in the Kapiti region at the southern Hikurangi margin. The Kapiti SSE was still ongoing as of August 2017, although we expect it to finish before the end of 2017. Given the large distance of the shallow east coast SSE from the M7.8 earthquake, we suggest that the shallow SSE was more likely to be triggered by dynamic stress changes, while the deeper SSEs closer to the Mw 7.8 were more likely triggered by static stress changes.
NASA Astrophysics Data System (ADS)
Ratzov, G.; Cattaneo, A.; Babonneau, N.; Yelles, K.; Bracene, R.; Deverchere, J.
2012-12-01
It is commonly assumed that stress buildup along a given fault is proportional to the time elapsed since the previous earthquake. Although the resulting « seismic gap » hypothesis suits well for moderate magnitude earthquakes (Mw 4-5), large events (Mw>6) are hardly predictable and depict great variation in recurrence intervals. Models based on stress transfer and interactions between faults argue that an earthquake may promote or delay the occurrence of next earthquakes on adjacent faults by increasing or lowering the level of static stress. The Algerian margin is a Cenozoic passive margin presently inverted within the slow convergence between Africa and Eurasia plates (~3-6 mm/yr). The western margin experienced two large earthquakes in 1954 (Orléansville, M 6.7) and 1980 (El Asnam, M 7.3), supporting an interaction between the two faults. To get meaningful statistics of large earthquakes recurrence intervals over numerous seismic cycles, we conducted a submarine paleoseismicity investigation based on turbidite chronostratigraphy. As evidenced on the Cascadia subduction zone, synchronous turbidites accumulated over a large area and originated from independent sources are likely triggered by an earthquake. To test the method on a slowly convergent margin, we analyze turbidites from three sediment cores collected during the Maradja (2003) and Prisme (2007) cruises off the 1954-1980 source areas. We use X-ray radioscopy, XRF major elements counter, magnetic susceptibility, and grain-size distribution to accurately discriminate turbidites from hemipelagites. We date turbidites by calculating hemipelagic sedimentation rates obtained with radiocarbon ages, and interpolate the rates between turbidites. Finally, the age of events is compared with the only paleoseismic study available on land (El Asnam fault). Fourteen possible seismic events are identified by the counting and correlation of turbidites over the last 8 ka. Most events are correlated with the paleoseismic record of the El Asnam fault, but uncorrelated events suggest that other faults were active. Only the 1954 event (not the 1980) triggered a turbidity current, implying that the sediment buffer on the continental shelf could not be reloaded in 26 years, thus arguing for a minimum time resolution of our method. The new paleoseismic catalog shows a recurrence interval of 300-700 years for most events, but also a great interval of >1200 years without any major earthquake. This result suggests that the level of static stress may have drastically dropped as a result of three main events occurring within the 800 years prior the quiescence period.
Robotically assisted velocity-sensitive triggered focused ultrasound surgery
NASA Astrophysics Data System (ADS)
Maier, Florian; Brunner, Alexander; Jenne, Jürgen W.; Krafft, Axel J.; Semmler, Wolfhard; Bock, Michael
2012-11-01
Magnetic Resonance (MR) guided Focused Ultrasound Surgery (FUS) of abdominal organs is challenging due to breathing motion and limited patient access in the MR environment. In this work, an experimental robotically assisted FUS setup was combined with a MR-based navigator technique to realize motion-compensated sonications and online temperature imaging. Experiments were carried out in a static phantom, during periodic manual motion of the phantom without triggering, and with triggering to evaluate the triggering method. In contrast to the non-triggered sonication, the results of the triggered sonication show a confined symmetric temperature distribution. In conclusion, the velocity sensitive navigator can be employed for triggered FUS to compensate for periodic motion. Combined with the robotic FUS setup, flexible treatment of abdominal targets might be realized.
Diameter effect on stress-wave evaluation of modulus of elasticity of logs
Xiping Wang; Robert J. Ross; Brian K. Brashaw; John Punches; John R. Erickson; John W. Forsman; Roy E. Pellerin
2004-01-01
Recent studies on nondestructive evaluation (NDE) of logs have shown that a longitudinal stress-wave method can be used to nondestructively evaluate the modulus of elasticity (MOE) of logs. A strong relationship has been found between stress-wave MOE and static MOE of logs, but a significant deviation was observed between stress-wave and static values. The objective of...
Diameter effect on stress-wave evaluation of modulus of elasticity of logs
Xiping Wang; Robert J. Ross; Brian K. Brashaw; John R. Erickson; John W. Forsman; Roy Pellerin
2003-01-01
Recent studies on nondestructive evaluation (NDE) of logs have shown that a longitudinal stress-wave method can be used to nondestructively evaluate the modulus of elasticity (MOE) of logs. A strong relationship has been found between stress-wave MOE and static MOE of logs, but a significant deviation was observed between stress-wave and static values. The objective of...
The Effect of Pre-Stressing on the Static Indentation Load Capacity of the Superelastic 60NiTi
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.
2013-01-01
Superelastic nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt.%), are under development for use in mechanical components like rolling element bearings and gears. Compared to traditional bearing steels, these intermetallic alloys, when properly heat-treated, are hard but exhibit much lower elastic modulus (approx.100 GPa) and a much broader elastic deformation range (approx.3 percent or more). These material characteristics lead to high indentation static load capacity, which is important for certain applications especially space mechanisms. To ensure the maximum degree of elastic behavior, superelastic materials must be pre-stressed, a process referred to as "training" in shape memory effect (SME) terminology, at loads and stresses beyond expected use conditions. In this paper, static indentation load capacity tests are employed to assess the effects of pre-stressing on elastic response behavior of 60NiTi. The static load capacity is measured by pressing 12.7 mm diameter ceramic Si3N4 balls into highly polished, hardened 60NiTi flat plates that have previously been exposed to varying levels of pre-stress (up to 2.7 GPa) to determine the load that results in shallow but measurable (0.6 m, 25 in. deep) permanent dents. Hertz stress calculations are used to estimate contact stress. Without exposure to pre-stress, the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.4 m deep) occurs. When pre-stressed to 2.7 GPa, a static load of 4900 kN is required to achieve a comparable dent, a 30 percent increase. These results suggest that stressing contact surfaces prior to use enhances the static indentation load capacity of the superelastic 60NiTi. This approach may be adaptable to the engineering and manufacture of highly resilient mechanical components such as rolling element bearings.
Dynamic Aftershock Triggering Correlated with Cyclic Loading in the Slip Direction
NASA Astrophysics Data System (ADS)
Hardebeck, J.
2014-12-01
Dynamic stress changes have been shown to contribute to aftershock triggering, but the physical triggering mechanisms are not fully understood. Some proposed mechanisms are based on dynamic stress loading of the target fault in a direction that encourages earthquake slip (e.g. dynamic Coulomb stress triggering), while other mechanisms are based on fault weakening due to shaking. If dynamic stress loading in the fault slip direction plays a role in aftershock triggering, we would expect to see a relationship between the dynamic stress orientations and the aftershock focal mechanisms. Alternatively, if dynamic stress change triggering functions only through a fault weakening mechanism that is independent of the slip direction of the target fault, no such relationship is expected. I study aftershock sequences of 4 M≥6.7 mainshocks in southern California, and find a small but significant relationship between modeled dynamic stress direction and aftershock focal mechanisms. The mainshock dynamic stress changes have two observed impacts: changing the focal mechanisms in a given location to favor those aligned with the dynamic stress change, and changing the spatial distribution of seismicity to favor locations where the dynamic stress change aligns with the background stress. The aftershock focal mechanisms are significantly more aligned with the dynamic stress changes than the preshock mechanisms for only the first 0.5-1 year following most mainshocks, although for at least 10 years following Hector Mine. Dynamic stress effects on focal mechanisms are best observed at long periods (30-60 sec). Dynamic stress effects are only observed when using metrics based on repeated stress cycling in the same direction, for example considering the dominant stress orientation over the full time series, and not for the peak dynamic stress. These results imply that dynamic aftershock triggering operates at least in part through cyclic loading in the direction of fault slip, although non-directional fault weakening may be important as well. This suggests that the orientation of the dynamic stresses, as well as their amplitude, should be considered in the development of physics-based aftershock forecasting models.
Static and kinetic friction of granite at high normal stress
Byerlee, J.D.
1970-01-01
Frictional sliding on ground surfaces of granite, angle of sliding planes 30?? and 45??, was investigated as a function of confining pressure. Over the normal stress range of 2-12 kb, the static frictional shear stress ??s follows the relationship ??s = 0??5 + 0?? ??n and the kinetic frictional shear stress ??k was calculated to be ??k = 0??25 + 0??47 ??n. ?? 1970.
The 2009 Samoa-Tonga great earthquake triggered doublet
Lay, T.; Ammon, C.J.; Kanamori, H.; Rivera, L.; Koper, K.D.; Hutko, Alexander R.
2010-01-01
Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event1-4. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone. ?? 2010 Macmillan Publishers Limited. All rights reserved.
The 2009 Samoa-Tonga great earthquake triggered doublet.
Lay, Thorne; Ammon, Charles J; Kanamori, Hiroo; Rivera, Luis; Koper, Keith D; Hutko, Alexander R
2010-08-19
Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12 metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50 km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone.
Dynamic Breaking Tests of Airplane Parts
NASA Technical Reports Server (NTRS)
Hertel, Heinrich
1933-01-01
The static stresses of airplane parts, the magnitude of which can be determined with the aid of static load assumptions, are mostly superposed by dynamic stresses, the magnitude of which has been but little explored. The object of the present investigation is to show how the strength of airplane parts can best be tested with respect to dynamic stresses with and without superposed static loading, and to what extent the dynamic strength of the parts depends on their structural design. Experimental apparatus and evaluation methods were developed and tried for the execution of vibration-strength tests with entire structural parts both with and without superposed static loading. Altogether ten metal spars and spar pieces and two wooden spars were subjected to vibration breaking tests.
Observations of Static Coulomb Stress Triggering During the Mw 5.7 Pawnee Earthquake Sequence
NASA Astrophysics Data System (ADS)
Pennington, C.; Chen, X.; Nakata, N.; Chang, J. C.
2016-12-01
The Pawnee earthquake occurred at 12:02 UTC on September 3 and was felt throughout Oklahoma and is the largest event recorded in Oklahoma instrumented history. The earthquake occurred near the junction of two previously mapped faults (Watchorn Fault and Labette Fault), but the actual fault that ruptured was a left-lateral unmapped basement fault (now known as the Sooner Lake Fault) with a strike of 107°, which is conjugate to a segment of the Labette fault that is optimally oriented (referred as OOF). We located 634 events from both before and after the mainshock (updated on September 15, 2016) and use these locations to map other seismogenic faults in the area. Examining the catalog, we found two episodes of seismicity, which started at 100 days and 40 days prior to mainshock, each episode has two clusters occurring two days apart on both OOF and near the mainshock. The near-simultaneous occurrence of clusters suggests possible stress interaction between the Sooner Lake Fault and the Labette fault. We examined the Coulomb stress changes on the surrounding faults caused by the mainshock and have found an increase of coulomb stress along the rakes of mapped faults in the area, the highest being along the Sooner Lake fault and the OOF segment of the Labette fault (see fig 1). These faults experienced up to 5 bars of positive coulomb stress increase, which matched the areas that experience the most aftershocks. To better understand the effect of the coulomb stress on the aftershocks, we plan on refining the catalogs for both aftershocks over a longer period and focal mechanisms to obtain accurate nodal planes, which will be used to see how and if the aftershocks were triggered by the Coulomb stress changes. We will also examine and refine the focal mechanisms that were produced for the events that occurred both before and after the main shock to investigate Coulomb stress interaction. Fig 1. (a) Is a map of faults in the Pawnee area with the red line being the source fault, which is part of the Sooner Lake Fault (green and red line segments.) The opitimally oriented segment of the Labette Fault (OOF) is shown in blue. (b) Shows the coulomb stress change for individual rakes after the rupture along the source fault.
NASA Astrophysics Data System (ADS)
Huang, X.; Oram, C.; Sick, M.
2014-03-01
More efforts are put on hydro-power to balance voltage and frequency within seconds for primary control in modern smart grids. This requires hydraulic turbines to run at off-design conditions. especially at low load or speed-no load. Besides. the tendency of increasing power output and decreasing weight of the turbine runners has also led to the high level vibration problem of the runners. especially high head Francis runners. Therefore. it is important to carry out the static and dynamic stress analyses of prototype high head Francis runners. This paper investigates the static and dynamic stresses on the prototype high head Francis runner based on site measurements and numerical simulations. The site measurements are performed with pressure transducers and strain gauges. Based on the measured results. computational fluid dynamics (CFD) simulations for the flow channel from stay vane to draft tube cone are performed. Static pressure distributions and dynamic pressure pulsations caused by rotor-stator interaction (RSI) are obtained under various operating conditions. With the CFD results. static and dynamic stresses on the runner at different operating points are calculated by means of the finite element method (FEM). The agreement between simulation and measurement is analysed with linear regression method. which indicates that the numerical result agrees well with that of measurement. Furthermore. the maximum static and dynamic stresses on the runner blade are obtained at various operating points. The relations of the maximum stresses and the power output are discussed in detail. The influences of the boundary conditions on the structural behaviour of the runner are also discussed.
NASA Astrophysics Data System (ADS)
Urano, S.; Hiramatsu, Y.; Yamada, T.
2013-12-01
The 2007 Noto Hanto earthquake (MJMA 6.9; hereafter referred to the main shock) occurred at 0:41(UTC) on March 25, 2007 at a depth of 11km beneath the west coast of Noto Peninsula, central Japan. The dominant slip of the main shock was on a reverse fault with a right-lateral slip and the large slip area was distributed from hypocenter to the shallow part on the fault plane (Horikawa, 2008). The aftershocks are distributed not only in the small slip area but also in the large slip area (Hiramatsu et al., 2011). In this study, we estimate static stress drops of aftershocks on the fault plane of the main shock. We discuss the relationship between the static stress drops of the aftershocks and the large slip area of the main shock by investigating spatial pattern of the values of the static stress drops. We use the waveform data obtained by the group for the joint aftershock observations of the 2007 Noto Hanto Earthquake (Sakai et al., 2007). The sampling frequency of the waveform data is 100 Hz or 200 Hz. Focusing on similar aftershocks reported by Hiramatsu et al. (2011), we analyze static stress drops by using the method of empirical Green's function (EGF) (Hough, 1997) as follows. The smallest earthquake (MJMA≥2.0) of each group of similar earthquakes is set to the EGF earthquake, and the largest earthquake (MJMA≥2.5) is set to the target earthquake. We then deconvolve the waveform of an interested earthquake with that of the EGF earthquake at each station and obtain the spectral ratio of the sources that cancels the propagation effects (path and site effects). Following the procedure of Yamada et al. (2010), we finally estimate static stress drops for P- and S-waves from corner frequencies of the spectral ratio by using a model of Madariaga (1976). The estimated average value of static stress drop is 8.2×1.3 MPa (8.6×2.2 MPa for P-wave and 7.8×1.3 MPa for S-wave). These values are coincident approximately with the static stress drop of aftershocks of other inland earthquakes in Japan (Ito et al., 2005; Iio et al., 2006) and independent of the seismic moment. We then compare the values with the coseismic slip distribution of the main shock reported by Horikawa (2008). If we define large slip areas as areas with a slip exceeding 1 m, the average value of static stress drop is 12×2.3 (MPa) in the area. On the other hand, the average value is 5.7×0.9 (MPa) outside the large slip area. These results suggest that aftershocks in the large slip area likely have larger values of static stress drop, which would reflect the spatial heterogeneity of shear strength and dynamic stress level. Our results are coincident with the result of Yamada et al. (2010).
Dynamic and static fatigue behavior of sintered silicon nitrides
NASA Technical Reports Server (NTRS)
Chang, J.; Khandelwal, P.; Heitman, P. W.
1987-01-01
The dynamic and static fatigue behavior of Kyocera SN220M sintered silicon nitride at 1000 C was studied. Fractographic analysis of the material failing in dynamic fatigue revealed the presence of slow crack growth (SCG) at stressing rates below 41 MPa/min. Under conditions of static fatigue this material also displayed SCG at stresses below 345 MPa. SCG appears to be controlled by microcracking of the grain boundaries. The crack velocity exponent (n) determined from both dynamic and static fatigue tests ranged from 11 to 16.
The Influence of Notches Under Static Stress
NASA Technical Reports Server (NTRS)
Matthaes, K
1938-01-01
From the described experiments it is seen that notches are a potential source of strength decrease even under static stress, which the designer must take into consideration. Section I is a general treatment of notch influence under the various types of stresses. Section II treats the influence of notches in thin sheet as is used in airplane construction.
Frequency-Dependent Tidal Triggering of Low Frequency Earthquakes Near Parkfield, California
NASA Astrophysics Data System (ADS)
Xue, L.; Burgmann, R.; Shelly, D. R.
2017-12-01
The effect of small periodic stress perturbations on earthquake generation is not clear, however, the rate of low-frequency earthquakes (LFEs) near Parkfield, California has been found to be strongly correlated with solid earth tides. Laboratory experiments and theoretical analyses show that the period of imposed forcing and source properties affect the sensitivity to triggering and the phase relation of the peak seismicity rate and the periodic stress, but frequency-dependent triggering has not been quantitatively explored in the field. Tidal forcing acts over a wide range of frequencies, therefore the sensitivity to tidal triggering of LFEs provides a good probe to the physical mechanisms affecting earthquake generation. In this study, we consider the tidal triggering of LFEs near Parkfield, California since 2001. We find the LFEs rate is correlated with tidal shear stress, normal stress rate and shear stress rate. The occurrence of LFEs can also be independently modulated by groups of tidal constituents at semi-diurnal, diurnal and fortnightly frequencies. The strength of the response of LFEs to the different tidal constituents varies between LFE families. Each LFE family has an optimal triggering frequency, which does not appear to be depth dependent or systematically related to other known properties. This suggests the period of the applied forcing plays an important role in the triggering process, and the interaction of periods of loading history and source region properties, such as friction, effective normal stress and pore fluid pressure, produces the observed frequency-dependent tidal triggering of LFEs.
Dynamic stresses, Coulomb failure, and remote triggering
Hill, D.P.
2008-01-01
Dynamic stresses associated with crustal surface waves with 15-30-sec periods and peak amplitudes 5 km). The latter is consistent with the observation that extensional or transtensional tectonic regimes are more susceptible to remote triggering by Rayleigh-wave dynamic stresses than compressional or transpressional regimes. Locally elevated pore pressures may have a role in the observed prevalence of dynamic triggering in extensional regimes and geothermal/volcanic systems.
The 12th June 2017 Mw = 6.3 Lesvos earthquake from detailed seismological observations
NASA Astrophysics Data System (ADS)
Papadimitriou, P.; Kassaras, I.; Kaviris, G.; Tselentis, G.-A.; Voulgaris, N.; Lekkas, E.; Chouliaras, G.; Evangelidis, C.; Pavlou, K.; Kapetanidis, V.; Karakonstantis, A.; Kazantzidou-Firtinidou, D.; Fountoulakis, I.; Millas, C.; Spingos, I.; Aspiotis, T.; Moumoulidou, A.; Skourtsos, E.; Antoniou, V.; Andreadakis, E.; Mavroulis, S.; Kleanthi, M.
2018-04-01
A major earthquake (Mwö=ö6.3) occurred on the 12th of June 2017 (12:28 GMT) offshore, south of the SE coast of Lesvos Island, at a depth of 13ökm, in an area characterized by normal faulting with an important strike-slip component in certain cases. Over 900 events of the sequence between 12 and 30 June 2017 were manually analyzed and located, employing an optimized local velocity model. Double-difference relocation revealed seven spatially separated groups of events, forming two linear branches, roughly aligned N130°E, compatible with the strike of known mapped faults along the southern coast of Lesvos Island. Spatiotemporal analysis indicated gradual migration of seismicity towards NW and SE from the margins of the main rupture, while a strong secondary sequence at a separate fault patch SE of the mainshock, oriented NW-SE, was triggered by the largest aftershock (Mwö=ö5.2) that occurred on 17 June. The focal mechanisms of the mainshock (φö=ö122°, δö=ö40° and λö=ö-83°) and of the major aftershocks were determined using regional moment tensor inversion. In most cases normal faulting was revealed with the fault plane oriented in a NW-SE direction, dipping SW, with the exception of the largest aftershock that was characterized by strike-slip faulting. Stress inversion revealed a complex stress field south of Lesvos, related both to normal, in an approximate E-W direction, and strike-slip faulting. All aftershocks outside the main rupture, where gradual seismicity migration was observed, are located within the positive lobes of static stress transfer determined by applying the Coulomb criterion for the mainshock. Stress loading on optimal faults under a strike-slip regime explains the occurrence of the largest aftershock and the seismicity that was triggered at the eastern patch of the rupture zone.
Kumar, Neelesh
2014-10-01
Finite element analysis has been universally employed for the stress and strain analysis in lower extremity prosthetics. The socket adapter was the principal subject of interest due to its importance in deciding the knee motion range. This article focused on the static and dynamic stress analysis of the designed hybrid adapter developed by the authors. A standard mechanical design validation approach using von Mises was followed. Four materials were considered for the analysis, namely, carbon fiber, oil-filled nylon, Al-6061, and mild steel. The paper analyses the static and dynamic stress on designed hybrid adapter which incorporates features of conventional male and female socket adapters. The finite element analysis was carried out for possible different angles of knee flexion simulating static and dynamic gait situation. Research was carried out on available design of socket adapter. Mechanical design of hybrid adapter was conceptualized and a CAD model was generated using Inventor modelling software. Static and dynamic stress analysis was carried out on different materials for optimization. The finite element analysis was carried out on the software Autodesk Inventor Professional Ver. 2011. The peak value of von Mises stress occurred in the neck region of the adapter and in the lower face region at rod eye-adapter junction in static and dynamic analyses, respectively. Oil-filled nylon was found to be the best material among the four with respect to strength, weight, and cost. Research investigations on newer materials for development of improved prosthesis will immensely benefit the amputees. The study analyze the static and dynamic stress on the knee joint adapter to provide better material used for hybrid design of adapter. © The International Society for Prosthetics and Orthotics 2013.
NASA Astrophysics Data System (ADS)
Nica, Adriana S.; Teleki, N.; Vasiliu, Virgil V.
1995-03-01
Usually, lumbosacrat aria is a very mechanical stressed aria because of insufficient adaptation to the verticality and because of many other getting in professional field (high physical stress, sedentary profession) or in daily living. Because of all these facts and the other can develop `low back pain syndromes' in variable places dorsolumbar, lumbar or lumbosacrat aria, in different degree of disability interesting the muscles, fasciae, aponevrosis tendons, capsules and ligaments. Specially the muscular tissue is in high sufferings in paravertebral lumbosacrat place where we can find frequently contractor (usually secondary to the static vertebral troubles) or retractors; sometimes we discover morphopathological disorder in muscles with trigger and tender points--very painful and cause of a high percent of disability of lumbosacrat region. The aim of this research is to prove by clinic--functional tests the effects of laser- therapy and to notice the answer of all the soft tissue from lumbosacrat region and all the structures treated which respond after laser-therapy to kinetotherapy, comparing with the other kinds of physical therapy.
Observing Triggered Earthquakes Across Iran with Calibrated Earthquake Locations
NASA Astrophysics Data System (ADS)
Karasozen, E.; Bergman, E.; Ghods, A.; Nissen, E.
2016-12-01
We investigate earthquake triggering phenomena in Iran by analyzing patterns of aftershock activity around mapped surface ruptures. Iran has an intense level of seismicity (> 40,000 events listed in the ISC Bulletin since 1960) due to it accommodating a significant portion of the continental collision between Arabia and Eurasia. There are nearly thirty mapped surface ruptures associated with earthquakes of M 6-7.5, mostly in eastern and northwestern Iran, offering a rich potential to study the kinematics of earthquake nucleation, rupture propagation, and subsequent triggering. However, catalog earthquake locations are subject to up to 50 km of location bias from the combination of unknown Earth structure and unbalanced station coverage, making it challenging to assess both the rupture directivity of larger events and the spatial patterns of their aftershocks. To overcome this limitation, we developed a new two-tiered multiple-event relocation approach to obtain hypocentral parameters that are minimally biased and have realistic uncertainties. In the first stage, locations of small clusters of well-recorded earthquakes at local spatial scales (100s of events across 100 km length scales) are calibrated either by using near-source arrival times or independent location constraints (e.g. local aftershock studies, InSAR solutions), using an implementation of the Hypocentroidal Decomposition relocation technique called MLOC. Epicentral uncertainties are typically less than 5 km. Then, these events are used as prior constraints in the code BayesLoc, a Bayesian relocation technique that can handle larger datasets, to yield region-wide calibrated hypocenters (1000s of events over 1000 km length scales). With locations and errors both calibrated, the pattern of aftershock activity can reveal the type of the earthquake triggering: dynamic stress changes promote an increase in the seismicity rate in the direction of unilateral propagation, whereas static stress changes should not be biased by rupture propagation direction. Here we present results from Ahar, Baladeh, Qom, Rigan, Silakhour and Zirkuh clusters, that include early-instrumental and modern mainshock-aftershock sequences. These will in turn provide a greatly improved basis for research into seismic hazards in this region.
NASA Astrophysics Data System (ADS)
Awwaluddin, Muhammad; Kristedjo, K.; Handono, Khairul; Ahmad, H.
2018-02-01
This analysis is conducted to determine the effects of static and dynamic loads of the structure of mechanical system of Ultrasonic Scanner i.e., arm, column, and connection systems for inservice inspection of research reactors. The analysis is performed using the finite element method with 520 N static load. The correction factor of dynamic loads used is the Gerber mean stress correction (stress life). The results of the analysis show that the value of maximum equivalent von Mises stress is 1.3698E8 Pa for static loading and value of the maximum equivalent alternating stress is 1.4758E7 Pa for dynamic loading. These values are below the upper limit allowed according to ASTM A240 standards i.e. 2.05E8 Pa. The result analysis of fatigue life cycle are at least 1E6 cycle, so it can be concluded that the structure is in the high life cycle category.
University Engineering Design Challenge
2015-01-02
strength its members provide. Trusses are common load - bearing structures, and are found in many modern-day applications due to their simple, strong, and...we ran simulations on was one of the member arms. We applied a bearing load on the surfaces of the holes on one side and tested it for static stress...73.24 ksi yield strength as shown figures 17 below. Figure 17: von Mises stress under static bearing load of 8750 lb. Under the static bearing load
Quantitative modeling of reservoir-triggered seismicity
NASA Astrophysics Data System (ADS)
Hainzl, S.; Catalli, F.; Dahm, T.; Heinicke, J.; Woith, H.
2017-12-01
Reservoir-triggered seismicity might occur as the response to the crustal stress caused by the poroelastic response to the weight of the water volume and fluid diffusion. Several cases of high correlations have been found in the past decades. However, crustal stresses might be altered by many other processes such as continuous tectonic stressing and coseismic stress changes. Because reservoir-triggered stresses decay quickly with distance, even tidal or rainfall-triggered stresses might be of similar size at depth. To account for simultaneous stress sources in a physically meaningful way, we apply a seismicity model based on calculated stress changes in the crust and laboratory-derived friction laws. Based on the observed seismicity, the model parameters can be determined by maximum likelihood method. The model leads to quantitative predictions of the variations of seismicity rate in space and time which can be used for hypothesis testing and forecasting. For case studies in Talala (India), Val d'Agri (Italy) and Novy Kostel (Czech Republic), we show the comparison of predicted and observed seismicity, demonstrating the potential and limitations of the approach.
Kordi, Ramin; Mazaheri, Reza; Rostami, Mohsen; Mansournia, Mohammad Ali
2012-01-01
The pathophysiology of primary benign exertional headache (EH) is not still clearly defined. Some researchers have suggested an impaired vascular response as the etiology of this disorder. In this study we investigated whether there are any differences in blood pressure (BP) and heart rate (HR) of the subjects in course of the static and dynamic exercises and the treadmill stress test between those with and without EH. From university students, 22 patients with EH (mean age: 19.8 ± 2.10, Female to Male: 7:15) and 20 normal subjects (mean age: 19.3 ± 1.97, Female: Male: 8:12) were recruited. All the subjects performed the static and dynamic exercises at 30 and 20 percent of the maximal voluntary contraction (MVC) and Bruce treadmill stress test according to the standard protocols. HR and BP of all the cases at the baseline and during and immediately after each test were measured. No significant difference was found between the mean rise of HR, systolic and diastolic BP of the subjects with and without EH in static and dynamic exercises and also treadmill stress test. It seems that between those with and without EH, there is no significant difference in rise of HR and BP response to static and dynamic exercises and treadmill stress test. Further studies are required to find the pathophysiology and risk factors of EH.
Stress regularity in quasi-static perfect plasticity with a pressure dependent yield criterion
NASA Astrophysics Data System (ADS)
Babadjian, Jean-François; Mora, Maria Giovanna
2018-04-01
This work is devoted to establishing a regularity result for the stress tensor in quasi-static planar isotropic linearly elastic - perfectly plastic materials obeying a Drucker-Prager or Mohr-Coulomb yield criterion. Under suitable assumptions on the data, it is proved that the stress tensor has a spatial gradient that is locally squared integrable. As a corollary, the usual measure theoretical flow rule is expressed in a strong form using the quasi-continuous representative of the stress.
Fatigue criterion for the design of rotating shafts under combined stress
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.
1977-01-01
A revised approach to the design of transmission shafting which considers the flexure fatigue characteristics of the shaft material under combined cyclic bending and static torsion stress is presented. A fatigue failure relation, corroborated by published combined stress test data, is presented which shows an elliptical variation of reversed bending endurance strength with static torsional stress. From this elliptical failure relations, a design formula for computing the diameter of rotating solid shafts under the most common condition of loading is developed.
Static stress transfer during the 2002 Nenana Mountain-Denali Fault, Alaska, earthquake sequence
Anderson, G.; Ji, C.
2003-01-01
On 23 October 2002, the Mw 6.7 Nenana Mountain earthquake occurred in central Alaska. It was followed on 3 November 2002 by the Mw 7.9 Denali Fault mainshock, the largest strike-slip earthquake to occur in North America during the past 150 years. We have modeled static Coulomb stress transfer effects during this sequence. We find that the Nenana Mountain foreshock transferred 30-50 kPa of Coulomb stress to the hypocentral region of the Denali Fault mainshock, encouraging its occurrence. We also find that the two main earthquakes together transferred more than 400 kPa of Coulomb stress to the Cross Creek segment of the Totschunda fault system and to the Denali fault southeast of the mainshock rupture, and up to 80 kPa to the Denali fault west of the Nenana Mountain rupture. Other major faults in the region experienced much smaller static Coulomb stress changes.
Headache triggers in the US military.
Theeler, Brett J; Kenney, Kimbra; Prokhorenko, Olga A; Fideli, Ulgen S; Campbell, William; Erickson, Jay C
2010-05-01
Headaches can be triggered by a variety of factors. Military service members have a high prevalence of headache but the factors triggering headaches in military troops have not been identified. The objective of this study is to determine headache triggers in soldiers and military beneficiaries seeking specialty care for headaches. A total of 172 consecutive US Army soldiers and military dependents (civilians) evaluated at the headache clinics of 2 US Army Medical Centers completed a standardized questionnaire about their headache triggers. A total of 150 (87%) patients were active-duty military members and 22 (13%) patients were civilians. In total, 77% of subjects had migraine; 89% of patients reported at least one headache trigger with a mean of 8.3 triggers per patient. A wide variety of headache triggers was seen with the most common categories being environmental factors (74%), stress (67%), consumption-related factors (60%), and fatigue-related factors (57%). The types of headache triggers identified in active-duty service members were similar to those seen in civilians. Stress-related triggers were significantly more common in soldiers. There were no significant differences in trigger types between soldiers with and without a history of head trauma. Headaches in military service members are triggered mostly by the same factors as in civilians with stress being the most common trigger. Knowledge of headache triggers may be useful for developing strategies that reduce headache occurrence in the military.
The Response of Frozen Soils to Vibratory Loads
1975-06-01
Construction. i | The report was technically reviewed by Dr. Y . Nakano of USA CRREL, and A.F. Müller of the Office of Chief of Engineers. Their suggestions...B.I.S. Helme, Jr., t M.J. Dabney III, F. Berrego, R.N. Lachenmaier and D.J. Coombes. Dr. T.M. Lee, Dr. D.M. Norris, Jr. and Dr. Y . Nakano gave... y /g stress static confining pressure, (a, + 2a ^/3 axial (vertical) static pressure lateral static pressure dynamic stress (peak) phase shift
Lamination residual stresses in hybrid composites, part 1
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Liber, T.
1976-01-01
An experimental investigation was conducted to study lamination residual stresses for various material and loading parameters. The effects of hybridization on residual stresses and residual properties after thermal cycling under load were determined in angle-ply graphite/Kevlar/epoxy and graphite/S-glass/epoxy laminates. Residual strains in the graphite plies are not appreciably affected by the type and number of hybridizing plies. Computed residual stresses at room temperature in the S-glass plies reach values up to seventy-five percent of the transverse strength of the material. Computed residual stresses in the graphite plies exceed the static strength by approximately ten percent. In the case of Kevlar plies, computed residual stresses far exceed the static strength indicating possible early failure of these plies. Static testing of the hybrids above indicates that failure is governed by the ultimate strain of the graphite plies. In thermally cycled hybrids, in general, residual moduli were somewhat lower and residual strengths were higher than initial values.
MSC/NASTRAN Stress Analysis of Complete Models Subjected to Random and Quasi-Static Loads
NASA Technical Reports Server (NTRS)
Hampton, Roy W.
2000-01-01
Space payloads, such as those which fly on the Space Shuttle in Spacelab, are designed to withstand dynamic loads which consist of combined acoustic random loads and quasi-static acceleration loads. Methods for computing the payload stresses due to these loads are well known and appear in texts and NASA documents, but typically involve approximations such as the Miles' equation, as well as possible adjustments based on "modal participation factors." Alternatively, an existing capability in MSC/NASTRAN may be used to output exact root mean square [rms] stresses due to the random loads for any specified elements in the Finite Element Model. However, it is time consuming to use this methodology to obtain the rms stresses for the complete structural model and then combine them with the quasi-static loading induced stresses. Special processing was developed as described here to perform the stress analysis of all elements in the model using existing MSC/NASTRAN and MSC/PATRAN and UNIX utilities. Fail-safe and buckling analyses applications are also described.
In-situ investigation of relations between slow slip events, repeaters and earthquake nucleation
NASA Astrophysics Data System (ADS)
Marty, S. B.; Schubnel, A.; Gardonio, B.; Bhat, H. S.; Fukuyama, E.
2017-12-01
Recent observations have shown that, in subduction zones, imperceptible slip, known as "slow slip events", could trigger powerful earthquakes and could be link to the onset of swarms of repeaters. In the aim of investigating the relation between repeaters, slow slip events and earthquake nucleation, we have conducted stick-slip experiments on saw-cut Indian Gabbro under upper crustal stress conditions (up to 180 MPa confining pressure). During the past decades, the reproduction of micro-earthquakes in the laboratory enabled a better understanding and to better constrain physical parameters that are the origin of the seismic source. Using a new set of calibrated piezoelectric acoustic emission sensors and high frequency dynamic strain gages, we are now able to measure a large number of physical parameters during stick-slip motion, such as the rupture velocity, the slip velocity, the dynamic stress drop and the absolute magnitudes and sizes of foreshock acoustic emissions. Preliminary observations systemically show quasi-static slip accelerations, onset of repeaters as well as an increase in the acoustic emission rate before failure. In the next future, we will further investigate the links between slow slip events, repeaters, stress build-up and earthquakes, using our high-frequency acoustic and strain recordings and applying template matching analysis.
To, A.; Burgmann, R.; Pollitz, F.
2004-01-01
The 2001 Mw 7.6 Bhuj earthquake occurred in an intraplate region with rather unusual active seismicity, including an earlier major earthquake, the 1819 Rann of Kachchh earthquake (M7.7). We examine if static coseismic and transient postseismic deformation following the 1819 earthquake contributed to the enhanced seismicity in the region and the occurrence of the 2001 Bhuj earthquake, ???100 km away and almost two centuries later. Based on the Indian shield setting, great rupture depth of the 2001 event and lack of significant early postseismic deformation measured following the 2001 event, we infer that little viscous relaxation occurs in the lower crust and choose an upper mantle effective viscosity of 1019 Pas. The predicted Coulomb failure stress (DCFS) on the rupture plane of the 2001 event increased by more than 0.1 bar at 20 km depth, which is a small but possibly significant amount. Stress change from the 1819 event may have also affected the occurrence of other historic earthquakes in this region. We also evaluate the postseismic deformation and ??CFS in this region due to the 2001 event. Positive ??CFS from the 2001 event occur to the NW and SE of the Bhuj earthquake rupture. Copyright 2004 by the American Geophysical Union.
Trautmann-Lengsfeld, Sina Alexa; Domínguez-Borràs, Judith; Escera, Carles; Herrmann, Manfred; Fehr, Thorsten
2013-01-01
A recent functional magnetic resonance imaging (fMRI) study by our group demonstrated that dynamic emotional faces are more accurately recognized and evoked more widespread patterns of hemodynamic brain responses than static emotional faces. Based on this experimental design, the present study aimed at investigating the spatio-temporal processing of static and dynamic emotional facial expressions in 19 healthy women by means of multi-channel electroencephalography (EEG), event-related potentials (ERP) and fMRI-constrained regional source analyses. ERP analysis showed an increased amplitude of the LPP (late posterior positivity) over centro-parietal regions for static facial expressions of disgust compared to neutral faces. In addition, the LPP was more widespread and temporally prolonged for dynamic compared to static faces of disgust and happiness. fMRI constrained source analysis on static emotional face stimuli indicated the spatio-temporal modulation of predominantly posterior regional brain activation related to the visual processing stream for both emotional valences when compared to the neutral condition in the fusiform gyrus. The spatio-temporal processing of dynamic stimuli yielded enhanced source activity for emotional compared to neutral conditions in temporal (e.g., fusiform gyrus), and frontal regions (e.g., ventromedial prefrontal cortex, medial and inferior frontal cortex) in early and again in later time windows. The present data support the view that dynamic facial displays trigger more information reflected in complex neural networks, in particular because of their changing features potentially triggering sustained activation related to a continuing evaluation of those faces. A combined fMRI and EEG approach thus provides an advanced insight to the spatio-temporal characteristics of emotional face processing, by also revealing additional neural generators, not identifiable by the only use of an fMRI approach. PMID:23818974
Yaşar, Levent; Telci, Serpil Ortakuz; Doğan, Keziban; Kaya, Eyüp; Ekin, Murat
2018-05-19
To investigate the role of measuring the thickness of pelvic floor muscles with static MRI in the physiopathology of urinary incontinence in women with stress and mixed types of urinary incontinence diagnosed with urodynamic studies. A retrospective clinical study was designed in collaboration with the radiology department. We recruited only patients who had undergone static pelvic MRI to determine the etiology of pelvic pain and exclude gynecologic disorders. The study included 45 women diagnosed with stress or mixed-type urinary incontinence based on pelvic examination and urodynamic testing without symptomatic pelvic organ prolapse and 40 continent controls. We evaluated the images of pelvic static MRI of all patients to measure the thickness of the pelvic floor muscles with the radiologist by using an image analysis workstation retrospectively. The right and left puborectalis parts of levator ani muscle thicknesses were significantly lower in the urinary incontinence group than in the control group (p < 0.01). The right and left PR/OI ratios were significantly lower than in the control group. (p = 0.001). Morphologic changes of pelvic floor muscle thickness can be demonstrated by a static pelvic MRI, and this can be used as a prognostic test in the treatment and follow-up of patients with stress or mixed urinary incontinence.
NASA Astrophysics Data System (ADS)
Wang, Tien-Huei
Non-volcanic tremor (NVT) has been discovered in recent years due to advances in seismic instruments and increased density of seismic networks. The NVT is a special kind of seismic signal indicative of the physical conditions and the failure mechanism on the source on the fault where NVT occurs. The detection methods used and the sensitivity of them relies on the density, distance and instrumentation of the station network available. How accurately the tremor is identified in different regions varies greatly among different studies. Therefore, there has not been study that rigorously documents tectonic tremors in different regions under limited methods and data. Meanwhile, many incidences of NVTs are observed during or after small but significant strain change induced by teleseismic, regional or local earthquake. The understanding of the triggering mechanisms critical for tremor remains unclear. In addition, characteristics of the triggering of NVT in different regions are rarely compared because of the short time frame after the discovery of the triggered NVTs. We first explore tectonic tremor based on observations to learn about its triggering, frequency of occurrence, location and spectral characteristics. Then, we numerically model the triggering of instability on the estimated tremor-source, under assumptions fine-tuned according to previous studies (Thomas et al., 2009; Miyazawa et al., 2005; Hill, 2008; Ito, 2009; Rubinstein et al., 2007; Peng and Chao, 2008). The onset of the slip reveals that how and when the external loading triggers tremor. It also holds the information to the background stress conditions under which tremor source starts with. We observe and detect tremor in two regions: Anza and Cholame, along San Jacinto Fault (SJF) and San Andreas Fault (SAF) respectively. These two sections of the faults, relative to general fault zone on which general earthquakes occur, are considered transition zones where slip of slow rates occurs. Slip events including NVT occur on these sections have slower slip rates than that of the general earthquakes (Rubin, 2008; Ide, 2008). In Azna region, we use envelope and waveform cross-correlation to detect tremor. We investigate the stress required to trigger tremor and tremor spectrum using continuous broadband seismograms from 11 stations located near Anza, California. We examine 44 Mw≥7.4 teleseismic events between 2001 and 2011, in addition to one regional earthquake of smaller-magnitude, the 2009 Mw 6.5 Gulf of California earthquake, because it induced extremely high strain at Anza. The result suggests that not only the amplitude of the induced strain, but also the period of the incoming surface wave, may control triggering of tremor near Anza. In addition, we find that the transient-shear stress (17--35 kPa) required to trigger tremor along the SJF at Anza is distinctly higher than what has been reported for the well-studied SAF (Gulihem et al. 2010). We model slip initiation using the analytical solution of rate-and-state friction. We verify the correctness of this method by comparing the results with that from the dynamic model, implemented using the Multi-Dimensional Spectral Boundary Integral Code (MDSBI) written by Eric M. Dunham from Sanford University. We find that the analytical result is consistent with that of the dynamic model. We set up a patch model with which the source stress and frictional conditions best resemble the current estimates of the tremor source. The frictional regime of this patch is rate-weakening. The initial normal and shear stress, and friction parameters are suggested by previous observations of tectonic tremors both in this and other studies (Brown et al., 2005; Shelly et al., 2006; Miyazawa, 2008; Ben-Zion, 2012). Our dynamic loading first consists of simple harmonic stress change with fixed periods, simplifying the transient stress history to resemble teleseismic earthquakes. We tested the period and amplitude of such periodic loading. We find that the period of the transient shear stress is less important relative to the amplitude. The triggering depends mainly on the ratio between amplitude of the shear stress loading and the background normal stress. We define a range of ratio indicative of the occurrence of the triggering. We later test the triggering of the instability using the shear stress history from 44 large teleseismic earthquakes (data equivalent to those used in Chapter 1). With the constraints of these observations, we find that the background normal stress should be in the range of ˜400-700 kPa. The background normal stress suggested agrees with the common hypothesis that the tremor source is under low normal stress. In addition, our results provide a first estimation of the background normal stress with numerical method. We also demonstrate how our model find constrains on the background physical stress or frictional conditions, with several true incidences that transient shear stress triggers or not-triggers tremor. (Abstract shortened by UMI.).
Parsons, Tom
2002-01-01
Triggered earthquakes can be large, damaging, and lethal as evidenced by the 1999 shocks in Turkey and the 2001 earthquakes in El Salvador. In this study, earthquakes with Ms ≥ 7.0 from the Harvard centroid moment tensor (CMT) catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occurred near (defined as having shear stress change ∣Δτ∣ ≥ 0.01 MPa) the Ms ≥ 7.0 shocks are associated with calculated shear stress increases, while ∼39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, these triggered earthquakes obey an Omori law rate decay that lasts between ∼7–11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main shock centroid. Omori's law is one of the few time-predictable patterns evident in the global occurrence of earthquakes. If large triggered earthquakes habitually obey Omori's law, then their hazard can be more readily assessed. The characteristic rate change with time and spatial distribution can be used to rapidly assess the likelihood of triggered earthquakes following events of Ms ≥ 7.0. I show an example application to the M = 7.7 13 January 2001 El Salvador earthquake where use of global statistics appears to provide a better rapid hazard estimate than Coulomb stress change calculations.
Parsons, T.
2002-01-01
Triggered earthquakes can be large, damaging, and lethal as evidenced by the 1999 shocks in Turkey and the 2001 earthquakes in El Salvador. In this study, earthquakes with Ms ≥ 7.0 from the Harvard centroid moment tensor (CMT) catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occured near (defined as having shear stress change |Δ| 0.01 MPa) the Ms ≥ 7.0 shocks are associated with calculated shear stress increases, while ~39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, these triggered earthquakes obey an Omori law rate decay that lasts between ~7-11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main shock centroid. Omori's law is one of the few time-predictable patterns evident in the global occurrence of earthquakes. If large triggered earthquakes habitually obey Omori's law, then their hazard can be more readily assessed. The characteristics rate change with time and spatial distribution can be used to rapidly assess the likelihood of triggered earthquakes following events of Ms ≥7.0. I show an example application to the M = 7.7 13 January 2001 El Salvador earthquake where use of global statistics appears to provide a better rapid hazard estimate than Coulomb stress change calculations.
NASA Astrophysics Data System (ADS)
Parsons, Tom
2002-09-01
Triggered earthquakes can be large, damaging, and lethal as evidenced by the1999 shocks in Turkey and the 2001 earthquakes in El Salvador. In this study, earthquakes with Ms ≥ 7.0 from the Harvard centroid moment tensor (CMT) catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occurred near (defined as having shear stress change ∣Δτ∣ ≥ 0.01 MPa) the Ms ≥ 7.0 shocks are associated with calculated shear stress increases, while ˜39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, these triggered earthquakes obey an Omori law rate decay that lasts between ˜7-11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main shock centroid. Omori's law is one of the few time-predictable patterns evident in the global occurrence of earthquakes. If large triggered earthquakes habitually obey Omori's law, then their hazard can be more readily assessed. The characteristic rate change with time and spatial distribution can be used to rapidly assess the likelihood of triggered earthquakes following events of Ms ≥ 7.0. I show an example application to the M = 7.7 13 January 2001 El Salvador earthquake where use of global statistics appears to provide a better rapid hazard estimate than Coulomb stress change calculations.
Brand, Richard A
2005-01-01
A joint's normal mechanical history contributes to the maintenance of articular cartilage and underlying bone. Loading facilitates the flow of nutrients into cartilage and waste products away, and additionally provides the mechanical signals essential for normal cell and tissue maintenance. Deleteriously low or high contact stresses have been presumed to result in joint deterioration, and particular aspects of the mechanical environment may facilitate repair of damaged cartilage. For decades, investigators have explored static joint contact stresses (under some more or less arbitrary condition) as a surrogate of the relevant mechanical history. Contact stresses have been estimated in vitro in many joints and in a number of species, although only rarely in vivo. Despite a number of widely varying techniques (and spatial resolutions) to measure these contact stresses, reported ranges of static peak normal stresses are relatively similar from joint to joint across species, and in the range of 0.5 to 5.0 MPa. This suggests vertebrate diarthrodial joints have evolved to achieve similar mechanical design criteria. Available evidence also suggests some disorders of cartilage deterioration are associated with somewhat higher peak pressures ranging from 1-20 MPa, but overlapping the range of normal pressures. Some evidence and considerable logic suggests static contact stresses per se do not predict cartilage responses, but rather temporal aspects of the contact stress history. Static contact stresses may therefore not be a reasonable surrogate for biomechanical studies. Rather, temporal and spatial aspects of the loading history undoubtedly induce beneficial and deleterious biological responses. Finally, since all articular cartilage experiences similar stresses, the concept of a "weight-bearing" versus a "non-weight-bearing" joint seems flawed, and should be abandoned. PMID:16089079
Beeler, N.M.; Wong, T.-F.; Hickman, S.H.
2003-01-01
We consider expected relationships between apparent stress ??a and static stress drop ????s using a standard energy balance and find ??a = ????s (0.5 - ??), where ?? is stress overshoot. A simple implementation of this balance is to assume overshoot is constant; then apparent stress should vary linearly with stress drop, consistent with spectral theories (Brune, 1970) and dynamic crack models (Madariaga, 1976). Normalizing this expression by the static stress drop defines an efficiency ??sw = ??sa/????s as follows from Savage and Wood (1971). We use this measure of efficiency to analyze data from one of a number of observational studies that find apparent stress to increase with seismic moment, namely earthquakes recorded in the Cajon Pass borehole by Abercrombie (1995). Increases in apparent stress with event size could reflect an increase in seismic efficiency; however, ??sw for the Cajon earthquakes shows no such increase and is approximately constant over the entire moment range. Thus, apparent stress and stress drop co-vary, as expected from the energy balance at constant overshoot. The median value of ??sw for the Cajon earthquakes is four times lower than ??sw for laboratory events. Thus, these Cajon-recorded earthquakes have relatively low and approximately constant efficiency. As the energy balance requires ??sw = 0.5 - ??, overshoot can be estimated directly from the Savage-Wood efficiency; overshoot is positive for Cajon Pass earthquakes. Variations in apparent stress with seismic moment for these earthquakes result primarily from systematic variations in static stress drop with seismic moment and do not require a relative decrease in sliding resistance with increasing event size (dynamic weakening). Based on the comparison of field and lab determinations of the Savage-Wood efficiency, we suggest the criterion ??sw > 0.3 as a test for dynamic weakening in excess of that seen in the lab.
NASA Astrophysics Data System (ADS)
Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne
2018-03-01
The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is 'predictable' or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily 'predictable' in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock-aftershock sequences. Thus, we may be able to 'predict' what size earthquakes to expect at The Geysers following a large distant earthquake.
Testing for the ‘predictability’ of dynamically triggered earthquakes in Geysers Geothermal Field
Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne L.
2018-01-01
The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is ‘predictable’ or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily ‘predictable’ in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock–aftershock sequences. Thus, we may be able to ‘predict’ what size earthquakes to expect at The Geysers following a large distant earthquake.
Dynamic rheological comparison of silicones for podiatry applications.
Díaz-Díaz, Ana-María; Sánchez-Silva, Bárbara; Tarrío-Saavedra, Javier; López-Beceiro, Jorge; Janeiro-Arocas, Julia; Gracia-Fernández, Carlos; Artiaga, Ramón
2018-05-26
This work shows an effective methodology to evaluate the dynamic viscoelastic behavior of silicones for application in podiatry. The aim is to characterize, compare their viscoelastic properties according to the dynamic stresses they can be presumably subjected when used in podiatry orthotic applications. These results provide a deeper insight which extends the previous creep-recovery results to the world of dynamic stresses developed in physical activity. In this context, it shoulod be taken into account that an orthoses can subjected to a set of static and dynamic shear and compressive forces. Two different podiatric silicones, Blanda-blanda and Master, from Herbitas, are characterized by dynamic rheological methods. Three kinds of rheological tests are considered: shear stress sweep, compression frequency sweep and shear frequency sweep, all the three with simultaneous control of the static force at three different levels. The static force represents a static load like that produced by the weight of a human body on a shoe insole. In a practical sense, dynamic stresses are related to physical activity and are needed to evaluate the frequency effect on the viscoelastic behavior of the material. It is considered that the dynamic stresses can be applied in compression and shear since, in practice, the way the stresses are applied in real life depends on the orthoses geometry and its exact location with respect to the foot and shoe. The effects of static and dynamic loads are individualized and compared to each other through the relations between the elastic constants for isotropic materials. The overall proposed experimental methodology can provide very insightful information for better selection of materials in podiatry applications. This study focuses on the rheological characterization to choose the right silicone for each podiatric application, taking into account the dynamic viscoelastic requirements associated to the physical activity of user. Accordingly, one soft and one hard silicones of common use in podiatry were tested. Each of the two silicones exhibit not only different moduli values, but also, a different kind of dependence of the dynamic moduli with respect to the static load. In the case of the soft sample a linear trend is observed but in the case of of the hard one the dependence is of the power law type. Moreover, these samples exhibit very different Poisson's coefficient values for compression stresses lower than 20 kPa, and almost the same values for stresses above 40 kPa. That different dependence of the Poisson's ratio on the static load should also be taken into account for material selection in customized podiatry applications, where static and dynamic loads are strongly dependent on the individual weight and activity. Copyright © 2018. Published by Elsevier Ltd.
Quillin
1998-05-21
Soft-bodied organisms with hydrostatic skeletons range enormously in body size, both during the growth of individuals and in the comparison of species. Therefore, body size is an important consideration in an examination of the mechanical function of hydrostatic skeletons. The scaling of hydrostatic skeletons cannot be inferred from existing studies of the lever-like skeletons of vertebrates and arthropods because the two skeleton types function by different mechanisms. Hydrostats are constructed of an extensible body wall in tension surrounding a fluid or deformable tissue under compression. It is the pressurized internal fluid (rather than the rigid levers of vertebrates and arthropods) that enables the maintenance of posture, antagonism of muscles and transfer of muscle forces to the environment. The objectives of the present study were (1) to define the geometric, static stress and dynamic stress similarity scaling hypotheses for hydrostatic skeletons on the basis of their generalized form and function, and (2) to apply these similarity hypotheses in a study of the ontogenetic scaling of earthworms, Lumbricus terrestris, to determine which parameters of skeletal function are conserved or changed as a function of body mass during growth (from 0.01 to 8 g). Morphometric measurements on anesthetized earthworms revealed that the earthworms grew isometrically; the external proportions and number of segments were constant as a function of body size. Calculations of static stresses (forces per cross-sectional area in the body wall) during rest and dynamic stresses during peristaltic crawling (calculated from measurements of internal pressure and body wall geometry) revealed that the earthworms also maintained static and dynamic stress similarity, despite a slight increase in body wall thickness in segment 50 (but not in segment 15). In summary, the hydrostatic skeletons of earthworms differ fundamentally from the rigid, lever-like skeletons of their terrestrial counterparts in their ability to grow isometrically while maintaining similarity in both static and dynamic stresses.
Global observation of Omori-law decay in the rate of triggered earthquakes
NASA Astrophysics Data System (ADS)
Parsons, T.
2001-12-01
Triggered earthquakes can be large, damaging, and lethal as evidenced by the 1999 shocks in Turkey and the 2001 events in El Salvador. In this study, earthquakes with M greater than 7.0 from the Harvard CMT catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occurred near the main shocks are associated with calculated shear stress increases, while ~39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, triggered earthquakes obey an Omori-law rate decay that lasts between ~7-11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main-shock centroid. Earthquakes triggered by smaller quakes (foreshocks) also obey Omori's law, which is one of the few time-predictable patterns evident in the global occurrence of earthquakes. These observations indicate that earthquake probability calculations which include interactions from previous shocks should incorporate a transient Omori-law decay with time. In addition, a very simple model using the observed global rate change with time and spatial distribution of triggered earthquakes can be applied to immediately assess the likelihood of triggered earthquakes following large events, and can be in place until more sophisticated analyses are conducted.
Distribution of stress drop, stiffness, and fracture energy over earthquake rupture zones
Fletcher, Joe B.; McGarr, A.
2006-01-01
Using information provided by slip models and the methodology of McGarr and Fletcher (2002), we map static stress drop, stiffness (k = ????/u, where ???? is static stress drop and u is slip), and fracture energy over the slip surface to investigate the earthquake rupture process and energy budget. For the 1994 M6.7 Northridge, 1992 M7.3 Landers, and 1995 M6.9 Kobe earthquakes, the distributions of static stress drop show strong heterogeneity, emphasizing the importance of asperities in the rupture process. Average values of static stress drop are 17, 11, and 4 Mpa for Northridge, Landers, and Kobe, respectively. These values are substantially higher than estimates based on simple crack models, suggesting that the failure process involves the rupture of asperities within the larger fault zone. Stress drop as a function of depth for the Northridge and Landers earthquakes suggests that stress drops are limited by crustal strength. For these two earthquakes, regions of high slip are surrounded by high values of stiffness. Particularly for the Northridge earthquake, the prominent patch of high slip in the central part of the fault is bordered by a ring of high stiffness and is consistent with expectations based on the failure of an asperity loaded at its edge due to exterior slip. Stiffness within an asperity is inversely related to its dimensions. Estimates of fracture energy, based on static stress drop, slip, and rupture speed, were used to investigate the nature of slip weakening at four locations near the hypocenter of the Kobe earthquake for comparison with independent results based on a dynamic model of this earthquake. One subfault updip and to the NE of the hypocenter has a fracture energy of 1.1 MJ/m2 and a slip-weakening distance, Dc, of 0.66 m. Right triangles, whose base and height are Dc and the dynamic stress drop, respectively, approximately overlie the slip-dependent stress given by Ide and Takeo (1997) for the same locations near the hypocenter. The total fracture energy for the Kobe earthquake, 3.7 ?? 1014 J, is about the same as the seismic energy (Ea = 3.2 ?? 1014 J.
Influence of Dynamic Hydraulic Conditions on Nitrogen Cycling in Column Experiments
NASA Astrophysics Data System (ADS)
Gassen, Niklas; von Netzer, Frederick; Ryabenko, Evgenia; Lüders, Tillmann; Stumpp, Christine
2015-04-01
In order to improve management strategies of agricultural nitrogen input, it is of major importance to further understand which factors influence turnover processes within the nitrogen cycle. Many studies have focused on the fate of nitrate in hydrological systems, but up to date only little is known about the influence of dynamic hydraulic conditions on the fate of nitrate at the soil-groundwater interface. We conducted column experiments with natural sediment and compared a system with a fluctuating water table to systems with different water content and static conditions under the constant input of ammonia into the system. We used hydrochemical methods in order to trace nitrogen species, 15N isotope methods to get information about dominating turnover processes and microbial community analysis in order to connect hydrochemical and microbial information. We found that added ammonia was removed more effectively under dynamic hydraulic conditions than under static conditions. Furthermore, denitrification is the dominant process under saturated, static conditions, while nitrification is more important under unsaturated, static conditions. We conclude that a fluctuating water table creates hot spots where both nitrification and denitrification processes can occur spatially close to each other and therefore remove nitrogen more effectively from the system. Furthermore, the fluctuating water table enhances the exchange of solutes and triggers hot moments of solute turnover. Therefore we conclude that a fluctuating water table can amplify hot spots and trigger hot moments of nitrogen cycling.
Hill, David P.
2015-01-01
Accumulating evidence, although still strongly spatially aliased, indicates that although remote dynamic triggering of small-to-moderate (Mw<5) earthquakes can occur in all tectonic settings, transtensional stress regimes with normal and subsidiary strike-slip faulting seem to be more susceptible to dynamic triggering than transpressional regimes with reverse and subsidiary strike-slip faulting. Analysis of the triggering potential of Love- and Rayleigh-wave dynamic stresses incident on normal, reverse, and strike-slip faults assuming Andersonian faulting theory and simple Coulomb failure supports this apparent difference for rapid-onset triggering susceptibility.
Rac1 mediates laminar shear stress-induced vascular endothelial cell migration
Huang, Xianliang; Shen, Yang; Zhang, Yi; Wei, Lin; Lai, Yi; Wu, Jiang; Liu, Xiaojing; Liu, Xiaoheng
2013-01-01
The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. ECs are constantly subjected to shear stress resulting from blood flow and are able to convert mechanical stimuli into intracellular signals that affect cellular behaviors and functions. The aim of this study is to elucidate the effects of Rac1, which is the member of small G protein family, on EC migration under different laminar shear stress (5.56, 10.02, and 15.27 dyn/cm2). The cell migration distance under laminar shear stress increased significantly than that under the static culture condition. Especially, under relative high shear stress (15.27 dyn/cm2) there was a higher difference at 8 h (P < 0.01) and 2 h (P < 0.05) compared with static controls. RT-PCR results further showed increasing mRNA expression of Rac1 in ECs exposed to laminar shear stress than that exposed to static culture. Using plasmids encoding the wild-type (WT), an activated mutant (Q61L), and a dominant-negative mutant (T17N), plasmids encoding Rac1 were transfected into EA.hy 926 cells. The average net migration distance of Rac1Q61L group increased significantly, while Rac1T17N group decreased significantly in comparison with the static controls. These results indicated that Rac1 mediated shear stress-induced EC migration. Our findings conduce to elucidate the molecular mechanisms of EC migration induced by shear stress, which is expected to understand the pathophysiological basis of wound healing in health and diseases. PMID:24430179
Stress Distribution Around Single Short Dental Implants: A Finite Element Study.
Vidya Bhat, S; Premkumar, Priyanka; Kamalakanth Shenoy, K
2014-12-01
Bone height restrictions are more common in the posterior regions of the mandible, because of either bone resorption resulting from tooth loss or even anatomic limitations, such as the position of the inferior alveolar nerve. In situations where adequate bone height is not available in the posterior mandible region, smaller lengths of implants may have to be used but it has been reported that the use of long implants (length ≥10 mm) is a positive factor in osseointegration and authors have reported failures with short implants. Hence knowledge about the stress generated on the bone with different lengths of implants needs scientific evaluation. The purpose of this study was to compare and evaluate the influence of different lengths of implants on stress upon bone in mandibular posterior area. A 3 D finite element model was made of the posterior mandible using the details from a CT scan, using computer software (ANSYS 12). Four simulated implants with lengths 6 mm, 8 mm, 10 mm and 13 mm were placed in the centre of the bone. A static vertical force of 250 N and a static horizontal force of 100 N were applied. The stress generated in the cortical and cancellous bone around the implant were recorded and evaluated with the help of ANSYS. In this study, Von Mises stress on a 6 mm implant under a static vertical load of 250 N appeared to be almost in the same range of 8 and 10 mm implant which were more as compared to 13 mm implant. Von Mises stress on a 6mm implant under a static horizontal load of 100 N appeared to be less when compared to 8, 10 and 13 mm implants. From the results obtained it may be inferred that under static horizontal loading conditions, shorter implants receive lesser load and thus may tend to transfer more stresses to the surrounding bone. While under static vertical loading the shorter implants bear more loads and comparatively transmit lesser load to the surrounding bone.
Analysis of Trigger Factors in Episodic Migraineurs Using a Smartphone Headache Diary Applications
Park, Jeong-Wook; Chu, Min Kyung; Kim, Jae-Moon; Park, Sang-Gue; Cho, Soo-Jin
2016-01-01
Background Various stimuli can trigger migraines in susceptible individuals. We examined migraine trigger factors by using a smartphone headache diary application. Method Episodic migraineurs who agreed to participate in our study downloaded smartphone headache diary application, which was designed to capture the details regarding headache trigger factors and characteristics for 3 months. The participants were asked to access the smartphone headache diary application daily and to confirm the presence of a headache and input the types of trigger factors. Results Sixty-two participants kept diary entries until the end of the study. The diary data for 4,579 days were analyzed. In this data set, 1,099 headache days (336 migraines, 763 non-migraine headaches) were recorded; of these, 772 headache events had with trigger factors, and 327 events did not have trigger factors. The common trigger factors that were present on headache days included stress, fatigue, sleep deprivation, hormonal changes, and weather changes. The likelihood of a headache trigger was 57.7% for stress, 55.1% for sleep deprivation, 48.5% for fatigue, and 46.5% for any trigger. The headaches with trigger factors were associated with greater pain intensity (p<0.001), headache-related disability (p<0.001), abortive medication use (p = 0.02), and the proportion of migraine (p < 0.001), relative to those without trigger factors. Traveling (odd ratios [OR]: 6.4), hormonal changes (OR: 3.5), noise (OR: 2.8), alcohol (OR: 2.5), overeating (OR: 2.4), and stress (OR:1.8) were significantly associated with migraines compared to non-migraine headaches. The headaches that were associated with hormonal changes or noise were more often migraines, regardless of the preventive medication. The headaches due to stress, overeating, alcohol, and traveling were more often migraines without preventive medication, but it was not evident with preventive medication. Conclusion Smartphone headache diary application is an effective tool to assess migraine trigger factors. The headaches with trigger factors had greater severity or migraine features. The type of triggers and the presence of preventive medication influenced the headache characteristics; hence, an investigation of trigger factors would be helpful in understanding migraine occurrences. PMID:26901341
Analysis of Trigger Factors in Episodic Migraineurs Using a Smartphone Headache Diary Applications.
Park, Jeong-Wook; Chu, Min Kyung; Kim, Jae-Moon; Park, Sang-Gue; Cho, Soo-Jin
2016-01-01
Various stimuli can trigger migraines in susceptible individuals. We examined migraine trigger factors by using a smartphone headache diary application. Episodic migraineurs who agreed to participate in our study downloaded smartphone headache diary application, which was designed to capture the details regarding headache trigger factors and characteristics for 3 months. The participants were asked to access the smartphone headache diary application daily and to confirm the presence of a headache and input the types of trigger factors. Sixty-two participants kept diary entries until the end of the study. The diary data for 4,579 days were analyzed. In this data set, 1,099 headache days (336 migraines, 763 non-migraine headaches) were recorded; of these, 772 headache events had with trigger factors, and 327 events did not have trigger factors. The common trigger factors that were present on headache days included stress, fatigue, sleep deprivation, hormonal changes, and weather changes. The likelihood of a headache trigger was 57.7% for stress, 55.1% for sleep deprivation, 48.5% for fatigue, and 46.5% for any trigger. The headaches with trigger factors were associated with greater pain intensity (p<0.001), headache-related disability (p<0.001), abortive medication use (p = 0.02), and the proportion of migraine (p < 0.001), relative to those without trigger factors. Traveling (odd ratios [OR]: 6.4), hormonal changes (OR: 3.5), noise (OR: 2.8), alcohol (OR: 2.5), overeating (OR: 2.4), and stress (OR:1.8) were significantly associated with migraines compared to non-migraine headaches. The headaches that were associated with hormonal changes or noise were more often migraines, regardless of the preventive medication. The headaches due to stress, overeating, alcohol, and traveling were more often migraines without preventive medication, but it was not evident with preventive medication. Smartphone headache diary application is an effective tool to assess migraine trigger factors. The headaches with trigger factors had greater severity or migraine features. The type of triggers and the presence of preventive medication influenced the headache characteristics; hence, an investigation of trigger factors would be helpful in understanding migraine occurrences.
NASA Astrophysics Data System (ADS)
Delescluse, M.; Chamot-Rooke, N.; Cattin, R.
2009-05-01
The present-day intraplate deformation between India and Australia started 9 Myrs ago. In the Central Indian Basin (CIB), this deformation is recorded in the thick sediments of the Bengal fan. The equatorial, dense E-W thrust fault network in this region is the result of a massive reverse reactivation of normal faults at the onset of deformation. The Wharton Basin (WB), separated from the CIB by the NinetyEast Ridge (NyR), shows a contrasting style of deformation with mainly left-lateral strike-slip seismicity. The WB finite deformation and seismicity also involve pre-existing faults, in this case the N-S paleo-transforms of the fossile Wharton spreading-ridge system. The oceanic plate seismicity after the December 2004 Aceh subduction earthquake shows strike-slip events with a clear intraplate P-axis. No thrust faults are detected. This indicates short-term reactivation of the transform faults near the trench. Spatial and temporal distribution of intraplate erthquakes, as well as their anomalous moment release suggests triggering by the Aceh megathrust earthquake, which appears to have acted as an "accelerator" for the oceanic intraplate deformation. In this study, we use Coulomb stress static variations to confirm our seismicity observations. We first assume that the reactivated transform and the neoformed thrust fault plane families are present in the oceanic lithosphere. We then compute the coseismic stresses in the vicinity of the trench from the Aceh and Nias earthquakes slip distributions. Finally, we derive the normal and shear stresses on the fault planes. The results show that the strike-slip events are all favored by the subduction earthquakes coseismic stresses. They also show that the normal fault earthquakes at oceanic bulges are supported by the modeled coseismic stresses, except offshore Myanmar. The particularly interesting result is that all the possible neoformed thrust faults perpendicular to the intraplate P-axis are inhibited by the same coseismic stresses. This suggests that the style of intraplate deformation favored near the Sumatra Trench in the short-term by subduction earthquakes is the same than the long-term style. Under the effect of northward slab pull forces, Australia tries to detach from its Indian "brake" along the WB's N-S transform faults.
NASA Astrophysics Data System (ADS)
Ogawa, Kinya; Kobayashi, Hidetoshi; Sugiyama, Fumiko; Horikawa, Keitaro
Thermal activation theory is well-known to be a useful theory to explain the mechanical behaviour of various metals in the wide range of temperature and strain-rate. In this study, a number of trials to obtain the lower yield stress or flow stress at high strain rates from quasi-static data were carried out using the data shown in the report titled “The final report of research group on high-speed deformation of steels for automotive use”. A relation between the thermal component of stress and the strain rate obtained from experiments for αFe and the temperature-strain rate parameter were used with thermal activation theory. The predictions were successfully performed and they showed that the stress-strain behaviour at high strain rates can be evaluated from quasi-static data with good accuracy.
Determination of babbit mechanical properties based on tin under static and cyclic loading
NASA Astrophysics Data System (ADS)
Zernin, M. V.
2018-03-01
Based on the results of studies of babbitt on the basis of tin under static loading under three types of stress state, the parameters of the criterion for the equivalence of stressed states were refined and a single diagram of the babbitt deformation was obtained. It is shown that the criterion of equivalence for static loading should contain the first principal stress and stress intensity. With cyclic loading, the first main voltage can be used as a criterion. The stages of development of fatigue cracks are described and it is logical to use a statistical approach to reveal the boundary of the transition from short cracks to macrocracks, based on a significant difference in the characteristics of the dispersion of the crack speeds at these two stages. The results of experimental studies of the cyclic crack resistance of babbitt are presented and the parameters of this boundary are obtained.
NASA Astrophysics Data System (ADS)
Holtkamp, S. G.; Pritchard, M. E.; Lohman, R. B.; Brudzinski, M. R.
2009-12-01
Recent geodetic analysis indicates earthquake swarms may be associated with slow slip such that earthquakes may only represent a fraction of the moment release. To investigate this potential relationship, we have developed a manual search approach to identify earthquake swarms from a seismicity catalog. Our technique is designed to be insensitive to spatial and temporal scales and the total number of events, as seismicity rates vary in different fault zones. Our first application of this technique on globally recorded earthquakes in South America detects 35 possible swarms of varying spatial scale, with 18 in the megathrust region and 8 along the volcanic arc. Three swarms in the vicinity of the arc appear to be triggered by the Mw=8.5 2001 Peru earthquake, and are examined for possible triggering mechanisms. Coulomb stress modeling suggests that static stress changes due to the earthquake are insufficient to trigger activity, so a dynamic or secondary triggering mechanism is more likely. Volcanic swarms are often associated with ground deformation, either associated with fluid movement (e.g. dike intrusion or chamber inflation or deflation) or fault movement, although these processes are sometimes difficult to differentiate. The only swarm along the arc with sufficient geodetic data that we can process and model is near Ticsani Volcano in Peru. In this case, a swarm of events southeast of the volcano precedes a more typical earthquake sequence beneath the volcano, and evidence for deformation is found in the location of the swarm, but there is no evidence for aseismic slip. Rather, we favor a model where the swarm is associated with deflation of a magma body to the southeast that triggered the earthquake sequence by promoting movement on a fault beneath Ticsani. Since swarms on the subduction interface may indicate aseismic moment release, with a direct impact on hazard, we examine potential relations between swarms and megathrust ruptures. We find evidence that some earthquake swarms show strong interaction with megathrust events where swarms precede the mainshock, swarms show stress interaction with the events, swarms mark the limits of rupture propagation, and swarms occur in areas of long standing seismic gaps. The latter two features also reflect several cases where swarms occur at the subduction of aseismic ridges and trench parallel gravity highs, features often related to megathrust segmentation. Considering that aseismic ridges likely represent material heterogeneity and earthquake swarms typically have low stress drops, we propose that swarms primarily occur in transitional areas of weak coupling that inhibit megathrust seismogenesis and facilitate earthquake swarms. Only 1 swarm in the megathrust area has sufficient geodetic data to investigate slip models, offshore Copiapo, Chile, and while the preferred model suggests aseismic slip, difficulty in modeling an offshore event with onshore data indicates a model without aseismic slip cannot be ruled out. To further examine whether the relationship between swarms and megathrust segmentation is locally derived or more pervasive, we will present results from applying our technique to other major subduction zones.
Analysis of foot structure in athletes sustaining proximal fifth metatarsal stress fracture.
Hetsroni, Iftach; Nyska, Meir; Ben-Sira, David; Mann, Gideon; Segal, Ofer; Maoz, Guy; Ayalon, Moshe
2010-03-01
In the past, several studies provided anecdotal descriptions of high-arched feet in individuals sustaining proximal fifth metatarsal stress fractures. This relationship has never been supported by scientific evidence. Our objective was to examine whether athletes who sustained this injury had an exceptional static foot structure or dynamic loading pattern. Ten injured professional soccer players who regained full professional activity following a unilateral proximal fifth metatarsal stress fracture and ten control soccer players were examined. Independent variables included static evaluation of foot and arch structure, followed by dynamic plantar foot pressure evaluation. Each variable was compared between injured, contra-lateral uninjured, and control feet. Static measurements of foot and arch structure did not reveal differences among the groups. However, plantar pressure evaluation revealed relative unloading of the fourth metatarsal in injured and uninjured limbs of injured athletes compared with control, while the fifth metatarsal revealed pressure reduction only in the injured limbs of injured athletes. Athletes who sustained proximal fifth metatarsal stress fracture were not characterized by an exceptional static foot structure. Dynamically, lateral metatarsal unloading during stance may either play a role in the pathogenesis of the injury, or alternately represent an adaptive process. Footwear fabrication for previously injured athletes should not categorically address cushioning properties designed for high-arch feet, but rather focus on individual dynamic evaluation of forefoot loading, with less attention applied to static foot and arch characteristics.
Abramowitch, Steven D.; Zhang, Xiaoyan; Curran, Molly; Kilger, Robert
2010-01-01
Background Over fifty-percent of anterior cruciate ligament reconstructions are performed using semitendinosus and gracilis tendon autografts. Despite their increased use, there remains little quantitative data on their mechanical behavior. Therefore, the objective of this study was to investigate the quasi-static mechanical and nonlinear viscoelastic properties of human semitendinosus and gracilis tendons, as well as the variation of these properties along their length. Methods Specimens were subjected to a series of uniaxial tensile tests: one-hour static stress-relaxation test, 30-cycle cyclic stress-relaxation test and load to failure test. To describe the nonlinear viscoelastic behavior, the quasi-linear viscoelastic theory was utilized to model data from the static stress relaxation experiment. Findings The constants describing the viscoelastic behavior were similar between the proximal and distal halves of the gracilis tendon. The proximal half of the semitendinosus tendon, however, had a greater viscous response than its distal half, which was also significantly higher than the proximal gracilis tendon. In terms of the quasi-static mechanical properties, the properties were similar between the proximal and distal halves of the semitendinosus tendon. However, the distal gracilis tendon showed a significantly higher tangent modulus and ultimate stress compared to its proximal half, which was also significantly higher than the distal semitendinosus tendon. Interpretation The results of this study demonstrate differences between the semitendinosus and gracilis tendons in terms of their quasi-static mechanical and nonlinear viscoelastic properties. These results are important for establishing surgical preconditioning protocols and graft selection. PMID:20092917
Yan, Hong-tao; Zhang, Yi; Liao, Ga; Zhang, Kui; Li, Bin; Wang, Ye; Liao, Zhi-gang
2006-07-01
To detect whether ethanol can affect the expression of HSP70 in endothelial cells under fluid shear stress. Ethanol at different concentrations was added to the culture medium of endothelial cells, EA. Hy926, which was treated statically or under 1Pa fluid shear stress. After the incubation of 1 h, 2 h, 4 h and 6 h, the expression of HSP70 was detected by immunohistochemical method(SP). In the control group, the expression of HSP70 was negative under static state, while it was positive under 1Pa fluid shear stress lasting 4 h even without ethanol. No statistic difference was found between the 50 mg/dL ethanol group and the control group with the same treatment time of fluid shear stress. HSP70 expression was found under static state with 150 mg/dL ethanol after 4 h or 300 mg/dL ethanol after 2 h respectively. The expression increased greatly under 1Pa fluid shear stress in the same ethanol concentrations. Medium to high ethanol concentration in coordination with fluid shear stress can strongly stimulates the expression of HSP70 by a kinetic mechanism of time-dependent.
Is stress a trigger factor for migraine?
Schoonman, G G; Evers, D J; Ballieux, B E; de Geus, E J; de Kloet, E R; Terwindt, G M; van Dijk, J G; Ferrari, M D
2007-06-01
Although mental stress is commonly considered to be an important trigger factor for migraine, experimental evidence for this belief is yet lacking. To study the temporal relationship between changes in stress-related parameters (both subjective and objective) and the onset of a migraine attack. This was a prospective, ambulatory study in 17 migraine patients. We assessed changes in perceived stress and objective biological measures for stress (saliva cortisol, heart rate average [HRA], and heart rate variability [low-frequency power and high-frequency power]) over 4 days prior to the onset of spontaneous migraine attacks. Analyses were repeated for subgroups of patients according to whether or not they felt their migraine to be triggered by stress. There were no significant temporal changes over time for the whole group in perceived stress (p=0.50), morning cortisol (p=0.73), evening cortisol (p=0.55), HRA (p=0.83), low-frequency power (p=0.99) and high-frequency power (p=0.97) prior to or during an attack. Post hoc analysis of the subgroup of nine stress-sensitive patients who felt that >2/3 of their migraine attacks were triggered by psychosocial stress, revealed an increase for perceived stress (p=0.04) but no changes in objective stress response measures. At baseline, this group also showed higher scores on the Penn State Worry Questionnaire (p=0.003) and the Cohen Perceived Stress Scale (p=0.001) compared to non-stress-sensitive patients. Although stress-sensitive patients, in contrast to non-stress-sensitive patients, may perceive more stress in the days before an impending migraine attack, we failed to detect any objective evidence for a biological stress response before or during migraine attacks.
Investigation on Static Softening Behaviors of a Low Carbon Steel Under Ferritic Rolling Condition
NASA Astrophysics Data System (ADS)
Dong, Haifeng; Cai, Dayong; Zhao, Zhengzheng; Wang, Zhiyong; Wang, Yuhui; Yang, Qingxiang; Liao, Bo
2010-03-01
The study aims to postulate a theoretical hypothesis for the finishing period of ferritic rolling technique of the low carbon steel. The static softening behavior during multistage hot deformation of a low carbon steel has been studied by double hot compression tests at 700-800 °C and strain rate of 1 s-1 using a Gleeble-3500 simulator. Interrupted deformation is conducted with interpass times varying from 1 to 100 s after achieving a true strain of 0.5 in the first stage. The results indicate that the flow stress value at the second deformation is lower than that at the first one, and the flow stress drops substantially. The static softening effects increase with the increase of deformation temperature, holding temperature, and interpass time. The value of the ferritic static softening activation energy is obtained, and the static softening kinetics is modeled by the Avrami equation.
Seismic hazard assessment over time: Modelling earthquakes in Taiwan
NASA Astrophysics Data System (ADS)
Chan, Chung-Han; Wang, Yu; Wang, Yu-Ju; Lee, Ya-Ting
2017-04-01
To assess the seismic hazard with temporal change in Taiwan, we develop a new approach, combining both the Brownian Passage Time (BPT) model and the Coulomb stress change, and implement the seismogenic source parameters by the Taiwan Earthquake Model (TEM). The BPT model was adopted to describe the rupture recurrence intervals of the specific fault sources, together with the time elapsed since the last fault-rupture to derive their long-term rupture probability. We also evaluate the short-term seismicity rate change based on the static Coulomb stress interaction between seismogenic sources. By considering above time-dependent factors, our new combined model suggests an increased long-term seismic hazard in the vicinity of active faults along the western Coastal Plain and the Longitudinal Valley, where active faults have short recurrence intervals and long elapsed time since their last ruptures, and/or short-term elevated hazard levels right after the occurrence of large earthquakes due to the stress triggering effect. The stress enhanced by the February 6th, 2016, Meinong ML 6.6 earthquake also significantly increased rupture probabilities of several neighbouring seismogenic sources in Southwestern Taiwan and raised hazard level in the near future. Our approach draws on the advantage of incorporating long- and short-term models, to provide time-dependent earthquake probability constraints. Our time-dependent model considers more detailed information than any other published models. It thus offers decision-makers and public officials an adequate basis for rapid evaluations of and response to future emergency scenarios such as victim relocation and sheltering.
NASA Astrophysics Data System (ADS)
Velasco, A. A.; Karplus, M. S.; Dena, O.; Gonzalez-Huizar, H.; Husker, A. L.; Perez-Campos, X.; Calo, M.; Valdes, C. M.
2017-12-01
The September 7 Tehuantepec, Mexico (M=8.1) and the September 19 Morelos-Puebla, Mexico (M=7.1) earthquakes ruptured with extensional faulting within the Cocos Plate at 70-km and 50-km depth, as it subducts beneath the continental North American Plate. Both earthquakes caused significant damage and loss of life. These events were followed by a M=6.1 extensional earthquake at only 10-km depth in Oaxaca on September 23, 2017. While the Morelos-Puebla earthquake was likely too far away to be statically triggered by the Tehuantepec earthquake, initial Coulomb stress analyses show that the M=6.1 event may have been an aftershock of the Tehuantepec earthquake. Many questions remain about these earthquakes, including: Did the Cocos Plate earthquakes load the upper plate, and could they possibly trigger an equal or larger earthquake on the plate interface? Are these the result of plate bending? Do the aftershocks migrate to the locked zone in the subduction zone? Why did the intermediate depth earthquakes create so much damage? Are these earthquakes linked by dynamic stresses? Is it possible that a potential slow-slip event triggered both events? To address some of these questions, we deployed 10 broadband seismometers near the epicenter of the Tehuantepec, Mexico earthquake and 51 UTEP-owned nodes (5-Hz, 3-component geophones) to record aftershocks and augment networks deployed by the Universidad Nacional Autónoma de México (UNAM). The 10 broadband instruments will be deployed for 6 months, while the nodes were deployed 25 days. The relative ease-of-deployment and larger numbers of the nodes allowed us to deploy them quickly in the area near the M=6.1 Oaxaca earthquake, just a few days after that earthquake struck. We deployed them near the heavily-damaged cities of Juchitan, Ixtaltepec, and Ixtepec as well as in Tehuantepec and Salina Cruz, Oaxaca in order to test their capabilities for site characterization and aftershock studies. This is the first test of these instruments in a region heavily affected by aftershocks, outside of Oklahoma. Analysis of the nodal and broadband data will allow us to investigate fault geometries from aftershock locations, stress release and orientation from the determination of fault plane solutions, and site effects and characteristics in regions of extensive damage.
Towards a Systematic Search for Triggered Seismic Events in the USA
NASA Astrophysics Data System (ADS)
Tang, V.; Chao, K.; Van der Lee, S.
2017-12-01
Dynamic triggering of small earthquakes and tectonic tremor by small stress variations associated with passing surface waves from large-magnitude teleseismic earthquakes have been observed in seismically active regions in the western US. Local stress variations as small as 5 10 kPa can suffice to advance slip on local faults. Observations of such triggered events share certain distinct characteristics. With an eye towards an eventual application of machine learning, we began a systematic search for dynamically triggered seismic events in the USA that have these characteristics. Such a systematic survey has the potential to help us to better understand the fundamental process of dynamic triggering and hazards implied by it. Using visual inspection on top of timing and frequency based selection criteria for these seismic phenomena, our search yielded numerous false positives, indicating the challenge posed by moving from ad-hoc observations of dynamic triggering to a systematic search that also includes a catalog of non-triggering, even when sufficient stress variations are supplied. Our search includes a dozen large earthquakes that occurred during the tenure of USArray. One of these earthquakes (11 April 2012 Mw8.6 Sumatra), for example, was observed by USArray-TA stations in the Midwest and other station networks (such as PB and UW), and yielded candidate-triggered events at 413 stations. We kept 79 of these observations after closer visual inspection of the observed events suggested distinct P and S arrivals from a local earthquake, or a tremor modulation with the same period as the surface wave, among other criteria. We confirmed triggered seismic events in 63 stations along the western plate boundary where triggered events have previously been observed. We also newly found triggered tremor sources in eastern Oregon and Yellowstone, and candidate-triggered earthquake sources in New Mexico and Minnesota. Learning whether 14 of remaining candidates are confirmed as triggered events or not will provide constraints on the state of intraplate stress in the USA. Learning what it takes to discriminate between triggered events and false positives will be important for future monitoring practices.
Prospective testing of Coulomb short-term earthquake forecasts
NASA Astrophysics Data System (ADS)
Jackson, D. D.; Kagan, Y. Y.; Schorlemmer, D.; Zechar, J. D.; Wang, Q.; Wong, K.
2009-12-01
Earthquake induced Coulomb stresses, whether static or dynamic, suddenly change the probability of future earthquakes. Models to estimate stress and the resulting seismicity changes could help to illuminate earthquake physics and guide appropriate precautionary response. But do these models have improved forecasting power compared to empirical statistical models? The best answer lies in prospective testing in which a fully specified model, with no subsequent parameter adjustments, is evaluated against future earthquakes. The Center of Study of Earthquake Predictability (CSEP) facilitates such prospective testing of earthquake forecasts, including several short term forecasts. Formulating Coulomb stress models for formal testing involves several practical problems, mostly shared with other short-term models. First, earthquake probabilities must be calculated after each “perpetrator” earthquake but before the triggered earthquakes, or “victims”. The time interval between a perpetrator and its victims may be very short, as characterized by the Omori law for aftershocks. CSEP evaluates short term models daily, and allows daily updates of the models. However, lots can happen in a day. An alternative is to test and update models on the occurrence of each earthquake over a certain magnitude. To make such updates rapidly enough and to qualify as prospective, earthquake focal mechanisms, slip distributions, stress patterns, and earthquake probabilities would have to be made by computer without human intervention. This scheme would be more appropriate for evaluating scientific ideas, but it may be less useful for practical applications than daily updates. Second, triggered earthquakes are imperfectly recorded following larger events because their seismic waves are buried in the coda of the earlier event. To solve this problem, testing methods need to allow for “censoring” of early aftershock data, and a quantitative model for detection threshold as a function of distance, time, and magnitude is needed. Third, earthquake catalogs contain errors in location and magnitude that may be corrected in later editions. One solution is to test models in “pseudo-prospective” mode (after catalog revision but without model adjustment). Again, appropriate for science but not for response. Hopefully, demonstrations of modeling success will stimulate improvements in earthquake detection.
NASA Astrophysics Data System (ADS)
Hreinsdóttir, S.; Freymueller, J. T.
2001-12-01
On the 13th of January 2001, an M {W} 7.7 normal fault earthquake occurred offshore El Salvador. The earthquake occurred in the subducting Cocos plate and was followed by high seismic activity and several earthquakes exceeding magnitude 5. On the 13th of February, an M {W} 6.6 strike slip earthquake occurred in the overriding Caribbean plate, about 75 km NNW from the epicenter of the large January earthquake. Deformation due to these earthquakes was observed at six continuous CORS GPS stations in Central America. In the M {W} 7.7 earthquake about 10 mm displacement was measured at GPS stations in El Salvador and Honduras. A smaller but significant dispacement was also observed at GPS stations in Nicaragua, more then 200 km from the earthquake's epicenter. In the M {W} 6.6 earthquake 41+/- 1 mm displacement in direction N111oE was measured at the GPS station in San Salvador, El Salvador. Other CORS GPS stations were not affected by that earthquake. A postsesmic signal is detectable at the San Salvador GPS station, strongest right after the earthquake and then decays. On average we see 0.3 +/- 0.1 mm/day of SSW motion of the station in the first twenty days following the earthquake. Using seismic and geodetic data, we calculated Coulomb stress changes following the January 13th, M {W} 7.7 earthquake. Of special interest were six 5.4 <= {M} {W}<=5.8 thrust events that presumably occurred on the interface between the Caribean and Cocos plate, and the M {W} 6.6 strike slip earthquake that occurred in the overriding Caribean plate. The location and focal mechanism of these earthquakes correlate with areas of calculated increase in static stress thus indicating stress triggering. The thrust events occurred 2 to 20 days after the M {W} 7.7 earthquake, in increasing distance from the M {W} 7.7 event with time.
Toda, S.; Stein, R.
2003-01-01
Two M ??? 6 well-recorded strike-slip earthquakes struck just 4 km and 48 days apart in Kagoshima prefecture, Japan, in 1997, providing an opportunity to study earthquake interaction. Aftershocks are abundant where the Coulomb stress is calculated to have been increased by the first event, and they abruptly stop where the stress is dropped by the second event. This ability of the main shocks to toggle seismicity on and off argues that static stress changes play a major role in exciting aftershocks, whereas the dynamic Coulomb stresses, which should only promote seismicity, appear to play a secondary role. If true, the net stress changes from a sequence of earthquakes might be expected to govern the subsequent seismicity distribution. However, adding the stress changes from the two Kagoshima events does not fully capture the ensuing seismicity, such as its rate change, temporal decay, or migration away from the ends of the ruptures. We therefore implement a stress transfer model that incorporates rate/state friction, in which seismicity is treated as a sequence of independent nucleation events that are dependent on the fault slip, slip rate, and elapsed time since the last event. The model reproduces the temporal response of seismicity to successive stress changes, including toggling, decay, and aftershock migration. Nevertheless, the match of observed to predicted seismicity is quite imperfect, due perhaps to inadequate knowledge of several model parameters. However, to demonstrate the potential of this approach, we build a probabilistic forecast of larger earthquakes on the expected rate of small aftershocks, taking advantage of the large statistical sample the small shocks afford. Not surprisingly, such probabilities are highly time- and location-dependent: During the first decade after the main shocks, the seismicity rate and the chance of successive large shocks are about an order of magnitude higher than the background rate and are concentrated exclusively in the stress triggering zones. Copyright 2003 by the American Geophysical Uion.
Stress drop with constant, scale independent seismic efficiency and overshoot
Beeler, N.M.
2001-01-01
To model dissipated and radiated energy during earthquake stress drop, I calculate dynamic fault slip using a single degree of freedom spring-slider block and a laboratory-based static/kinetic fault strength relation with a dynamic stress drop proportional to effective normal stress. The model is scaled to earthquake size assuming a circular rupture; stiffness varies inversely with rupture radius, and rupture duration is proportional to radius. Calculated seismic efficiency, the ratio of radiated to total energy expended during stress drop, is in good agreement with laboratory and field observations. Predicted overshoot, a measure of how much the static stress drop exceeds the dynamic stress drop, is higher than previously published laboratory and seismic observations and fully elasto-dynamic calculations. Seismic efficiency and overshoot are constant, independent of normal stress and scale. Calculated variation of apparent stress with seismic moment resembles the observational constraints of McGarr [1999].
NASA Astrophysics Data System (ADS)
Toda, S.; Stein, R. S.
2017-12-01
The M=8.1 and M=7.1 events struck 12 days and 600 km apart, both with an independent probability of occurrence of 0.5% per year, based on the GEAR model [Bird et al., 2015]. Are they related? First, we calculated the static stress imparted by the M=8.1 shock to the fault that ruptured in the M=7.1, and find a tiny push that would favor rupture. But the stress increase (0.2 kPa) is less than the fault would experience from the tidal stresses, and so it should be inconsequential. We next used the México Servicio Sismológico Nacional (UNAM) online catalog to look at the quakes in the month before the M=8.1 and in the 13 days since. We calculate the completeness to be M≥4.0. There are virtually no remote aftershocks from the Chiapas rupture that extend within 250 km of the M=7.1 shock during the first week after the M=8.1. So, if anything, the M=8.1 turned off for a week or more the region that ruptured in the M=7.1. Events started turning on about 2-3 days before the M=7.1, but none of those struck within 40 km of the future M=7.1 mainshock. The seismic surface waves unleashed by great earthquakes envelop the globe in just 160 minutes, and yet triggering of remote large aftershocks during these 2-3 hours is either very rare [Pollitz et al., Nature 2012] or in dispute [Fan & Shearer, 2016 vs. Yue et al., 2017]. So, the waves must trigger tiny shocks that cascade into larger shocks after some delay. Or, perhaps the stresses conveyed by the waves pump pockets of fluids that slowly diffuse into nearby fault zones, lubricating them to the point of failure [Parsons at al., 2017]. In the cases where great earthquakes are indisputably seen to trigger aftershocks at great distances or even globally, they to do so within several days, or a week at most. Since Puebla struck 12 days later, this seems to us too long a period to be explained by dynamic triggering. Even though neither quake on their own is rare, what's the chance of independent M=8.1 and M=7.1 events just 12 days and 600 km apart? We calculate that to be 1 chance in 30,000, which at first seems remote. But there's another coincidence in our midst: What's the chance that the M=7.1 Puebla shock would strike within 2 hours of the annual Mexico City earthquake drill? It's 1 chance in a 900,000. So, extreme coincidences do indeed occur in our lives, we might find that it's the best explanation we've got for this pair.
Where do we stand after twenty years of dynamic triggering studies? (Invited)
NASA Astrophysics Data System (ADS)
Prejean, S. G.; Hill, D. P.
2013-12-01
In the past two decades, remote dynamic triggering of earthquakes by other earthquakes has been explored in a variety of physical environments with a wide array of observation and modeling techniques. These studies have significantly refined our understanding of the state of the crust and the physical conditions controlling earthquake nucleation. Despite an ever growing database of dynamic triggering observations, significant uncertainties remain and vigorous debate in almost all aspects of the science continues. For example, although dynamic earthquake triggering can occur with peak dynamic stresses as small as 1 kPa, triggering thresholds and their dependence on local stress state, hydrological environment, and frictional properties of faults are not well understood. Some studies find a simple threshold based on the peak amplitude of shaking while others find dependencies on frequency, recharge time, and other parameters. Considerable debate remains over the range of physical processes responsible for dynamic triggering, and the wide variation in dynamic triggering responses and time scales suggests triggering by multiple physical processes. Although Coulomb shear failure with various friction laws can often explain dynamic triggering, particularly instantaneous triggering, delayed dynamic triggering may be dependent on fluid transport and other slowly evolving aseismic processes. Although our understanding of the global distribution of dynamic triggering has improved, it is far from complete due to spatially uneven monitoring. A major challenge involves establishing statistical significance of potentially triggered earthquakes, particularly if they are isolated events or time-delayed with respect to triggering stresses. Here we highlight these challenges and opportunities with existing data. We focus on environmental dependence of dynamic triggering by large remote earthquakes particularly in volcanic and geothermal systems, as these systems often have high rates of background seismicity. In many volcanic and geothermal systems, such as the Geysers in Northern California, dynamic triggering of micro-earthquakes is frequent and predictable. In contrast, most active and even erupting volcanoes in Alaska (with the exception of the Katmai Volcanic Cluster) do not experience dynamic triggering. We explore why.
NASA Astrophysics Data System (ADS)
Mizutani, Tomoko; Takeuchi, Kiyoshi; Saraya, Takuya; Kobayashi, Masaharu; Hiramoto, Toshiro
2018-04-01
We propose a new version of the post fabrication static random access memory (SRAM) self-improvement technique, which utilizes multiple stress application. It is demonstrated that, using a device matrix array (DMA) test element group (TEG) with intrinsic channel fully depleted (FD) silicon-on-thin-buried-oxide (SOTB) six-transistor (6T) SRAM cells fabricated by the 65 nm technology, the lowering of data retention voltage (DRV) is more effectively achieved than using the previously proposed single stress technique.
NASA Astrophysics Data System (ADS)
Kruszka, Leopold; Moćko, Wojciech; Fenu, Luigi; Cadoni, Ezio
2015-09-01
Specimen reinforced with glass and basalt fibers were prepared using Standard Portland cement (CEM I, 52.5 R as prescribed by EN 197-1) and standard sand, in accordance with EN 196-1. From this cementitious mixture, a reference cement mortar without fibers was first prepared. Compressive strength, modulus of elasticity, and mod of fracture were determined for all specimens. Static and dynamic properties were investigated using Instron testing machine and split Hopkinson pressure bar, respectively. Content of the glass fibers in the mortar does not influence the fracture stress at static loading conditions in a clearly observed way. Moreover at dynamic range 5% content of the fiber results in a significant drop of fracture stress. Analysis of the basalt fibers influence on the fracture stress shows that optimal content of this reinforcement is equal to 3% for both static and dynamic loading conditions. Further increase of the fiber share gives the opposite effect, i.e. drop of the fracture stress.
NASA Astrophysics Data System (ADS)
Peng, Z.; Yao, D.; Fry, B.; Wallace, L. M.; Kaneko, Y.; Meng, X.
2017-12-01
We conduct a systematic search for dynamically triggered earthquakes in the North Island of New Zealand following the 11/13/2016 Mw7.8 Kaikoura earthquake. This event ruptured multiple faults in the northeastern South Island of New Zealand, and propagated for more than 170 km mostly in the NE direction. By examining earthquakes listed in the GeoNet catalog, we can observe a clear increase of microseismicity in the North Island following the Kaikoura mainshock. However, visual inspection of high-frequency seismograms recorded by 130 dense broadband and short-period sensors revealed that many local earthquakes were not captured by the GeoNet catalog, likely due to being obscured by the mainshock coda and intense aftershock sequence in the South Island. To further quantify the triggering phenomenon in the North Island following the mainshock, we apply a waveform matched filter technique to obtain a more complete catalog around the mainshock occurrence time. Assuming many of the triggered North Island events occur on faults that were active prior to the Mw7.8 earthquake, we select 17,500 events listed in the GeoNet catalog from 04/2016 to 03/2017 as templates to scan through continuous data from 11/01/2017 to 11/30/2017. Currently, 19,000 additional events are detected within the one month study period, comparing to 1,950 events listed in the catalog. The initial locations from the GeoNet catalog reveal that most triggered earthquakes occurred in the uppermost crust (<20km), likely linked to inland crustal faults and/or volcanic systems. In addition, another burst of seismicity (including a magnitude 6 event) occurred near the Wairarapa coastline about 400km north of the main rupture, which was likely driven by a M7 slow slip events triggered by the mainshock. Our next step is to calibrate the magnitudes of both catalog and newly detected events by measuring their principle component slopes. In addition, we plan to measure cross-correlation differential times between newly detected and template events to obtain better relative locations, and compare seismicity rate changes with both static and dynamic stress changes to better understand the triggering mechanisms. Updated results will be presented at the meeting.
NASA Astrophysics Data System (ADS)
Ohta, Y.; Ohzono, M.; Takahashi, H.; Kawamoto, S.; Hino, R.
2017-12-01
A large and destructive earthquake (Mjma 7.3) occurred on April 15, 2016 in Kumamoto region, southwestern Japan. This earthquake was accompanied approximately 32 s later by an M 6 earthquake in central Oita region, which hypocenter located 80 km northeast from the hypocenter of the mainshock of the Kumamoto earthquake. This triggered earthquake also had the many aftershocks in and around the Oita region. It is important to understand how to occur such chain-reacted earthquake sequences. We used the 1Hz dual-frequency phase and range data from GEONET in Kyushu island. The data were processed using GIPSY-OASIS (version 6.4). We adopoted kinematic PPP strategy for the coordinate estimation. The reference GPS satellite orbit and 5 s clock information were obtained using the CODE product. We also applied simple sidereal filter technique for the estimated time series. Based on the obtained 1Hz GNSS time series, we estimated the areal strain and principle strain field using the method of the Shen et al. (1996). For the assessment of the dynamic strain, firstly we calculated the averaged absolute value of areal strain field between 60-85s after the origin time of the mainshock of the Kumamoto earthquake which was used as the "reference" static strain field. Secondly, we estimated the absolute value of areal strain in each time step. Finally, we calculated the strain ratio in each time step relative to the "reference". Based on this procedure, we can extract the spatial and temporal characteristic of the dynamic strain in each time step. Extracted strain ratio clearly shows the spatial and temporal dynamic strain characteristic. When an attention is paid to a region of triggered Oita earthquake, the timing of maximum dynamic strain ratio in the epicenter just corresponds to the origin time of the triggered event. It strongly suggested that the large dynamic strain may trigger the Oita event. The epicenter of the triggered earthquake located within the geothermal region. In the geothermal region, the crustal materials are more sensitive to stress perturbations, and the earthquakes are more easily triggered compared with other typical regions. Our result also suggested that the real-time strain field monitoring may be useful information for the understanding of the possibility of the remotely triggered earthquake in the future.
Automated assessment of pain in rats using a voluntarily accessed static weight-bearing test.
Kim, Hung Tae; Uchimoto, Kazuhiro; Duellman, Tyler; Yang, Jay
2015-11-01
The weight-bearing test is one method to assess pain in rodent animal models; however, the acceptance of this convenient method is limited by the low throughput data acquisition and necessity of confining the rodents to a small chamber. We developed novel data acquisition hardware and software, data analysis software, and a conditioning protocol for an automated high throughput static weight-bearing assessment of pain. With this device, the rats voluntarily enter the weighing chamber, precluding the necessity to restrain the animals and thereby removing the potential stress-induced confounds as well as operator selection bias during data collection. We name this device the Voluntarily Accessed Static Incapacitance Chamber (VASIC). Control rats subjected to the VASIC device provided hundreds of weight-bearing data points in a single behavioral assay. Chronic constriction injury (CCI) surgery and paw pad injection of complete Freund's adjuvant (CFA) or carrageenan in rats generated hundreds of weight-bearing data during a 30 minute recording session. Rats subjected to CCI, CFA, or carrageenan demonstrated the expected bias in weight distribution favoring the un-operated leg, and the analgesic effect of i.p. morphine was demonstrated. In comparison with existing methods, brief water restriction encouraged the rats to enter the weighing chamber to access water, and an infrared detector confirmed the rat position with feet properly positioned on the footplates, triggering data collection. This allowed hands-off measurement of weight distribution data reducing operator selection bias. The VASIC device should enhance the hands-free parallel collection of unbiased weight-bearing data in a high throughput manner, allowing further testing of this behavioral measure as an effective assessment of pain in rodents. Copyright © 2015. Published by Elsevier Inc.
Automated assessment of pain in rats using a voluntarily accessed static weight-bearing test
Kim, Hung Tae; Uchimoto, Kazuhiro; Duellman, Tyler; Yang, Jay
2015-01-01
The weight-bearing test is one method to assess pain in rodent animal models; however, the acceptance of this convenient method is limited by the low throughput data acquisition and necessity of confining the rodents to a small chamber. New methods We developed novel data acquisition hardware and software, data analysis software, and a conditioning protocol for an automated high throughput static weight-bearing assessment of pain. With this device, the rats voluntarily enter the weighing chamber, precluding the necessity to restrain the animals and thereby removing the potential stress-induced confounds as well as operator selection bias during data collection. We name this device the Voluntarily Accessed Static Incapacitance Chamber (VASIC). Results Control rats subjected to the VASIC device provided hundreds of weight-bearing data points in a single behavioral assay. Chronic constriction injury (CCI) surgery and paw pad injection of complete Freund's adjuvant (CFA) or carrageenan in rats generated hundreds of weight-bearing data during a 30 minute recording session. Rats subjected to CCI, CFA, or carrageenan demonstrated the expected bias in weight distribution favoring the un-operated leg, and the analgesic effect of i.p. morphine was demonstrated. In comparison with existing methods, brief water restriction encouraged the rats to enter the weighing chamber to access water, and an infrared detector confirmed the rat position with feet properly positioned on the footplates, triggering data collection. This allowed hands-off measurement of weight distribution data reducing operator selection bias. Conclusion The VASIC device should enhance the hands-free parallel collection of unbiased weight-bearing data in a high throughput manner, allowing further testing of this behavioral measure as an effective assessment of pain in rodents. PMID:26143745
Static stress change from the 8 October, 2005 M = 7.6 Kashmir earthquake
Parsons, T.; Yeats, R.S.; Yagi, Y.; Hussain, A.
2006-01-01
We calculated static stress changes from the devastating M = 7.6 earthquake that shook Kashmir on 8 October, 2005. We mapped Coulomb stress change on target fault planes oriented by assuming a regional compressional stress regime with greatest principal stress directed orthogonally to the mainshock strike. We tested calculation sensitivity by varying assumed stress orientations, target-fault friction, and depth. Our results showed no impact on the active Salt Range thrust southwest of the rupture. Active faults north of the Main Boundary thrust near Peshawar fall in a calculated stress-decreased zone, as does the Raikot fault zone to the northeast. We calculated increased stress near the rupture where most aftershocks occurred. The greatest increase to seismic hazard is in the Indus-Kohistan seismic zone near the Indus River northwest of the rupture termination, and southeast of the rupture termination near the Kashmir basin.
NASA Technical Reports Server (NTRS)
Hartmann, E C; Stickley, G W
1942-01-01
Fatigue-test were conducted on six specimens made from 3/4-inch-diameter 17S-T rolled-and-drawn rod for the purpose of obtaining additional data on the fatigue life of the material at stresses up to the static strength. The specimens were tested in direct tension using a stress range from zero to a maximum in tension. A static testing machine was used to apply repeated loads in the case of the first three specimens; the other three specimens were tested in a direct tension-compression fatigue machine. The direct-stress fatigue curve obtained for the material indicates that, in the range of stresses above about two-thirds the tensile strength, the fatigue strength is higher than might be expected by simply extrapolating the ordinary curve of stress plotted against the number of cycles determined at lower stresses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Andresen
2000-11-08
Stress corrosion crack growth studies have been performed on annealed and cold worked Titanium Grade 7 and Alloy 22 in 110 C, aerated, concentrated, high pH salt environments characteristic of concentrated ground water. Following a very careful transition from fatigue precracking conditions to SCC conditions, the long term behavior under very stable conditions was monitored using reversing dc potential drop. Titanium Grade 7 exhibited continuous crack growth under both near-static and complete static loading conditions. Alloy 22 exhibited similar growth rates, but was less prone to maintain stable crack growth as conditions approached fully static loading.
Dynamic Earthquake Triggering on Seismogenic Faults in Oklahoma
NASA Astrophysics Data System (ADS)
Qin, Y.; Chen, X.; Peng, Z.; Aiken, C.
2016-12-01
Regions with high pore pressure are generally more susceptible to dynamic triggering from transient stress change caused by surface wave of distant earthquakes. The stress threshold from triggering studies can help understand the stress state of seismogenic faults. The recent dramatic seismicity increase in central US provides a rich database for assessing dynamic triggering phenomena. We begin our study by conducting a systematic analysis of dynamic triggering for the continental U.S using ANSS catalog (with magnitude of completeness Mc=3) from 49 global mainshocks (Ms>6.5, depth<100km, estimated dynamic stress>1kPa). We calculate β value for each 1° by 1° bins in 30 days before and 10 days after the mainshock. To identify regions that experience triggering from a distant mainshock, we generate a stacked map using β≥2 - which represents significant seismicity rate increase. As expected, the geothermal and volcanic fields in California show clear response to distant earthquakes. We also note areas in Oklahoma and north Texas show enhanced triggering, where wastewater-injection induced seismicity are occurring. Next we focus on Oklahoma and use a local catalog from Oklahoma Geological Survey with lower completeness threshold Mc to calculate the beta map in 0.2° by 0.2° bins for each selected mainshock to obtain finer spatial resolutions of the triggering behavior. For those grids with β larger than 2.0, we use waveforms from nearby stations to search for triggered events. The April 2015 M7.8 Nepal earthquake causes a statistically significant increase of local seismicity (β=3.5) in the Woodward area (west Oklahoma) during an on-going earthquake sequence. By visually examining the surface wave from the nearest station, we identify 3 larger local events, and 10 additional smaller events with weaker but discernable amplitude. Preliminary analysis shows that the triggering is related to Rayleigh wave, which would cause dilatational or shear stress changes along the strike direction of Woodward fault, given the azimuth between Nepal and Oklahoma. Our next step is to apply matched-filter technique to generate a complete catalog for an extended period of time, in order to better understand dynamic triggering and spatio-temporal evolution of this sequence - one of the largest sequences in western Oklahoma.
Deep flaws in weldments of aluminum and titanium
NASA Technical Reports Server (NTRS)
Masters, J. N.; Engstrom, W. L.; Bixler, W. D.
1974-01-01
Surface flawed specimens of 2219-T87 and 6Al-4V STA titanium weldments were tested to determine static failure modes, failure strength, and fatigue flaw growth characteristics. Thicknesses selected for this study were purposely set at values where, for most test conditions, abrupt instability of the flaw at fracture would not be expected. Static tests for the aluminum weldments were performed at room, LN2 and LH2 temperatures. Titanium static tests for tests were performed at room and LH2 temperatures. Results of the static tests were used to plot curves relating initial flaw size to leakage- or failure-stresses (i.e. "failure" locus curves). Cyclic tests, for both materials, were then performed at room temperature, using initial flaws only slightly below the previously established failure locus for typical proof stress levels. Cyclic testing was performed on pairs of specimens, one with and one without a simulated proof test cycle. Comparisons were made then to determine the value and effect of proof testing as affected by the various variables of proof and operating stress, flaw shape, material thickness, and alloy.
Sirmatel, O; Sert, C; Sirmatel, F; Selek, S; Yokus, B
2007-06-01
The aim of this study was to investigate the effects of a high-strength magnetic field produced by a magnetic resonance imaging (MRI) apparatus on oxidative stress. The effects of a 1.5 T static magnetic field on the total antioxidant capacity (TAC), total oxidant status (TOS) and oxidative stress index (OSI) in male subjects were investigated. In this study, 33 male volunteers were exposed to a 1.5 T static magnetic field for a short time and the TAC, TOS and OSI of each subject were determined. Magnetic field exposure was provided using a magnetic resonance apparatus; radiofrequency was not applied. Blood samples were taken from subjects and TAC, TOS and OSI values were measured using the methods of Erel. TAC showed a significant increase in post-exposures compared to pre-exposures to the magnetic field (p < 0.05). OSI and TOS showed a significant decrease in post-exposures compared to pre-exposures to a 1.5 T magnetic field (for each of two, p < 0.01). The 1.5 T static magnetic field used in the MRI apparatus did not yield a negative effect; on the contrary, it produced the positive effect of decreasing oxidative stress in men following short-term exposure.
Intraplate triggered earthquakes: Observations and interpretation
Hough, S.E.; Seeber, L.; Armbruster, J.G.
2003-01-01
We present evidence that at least two of the three 1811-1812 New Madrid, central United States, mainshocks and the 1886 Charleston, South Carolina, earthquake triggered earthquakes at regional distances. In addition to previously published evidence for triggered earthquakes in the northern Kentucky/southern Ohio region in 1812, we present evidence suggesting that triggered events might have occurred in the Wabash Valley, to the south of the New Madrid Seismic Zone, and near Charleston, South Carolina. We also discuss evidence that earthquakes might have been triggered in northern Kentucky within seconds of the passage of surface waves from the 23 January 1812 New Madrid mainshock. After the 1886 Charleston earthquake, accounts suggest that triggered events occurred near Moodus, Connecticut, and in southern Indiana. Notwithstanding the uncertainty associated with analysis of historical accounts, there is evidence that at least three out of the four known Mw 7 earthquakes in the central and eastern United States seem to have triggered earthquakes at distances beyond the typically assumed aftershock zone of 1-2 mainshock fault lengths. We explore the possibility that remotely triggered earthquakes might be common in low-strain-rate regions. We suggest that in a low-strain-rate environment, permanent, nonelastic deformation might play a more important role in stress accumulation than it does in interplate crust. Using a simple model incorporating elastic and anelastic strain release, we show that, for realistic parameter values, faults in intraplate crust remain close to their failure stress for a longer part of the earthquake cycle than do faults in high-strain-rate regions. Our results further suggest that remotely triggered earthquakes occur preferentially in regions of recent and/or future seismic activity, which suggests that faults are at a critical stress state in only some areas. Remotely triggered earthquakes may thus serve as beacons that identify regions of long-lived stress concentration.
Stress granule formation via ATP depletion-triggered phase separation
NASA Astrophysics Data System (ADS)
Wurtz, Jean David; Lee, Chiu Fan
2018-04-01
Stress granules (SG) are droplets of proteins and RNA that form in the cell cytoplasm during stress conditions. We consider minimal models of stress granule formation based on the mechanism of phase separation regulated by ATP-driven chemical reactions. Motivated by experimental observations, we identify a minimal model of SG formation triggered by ATP depletion. Our analysis indicates that ATP is continuously hydrolysed to deter SG formation under normal conditions, and we provide specific predictions that can be tested experimentally.
A Static Burst Test for Composite Flywheel Rotors
NASA Astrophysics Data System (ADS)
Hartl, Stefan; Schulz, Alexander; Sima, Harald; Koch, Thomas; Kaltenbacher, Manfred
2016-06-01
High efficient and safe flywheels are an interesting technology for decentralized energy storage. To ensure all safety aspects, a static test method for a controlled initiation of a burst event for composite flywheel rotors is presented with nearly the same stress distribution as in the dynamic case, rotating with maximum speed. In addition to failure prediction using different maximum stress criteria and a safety factor, a set of tensile and compressive tests is carried out to identify the parameters of the used carbon fiber reinforced plastics (CFRP) material. The static finite element (FE) simulation results of the flywheel static burst test (FSBT) compare well to the quasistatic FE-simulation results of the flywheel rotor using inertia loads. Furthermore, it is demonstrated that the presented method is a very good controllable and observable possibility to test a high speed flywheel energy storage system (FESS) rotor in a static way. Thereby, a much more expensive and dangerous dynamic spin up test with possible uncertainties can be substituted.
The kinematics and initiation mechanisms of the earthquake-triggered Daguangbao landslide
NASA Astrophysics Data System (ADS)
Yang, Che-Ming; Cheng, Hui-Yun; Tsao, Chia-Che; Wu, Wen-Jie; Dong, Jia-Jyun; Lee, Chyi-Tyi; Lin, Ming-Lang; Zhang, Wei-Fong; Pei, Xiang-Jun; Wang, Gong-Hui; Huang, Run-Qiu
2015-04-01
The Daguangbao (DGB) landslide is one of the largest earthquake-triggered landslides induced by the 2008 Wenchuan earthquake in the world over the past century. Based on remote sensing images, topography analysis and field investigation, this landslide was speculated a gigantic atypical wedge failure with the folded bedding plane and a zigzag stepping-out joint system, which outcropped at the south and north, respectively. With the inferred failure surfaces, the volume of the DGB landslide is about 1,051 Mm3. The frequently adopted Rigid Wedge Method (RWM), which assumed zero shear stress on the sliding surface along the vectors perpendicular to the intersection line when evaluating the wedge stability, could not be valid for this super large DGB wedge. Under an assumption that the shear strength is fully mobilized on the sliding surface along the vectors perpendicular to the intersection line, this study proposed to use a Maximum Shear Stress Method (MSSM) to calculate the factor of safety (FOS) of the DGB wedge. Based on the assumptions of the two methods, the FOS of the RWM and MSSM are the upper and lower bounds for the wedge stability analysis. Based on the rotary shear tests, the averaged friction coefficients of the representative materials of the two sliding surfaces are 0.79 (bedding parallel fault gauges) and 0.71 (dolomite joints). Without external force, the FOSs of the DGB landslide are 4.14 and 2.51 by the RWM and MSSM, respectively. Restate, the wedge is stable before the 2008 Wenchuan earthquake. However, DGB landslide can be triggered at 35.7 sec based on the ground acceleration records of strong motion station MZQP during the 2008 Wenchuan earthquake and the pseudo-static stability analysis incorporated into MSSM (Acceleration: EW=0.272g, NS=0.152g, Vertical=0.244g). Moreover, using the friction coefficient of the representative materials under large shear displacement under shear velocity of 1.3 m/s (0.16 for bedding parallel fault gouges and 0.1 for dolomite joints), the gigantic wedge can be speeded up to a maximum velocity of 54 m/sec. The traveled time will be 70 seconds with a travel distance of 1.9 km.
On the origin of diverse aftershock mechanisms following the 1989 Loma Prieta earthquake
Kilb, Debi; Ellis, M.; Gomberg, J.; Davis, S.
1997-01-01
We test the hypothesis that the origin of the diverse suite of aftershock mechanisms following the 1989 M 7.1 Loma Prieta, California, earthquake is related to the post-main-shock static stress field. We use a 3-D boundary-element algorithm to calculate static stresses, combined with a Coulomb failure criterion to calculate conjugate failure planes at aftershock locations. The post-main-shock static stress field is taken as the sum of a pre-existing stress field and changes in stress due to the heterogeneous slip across the Loma Prieta rupture plane. The background stress field is assumed to be either a simple shear parallel to the regional trend of the San Andreas fault or approximately fault-normal compression. A suite of synthetic aftershock mechanisms from the conjugate failure planes is generated and quantitatively compared (allowing for uncertainties in both mechanism parameters and earthquake locations) to well-constrained mechanisms reported in the US Geological Survey Northern California Seismic Network catalogue. We also compare calculated rakes with those observed by resolving the calculated stress tensor onto observed focal mechanism nodal planes, assuming either plane to be a likely rupture plane. Various permutations of the assumed background stress field, frictional coefficients of aftershock fault planes, methods of comparisons, etc. explain between 52 and 92 per cent of the aftershock mechanisms. We can explain a similar proportion of mechanisms however by comparing a randomly reordered catalogue with the various suites of synthetic aftershocks. The inability to duplicate aftershock mechanisms reliably on a one-to-one basis is probably a function of the combined uncertainties in models of main-shock slip distribution, the background stress field, and aftershock locations. In particular we show theoretically that any specific main-shock slip distribution and a reasonable background stress field are able to generate a highly variable suite of failure planes such that quite different aftershock mechanisms may be expected to occur within a kilometre or less of each other. This scale of variability is less than the probable location error of aftershock earthquakes in the Loma Prieta region. We successfully duplicate a measure of the variability in the mechanisms of the entire suite of aftershocks. If static stress changes are responsible for the generation of aftershock mechanisms, we are able to place quantitative constraints on the level of stress that must have existed in the upper crust prior to the Loma Prieta rupture. This stress level appears to be too low to generate the average slip across the main-shock rupture plane. Possible reasons for this result range from incorrect initial assumptions of homogeneity in the background stress field, friction and fault geometry to driving stresses that arise from deeper in the crust or upper mantle. Alternatively, aftershock focal mechanisms may be determined by processes other than, or in addition to, static stress changes, such as pore-pressure changes or dynamic stresses.
Finite Element Modeling of In-Situ Stresses near Salt Bodies
NASA Astrophysics Data System (ADS)
Sanz, P.; Gray, G.; Albertz, M.
2011-12-01
The in-situ stress field is modified around salt bodies because salt rock has no ability to sustain shear stresses. A reliable prediction of stresses near salt is important for planning safe and economic drilling programs. A better understanding of in-situ stresses before drilling can be achieved using finite element models that account for the creeping salt behavior and the elastoplastic response of the surrounding sediments. Two different geomechanical modeling techniques can be distinguished: "dynamic" modeling and "static" modeling. "Dynamic" models, also known as forward models, simulate the development of structural processes in geologic time. This technique provides the evolution of stresses and so it is used to simulate the initiation and development of structural features, such as, faults, folds, fractures, and salt diapers. The original or initial configuration and the unknown final configuration of forward models are usually significantly different therefore geometric non-linearities need to be considered. These models may be difficult to constrain when different tectonic, deposition, and erosion events, and the timing among them, needs to be accounted for. While dynamic models provide insight into the stress evolution, in many cases is very challenging, if not impossible, to forward model a configuration to its known present-day geometry; particularly in the case of salt layers that evolve into highly irregular and complex geometries. Alternatively, "static" models use the present-day geometry and present-day far-field stresses to estimate the present-day in-situ stress field inside a domain. In this case, it is appropriate to use a small deformation approach because initial and final configurations should be very similar, and more important, because the equilibrium of stresses should be stated in the present-day initial configuration. The initial stresses and the applied boundary conditions are constrained by the geologic setting and available data. This modeling technique does not predict the evolution of structural elements or stresses with time; therefore it does not provide any insight into the formation of fractures that were previously developed under a different stress condition or the development of overpressure generated by a high sedimentation rate. This work provides a validation for predicting in-situ stresses near salt using "static" models. We compare synthetic examples using both modeling techniques and show that stresses near salt predicted with "static" models are comparable to the ones generated by "dynamic" models.
Hébert, Emily T; Stevens, Elise M; Frank, Summer G; Kendzor, Darla E; Wetter, David W; Zvolensky, Michael J; Buckner, Julia D; Businelle, Michael S
2018-03-01
Smartphone apps can provide real-time, tailored interventions for smoking cessation. The current study examines the effectiveness of a smartphone-based smoking cessation application that assessed risk for imminent smoking lapse multiple times per day and provided messages tailored to current smoking lapse risk and specific lapse triggers. Participants (N=59) recruited from a safety-net hospital smoking cessation clinic completed phone-based ecological momentary assessments (EMAs) 5 times/day for 3 consecutive weeks (1week pre-quit, 2weeks post-quit). Risk for smoking lapse was estimated in real-time using a novel weighted lapse risk estimator. With each EMA, participants received messages tailored to current level of risk for imminent smoking lapse and self-reported presence of smoking urge, stress, cigarette availability, and motivation to quit. Generalized linear mixed model analyses determined whether messages tailored to specific lapse risk factors were associated with greater reductions in these triggers than messages not tailored to specific triggers. Overall, messages tailored to smoking urge, cigarette availability, or stress corresponded with greater reductions in those triggers than messages that were not tailored to specific triggers (p's=0.02 to <0.001). Although messages tailored to stress were associated with greater reductions in stress than messages not tailored to stress, the association was non-significant (p=0.892) when only moments of high stress were included in the analysis. Mobile technology can be used to conduct real-time smoking lapse risk assessment and provide tailored treatment content. Findings provide initial evidence that tailored content may impact users' urge to smoke, stress, and cigarette availability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rozen, Todd D
2016-01-01
To define what are the age and gender differences for new daily persistent headache (NDPH) triggering events and how this may relate to the pathogenesis of NDPH. To describe several new triggering events for NDPH. All patients were diagnosed with primary NDPH at a headache specialty clinic during the time period of 01/2009 through 01/2013. This was a retrospective analysis of patient medical records utilizing an electronic medical record system. Ninety-seven patients were diagnosed with primary NDPH (65 women and 32 men). The mean average age of onset was younger in women than men 32.4 years vs 35.8 years. Fifty one of ninety seven NDPH patients (53%) did not recognize a triggering event while an infection or flu-like illness triggered NDPH in 22%, a stressful life event in 9%, a procedure (surgical) in 9%, and some "other" recognized trigger in 7%. All of the NDPH patients who developed new onset headache after an invasive surgical procedure were intubated. There was no significant difference in frequency for any of the triggering events between genders. The youngest age of onset was for a post stressful life event trigger while the oldest age of onset was in the post-surgical subgroup. Women developed NDPH at a younger age of onset for all recognized triggers, but there was no significant difference in ages of onset between the genders. There was no significant difference in the number of NDPH patients who had a history of migraine or no history and if they developed NDPH after any triggered event vs no triggering event. However, the majority of patients who developed NDPH after a stressful life event did have a precedent migraine history (67%). Newly noted triggers include: hormonal manipulation with progesterone, medication exposure, chemical/pesticide exposure, massage treatment, and immediately post a syncopal event. More than 50% of NDPH sufferers do not recognize a triggering event to their headaches. A key finding from the present study is the recognition that of those patients who developed NDPH after an invasive surgical procedure all required intubation and we speculate a cervicogenic origin to their headaches. The fact that both genders had an almost equal rate of occurrence for most NDPH triggers and almost the same age of onset suggests a common underlying pathogenesis for similar triggering events. A precedent history of migraine did not enhance the frequency of triggered vs nontriggered NDPH except possibly for a stressful life event. © 2015 American Headache Society.
NASA Astrophysics Data System (ADS)
Wang, J.; Xu, C.; Furlong, K.; Zhong, B.; Xiao, Z.; Yi, L.; Chen, T.
2017-12-01
Although Coulomb stress changes induced by earthquake events have been used to quantify stress transfers and to retrospectively explain stress triggering among earthquake sequences, realistic reliable prospective earthquake forecasting remains scarce. To generate a robust Coulomb stress map for earthquake forecasting, uncertainties in Coulomb stress changes associated with the source fault, receiver fault and friction coefficient and Skempton's coefficient need to be exhaustively considered. In this paper, we specifically explore the uncertainty in slip models of the source fault of the 2011 Mw 9.0 Tohoku-oki earthquake as a case study. This earthquake was chosen because of its wealth of finite-fault slip models. Based on the wealth of those slip models, we compute the coseismic Coulomb stress changes induced by this mainshock. Our results indicate that nearby Coulomb stress changes for each slip model can be quite different, both for the Coulomb stress map at a given depth and on the Pacific subducting slab. The triggering rates for three months of aftershocks of the mainshock, with and without considering the uncertainty in slip models, differ significantly, decreasing from 70% to 18%. Reliable Coulomb stress changes in the three seismogenic zones of Nanki, Tonankai and Tokai are insignificant, approximately only 0.04 bar. By contrast, the portions of the Pacific subducting slab at a depth of 80 km and beneath Tokyo received a positive Coulomb stress change of approximately 0.2 bar. The standard errors of the seismicity rate and earthquake probability based on the Coulomb rate-and-state model (CRS) decay much faster with elapsed time in stress triggering zones than in stress shadows, meaning that the uncertainties in Coulomb stress changes in stress triggering zones would not drastically affect assessments of the seismicity rate and earthquake probability based on the CRS in the intermediate to long term.
Static-stress analysis of dual-axis safety vessel
NASA Astrophysics Data System (ADS)
Bultman, D. H.
1992-11-01
An 8 ft diameter safety vessel, made of HSLA-100 steel, is evaluated to determine its ability to contain the quasi-static residual pressure from a high explosive (HE) blast. The safety vessel is designed for use with the Dual-Axis Radiographic Hydrotest (DARHT) facility being developed at Los Alamos National Laboratory. A smaller confinement vessel fits inside the safety vessel and contains the actual explosion, and the safety vessel functions as a second layer of containment in the unlikely case of a confinement vessel leak. The safety vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section 8, Division 1, and the Welding Research Council Bulletin, WRC107. Combined stresses that result from internal pressure and external loads on nozzles are calculated and compared to the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzle components are adequately designed for a static pressure of 830 psi, plus the maximum expected external loads. Shell stresses at the 'shell to nozzle' interface, produced from external loads on the nozzles, were less than 700 psi. The maximum combined stress resulting from the internal pressure plus external loads was 17,384 psi, which is significantly less than the allowable stress of 42,375 psi for HSLA-100 steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, M.G.; Kohles, S.S.; Stevens, T.L.
1996-12-31
Duality of failure mechanisms (slow crack growth from pre-existing defects versus cumulative creep damage) is examined in a silicon nitride advanced ceramic recently tested at elevated-temperatures. Static (constant stress over time), dynamic (monotonically-increasing stress over time), and cyclic (fluctuating stress over time) fatigue behaviors were evaluated in tension in ambient air at temperatures of 1150, 1260, and 1370{degrees}C for a hot-isostatically pressed monolithic {beta}-silicon nitride. At 1150{degrees}C, all three types of fatigue results showed the similar failure mechanism of slow crack growth (SCG). At 1260 and 1370{degrees}C the failure mechanism was more complex. Failure under static fatigue was dominated bymore » the accumulation of creep damage via diffusion-controlled cavities. In dynamic fatigue, failure occurred by SCG at high stress rates (>10{sup {minus}2}MPa/s) and by creep damage at low stress rates ({le}10{sup {minus}2} MPa/s). For cyclic fatigue, such rate effects influenced the stress rupture results in which times to failure were greater for dynamic and cyclic fatigue than for static fatigue. Elucidation of failure mechanisms is necessary for accurate prediction of long-term survivability and reliability of structural ceramics.« less
NASA Astrophysics Data System (ADS)
Zhao, Dezheng; Qu, Chunyan; Shan, Xinjian; Gong, Wenyu; Zhang, Yingfeng; Zhang, Guohong
2018-02-01
On 8 August 2017, a Ms7.0 earthquake stroke the city of Jiuzhaigou, Sichuan, China. The Jiuzhaigou earthquake occurred on a buried fault in the vicinity of three well-known active faults and this event offers a unique opportunity to study tectonic structures in the epicentral region and stress transferring. Here we present coseismic displacement field maps for this earthquake using descending and ascending Sentinel-1A Interferometric Synthetic Aperture Radar (InSAR) data. Deformation covered an area of approximately 50 × 50 km, with a maximum line-of-sight (LOS) displacement of 22 cm in ascending and 14 cm in descending observations on the west side of the source fault. Based on InSAR and Global Positioning System (GPS) measurements, both separately and jointly, we constructed a one-segment model to invert the coseismic slip distribution and dip angle of this event. Our final fault slip model suggests that slip was concentrated at an upper depth of 15 km; there was a maximum slip of 1.3 m and the rupture was dominated by a left-lateral strike-slip motion. The inverted geodetic moment was approximately 6.75 × 1018 Nm, corresponding to a moment magnitude of Mw6.5, consistent with seismological results. The calculated static Coulomb stress changes indicate that most aftershocks occurred in stress increasing zones caused by the mainshock rupture; the Jiuzhaigou earthquake has brought the western part of the Tazang fault 0.1-0.4 MPa closer to failure, indicating an increasing seismic hazard in this region. The Coulomb stress changes caused by the 2008 Mw7.8 Wenchuan earthquake suggest that stress loading from this event acted as a trigger for the Jiuzhaigou earthquake.
NASA Astrophysics Data System (ADS)
Cheloni, D.; Giuliani, R.; D'Agostino, N.; Mattone, M.; Bonano, M.; Fornaro, G.; Lanari, R.; Reale, D.; Atzori, S.
2016-06-01
Here we present the results of the inversion of a new geodetic data set covering the 2012 Emilia seismic sequence and the following 1 year of postseismic deformation. Modeling of the geodetic data together with the use of a catalog of 3-D relocated aftershocks allows us to constrain the rupture geometries and the coseismic and postseismic slip distributions for the two main events (Mw 6.1 and 6.0) of the sequence and to explore how these thrust events have interacted with each other. Dislocation modeling reveals that the first event ruptured a slip patch located in the center of the Middle Ferrara thrust with up to 1 m of reverse slip. The modeling of the second event, located about 15 km to the southwest, indicates a main patch with up to 60 cm of slip initiated in the deeper and flatter portion of the Mirandola thrust and progressively propagated postseismically toward the top section of the rupture plane, where most of the aftershocks and afterslip occurred. Our results also indicate that between the two main events, a third thrust segment was activated releasing a pulse of aseismic slip equivalent to a Mw 5.8 event. Coulomb stress changes suggest that the aseismic event was likely triggered by the preceding main shock and that the aseismic slip event probably brought the second fault closer to failure. Our findings show significant correlations between static stress changes and seismicity and suggest that stress interaction between earthquakes plays a significant role among continental en echelon thrusts.
Reversible Modulation of DNA-Based Hydrogel Shapes by Internal Stress Interactions.
Hu, Yuwei; Kahn, Jason S; Guo, Weiwei; Huang, Fujian; Fadeev, Michael; Harries, Daniel; Willner, Itamar
2016-12-14
We present the assembly of asymmetric two-layer hybrid DNA-based hydrogels revealing stimuli-triggered reversibly modulated shape transitions. Asymmetric, linear hydrogels that include layer-selective switchable stimuli-responsive elements that control the hydrogel stiffness are designed. Trigger-induced stress in one of the layers results in the bending of the linear hybrid structure, thereby minimizing the elastic free energy of the systems. The removal of the stress by a counter-trigger restores the original linear bilayer hydrogel. The stiffness of the DNA hydrogel layers is controlled by thermal, pH (i-motif), K + ion/crown ether (G-quadruplexes), chemical (pH-doped polyaniline), or biocatalytic (glucose oxidase/urease) triggers. A theoretical model relating the experimental bending radius of curvatures of the hydrogels with the Young's moduli and geometrical parameters of the hydrogels is provided. Promising applications of shape-regulated stimuli-responsive asymmetric hydrogels include their use as valves, actuators, sensors, and drug delivery devices.
Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption
Jiang, Chaowei; Wu, S. T.; Feng, Xuesheng; Hu, Qiang
2016-01-01
Solar eruptions are well-recognized as major drivers of space weather but what causes them remains an open question. Here we show how an eruption is initiated in a non-potential magnetic flux-emerging region using magnetohydrodynamic modelling driven directly by solar magnetograms. Our model simulates the coronal magnetic field following a long-duration quasi-static evolution to its fast eruption. The field morphology resembles a set of extreme ultraviolet images for the whole process. Study of the magnetic field suggests that in this event, the key transition from the pre-eruptive to eruptive state is due to the establishment of a positive feedback between the upward expansion of internal stressed magnetic arcades of new emergence and an external magnetic reconnection which triggers the eruption. Such a nearly realistic simulation of a solar eruption from origin to onset can provide important insight into its cause, and also has the potential for improving space weather modelling. PMID:27181846
Induced and triggered earthquakes at The Geysers geothermal reservoir
NASA Astrophysics Data System (ADS)
Johnson, Lane R.; Majer, Ernest L.
2017-05-01
The Geysers geothermal reservoir in northern California is the site of numerous studies of both seismicity induced by injection of fluids and seismicity triggered by other earthquakes. Data from a controlled experiment in the northwest part of The Geysers in the time period 2011 to 2015 are used to study these induced and triggered earthquakes and possible differences between them. Causal solutions to the elastic equations for a porous medium show how fluid injection generates fast elastic and diffusion waves followed by a much slower diffusive wake. Calculations of fluid increment, fluid pressure and elastic stress are used to investigate both when and why seismic failure takes place. Taking into account stress concentrations caused by material heterogeneity leads to the conclusion that fluid injection by itself can cause seismic activity with no need for tectonic forces. Induced events that occur at early times are best explained by changes in stress rate, while those that occur at later times are best explained by changes in stress. While some of the seismic activity is clearly induced by injection of fluids, also present is triggered seismicity that includes aftershock sequences, swarms of seismicity triggered by other earthquakes at The Geysers and clusters of multiple earthquakes. No basic differences are found between the source mechanisms of these different types of earthquakes.
NASA Technical Reports Server (NTRS)
1956-01-01
Report presents the correlation of extensive data obtained relating properties of wrought n-155 alloy under static, combined static and dynamic, and complete reversed dynamic stress conditions. Time period for fracture ranged from 50 to 500 hours at room temperature, 1,000 degrees, 1,200 degrees, and 1,500 degrees F.
The Contribution of Io-Raised Tides to Europa's Diurnally-Varying Surface Stresses
NASA Technical Reports Server (NTRS)
Rhoden, Alyssa Rose; Hurford, Terry A,; Manga, Michael
2011-01-01
Europa's icy surface records a rich history of geologic activity, Several features appear to be tectonic in origin and may have formed in response to Europa's daily-varying tidal stress [I]. Strike-slip faults and arcuate features called cycloids have both been linked to the patterns of stress change caused by eccentricity and obliquity [2J[3]. In fact, as Europa's obliquity has not been directly measured, observed tectonic patterns arc currently the best indicators of a theoretically supported [4] non-negligible obliquity. The diurnal tidal stress due to eccentricity is calculated by subtracting the average (or static) tidal shape of Europa generated by Jupiter's gravitational field from the instantaneous shape, which varies as Europa moves through its eccentric orbit [5]. In other words, it is the change of shape away from average that generates tidal stress. One might expect tidal contributions from the other large moons of Jupiter to be negligible given their size and the height of the tides they raise on Europa versus Jupiter's mass and the height of the tide it raises on Europa, However, what matters for tidally-induced stress is not how large the lo-raised bulge is compared to the Jupiter-raised bulge but rather the differences bet\\Veen the instantaneous and static bulges in each case. For example, when Europa is at apocenter, Jupiter raises a tide 30m lower than its static tide. At the same time, 10 raises a tide about 0.5m higher than its static tide. Hence, the change in Io's tidal distortion is about 2% of the change in the Jovian distortion when Europa is at apocenter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Paul Allan
We investigate dynamic wave-triggered slip under laboratory shear conditions. The experiment is composed of a three-block system containing two gouge layers composed of glass beads and held in place by a fixed load in a biaxial configuration. When the system is sheared under steady state conditions at a normal load of 4 MPa, we find that shear failure may be instantaneously triggered by a dynamic wave, corresponding to material weakening and softening if the system is in a critical shear stress state (near failure). Following triggering, the gouge material remains in a perturbed state over multiple slip cycles as evidencedmore » by the recovery of the material strength, shear modulus, and slip recurrence time. This work suggests that faults must be critically stressed to trigger under dynamic conditions and that the recovery process following a dynamically triggered event differs from the recovery following a spontaneous event.« less
Johnson, Paul Allan
2016-02-28
We investigate dynamic wave-triggered slip under laboratory shear conditions. The experiment is composed of a three-block system containing two gouge layers composed of glass beads and held in place by a fixed load in a biaxial configuration. When the system is sheared under steady state conditions at a normal load of 4 MPa, we find that shear failure may be instantaneously triggered by a dynamic wave, corresponding to material weakening and softening if the system is in a critical shear stress state (near failure). Following triggering, the gouge material remains in a perturbed state over multiple slip cycles as evidencedmore » by the recovery of the material strength, shear modulus, and slip recurrence time. This work suggests that faults must be critically stressed to trigger under dynamic conditions and that the recovery process following a dynamically triggered event differs from the recovery following a spontaneous event.« less
Martin-du Pan, R C
1998-07-01
98 patients with Graves' disease have been compared to 95 patients with Hashimoto's thyroiditis and to 97 patients with benign thyroid nodules (control group) in order to evaluate the triggering role of major stressors and pregnancy in the occurrence of autoimmune thyroid diseases. A stress factor has been encountered in 11% cases of Graves' disease and in 6% of Hashimoto's and thyroid nodes (chi 2 test, not different). Graves' disease occurred after a pregnancy in 25% of the women in child bearing age versus 10% of the cases of Hashimoto's (p < 0.05) and 13% of the thyroid nodes. The role of stressors, if any, in triggering Graves' disease seems to be weak and dubious compared to the role of pregnancy and post-partum. It is assumed that the decrease of immunosuppressive hormones occurring after stress or delivery could induce a rebound autoimmune reaction responsible for the thyroid disease. In Hashimoto's thyroiditis, stress and pregnancies do not seem to have any triggering role.
The Mechanical Metallurgy of Armour Steels
2016-10-01
Group -TR-3305 UNCLASSIFIED 7 Figure 5: Linear relationship between quasi -static tensile yield stress and ballistic limit...te d Ba lli st ic L im it (m /s ) Experimental Ballistic Limit (m/s) UNCLASSIFIED DST- Group -TR-3305 UNCLASSIFIED 9 flow stress with strain...1000 1500 2000 2500 3000 0 0.2 0.4 0.6 0.8 Tr ue S tr es s (M Pa ) True Strain Quasi -static Dynamic RHA HHA UHHA UNCLASSIFIED DST- Group
Acoustic-radiation stress in solids. I - Theory
NASA Technical Reports Server (NTRS)
Cantrell, J. H., Jr.
1984-01-01
The general case of acoustic-radiation stress associated with quasi-compressional and quasi-shear waves propagating in infinite and semiinfinite lossless solids of arbitrary crystalline symmetry is studied. The Boussinesq radiation stress is defined and found to depend directly on an acoustic nonlinearity parameter which characterizes the radiation-induced static strain, a stress-generalized nonlinearity parameter which characterizes the stress nonlinearity, and the energy density of the propagating wave. Application of the Boltzmann-Ehrenfest principle of adiabatic invariance to a self-constrained system described by the nonlinear equations of motion allows the acoustic-radiation-induced static strain to be identified with a self-constrained variation in the time-averaged product of the internal energy density and displacement gradient. The time-averaged product is scaled by the acoustic nonlinearity parameter and represents the first-order nonlinearity in the virial theorem. Finally, the relationship between the Boussinesq and the Cauchy radiation stress is obtained in a closed three-dimensional form.
Study on the Effect of Steel Wheel and Ground on Single Steel Vibratory Roller
NASA Astrophysics Data System (ADS)
Li, Jiabo; You, Guanghui; Qiao, Jiabin; Ye, Min; Guo, Jin; Zhang, Hongyang
2018-03-01
In the compacting operation of single drum vibratory roller, the forces acting on the foundation of drum include the weight of the drum, the weight of the frame, the exciting force and so on. Based on the theoretical study of ground mechanics, this paper analyzes and calculates the forces acting on the steel wheel and the ground, and obtains the distribution of the laminar stress in the ground when the working plane vibrates. Derive the formula of dynamic compressive stress and static compressive stress in the foundation during vibration compaction. Through the compaction test of the soil trough of 20T single drum roller, the compressive stress data of the soil hydraulic field are obtained. The data of the dynamic compressive stress and the static compressive stress of each layer during the third compaction are obtained, and the theoretical research is verified.
Predicting System Accidents with Model Analysis During Hybrid Simulation
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Fleming, Land D.; Throop, David R.
2002-01-01
Standard discrete event simulation is commonly used to identify system bottlenecks and starving and blocking conditions in resources and services. The CONFIG hybrid discrete/continuous simulation tool can simulate such conditions in combination with inputs external to the simulation. This provides a means for evaluating the vulnerability to system accidents of a system's design, operating procedures, and control software. System accidents are brought about by complex unexpected interactions among multiple system failures , faulty or misleading sensor data, and inappropriate responses of human operators or software. The flows of resource and product materials play a central role in the hazardous situations that may arise in fluid transport and processing systems. We describe the capabilities of CONFIG for simulation-time linear circuit analysis of fluid flows in the context of model-based hazard analysis. We focus on how CONFIG simulates the static stresses in systems of flow. Unlike other flow-related properties, static stresses (or static potentials) cannot be represented by a set of state equations. The distribution of static stresses is dependent on the specific history of operations performed on a system. We discuss the use of this type of information in hazard analysis of system designs.
Emotional stressors trigger cardiovascular events.
Schwartz, B G; French, W J; Mayeda, G S; Burstein, S; Economides, C; Bhandari, A K; Cannom, D S; Kloner, R A
2012-07-01
To describe the relation between emotional stress and cardiovascular events, and review the literature on the cardiovascular effects of emotional stress, in order to describe the relation, the underlying pathophysiology, and potential therapeutic implications. Targeted PUBMED searches were conducted to supplement the authors' existing database on this topic. Cardiovascular events are a major cause of morbidity and mortality in the developed world. Cardiovascular events can be triggered by acute mental stress caused by events such as an earthquake, a televised high-drama soccer game, job strain or the death of a loved one. Acute mental stress increases sympathetic output, impairs endothelial function and creates a hypercoagulable state. These changes have the potential to rupture vulnerable plaque and precipitate intraluminal thrombosis, resulting in myocardial infarction or sudden death. Therapies targeting this pathway can potentially prevent acute mental stressors from initiating plaque rupture. Limited evidence suggests that appropriately timed administration of beta-blockers, statins and aspirin might reduce the incidence of triggered myocardial infarctions. Stress management and transcendental meditation warrant further study. © 2012 Blackwell Publishing Ltd.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor
Hill, D.P.
2010-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor-corrected
Hill, David P.
2012-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle are anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45° incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia megathrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction is μ* ≤ 0:2). Documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, however, are associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (μ ~ 0:6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Static charge outside chamber induces dielectric breakdown of solid-state nanopore membranes
NASA Astrophysics Data System (ADS)
Matsui, Kazuma; Goto, Yusuke; Yanagi, Itaru; Yanagawa, Yoshimitsu; Ishige, Yu; Takeda, Ken-ichi
2018-04-01
Reducing device capacitance is effective for decreasing current noise observed in a solid-state nanopore-based DNA sequencer. On the other hand, we have recently found that voltage stress causes pinhole-like defects in such low-capacitance devices. The origin of voltage stress, however, has not been determined. In this research, we identified that a dominant origin is static charge on the outer surface of a flow cell. Even though the outer surface was not in direct contact with electrolytes in the flow cell, the charge induces high voltage stress on a membrane according to the capacitance coupling ratio of the flow cell to the membrane.
Sugama, Shuei; Sekiyama, Kazunari; Kodama, Tohru; Takamatsu, Yoshiki; Takenouchi, Takato; Hashimoto, Makoto; Bruno, Conti; Kakinuma, Yoshihiko
2016-01-01
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and, to a lesser extent, in the noradrenergic neurons of the locus coeruleus (LC). Most cases of PD are idiopathic and sporadic and are believed to be the result of both environmental and genetic factors. Here, to the best of our knowledge, we report the first evidence that chronic restraint stress (8h/day, 5days/week) substantially reduces nigral DA and LC noradrenergic neuronal cell numbers in rats. Loss of DA neurons in the SNpc was evident after 2weeks of stress and progressed in a time-dependent manner, reaching up to 61% at 16weeks. This reduction was accompanied by robust microglial activation and oxidative stress and was marked by nitrotyrosine in the SNpc and LC of the midbrain. These results indicate that chronic stress triggers DA and noradrenergic neurodegeneration by increasing oxidative stress, and that activated microglia in the substantia nigra and LC may play an important role in modulating the neurotoxic effects of oxidative stress. Taken together, these data suggest that exposure to chronic stress triggers DA and noradrenergic neurodegeneration, which is a cause of PD. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhang, Zhimin; Zhao, Lianyou; Zhou, Yanfen; Lu, Xuanhao; Wang, Zhengqiang; Wang, Jipeng; Li, Wei
2017-05-01
Homocysteine (Hcy)-triggered endoplasmic reticulum (ER) stress-mediated endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury. However, whether ER stress is the molecular mechanism linking Hcy and cardiomyocytes death is unclear. Taurine has been reported to exert cardioprotective effects via various mechanisms. However, whether taurine protects against Hcy-induced cardiomyocyte death by attenuating ER stress is unknown. This study aimed to evaluate the opposite effects of taurine on Hcy-induced cardiomyocyte apoptosis and their underlying mechanisms. Our results demonstrated that low-dose or short-term Hcy treatment increased the expression of glucose-regulated protein 78 (GRP78) and activated protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6), which in turn prevented apoptotic cell death. High-dose Hcy or prolonged Hcy treatment duration significantly up-regulated levels of C/EBP homologous protein (CHOP), cleaved caspase-12, p-c-Jun N-terminal kinase (JNK), and then triggered apoptotic events. High-dose Hcy also resulted in a decrease in mitochondrial membrane potential (Δψm) and an increase in cytoplasmic cytochrome C and the expression of cleaved caspase-9. Pretreatment of cardiomyocytes with sodium 4-phenylbutyric acid (an ER stress inhibitor) significantly inhibited Hcy-induced apoptosis. Furthermore, blocking the PERK pathway partly alleviated Hcy-induced ER stress-modulated cardiomyocyte apoptosis, and down-regulated the levels of Bax and cleaved caspase-3. Experimental taurine pretreatment inhibited the expression of ER stress-related proteins, and protected against apoptotic events triggered by Hcy-induced ER stress. Taken together, our results suggest that Hcy triggered ER stress in cardiomyocytes, which was the crucial molecular mechanism mediating Hcy-induced cardiomyocyte apoptosis, and the adverse effect of Hcy could be prevented by taurine.
NASA Technical Reports Server (NTRS)
Giles, G. L.; Rogers, J. L., Jr.
1982-01-01
The implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calclating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of the system are also discussed.
Stress-Rupture and Stress-Relaxation of SiC/SiC Composites at Intermediate Temperature
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Hurst, Janet; Levine, Stanley (Technical Monitor)
2001-01-01
Tensile static stress and static strain experiments were performed on woven Sylramic (Dow Corning, Midland, MI) and Hi-Nicalon (Nippon Carbon, Japan) fiber reinforced, BN interphase, melt-infiltrated SiC matrix composites at 815 C. Acoustic emission was used to monitor the damage accumulation during the test. The stress-rupture properties of Sylramic composites were superior to that of Hi-Nicalon Tm composites. Conversely, the applied strain levels that Hi-Nicalon composites can withstand for stress-relaxation experiments were superior to Sylramic composites; however, at a cost of poor retained strength properties for Hi-Nicalon composites. Sylramic composites exhibited much less stress-oxidation induced matrix cracking compared to Hi-Nicalon composites. This was attributed to the greater stiffness and roughness of Sylramic fibers themselves and the lack of a carbon layer between the fiber and the BN interphase for Sylramic composites, which existed in Hi-Nicalon composites. Due to the lack of stress-relief for Sylramic composites, time to failure for Sylramic composite stress-relaxation experiments was not much longer than for stress-rupture experiments when comparing the peak stress condition for stress-relaxation with the applied stress of stress-rupture.
A New Sensor for Measurement of Dynamic Contact Stress in the Hip
Rudert, M. J.; Ellis, B. J.; Henak, C. R.; Stroud, N. J.; Pederson, D. R.; Weiss, J. A.; Brown, T. D.
2014-01-01
Various techniques exist for quantifying articular contact stress distributions, an important class of measurements in the field of orthopaedic biomechanics. In situations where the need for dynamic recording has been paramount, the approach of preference has involved thin-sheet multiplexed grid-array transducers. To date, these sensors have been used to study contact stresses in the knee, shoulder, ankle, wrist, and spinal facet joints. Until now, however, no such sensor had been available for the human hip joint due to difficulties posed by the deep, bi-curvilinear geometry of the acetabulum. We report here the design and development of a novel sensor capable of measuring dynamic contact stress in human cadaveric hip joints (maximum contact stress of 20 MPa and maximum sampling rate 100 readings/s). Particular emphasis is placed on issues concerning calibration, and on the effect of joint curvature on the sensor's performance. The active pressure-sensing regions of the sensors have the shape of a segment of an annulus with a 150-deg circumferential span, and employ a polar/circumferential “ring-and-spoke” sensel grid layout. There are two sensor sizes, having outside radii of 44 and 48 mm, respectively. The new design was evaluated in human cadaver hip joints using two methods. The stress magnitudes and spatial distribution measured by the sensor were compared to contact stresses measured by pressure sensitive film during static loading conditions that simulated heel strike during walking and stair climbing. Additionally, the forces obtained by spatial integration of the sensor contact stresses were compared to the forces measured by load cells during the static simulations and for loading applied by a dynamic hip simulator. Stress magnitudes and spatial distribution patterns obtained from the sensor versus from pressure sensitive film exhibited good agreement. The joint forces obtained during both static and dynamic loading were within ±10% and ±26%, respectively, of the forces measured by the load cells. These results provide confidence in the measurements obtained by the sensor. The new sensor's real-time output and dynamic measurement capabilities hold significant advantages over static measurements from pressure sensitive film. PMID:24763632
A new sensor for measurement of dynamic contact stress in the hip.
Rudert, M J; Ellis, B J; Henak, C R; Stroud, N J; Pederson, D R; Weiss, J A; Brown, T D
2014-03-01
Various techniques exist for quantifying articular contact stress distributions, an important class of measurements in the field of orthopaedic biomechanics. In situations where the need for dynamic recording has been paramount, the approach of preference has involved thin-sheet multiplexed grid-array transducers. To date, these sensors have been used to study contact stresses in the knee, shoulder, ankle, wrist, and spinal facet joints. Until now, however, no such sensor had been available for the human hip joint due to difficulties posed by the deep, bi-curvilinear geometry of the acetabulum. We report here the design and development of a novel sensor capable of measuring dynamic contact stress in human cadaveric hip joints (maximum contact stress of 20 MPa and maximum sampling rate 100 readings/s). Particular emphasis is placed on issues concerning calibration, and on the effect of joint curvature on the sensor's performance. The active pressure-sensing regions of the sensors have the shape of a segment of an annulus with a 150-deg circumferential span, and employ a polar/circumferential "ring-and-spoke" sensel grid layout. There are two sensor sizes, having outside radii of 44 and 48 mm, respectively. The new design was evaluated in human cadaver hip joints using two methods. The stress magnitudes and spatial distribution measured by the sensor were compared to contact stresses measured by pressure sensitive film during static loading conditions that simulated heel strike during walking and stair climbing. Additionally, the forces obtained by spatial integration of the sensor contact stresses were compared to the forces measured by load cells during the static simulations and for loading applied by a dynamic hip simulator. Stress magnitudes and spatial distribution patterns obtained from the sensor versus from pressure sensitive film exhibited good agreement. The joint forces obtained during both static and dynamic loading were within ±10% and ±26%, respectively, of the forces measured by the load cells. These results provide confidence in the measurements obtained by the sensor. The new sensor's real-time output and dynamic measurement capabilities hold significant advantages over static measurements from pressure sensitive film.
Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes
Shelly, David R.; Peng, Zhigang; Hill, David P.; Aiken, Chastity
2011-01-01
The passage of radiating seismic waves generates transient stresses in the Earth's crust that can trigger slip on faults far away from the original earthquake source. The triggered fault slip is detectable in the form of earthquakes and seismic tremor. However, the significance of these triggered events remains controversial, in part because they often occur with some delay, long after the triggering stress has passed. Here we scrutinize the location and timing of tremor on the San Andreas fault between 2001 and 2010 in relation to distant earthquakes. We observe tremor on the San Andreas fault that is initiated by passing seismic waves, yet migrates along the fault at a much slower velocity than the radiating seismic waves. We suggest that the migrating tremor records triggered slow slip of the San Andreas fault as a propagating creep event. We find that the triggered tremor and fault creep can be initiated by distant earthquakes as small as magnitude 5.4 and can persist for several days after the seismic waves have passed. Our observations of prolonged tremor activity provide a clear example of the delayed dynamic triggering of seismic events. Fault creep has been shown to trigger earthquakes, and we therefore suggest that the dynamic triggering of prolonged fault creep could provide a mechanism for the delayed triggering of earthquakes. ?? 2011 Macmillan Publishers Limited. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Y. H.; Yu, C. X.; Luo, J. R.; Mao, J. S.; Liu, B. H.; Li, J. G.; Wan, B. N.; Wan, Y. X.
2000-04-01
Time and space resolved measurements of electrostatic Reynolds stress, radial electric field Er, and plasma rotations have been performed across the transition to improved Ohmic confinement in the Hefei Tokamak-6M (HT-6M). The first experimental evidence of the correlation between the enhanced Reynolds stress gradient and the poloidal flow acceleration in the edge plasma is presented. The results indicate that the turbulence-induced Reynolds stress might be the dominant mechanism to create the sheared poloidal flow and Er, which may further trigger the transition.
Xu; Yu; Luo; Mao; Liu; Li; Wan; Wan
2000-04-24
Time and space resolved measurements of electrostatic Reynolds stress, radial electric field E(r), and plasma rotations have been performed across the transition to improved Ohmic confinement in the Hefei Tokamak-6M (HT-6M). The first experimental evidence of the correlation between the enhanced Reynolds stress gradient and the poloidal flow acceleration in the edge plasma is presented. The results indicate that the turbulence-induced Reynolds stress might be the dominant mechanism to create the sheared poloidal flow and E(r), which may further trigger the transition.
Atomistic simulations of dislocation dynamics in δ-Pu-Ga alloys
NASA Astrophysics Data System (ADS)
Karavaev, A. V.; Dremov, V. V.; Ionov, G. V.
2017-12-01
Molecular dynamics with the modified embedded atom model (MEAM) for interatomic interaction is applied to direct simulations of dislocation dynamics in fcc δ-phase Pu-Ga alloys. First, parameters of the MEAM potential are fitted to accurately reproduce experimental phonon dispersion curves and phonon density of states at ambient conditions. Then the stress-velocity dependence for edge dislocations as well as Pierls stress are obtained in direct MD modeling of dislocation motion using the shear stress relaxation technique. The simulations are performed for different gallium concentrations and the dependence of static yield stress on Ga concentration derived demonstrates good agreement with experimental data. Finally, the influence of radiation defects (primary radiation defects, nano-pores, and radiogenic helium bubbles) on dislocation dynamics is investigated. It is demonstrated that uniformly distributed vacancies and nano-pores have little effect on dislocation dynamics in comparison with that of helium bubbles. The results of the MD simulations evidence that the accumulation of the radiogenic helium in the form of nanometer-sized bubbles is the main factor affecting strength properties during long-term storage. The calculated dependence of static yield stress on helium bubbles concentration for fcc Pu 1 wt .% Ga is in good agreement with that obtained in experiments on accelerated aging. The developed technique of static yield stress evaluation is applicable to δ-phase Pu-Ga alloys with arbitrary Ga concentrations.
Xu, Yingqian; Wang, Bochu; Deng, Jia; Liu, Zerong; Zhu, Liancai
2013-01-01
The purpose of this paper was to research the potential of a dynamic cell model in drug screening by studying the influence of microvascular wall shear stress on the drug absorption of endothelial cells compared to that in the static state. The cells were grown and seeded on gelatin-coated glass slides and were pretreated with extracts of Salviae miltiorrhizae (200 μg/ml) for 1 h. Then oxidative stress damage was produced by H2O2 (300 μmol/l) for 0.5 h under the 1.5 dyn/cm2 shear stress incorporated in a parallel plate flow chamber. Morphological analysis was conducted with an inverted microscope and image analysis software, and high performance liquid chromatography-mass spectrometry was used for the detection of active compounds. We compared the drug absorption in the dynamic group with that in the static group. In the dynamic model, five compounds and two new metabolite peaks were detected. However, in the static model, four compounds were absorbed by cells, and one metabolite peak was found. This study indicated that there were some effects on the absorption and metabolism of drugs under the microvascular shear stress compared to that under stasis. We infer that shear stress in the microcirculation situation in vivo played a role in causing the differences between drug screening in vitro and in vivo.
Seismotectonic framework of the 2010 February 27 Mw 8.8 Maule, Chile earthquake sequence
Hayes, Gavin P.; Bergman, Eric; Johnson, Kendra J.; Benz, Harley M.; Brown, Lucy; Meltzer, Anne S.
2013-01-01
After the 2010 Mw 8.8 Maule earthquake, an international collaboration involving teams and instruments from Chile, the US, the UK, France and Germany established the International Maule Aftershock Deployment temporary network over the source region of the event to facilitate detailed, open-access studies of the aftershock sequence. Using data from the first 9-months of this deployment, we have analyzed the detailed spatial distribution of over 2500 well-recorded aftershocks. All earthquakes have been relocated using a hypocentral decomposition algorithm to study the details of and uncertainties in both their relative and absolute locations. We have computed regional moment tensor solutions for the largest of these events to produce a catalogue of 465 mechanisms, and have used all of these data to study the spatial distribution of the aftershock sequence with respect to the Chilean megathrust. We refine models of co-seismic slip distribution of the Maule earthquake, and show how small changes in fault geometries assumed in teleseismic finite fault modelling significantly improve fits to regional GPS data, implying that the accuracy of rapid teleseismic fault models can be substantially improved by consideration of existing fault geometry model databases. We interpret all of these data in an integrated seismotectonic framework for the Maule earthquake rupture and its aftershock sequence, and discuss the relationships between co-seismic rupture and aftershock distributions. While the majority of aftershocks are interplate thrust events located away from regions of maximum co-seismic slip, interesting clusters of aftershocks are identified in the lower plate at both ends of the main shock rupture, implying internal deformation of the slab in response to large slip on the plate boundary interface. We also perform Coulomb stress transfer calculations to compare aftershock locations and mechanisms to static stress changes following the Maule rupture. Without the incorporation of uncertainties in earthquake locations, just 55 per cent of aftershock nodal planes align with faults promoted towards failure by co-seismic slip. When epicentral uncertainties are considered (on the order of just ±2–3 km), 90 per cent of aftershocks are consistent with occurring along faults demonstrating positive stress transfer. These results imply large sensitivities of Coulomb stress transfer calculations to uncertainties in both earthquake locations and models of slip distributions, particularly when applied to aftershocks close to a heterogeneous fault rupture; such uncertainties should therefore be considered in similar studies used to argue for or against models of static stress triggering.
Seismic Study of Tremor, Deep Long-Period Earthquakes, and Basin Amplification of Ground Motion
NASA Astrophysics Data System (ADS)
Han, Jiangang
In this thesis, we use seismic data and seismological tools to investigate three topics, (1) triggering between slow slip (tremor as proxy) and nearby small earthquakes, (2) mechanisms of deep-long period earthquakes beneath Mount St. Helens, and (3) ground motion amplification in Seattle Basin. In Chapter 1, we investigate 12-year earthquake and tremor catalogs for southwest Japan, and find nearby small intraslab earthquakes are weakly correlated with tremor. In particular, intraslab earthquakes tend to be followed by tremor more often than expected at random, while the excess number of tremor before earthquakes is not as significant. The underlying triggering mechanism of tremor and inferred slow slip by earthquakes is most likely to be the dynamic stress changes (several to several tens of kPa) rather than the much smaller static stress changes. In Chapter 2, we use the catalog DLPs as templates to search for repeating events at Mount St. Helens (MSH). We have detected 277 DLPs, compared to only 22 events previously in the catalog from 2007 to 2016. Three templates from the catalog are single events, while all other templates produced matches, identifying loci of repeated activity. Overall, the detected DLPs show no significant correlation with either the subduction zone tremor and slow slip (ETS) west of MSH, or the shallow seismicity. Temporal analysis shows an elevated rate of DLPs at time of compressional tidal stress, suggesting their possible association with magmatic and/or fluid activity. We observed variable S wave polarization of the DLPs from the most productive DLP source region, indicating their source mechanisms are not identical. In Chapter 3, we use noise correlation to retrieve the empirical green's functions (EGFs) in Seattle Basin. Consistent amplitudes measured from noise EGFs, teleseismic S wave and numerical simulations all suggest the usefulness of the amplitude of EGFs. For surface wave with period of 5-10 sec propagating from west to east, the ground motion is amplified by a factor of up to 3 within the basin. The bias of EGFs from noise heterogeneity and uncertainties of synthetics due to inaccuracy of velocity model are still to be investigated.
NASA Astrophysics Data System (ADS)
Li, Xibing; Wang, Shaofeng; Wang, Shanyong
2018-01-01
High geostress is a prominent condition in deep excavations and affects the cuttability of deep hard rock. This study aims to determine the influence of confining stress on hard rock fragmentation as applied by a conical pick. Using a true triaxial test apparatus, static and coupled static and dynamic loadings from pick forces were applied to end faces of cubic rock specimens to break them under biaxial, uniaxial and stress-free confining stress conditions. The cuttability indices (peak pick force, insertion depth and disturbance duration), failure patterns and fragment sizes were measured and compared to estimate the effects of confining stress. The results show that the rock cuttabilities decreased in order from rock breakages under stress-free conditions to uniaxial confining stress and then to biaxial confining stress. Under biaxial confining stress, only flake-shaped fragments were stripped from the rock surfaces under the requirements of large pick forces or disturbance durations. As the level of uniaxial confining stress increased, the peak pick force and the insertion depth initially increased and then decreased, and the failure patterns varied from splitting to partial splitting and then to rock bursts with decreasing average fragment sizes. Rock bursts will occur under elastic compression via ultra-high uniaxial confining stresses. There are two critical uniaxial confining stress levels, namely stress values at which peak pick forces begin to decrease and improve rock cuttability, and those at which rock bursts initially occur and cutting safety decreases. In particular, hard rock is easiest to split safely and efficiently under stress-free conditions. Moreover, coupled static preloading and dynamic disturbance can increase the efficiency of rock fragmentation with increasing preloading levels and disturbance amplitudes. The concluding remarks confirm hard rock cuttability using conical pick, which can improve the applicability of mechanical excavation in deep hard rock masses.
Stress triggering of the 1994 M = 6.7 Northridge, California, Earthquake by its predecessors
Stein, R.S.; King, G.C.P.; Lin, J.
1994-01-01
A model of stress transfer implies that earthquakes in 1933 and 1952 increased the Coulomb stress toward failure at the site of the 1971 San Fernando earthquake. The 1971 earthquake in turn raised stress and produced aftershocks at the site of the 1987 Whittier Narrows and 1994 Northridge ruptures. The Northridge main shock raised stress in areas where its aftershocks and surface faulting occurred. Together, the earthquakes with moment magnitude M ??? 6 near Los Angeles since 1933 have stressed parts of the Oak Ridge, Sierra Madre, Santa Monica Mountains, Elysian Park, and Newport-Inglewood faults by more than 1 bar. Although too small to cause earthquakes, these stress changes can trigger events if the crust is already near failure or advance future earthquake occurrence if it is not.
Tremor, remote triggering and earthquake cycle
NASA Astrophysics Data System (ADS)
Peng, Z.
2012-12-01
Deep tectonic tremor and episodic slow-slip events have been observed at major plate-boundary faults around the Pacific Rim. These events have much longer source durations than regular earthquakes, and are generally located near or below the seismogenic zone where regular earthquakes occur. Tremor and slow-slip events appear to be extremely stress sensitive, and could be instantaneously triggered by distant earthquakes and solid earth tides. However, many important questions remain open. For example, it is still not clear what are the necessary conditions for tremor generation, and how remote triggering could affect large earthquake cycle. Here I report a global search of tremor triggered by recent large teleseismic earthquakes. We mainly focus on major subduction zones around the Pacific Rim. These include the southwest and northeast Japan subduction zones, the Hikurangi subduction zone in New Zealand, the Cascadia subduction zone, and the major subduction zones in Central and South America. In addition, we examine major strike-slip faults around the Caribbean plate, the Queen Charlotte fault in northern Pacific Northwest Coast, and the San Andreas fault system in California. In each place, we first identify triggered tremor as a high-frequency non-impulsive signal that is in phase with the large-amplitude teleseismic waves. We also calculate the dynamic stress and check the triggering relationship with the Love and Rayleigh waves. Finally, we calculate the triggering potential with the local fault orientation and surface-wave incident angles. Our results suggest that tremor exists at many plate-boundary faults in different tectonic environments, and could be triggered by dynamic stress as low as a few kPas. In addition, we summarize recent observations of slow-slip events and earthquake swarms triggered by large distant earthquakes. Finally, we propose several mechanisms that could explain apparent clustering of large earthquakes around the world.
NASA Astrophysics Data System (ADS)
Qian, Ye
Characterization of structural rebuilding and shear migration in cementitious materials in consideration of thixotropy Ye Qian From initial contact with water until hardening, and deterioration, cement and concrete materials are subjected to various chemical and physical transformations and environmental impacts. This thesis focuses on the properties during the fresh state, shortly after mixing until the induction period. During this period flow history, including shearing and resting, and hydration both play big roles in determining the rheological properties. The rheological properties of cement and concrete not only affect the casting and pumping process, but also very critical for harden properties and durability properties. Compared with conventional concrete, self-consolidating concrete (SCC) can introduce many advantages in construction application. These include readiness to apply, decreasing labor necessary for casting, and enhancing hardened properties. However, challenges still remain, such as issues relating to formwork pressure and multi-layer casting. Each of these issues is closely related to the property of thixotropy. From the microstructural point of view, thixotropy is described as structural buildup (flocculation) under rest and breakdown (deflocculation) under flow. For SCC, as well as other concrete systems, it is about balancing sufficient flowability during casting and rate of structural buildup after placement for the application at hand. For instance, relating to the issue of SCC formwork, it is ideal for the material to be highly flowable to achieve rapid casting, but then exhibit high rate of structural buildup to reduce formwork pressure. This can reduce the cost of formwork and reduce the risk of formwork failure. It is apparent that accurately quantifying the two aspects of thixotropy, i.e. structuration and destructuration, is key to tackling these challenges in field application. Thus, the overall objective of my doctoral study is to improve quantification of key parameters tied to thixotropy that we have identified to be important: static yield stress, cohesion and degree of shear-induced particle migration. The two main contributions are as follows: Firstly, I quantified structuration of fresh paste and mortar systems by measuring static yield stress. After an extensive review of various rheological methods to probe viscoelastic properties of yield stress fluids, I selected, developed, and implemented a creep recovery protocol. Creep results were supplemented by low-amplitude oscillatory shear results, and supported that the measured static yield stress corresponds to the solid-liquid transition. This improved quantification of static yield stress can help better understand the effect of mix composition on SCC formwork pressure development, as well as static segregation and stability. Since the static yield stress is measured before the structure is broken down, the effects of sand migration are eliminated. This study also analyzed effects of other supplementary cementitous materials such as nanoclay and fly ash. Results showed that nanoclay effectively increases static yield stress and structuration rate, while fly ash decreases static yield stress. To complement this investigation, I studied cohesion using the probe tack test, as cohesion is widely cited to be closely related to formwork pressure. I verified that probe tack test is a quick and useful method to measure static cohesion. Results showed that nanoclay increased cohesion dramatically while fly ash did not have an apparent effect on cohesion. Secondly, I developed an empirical model to fit the stress decay process under constant shear rate, For mortar systems, the stress decay can be attributed to two mechanisms: colloidal destructuration and sand migration. Such a model could be used to characterize particle migration and dynamic segregation, a critical issue for casting applications. In addition, shear induced particle migration is a widely recognized challenge in characterizing mortars and concretes through shear rheological methods. Therefore this model can help determine the range of shear rates within which migration can be minimized to guide the design of protocols for dynamic rheological characterization and to ultimately develop design strategies to minimize mitigation. Compared with currently existing methods, this model provides a faster approach to quantify the sand migration process, including kinetics.
Christodoulidis, Georgios; Kundoor, Vishwa; Kaluski, Edo
2017-08-28
BACKGROUND Various physical and emotional factors have been previously described as triggers for stress induced cardiomyopathy. However, acute myocardial infarction as a trigger has never been reported. CASE REPORT We describe four patients who presented with an acute myocardial infarction, in whom the initial echocardiography revealed wall motion abnormalities extending beyond the coronary distribution of the infarct artery. Of the four patients identified, the mean age was 59 years; three patients were women and two patients had underlying psychiatric history. Electrocardiogram revealed ST elevation in the anterior leads in three patients; QTc was prolonged in all cases. All patients had ≤ moderately elevated troponin. Single culprit lesion was found uniformly in the proximal or mid left anterior descending artery. Initial echocardiography revealed severely reduced ejection fraction with relative sparing of the basal segments, whereas early repeat echocardiography revealed significant improvement in the left ventricular function in all patients. CONCLUSIONS This is the first case series demonstrating that acute myocardial infarction can trigger stress induced cardiomyopathy. Extensive reversible wall motion abnormalities, beyond the ones expected from angiography, accompanied by modest elevation in troponin and marked QTc prolongation, suggest superimposed stress induced cardiomyopathy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xiaoqing; Deng, Liping
The moist static energy (MSE) anomalies and MSE budget associated with the Madden–Julian oscillation (MJO) simulated in the Iowa State University General Circulation Model (ISUGCM) over the Indian and Pacific Oceans are compared with observations. Different phase relationships between MJO 850-hPa zonal wind, precipitation, and surface latent heat flux are simulated over the Indian Ocean and western Pacific, which are greatly influenced by the convection closure, trigger conditions, and convective momentum transport (CMT). The moist static energy builds up from the lower troposphere 15–20 days before the peak of MJO precipitation, and reaches the maximum in the middle troposphere (500–600more » hPa) near the peak of MJO precipitation. The gradual lower-tropospheric heating and moistening and the upward transport of moist static energy are important aspects of MJO events, which are documented in observational studies but poorly simulated in most GCMs. The trigger conditions for deep convection, obtained from the year-long cloud resolving model (CRM) simulations, contribute to the striking difference between ISUGCM simulations with the original and modified convection schemes and play the major role in the improved MJO simulation in ISUGCM. Additionally, the budget analysis with the ISUGCM simulations shows the increase in MJO MSE is in phase with the horizontal advection of MSE over the western Pacific, while out of phase with the horizontal advection of MSE over the Indian Ocean. However, the NCEP analysis shows that the tendency of MJO MSE is in phase with the horizontal advection of MSE over both oceans.« less
NASA Astrophysics Data System (ADS)
Johnson, Christopher W.
Decomposing fault mechanical processes advances our understanding of active fault systems and properties of the lithosphere, thereby increasing the effectiveness of seismic hazard assessment and preventative measures implemented in urban centers. Along plate boundaries earthquakes are inevitable as tectonic forces reshape the Earth's surface. Earthquakes, faulting, and surface displacements are related systems that require multidisciplinary approaches to characterize deformation in the lithosphere. Modern geodetic instrumentation can resolve displacements to millimeter precision and provide valuable insight into secular deformation in near real-time. The expansion of permanent seismic networks as well as temporary deployments allow unprecedented detection of microseismic events that image fault interfaces and fracture networks in the crust. The research presented in this dissertation is at the intersection of seismology and geodesy to study the Earth's response to transient deformation and explores research questions focusing on earthquake triggering, induced seismicity, and seasonal loading while utilizing seismic data, geodetic data, and modeling tools. The focus is to quantify stress changes in the crust, explore seismicity rate variations and migration patterns, and model crustal deformation in order to characterize the evolving state of stress on faults and the migration of fluids in the crust. The collection of problems investigated all investigate the question: Why do earthquakes nucleate following a low magnitude stress perturbation? Answers to this question are fundamental to understanding the time dependent failure processes of the lithosphere. Dynamic triggering is the interaction of faults and triggering of earthquakes represents stress transferring from one system to another, at both local and remote distances [Freed, 2005]. The passage of teleseismic surface waves from the largest earthquakes produce dynamic stress fields and provides a natural laboratory to explore the causal relationship between low-amplitude stress changes and dynamically triggered events. Interestingly, observations of dynamically triggered M≥5.5 earthquakes are absent in the seismic records [Johnson et al., 2015; Parsons and Velasco, 2011], which invokes questions regarding whether or not large magnitude events can be dynamically triggered. Emerging results in the literature indicate undocumented M≥5.5 events at near to intermediate distances are dynamically triggered during the passage of surface waves but are undetected by automated networks [Fan and Shearer, 2016]. This raises new questions about the amplitude and duration of dynamic stressing for large magnitude events. I used 35-years of global seismicity and find that large event rate increases only occur following a delay from the transient load, suggesting aseismic processes are associated with large magnitude triggered events. To extend this finding I investigated three cases of large magnitude delayed dynamic triggering following the M8.6 2012 Indian Ocean earthquake [Pollitz et al., 2012] by producing microseismicity catalogs and modeling the transient stresses. The results indicate immediate triggering of microseismic events that hours later culminate into a large magnitude event and support the notion that large magnitude events are triggerable by transient loading, but seismic and aseismic processes (e.g. induced creep or fluid mobilization) are contributing to the nucleation process. Open questions remain concerning the source of a nucleation delay period following a stress perturbation that require both geodetic and seismic observations to constrain the source of delayed dynamic triggering and possibly provide insight into a precursory nucleation phase. Induced seismicity has gained much attention in the past 5 years as earthquake rates in regions of low tectonic strain accumulation accelerate to unprecedented levels [Ellsworth, 2013]. The source of the seismicity is attributed to shallow fluid injection associated with energy production. As hydrocarbon extraction continues to increase in the U.S. the deformation and induced seismicity from wastewater injection is providing new avenues to explore crustal properties. The large magnitude events associated with regions of high rate injection support the notion that the crust is critically stressed. Seismic data in these areas provides the opportunity to delineate fault structures in the crust using precise earthquake locations. To augment the studies of transient loading cycles I investigated induced seismicity at The Geysers geothermal field in northern California. Using high-resolution hypocenter data I implement an epidemic type aftershock sequence (ETAS) model to develop seismicity rate time series in the active geothermal field and characterize the migration of fluids from high volume water injection. Subtle stress changes induced by thermo- and poroelastic strains trigger seismicity for 5 months after peak injection at depths 3 km below the main injection interval. This suggests vertical migration paths are maintained in the geothermal field that allows fluid propagation on annual time scales. Fully describing the migration pattern of fluids in the crust and the associated stresses are applicable to tectonic related faulting and triggered seismic activity. Seasonal hydrological loading is a source of annual periodic transient deformation that is ideal for investigating the modulation of seismicity. The initial step in exploring the modulation of seismicity is to validate that a significant annual period does exist in California earthquake records. The periodicity results [Dutilleul et al., 2015] motivate continued investigation of seismically active regions that experience significant seasonal mass loading, i.e. high precipitation and snowfall rates, to quantify the magnitude of seasonal stress changes and possible correlation with seismicity modulation. The implication of this research addresses questions concerning the strength and state of stress on faults. High-resolution water storage time series throughout California are developed using continuous GPS records. The results allow an estimation of the stress changes induced by hydrological loading, which is combined with a detailed focal mechanism analysis to characterize the modulation of seismicity. The hydrologic loading is augmented with the contribution of additional deformation sources (e.g. tidal, atmosphere, and temperature) and find that annual stress changes of 5 kPa are modulating seismicity, most notably on dip-slip structures. These observations suggest that mechanical differences exist between the vertically dipping strike-slip faults and the shallowly dipping oblique structures in California. When comparing all the annual loading cycles it is evident that future studies incorporate all the sources of solid Earth deformation to fully describe the stresses realized on fault systems that respond to seasonal loads.
Can triggers be cumulative in inducing heart attack in soccer game spectators?
Tasch, Christoph; Larcher, Lorenz
2012-08-01
Emotional stress and excitement associated with watching soccer matches has been suggested to act as an external trigger for the onset of acute coronary syndromes. We report about a patient of Italian nationality who developed acute coronary syndrome while watching the European football championship match Switzerland vs. Turkey in 2008. Although greater emotional intensity was possibly involved while watching his country play two days earlier (Italy vs Netherlands), he developed no symptoms. Hence, this case throws some interesting light on what can be considered as an acute trigger by discussing the assumption of a cumulative effect regarding to the potential trigger two days before and in which way psychological stress may have influence on the onset of acute coronary syndromes.
Stress and Primary Headache: Review of the Research and Clinical Management.
Martin, Paul R
2016-07-01
This review begins with a discussion of the nature of stress and then presents the functional model of primary headache as a framework for conceptualizing the complex relationship between stress and headaches. Research is reviewed on stress as a trigger of headaches and how stress can play a role in the developmental and psychosocial context of headaches. Clinical management of headaches from a stress perspective is considered both at the level of trials of behavioral interventions that broadly fit into the stress management category and the additional strategies that might be useful for individual cases based on the research demonstrating associations between stress and headaches. The review concludes by suggesting that although some researchers have questioned whether stress can trigger headaches, overall, the literature is still supportive of such a link. Advances in methodology are discussed, the recent emphasis on protective factors is welcomed, and directions for future research suggested.
Exposing Compassion Fatigue and Burnout Syndrome in a Trauma Team: A Qualitative Study.
Berg, Gina M; Harshbarger, Jenni L; Ahlers-Schmidt, Carolyn R; Lippoldt, Diana
2016-01-01
Compassion fatigue (CF) and burnout syndrome (BOS) are identified in trauma, emergency, and critical care nursing practices. The purpose of this qualitative study was to measure CF and BOS in a trauma team and allow them to share perceptions of related stress triggers and coping strategies. Surveys to measure CF and BOS and a focus group allowed a trauma team (12 practitioners) to share perceptions of related stress triggers and coping strategies. More than half scored at risk for CF and BOS. Stress triggers were described as situation (abuse, age of patient) versus injury-related. Personal coping mechanisms were most often reported. Both CF and BOS can be assessed with a simple survey tool. Strategies for developing a program culturally sensitive to CF and BOS are provided.
A Dynamic Scheduling Method of Earth-Observing Satellites by Employing Rolling Horizon Strategy
Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma
2013-01-01
Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments. PMID:23690742
A dynamic scheduling method of Earth-observing satellites by employing rolling horizon strategy.
Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma
2013-01-01
Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments.
Parsons, Tom; Dreger, Douglas S.
2000-01-01
The proximity in time (∼7 years) and space (∼20 km) between the 1992 M=7.3 Landers earthquake and the 1999 M=7.1 Hector Mine event suggests a possible link between the quakes. We thus calculated the static stress changes following the 1992 Joshua Tree/Landers/Big Bear earthquake sequence on the 1999 M=7.1 Hector Mine rupture plane in southern California. Resolving the stress tensor into rake-parallel and fault-normal components and comparing with changes in the post-Landers seismicity rate allows us to estimate a coefficient of friction on the Hector Mine plane. Seismicity following the 1992 sequence increased at Hector Mine where the fault was unclamped. This increase occurred despite a calculated reduction in right-lateral shear stress. The dependence of seismicity change primarily on normal stress change implies a high coefficient of static friction (µ≥0.8). We calculated the Coulomb stress change using µ=0.8 and found that the Hector Mine hypocenter was mildly encouraged (0.5 bars) by the 1992 earthquake sequence. In addition, the region of peak slip during the Hector Mine quake occurred where Coulomb stress is calculated to have increased by 0.5–1.5 bars. In general, slip was more limited where Coulomb stress was reduced, though there was some slip where the strongest stress decrease was calculated. Interestingly, many smaller earthquakes nucleated at or near the 1999 Hector Mine hypocenter after 1992, but only in 1999 did an event spread to become a M=7.1 earthquake.
Fatigue Behavior of Steel Fiber Reinforced High-Strength Concrete under Different Stress Levels
NASA Astrophysics Data System (ADS)
Zhang, Chong; Gao, Danying; Gu, Zhiqiang
2017-12-01
The investigation was conducted to study the fatigue behavior of steel fiber reinforced high-strength concrete (SFRHSC) beams. A series of 5 SFRHSC beams was conducted flexural fatigue tests at different stress level S of 0.5, 0.55, 0.6, 0.7 and 0.8 respectively. Static test was conducted to determine the ultimate static capacity prior to fatigue tests. Fatigue modes and S-N curves were analyzed. Besides, two fatige life prediction model were analyzed and compared. It was found that stress level S significantly influenced the fatigue life of SFRHSC beams and the fatigue behavior of SFRHSC beams was mainly determined by the tensile reinforcement.
Kozbial, Andrew; Trouba, Charlie; Liu, Haitao; Li, Lei
2017-01-31
Elucidating the intrinsic water wettability of the graphitic surface has increasingly attracted research interests, triggered by the recent finding that the well-established hydrophobicity of graphitic surfaces actually results from airborne hydrocarbon contamination. Currently, static water contact angle (WCA) is often used to characterize the intrinsic water wettability of graphitic surfaces. In the current paper, we show that because of the existence of defects, static WCA does not necessarily characterize the intrinsic water wettability. Freshly exfoliated graphite of varying qualities, characterized using atomic force microscopy and Raman spectroscopy, was studied using static, advancing, and receding WCA measurements. The results showed that graphite of different qualities (i.e., defect density) always has a similar advancing WCA, but it could have very different static and receding WCAs. This finding indicates that defects play an important role in contact angle measurements, and the static contact angle does not always represent the intrinsic water wettability of pristine graphite. On the basis of the experimental results, a qualitative model is proposed to explain the effect of defects on static, advancing, and receding contact angles. The model suggests that the advancing WCA reflects the intrinsic water wettability of pristine (defect-free) graphite. Our results showed that the advancing WCA for pristine graphite is 68.6°, which indicates that graphitic carbon is intrinsically mildly hydrophilic.
Nagornev, S N; Kalinkin, S V; Bobrovnitskiĭ, I P; Sytnik, S I; Petrova, T V; Orlova, T A
2000-01-01
The model of static physical loading (SPL) was used to study the biochemical effects of graded static tension and potentiality for pharmacological mobilization of physical endurance with participation of male volunteers. A close pathogenetic linkage between the established metabolic effects of the model and their adaptive adequacy to the stressing factor show that there is every reason to arrange the observed shifts in a SPL syndrome. The SPL syndrome is primarily manifested by exaggerated tone of the adrenoactive structures, inhibition of insulin production by the pancreas, activation of the neuropeptide anti-stress mechanisms, predominant utilization of the lipid substrate in energy production, intensification of protein catabolism, and increase in myocyte membrane permeability due to energy deficit. The investigation demonstrated that improvement of static physical endurance can be attained with a mobilizing stimulator (sidnocarb) and a combination of sidnocarb with a nonmediatory preparation (bemytil). This pharmacological combination levels side-effects of exorbitant activation of the adrenal system. On the contrary, a metabolic vitamin-microelements complex ("cocktail C") perceivably enhances SPL endurance (sidnocarb dose was lowered in three times), possesses the stress-protective effect, the ability to moderate the intensity of free (uninvolved in phosphorylation) oxidation and to optimize energy-plastic processes with predominant utilization of the lipid substrate.
Onset of ulcerative colitis after thyrotoxicosis: a case report and review of the literature.
Laterza, L; Piscaglia, A C; Lecce, S; Gasbarrini, A; Stefanelli, M L
2016-01-01
Ulcerative colitis is a chronic disease that could be triggered by acute stressful events, such as gastrointestinal infections or emotional stress. We reported the case of the onset of an ulcerative colitis after a thyrotoxicosis crisis and reviewed the literature about the relationships between thyroid dysfunctions and ulcerative colitis. A 38-year-old woman was diagnosed with ulcerative colitis after her third thyrotoxicosis crisis, two years after the diagnosis of Graves' disease. In this case, thyrotoxicosis acted as a trigger for ulcerative colitis onset. Hyperthyroidism could be a trigger able to elicit ulcerative colitis in susceptible patients.
Ghim, Mean; Alpresa, Paola; Yang, Sung-Wook; Braakman, Sietse T; Gray, Stephen G; Sherwin, Spencer J; van Reeuwijk, Maarten; Weinberg, Peter D
2017-11-01
Transport of macromolecules across vascular endothelium and its modification by fluid mechanical forces are important for normal tissue function and in the development of atherosclerosis. However, the routes by which macromolecules cross endothelium, the hemodynamic stresses that maintain endothelial physiology or trigger disease, and the dependence of transendothelial transport on hemodynamic stresses are controversial. We visualized pathways for macromolecule transport and determined the effect on these pathways of different types of flow. Endothelial monolayers were cultured under static conditions or on an orbital shaker producing different flow profiles in different parts of the wells. Fluorescent tracers that bound to the substrate after crossing the endothelium were used to identify transport pathways. Maps of tracer distribution were compared with numerical simulations of flow to determine effects of different shear stress metrics on permeability. Albumin-sized tracers dominantly crossed the cultured endothelium via junctions between neighboring cells, high-density lipoprotein-sized tracers crossed at tricellular junctions, and low-density lipoprotein-sized tracers crossed through cells. Cells aligned close to the angle that minimized shear stresses across their long axis. The rate of paracellular transport under flow correlated with the magnitude of these minimized transverse stresses, whereas transport across cells was uniformly reduced by all types of flow. These results contradict the long-standing two-pore theory of solute transport across microvessel walls and the consensus view that endothelial cells align with the mean shear vector. They suggest that endothelial cells minimize transverse shear, supporting its postulated proatherogenic role. Preliminary data show that similar tracer techniques are practicable in vivo. NEW & NOTEWORTHY Solutes of increasing size crossed cultured endothelium through intercellular junctions, through tricellular junctions, or transcellularly. Cells aligned to minimize the shear stress acting across their long axis. Paracellular transport correlated with the level of this minimized shear, but transcellular transport was reduced uniformly by flow regardless of the shear profile. Copyright © 2017 the American Physiological Society.
On relating apparent stress to the stress causing earthquake fault slip
McGarr, A.
1999-01-01
Apparent stress ??a is defined as ??a = ??????, where ???? is the average shear stress loading the fault plane to cause slip and ?? is the seismic efficiency, defined as Ea/W, where Ea is the energy radiated seismically and W is the total energy released by the earthquake. The results of a recent study in which apparent stresses of mining-induced earthquakes were compared to those measured for laboratory stick-slip friction events led to the hypothesis that ??a/???? ??? 0.06. This hypothesis is tested here against a substantially augmented data set of earthquakes for which ???? can be estimated, mostly from in situ stress measurements, for comparison with ??a. The expanded data set, which includes earthquakes artificially triggered at a depth of 9 km in the German Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland (KTB) borehole and natural tectonic earthquakes, covers a broad range of hypocentral depths, rock types, pore pressures, and tectonic settings. Nonetheless, over ???14 orders of magnitude in seismic moment, apparent stresses exhibit distinct upper bounds defined by a maximum seismic efficiency of ???0.06, consistent with the hypothesis proposed before. This behavior of ??a and ?? can be expressed in terms of two parameters measured for stick-slip friction events in the laboratory: the ratio of the static to the dynamic coefficient of friction and the fault slip overshoot. Typical values for these two parameters yield seismic efficiencies of ???0.06. In contrast to efficiencies for laboratory events for which ?? is always near 0.06, those for earthquakes tend to be less than this bounding value because Ea for earthquakes is usually underestimated due to factors such as band-limited recording. Thus upper bounds on ??a/???? appear to be controlled by just a few fundamental aspects of frictional stick-slip behavior that are common to shallow earthquakes everywhere. Estimates of ???? from measurements of ??a for suites of earthquakes, using ??a/???? ??? 0.06, are found to be comparable in magnitude to estimates of shear stress on the basis of extrapolating in situ stress data to seismogenic depths.
Lessons from (triggered) tremor
Gomberg, Joan
2010-01-01
I test a “clock-advance” model that implies triggered tremor is ambient tremor that occurs at a sped-up rate as a result of loading from passing seismic waves. This proposed model predicts that triggering probability is proportional to the product of the ambient tremor rate and a function describing the efficacy of the triggering wave to initiate a tremor event. Using data mostly from Cascadia, I have compared qualitatively a suite of teleseismic waves that did and did not trigger tremor with ambient tremor rates. Many of the observations are consistent with the model if the efficacy of the triggering wave depends on wave amplitude. One triggered tremor observation clearly violates the clock-advance model. The model prediction that larger triggering waves result in larger triggered tremor signals also appears inconsistent with the measurements. I conclude that the tremor source process is a more complex system than that described by the clock-advance model predictions tested. Results of this and previous studies also demonstrate that (1) conditions suitable for tremor generation exist in many tectonic environments, but, within each, only occur at particular spots whose locations change with time; (2) any fluid flow must be restricted to less than a meter; (3) the degree to which delayed failure and secondary triggering occurs is likely insignificant; and 4) both shear and dilatational deformations may trigger tremor. Triggered and ambient tremor rates correlate more strongly with stress than stressing rate, suggesting tremor sources result from time-dependent weakening processes rather than simple Coulomb failure.
Glucose Deprivation Induces ATF4-Mediated Apoptosis through TRAIL Death Receptors
Iurlaro, Raffaella; Püschel, Franziska; León-Annicchiarico, Clara Lucía; O'Connor, Hazel; Martin, Seamus J.; Palou-Gramón, Daniel; Lucendo, Estefanía
2017-01-01
ABSTRACT Metabolic stress occurs frequently in tumors and in normal tissues undergoing transient ischemia. Nutrient deprivation triggers, among many potential cell death-inducing pathways, an endoplasmic reticulum (ER) stress response with the induction of the integrated stress response transcription factor ATF4. However, how this results in cell death remains unknown. Here we show that glucose deprivation triggered ER stress and induced the unfolded protein response transcription factors ATF4 and CHOP. This was associated with the nontranscriptional accumulation of TRAIL receptor 1 (TRAIL-R1) (DR4) and with the ATF4-mediated, CHOP-independent induction of TRAIL-R2 (DR5), suggesting that cell death in this context may involve death receptor signaling. Consistent with this, the ablation of TRAIL-R1, TRAIL-R2, FADD, Bid, and caspase-8 attenuated cell death, although the downregulation of TRAIL did not, suggesting ligand-independent activation of TRAIL receptors. These data indicate that stress triggered by glucose deprivation promotes the ATF4-dependent upregulation of TRAIL-R2/DR5 and TRAIL receptor-mediated cell death. PMID:28242652
Numerical Modeling of Sliding Stability of RCC dam
NASA Astrophysics Data System (ADS)
Mughieda, O.; Hazirbaba, K.; Bani-Hani, K.; Daoud, W.
2017-06-01
Stability and stress analyses are the most important elements that require rigorous consideration in design of a dam structure. Stability of dams against sliding is crucial due to the substantial horizontal load that requires sufficient and safe resistance to develop by mobilization of adequate shearing forces along the base of the dam foundation. In the current research, the static sliding stability of a roller-compacted-concrete (RCC) dam was modelled using finite element method to investigate the stability against sliding. A commercially available finite element software (SAP 2000) was used to analyze stresses in the body of the dam and foundation. A linear finite element static analysis was performed in which a linear plane strain isoperimetric four node elements was used for modelling the dam-foundation system. The analysis was carried out assuming that no slip will occur at the interface between the dam and the foundation. Usual static loading condition was applied for the static analysis. The greatest tension was found to develop in the rock adjacent to the toe of the upstream slope. The factor of safety against sliding along the entire base of the dam was found to be greater than 1 (FS>1), for static loading conditions.
Static Properties of Fibre Metal Laminates
NASA Astrophysics Data System (ADS)
Hagenbeek, M.; van Hengel, C.; Bosker, O. J.; Vermeeren, C. A. J. R.
2003-07-01
In this article a brief overview of the static properties of Fibre Metal Laminates is given. Starting with the stress-strain relation, an effective calculation tool for uniaxial stress-strain curves is given. The method is valid for all Glare types. The Norris failure model is described in combination with a Metal Volume Fraction approach leading to a useful tool to predict allowable blunt notch strength. The Volume Fraction approach is also useful in the case of the shear yield strength of Fibre Metal Laminates. With the use of the Iosipescu test shear yield properties are measured.
Headaches: Reduce Stress to Prevent the Pain
... your ability to cope with stress. Lack of sleep puts your body under stress and may trigger the release of stress hormones, such as adrenaline and cortisol. Seek support. Talking things out with family or friends or allowing ...
First Results from the Telescope Array RAdar (TARA) Detector
NASA Astrophysics Data System (ADS)
Myers, Isaac
2014-03-01
The TARA cosmic ray detector has been in operation for about a year and a half. This bi-static radar detector was designed with the goal of detecting cosmic rays in coincidence with Telescope Array (TA). A new high power (25 kW, 5 MW effective radiated power) transmitter and antenna array and 250 MHz fPGA-based DAQ have been operational since August 2013. The eight-Yagi antenna array broadcasts a 54.1 MHz tone across the TA surface detector array toward our receiver station 50 km away at the Long Ridge fluorescence detector. Receiving antennas feed an intelligent DAQ that self-adjusts to the fluctuating radio background and which employs a bank of matched filters that search in real-time for chirp radar echoes. Millions of triggers have been collected in this mode. A second mode is a forced trigger scheme that uses the trigger status of the fluorescence telescope. Of those triggers collected in FD-triggered mode, about 800 correspond with well-reconstructed TA events. I will describe recent advancements in calibrating key components in the transmitter and receiver RF chains and the analysis of FD-triggered data. Work supported by W.M. Keck Foundation and NSF.
Red ear syndrome precipitated by a dietary trigger: a case report
2014-01-01
Introduction Red ear syndrome is a rare condition characterized by episodic attacks of erythema of the ear accompanied by burning ear pain. Symptoms are brought on by touch, exertion, heat or cold, stress, neck movements and washing or brushing of hair. Diagnosis and treatment of this condition are challenging. The case we report here involves a woman whose symptoms were brought on by a dietary trigger: orange juice as well as stress, causing significant physical and psychological morbidity. Avoidance of triggers resulted in symptomatic improvement. Case presentation A 22-year-old Caucasian woman who was a student presented twice to our department with evolving symptoms, the first time with hyperacusis (abnormal sound sensitivity arising from within the auditory system to sounds of moderate volume), intermittent right tinnitus and subjective hearing difficulties. She presented five years later with highly distressing episodes of erythematous ears, which were associated with burning pain around the ear and temporal areas, and intolerance to noise. After keeping a symptom diary, she identified orange juice and stress as triggers of her symptoms. No local head and neck pathology was present. Investigations and imaging were negative. Avoidance of triggers led to great symptomatic improvement. To the best of our knowledge, dietary triggers have not previously been reported as a trigger for this syndrome. This case shows a direct temporal link to a dietary trigger and supports a primary pathogenesis. Recognition and management of primary headache disorder and simple dietary and lifestyle changes brought about symptomatic relief. Conclusion Red ear syndrome is a little-known clinical syndrome of unknown etiology and management. To the best of our knowledge, our present case report is the first to describe primary red ear syndrome triggered by orange juice. Clinical benefit derived from avoidance of this trigger, which is already known to precipitate migraines, gives some insight into the pathogenesis of red ear syndrome. PMID:25303997
Liu, Yixin; Xu, Jiang; Peng, Shoujian
2016-01-01
Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered. PMID:27929142
Liu, Yixin; Xu, Jiang; Peng, Shoujian
2016-12-08
Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO 2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered.
Reduced risk of apoptosis: mechanisms of stress responses.
Milisav, Irina; Poljšak, Borut; Ribarič, Samo
2017-02-01
Apoptosis signaling pathways are integrated into a wider network of interconnected apoptotic and anti-apoptotic pathways that regulate a broad range of cell responses from cell death to growth, development and stress responses. An important trigger for anti- or pro-apoptotic cell responses are different forms of stress including hypoxia, energy deprivation, DNA damage or inflammation. Stress duration and intensity determine whether the cell's response will be improved cell survival, due to stress adaptation, or cell death by apoptosis, necrosis or autophagy. Although the interplay between enhanced stress tolerance and modulation of apoptosis triggering is not yet fully understood, there is a substantial body of experimental evidence demonstrating that apoptosis and anti-apoptosis signaling pathways can be manipulated to trigger or delay apoptosis in vitro or in vivo. Anti-apoptotic strategies cover a broad range of approaches. These interventions include mediators that prevent apoptosis (trophic factors and cytokines), apoptosis inhibition (caspase inhibition, stimulation of anti-apoptotic or inhibition of pro-apoptotic proteins and elimination of apoptotic stimulus), adaptive stress responses (induction of maintenance and repair, caspase inactivation) and cell-cell interactions (blocking engulfment and modified micro environment). There is a consensus that preclinical efficacy and safety evaluations of anti-apoptotic strategies should be performed with protocols that simulate as closely as possible the effects of aging, gender, risk factors, comorbidities and co-medications.
Takotsubo (Stress) Cardiomyopathy
... the American Heart Association Cardiology Patient Page Takotsubo (Stress) Cardiomyopathy Scott W. Sharkey , John R. Lesser , Barry ... heart contraction has returned to normal. Importance of Stress In 85% of cases, takotsubo is triggered by ...
Stability of submarine slopes in the northern South China Sea: a numerical approach
NASA Astrophysics Data System (ADS)
Zhang, Liang; Luan, Xiwu
2013-01-01
Submarine landslides occur frequently on most continental margins. They are effective mechanisms of sediment transfer but also a geological hazard to seafloor installations. In this paper, submarine slope stability is evaluated using a 2D limit equilibrium method. Considerations of slope, sediment, and triggering force on the factor of safety (FOS) were calculated in drained and undrained ( Φ=0) cases. Results show that submarine slopes are stable when the slope is <16° under static conditions and without a weak interlayer. With a weak interlayer, slopes are stable at <18° in the drained case and at <9° in the undrained case. Earthquake loading can drastically reduce the shear strength of sediment with increased pore water pressure. The slope became unstable at >13° with earthquake peak ground acceleration (PGA) of 0.5 g; whereas with a weak layer, a PGA of 0.2 g could trigger instability at slopes >10°, and >3° for PGA of 0.5 g. The northern slope of the South China Sea is geomorphologically stable under static conditions. However, because of the possibility of high PGA at the eastern margin of the South China Sea, submarine slides are likely on the Taiwan Bank slope and eastern part of the Dongsha slope. Therefore, submarine slides recognized in seismic profiles on the Taiwan Bank slope would be triggered by an earthquake, the most important factor for triggering submarine slides on the northern slope of the South China Sea. Considering the distribution of PGA, we consider the northern slope of the South China Sea to be stable, excluding the Taiwan Bank slope, which is tectonically active.
Evidence for remotely triggered micro-earthquakes during salt cavern collapse
NASA Astrophysics Data System (ADS)
Jousset, P.; Rohmer, J.
2012-04-01
Micro-seismicity is a good indicator of spatio-temporal evolution of physical properties of rocks prior to catastrophic events like volcanic eruptions or landslides and may be triggered by a number of causes including dynamic characteristics of processes in play or/and external forces. Micro-earthquake triggering has been in the recent years the subject of intense research and our work contribute to showing further evidence of possible triggering of micro-earthquakes by remote large earthquakes. We show evidence of triggered micro-seismicity in the vicinity of an underground salt cavern prone to collapse by a remote M~7.2 earthquake, which occurred ~12000 kilometres away. We demonstrate the near critical state of the cavern before the collapse by means of 2D axisymmetric elastic finite-element simulations. Pressure was lowered in the cavern by pumping operations of brine out of the cavern. We demonstrate that a very small stress increase would be sufficient to break the overburden. High-dynamic broadband records reveal a remarkable time-correlation between a dramatic increase of the local high-frequency micro-seismicity rate associated with the break of the stiffest layer stabilizing the overburden and the passage of low-frequency remote seismic waves, including body, Love and Rayleigh surface waves. Stress oscillations due to the seismic waves exceeded the strength required for the rupture of the complex media made of brine and rock triggering micro-earthquakes and leading to damage of the overburden and eventually collapse of the salt cavern. The increment of stress necessary for the failure of a Dolomite layer is of the same order or magnitude as the maximum dynamic stress magnitude observed during the passage of the earthquakes waves. On this basis, we discuss the possible contribution of the Love and Rayleigh low-frequency surfaces waves.
Liao, Wen-Jun; Chen, Wan-Wen; Wen, Zhang; Wu, Yue-Heng; Li, Dong-Feng; Zhou, Jia-Hui; Zheng, Jian-Yi; Lin, Zhan-Yi
2016-06-20
To improve Luo-Ye pump-based stress-forming system and optimize the stimulating effect on smooth muscle cells during cultivation of tissue-engineered blood vessels (TEBV). A new Luo-Ye pump-based TEBV 3D culture system was developed by adding an air pump to the output of the bioreactor. A pressure guide wire was used to measure the stress at different points of the silicone tube inside the TEBV bio-reactor, and fitting curves of the stress changes over time was created using Origin 8.0 software. The TEBVs were constructed by seeding vascular smooth muscle cells (VSMCs) isolated from human umbilical artery on polyglycolic acid (PGA) and cultured under dynamic conditions with 40 mmHg resistance (improved group), dynamic conditions without resistance (control group) or static condition (static group) for 4 weeks. The harvested TEBVs were then examined with HE staining, masson staining, α-SMA immunohistochemical staining, and scanning and transmission electron microscopy with semi-quantitative analysis of collagen content and α-SMA expression. The measured stress values and the fitting curves showed that the stress stimuli from the Luo-Ye pump were enhanced by adding an air pump to the output of the bioreactor. Histological analysis revealed improved VSMC density, collagen content and α-SMA expression in the TEBVs constructed with the improved method as compared with those in the control and static groups. Adding an air pump to the Luo-Ye pump significantly enhances the stress stimulation in the TEBV 3-D culture system to promote the secretion function of VSMCs.
Parsons, T.
2011-01-01
Concerns have been raised that stresses from reservoir impoundment may trigger damaging earthquakes because rate changes have been associated with reservoir impoundment or stage-level changes globally. Here, the idea is tested blindly using Anderson Reservoir, which lies atop the seismically active Calaveras fault. The only knowledge held by the author going into the study was the expectation that reservoir levels change cyclically because of seasonal rainfall. Examination of seismicity rates near the reservoir reveals variability, but no correlation with stage-level changes. Three-dimensional fi nite-element modeling shows stress changes suffi cient for earthquake triggering along the Calaveras fault zone. Since many of the reported cases of induced triggering come from low-strain settings, it is speculated that gradual stressing from stage-level changes in high-strain settings may not be signifi cant. From this study, it can be concluded that reservoirs are not necessarily risky in active tectonic settings. ?? 2011 Geological Society of America.
Cascading elastic perturbation in Japan due to the 2012 M w 8.6 Indian Ocean earthquake.
Delorey, Andrew A; Chao, Kevin; Obara, Kazushige; Johnson, Paul A
2015-10-01
Since the discovery of extensive earthquake triggering occurring in response to the 1992 M w (moment magnitude) 7.3 Landers earthquake, it is now well established that seismic waves from earthquakes can trigger other earthquakes, tremor, slow slip, and pore pressure changes. Our contention is that earthquake triggering is one manifestation of a more widespread elastic disturbance that reveals information about Earth's stress state. Earth's stress state is central to our understanding of both natural and anthropogenic-induced crustal processes. We show that seismic waves from distant earthquakes may perturb stresses and frictional properties on faults and elastic moduli of the crust in cascading fashion. Transient dynamic stresses place crustal material into a metastable state during which the material recovers through a process termed slow dynamics. This observation of widespread, dynamically induced elastic perturbation, including systematic migration of offshore seismicity, strain transients, and velocity transients, presents a new characterization of Earth's elastic system that will advance our understanding of plate tectonics, seismicity, and seismic hazards.
Did the Zipingpu Reservoir trigger the 2008 Wenchuan earthquake?
Ge, S.; Liu, M.; Lu, N.; Godt, J.W.; Luo, G.
2009-01-01
The devastating May 2008 Wenchuan earthquake (Mw 7.9) resulted from thrust of the Tibet Plateau on the Longmen Shan fault zone, a consequence of the Indo-Asian continental collision. Many have speculated on the role played by the Zipingpu Reservoir, impounded in 2005 near the epicenter, in triggering the earthquake. This study evaluates the stress changes in response to the impoundment of the Zipingpu Reservoir and assesses their impact on the Wenchuan earthquake. We show that the impoundment could have changed the Coulomb stress by -0.01 to 0.05 MPa at locations and depth consistent with reported hypocenter positions. This level of stress change has been shown to be significant in triggering earthquakes on critically stressed faults. Because the loading rate on the Longmen Shan fault is <0.005 MPa/yr, we thus suggest that the Zipingpu Reservoir potentially hastened the occurrence of the Wenchuan earthquake by tens to hundreds of years. Copyright 2009 by the American Geophysical Union.
Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riback, Joshua A.; Katanski, Christopher D.; Kear-Scott, Jamie L.
In eukaryotic cells, diverse stresses trigger coalescence of RNA-binding proteins into stress granules. In vitro, stress-granule-associated proteins can demix to form liquids, hydrogels, and other assemblies lacking fixed stoichiometry. Observing these phenomena has generally required conditions far removed from physiological stresses. We show that poly(A)-binding protein (Pab1 in yeast), a defining marker of stress granules, phase separates and forms hydrogels in vitro upon exposure to physiological stress conditions. Other RNA-binding proteins depend upon low-complexity regions (LCRs) or RNA for phase separation, whereas Pab1’s LCR is not required for demixing, and RNA inhibits it. Based on unique evolutionary patterns, we createmore » LCR mutations, which systematically tune its biophysical properties and Pab1 phase separation in vitro and in vivo. Mutations that impede phase separation reduce organism fitness during prolonged stress. Poly(A)-binding protein thus acts as a physiological stress sensor, exploiting phase separation to precisely mark stress onset, a broadly generalizable mechanism.« less
Stress analysis of 27% scale model of AH-64 main rotor hub
NASA Technical Reports Server (NTRS)
Hodges, R. V.
1985-01-01
Stress analysis of an AH-64 27% scale model rotor hub was performed. Component loads and stresses were calculated based upon blade root loads and motions. The static and fatigue analysis indicates positive margins of safety in all components checked. Using the format developed here, the hub can be stress checked for future application.
NASA Technical Reports Server (NTRS)
Pool, Kirby V.
1989-01-01
This volume summarizes the analysis used to assess the structural life of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbo-Pump (HPFTP) Third Stage Impeller. This analysis was performed in three phases, all using the DIAL finite element code. The first phase was a static stress analysis to determine the mean (non-varying) stress and static margin of safety for the part. The loads involved were steady state pressure and centrifugal force due to spinning. The second phase of the analysis was a modal survey to determine the vibrational modes and natural frequencies of the impeller. The third phase was a dynamic response analysis to determine the alternating component of the stress due to time varying pressure impulses at the outlet (diffuser) side of the impeller. The results of the three phases of the analysis show that the Third Stage Impeller operates very near the upper limits of its capability at full power level (FPL) loading. The static loading alone creates stresses in some areas of the shroud which exceed the yield point of the material. Additional cyclic loading due to the dynamic force could lead to a significant reduction in the life of this part. The cyclic stresses determined in the dynamic response phase of this study are based on an assumption regarding the magnitude of the forcing function.
Lukas, Karin; Thomas, Ulrich; Gessner, André; Wehner, Daniel; Schmid, Thomas; Schmid, Christof; Lehle, Karla
2016-04-01
Medical devices made of polycarbonaturethane (PCU) combine excellent mechanical properties and little biological degradation, but restricted hemocompatibility. Modifications of PCU might reduce platelet adhesion and promote stable endothelialization. PCU was modified using gas plasma treatment, binding of hydrogels, and coupling of cell-active molecules (modified heparin, anti-thrombin III (ATIII), argatroban, fibronectin, laminin-nonapeptide, peptides with integrin-binding arginine-glycine-aspartic acid (RGD) motif). Biocompatibility was verified with static and dynamic cell culture techniques. Blinded analysis focused on improvement in endothelial cell (EC) adhesion/proliferation, anti-thrombogenicity, reproducible manufacturing process, and shear stress tolerance of ECs. EC adhesion and antithrombogenicity were achieved with 9/35 modifications. Additionally, 6/9 stimulated EC proliferation and 3/6 modification processes were highly reproducible for endothelialization. The latter modifications comprised immobilization of ATIII (A), polyethyleneglycole-diamine-hydrogel (E) and polyethylenimine-hydrogel connected with modified heparin (IH). Under sheer stress, only the IH modification improved EC adhesion within the graft. However, ECs did not arrange in flow direction and cell anchorage was restricted. Despite large variation in surface modification chemistry and improved EC adhesion under static culture conditions, additional introduction of shear stress foiled promising preliminary data. Therefore, biocompatibility testing required not only static tests but also usage of physiological conditions such as shear stress in the case of vascular grafts. © The Author(s) 2016.
... due to sudden changes in body position, can trigger syncope. It’s important to determine the cause of ... and heart rate malfunctions in response to a trigger, such as emotional stress or pain. NMS typically ...
Stress Corrosion Behavior of 12Cr Martensite Steel for Steam Turbine LP Blade
NASA Astrophysics Data System (ADS)
Tianjian, Wang; Yubing, Pei; Zhenhuan, Gao; Hua, Fan; Gongxian, Yang
With the development of capacity and efficiency of coal-fired thermal power plant, the length of Low Pressure (LP) last-stage blade of steam turbine became longer. Therefore, the design static stress of blade gets closer or even higher than the yield strength of material. Because of the special operation condition of LP last stage blade, the stress corrosion crack of 12Cr-Ni-Mo-V-N Martensite stainless steel may happen especially at the root of the blade where designed the highest static stress. In this paper, the stress corrosion behavior of 12Cr-Ni-Mo-V-N Martensite stainless steels used for steam turbine LP last stage blade in 3vol% NaCl solution was studied, the constant stress is about 95%, 85%, 65% and 35% of yield stress respectively and the test was lasted for 3000 hours, the stress corrosion behavior was studied and then, the effect of shot penning strengthen for anti-stress corrosion property of 12Cr-Ni-Mo-V-N Martensitic steel was studied. The results showed that the purity of steel affects the stress corrosion behavior huge especially at the high and medium stress condition. The shot penning cannot enhances the anti-stress corrosion property of the 12Cr-Ni-Mo-V-N steel at high tensile constant stress condition, however it will make the anti-stress corrosion property better when the stress is low.
Xu, Yidong
2015-01-01
This paper describes the non-uniform corrosion characteristics and mechanical properties of reinforcement under coupled action of carbonation and static loading. The two parameters, namely area-box (AB) value and arithmetical mean deviation (Ra), are adopted to characterize the corrosion morphology and pitting distribution from experimental observations. The results show that the static loading affects the corrosion characteristics of reinforcement. Local stress concentration in corroded reinforcement caused by tensile stress drives the corrosion pit pattern to be more irregular. The orthogonal test results from finite element simulations show that pit shape and pit depth are the two significant factors affecting the tensile behavior of reinforcement. Under the condition of similar corrosion mass loss ratio, the maximum plastic strain of corroded reinforcement increases with the increase of Ra and load time-history significantly. PMID:28793729
Physics-Based and Statistical Forecasting in Slowly Stressed Environments
NASA Astrophysics Data System (ADS)
Segou, M.; Deschamps, A.
2013-12-01
We perform a retrospective forecasting experiment between 1995-2012, comparing the predictive power of physics-based and statistical models in Corinth Gulf (Central Greece), which is the fastest continental rift in the world with extension rates 11-15 mm/yr, but also at least three times lower than the motion accommodated by the San Andreas Fault System (~40 mm/yr). The seismicity of the western Corinth gulf has been characterized by significant historical events (1817 M6.6, 1861 M6.7, 1889 M7.0) whereas the modern instrumental catalog (post-1964) reveals one major event, the 1995 Aigio M6.4 (15/06/1995) together with several periods of increased microseismic activity, usually lasting few months and possibly related with fluid diffusion. We examine six predictive models, three based on the combination of Coulomb stress changes and rate-and-state theory (CRS), two epidemic type aftershock sequence (ETAS) models and one hybrid CRS-ETAS (h-ETAS) model. We investigate whether the above forecast models can adequately describe the episodic swarm activity within the gulf. Even though Corinth gulf has been studied extensively in the past there is still today a debate whether earthquake activity is related with the existence of either a shallow dipping structure or steeply dipping normal faults. In the light of the above statement, two CRS realization are based on resolving Coulomb stress changes on specified receiver faults, expressing the aforementioned structural models, whereas the third CRS model uses optimally-oriented for failure planes. In our CRS implementation we account for stress changes following all major ruptures within our testing phase with M greater than 4.5. We also estimate fault constitutive parameters from modeling the response to major earthquakes at the vicinity of the gulf (Ασ=0.2, stressing rate 0.02 bar/yr). The ETAS parameters are taken as the maximum likelihood estimates derived from stochastic declustering of the modern seismicity catalog with minimum triggering magnitude M2.5. We implement likelihood tests to evaluate our forecasts for their spatial consistency and for the total amount of predicted versus observed events with M greater than 3.0 in 10-day time intervals in two distinct evaluation phases. The first evaluation phase focuses on the Aigio 1995 aftershock sequence (15/06/1995, M6.4) whereas the second covers the period between September 2006-May 2007, characterized for the intense swarm activity.We find that (1) geology based CRS models are preferred over optimally oriented planes (2) CRS models are consistent forecasters (60-70%) of transient seismicity, having in most cases comparable performance with ETAS models (3) swarms are not triggered by static stress changes of preceding local events.
Remote Triggering in the Koyna-Warna Reservoir-Induced Seismic Zone, Western India
NASA Astrophysics Data System (ADS)
Bansal, Abhey Ram; Rao, N. Purnachandra; Peng, Zhigang; Shashidhar, D.; Meng, Xiaofeng
2018-03-01
Dynamic triggering following large distant earthquakes has been observed in many regions globally. In this study, we present evidence for remote dynamic triggering in the Koyna-Warna region of Western India, which is known to be a premier site of reservoir-induced seismicity. Using data from a closely spaced broadband network of 11 stations operated in the region since 2005, we conduct a systematic search for dynamic triggering following 20 large distant earthquakes with dynamic stresses of at least 1 kPa in the region. We find that the only positive cases of dynamic triggering occurred during 11 April 2012, Mw8.6 Indian Ocean earthquake and its largest aftershock of Mw8.2. In the first case, microearthquakes started to occur in the first few cycles of the Love waves, and the largest event of magnitude 3.3 occurred during the first few cycles of the Rayleigh waves. The increase of microseismicity lasted for up to five days, including a magnitude 4.8 event occurred approximately three days later. Our results suggest that the Koyna-Warna region is stress sensitive and susceptible for remote dynamic triggering, although the apparent triggering threshold appears to be slightly higher than other regions.
Antarctic icequakes triggered by the 2010 Maule earthquake in Chile
NASA Astrophysics Data System (ADS)
Peng, Zhigang; Walter, Jacob I.; Aster, Richard C.; Nyblade, Andrew; Wiens, Douglas A.; Anandakrishnan, Sridhar
2014-09-01
Seismic waves from distant, large earthquakes can almost instantaneously trigger shallow micro-earthquakes and deep tectonic tremor as they pass through Earth's crust. Such remotely triggered seismic activity mostly occurs in tectonically active regions. Triggered seismicity is generally considered to reflect shear failure on critically stressed fault planes and is thought to be driven by dynamic stress perturbations from both Love and Rayleigh types of surface seismic wave. Here we analyse seismic data from Antarctica in the six hours leading up to and following the 2010 Mw 8.8 Maule earthquake in Chile. We identify many high-frequency seismic signals during the passage of the Rayleigh waves generated by the Maule earthquake, and interpret them as small icequakes triggered by the Rayleigh waves. The source locations of these triggered icequakes are difficult to determine owing to sparse seismic network coverage, but the triggered events generate surface waves, so are probably formed by near-surface sources. Our observations are consistent with tensile fracturing of near-surface ice or other brittle fracture events caused by changes in volumetric strain as the high-amplitude Rayleigh waves passed through. We conclude that cryospheric systems can be sensitive to large distant earthquakes.
Reflex seizures in Rett syndrome.
Roche Martínez, Ana; Alonso Colmenero, M Itziar; Gomes Pereira, Andreia; Sanmartí Vilaplana, Francesc X; Armstrong Morón, Judith; Pineda Marfa, Mercé
2011-12-01
Reflex seizures are a rare phenomenon among epileptic patients, in which an epileptic discharge is triggered by various kinds of stimuli (visual, auditory, tactile or gustatory). Epilepsy is common in Rett syndrome patients (up to 70%), but to the authors' knowledge, no pressure or eating-triggered seizures have yet been reported in Rett children. We describe three epileptic Rett patients with reflex seizures, triggered by food intake or proprioception. One patient with congenital Rett Sd. developed infantile epileptic spasms at around seven months and two patients with classic Rett Sd. presented with generalised tonic-clonic seizures at around five years. Reflex seizures appeared when the patients were teenagers. The congenital-Rett patient presented eating-triggered seizures at the beginning of almost every meal, demonstrated by EEG recording. Both classic Rett patients showed self-provoked pressure -triggered attacks, influenced by stress or excitement. Non-triggered seizures were controlled with carbamazepine or valproate, but reflex seizures did not respond to antiepileptic drugs. Risperidone partially improved self-provoked seizures. When reflex seizures are suspected, reproducing the trigger during EEG recording is fundamental; however, self-provoked seizures depend largely on the patient's will. Optimal therapy (though not always possible) consists of avoiding the trigger. Stress modifiers such as risperidone may help control self-provoked seizures.
Autonomous Sensory Meridian Response (ASMR): a flow-like mental state.
Barratt, Emma L; Davis, Nick J
2015-01-01
Autonomous Sensory Meridian Response (ASMR) is a previously unstudied sensory phenomenon, in which individuals experience a tingling, static-like sensation across the scalp, back of the neck and at times further areas in response to specific triggering audio and visual stimuli. This sensation is widely reported to be accompanied by feelings of relaxation and well-being. The current study identifies several common triggers used to achieve ASMR, including whispering, personal attention, crisp sounds and slow movements. Data obtained also illustrates temporary improvements in symptoms of depression and chronic pain in those who engage in ASMR. A high prevalence of synaesthesia (5.9%) within the sample suggests a possible link between ASMR and synaesthesia, similar to that of misophonia. Links between number of effective triggers and heightened flow state suggest that flow may be necessary to achieve sensations associated with ASMR.
NASA Astrophysics Data System (ADS)
Martel, Stephen J.; Pollard, David D.
1989-07-01
We exploit quasi-static fracture mechanics models for slip along pre-existing faults to account for the fracture structure observed along small exhumed faults and small segmented fault zones in the Mount Abbot quadrangle of California and to estimate stress drop and shear fracture energy from geological field measurements. Along small strike-slip faults, cracks that splay from the faults are common only near fault ends. In contrast, many cracks splay from the boundary faults at the edges of a simple fault zone. Except near segment ends, the cracks preferentially splay into a zone. We infer that shear displacement discontinuities (slip patches) along a small fault propagated to near the fault ends and caused fracturing there. Based on elastic stress analyses, we suggest that slip on one boundary fault triggered slip on the adjacent boundary fault, and that the subsequent interaction of the slip patches preferentially led to the generation of fractures that splayed into the zones away from segment ends and out of the zones near segment ends. We estimate the average stress drops for slip events along the fault zones as ˜1 MPa and the shear fracture energy release rate during slip as 5 × 102 - 2 × 104 J/m2. This estimate is similar to those obtained from shear fracture of laboratory samples, but orders of magnitude less than those for large fault zones. These results suggest that the shear fracture energy release rate increases as the structural complexity of fault zones increases.
Epistemic uncertainty in California-wide synthetic seismicity simulations
Pollitz, Fred F.
2011-01-01
The generation of seismicity catalogs on synthetic fault networks holds the promise of providing key inputs into probabilistic seismic-hazard analysis, for example, the coefficient of variation, mean recurrence time as a function of magnitude, the probability of fault-to-fault ruptures, and conditional probabilities for foreshock–mainshock triggering. I employ a seismicity simulator that includes the following ingredients: static stress transfer, viscoelastic relaxation of the lower crust and mantle, and vertical stratification of elastic and viscoelastic material properties. A cascade mechanism combined with a simple Coulomb failure criterion is used to determine the initiation, propagation, and termination of synthetic ruptures. It is employed on a 3D fault network provided by Steve Ward (unpublished data, 2009) for the Southern California Earthquake Center (SCEC) Earthquake Simulators Group. This all-California fault network, initially consisting of 8000 patches, each of ∼12 square kilometers in size, has been rediscretized into Graphic patches, each of ∼1 square kilometer in size, in order to simulate the evolution of California seismicity and crustal stress at magnitude M∼5–8. Resulting synthetic seismicity catalogs spanning 30,000 yr and about one-half million events are evaluated with magnitude-frequency and magnitude-area statistics. For a priori choices of fault-slip rates and mean stress drops, I explore the sensitivity of various constructs on input parameters, particularly mantle viscosity. Slip maps obtained for the southern San Andreas fault show that the ability of segment boundaries to inhibit slip across the boundaries (e.g., to prevent multisegment ruptures) is systematically affected by mantle viscosity.
Epistemic uncertainty in California-wide synthetic seismicity simulations
Pollitz, F.F.
2011-01-01
The generation of seismicity catalogs on synthetic fault networks holds the promise of providing key inputs into probabilistic seismic-hazard analysis, for example, the coefficient of variation, mean recurrence time as a function of magnitude, the probability of fault-to-fault ruptures, and conditional probabilities for foreshock-mainshock triggering. I employ a seismicity simulator that includes the following ingredients: static stress transfer, viscoelastic relaxation of the lower crust and mantle, and vertical stratification of elastic and viscoelastic material properties. A cascade mechanism combined with a simple Coulomb failure criterion is used to determine the initiation, propagation, and termination of synthetic ruptures. It is employed on a 3D fault network provided by Steve Ward (unpublished data, 2009) for the Southern California Earthquake Center (SCEC) Earthquake Simulators Group. This all-California fault network, initially consisting of 8000 patches, each of ~12 square kilometers in size, has been rediscretized into ~100;000 patches, each of ~1 square kilometer in size, in order to simulate the evolution of California seismicity and crustal stress at magnitude M ~ 5-8. Resulting synthetic seismicity catalogs spanning 30,000 yr and about one-half million events are evaluated with magnitude-frequency and magnitude-area statistics. For a priori choices of fault-slip rates and mean stress drops, I explore the sensitivity of various constructs on input parameters, particularly mantle viscosity. Slip maps obtained for the southern San Andreas fault show that the ability of segment boundaries to inhibit slip across the boundaries (e.g., to prevent multisegment ruptures) is systematically affected by mantle viscosity.
Domínguez-Escobar, Julia; Wolf, Diana; Fritz, Georg; Höfler, Carolin; Wedlich-Söldner, Roland; Mascher, Thorsten
2014-05-01
The liaIH operon of Bacillus subtilis is the main target of the envelope stress-inducible two-component system LiaRS. Here, we studied the localization, interaction and cellular dynamics of Lia proteins to gain insights into the physiological role of the Lia response. We demonstrate that LiaI serves as the membrane anchor for the phage-shock protein A homologue LiaH. Under non-inducing conditions, LiaI locates in highly motile membrane-associated foci, while LiaH is dispersed throughout the cytoplasm. Under stress conditions, both proteins are strongly induced and colocalize in numerous distinct static spots at the cytoplasmic membrane. This behaviour is independent of MreB and does also not correlate with the stalling of the cell wall biosynthesis machinery upon antibiotic inhibition. It can be induced by antibiotics that interfere with the membrane-anchored steps of cell wall biosynthesis, while compounds that inhibit the cytoplasmic or extracytoplasmic steps do not trigger this response. Taken together, our data are consistent with a model in which the Lia system scans the cytoplasmic membrane for envelope perturbations. Upon their detection, LiaS activates the cognate response regulator LiaR, which in turn strongly induces the liaIH operon. Simultaneously, LiaI recruits LiaH to the membrane, presumably to protect the envelope and counteract the antibiotic-induced damage. © 2014 John Wiley & Sons Ltd.
Static vs dynamic settlement and adhesion of diatoms to ship hull coatings.
Zargiel, Kelli A; Swain, Geoffrey W
2014-01-01
Many experiments utilize static immersion tests to evaluate the performance of ship hull coatings. These provide valuable data; however, they do not accurately represent the conditions both the hull and fouling organisms encounter while a ship is underway. This study investigated the effect of static and dynamic immersion on the adhesion and settlement of diatoms to one antifouling coating (BRA 640), four fouling-release coatings (Intersleek(®) 700, Intersleek(®) 900, Hempasil X3, and Dow Corning 3140) and one standard surface (Intergard(®) 240 Epoxy). Differences in community composition were observed between the static and dynamic treatments. Achnanthes longipes was present on all coatings under static immersion, but was not present under dynamic immersion. This was also found for diatoms in the genera Bacillaria and Gyrosigma. Melosira moniformis was the only diatom present under dynamic conditions, but not static conditions. Several common fouling diatom genera were present on panels regardless of treatment: Amphora, Cocconeis, Entomoneis Cylindrotheca, Licmophora, Navicula, Nitzschia, Plagiotropis, and Synedra. Biofilm adhesion, diatom abundance and diatom diversity were found to be significantly different between static and dynamic treatments; however, the difference was dependent on coating and sampling date. Several coatings (Epoxy, DC 3140 and IS 700) had significantly higher biofilm adhesion on dynamically treated panels on at least one of the four sampling dates, while all coatings had significantly higher diatom abundance on at least one sampling date. Diversity was significantly greater on static panels than dynamic panels for Epoxy, IS 700 and HX3 at least once during the sampling period. The results demonstrate how hydrodynamic stress will significantly influence the microfouling community. Dynamic immersion testing is required to fully understand how antifouling surfaces will respond to biofilm formation when subjected to the stresses experienced by a ship underway.
Tremors Triggered along the Queen Charlotte Fault
NASA Astrophysics Data System (ADS)
Aiken, C.; Peng, Z.; Chao, K.
2012-12-01
In the past decade, deep tectonic tremors have been observed in numerous tectonic environments surrounding the Pacific and Caribbean plates. In these regions, tremors triggered by both regional and distant earthquakes have also been observed. Despite the ubiquitous observations of triggered tremors, tremors triggered in differing strike-slip environments are less understood. Here, we conduct a preliminary search of tremors triggered by teleseismic earthquakes along the transpressive Queen Charlotte Fault (QCF) located between the Cascadia subduction zone and Alaska. Tectonic tremors have not been previously reported along the QCF. We select teleseismic earthquakes during the 1990-2012 period as having magnitude M ≥ 6.5 and occurring at least 1,000 km away from the region. We reduce the number of mainshocks by selecting those that generate greater than 1 kPa dynamic stress estimated from surface-wave magnitude equations [e.g. van der Elst and Brodsky, 2010]. Our mainshock waveforms are retrieved from the Canadian National Seismograph Network (CNSN), processed, and filtered for triggered tremor observations. We characterize triggered tremors as high-frequency signals visible among several stations and coincident with broadband surface wave peaks. So far, we have found tremors triggered along the QCF by surface waves of five great earthquakes - the 2002/11/03 Mw7.9 Denali Fault, 2004/12/26 Mw9.0 Sumatra, 2010/02/27 Mw8.8 Chile, 2011/03/11 Mw9.0 Japan, and 2012/04/11 Mw8.6 Sumatra earthquakes. We compare our results to tremors triggered by teleseismic earthquakes on strike-slip faults in central and southern California, as well as Cuba [Peng et al., 2012]. Among strike-slip faults in these regions, we also compare triggered tremor amplitudes to peak ground velocities from the mainshocks and compute dynamic stresses to determine a triggering threshold for the QCF. We find that in most cases tremors in the QCF are triggered primarily by the Love waves, and additional tremors are triggered by the subsequent Rayleigh waves. This is consistent with the near strike-parallel incidence for many triggering earthquakes, which tends to produce maximum triggering potential for vertical strike-slip faults. These results suggest a shear faulting mechanism is responsible for the triggered tremor on the QCF. The triggering threshold of dynamic stress is higher than that found at the Parkfield-Cholame section of the San Andreas Fault (2-3 KPa). This could be due to the sparse network coverage in the QCF, which may miss weak tremor signals triggered by smaller-size events. Our observations suggest that triggered tremor could occur in many places on major strike-slip faults around the world, although the necessary conditions for tremor generation are still not clear at this stage.
Duc, Camille; Pradal, Martine; Sanchez, Isabelle; Noble, Jessica; Tesnière, Catherine
2017-01-01
Yeast cell death can occur during wine alcoholic fermentation. It is generally considered to result from ethanol stress that impacts membrane integrity. This cell death mainly occurs when grape musts processing reduces lipid availability, resulting in weaker membrane resistance to ethanol. However the mechanisms underlying cell death in these conditions remain unclear. We examined cell death occurrence considering yeast cells ability to elicit an appropriate response to a given nutrient limitation and thus survive starvation. We show here that a set of micronutrients (oleic acid, ergosterol, pantothenic acid and nicotinic acid) in low, growth-restricting concentrations trigger cell death in alcoholic fermentation when nitrogen level is high. We provide evidence that nitrogen signaling is involved in cell death and that either SCH9 deletion or Tor inhibition prevent cell death in several types of micronutrient limitation. Under such limitations, yeast cells fail to acquire any stress resistance and are unable to store glycogen. Unexpectedly, transcriptome analyses did not reveal any major changes in stress genes expression, suggesting that post-transcriptional events critical for stress response were not triggered by micronutrient starvation. Our data point to the fact that yeast cell death results from yeast inability to trigger an appropriate stress response under some conditions of nutrient limitations most likely not encountered by yeast in the wild. Our conclusions provide a novel frame for considering both cell death and the management of nutrients during alcoholic fermentation. PMID:28922393
Infrequent triggering of tremor along the San Jacinto Fault near Anza, California
Wang, Tien-Huei; Cochran, Elizabeth S.; Agnew, Duncan Carr; Oglesby, David D.
2013-01-01
We examine the conditions necessary to trigger tremor along the San Jacinto fault (SJF) near Anza, California, where previous studies suggest triggered tremor occurs, but observations are sparse. We investigate the stress required to trigger tremor using continuous broadband seismograms from 11 stations located near Anza, California. We examine 44 Mw≥7.4 teleseismic events between 2001 and 2011; these events occur at a wide range of back azimuths and hypocentral distances. In addition, we included one smaller‐magnitude, regional event, the 2009 Mw 6.5 Gulf of California earthquake, because it induced extremely high strains at Anza. We find the only episode of triggered tremor occurred during the 3 November 2002 Mw 7.8 Denali earthquake. The tremor episode lasted 300 s, was composed of 12 tremor bursts, and was located along SJF at the northwestern edge of the Anza gap at approximately 13 km depth. The tremor episode started at the Love‐wave arrival, when surface‐wave particle motions are primarily in the transverse direction. We find that the Denali earthquake induced the second highest stress (~35 kPa) among the 44 teleseismic events and 1 regional event. The dominant period of the Denali surface wave was 22.8 s, at the lower end of the range observed for all events (20–40 s), similar to periods shown to trigger tremor in other locations. The surface waves from the 2009 Mw 6.5 Gulf of California earthquake had the highest observed strain, yet a much shorter dominant period of 10 s and did not trigger tremor. This result suggests that not only the amplitude of the induced strain, but also the period of the incoming surface wave, may control triggering of tremors near Anza. In addition, we find that the transient‐shear stress (17–35 kPa) required to trigger tremor along the SJF at Anza is distinctly higher than what has been reported for the well‐studied San Andreas fault.
Operational experience with VAWT blades. [structural performance
NASA Technical Reports Server (NTRS)
Sullivan, W. N.
1979-01-01
The structural performance of 17 meter diameter wind turbine rotors is discussed. Test results for typical steady and vibratory stress measurements are summarized along with predicted values of stress based on a quasi-static finite element model.
46 CFR 52.01-95 - Design (modifies PG-16 through PG-31 and PG-100).
Code of Federal Regulations, 2010 CFR
2010-10-01
... exceeding 525 °F. Refer to § 56.30-30(b)(1) of this subchapter for applicable requirements. (e) Stresses. (Modifies PG-22.) The stresses due to hydrostatic head shall be taken into account in determining the... stresses, imposed by effects other than internal pressure or static head, which increase the average stress...
46 CFR 52.01-95 - Design (modifies PG-16 through PG-31 and PG-100).
Code of Federal Regulations, 2012 CFR
2012-10-01
... exceeding 525 °F. Refer to § 56.30-30(b)(1) of this subchapter for applicable requirements. (e) Stresses. (Modifies PG-22.) The stresses due to hydrostatic head shall be taken into account in determining the... stresses, imposed by effects other than internal pressure or static head, which increase the average stress...
46 CFR 52.01-95 - Design (modifies PG-16 through PG-31 and PG-100).
Code of Federal Regulations, 2011 CFR
2011-10-01
... exceeding 525 °F. Refer to § 56.30-30(b)(1) of this subchapter for applicable requirements. (e) Stresses. (Modifies PG-22.) The stresses due to hydrostatic head shall be taken into account in determining the... stresses, imposed by effects other than internal pressure or static head, which increase the average stress...
NASA Technical Reports Server (NTRS)
Giles, G. L.; Wallas, M.
1981-01-01
User documentation is presented for a computer program which considers the nonlinear properties of the strain isolator pad (SIP) in the static stress analysis of the shuttle thermal protection system. This program is generalized to handle an arbitrary SIP footprint including cutouts for instrumentation and filler bar. Multiple SIP surfaces are defined to model tiles in unique locations such as leading edges, intersections, and penetrations. The nonlinearity of the SIP is characterized by experimental stress displacement data for both normal and shear behavior. Stresses in the SIP are calculated using a Newton iteration procedure to determine the six rigid body displacements of the tile which develop reaction forces in the SIP to equilibrate the externally applied loads. This user documentation gives an overview of the analysis capabilities, a detailed description of required input data and an example to illustrate use of the program.
How to Obtain Accurate Equations-of-State by Eliminating the Effects of Deviatoric Stresses
NASA Astrophysics Data System (ADS)
Chesnut, Gary; Schiferl, David
2003-03-01
In the field of static high-pressure research, it is common to find disagreements in the data between individual experiments. For example, there are many disagreements about crystal structures and volume discontinuities at phase transitions. Of course, there are many causes that give rise to these problems. The intrinsic properties of some materials can be the source of the confusion. However, there is another source, which affects every static high-pressure experiment - deviatoric stress. This problem has been well defined in the last decade. In particular, A. K. Singh et al has derived the equations of the deviatoric stresses for all the crystallographic structures. However, it only takes a moment to realize the difficulty in solving these equations for all but the simplest structures. Fortunately, there is a way around the problem of deviatoric stress - Magic Angle X-ray Diffraction.
Impact of triggering event in outcomes of stress-induced (Takotsubo) cardiomyopathy.
Yerasi, Charan; Koifman, Edward; Weissman, Gaby; Wang, Zuyue; Torguson, Rebecca; Gai, Jiaxiang; Lindsay, Joseph; Satler, Lowell F; Pichard, Augusto D; Waksman, Ron; Ben-Dor, Itsik
2017-04-01
Takotsubo syndrome is also known as stress cardiomyopathy because of the regularity with which it has been associated with physical or emotional stress. Such stress may well be a "trigger" of the syndrome. This analysis was undertaken to describe our experience with this disorder and in particular to examine the effects of the underlying trigger on outcomes. We conducted a retrospective review of the medical records of 345 consecutive patients treated at our institution from 2006 to 2014. All presented with acute cardiac symptoms, a characteristic left ventricular contraction pattern (typical, atypical), and no major obstructive coronary artery disease. Patients were grouped based on their triggering event: (a) medical illness; (b) post-operative period; (c) emotional distress; or (d) no identified trigger. Baseline demographic characteristics, death in hospital, length of stay in hospital, and cardiac complications were abstracted from the patients' medical records. The mean±SD age of the population was 72±12 years and 91% were women. No significant difference in baseline characteristics was noted between the groups except for a higher prevalence of African Americans in the group with a medical illness. ST elevation was noted in 13.3% of patients and the average peak troponin level was 5±12 ng/dl. An inotropic drug was required in 49 (14.2%) patients, an intra-aortic balloon pump in 37 (10.7%) patients, and mechanical ventilation in 54 (15.7%) patients; 43.5% required treatment in the intensive care unit. Overall, 12 (3.5%) patients died. In only two (16.7%) patients was a there a direct cardiac cause of death. In those patients in whom the cardiac manifestations seemed to be triggered by a medical illness, the death rate was 7.1% and this was significantly higher than in the other groups ( p=0.03). Medical illness (odds ratio=6.25, p=0.02) and ST elevation (odds ratio=5.71, p=0.04) were both significantly associated with death. Our study showed that different triggers for Takotsubo syndrome confer different prognoses, with medical illness conferring the worst prognosis. Overall, the in-hospital death rate was low and mostly related to non-cardiac death secondary to the underlying medical illness. Although an unidentified trigger was prevalent in a third of this population, efforts should be made to identify the triggering event to classify the risk group of patients with Takotsubo syndrome.
... processes visual signals (visual cortex) and causes these visual hallucinations. Many of the same factors that trigger migraine can also trigger migraine with aura, including stress, bright lights, some foods and medications, too much or too little sleep, ...
Characterization of crack growth under combined loading
NASA Technical Reports Server (NTRS)
Feldman, A.; Smith, F. W.; Holston, A., Jr.
1977-01-01
Room-temperature static and cyclic tests were made on 21 aluminum plates in the shape of a 91.4x91.4-cm Maltese cross with 45 deg flaws to develop crack growth and fracture toughness data under mixed-mode conditions. During cyclic testing, it was impossible to maintain a high proportion of shear-mode deformation on the crack tips. Cracks either branched or turned. Under static loading, cracks remained straight if shear stress intensity exceeded normal stress intensity. Mixed-mode crack growth rate data compared reasonably well with published single-mode data, and measured crack displacements agreed with the straight and branched crack analyses. Values of critical strain energy release rate at fracture for pure shear were approximately 50% higher than for pure normal opening, and there was a large reduction in normal stress intensity at fracture in the presence of high shear stress intensity. Net section stresses were well into the inelastic range when fracture occurred under high shear on the cracks.
Quasi-Static Viscoelastic Finite Element Model of an Aircraft Tire
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.
1999-01-01
An elastic large displacement thick-shell mixed finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at the element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses is included in the mixed variational functional. The nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the nonlinear elastic equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to computationally simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.
Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault
Delorey, Andrew A.; van der Elst, Nicholas J.; Johnson, Paul Allan
2016-12-28
Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering ofmore » earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Lastly, our findings reveal earthquake nucleation processes and pore pressure conditions – properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.« less
Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delorey, Andrew A.; van der Elst, Nicholas J.; Johnson, Paul Allan
Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering ofmore » earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Lastly, our findings reveal earthquake nucleation processes and pore pressure conditions – properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.« less
Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault
Delorey, Andrew; Van Der Elst, Nicholas; Johnson, Paul
2017-01-01
Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering of earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Our findings reveal earthquake nucleation processes and pore pressure conditions – properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.
Belda, Xavier; Nadal, Roser; Armario, Antonio
2016-08-11
Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors.
Belda, Xavier; Nadal, Roser; Armario, Antonio
2016-01-01
Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors. PMID:27511270
Escher, Beate I; van Daele, Charlotte; Dutt, Mriga; Tang, Janet Y M; Altenburger, Rolf
2013-07-02
The induction of adaptive stress response pathways is an early and sensitive indicator of the presence of chemical and non-chemical stressors in cells. An important stress response is the Nrf-2 mediated oxidative stress response pathway where electrophilic chemicals or chemicals that cause the formation of reactive oxygen species initiate the production of antioxidants and metabolic detoxification enzymes. The AREc32 cell line is sensitive to chemicals inducing oxidative stress and has been previously applied for water quality monitoring of organic micropollutants and disinfection byproducts. Here we propose an algorithm for the derivation of effect-based water quality trigger values for this end point that is based on the combined effects of mixtures of regulated chemicals. Mixture experiments agreed with predictions by the mixture toxicity concept of concentration addition. The responses in the AREc32 and the concentrations of 269 individual chemicals were quantified in nine environmental samples, ranging from treated effluent, recycled water, stormwater to drinking water. The effects of the detected chemicals could explain less than 0.1% of the observed induction of the oxidative stress response in the sample, affirming the need to use effect-based trigger values that account for all chemicals present.
Structural Influence on the Mechanical Response of Adolescent Gottingen Porcine Cranial Bone
2016-10-01
specimens were then loaded in quasi -static compression to measure their mechanical response. The surface strain distribution on the specimen face was...13 Fig. 10 Apparent stress-strain responses of a sample of specimens loaded in quasi -static compression...modulus-BVF experimental results shown in Fig. 15 ..................................................................................19 Fig. 17 The
Structural integrity of a confinement vessel for testing nuclear fuels for space propulsion
NASA Astrophysics Data System (ADS)
Bergmann, V. L.
Nuclear propulsion systems for rockets could significantly reduce the travel time to distant destinations in space. However, long before such a concept can become reality, a significant effort must be invested in analysis and ground testing to guide the development of nuclear fuels. Any testing in support of development of nuclear fuels for space propulsion must be safely contained to prevent the release of radioactive materials. This paper describes analyses performed to assess the structural integrity of a test confinement vessel. The confinement structure, a stainless steel pressure vessel with bolted flanges, was designed for operating static pressures in accordance with the ASME Boiler and Pressure Vessel Code. In addition to the static operating pressures, the confinement barrier must withstand static overpressures from off-normal conditions without releasing radioactive material. Results from axisymmetric finite element analyses are used to evaluate the response of the confinement structure under design and accident conditions. For the static design conditions, the stresses computed from the ASME code are compared with the stresses computed by the finite element method.
A static model of a Sendzimir mill for use in shape control
NASA Astrophysics Data System (ADS)
Gunawardene, G. W. D. M.
The design of shape control systems is an area of current interest in the steel industry. Shape is defined as the internal stress distribution resulting from a transverse variation in the reduction of the strip thickness. The object of shape control is to adjust the mill so that the rolled strip is free from internal stresses. Both static and dynamic models of the mill are required for the control system design.The subject of this thesis is the static model of the Sendzimir cold rolling mill, which is a 1-2-3-4 type cluster mill. The static model derived enables shape profiles to be calculated for a given set of actuator positions, and is used to generate the steady state mill gains. The method of calculation of these shape profiles is discussed. The shape profiles obtained for different mill schedules are plotted against the distance across the strip. The corresponding mill gains are calculated and these relate the shape changes to the actuator changes. These mill gains are presented in the form of a square matrix, obtained by measuring shape at eight points across the strip.
Gnat, Rafał; Saulicz, Edward
2008-03-01
This study evaluates the hypothesis that triggering and eliminating induced static pelvic asymmetry (SPA) may be followed by immediate change in functional asymmetry of the lumbo-pelvo-hip complex. Repeated measures experimental design with 2 levels of independent variable, that is, induced SPA triggered and induced SPA eliminated, was implemented. Three series of measurements were performed, that is, baseline, after triggering SPA, and after eliminating SPA. A group of 84 subjects with no initial symptoms of SPA was studied. Different forms of mechanical stimulation were applied aiming to induce SPA, and the 2 manual stretching-manipulating techniques were performed aiming to eliminate it. A hand inclinometer was used to measure SPA in standing posture. Selected ranges of motion of the hip joints and lumbar spine were used to depict functional asymmetry of the lumbo-pelvo-hip complex. The functional asymmetry indices for individual movements were calculated. Repeated measures design of analysis of variance, dependent data Student t test, and linear Pearson's correlation test were used. Assessment of the SPA showed its significant increase between baseline and series 2 measurements, with a subsequent significant decrease between series 2 and series 3 measurements. Values of the functional asymmetry indices changed accordingly, that is, they increased significantly between series 1 and series 2 and had returned to their initial level in series 3 measurements. Induced SPA shows considerable association with functional asymmetry of the lumbo-pelvo-hip complex.
Factors Influencing the Fatigue Strength of Materials
NASA Technical Reports Server (NTRS)
Bollenrath, F
1941-01-01
A number of factors are considered which influence the static and fatigue strength of materials under practical operating conditions as contrasted with the relations obtaining under conditions of the usual testing procedure. Such factors are interruptions in operation, periodically fluctuating stress limits and mean stresses with periodic succession of several groups and stress states, statistical changes and succession of stress limits and mean stresses, frictional corrosion at junctures, and notch effects.
Evidence for the role of turbulence-induced poloidal flow shear in triggering the L-H transition
NASA Astrophysics Data System (ADS)
Yu, C. X.; Xu, Y. H.; Jiang, Y.; Luo, J. R.; Mao, J. S.; Liu, B. H.; Li, J. G.
1999-11-01
We have studied the role of turbulence-driven Reynolds stress induced poloidal flow shear in triggering the L-H transition induced by turbulent heating (TH) on HT-6M tokamak. This improved confinement regime has a set of features similar to that of H-mode are commonly observed in large tokamaks. The time evolution indicates that V_θ begins to evolve 0.1ms prior to the change in Er which precedes any measurable change in local confinement characteristics. The measurements of the turbulence-driven Reynolds stress S shows that S and its gradient in the edge region evolve sharply after the start of the TH pulse. Moreover, the time evolution and the temporal structure of the poloidal velocity computed from the measured Reynolds stress profile and the directly measured V_θ look remarkably similar. The time behavior and magnitude of the Reynolds stress-induced-V_θ B_φ term are also found to be in good correlation with that of the measured E_r. These results suggest that the turbulence-driven Reynolds stress might be the dominant mechanism to generate the poloidal flow shear which causes the rapid changes in Er and its shear to trigger the transition.
Dysregulated IL-1β Secretion in Autoinflammatory Diseases: A Matter of Stress?
Carta, Sonia; Semino, Claudia; Sitia, Roberto; Rubartelli, Anna
2017-01-01
Infectious and sterile inflammation is induced by activation of innate immune cells. Triggering of toll-like receptors by pathogen-associated molecular pattern or damage-associated molecular pattern (PAMP or DAMP) molecules generates reactive oxygen species that in turn induce production and activation of pro-inflammatory cytokines such as IL-1β. Recent evidence indicates that cell stress due to common events, like starvation, enhanced metabolic demand, cold or heat, not only potentiates inflammation but may also directly trigger it in the absence of PAMPs or DAMPs. Stress-mediated inflammation is also a common feature of many hereditary disorders, due to the proteotoxic effects of mutant proteins. We propose that harmful mutant proteins can induce dysregulated IL-1β production and inflammation through different pathways depending on the cell type involved. When expressed in professional inflammatory cells, stress induced by the mutant protein activates in a cell-autonomous way the onset of inflammation and mediates its aberrant development, resulting in the explosive responses that hallmark autoinflammatory diseases. When expressed in non-immune cells, the mutant protein may cause the release of transcellular stress signals that trigger and propagate inflammation. PMID:28421072
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodega, G.; Forcada, I.; Suarez, I.
This paper reports the effects of exposure to static, sinusoidal (50 Hz), and combined static/sinusoidal magnetic fields on cultured astroglial cells. Confluent primary cultures of astroglial cells were exposed to a 1-mT sinusoidal, static, or combined magnetic field for 1 h. In another experiment, cells were exposed to the combined magnetic field for 1, 2, and 4 h. The hsp25, hsp60, hsp70, actin, and glial fibrillary acidic protein contents of the astroglial cells were determined by immunoblotting 24 h after exposure. No significant differences were seen between control and exposed cells with respect to their contents of these proteins, neithermore » were any changes in cell morphology observed. In a third experiment to determine the effect of a chronic (11-day) exposure to a combined 1-mT static/sinusoidal magnetic field on the proliferation of cultured astroglial cells, no significant differences were seen between control, sham-exposed, or exposed cells. These results suggest that exposure to 1-mT sinusoidal, static, or combined magnetic fields has no significant effects on the stress, cytoskeletal protein levels in, or proliferation of cultured astroglial cells.« less
Load reduction test method of similarity theory and BP neural networks of large cranes
NASA Astrophysics Data System (ADS)
Yang, Ruigang; Duan, Zhibin; Lu, Yi; Wang, Lei; Xu, Gening
2016-01-01
Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.
Failure analysis of blots for diesel engine intercooler
NASA Astrophysics Data System (ADS)
Ren, Ping; Li, Zongquan; Wu, Jiangfei; Guo, Yibin; Li, Wanyou
2017-05-01
In diesel generating sets, it will lead to the abominable working condition if the fault couldn’t be recovered when the bolt of intercooler cracks. This paper aims at the fault of the blots of diesel generator intercooler and completes the analysis of the static strength and fatigue strength. Static intensity is checked considering blot preload and thermal stress. In order to obtain the thermal stress of the blot, thermodynamic of intercooler is calculated according to the measured temperature. Based on the measured vibration response and the finite element model, using dynamic load identification technique, equivalent excitation force of unit was solved. In order to obtain the force of bolt, the excitation force is loaded into the finite element model. By considering the thermal stress and preload as the average stress while the mechanical stress as the wave stress, fatigue strength analysis has been accomplished. Procedure of diagnosis is proposed in this paper. Finally, according to the result of intensity verification the fatigue failure is validation. Thereby, further studies are necessary to verification the result of the intensity analysis and put forward some improvement suggestion.
Central mechanisms of stress-induced headache.
Cathcart, S; Petkov, J; Winefield, A H; Lushington, K; Rolan, P
2010-03-01
Stress is the most commonly reported trigger of an episode of chronic tension-type headache (CTTH); however, the causal significance has not been experimentally demonstrated to date. Stress may trigger CTTH through hyperalgesic effects on already sensitized pain pathways in CTTH sufferers. This hypothesis could be partially tested by examining pain sensitivity in an experimental model of stress-induced headache in CTTH sufferers. Such examinations have not been reported to date. We measured pericranial muscle tenderness and pain thresholds at the finger, head and shoulder in 23 CTTH sufferers (CTH-S) and 25 healthy control subjects (CNT) exposed to an hour-long stressful mental task, and in 23 CTTH sufferers exposed to an hour-long neutral condition (CTH-N). Headache developed in 91% of CTH-S, 4% of CNT, and 17% of CTH-N subjects. Headache sufferers had increased muscle tenderness and reduced pain thresholds compared with healthy controls. During the task, muscle tenderness increased and pain thresholds decreased in the CTH-S group compared with CTH-N and CNT groups. Pre-task muscle tenderness and reduction in pain threshold during task were predictive of the development and intensity of headache following task. The main findings are that stress induced a headache in CTTH sufferers, and this was associated with pre-task muscle tenderness and stress-induced reduction in pain thresholds. The results support the hypothesis that stress triggers CTTH through hyperalgesic effects on already increased pain sensitivity in CTTH sufferers, reducing the threshold to noxious input from pericranial structures.
Vidale, J.E.; Agnew, D.C.; Johnston, M.J.S.; Oppenheimer, D.H.
1998-01-01
Because the rate of stress change from the Earth tides exceeds that from tectonic stress accumulation, tidal triggering of earthquakes would be expected if the final hours of loading of the fault were at the tectonic rate and if rupture began soon after the achievement of a critical stress level. We analyze the tidal stresses and stress rates on the fault planes and at the times of 13,042 earthquakes which are so close to the San Andreas and Calaveras faults in California that we may take the fault plane to be known. We find that the stresses and stress rates from Earth tides at the times of earthquakes are distributed in the same way as tidal stresses and stress rates at random times. While the rate of earthquakes when the tidal stress promotes failure is 2% higher than when the stress does not, this difference in rate is not statistically significant. This lack of tidal triggering implies that preseismic stress rates in the nucleation zones of earthquakes are at least 0.15 bar/h just preceding seismic failure, much above the long-term tectonic stress rate of 10-4 bar/h.
Structural Analysis of Pressurized Small Diameter Lines in a Random Vibration Environment
NASA Technical Reports Server (NTRS)
Davis, Mark; Ridnour, Andrew; Brethen, Mark
2011-01-01
The pressurization and propellant feed lines for the Ares 1 Upper Stage Reaction and Roll Control Systems (ReCS and RoCS) were required to be in a high g-load random vibration flight environment. The lines connected the system components and were filled with both liquid hydrazine and gaseous helium. They are considered small and varied between one fourth to one inch in diameter. The random vibration of the lines was considered to be base excitation through the mating components and mounting hardware. It was found that reducing the amount of support structure for the lines added flexibility to the system and improved the line stresses from random vibration, but caused higher stresses from the static g-loads. The locations and number of brackets were optimized by analyzing the mode shapes of the lines causing high stresses. The use of brackets that only constrain motion in the direction of concern further reduced the stresses in the lines. Finite element analysis was used to perform the analysis. The lines were pre-stressed by temperature and internal pressure with fluid and insulation included as non-structural mass. Base excitation was added to the model using Power Spectral Density (PSD) data for the expected flight loads. The random vibration and static g-load cases were combined to obtain the total stress in the lines. This approach advances the state of the art in line analysis by using FEA to predict the stresses in the lines and to optimize the entire system based on the expected flight environment. Adding flexibility to lines has been used in piping system for temperature loads, but in flight environments flexibility has been limited for the static stresses. Adding flexibility to the system in a flight environment by reducing brackets has the benefit of reducing stresses and weight
3-D Spontaneous Rupture Simulations of the 2016 Kumamoto, Japan, Earthquake
NASA Astrophysics Data System (ADS)
Urata, Yumi; Yoshida, Keisuke; Fukuyama, Eiichi
2017-04-01
We investigated the M7.3 Kumamoto, Japan, earthquake to illuminate why and how the rupture of the main shock propagated successfully by 3-D dynamic rupture simulations, assuming a complicated fault geometry estimated based on the distributions of aftershocks. The M7.3 main shock occurred along the Futagawa and Hinagu faults. A few days before, three M6-class foreshocks occurred. Their hypocenters were located along by the Hinagu and Futagawa faults and their focal mechanisms were similar to those of the main shock; therefore, an extensive stress shadow can have been generated on the fault plane of the main shock. First, we estimated the geometry of the fault planes of the three foreshocks as well as that of the main shock based on the temporal evolution of relocated aftershock hypocenters. Then, we evaluated static stress changes on the main shock fault plane due to the occurrence of the three foreshocks assuming elliptical cracks with constant stress drops on the estimated fault planes. The obtained static stress change distribution indicated that the hypocenter of the main shock is located on the region with positive Coulomb failure stress change (ΔCFS) while ΔCFS in the shallow region above the hypocenter was negative. Therefore, these foreshocks could encourage the initiation of the main shock rupture and could hinder the rupture propagating toward the shallow region. Finally, we conducted 3-D dynamic rupture simulations of the main shock using the initial stress distribution, which was the sum of the static stress changes by these foreshocks and the regional stress field. Assuming a slip-weakening law with uniform friction parameters, we conducted 3-D dynamic rupture simulations by varying the friction parameters and the values of the principal stresses. We obtained feasible parameter ranges to reproduce the rupture propagation of the main shock consistent with those revealed by seismic waveform analyses. We also demonstrated that the free surface encouraged the slip evolution of the main shock.
Hughes, K.L.H.; Masterlark, Timothy; Mooney, W.D.
2010-01-01
The M9.2 Sumatra-Andaman earthquake (SAE) occurred three months prior to the M8.7 Nias earthquake (NE). We propose that the NE was mechanically triggered by the SAE, and that poroelastic effects were a major component of this triggering. This study uses 3D finite element models (FEMs) of the Sumatra-Andaman subduction zone (SASZ) to predict the deformation, stress, and pore pressure fields of the SAE. The coseismic slip distribution for the SAE is calibrated to near-field GPS data using FEM-generated Green's Functions and linear inverse methods. The calibrated FEM is then used to predict the postseismic poroelastic contribution to stress-triggering along the rupture surface of the NE, which is adjacent to the southern margin of the SAE. The coseismic deformation of the SAE, combined with the rheologic configuration of the SASZ produces two transient fluid flow regimes having separate time constants. SAE coseismic pore pressures in the relatively shallow forearc and volcanic arc regions (within a few km depth) dissipate within one month after the SAE. However, pore pressures in the oceanic crust of the down-going slab persist several months after the SAE. Predictions suggest that the SAE initially induced MPa-scale negative pore pressure near the hypocenter of the NE. This pore pressure slowly recovered (increased) during the three-month interval separating the SAE and NE due to lateral migration of pore fluids, driven by coseismic pressure gradients, within the subducting oceanic crust. Because pore pressure is a fundamental component of Coulomb stress, the MPa-scale increase in pore pressure significantly decreased stability of the NE fault during the three-month interval after the SAE and prior to rupture of the NE. A complete analysis of stress-triggering due to the SAE must include a poroelastic component. Failure to include poroelastic mechanics will lead to an incomplete model that cannot account for the time interval between the SAE and NE. Our transient poroelastic model explains both the spatial and temporal characteristics of triggering of the NE by the SAE. ?? 2010 Elsevier B.V.
Cascading elastic perturbation in Japan due to the 2012 M w 8.6 Indian Ocean Earthquake
Delorey, A. A.; Johnson, P. A.; Chao, K.; ...
2015-10-02
Since the discovery of extensive earthquake triggering occurring in response to the 1992 M w 7.3 Landers earthquake, it is now well established that seismic waves from earthquakes can trigger other earthquakes, tremor, slow slip, and pore pressure changes. Our contention is that earthquake triggering is one manifestation of a more widespread elastic disturbance that reveals information about Earth’s stress state. Earth’s stress state is central to our understanding of both natural and anthropogenic-induced crustal processes. Here we present that seismic waves from distant earthquakes may perturb stresses and frictional properties on faults and elastic moduli of the crust inmore » cascading fashion. Transient dynamic stresses place crustal material into a metastable state during which material recovers through a process termed slow dynamics. This observation of widespread, dynamically induced elastic perturbation, including systematic migration of offshore seismicity, strain transients, and velocity transients, presents a new characterization of Earth’s elastic system that will advance our understanding of plate tectonics, seismicity, and seismic hazards.« less
Cascading elastic perturbation in Japan due to the 2012 M w 8.6 Indian Ocean Earthquake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delorey, A. A.; Johnson, P. A.; Chao, K.
Since the discovery of extensive earthquake triggering occurring in response to the 1992 M w 7.3 Landers earthquake, it is now well established that seismic waves from earthquakes can trigger other earthquakes, tremor, slow slip, and pore pressure changes. Our contention is that earthquake triggering is one manifestation of a more widespread elastic disturbance that reveals information about Earth’s stress state. Earth’s stress state is central to our understanding of both natural and anthropogenic-induced crustal processes. Here we present that seismic waves from distant earthquakes may perturb stresses and frictional properties on faults and elastic moduli of the crust inmore » cascading fashion. Transient dynamic stresses place crustal material into a metastable state during which material recovers through a process termed slow dynamics. This observation of widespread, dynamically induced elastic perturbation, including systematic migration of offshore seismicity, strain transients, and velocity transients, presents a new characterization of Earth’s elastic system that will advance our understanding of plate tectonics, seismicity, and seismic hazards.« less
Cascading elastic perturbation in Japan due to the 2012 Mw 8.6 Indian Ocean earthquake
Delorey, Andrew A.; Chao, Kevin; Obara, Kazushige; Johnson, Paul A.
2015-01-01
Since the discovery of extensive earthquake triggering occurring in response to the 1992 Mw (moment magnitude) 7.3 Landers earthquake, it is now well established that seismic waves from earthquakes can trigger other earthquakes, tremor, slow slip, and pore pressure changes. Our contention is that earthquake triggering is one manifestation of a more widespread elastic disturbance that reveals information about Earth’s stress state. Earth’s stress state is central to our understanding of both natural and anthropogenic-induced crustal processes. We show that seismic waves from distant earthquakes may perturb stresses and frictional properties on faults and elastic moduli of the crust in cascading fashion. Transient dynamic stresses place crustal material into a metastable state during which the material recovers through a process termed slow dynamics. This observation of widespread, dynamically induced elastic perturbation, including systematic migration of offshore seismicity, strain transients, and velocity transients, presents a new characterization of Earth’s elastic system that will advance our understanding of plate tectonics, seismicity, and seismic hazards. PMID:26601289
Ferrarelli, Leslie K
2017-05-30
Acute psychological stress triggers signaling between sympathetic neurons and the spleen to protect against ischemic tissue damage. Copyright © 2017, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Lestari, W. D.; Ismail, R.; Jamari, J.; Bayuseno, A. P.
2017-05-01
Surface texture is a common method for improving wear properties of a tribo-pair of soft and hard bearing material. The reduction of wear rates on the contacting surface material is becoming important issues. In the present study, analysis of the contact pressure on the flat surface of UHMWPE (Ultra High Molecular Weight Polyethylene) under the static- and rolling motion with the surface of steel ball used the 3D finite element method (FEM) (the ABAQUS software version 6.12). Five shaped-texture models (square, circle, ellipse, triangle, and chevron) were presented on the flat surface for analysis. The normal load of 17, 30 and 50 N was deliberately set-up for static and rolling contact analysis. The contact pressure was determined to predict the wear behavior of the shaped-texture on the flat surface of UHMWPE. The results have shown that the static normal load yielded the lowest von-Mises stress distribution on the shaped-texture of the ellipse for all values applied a load, while the square shape experienced the highest stress distribution. Under rolling contact, however, the increasing load yielded the increasing von Mises stress distribution for the texture with a triangle shape. Moreover, the texture shapes for circle, ellipse, and chevron respectively, may undergo the lowest stress distribution for all load. The wear calculation provided that the circle and square shape may undergo the highest wear rates. Obviously, the surface texture of circle, ellipse, and chevron may experience the lowest wear rates and is potential for use in the surface engineering of bearing materials.
Annual modulation of seismicity along the San Andreas Fault near Parkfield, CA
Christiansen, L.B.; Hurwitz, S.; Ingebritsen, S.E.
2007-01-01
We analyze seismic data from the San Andreas Fault (SAF) near Parkfield, California, to test for annual modulation in seismicity rates. We use statistical analyses to show that seismicity is modulated with an annual period in the creeping section of the fault and a semiannual period in the locked section of the fault. Although the exact mechanism for seasonal triggering is undetermined, it appears that stresses associated with the hydrologic cycle are sufficient to fracture critically stressed rocks either through pore-pressure diffusion or crustal loading/ unloading. These results shed additional light on the state of stress along the SAF, indicating that hydrologically induced stress perturbations of ???2 kPa may be sufficient to trigger earthquakes.
[Mechanics analysis of fracture of orthodontic wires].
Wang, Yeping; Sun, Xiaoye; Zhang, Longqi
2003-03-01
Fracture problem of orthodontic wires was discussed in this paper. The calculation formulae of bending stress and tensile stress were obtained. All main factors that affect bending stress and tensile stress of orthodontic wires were analyzed and discussed. It was concluded that the main causes of fracture of orthodontic wires were fatigue and static disruption. Some improving proposals for preventing fracture of orthodontic wires were put forward.
The ATLAS high level trigger steering
NASA Astrophysics Data System (ADS)
Berger, N.; Bold, T.; Eifert, T.; Fischer, G.; George, S.; Haller, J.; Hoecker, A.; Masik, J.; Nedden, M. Z.; Reale, V. P.; Risler, C.; Schiavi, C.; Stelzer, J.; Wu, X.
2008-07-01
The High Level Trigger (HLT) of the ATLAS experiment at the Large Hadron Collider receives events which pass the LVL1 trigger at ~75 kHz and has to reduce the rate to ~200 Hz while retaining the most interesting physics. It is a software trigger and performs the reduction in two stages: the LVL2 trigger and the Event Filter (EF). At the heart of the HLT is the Steering software. To minimise processing time and data transfers it implements the novel event selection strategies of seeded, step-wise reconstruction and early rejection. The HLT is seeded by regions of interest identified at LVL1. These and the static configuration determine which algorithms are run to reconstruct event data and test the validity of trigger signatures. The decision to reject the event or continue is based on the valid signatures, taking into account pre-scale and pass-through. After the EF, event classification tags are assigned for streaming purposes. Several new features for commissioning and operation have been added: comprehensive monitoring is now built in to the framework; for validation and debugging, reconstructed data can be written out; the steering is integrated with the new configuration (presented separately), and topological and global triggers have been added. This paper will present details of the final design and its implementation, the principles behind it, and the requirements and constraints it is subject to. The experience gained from technical runs with realistic trigger menus will be described.
Dehydration-driven stress transfer triggers intermediate-depth earthquakes
NASA Astrophysics Data System (ADS)
Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah; Deldicque, Damien; Labrousse, Loïc; Gasc, Julien; Renner, Joerg; Wang, Yanbin; Green, Harry W., II; Schubnel, Alexandre
2017-05-01
Intermediate-depth earthquakes (30-300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearing micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediate-depth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.
A video event trigger for high frame rate, high resolution video technology
NASA Astrophysics Data System (ADS)
Williams, Glenn L.
1991-12-01
When video replaces film the digitized video data accumulates very rapidly, leading to a difficult and costly data storage problem. One solution exists for cases when the video images represent continuously repetitive 'static scenes' containing negligible activity, occasionally interrupted by short events of interest. Minutes or hours of redundant video frames can be ignored, and not stored, until activity begins. A new, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term or short term changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pretrigger and post-trigger storage techniques are then adaptable for archiving the digital stream from only the significant video images.
Autonomous Sensory Meridian Response (ASMR): a flow-like mental state
Barratt, Emma L.
2015-01-01
Autonomous Sensory Meridian Response (ASMR) is a previously unstudied sensory phenomenon, in which individuals experience a tingling, static-like sensation across the scalp, back of the neck and at times further areas in response to specific triggering audio and visual stimuli. This sensation is widely reported to be accompanied by feelings of relaxation and well-being. The current study identifies several common triggers used to achieve ASMR, including whispering, personal attention, crisp sounds and slow movements. Data obtained also illustrates temporary improvements in symptoms of depression and chronic pain in those who engage in ASMR. A high prevalence of synaesthesia (5.9%) within the sample suggests a possible link between ASMR and synaesthesia, similar to that of misophonia. Links between number of effective triggers and heightened flow state suggest that flow may be necessary to achieve sensations associated with ASMR. PMID:25834771
A video event trigger for high frame rate, high resolution video technology
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
1991-01-01
When video replaces film the digitized video data accumulates very rapidly, leading to a difficult and costly data storage problem. One solution exists for cases when the video images represent continuously repetitive 'static scenes' containing negligible activity, occasionally interrupted by short events of interest. Minutes or hours of redundant video frames can be ignored, and not stored, until activity begins. A new, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term or short term changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pretrigger and post-trigger storage techniques are then adaptable for archiving the digital stream from only the significant video images.
New Madrid Seismic Zone: a test case for naturally induced seismicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nava, S.J.
1983-09-01
Induced seismicity caused by man-made events, such as the filling of reservoirs has been well documented. In contrast, naturally induced seismicity has received little attention. It has been shown that a fluctuation of as little as several bars can trigger reservoir induced earthquakes. Naturally occurring phenomena generate similar fluctuations and could trigger earthquakes where the faults in ambient stress field are suitably oriented and close to failure. The New Madrid Seismic Zone (NMSZ) presents an ideal test case for the study of naturally induced seismicity. The ideal data set for a study of triggering effects must contain a statistically significantmore » number of events, a constant accumulated strain, and a limited focal region. New Madrid earthquakes are well documented from 1974 to the present, down to a magnitude approx. 1.8. They lie in a distinct fault pattern and occur as a reaction to the regional stress regime. A statistical correlation was made between the earthquakes and a variety of different types of loads, to see if New Madrid seismicity could be triggered by natural fluctuations. The types of triggers investigated ranged from solid earth tides to variations in barometric pressure, rainfall, and stages of the Mississippi River. This analysis becomes complex because each factor investigated creates individual stresses, as well as having imbedded in it a reaction to other factors.« less
NASA Astrophysics Data System (ADS)
Scuderi, M. M.; Collettini, C.; Marone, C.
2017-11-01
It is widely recognized that the significant increase of M > 3.0 earthquakes in Western Canada and the Central United States is related to underground fluid injection. Following injection, fluid overpressure lubricates the fault and reduces the effective normal stress that holds the fault in place, promoting slip. Although, this basic physical mechanism for earthquake triggering and fault slip is well understood, there are many open questions related to induced seismicity. Models of earthquake nucleation based on rate- and state-friction predict that fluid overpressure should stabilize fault slip rather than trigger earthquakes. To address this controversy, we conducted laboratory creep experiments to monitor fault slip evolution at constant shear stress while the effective normal stress was systematically reduced via increasing fluid pressure. We sheared layers of carbonate-bearing fault gouge in a double direct shear configuration within a true-triaxial pressure vessel. We show that fault slip evolution is controlled by the stress state acting on the fault and that fluid pressurization can trigger dynamic instability even in cases of rate strengthening friction, which should favor aseismic creep. During fluid pressurization, when shear and effective normal stresses reach the failure condition, accelerated creep occurs in association with fault dilation; further pressurization leads to an exponential acceleration with fault compaction and slip localization. Our work indicates that fault weakening induced by fluid pressurization can overcome rate strengthening friction resulting in fast acceleration and earthquake slip. Our work points to modifications of the standard model for earthquake nucleation to account for the effect of fluid overpressure and to accurately predict the seismic risk associated with fluid injection.
Bis-reaction-trigger as a strategy to improve the selectivity of fluorescent probes.
Li, Dan; Cheng, Juan; Wang, Cheng-Kun; Ying, Huazhou; Hu, Yongzhou; Han, Feng; Li, Xin
2018-06-01
By the strategy of equipping a fluorophore with two reaction triggers that are tailored to the specific chemistry of peroxynitrite, we have developed a highly selective probe for detecting peroxynitrite in live cells. Sequential response by the two triggers enabled the probe to reveal various degrees of nitrosative stress in live cells via a sensitive emission colour change.
Remotely triggered earthquakes following moderate main shocks
Hough, S.E.
2007-01-01
Since 1992, remotely triggered earthquakes have been identified following large (M > 7) earthquakes in California as well as in other regions. These events, which occur at much greater distances than classic aftershocks, occur predominantly in active geothermal or volcanic regions, leading to theories that the earthquakes are triggered when passing seismic waves cause disruptions in magmatic or other fluid systems. In this paper, I focus on observations of remotely triggered earthquakes following moderate main shocks in diverse tectonic settings. I summarize evidence that remotely triggered earthquakes occur commonly in mid-continent and collisional zones. This evidence is derived from analysis of both historic earthquake sequences and from instrumentally recorded M5-6 earthquakes in eastern Canada. The latter analysis suggests that, while remotely triggered earthquakes do not occur pervasively following moderate earthquakes in eastern North America, a low level of triggering often does occur at distances beyond conventional aftershock zones. The inferred triggered events occur at the distances at which SmS waves are known to significantly increase ground motions. A similar result was found for 28 recent M5.3-7.1 earthquakes in California. In California, seismicity is found to increase on average to a distance of at least 200 km following moderate main shocks. This supports the conclusion that, even at distances of ???100 km, dynamic stress changes control the occurrence of triggered events. There are two explanations that can account for the occurrence of remotely triggered earthquakes in intraplate settings: (1) they occur at local zones of weakness, or (2) they occur in zones of local stress concentration. ?? 2007 The Geological Society of America.
Hough, S.E.; Kanamori, H.
2002-01-01
We analyze the source properties of a sequence of triggered earthquakes that occurred near the Salton Sea in southern California in the immediate aftermath of the M 7.1 Hector Mine earthquake of 16 October 1999. The sequence produced a number of early events that were not initially located by the regional network, including two moderate earthquakes: the first within 30 sec of the P-wave arrival and a second approximately 10 minutes after the mainshock. We use available amplitude and waveform data from these events to estimate magnitudes to be approximately 4.7 and 4.4, respectively, and to obtain crude estimates of their locations. The sequence of small events following the initial M 4.7 earthquake is clustered and suggestive of a local aftershock sequence. Using both broadband TriNet data and analog data from the Southern California Seismic Network (SCSN), we also investigate the spectral characteristics of the M 4.4 event and other triggered earthquakes using empirical Green's function (EGF) analysis. We find that the source spectra of the events are consistent with expectations for tectonic (brittle shear failure) earthquakes, and infer stress drop values of 0.1 to 6 MPa for six M 2.1 to M 4.4 events. The estimated stress drop values are within the range observed for tectonic earthquakes elsewhere. They are relatively low compared to typically observed stress drop values, which is consistent with expectations for faulting in an extensional, high heat flow regime. The results therefore suggest that, at least in this case, triggered earthquakes are associated with a brittle shear failure mechanism. This further suggests that triggered earthquakes may tend to occur in geothermal-volcanic regions because shear failure occurs at, and can be triggered by, relatively low stresses in extensional regimes.
Molecular mechanism of emotional stress-induced and catecholamine-induced heart attack.
Ueyama, Takashi; Senba, Emiko; Kasamatsu, Ken; Hano, Takuzo; Yamamoto, Katsuhiro; Nishio, Ichiro; Tsuruo, Yoshihiro; Yoshida, Ken-ichi
2003-01-01
Emotional or physical stress triggers 'tako-tsubo' cardiomyopathy or 'transient left ventricular apical ballooning', but the pathogenesis is unclear. In response to the immobilization stress of rats, a useful model of emotional stress, rapid activation of p44/p42 mitogen-activated protein kinase was observed in the heart, followed by a transient upregulation of immediate early genes in the smooth muscle cells of coronary arteries, the endothelial cells and the myocardium. Heat shock protein 70 was induced in the aortic and coronary arterial smooth muscle cells and in the myocardium. Natriuretic peptide genes were also upregulated in the myocardium. Sequential gene expression can be considered as an adaptive response to emotional stress. Blocking of both alpha-adrenoceptors and beta-adrenoceptors eliminated the upregulation of immediate early genes induced by stress, while alpha-agonists and beta-agonists upregulated immediate early genes in the perfused heart. Activation of alpha-adrenoceptors and beta-adrenoceptors is the primary trigger of emotional stress-induced molecular changes in the heart.
NASA Astrophysics Data System (ADS)
Dahm, Torsten; Cesca, Simone; Hainzl, Sebastian; Braun, Thomas; Krüger, Frank
2015-04-01
Earthquakes occurring close to hydrocarbon fields under production are often under critical view of being induced or triggered. However, clear and testable rules to discriminate the different events have rarely been developed and tested. The unresolved scientific problem may lead to lengthy public disputes with unpredictable impact on the local acceptance of the exploitation and field operations. We propose a quantitative approach to discriminate induced, triggered, and natural earthquakes, which is based on testable input parameters. Maxima of occurrence probabilities are compared for the cases under question, and a single probability of being triggered or induced is reported. The uncertainties of earthquake location and other input parameters are considered in terms of the integration over probability density functions. The probability that events have been human triggered/induced is derived from the modeling of Coulomb stress changes and a rate and state-dependent seismicity model. In our case a 3-D boundary element method has been adapted for the nuclei of strain approach to estimate the stress changes outside the reservoir, which are related to pore pressure changes in the field formation. The predicted rate of natural earthquakes is either derived from the background seismicity or, in case of rare events, from an estimate of the tectonic stress rate. Instrumentally derived seismological information on the event location, source mechanism, and the size of the rupture plane is of advantage for the method. If the rupture plane has been estimated, the discrimination between induced or only triggered events is theoretically possible if probability functions are convolved with a rupture fault filter. We apply the approach to three recent main shock events: (1) the Mw 4.3 Ekofisk 2001, North Sea, earthquake close to the Ekofisk oil field; (2) the Mw 4.4 Rotenburg 2004, Northern Germany, earthquake in the vicinity of the Söhlingen gas field; and (3) the Mw 6.1 Emilia 2012, Northern Italy, earthquake in the vicinity of a hydrocarbon reservoir. The three test cases cover the complete range of possible causes: clearly "human induced," "not even human triggered," and a third case in between both extremes.
Guerriero, Gea; Legay, Sylvain; Hausman, Jean-Francois
2014-01-01
Abiotic stress represents a serious threat affecting both plant fitness and productivity. One of the promptest responses that plants trigger following abiotic stress is the differential expression of key genes, which enable to face the adverse conditions. It is accepted and shown that the cell wall senses and broadcasts the stress signal to the interior of the cell, by triggering a cascade of reactions leading to resistance. Therefore the study of wall-related genes is particularly relevant to understand the metabolic remodeling triggered by plants in response to exogenous stresses. Despite the agricultural and economical relevance of alfalfa (Medicago sativa L.), no study, to our knowledge, has addressed specifically the wall-related gene expression changes in response to exogenous stresses in this important crop, by monitoring the dynamics of wall biosynthetic gene expression. We here identify and analyze the expression profiles of nine cellulose synthases, together with other wall-related genes, in stems of alfalfa plants subjected to different abiotic stresses (cold, heat, salt stress) at various time points (e.g. 0, 24, 72 and 96 h). We identify 2 main responses for specific groups of genes, i.e. a salt/heat-induced and a cold/heat-repressed group of genes. Prior to this analysis we identified appropriate reference genes for expression analyses in alfalfa, by evaluating the stability of 10 candidates across different tissues (namely leaves, stems, roots), under the different abiotic stresses and time points chosen. The results obtained confirm an active role played by the cell wall in response to exogenous stimuli and constitute a step forward in delineating the complex pathways regulating the response of plants to abiotic stresses. PMID:25084115
Bronner, Denise N; Abuaita, Basel H; Chen, Xiaoyun; Fitzgerald, Katherine A; Nuñez, Gabriel; He, Yongqun; Yin, Xiao-Ming; O'Riordan, Mary X D
2015-09-15
Endoplasmic reticulum (ER) stress is observed in many human diseases, often associated with inflammation. ER stress can trigger inflammation through nucleotide-binding domain and leucine-rich repeat containing (NLRP3) inflammasome, which might stimulate inflammasome formation by association with damaged mitochondria. How ER stress triggers mitochondrial dysfunction and inflammasome activation is ill defined. Here we have used an infection model to show that the IRE1α ER stress sensor regulates regulated mitochondrial dysfunction through an NLRP3-mediated feed-forward loop, independently of ASC. IRE1α activation increased mitochondrial reactive oxygen species, promoting NLRP3 association with mitochondria. NLRP3 was required for ER stress-induced cleavage of caspase-2 and the pro-apoptotic factor, Bid, leading to subsequent release of mitochondrial contents. Caspase-2 and Bid were necessary for activation of the canonical inflammasome by infection-associated or general ER stress. These data identify an NLRP3-caspase-2-dependent mechanism that relays ER stress to the mitochondria to promote inflammation, integrating cellular stress and innate immunity. Copyright © 2015 Elsevier Inc. All rights reserved.
Constitutive law for seismicity rate based on rate and state friction: Dieterich 1994 revisited.
NASA Astrophysics Data System (ADS)
Heimisson, E. R.; Segall, P.
2017-12-01
Dieterich [1994] derived a constitutive law for seismicity rate based on rate and state friction, which has been applied widely to aftershocks, earthquake triggering, and induced seismicity in various geological settings. Here, this influential work is revisited, and re-derived in a more straightforward manner. By virtue of this new derivation the model is generalized to include changes in effective normal stress associated with background seismicity. Furthermore, the general case when seismicity rate is not constant under constant stressing rate is formulated. The new derivation provides directly practical integral expressions for the cumulative number of events and rate of seismicity for arbitrary stressing history. Arguably, the most prominent limitation of Dieterich's 1994 theory is the assumption that seismic sources do not interact. Here we derive a constitutive relationship that considers source interactions between sub-volumes of the crust, where the stress in each sub-volume is assumed constant. Interactions are considered both under constant stressing rate conditions and for arbitrary stressing history. This theory can be used to model seismicity rate due to stress changes or to estimate stress changes using observed seismicity from triggered earthquake swarms where earthquake interactions and magnitudes are take into account. We identify special conditions under which influence of interactions cancel and the predictions reduces to those of Dieterich 1994. This remarkable result may explain the apparent success of the model when applied to observations of triggered seismicity. This approach has application to understanding and modeling induced and triggered seismicity, and the quantitative interpretation of geodetic and seismic data. It enables simultaneous modeling of geodetic and seismic data in a self-consistent framework. To date physics-based modeling of seismicity with or without geodetic data has been found to give insight into various processes related to aftershocks, VT and injection-induced seismicity. However, the role of various processes such as earthquake interactions and magnitudes and effective normal stress has been unclear. The new theory presented resolves some of the pertinent issues raised in the literature with application of the Dieterich 1994 model.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Moore, Lewis E., III
2014-01-01
Compared to conventional bearing materials (tool steel and ceramics), emerging Superelastic Intermetallic Materials (SIMs), such as 60NiTi, have significantly lower elastic modulus and enhanced strain capability. They are also immune to atmospheric corrosion (rusting). This offers the potential for increased resilience and superior ability to withstand static indentation load without damage. In this paper, the static load capacity of hardened 60NiTi 50-mm-bore ball bearing races are measured to correlate existing flat-plate indentation load capacity data to an actual bearing geometry through the Hertz stress relations. The results confirmed the validity of using the Hertz stress relations to model 60NiTi contacts; 60NiTi exhibits a static stress capability (approximately 3.1 GPa) between that of 440C (2.4 GPa) and REX20 (3.8 GPa) tool steel. When the reduced modulus and extended strain capability are taken into account, 60NiTi is shown to withstand higher loads than other bearing materials. To quantify this effect, a notional space mechanism, a 5-kg mass reaction wheel, was modeled with respect to launch load capability when supported on standard (catalogue geometry) design 440C; 60NiTi and REX20 tool steel bearings. For this application, the use of REX20 bearings increased the static load capability of the mechanism by a factor of three while the use of 60NiTi bearings resulted in an order of magnitude improvement compared to the baseline 440C stainless steel bearings
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Moore, Lewis E.
2014-01-01
Compared to conventional bearing materials (tool steel and ceramics), emerging Superelastic Intermetallic Materials (SIMs), such as 60NiTi, have significantly lower elastic modulus and enhanced strain capability. They are also immune to atmospheric corrosion (rusting). This offers the potential for increased resilience and superior ability to withstand static indentation load without damage. In this paper, the static load capacity of hardened 60NiTi 50mm bore ball-bearing races are measured to correlate existing flat-plate indentation load capacity data to an actual bearing geometry through the Hertz stress relations. The results confirmed the validity of using the Hertz stress relations to model 60NiTi contacts; 60NiTi exhibits a static stress capability (3.1GPa) between that of 440C (2.4GPa) and REX20 (3.8GPa) tool steel. When the reduced modulus and extended strain capability are taken into account, 60NiTi is shown to withstand higher loads than other bearing materials. To quantify this effect, a notional space mechanism, a 5kg mass reaction wheel, was modeled with respect to launch load capability when supported on 440C, 60NiTi and REX20 tool steel bearings. For this application, the use of REX20 bearings increased the static load capability of the mechanism by a factor of three while the use of 60NiTi bearings resulted in an order of magnitude improvement compared to the baseline 440C stainless steel bearings.
Static behavior and the effects of thermal cycling in hybrid laminates
NASA Technical Reports Server (NTRS)
Liber, T. M.; Daniel, I. M.; Chamis, C. C.
1977-01-01
Static stiffness, strength and ultimate strain after thermal cycling were investigated for graphite/Kevlar 49/epoxy and graphite/S-glass/epoxy angle-ply laminates. Tensile stress-strain curves to failure and uniaxial tensile properties were determined, and theoretical predictions of modulus, Poisson's ratio and ultimate strain, based on linear lamination theory, constituent ply properties and measured strength, were made. No significant influence on tensile stress properties due to stacking sequence variations was observed. In general, specimens containing two 0-degree Kevlar or S-glass plies were found to behave linearly to failure, while specimens containing 4 0-degree Kevlar or S-glass plies showed some nonlinear behavior.
NASA Technical Reports Server (NTRS)
Giles, G. L.; Rogers, J. L., Jr.
1982-01-01
The methodology used to implement structural sensitivity calculations into a major, general-purpose finite-element analysis system (SPAR) is described. This implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calculating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of SPAR are also discussed.
Designing automation for complex work environments under different levels of stress.
Sauer, Juergen; Nickel, Peter; Wastell, David
2013-01-01
This article examines the effectiveness of different forms of static and adaptable automation under low- and high-stress conditions. Forty participants were randomly assigned to one of four experimental conditions, comparing three levels of static automation (low, medium and high) and one level of adaptable automation, with the environmental stressor (noise) being varied as a within-subjects variable. Participants were trained for 4 h on a simulation of a process control environment, called AutoCAMS, followed by a 2.5-h testing session. Measures of performance, psychophysiology and subjective reactions were taken. The results showed that operators preferred higher levels of automation under noise than under quiet conditions. A number of parameters indicated negative effects of noise exposure, such as performance impairments, physiological stress reactions and higher mental workload. It also emerged that adaptable automation provided advantages over low and intermediate static automation, with regard to mental workload, effort expenditure and diagnostic performance. The article concludes that for the design of automation a wider range of operational scenarios reflecting adverse as well as ideal working conditions needs to be considered. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Technical Reports Server (NTRS)
Wang, C. R.; Hingst, W. R.; Porro, A. R.
1991-01-01
The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows.
The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics.
Ene, Florentina; Delassus, Patrick; Morris, Liam
2014-08-01
The variation in computational assumptions for analysing abdominal aortic aneurysm haemodynamics can influence the desired output results and computational cost. Such assumptions for abdominal aortic aneurysm modelling include static/transient pressures, steady/transient flows and rigid/compliant walls. Six computational methods and these various assumptions were simulated and compared within a realistic abdominal aortic aneurysm model with and without intraluminal thrombus. A full transient fluid-structure interaction was required to analyse the flow patterns within the compliant abdominal aortic aneurysms models. Rigid wall computational fluid dynamics overestimates the velocity magnitude by as much as 40%-65% and the wall shear stress by 30%-50%. These differences were attributed to the deforming walls which reduced the outlet volumetric flow rate for the transient fluid-structure interaction during the majority of the systolic phase. Static finite element analysis accurately approximates the deformations and von Mises stresses when compared with transient fluid-structure interaction. Simplifying the modelling complexity reduces the computational cost significantly. In conclusion, the deformation and von Mises stress can be approximately found by static finite element analysis, while for compliant models a full transient fluid-structure interaction analysis is required for acquiring the fluid flow phenomenon. © IMechE 2014.
Hill, David P.; Peng, Zhigang; Shelly, David R.; Aiken, Chastity
2013-01-01
The dynamic stresses that are associated with the energetic seismic waves generated by the Mw 9.0 Tohoku earthquake off the northeast coast of Japan triggered bursts of tectonic tremor beneath the Parkfield section of the San Andreas fault (SAF) at an epicentral distance of ∼8200 km. The onset of tremor begins midway through the ∼100‐s‐period S‐wave arrival, with a minor burst coinciding with the SHSH arrival, as recorded on the nearby broadband seismic station PKD. A more pronounced burst coincides with the Love arrival, followed by a series of impulsive tremor bursts apparently modulated by the 20‐ to 30‐s‐period Rayleigh wave. The triggered tremor was located at depths between 20 and 30 km beneath the surface trace of the fault, with the burst coincident with the S wave centered beneath the fault 30 km northwest of Parkfield. Most of the subsequent activity, including the tremor coincident with the SHSH arrival, was concentrated beneath a stretch of the fault extending from 10 to 40 km southeast of Parkfield. The seismic waves from the Tohoku epicenter form a horizontal incidence angle of ∼14°, with respect to the local strike of the SAF. Computed peak dynamic Coulomb stresses on the fault at tremor depths are in the 0.7–10 kPa range. The apparent modulation of tremor bursts by the small, strike‐parallel Rayleigh‐wave stresses (∼0.7 kPa) is likely enabled by pore pressure variations driven by the Rayleigh‐wave dilatational stress. These results are consistent with the strike‐parallel dynamic stresses (δτs) associated with the S, SHSH, and surface‐wave phases triggering small increments of dextral slip on the fault with a low friction (μ∼0.2). The vertical dynamic stresses δτd do not trigger tremor with vertical or oblique slip under this simple Coulomb failure model.
Application of triggered lightning numerical models to the F106B and extension to other aircraft
NASA Technical Reports Server (NTRS)
Ng, Poh H.; Dalke, Roger A.; Horembala, Jim; Rudolph, Terence; Perala, Rodney A.
1988-01-01
The goal of the F106B Thunderstorm Research Program is to characterize the lightning environment for aircraft in flight. This report describes the application of numerical electromagnetic models to this problem. Topics include: (1) Extensive application of linear triggered lightning to F106B data; (2) Electrostatic analysis of F106B field mill data; (3) Application of subgrid modeling to F106B nose region, including both static and nonlinear models; (4) Extension of F106B results to other aircraft of varying sizes and shapes; and (5) Application of nonlinear model to interaction of F106B with lightning leader-return stroke event.
Peotta, Veronica; Rahmouni, Kamal; Segar, Jeffrey L; Morgan, Donald A; Pitz, Kate M; Rice, Olivia M; Roghair, Robert D
2016-08-01
Neonatal growth restriction (nGR) leads to leptin deficiency and increases the risk of hypertension. Previous studies have shown nGR-related hypertension is normalized by neonatal leptin (nLep) and exacerbated by psychological stress. With recent studies linking leptin and angiotensin signaling, we hypothesized that nGR-induced nLep deficiency increases adult leptin sensitivity; leading to leptin- or stress-induced hypertension, through a pathway involving central angiotensin II type 1 receptors. We randomized mice with incipient nGR, by virtue of their presence in large litters, to vehicle or physiologic nLep supplementation (80 ng/g/d). Adult caloric intake and arterial pressure were monitored at baseline, during intracerebroventricular losartan infusion and during systemic leptin administration. nGR increased leptin-triggered renal sympathetic activation and hypertension with increased leptin receptor expression in the arcuate nucleus of the hypothalamus; all of those nGR-associated phenotypes were normalized by nLep. nGR mice also had stress-related hyperphagia and hypertension, but only the stress hypertension was blocked by central losartan infusion. nGR leads to stress hypertension through a pathway that involves central angiotensin II receptors, and nGR-associated leptin deficiency increases leptin-triggered hypertension in adulthood. These data suggest potential roles for preservation of neonatal growth and nLep supplementation in the prevention of nGR-related hypertension.
Coarse-grained debris flow dynamics on erodible beds
NASA Astrophysics Data System (ADS)
Lanzoni, Stefano; Gregoretti, Carlo; Stancanelli, Laura Maria
2017-03-01
A systematic set of flume experiments is used to investigate the features of velocity profiles within the body of coarse-grained debris flows and the dependence of the transport sediment concentration on the relevant parameters (runoff discharge, bed slope, grain size, and form). The flows are generated in a 10 m long laboratory flume, initially filled with a layer consisting of loose debris. After saturation, a prescribed water discharge is suddenly supplied over the granular bed, and the runoff triggers a debris flow wave that reaches nearly steady conditions. Three types of material have been used in the tests: gravel with mean grain size of 3 and 5 mm, and 3 mm glass spheres. Measured parameters included: triggering water discharge, volumetric sediment discharge, sediment concentration, flow depth, and velocity profiles. The dynamic similarity with full-sized debris flows is discussed on the basis of the relevant dimensionless parameters. Concentration data highlight the dependence on the slope angle and the importance of the quasi-static friction angle. The effects of flow rheology on the shape of velocity profiles are analyzed with attention to the role of different stress-generating mechanisms. A remarkable collapse of the dimensionless profiles is obtained by scaling the debris flow velocity with the runoff velocity, and a power law characterization is proposed following a heuristic approach. The shape of the profiles suggests a smooth transition between the different rheological regimes (collisional and frictional) that establish in the upper and lower regions of the flow and is compatible with the presence of multiple length scales dictated by the type of contacts (instantaneous or long lasting) between grains.
NASA Astrophysics Data System (ADS)
Gorum, Tolga; van Westen, Cees J.; Korup, Oliver; van der Meijde, Mark; Fan, Xuanmei; van der Meer, Freek D.
2013-02-01
The 12 January 2010 Mw 7.0 Haiti earthquake occurred in a complex deformation zone at the boundary between the North American and Caribbean plates. Combined geodetic, geological and seismological data posited that surface deformation was driven by rupture on the Léogâne blind thrust fault, while part of the rupture occurred as deep lateral slip on the Enriquillo-Plantain Garden Fault (EPGF). The earthquake triggered > 4490 landslides, mainly shallow, disrupted rock falls, debris-soil falls and slides, and a few lateral spreads, over an area of ~ 2150 km2. The regional distribution of these slope failures defies those of most similar earthquake-triggered landslide episodes reported previously. Most of the coseismic landslides did not proliferate in the hanging wall of the main rupture, but clustered instead at the junction of the blind Léogâne and EPGF ruptures, where topographic relief and hillslope steepness are above average. Also, low-relief areas subjected to high coseismic uplift were prone to lesser hanging wall slope instability than previous studies would suggest. We argue that a combined effect of complex rupture dynamics and topography primarily control this previously rarely documented landslide pattern. Compared to recent thrust fault-earthquakes of similar magnitudes elsewhere, we conclude that lower static stress drop, mean fault displacement, and blind ruptures of the 2010 Haiti earthquake resulted in fewer, smaller, and more symmetrically distributed landslides than previous studies would suggest. Our findings caution against overly relying on across-the-board models of slope stability response to seismic ground shaking.
Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.
Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko
2014-08-28
It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Dynamic Characterization of Galfenol (Fe81.6Ga18.4)
NASA Technical Reports Server (NTRS)
Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.
2016-01-01
Galfenol has the potential to transform the smart materials industry by allowing for the development of multifunctional, load-bearing devices. One of the primary technical challenges faced by this development is the very limited experimental data on Galfenol's frequency-dependent response to dynamic stress, which is critically important for the design of such devices. This report details a novel and precise characterization of the constitutive behavior of polycrystalline Galfenol (Fe81.6Ga18.4) under quasi-static (1 Hz) and dynamic (4 to 1000 Hz) stress loadings. Mechanical loads are applied using a high-frequency load frame. Quasi-static minor and major hysteresis loop measurements of magnetic flux density and strain are presented for constant electromagnet currents (0 to 1.1 A) and constant magnetic fields 0 to 14 kA/m (0 to 180 Oe). The dynamic stress amplitude for minor and major loops is 2.88 and 31.4 MPa (418 and 4550 psi), respectively. Quasi-static material properties closely match published values for similar Galfenol materials. Quasi-static actuation responses are also measured and compared to quasi-static sensing responses; the high degree of reversibility seen in the comparison is consistent with published measurements and modeling results. Dynamic major and minor loops are measured for dynamic stresses up to 31 MPa (4496 psi) and 1 kHz, and the bias condition resulting in maximum, quasi-static sensitivity. Eddy current effects are quantified by considering solid and laminated Galfenol rods. Three key sources of error in the dynamic measurements are accounted for: (1) electromagnetic noise in strain signals due to Galfenol's magnetic response, (2) error in load signals due to the inertial force of fixturing, and (3) phase misalignment between signals due to conditioning electronics. For dynamic characterization, strain error is kept below 1.2 percent of full scale by wiring two collocated gauges in series (noise cancellation) and through leadwire weaving. Inertial force error is kept below 0.41 percent by measuring the dynamic force in the specimen using a nearly collocated piezoelectric load washer. The phase response of all conditioning electronics is explicitly measured and corrected for. In general, as frequency is increased, the sensing response becomes more linear because of an increase in eddy currents. As frequency increases above approximately 100 Hz, the elbow in the strain-versus-stress response disappears as the active (soft) regime stiffens toward the passive (hard) regime. Under constant-field conditions, the loss factors of the solid rod peak between 200 and 600 Hz, rather than exhibiting a monotonic increase. Compared to the solid rod, the laminated rod exhibits much slower increases in hysteresis with frequency, and its quasi-static behavior extends to higher frequencies. The elastic modulus of the laminated rod decreases between 100 and 300 Hz; this trend is currently unexplained.
40 CFR 165.45 - Refillable container standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PESTICIDE MANAGEMENT AND DISPOSAL Refillable Container Standards: Container Design § 165.45 Refillable... pesticide container must be capable of withstanding all operating stresses, taking into account static heat, pressure buildup from pumps and compressors, and any other foreseeable mechanical stresses to which the...
40 CFR 165.45 - Refillable container standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PESTICIDE MANAGEMENT AND DISPOSAL Refillable Container Standards: Container Design § 165.45 Refillable... pesticide container must be capable of withstanding all operating stresses, taking into account static heat, pressure buildup from pumps and compressors, and any other foreseeable mechanical stresses to which the...
40 CFR 165.45 - Refillable container standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PESTICIDE MANAGEMENT AND DISPOSAL Refillable Container Standards: Container Design § 165.45 Refillable... pesticide container must be capable of withstanding all operating stresses, taking into account static heat, pressure buildup from pumps and compressors, and any other foreseeable mechanical stresses to which the...
40 CFR 165.45 - Refillable container standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pesticide container must be capable of withstanding all operating stresses, taking into account static heat, pressure buildup from pumps and compressors, and any other foreseeable mechanical stresses to which the..., but is not limited to, etching, embossing, ink jetting, stamping, heat stamping, mechanically...
Low power laser trigger switching of a solid insulated spark gap.
Guenther, A H; Copeland, R P; Bettis, J R
1979-11-01
The feasibility of reliably triggering solid dielectric insulated spark gaps by low power ( approximately 6 MW) lasers has been demonstrated. Breakdown of 10-mil Lexan dielectric sheets stressed to 70 kV was initiated by a focused 6 MW, Nd in YAG laser emitting 40 mJ in a pulse 6 ns wide at the half-peak intensity height. Delays achieved were in the tens of ns. Slight increases in laser power or electrical stress should produce shorter delays (<10 ns) and subnanosecond jitter.
Triggered earthquakes and the 1811-1812 New Madrid, central United States, earthquake sequence
Hough, S.E.
2001-01-01
The 1811-1812 New Madrid, central United States, earthquake sequence included at least three events with magnitudes estimated at well above M 7.0. I discuss evidence that the sequence also produced at least three substantial triggered events well outside the New Madrid Seismic Zone, most likely in the vicinity of Cincinnati, Ohio. The largest of these events is estimated to have a magnitude in the low to mid M 5 range. Events of this size are large enough to cause damage, especially in regions with low levels of preparedness. Remotely triggered earthquakes have been observed in tectonically active regions in recent years, but not previously in stable continental regions. The results of this study suggest, however, that potentially damaging triggered earthquakes may be common following large mainshocks in stable continental regions. Thus, in areas of low seismic activity such as central/ eastern North America, the hazard associated with localized source zones might be more far reaching than previously recognized. The results also provide additional evidence that intraplate crust is critically stressed, such that small stress changes are especially effective at triggering earthquakes.
NASA Astrophysics Data System (ADS)
Beeler, N. M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David
2018-01-01
Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor on the San Andreas Fault in central California are sensitive to tidal stresses. LFEs occur at all levels of the tides, are strongly correlated and in phase with the 200 Pa shear stresses, and weakly and not systematically correlated with the 2 kPa tidal normal stresses. We assume that LFEs are small sources that repeatedly fail during shear within a much larger scale, aseismically slipping fault zone and consider two different models of the fault slip: (1) modulation of the fault slip rate by the tidal stresses or (2) episodic slip, triggered by the tides. LFEs are strongly clustered with duration much shorter than the semidiurnal tide; they cannot be significantly modulated on that time scale. The recurrence times of clusters, however, are many times longer than the semidiurnal, leading to an appearance of tidal triggering. In this context we examine the predictions of laboratory-observed triggered frictional (dilatant) fault slip. The undrained end-member model produces no sensitivity to the tidal normal stress, and slip onsets are in phase with the tidal shear stress. The tidal correlation constrains the diffusivity to be less than 1 × 10-6/s and the product of the friction and dilatancy coefficients to be at most 5 × 10-7, orders of magnitude smaller than observed at room temperature. In the absence of dilatancy the effective normal stress at failure would be about 55 kPa. For this model the observations require intrinsic weakness, low dilatancy, and lithostatic pore fluid.
Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs).
DeStefano, Jackson G; Xu, Zinnia S; Williams, Ashley J; Yimam, Nahom; Searson, Peter C
2017-08-04
The endothelial cells that form the lumen of capillaries and microvessels are an important component of the blood-brain barrier. Cell phenotype is regulated by transducing a range of biomechanical and biochemical signals in the local microenvironment. Here we report on the role of shear stress in modulating the morphology, motility, proliferation, apoptosis, and protein and gene expression, of confluent monolayers of human brain microvascular endothelial cells derived from induced pluripotent stem cells. To assess the response of derived human brain microvascular endothelial cells (dhBMECs) to shear stress, confluent monolayers were formed in a microfluidic device. Monolayers were subjected to a shear stress of 4 or 12 dyne cm -2 for 40 h. Static conditions were used as the control. Live cell imaging was used to assess cell morphology, cell speed, persistence, and the rates of proliferation and apoptosis as a function of time. In addition, immunofluorescence imaging and protein and gene expression analysis of key markers of the blood-brain barrier were performed. Human brain microvascular endothelial cells exhibit a unique phenotype in response to shear stress compared to static conditions: (1) they do not elongate and align, (2) the rates of proliferation and apoptosis decrease significantly, (3) the mean displacement of individual cells within the monolayer over time is significantly decreased, (4) there is no cytoskeletal reorganization or formation of stress fibers within the cell, and (5) there is no change in expression levels of key blood-brain barrier markers. The characteristic response of dhBMECs to shear stress is significantly different from human and animal-derived endothelial cells from other tissues, suggesting that this unique phenotype that may be important in maintenance of the blood-brain barrier. The implications of this work are that: (1) in confluent monolayers of dhBMECs, tight junctions are formed under static conditions, (2) the formation of tight junctions decreases cell motility and prevents any morphological transitions, (3) flow serves to increase the contact area between cells, resulting in very low cell displacement in the monolayer, (4) since tight junctions are already formed under static conditions, increasing the contact area between cells does not cause upregulation in protein and gene expression of BBB markers, and (5) the increase in contact area induced by flow makes barrier function more robust.
NASA Astrophysics Data System (ADS)
Caruso, Angelo; Pais, Vicente A.
1998-07-01
We discuss two issues relevant for the feasibility of the scheme in which a heavy ion pulse is used to ignite a DT fuel spherically compressed, by laser induced ablation, along a low adiabat (no self-ignition). The discussed issues are (i) the degree of synchronism between the laser driven implosion and the trigger pulse; (ii) the requirements on focusing for the trigger beam. The numerical simulation have been made by using cylindrical heavy ion beams with gaussian radial distribution, truncated where the intensity is {1}/{e-4} of the maximum. The parameter ( dbeam), used to measure the focusing, is the diameter of the circle where the intensity is {1}/{e} of the maximum (energy content ≈ 64% of the total energy). Requirements on focusing have been first explored by simulating (2D) the irradiation of static DT cylinders at 200 g/cm 3 by coaxially impinging 15 GeV Bi ions. The ignition conditions have been studied for pulses having 10 ps or 50 ps duration. For both the cases, the ignition energy ( Emin) is constant for spot radii smaller than 50 μm. In the range 50-140 μm the ignition energy increases linearly (3 × Emin at 140 μm, with Emin = 40 kJ for 10 ps pulses, Emin = 100 kJ for 50 ps pulses). The study on synchronism has been performed by simulating (2D) the irradiation, by a heavy ion beam, of a laser imploded spherical DT shell (initial aspect ratio 10). The trigger beam was started at different times near the stagnation, and the initial fuel state (field of velocity, density, temperature, etc.) was that computed by a 1D simulation. It has been found that ignition, and almost constant thermonuclear energy release, can be obtained by triggering within a temporal window of the order of 1 ns, around the stagnation. The interplay between focusing and synchronization for the ignition of the spherical imploding fuel has also been studied. The heavy ion pulse duration was maintained constant at 50 ps (FWHM). Ignition conditions have been studied for trigger energies below 38% of the laser energy used to compress the target (1 MJ), for focusing spot diameters ranging from 30 to 150 μm (full beam diameter, 60 and 300 μm respectively). Useful timing ranges of 400-900 ps in which the overall gain (that is, thermonuclear energy /(laser energy + trigger energy) is greater than 200 have been found.
NASA Astrophysics Data System (ADS)
Wu, Shengnan; Zhou, Feifan; Xing, Da
2012-03-01
Mitochondria are dynamic organelles that undergo continual fusion and fission to maintain their morphology and functions, but the mechanism involved is still not clear. Here, we investigated the effect of mitochondrial oxidative stress triggered by high-fluence low-power laser irradiation (HF-LPLI) on mitochondrial dynamics in human lung adenocarcinoma cells (ASTC-a-1). Upon HF-LPLI-triggered oxidative stress, mitochondria displayed a fragmented structure, which was abolished by exposure to dehydroascorbic acid (DHA), a reactive oxygen species scavenger, indicating that oxidative stress can induce mitochondrial fragmentation. Mitochondrial translocation of the profission protein dynamin-related protein 1 (Drp1) was observed following HF-LPLI, demonstrating apoptosis-related activation of Drp1. Notably, DHA pre-treatment prevented HF-LPLI-induced Drp1 activation. We conclude that mitochondrial oxidative stress through activation of Drp1 causes mitochondrial fragmentation.
Stress triggers anhedonia in rats bred for learned helplessness.
Enkel, Thomas; Spanagel, Rainer; Vollmayr, Barbara; Schneider, Miriam
2010-05-01
Congenitally helpless (cLH) rats, a well-accepted model for depression, show reduced consumption of sweet solutions only under single-housing conditions, indicating anhedonia under stress. We investigated if anhedonic-like behaviour, measured by a reduction of sweetened-condensed milk (SCM) intake and the pleasure-attenuated startle response (PAS), could be induced by an electric foot-shock stress challenge in group-housed rats. After foot-shock stress, reduced SCM intake was observed in cLH rats compared to non-helpless (cNLH) rats. Furthermore, cLH rats also showed a decreased PAS, indicating deficient reward perception. In summary, we demonstrate that a predisposition for learned helplessness interacts with stress to trigger anhedonic-like behaviour in cLH rats. These findings further add to the validity of congenitally learned helplessness as an animal model of depression, since gene-environment interactions are considered to play a role in the etiology of this disorder.
Godar, Sean C; Bortolato, Marco
2016-01-01
Tourette syndrome (TS) is a neurodevelopmental condition characterized by multiple, recurring motor and phonic tics. Rich empirical evidence shows that the severity of tics and associated manifestations is increased by several stressors and contextual triggers; however, the neurobiological mechanisms responsible for symptom exacerbation in TS remain poorly understood. This conceptual gap partially reflects the high phenotypic variability in tics, as well as the existing difficulties in operationalizing and standardizing stress and its effects in a clinical setting. Animal models of TS may be highly informative tools to overcome some of these limitations; these experimental preparations have already provided critical insights on key aspects of TS pathophysiology, and may prove useful to identify the neurochemical alterations induced by different stressful contingencies. In particular, emerging knowledge on the role of contextual triggers in animal models of TS may inform the development of novel pharmacological interventions to reduce tic fluctuations in this disorder. PMID:27939782
NASA Astrophysics Data System (ADS)
Nakai, Kenji; Yokoyama, Takashi
2015-09-01
The effect of strain rate up to approximately ɛ˙ = 102/s on the tensile stress-strain properties of unidirectional and cross-ply carbon/epoxy laminated composites in the through-thickness direction is investigated. Waisted cylindrical specimens machined out of the laminated composites in the through-thickness direction are used in both static and dynamic tests. The dynamic tensile stress-strain curves up to fracture are determined using the split Hopkinson bar (SHB). The low and intermediate strain-rate tensile stress-strain relations up to fracture are measured on an Instron 5500R testing machine. It is demonstrated that the ultimate tensile strength and absorbed energy up to fracture increase significantly, while the fracture strain decreases slightly with increasing strain rate. Macro- and micro-scopic examinations reveal a marked difference in the fracture surfaces between the static and dynamic tension specimens.
Stress-corrosion behavior of aluminum-lithium alloys in aqueous salt environments
NASA Technical Reports Server (NTRS)
Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.
1984-01-01
The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg; two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.
NASA Technical Reports Server (NTRS)
Scholz, C. H.; Bilham, R.; Johnson, T. L.
1981-01-01
During the past year, the grant supported research on several aspects of crustal deformation. The relation between earthquake displacements and fault dimensions was studied in an effort to find scaling laws that relate static parameters such as slip and stress drop to the dimensions of the rupture. Several implications of the static relations for the dynamic properties of earthquakes such as rupture velocity and dynamic stress drop were proposed. A theoretical basis for earthquake related phenomena associated with slow rupture growth or propagation, such as delayed multiple events, was developed using the stress intensity factor defined in fracture mechanics and experimental evidence from studies of crack growth by stress corrosion. Finally, extensive studies by Japanese geologists have established the offset across numerous faults in Japan over the last one hundred thousand years. These observations of intraplate faulting are being used to establish the spatial variations of the average strain rate of subregions in southern Japan.
Earthquake-induced static stress change on magma pathway in promoting the 2012 Copahue eruption
NASA Astrophysics Data System (ADS)
Bonali, F. L.
2013-11-01
It was studied how tectonic earthquake-induced static stress changes could have contributed to favouring the 22 December 2012 major eruption at Copahue volcano, Chile. Numerical modelling indicates that the vertical N60°E-striking magma pathway below Copahue was affected by a normal stress reduction induced by the Mw 8.8 Chile earthquake of 27 February 2010. A sensitivity analysis suggests that N-, NE- and E-striking vertical planes are affected by normal stress decrease (maximum at the NE-striking plane), and that also a possible inclined N60°E plane is affected by this reduction. Copahue did not have any magmatic event since 2000. Seismic signals of awakening started in April 2012 and the first volcanic event occurred on July 2012. Thus, it is here suggested a possible earthquake-induced feedback effect on the crust below the volcanic arc up to at least 3 years after a large subduction earthquake, favouring new eruptions.
Stress-corrosion behavior of aluminum-lithium alloys in aqueous environments
NASA Technical Reports Server (NTRS)
Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.
1983-01-01
The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.
The Strength of Shell Bodies : Theory and Practice
NASA Technical Reports Server (NTRS)
Ebner, H
1937-01-01
The monocoque form of airplane construction has introduced a number of new problems to the stress calculator and the designer. The problems for the stress calculator fall into two groups: the determination of the stress condition (shell statics) and the determination of the failing strength (shell strength). The present report summarizes the most important theoretical and experimental results on this subject.
BWR Steam Dryer Alternating Stress Assessment Procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morante, R. J.; Hambric, S. A.; Ziada, S.
2016-12-01
This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).
Single-transistor-clocked flip-flop
Zhao, Peiyi; Darwish, Tarek; Bayoumi, Magdy
2005-08-30
The invention provides a low power, high performance flip-flop. The flip-flop uses only one clocked transistor. The single clocked transistor is shared by the first and second branches of the device. A pulse generator produces a clock pulse to trigger the flip-flop. In one preferred embodiment the device can be made as a static explicit pulsed flip-flop which employs only two clocked transistors.
Hatakeyama, Hiroyasu; Kanzaki, Makoto
2017-08-15
Comprehensive imaging analyses of glucose transporter 4 (GLUT4) behaviour in mouse skeletal muscle was conducted. Quantum dot-based single molecule nanometry revealed that GLUT4 molecules in skeletal myofibres are governed by regulatory systems involving 'static retention' and 'stimulus-dependent liberation'. Vital imaging analyses and super-resolution microscopy-based morphometry demonstrated that insulin liberates the GLUT4 molecule from its static state by triggering acute heterotypic endomembrane fusion arising from the very small GLUT4-containing vesicles in skeletal myofibres. Prior exposure to exercise-mimetic stimuli potentiated this insulin-responsive endomembrane fusion event involving GLUT4-containing vesicles, suggesting that this endomembranous regulation process is a potential site related to the effects of exercise. Skeletal muscle is the major systemic glucose disposal site. Both insulin and exercise facilitate translocation of the glucose transporter glucose transporter 4 (GLUT4) via distinct signalling pathways and exercise also enhances insulin sensitivity. However, the trafficking mechanisms controlling GLUT4 mobilization in skeletal muscle remain poorly understood as a resuly of technical limitations. In the present study, which employs various imaging techniques on isolated skeletal myofibres, we show that one of the initial triggers of insulin-induced GLUT4 translocation is heterotypic endomembrane fusion arising from very small static GLUT4-containing vesicles with a subset of transferrin receptor-containing endosomes. Importantly, pretreatment with exercise-mimetic stimuli potentiated the susceptibility to insulin responsiveness, as indicated by these acute endomembranous activities. We also found that AS160 exhibited stripe-like localization close to sarcomeric α-actinin and that insulin induced a reduction of the stripe-like localization accompanying changes in its detergent solubility. The results of the present study thus provide a conceptual framework indicating that GLUT4 protein trafficking via heterotypic fusion is a critical feature of GLUT4 translocation in skeletal muscles and also suggest that the efficacy of the endomembranous fusion process in response to insulin is involved in the benefits of exercise. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
The role of stress in the pathogenesis and maintenance of obsessive-compulsive disorder.
Adams, T G; Kelmendi, B; Brake, C A; Gruner, P; Badour, C L; Pittenger, C
2018-01-01
Individuals with OCD often identify psychosocial stress as a factor that exacerbates their symptoms, and many trace the onset of symptoms to a stressful period of life or a discrete traumatic incident. However, the pathophysiological relationship between stress and OCD remains poorly characterized: it is unclear whether trauma or stress is an independent cause of OCD symptoms, a triggering factor that interacts with a preexisting diathesis, or simply a nonspecific factor that can exacerbate OCD along with other aspects of psychiatric symptomatology. Nonetheless, preclinical research has demonstrated that stress has conspicuous effects on corticostriatal and limbic circuitry. Specifically, stress can lead to neuronal atrophy in frontal cortices (particularly the medial prefrontal cortex), the dorsomedial striatum (caudate), and the hippocampus. Stress can also result in neuronal hypertrophy in the dorsolateral striatum (putamen) and amygdala. These neurobiological effects mirror reported neural abnormalities in OCD and may contribute to an imbalance between goal-directed and habitual behavior, an imbalance that is implicated in the pathogenesis and expression of OCD symptomatology. The modulation of corticostriatal and limbic circuits by stress and the resultant imbalance between habit and goal-directed learning and behavior offers a framework for investigating how stress may exacerbate or trigger OCD symptomatology.
Chong, Wai Chin; Shastri, Madhur D.; Eri, Rajaraman
2017-01-01
The endoplasmic reticulum (ER) is a complex protein folding and trafficking organelle. Alteration and discrepancy in the endoplasmic reticulum environment can affect the protein folding process and hence, can result in the production of misfolded proteins. The accumulation of misfolded proteins causes cellular damage and elicits endoplasmic reticulum stress. Under such stress conditions, cells exhibit reduced functional synthesis, and will undergo apoptosis if the stress is prolonged. To resolve the ER stress, cells trigger an intrinsic mechanism called an unfolded protein response (UPR). UPR is an adaptive signaling process that triggers multiple pathways through the endoplasmic reticulum transmembrane transducers, to reduce and remove misfolded proteins and improve the protein folding mechanism, in order to improve and maintain endoplasmic reticulum homeostasis. An increasing number of studies support the view that oxidative stress has a strong connection with ER stress. During the protein folding process, reactive oxygen species are produced as by-products, leading to impaired reduction-oxidation (redox) balance conferring oxidative stress. As the protein folding process is dependent on redox homeostasis, the oxidative stress can disrupt the protein folding mechanism and enhance the production of misfolded proteins, causing further ER stress. It is proposed that endoplasmic reticulum stress and oxidative stress together play significant roles in the pathophysiology of bowel diseases. PMID:28379196
Chong, Wai Chin; Shastri, Madhur D; Eri, Rajaraman
2017-04-05
The endoplasmic reticulum (ER) is a complex protein folding and trafficking organelle. Alteration and discrepancy in the endoplasmic reticulum environment can affect the protein folding process and hence, can result in the production of misfolded proteins. The accumulation of misfolded proteins causes cellular damage and elicits endoplasmic reticulum stress. Under such stress conditions, cells exhibit reduced functional synthesis, and will undergo apoptosis if the stress is prolonged. To resolve the ER stress, cells trigger an intrinsic mechanism called an unfolded protein response (UPR). UPR is an adaptive signaling process that triggers multiple pathways through the endoplasmic reticulum transmembrane transducers, to reduce and remove misfolded proteins and improve the protein folding mechanism, in order to improve and maintain endoplasmic reticulum homeostasis. An increasing number of studies support the view that oxidative stress has a strong connection with ER stress. During the protein folding process, reactive oxygen species are produced as by-products, leading to impaired reduction-oxidation (redox) balance conferring oxidative stress. As the protein folding process is dependent on redox homeostasis, the oxidative stress can disrupt the protein folding mechanism and enhance the production of misfolded proteins, causing further ER stress. It is proposed that endoplasmic reticulum stress and oxidative stress together play significant roles in the pathophysiology of bowel diseases.
Effect of shear stress on the migration of hepatic stellate cells.
Sera, Toshihiro; Sumii, Tateki; Fujita, Ryosuke; Kudo, Susumu
2018-01-01
When the liver is damaged, hepatic stellate cells (HSCs) can change into an activated, highly migratory state. The migration of HSCs may be affected by shear stress due not only to sinusoidal flow but also by the flow in the space of Disse because this space is filled with blood plasma. In this study, we evaluated the effects of shear stress on HSC migration in a scratch-wound assay with a parallel flow chamber. At regions upstream of the wound area, the migration was inhibited by 0.6 Pa and promoted by 2.0 Pa shear stress, compared to the static condition. The platelet-derived growth factor (PDGF)-BB receptor, PDGFR-β, was expressed in all conditions and the differences were not significant. PDGF increased HSC migration, except at 0.6 Pa shear stress, which was still inhibited. These results indicate that another molecular factor, such as PDGFR-α, may act to inhibit the migration under low shear stress. At regions downstream of the wound area, the migration was smaller under shear stress than under the static condition, although the expression of PDGFR-β was significantly higher. In particular, the migration direction was opposite to the wound area under high shear stress; therefore, migration might be influenced by the intercellular environment. Our results indicate that HSC migration was influenced by shear stress intensity and the intercellular environment.
Constraints on Dynamic Triggering from very Short term Microearthquake Aftershocks at Parkfield
NASA Astrophysics Data System (ADS)
Ampuero, J.; Rubin, A.
2004-12-01
The study of microearthquakes helps bridge the gap between laboratory experiments and data from large earthquakes, the two disparate scales that have contributed so far to our understanding of earthquake physics. Although they are frequent, microearthquakes are difficult to analyse. Applying high precision relocation techniques, Rubin and Gillard (2000) observed a pronounced asymmetry in the spatial distribution of the earliest and nearest aftershocks of microearthquakes along the San Andreas fault (they occur more often to the NW of the mainshock). It was suggested that this could be related to the velocity contrast across the fault. Preferred directivity of dynamic rupture pulses running along a bimaterial interface (to the SE in the case of the SAF) is expected on theoretical grounds. Our numerical simulations of crack-like rupture on such interfaces show a pronounced asymmetry of the stress histories beyond the rupture ends, and suggest two possible mechanisms for the observed asymmetry: First, that it results from an asymmmetry in the static stress field following arrest of the mainshock (closer to failure to the NW), or second, that it is due to a short-duration tensile pulse that propagates to the SE, which could reduce the number of aftershocks to the SE by dynamic triggering of any nucleation site close enough to failure to have otherwise produced an aftershock. To distinguish betwen these mechanisms we need observations of dynamic triggering in microseismicity. For small events triggered at a distance of some mainshock radii, triggering time scales are so short that seismograms of both events overlap. To detect the occurrence of compound events and very short term aftershocks in the HRSN Parkfield archived waveforms we have developed an automated search algorithm based on empirical Green's function (EGF) deconvolution. Optimal EGFs are first selected by the coherency of the cross-component convolution with respect to the target event. Then Landweber deconvolution is applied. The resulting source time functions (STF) are often noisy and corrupted by sidelobes due to finite frequency band of the data. They are scanned for subevents, exploiting the consistency of the occurrence of secondary peaks (outliers among the STF maxima) throughout the 30 network channels. Subevents are picked, in many cases to sub-sample precision, by waveform fitting using all the EGFs available. We have detected a total of 30 such multiple or compound eve nts with inter-event delays of less than one second, in a catalog that spans over 10 years of seismicity in Parkfield (2300 cataloged events in our working box). Most of them are not detectable by visual inspection of the seismograms. In most cases, their timing and relative location are consistent with dynamic triggering. Also, the seismicity rate at very early times (less than 0.1 seconds) seems higher than expected from the longer term aftershock seismicity rate observed in the region. This points to dynamic effects in very short term aftershock decay. Finally, more of these immediate aftershocks occur to the NW, as with the earlier NCSN results, although the number of events analysed so far is small. We will discuss these and ongoing observations from the standpoint of dynamic rupture on bimaterial interfaces, supported by numerical simulations.
NASA Astrophysics Data System (ADS)
Kuznetsov, A. V.; Kamantsev, I. S.; Zadvorkin, S. M.; Drukarenko, N. A.; Goruleva, L. S.; Veselova, V. E.
2017-12-01
An approach to the estimation of the residual durability of structural elements in view of their initial stress-strain state is proposed. The adequacy of the developed approach is confirmed by experiments on cyclic loading of specimens without pronounced stress concentrators simulating the work of real structural elements under conditions of overshooting the total stresses causing local plastic deformation of the material, with regard for residual stresses.
2006-04-01
contraction) caused by a load when deforming the material; which takes the form of a stress-strain curve . The stress- strain curve is the key information...anisotropy associated with large variability of the mechanical properties of its constituents. Therefore, every experimental stress-strain curve for...these materials is closely associated with the load direction with respect to the material symmetry axes. Under static conditions, stress-strain curves
Experimental evaluation of stresses in spherically hollow balls
NASA Technical Reports Server (NTRS)
Nypan, L. J.
1974-01-01
An analysis was undertaken to evaluate stresses within spherically hollow ball bearings proportioned for 40, 50, and 60% mass reductions. Strain gage rosettes were used to determine principal strains and stresses in the steel ball models statically loaded in various orientations. Dimensionless results are reported for the balls under flate plate contact loads. Similitude considerations permit these results to be applied to calculate stresses in hollow ball bearings proportioned to these mass reductions.
Trigger factor of Streptococcus suis is involved in stress tolerance and virulence.
Wu, Tao; Zhao, Zhanqin; Zhang, Lin; Ma, Hongwei; Lu, Ka; Ren, Wen; Liu, Zhengya; Chang, Haitao; Bei, Weicheng; Qiu, Yinsheng; Chen, Huanchun
2011-01-01
Streptococcus suis serotype 2 is an important zoonotic pathogen that causes serious diseases such as meningitis, septicemia, endocarditis, arthritis and septic shock in pigs and humans. Little is known about the regulation of virulence gene expression in S. suis serotype 2. In this study, we cloned and deleted the entire tig gene from the chromosome of S. suis serotype 2 SC21 strain, and constructed a mutant strain (Δtig) and a complementation strain (CΔtig). The results demonstrated that the tig gene, encoding trigger factor from S. suis serotype 2 SC21, affects the stress tolerance and the expression of a few virulence genes of S. suis serotype 2. Deletion of the tig gene of S. suis serotype 2 resulted in mutant strain, ΔTig, which exhibited a significant decrease in adherence to cell line HEp-2, and lacked hemolytic activity. Tig deficiency diminishes stresses tolerance of S. suis serotype 2 such as survive thermal, oxidative and acid stresses. Quantification of expression levels of known S. suis serotype 2 SC21 virulence genes by real-time polymerase chain reaction in vitro revealed that trigger factor influences the expression of epf, cps, adh, rpob, fbps, hyl, sly, mrp and hrcA virulence-associated genes. ΔTig was shown to be attenuated in a LD50 assay and bacteriology, indicating that trigger factor plays an important part in the pathogenesis and stress tolerance of. S. suis serotype 2 infection. Mutant ΔTig was 100% defective in virulence in CD1 mice at up to 107 CFU, and provided 100% protection when challenged with 107 CFU of the SC21 strain. Copyright © 2010. Published by Elsevier India Pvt Ltd.
NASA Astrophysics Data System (ADS)
Koulali, A.; McClusky, S.; Wallace, L.; Allgeyer, S.; Tregoning, P.; D'Anastasio, E.; Benavente, R.
2017-08-01
Following a sequence of three Slow Slip Events (SSEs) on the northern Hikurangi Margin, between June 2015 and August 2016, a Mw 7.1 earthquake struck 30 km offshore of the East Cape region in the North Island of New Zealand on the 2 September 2016 (NZ local time). The earthquake was also followed by a transient deformation event (SSE or afterslip) northeast of the North Island, closer to the earthquake source area. We use data from New Zealand's continuous Global Positioning System networks to invert for the SSE slip distribution and evolution on the Hikurangi subduction interface. Our slip inversion results show an increasing amplitude of the slow slip toward the Te Araroa earthquake foreshock and main shock area, suggesting a possible triggering of the Mw 7.1 earthquake by the later stage of the slow slip sequence. We also show that the transient deformation following the Te Araroa earthquake ruptured a portion of the Hikurangi Trench northeast of the North Island, farther north than any previously observed Hikurangi margin SSEs. Our slip inversion and the coulomb stress calculation suggest that this transient may have been induced as a response to the increase in the static coulomb stress change downdip of the rupture plane on the megathrust. These observations show the importance of considering the interaction between slow slip events, seismic, and aseismic events, not only on the same megathrust interface but also on faults within the surrounding crust.
A Biomechanical Assessment of Hand/Arm Force with Pneumatic Nail Gun Actuation Systems.
Lowe, Brian D; Albers, James; Hudock, Stephen D
2014-09-01
A biomechanical model is presented, and combined with measurements of tip press force, to estimate total user hand force associated with two pneumatic nail gun trigger systems. The contact actuation trigger (CAT) can fire a nail when the user holds the trigger depressed first and then "bumps" the nail gun tip against the workpiece. With a full sequential actuation trigger (SAT) the user must press the tip against the workpiece prior to activating the trigger. The SAT is demonstrably safer in reducing traumatic injury risk, but increases the duration (and magnitude) of tip force exertion. Time integrated (cumulative) hand force was calculated for a single user from measurements of the tip contact force with the workpiece and transfer time between nails as inputs to a static model of the nail gun and workpiece in two nailing task orientations. The model shows the hand force dependence upon the orientation of the workpiece in addition to the trigger system. Based on standard time allowances from work measurement systems (i.e. Methods-Time Measurement - 1) it is proposed that efficient application of hand force with the SAT in maintaining tip contact can reduce force exertion attributable to the sequential actuation trigger to 2-8% (horizontal nailing) and 9-20% (vertical nailing) of the total hand/arm force. The present model is useful for considering differences in cumulative hand/arm force exposure between the SAT and CAT systems and may explain the appeal of the CAT trigger in reducing the user's perception of muscular effort.
A Biomechanical Assessment of Hand/Arm Force with Pneumatic Nail Gun Actuation Systems
Lowe, Brian D.; Albers, James; Hudock, Stephen D.
2015-01-01
A biomechanical model is presented, and combined with measurements of tip press force, to estimate total user hand force associated with two pneumatic nail gun trigger systems. The contact actuation trigger (CAT) can fire a nail when the user holds the trigger depressed first and then “bumps” the nail gun tip against the workpiece. With a full sequential actuation trigger (SAT) the user must press the tip against the workpiece prior to activating the trigger. The SAT is demonstrably safer in reducing traumatic injury risk, but increases the duration (and magnitude) of tip force exertion. Time integrated (cumulative) hand force was calculated for a single user from measurements of the tip contact force with the workpiece and transfer time between nails as inputs to a static model of the nail gun and workpiece in two nailing task orientations. The model shows the hand force dependence upon the orientation of the workpiece in addition to the trigger system. Based on standard time allowances from work measurement systems (i.e. Methods-Time Measurement - 1) it is proposed that efficient application of hand force with the SAT in maintaining tip contact can reduce force exertion attributable to the sequential actuation trigger to 2–8% (horizontal nailing) and 9–20% (vertical nailing) of the total hand/arm force. The present model is useful for considering differences in cumulative hand/arm force exposure between the SAT and CAT systems and may explain the appeal of the CAT trigger in reducing the user’s perception of muscular effort. PMID:26321780
High temperature ceramic interface study
NASA Technical Reports Server (NTRS)
Lindberg, L. J.
1984-01-01
Monolithic SiC and Si3N4 are susceptible to contact stress damage at static and sliding interfaces. Transformation-toughened zirconia (TTZ) was evaluated under sliding contact conditions to determine if the higher material fracture toughness would reduce the susceptibility to contact stress damage. Contact stress tests were conducted on four commercially available TTZ materials at normal loads ranging from 0.455 to 22.7 kg (1 to 50 pounds) at temperatures ranging from room temperature to 1204C (2200 F). Static and dynamic friction were measured as a function of temperature. Flexural strength measurements after these tests determined that the contact stress exposure did not reduce the strength of TTZ at contact loads of 0.455, 4.55, and 11.3 kg (1, 10, and 25 pounds). Prior testing with the lower toughness SiC and Si3N4 materials resulted in a substantial strength reduction at loads of only 4.55 and 11.3 kg (10 and 25 pounds). An increase in material toughness appears to improve ceramic material resistance to contact stress damage. Baseline material flexure strength was established and the stress rupture capability of TTZ was evaluated. Stress rupture tests determined that TTZ materials are susceptible to deformation due to creep and that aging of TTZ materials at elevated temperatures results in a reduction of material strength.
Modulus and yield stress of drawn LDPE
NASA Astrophysics Data System (ADS)
Thavarungkul, Nandh
Modulus and yield stress were investigated in drawn low density polyethylene (LDPE) film. Uniaxially drawn polymeric films usually show high values of modulus and yield stress, however, studies have normally only been conducted to identify the structural features that determine modulus. In this study small-angle x-ray scattering (SAXS), thermal shrinkage, birefringence, differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA) were used to examine, directly and indirectly, the structural features that determine both modulus and yield stress, which are often closely related in undrawn materials. Shish-kebab structures are proposed to account for the mechanical properties in drawn LDPE. The validity of this molecular/morphological model was tested using relationships between static mechanical data and structural and physical parameters. In addition, dynamic mechanical results are also in line with static data in supporting the model. In the machine direction (MD), "shish" and taut tie molecules (TTM) anchored in the crystalline phase account for E; whereas crystal lamellae with contributions from "shish" and TTM determine yield stress. In the transverse direction (TD), the crystalline phase plays an important roll in both modulus and yield stress. Modulus is determined by crystal lamellae functioning as platelet reinforcing elements in the amorphous matrix with an additional contributions from TTM and yield stress is determined by the crystal lamellae's resistance to deformation.
Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.
Gao, Li-Lan; Wei, Chao-Lei; Zhang, Chun-Qiu; Gao, Hong; Yang, Nan; Dong, Li-Min
2017-08-01
The quasi-static and ratcheting properties of trabecular bone were investigated by experiments and theoretical predictions. The creep tests with different stress levels were completed and it is found that both the creep strain and creep compliance increase rapidly at first and then increase slowly as the creep time goes by. With increase of compressive stress the creep strain increases and the creep compliance decreases. The uniaxial compressive tests show that the applied stress rate makes remarkable influence on the compressive behaviors of trabecular bone. The Young's modulus of trabecular bone increases with increase of stress rate. The stress-strain hysteresis loops of trabecular bone under cyclic load change from sparse to dense with increase of number of cycles, which agrees with the change trend of ratcheting strain. The ratcheting strain rate rapidly decreases at first, and then exhibits a relatively stable and small value after 50cycles. Both the ratcheting strain and ratcheting strain rate increase with increase of stress amplitude or with decrease of stress rate. The creep model and the nonlinear viscoelastic constitutive model of trabecular bone were proposed and used to predict its creep property and rate-dependent compressive property. The results show that there are good agreements between the experimental data and predictions. Copyright © 2017 Elsevier B.V. All rights reserved.
Niinemets, Ülo; Kännaste, Astrid; Copolovici, Lucian
2013-01-01
Plants have to cope with a plethora of biotic stresses such as herbivory and pathogen attacks throughout their life cycle. The biotic stresses typically trigger rapid emissions of volatile products of lipoxygenase (LOX) pathway (LOX products: various C6 aldehydes, alcohols, and derivatives, also called green leaf volatiles) associated with oxidative burst. Further a variety of defense pathways is activated, leading to induction of synthesis and emission of a complex blend of volatiles, often including methyl salicylate, indole, mono-, homo-, and sesquiterpenes. The airborne volatiles are involved in systemic responses leading to elicitation of emissions from non-damaged plant parts. For several abiotic stresses, it has been demonstrated that volatile emissions are quantitatively related to the stress dose. The biotic impacts under natural conditions vary in severity from mild to severe, but it is unclear whether volatile emissions also scale with the severity of biotic stresses in a dose-dependent manner. Furthermore, biotic impacts are typically recurrent, but it is poorly understood how direct stress-triggered and systemic emission responses are silenced during periods intervening sequential stress events. Here we review the information on induced emissions elicited in response to biotic attacks, and argue that biotic stress severity vs. emission rate relationships should follow principally the same dose–response relationships as previously demonstrated for different abiotic stresses. Analysis of several case studies investigating the elicitation of emissions in response to chewing herbivores, aphids, rust fungi, powdery mildew, and Botrytis, suggests that induced emissions do respond to stress severity in dose-dependent manner. Bi-phasic emission kinetics of several induced volatiles have been demonstrated in these experiments, suggesting that next to immediate stress-triggered emissions, biotic stress elicited emissions typically have a secondary induction response, possibly reflecting a systemic response. The dose–response relationships can also vary in dependence on plant genotype, herbivore feeding behavior, and plant pre-stress physiological status. Overall, the evidence suggests that there are quantitative relationships between the biotic stress severity and induced volatile emissions. These relationships constitute an encouraging platform to develop quantitative plant stress response models. PMID:23888161
An approximate analytical solution for interlaminar stresses in angle-ply laminates
NASA Technical Reports Server (NTRS)
Rose, Cheryl A.; Herakovich, Carl T.
1991-01-01
An improved approximate analytical solution for interlaminar stresses in finite width, symmetric, angle-ply laminated coupons subjected to axial loading is presented. The solution is based upon statically admissible stress fields which take into consideration local property mismatch effects and global equilibrium requirements. Unknown constants in the admissible stress states are determined through minimization of the complementary energy. Typical results are presented for through-the-thickness and interlaminar stress distributions for angle-ply laminates. It is shown that the results represent an improved approximate analytical solution for interlaminar stresses.
NASA Astrophysics Data System (ADS)
Enescu, B.; Chao, K.; Obara, K.; Peng, Z.; Matsuzawa, T.; Yagi, Y.
2013-12-01
The triggering of deep non-volcanic tremor (NVT) in the Nankai region, southwest Japan, by the surface waves of several large teleseismic earthquakes has been well documented (e.g., Miyazawa & Mori, 2005). These previous studies report that the Nankai NVT is primarily triggered by the passage of Rayleigh waves from the teleseismic events (e.g., Miyazawa & Brodsky, 2008). The relative lack of Love wave triggering in Nankai would be, however, an exception to the general observation that triggered tremor shows a positive correlation with the triggering potential, defined using the Coulomb failure criteria (Hill, 2012). To clarify the Nankai NVT triggering mechanism, we have systematically searched for triggered tremor due to large teleseismic events (Mw ≥ 7.5) occurred from 2001 to 2012. Our present analysis focuses on western Shikoku, where triggered NVT has been previously reported (e.g., Miyazawa & Mori, 2006). From a total of 55 teleseismic events, 18 show associated triggered NVT. Our analysis presents clear evidence of triggered NVT that correlates well with the passage of Love waves. The most outstanding example is that of the 2012 M8.6 Sumatra earthquake, a strike-slip event characterized by relatively large amplitude Love waves. The incoming surface waves from this earthquake are almost strike-parallel to the Nankai subduction zone, which corresponds to a higher Love wave triggering potential (Hill, 2012). The 2001 M7.8 Kunlun, the 2003 M8.3 Tokachi-oki, the 2004 M9.2 & 2007 M8.5 Sumatra, the 2006 M8.3 Kuril-Islands and the 2008 M7.9 Wenchuan earthquakes show as well Love-wave associated NVT triggering. In most of these cases the tremor is initiated by the incoming, faster-traveling Love waves and continues during the latter, larger-amplitude Rayleigh waves. We are also conducting dynamic stress modeling to better understand the triggering mechanism of tremor. Our approach builds up on the methods of Gonzalez-Huizar & Velasco (2011) and Obara (2012). In the case of the 2012 Sumatra earthquake, we found a high correlation between the Love waves dynamic Coulomb stress change at the tremor source and the triggered NVT, for a time period of about 400s, which starts from the first Love wave cycles. Afterwards, the tremor bursts have slightly larger amplitudes and the correlation with the surface waves becomes poor. Preliminary results indicate a shallower location for these later tremors. Our results indicate that the triggering mechanism of NVT in western Shikoku is essentially the same with the one operating (e.g., Hill, 2012) in other subduction regions around the world (e.g., Cascadia). The tremor responds to excitation by both Love and Rayleigh waves according to the Coulomb failure criterion; failure, once underway, might be controlled by other mechanisms (e.g., some form of rate-state friction), which we plan to address in future studies.
Analysis of progressive damage in thin circular laminates due to static-equivalent impact loads
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Elber, W.; Illg, W.
1983-01-01
Clamped circular graphite/epoxy plates (25.4, 38.1, and 50.8 mm radii) with an 8-ply quasi-isotropic layup were analyzed for static-equivalent impact loads using the minimum-total-potential-energy method and the von Karman strain-displacement equations. A step-by-step incremental transverse displacement procedure was used to calculate plate load and ply stresses. The ply failure region was calculated using the Tsai-Wu criterion. The corresponding failure modes (splitting and fiber failure) were determined using the maximum stress criteria. The first-failure mode was splitting and initiated first in the bottom ply. The splitting-failure thresholds were relatively low and tended to be lower for larger plates than for small plates. The splitting-damage region in each ply was elongated in its fiber direction; the bottom ply had the largest damage region. The calculated damage region for the 25.4-mm-radius plate agreed with limited static test results from the literature.
Apparatus for measuring internal friction Q factors in brittle materials. [applied to lunar samples
NASA Technical Reports Server (NTRS)
Tittmann, B. R.; Curnow, J. M.
1976-01-01
A flexural analog of the torsion pendulum for measuring the Young's modulus and the internal friction Q factor of brittle materials has been developed for Q greater than 10 to the 3rd measurements at a zero static stress and at 10 to the -7th strains of brittle materials in the Hz frequency range. The present design was motivated by the desire to measure Q in fragile lunar return samples at zero static stress to shed light on the anomalously low attenuation of seismic waves on the moon. The use of the apparatus is demonstrated with data on fused silica and on a terrestrial analog of lunar basalt.
Measuring Science Teachers' Stress Level Triggered by Multiple Stressful Conditions
ERIC Educational Resources Information Center
Halim, Lilia; Samsudin, Mohd Ali; Meerah, T. Subahan M.; Osman, Kamisah
2006-01-01
The complexity of science teaching requires science teachers to encounter a range of tasks. Some tasks are perceived as stressful while others are not. This study aims to investigate the extent to which different teaching situations lead to different stress levels. It also aims to identify the easiest and most difficult conditions to be regarded…
NASA Astrophysics Data System (ADS)
Shao, G.; Ji, C.; Lu, Z.; Hudnut, K. W.; Liu, J.; Zhang, W.
2009-12-01
We study the kinematic rupture process of the 2008 Mw 7.9 Wenchuan earthquake using all geophysical and geological datasets that we are able to access, including the waveforms of teleseismic long period surface waves, broadband body waves and local strong motions, GPS vectors, interferometic radar (INSAR) images, and geological surface offsets. The relocated aftershock locations have also been included to constrain the potential fault geometry. These datasets have very different sensitivities to not only the slip on the fault but also the “a priori” information of the source inversions, such as the local velocity structure and the details of irregular fault surface. Effects have then been made to reconcile these datasets by reasonably perturbing the velocity structure and fault geometry, which are both poorly constrained. We have used two 1D velocity models, one for the Tibet plateau and the other for Sichuan basin, to calculate the static and dynamic earth responses; and developed a complex fault system including two irregular fault planes for Beichuan and Pengguan faults, respectively. The long wavelength errors of the INSAR LOS displacements have also been considered and been corrected simultaneously during the joint inversions. Our preferred model not only explains the geodetic and tele-seismic data very well, but also reasonably matches most strong motion waveforms. According to this result, the Wenchuan earthquake has an unprecedented complex rupture process. It initiated southwest of the town of Yingxiu at a depth of about 12 km, where the low-angle Pengguan fault and the high-angle Beichuan fault intersect. The rupture initiated on the low angle Pengguan fault and then later triggered the rupture on the high angle Beichuan fault. It then unilaterally ruptured northeastward for 270 km, mainly on the Beichuan fault. The entire rupture duration is over 95 seconds with an average rupture velocity of 3.0 km/s. Except for the region near the hypocenter and the region near the northeast end of the rupture, the majority of slip occurred at depths less than 12 km. The total seismic moment released by this earthquake was 1.02 x 1021 Nm, with ~36% on the Pengguan fault. Our analysis also indicates that the aftershock zone along the extension of the Xiaoyudong fault is consistent with the theory of static stress triggering due to the co-seismic rupture.
Möller, Jette; Hallqvist, Johan; Laflamme, Lucie; Mattsson, Fredrik; Ponzer, Sari; Sadigh, Siv; Engström, Karin
2009-02-09
Sudden emotions may interfere with mechanisms for keeping balance among the elderly. The aim of this study is to analyse if emotional stress and specifically feelings of anger, sadness, worries, anxiety or stress, can trigger falls leading to hip or pelvic fracture among autonomous older people. The study applied the case-crossover design and was based on data gathered by face to face interviews carried out in Stockholm between November 2004 and January 2006 at the emergency wards of two hospitals. Cases (n = 137) were defined as persons aged 65 and older admitted for at least one night due to a fall-related hip or pelvic fracture (ICD10: S72 or S32) and meeting a series of selection criteria. Results are presented as relative risks with 95% confidence intervals. There was an increased risk for fall and subsequent hip or pelvic fracture for up to one hour after emotional stress. For anger there was an increased relative risk of 12.2 (95% CI 2.7-54.7), for sadness of 5.7 (95% CI 1.1-28.7), and for stress 20.6 (95% CI 4.5-93.5) compared to periods with no such feelings. Emotional stress seems to have the potential to trigger falls and subsequent hip or pelvic fracture among autonomous older people. Further studies are needed to clarify how robust the findings are - as the number of exposed cases is small - and the mechanisms behind them - presumably balance and vision impairment in stress situation.
Parsons, T.; Stein, R.S.; Simpson, R.W.; Reasenberg, P.A.
1999-01-01
We present a new three-dimensional inventory of the southern San Francisco Bay area faults and use it to calculate stress applied principally by the 1989 M = 7.1 Loma Prieta earthquake and to compare fault seismicity rates before and after 1989. The major high-angle right-lateral faults exhibit a different response to the stress change than do minor oblique (right-lateral/thrust) faults. Seismicity on oblique-slip faults in the southern Santa Clara Valley thrust belt increased where the faults were unclamped. The strong dependence of seismicity change on normal stress change implies a high coefficient of static friction. In contrast, we observe that faults with significant offset (>50-100 km) behave differently; microseismicity on the Hayward fault diminished where right-lateral shear stress was reduced and where it was unclamped by the Loma Prieta earthquake. We observe a similar response on the San Andreas fault zone in southern California after the Landers earthquake sequence. Additionally, the offshore San Gregorio fault shows a seismicity rate increase where right-lateral/oblique shear stress was increased by the Loma Prieta earthquake despite also being clamped by it. These responses are consistent with either a low coefficient of static friction or high pore fluid pressures within the fault zones. We can explain the different behavior of the two styles of faults if those with large cumulative offset become impermeable through gouge buildup; coseismically pressurized pore fluids could be trapped and negate imposed normal stress changes, whereas in more limited offset faults, fluids could rapidly escape. The difference in behavior between minor and major faults may explain why frictional failure criteria that apply intermediate coefficients of static friction can be effective in describing the broad distributions of aftershocks that follow large earthquakes, since many of these events occur both inside and outside major fault zones.
Dehydration-driven stress transfer triggers intermediate-depth earthquakes
Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah; Deldicque, Damien; Labrousse, Loïc; Gasc, Julien; Renner, Joerg; Wang, Yanbin; Green II, Harry W.; Schubnel, Alexandre
2017-01-01
Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearing micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediate-depth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement. PMID:28504263
Dehydration-driven stress transfer triggers intermediate-depth earthquakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah
Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here in this paper we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearingmore » micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediatedepth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.« less
Dehydration-driven stress transfer triggers intermediate-depth earthquakes
Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah; ...
2017-05-15
Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here in this paper we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearingmore » micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediatedepth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.« less
Beeler, Nicholas M.; Kilgore, Brian D.; McGarr, Arthur F.; Fletcher, Jon Peter B.; Evans, John R.; Steven R. Baker,
2012-01-01
We have conducted dynamic rupture propagation experiments to establish the relations between in-source stress drop, fracture energy and the resulting particle velocity during slip of an unconfined 2 m long laboratory fault at normal stresses between 4 and 8 MPa. To produce high fracture energy in the source we use a rough fault that has a large slip weakening distance. An artifact of the high fracture energy is that the nucleation zone is large such that precursory slip reduces fault strength over a large fraction of the total fault length prior to dynamic rupture, making the initial stress non-uniform. Shear stress, particle velocity, fault slip and acceleration were recorded coseismically at multiple locations along strike and at small fault-normal distances. Stress drop increases weakly with normal stress. Average slip rate depends linearly on the fault strength loss and on static stress drop, both with a nonzero intercept. A minimum fracture energy of 1.8 J/m2 and a linear slip weakening distance of 33 μm are inferred from the intercept. The large slip weakening distance also affects the average slip rate which is reduced by in-source energy dissipation from on-fault fracture energy.Because of the low normal stress and small per event slip (∼86 μm), no thermal weakening such as melting or pore fluid pressurization occurs in these experiments. Despite the relatively high fracture energy, and the very low heat production, energy partitioning during these laboratory earthquakes is very similar to typical earthquake source properties. The product of fracture energy and fault area is larger than the radiated energy. Seismic efficiency is low at ∼2%. The ratio of apparent stress to static stress drop is ∼27%, consistent with measured overshoot. The fracture efficiency is ∼33%. The static and dynamic stress drops when extrapolated to crustal stresses are 2–7.3 MPa and in the range of typical earthquake stress drops. As the relatively high fracture energy reduces the slip velocities in these experiments, the extrapolated average particle velocities for crustal stresses are 0.18–0.6 m/s. That these experiments are consistent with typical earthquake source properties suggests, albeit indirectly, that thermal weakening mechanisms such as thermal pressurization and melting which lead to near complete stress drops, dominate earthquake source properties only for exceptional events unless crustal stresses are low.
NASA Astrophysics Data System (ADS)
Volpe, Peter A.
This thesis presents analytical models, finite element models and experimental data to investigate the response of the human eye to loads that can be experienced when in a non-supine sleeping position. The hypothesis being investigated is that non-supine sleeping positions can lead to stress, strain and deformation of the eye as well as changes in intraocular pressure (IOP) that may exacerbate vision loss in individuals who have glaucoma. To investigate the quasi-static changes in stress and internal pressure, a Fluid-Structure Interaction simulation was performed on an axisymmetrical model of an eye. Common Aerospace Engineering methods for analyzing pressure vessels and hyperelastic structural walls are applied to developing a suitable model. The quasi-static pressure increase was used in an iterative code to analyze changes in IOP over time.
Dynamic stress analysis of smooth and notched fiber composite flexural specimens
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Chamis, C. C.
1984-01-01
A detailed analysis of the dynamic stress field in smooth and notched fiber composite (Charpy-type) specimens is reported in this paper. The analysis is performed with the aid of the direct transient response analysis solution sequence of MSC/NASTRAN. Three unidirectional composites were chosen for the study. They are S-Glass/Epoxy, Kevlar/Epoxy and T-300/Epoxy composite systems. The specimens are subjected to an impact load which is modeled as a triangular impulse with a maximum of 2000 lb and a duration of 1 ms. The results are compared with those of static analysis of the specimens subjected to a peak load of 2000 lb. For the geometry and type of materials studied, the static analysis results gave close conservative estimates for the dynamic stresses. Another interesting inference from the study is that the impact induced effects are felt by S-Glass/Epoxy specimens sooner than Kevlar/Epoxy or T-300/Epoxy specimens.
Ellwood, R; Stratoudaki, T; Sharples, S D; Clark, M; Somekh, M G
2014-03-01
The third-order elastic constants of a material are believed to be sensitive to residual stress, fatigue, and creep damage. The acoustoelastic coefficient is directly related to these third-order elastic constants. Several techniques have been developed to monitor the acoustoelastic coefficient using ultrasound. In this article, two techniques to impose stress on a sample are compared, one using the classical method of applying a static strain using a bending jig and the other applying a dynamic stress due to the presence of an acoustic wave. Results on aluminum samples are compared. Both techniques are found to produce similar values for the acoustoelastic coefficient. The dynamic strain technique however has the advantages that it can be applied to large, real world components, in situ, while ensuring the measurement takes place in the nondestructive, elastic regime.
Mechanical Properties of Transgenic Silkworm Silk Under High Strain Rate Tensile Loading
NASA Astrophysics Data System (ADS)
Chu, J.-M.; Claus, B.; Chen, W.
2017-12-01
Studies have shown that transgenic silkworm silk may be capable of having similar properties of spider silk while being mass-producible. In this research, the tensile stress-strain response of transgenic silkworm silk fiber is systematically characterized using a quasi-static load frame and a tension Kolsky bar over a range of strain-rates between 10^{-3} and 700/s. The results show that transgenic silkworm silk tends to have higher overall ultimate stress and failure strain at high strain rate (700/s) compared to quasi-static strain rates, indicating rate sensitivity of the material. The failure strain at the high strain rate is higher than that of spider silk. However, the stress levels are significantly below that of spider silk, and far below that of high-performance fiber. Failure surfaces are examined via scanning electron microscopy and reveal that the failure modes are similar to those of spider silk.
Modeling of the static recrystallization for 7055 aluminum alloy by cellular automaton
NASA Astrophysics Data System (ADS)
Zhang, Tao; Lu, Shi-hong; Zhang, Jia-bin; Li, Zheng-fang; Chen, Peng; Gong, Hai; Wu, Yun-xin
2017-09-01
In order to simulate the flow behavior and microstructure evolution during the pass interval period of the multi-pass deformation process, models of static recovery (SR) and static recrystallization (SRX) by the cellular automaton (CA) method for the 7055 aluminum alloy were established. Double-pass hot compression tests were conducted to acquire flow stress and microstructure variation during the pass interval period. With the basis of the material constants obtained from the compression tests, models of the SR, incubation period, nucleation rate and grain growth were fitted by least square method. A model of the grain topology and a statistical computation of the CA results were also introduced. The effects of the pass interval time, temperature, strain, strain rate and initial grain size on the microstructure variation for the SRX of the 7055 aluminum alloy were studied. The results show that a long pass interval time, large strain, high temperature and large strain rate are beneficial for finer grains during the pass interval period. The stable size of the static recrystallized grain is not concerned with the initial grain size, but mainly depends on the strain rate and temperature. The SRX plays a vital role in grain refinement, while the SR has no effect on the variation of microstructure morphology. Using flow stress and microstructure comparisons of the simulated and experimental CA results, the established CA models can accurately predict the flow stress and microstructure evolution during the pass interval period, and provide guidance for the selection of optimized parameters for the multi-pass deformation process.
Media triggers of post-traumatic stress disorder 50 years after the Second World War.
Hilton, C
1997-08-01
Post-traumatic stress disorder (PTSD) may present many years after the original trauma. Case studies of two elderly patients are described. Both had experienced life-threatening combat situations and witnessed intense suffering during the Second World War. Marked distress was triggered by the media commemorating the fiftieth anniversary of the end of the war. PTSD patients often avoid talking of their traumatic experiences because of associated distress. Without taking a military and trauma history from elderly patients the diagnosis is likely to be missed.
Thermal stress analysis of reusable surface insulation for shuttle
NASA Technical Reports Server (NTRS)
Ojalvo, I. U.; Levy, A.; Austin, F.
1974-01-01
An iterative procedure for accurately determining tile stresses associated with static mechanical and thermally induced internal loads is presented. The necessary conditions for convergence of the method are derived. An user-oriented computer program based upon the present method of analysis was developed. The program is capable of analyzing multi-tiled panels and determining the associated stresses. Typical numerical results from this computer program are presented.
3-D dynamic rupture simulations of the 2016 Kumamoto, Japan, earthquake
NASA Astrophysics Data System (ADS)
Urata, Yumi; Yoshida, Keisuke; Fukuyama, Eiichi; Kubo, Hisahiko
2017-11-01
Using 3-D dynamic rupture simulations, we investigated the 2016 Mw7.1 Kumamoto, Japan, earthquake to elucidate why and how the rupture of the main shock propagated successfully, assuming a complicated fault geometry estimated on the basis of the distributions of the aftershocks. The Mw7.1 main shock occurred along the Futagawa and Hinagu faults. Within 28 h before the main shock, three M6-class foreshocks occurred. Their hypocenters were located along the Hinagu and Futagawa faults, and their focal mechanisms were similar to that of the main shock. Therefore, an extensive stress shadow should have been generated on the fault plane of the main shock. First, we estimated the geometry of the fault planes of the three foreshocks as well as that of the main shock based on the temporal evolution of the relocated aftershock hypocenters. We then evaluated the static stress changes on the main shock fault plane that were due to the occurrence of the three foreshocks, assuming elliptical cracks with constant stress drops on the estimated fault planes. The obtained static stress change distribution indicated that Coulomb failure stress change (ΔCFS) was positive just below the hypocenter of the main shock, while the ΔCFS in the shallow region above the hypocenter was negative. Therefore, these foreshocks could encourage the initiation of the main shock rupture and could hinder the propagation of the rupture toward the shallow region. Finally, we conducted 3-D dynamic rupture simulations of the main shock using the initial stress distribution, which was the sum of the static stress changes caused by these foreshocks and the regional stress field. Assuming a slip-weakening law with uniform friction parameters, we computed 3-D dynamic rupture by varying the friction parameters and the values of the principal stresses. We obtained feasible parameter ranges that could reproduce the characteristic features of the main shock rupture revealed by seismic waveform analyses. We also observed that the free surface encouraged the slip evolution of the main shock.[Figure not available: see fulltext.
NASA Technical Reports Server (NTRS)
Heffner, Robert
1996-01-01
Stress analysis of the primary structure of the Meteorological Satellites Project (METSAT) Advanced Microwave Sounding Units-A, A1 Module using static loads is presented. The structural margins of safety and natural frequency predictions for the METSAT design are reported.
The energy release in earthquakes, and subduction zone seismicity and stress in slabs. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Vassiliou, M. S.
1983-01-01
Energy release in earthquakes is discussed. Dynamic energy from source time function, a simplified procedure for modeling deep focus events, static energy estimates, near source energy studies, and energy and magnitude are addressed. Subduction zone seismicity and stress in slabs are also discussed.
NASA Astrophysics Data System (ADS)
Yadav, R. B. S.; Gahalaut, V. K.; Chopra, Sumer; Shan, Bin
2012-02-01
A damaging and widely felt moderate earthquake (Mw 6.4) hit the rural, mountainous region of southwestern Pakistan on October 28, 2008. The main shock was followed by another earthquake of identical magnitude (Mw 6.4) on the next day. The spatial distribution of aftershocks and focal mechanism revealed a NW-SE striking rupture with right-lateral strike-slip motion which is sympathetic to the NNW-SSE striking active mapped Urghargai Fault. The occurrence of strike-slip earthquakes suggests that along with the thrust faults, strike slip faults too are present beneath the fold-and-thrust belt of Sulaiman-Kirthar ranges and accommodates some of the relative motion of the Indian and Eurasian plates. To assess the characteristics of this sequence, the statistical parameters like aftershocks temporal decay, b-value of G-R relationship, partitioning of radiated seismic energy due to aftershocks, and spatial fractal dimension (D-value) have been examined. The b-value is estimated as 1.03 ± 0.42 and suggests the tectonic genesis of the sequence and crustal heterogeneity within rock mass. The low p-value of 0.89 ± 0.07 implies slow decay of aftershocks activity which is probably an evidence for low surface heat flow. A value of spatial fractal dimension of 2.08 ± 0.02 indicates random spatial distribution and that the source is a two-dimensional plane filled-up by fractures. The static coseismic Coulomb stress changes due to the foreshock (Mw 5.3) were found to increase stress by more than 0.04 bars at the hypocenter of the main shock, thus promoting the failure. The cumulative coseismic Coulomb stress changes due to the foreshock and mainshocks suggest that most of the aftershocks occurred in the region of increased Coulomb stress, and to the SE to the mainshock rupture.
On boundary-element models of elastic fault interaction
NASA Astrophysics Data System (ADS)
Becker, T. W.; Schott, B.
2002-12-01
We present the freely available, modular, and UNIX command-line based boundary-element program interact. It is yet another implementation of Crouch and Starfield's (1983) 2-D and Okada's (1992) half-space solutions for constant slip on planar fault segments in an elastic medium. Using unconstrained or non-negative, standard-package matrix routines, the code can solve for slip distributions on faults given stress boundary conditions, or vice versa, both in a local or global reference frame. Based on examples of complex fault geometries from structural geology, we discuss the effects of different stress boundary conditions on the predicted slip distributions of interacting fault systems. Such one-step calculations can be useful to estimate the moment-release efficiency of alternative fault geometries, and so to evaluate the likelihood which system may be realized in nature. A further application of the program is the simulation of cyclic fault rupture based on simple static-kinetic friction laws. We comment on two issues: First, that of the appropriate rupture algorithm. Cellular models of seismicity often employ an exhaustive rupture scheme: fault cells fail if some critical stress is reached, then cells slip once-only by a given amount, and subsequently the redistributed stress is used to check for triggered activations on other cells. We show that this procedure can lead to artificial complexity in seismicity if time-to-failure is not calculated carefully because of numerical noise. Second, we address the question if foreshocks can be viewed as direct expressions of a simple statistical distribution of frictional strength on individual faults. Repetitive failure models based on a random distribution of frictional coefficients initially show irregular seismicity. By repeatedly selecting weaker patches, the fault then evolves into a quasi-periodic cycle. Each time, the pre-mainshock events build up the cumulative moment release in a non-linear fashion. These temporal seismicity patterns roughly resemble the accelerated moment-release features which are sometimes observed in nature.
Nakamura, Hiroshi; Kumei, Yasuhiro; Morita, Sadao; Shimokawa, Hitoyata; Ohya, Keiichi; Shinomiya, Kenichi
2003-12-01
A functional disorder associated with weightlessness is well documented in osteoblasts. The apototic features of this disorder are poorly understood. Harmful stress induces apoptosis in cells via mitochondria and/or Fas. The Bax triggers cytochrome c release from mitochondria, which can be blocked by the Bcl-2. Released cytochrome c then activates the initiator caspase, caspase-9, which can be blocked by the anti-apototic (IAP) family of molecules. The effector caspase, caspase-3, finally exerts DNA fragmentation. We conducted this study to examine the apoptotic effects of vector-averaged gravity on normal human osteoblastic cells. Cell culture flasks were incubated on the clinostat, which generated vector-averaged gravity condition (simulated microgravity) for 12, 24, 48, and 96 hours. Upon termination of clinostat cultures, the cell number and cell viability were assessed. DNA fragmentation was analyzed on the agarose-gel electrophoresis. The mRNA levels for Bax, Bcl-2, XIAP, and caspase-3 genes were analyzed by semi-quantitative RT-PCR. Twenty-four hours after starting clinostat rotation, the ratios of Bax/Bcl-2 mRNA levels (indicator of apoptosis) were significantly increased to 136% of the 1G static controls. However, the XIAP mRNA levels (anti-apoptotic molecule) were increased concomitantly to 138% of the 1G static controls. Thus, cell proliferation or cell viability was not affected by vector-averaged gravity. DNA fragmentation was not observed in clinostat group as well as in control group. Finally, the caspase-3 mRNA levels were not affected by vector-averaged gravity. Simulated microgravity might modulate some apoptotic signals upstream the mitochondrial pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vemareddy, P.; Wiegelmann, T., E-mail: vema@prl.res.in, E-mail: wiegelmann@mps.mpg.de
We study the quasi-static evolution of coronal magnetic fields constructed from the non-linear force-free field (NLFFF) approximation aiming to understand the relation between the magnetic field topology and ribbon emission during an X1.5 flare in active region (AR) NOAA 11166. The flare with a quasi-elliptical and two remote ribbons occurred on 2011 March 9 at 23:13 UT over a positive flux region surrounded by negative flux at the center of the bipolar AR. Our analysis of the coronal magnetic structure with potential and NLFFF solutions unveiled the existence of a single magnetic null point associated with a fan-spine topology andmore » is co-spatial with the hard X-ray source. The footpoints of the fan separatrix surface agree with the inner edge of the quasi-elliptical ribbon and the outer spine is linked to one of the remote ribbons. During the evolution, the slow footpoint motions stressed the field lines along the polarity inversion line and caused electric current layers in the corona around the fan separatrix surface. These current layers trigger magnetic reconnection as a consequence of dissipating currents, which are visible as cusp-shaped structures at lower heights. The reconnection process reorganized the magnetic field topology whose signatures are observed at the separatrices/quasi-separatrix layer structure in both the photosphere and the corona during the pre-to-post flare evolution. In agreement with previous numerical studies, our results suggest that the line-tied footpoint motions perturb the fan-spine system and cause null point reconnection, which eventually causes the flare emission at the footpoints of the field lines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayari, F.; Supmeca/LISMMA-Paris, School of Mechanical and Manufacturing Engineering; Bayraktar, E.
2011-01-17
Elastomeric matrix composites (EMC-rubbers) are considered as isotropic hyper elastic incompressible materials under static loading conditions. As a rubber material element cannot be extended to an infinite stretch ratio, a damage mechanism at large strain is considered. The phenomenon of cavitation plays an important role in the damage of EMCs and influences the toughening mechanism of rubber-modified plastics. Indeed, cavitation in elastomers is thought to be initiated from flaws, which grow primarily due to a hydrostatic tensile stress and ahead of the crack; there will not only be a high stress perpendicular to the plane of the crack but alsomore » significant stress components in the other direction. However, there exists historically much discussion on the evolution of the cavitation in elastomers under monotonic and/or static solicitation. Mainly, cavitation instability occurs when the stress levels are sufficiently high so that the void expansion rate becomes infinitely large. Many research works have been performed to understand the effects of rubber cavitation on toughening of plastics. In fact, the cavitation phenomenon is not well known in detail. The most popular idea states that the cavitation is related to the existence of the gas bubbles trapped in the material during the production stage and the growing of the cavities would then be the result of the growing gas bubbles. Further, instable failure mechanism at the end of the cavitation is not well known too.« less
High on/off ratio nanosecond laser pulses for a triggered single-photon source
NASA Astrophysics Data System (ADS)
Jin, Gang; Liu, Bei; He, Jun; Wang, Junmin
2016-07-01
An 852 nm nanosecond laser pulse chain with a high on/off ratio is generated by chopping a continuous-wave laser beam using a Mach-Zehnder-type electro-optic intensity modulator (MZ-EOIM). The detailed dependence of the MZ-EOIM’s on/off ratio on various parameters is characterized. By optimizing the incident beam polarization and stabilizing the MZ-EOIM temperature, a static on/off ratio of 12600:1 is achieved. The dynamic on/off ratios versus the pulse repetition rate and the pulse duty cycle are measured and discussed. The high-on/off-ratio nanosecond pulsed laser system was used in a triggered single-photon source based on a trapped single cesium atom, which reveals clear antibunching.
Iron induces bimodal population development by Escherichia coli
DePas, William H.; Hufnagel, David A.; Lee, John S.; Blanco, Luz P.; Bernstein, Hans C.; Fisher, Steve T.; James, Garth A.; Stewart, Philip S.; Chapman, Matthew R.
2013-01-01
Bacterial biofilm formation is a complex developmental process involving cellular differentiation and the formation of intricate 3D structures. Here we demonstrate that exposure to ferric chloride triggers rugose biofilm formation by the uropathogenic Escherichia coli strain UTI89 and by enteric bacteria Citrobacter koseri and Salmonella enterica serovar typhimurium. Two unique and separable cellular populations emerge in iron-triggered, rugose biofilms. Bacteria at the air–biofilm interface express high levels of the biofilm regulator csgD, the cellulose activator adrA, and the curli subunit operon csgBAC. Bacteria in the interior of rugose biofilms express low levels of csgD and undetectable levels of matrix components curli and cellulose. Iron activation of rugose biofilms is linked to oxidative stress. Superoxide generation, either through addition of phenazine methosulfate or by deletion of sodA and sodB, stimulates rugose biofilm formation in the absence of high iron. Additionally, overexpression of Mn-superoxide dismutase, which can mitigate iron-derived reactive oxygen stress, decreases biofilm formation in a WT strain upon iron exposure. Not only does reactive oxygen stress promote rugose biofilm formation, but bacteria in the rugose biofilms display increased resistance to H2O2 toxicity. Altogether, we demonstrate that iron and superoxide stress trigger rugose biofilm formation in UTI89. Rugose biofilm development involves the elaboration of two distinct bacterial populations and increased resistance to oxidative stress. PMID:23359678
Lee, Wei-Jiunn; Chien, Ming-Hsien; Chow, Jyh-Ming; Chang, Junn-Liang; Wen, Yu-Ching; Lin, Yung-Wei; Cheng, Chao-Wen; Lai, Gi-Ming; Hsiao, Michael; Lee, Liang-Ming
2015-01-01
The antiapoptotic and antiautophagic abilities of cancer cells constitute a major challenge for anticancer drug treatment. Strategies for triggering nonapoptotic or nonautophagic cell death may improve therapeutic efficacy against cancer. Curcumin has been reported to exhibit cancer chemopreventive properties. Herein, we report that curcumin induced apoptosis in LNCaP, DU145, and PC-3 cells but triggered extensive cytoplasmic vacuolation in PC-3M cells. Electron microscopic images showed that the vacuoles lacked intracellular organelles and were derived from the endoplasmic reticulum (ER). Moreover, curcumin-induced vacuolation was not reversed by an apoptosis- or autophagy-related inhibitor, suggesting that vacuolation-mediated cell death differs from classical apoptotic and autophagic cell death. Mechanistic investigations revealed that curcumin treatment upregulated the ER stress markers CHOP and Bip/GRP78 and the autophagic marker LC3-II. In addition, curcumin induced ER stress by triggering ROS generation, which was supported by the finding that treating cells with the antioxidant NAC alleviated curcumin-mediated ER stress and vacuolation-mediated death. An in vivo PC-3M orthotopic prostate cancer model revealed that curcumin reduced tumor growth by inducing ROS production followed by vacuolation-mediated cell death. Overall, our results indicated that curcumin acts as an inducer of ROS production, which leads to nonapoptotic and nonautophagic cell death via increased ER stress. PMID:26013662
Kaviani, Rosa; Londono, Irene; Parent, Stefan; Moldovan, Florina; Villemure, Isabelle
2016-08-01
Longitudinal growth of long bones and vertebrae occurs in growth plate cartilage. This process is partly regulated by mechanical forces, which are one of the underlying reasons for progression of growth deformities such as idiopathic adolescent scoliosis and early-onset scoliosis. This concept of mechanical modulation of bone growth is also exploited in the development of fusionless treatments of these deformities. However, the optimal loading condition for the mechanical modulation of growth plate remains to be identified. The objective of this study was to evaluate the effects of in vitro static versus dynamic modulation and of dynamic loading parameters, such as frequency and amplitude, on the mechanical responses and histomorphology of growth plate explants. Growth plate explants from distal ulnae of 4-week-old swines were extracted and randomly distributed among six experimental groups: baseline ([Formula: see text]), control ([Formula: see text]), static ([Formula: see text]) and dynamic ([Formula: see text]). For static and dynamic groups, mechanical modulation was performed in vitro using an Indexed CartiGen bioreactor. A stress relaxation test combined with confocal microscopy and digital image correlation was used to characterize the mechanical responses of each explant in terms of peak stress, equilibrium stress, equilibrium modulus of elasticity and strain pattern. Histomorphometrical measurements were performed on toluidine blue tissue sections using a semi-automatic custom-developed MATLAB toolbox. Results suggest that compared to dynamic modulation, static modulation changes the strain pattern of the tissue and thus is more detrimental for tissue biomechanics, while the histomorphological parameters are not affected by mechanical modulation. Also, under dynamic modulation, changing the frequency or amplitude does not affect the biomechanical response of the tissue. Results of this study will be useful in finding optimal and non-damaging parameters for the mechanical modulation of growth plate in fusionless treatments.
NASA Astrophysics Data System (ADS)
Noda, H.; Lapusta, N.; Kanamori, H.
2010-12-01
Static stress drop is often estimated using the seismic moment and rupture area based on a model for uniform stress drop distribution; we denote this estimate by Δσ_M. Δσ_M is sometimes interpreted as the spatial average of stress change over the ruptured area, denoted here as Δσ_A, and used accordingly, for example, to discuss the relation between recurrence interval and the healing of the frictional surface in a system with one degree of freedom [e.g., Marone, 1998]. Δσ_M is also used to estimate available energy (defined as the strain energy change computed using the final stress state as the reference one) and radiation efficiency [e.g., Venkataraman and Kanamori, 2004]. In this work, we define a stress drop measure, Δσ_E, that would enter the exact computation of available energy and radiation efficiency. The three stress drop measures - Δσ_M that can be estimated from observations, Δσ_A, and Δσ_E - are equal if the static stress change is spatially uniform, and that motivates substituting Δσ_M for the other two quantities in applications. However, finite source inversions suggest that the stress change is heterogeneous in natural earthquakes [e.g., Bouchon, 1997]. Since Δσ_M is the average of stress change weighted by slip distribution due to a uniform stress drop [Madariaga, 1979], Δσ_E is the average of stress change weighted by actual slip distribution in the event (this work), and Δσ_A is the simple spatial average of stress change, the three measures should, in general, be different. Here, we investigate the effect of heterogeneity aiming to understand how to use the seismological estimates of stress drop appropriately. We create heterogeneous slip distributions for both circular and rectangular planar ruptures using the approach motivated by Liu-Zeng et al. [2005] and Lavalleé et al [2005]. We find that, indeed, the three stress drop measures differ in our scenarios. In particular, heterogeneity increases Δσ_E and thus the available energy when the seismic moment (and hence Δσ_M) is preserved. So using Δσ_M instead of Δσ_E would underestimate available energy and hence overestimate radiation efficiency. For a range of parameters, Δσ_E is well-approximated by the seismic estimate Δσ_M if the latter is computed using a modified (decreased) rupture area that excludes low-slipped regions; a qualitatively similar procedure is already being used in practice [Somerville et al, 1999].
Hill, David P.
2012-01-01
Hill (2008) and Hill (2010) contain two technical errors: (1) a missing factor of 2 for computed Love‐wave amplitudes, and (2) a sign error in the off‐diagonal elements in the Euler rotation matrix.
Dynamic Models Applied to Landslides: Study Case Angangueo, MICHOACÁN, MÉXICO.
NASA Astrophysics Data System (ADS)
Torres Fernandez, L.; Hernández Madrigal, V. M., , Dr; Capra, L.; Domínguez Mota, F. J., , Dr
2017-12-01
Most existing models for landslide zonification are static type, do not consider the dynamic behavior of the trigger factor. This results in a limited representation of the actual zonation of slope instability, present a short-term validity, cańt be applied for the design of early warning systems, etc. Particularly in Mexico, these models are static because they do not consider triggering factor such as precipitation. In this work, we present a numerical evaluation to know the landslide susceptibility, based on probabilistic methods. Which are based on the generation of time series, which are generated from the meteorological stations, having limited information an interpolation is made to generate the simulation of the precipitation in the zone. The obtained information is integrated in PCRaster and in conjunction with the conditioning factors it is possible to generate a dynamic model. This model will be applied for landslide zoning in the municipality of Angangueo, characterized by frequent logging of debris and mud flow, translational and rotational landslides, detonated by atypical precipitations, such as those recorded in 2010. These caused economic losses and humans. With these models, it would be possible to generate probable scenarios that help the Angangueo's population to reduce the risks and to carry out actions of constant resilience activities.
Quantifying Residual Stresses by Means of Thermoelastic Stress Analysis
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.; Baaklini, George Y.
2001-01-01
This study focused on the application of the Thermoelastic Stress Analysis (TSA) technique as a tool for assessing the residual stress state of structures. TSA is based on the fact that materials experience small temperature changes when compressed or expanded. When a structure is cyclically loaded, a surface temperature profile results which correlates to the surface stresses. The cyclic surface temperature is measured with an infrared camera. Traditionally, the amplitude of a TSA signal was theoretically defined to be linearly dependent on the cyclic stress amplitude. Recent studies have established that the temperature response is also dependent on the cyclic mean stress (i.e., the static stress state of the structure). In a previous study by the authors, it was shown that mean stresses significantly influenced the TSA results for titanium- and nickel-based alloys. This study continued the effort of accurate direct measurements of the mean stress effect by implementing various experimental modifications. In addition, a more in-depth analysis was conducted which involved analyzing the second harmonic of the temperature response. By obtaining the amplitudes of the first and second harmonics, the stress amplitude and the mean stress at a given point on a structure subjected to a cyclic load can be simultaneously obtained. The experimental results showed good agreement with the theoretical predictions for both the first and second harmonics of the temperature response. As a result, confidence was achieved concerning the ability to simultaneously obtain values for the static stress state as well as the cyclic stress amplitude of structures subjected to cyclic loads using the TSA technique. With continued research, it is now feasible to establish a protocol that would enable the monitoring of residual stresses in structures utilizing TSA.
Genetics Home Reference: catecholaminergic polymorphic ventricular tachycardia
... rate increases in response to physical activity or emotional stress, it can trigger an abnormally fast and irregular ... handling of calcium within myocytes. During exercise or emotional stress, impaired calcium regulation in the heart can lead ...
Bartnikowski, Michal; Klein, Travis J; Melchels, Ferry P W; Woodruff, Maria A
2014-07-01
Tissue engineering focuses on the repair and regeneration of tissues through the use of biodegradable scaffold systems that structurally support regions of injury while recruiting and/or stimulating cell populations to rebuild the target tissue. Within bone tissue engineering, the effects of scaffold architecture on cellular response have not been conclusively characterized in a controlled-density environment. We present a theoretical and practical assessment of the effects of polycaprolactone (PCL) scaffold architectural modifications on mechanical and flow characteristics as well as MC3T3-E1 preosteoblast cellular response in an in vitro static plate and custom-designed perfusion bioreactor model. Four scaffold architectures were contrasted, which varied in inter-layer lay-down angle and offset between layers, while maintaining a structural porosity of 60 ± 5%. We established that as layer angle was decreased (90° vs. 60°) and offset was introduced (0 vs. 0.5 between layers), structural stiffness, yield stress, strength, pore size, and permeability decreased, while computational fluid dynamics-modeled wall shear stress was increased. Most significant effects were noted with layer offset. Seeding efficiencies in static culture were also dramatically increased due to offset (∼ 45% to ∼ 86%), with static culture exhibiting a much higher seeding efficiency than perfusion culture. Scaffold architecture had minimal effect on cell response in static culture. However, architecture influenced osteogenic differentiation in perfusion culture, likely by modifying the microfluidic environment. © 2014 Wiley Periodicals, Inc.
Natural experimentation is a challenging method for identifying headache triggers.
Houle, Timothy T; Turner, Dana P
2013-04-01
In this study, we set out to determine whether individual headache sufferers can learn about the potency of their headache triggers (causes) using only natural experimentation. Headache patients naturally use the covariation of the presence-absence of triggers with headache attacks to assess the potency of triggers. The validity of this natural experimentation has never been investigated. A companion study has proposed 3 assumptions that are important for assigning causal status to triggers. This manuscript examines one of these assumptions, constancy in trigger presentation, using real-world conditions. The similarity of day-to-day weather conditions over 4 years, as well as the similarity of ovarian hormones and perceived stress over a median of 89 days in 9 regularly cycling headache sufferers, was examined using several available time series. An arbitrary threshold of 90% similarity using Gower's index identified similar days for comparison. The day-to-day variability in just these 3 headache triggers is substantial enough that finding 2 naturally similar days for which to contrast the effect of a fourth trigger (eg, drinking wine vs not drinking wine) will only infrequently occur. Fluctuations in weather patterns resulted in a median of 2.3 days each year that were similar (range 0-27.4). Considering fluctuations in stress patterns and ovarian hormones, only 1.5 days/month (95% confidence interval 1.2-2.9) and 2.0 days/month (95% confidence interval 1.9-2.2), respectively, met our threshold for similarity. Although assessing the personal causes of headache is an age-old endeavor, the great many candidate triggers exhibit variability that may prevent sound conclusions without assistance from formal experimentation or statistical balancing. © 2013 American Headache Society.
Natural experimentation is a challenging method for identifying headache triggers
Houle, Timothy T.; Turner, Dana P.
2015-01-01
Objective In this study we set out to determine whether individual headache sufferers can learn about the potency of their headache triggers (causes) using only natural experimentation. Background Headache patients naturally use the covariation of the presence-absence of triggers with headache attacks to assess the potency of triggers. The validity of this natural experimentation has never been investigated. A companion study has proposed three assumptions that are important for assigning causal status to triggers. This manuscript examines one of these assumptions, constancy in trigger presentation, using real-world conditions. Methods The similarity of day-to-day weather conditions over four years, as well as the similarity of ovarian hormones and perceived stress over a median of 89 days in nine regularly cycling headache sufferers were examined using several available time-series. An arbitrary threshold of 90% similarity using Gower's index identified similar days for comparison. Results The day-to-day variability in just these three headache triggers is substantial enough that finding two naturally similar days for which to contrast the effect of a fourth trigger (e.g., drinking wine versus not drinking wine) will only infrequently occur. Fluctuations in weather patterns resulted in a median of 2.3 days each year that were similar (range: 0 to 27.4). Considering fluctuations in stress patterns and ovarian hormones, only 1.5 days/month (95%CI: 1.2 to 2.9) and 2.0 days/month (95%CI: 1.9 to 2.2), respectively, met our threshold for similarity.. Conclusion Although assessing the personal causes of headache is an age-old endeavor, the great many candidate triggers exhibit variability that may prevent sound conclusions without assistance from formal experimentation or statistical balancing. PMID:23534852
Prejean, S.G.; Hill, D.P.; Brodsky, E.E.; Hough, S.E.; Johnston, M.J.S.; Malone, S.D.; Oppenheimer, D.H.; Pitt, A.M.; Richards-Dinger, K. B.
2004-01-01
The Mw 7.9 Denali fault earthquake in central Alaska of 3 November 2002 triggered earthquakes across western North America at epicentral distances of up to at least 3660 km. We describe the spatial and temporal development of triggered activity in California and the Pacific Northwest, focusing on Mount Rainier, the Geysers geothermal field, the Long Valley caldera, and the Coso geothermal field.The onset of triggered seismicity at each of these areas began during the Love and Raleigh waves of the Mw 7.9 wave train, which had dominant periods of 15 to 40 sec, indicating that earthquakes were triggered locally by dynamic stress changes due to low-frequency surface wave arrivals. Swarms during the wave train continued for ∼4 min (Mount Rainier) to ∼40 min (the Geysers) after the surface wave arrivals and were characterized by spasmodic bursts of small (M ≤ 2.5) earthquakes. Dynamic stresses within the surface wave train at the time of the first triggered earthquakes ranged from 0.01 MPa (Coso) to 0.09 MPa (Mount Rainier). In addition to the swarms that began during the surface wave arrivals, Long Valley caldera and Mount Rainier experienced unusually large seismic swarms hours to days after the Denali fault earthquake. These swarms seem to represent a delayed response to the Denali fault earthquake. The occurrence of spatially and temporally distinct swarms of triggered seismicity at the same site suggests that earthquakes may be triggered by more than one physical process.
Lin, J.; Stein, R.S.
2004-01-01
We argue that key features of thrust earthquake triggering, inhibition, and clustering can be explained by Coulomb stress changes, which we illustrate by a suite of representative models and by detailed examples. Whereas slip on surface-cutting thrust faults drops the stress in most of the adjacent crust, slip on blind thrust faults increases the stress on some nearby zones, particularly above the source fault. Blind thrusts can thus trigger slip on secondary faults at shallow depth and typically produce broadly distributed aftershocks. Short thrust ruptures are particularly efficient at triggering earthquakes of similar size on adjacent thrust faults. We calculate that during a progressive thrust sequence in central California the 1983 Mw = 6.7 Coalinga earthquake brought the subsequent 1983 Mw = 6.0 Nunez and 1985 Mw = 6.0 Kettleman Hills ruptures 10 bars and 1 bar closer to Coulomb failure. The idealized stress change calculations also reconcile the distribution of seismicity accompanying large subduction events, in agreement with findings of prior investigations. Subduction zone ruptures are calculated to promote normal faulting events in the outer rise and to promote thrust-faulting events on the periphery of the seismic rupture and its downdip extension. These features are evident in aftershocks of the 1957 Mw = 9.1 Aleutian and other large subduction earthquakes. We further examine stress changes on the rupture surface imparted by the 1960 Mw = 9.5 and 1995 Mw = 8.1 Chile earthquakes, for which detailed slip models are available. Calculated Coulomb stress increases of 2-20 bars correspond closely to sites of aftershocks and postseismic slip, whereas aftershocks are absent where the stress drops by more than 10 bars. We also argue that slip on major strike-slip systems modulates the stress acting on nearby thrust and strike-slip faults. We calculate that the 1857 Mw = 7.9 Fort Tejon earthquake on the San Andreas fault and subsequent interseismic slip brought the Coalinga fault ???1 bar closer to failure but inhibited failure elsewhere on the Coast Ranges thrust faults. The 1857 earthquake also promoted failure on the White Wolf reverse fault by 8 bars, which ruptured in the 1952 Mw = 7.3 Kern County shock but inhibited slip on the left-lateral Garlock fault, which has not ruptured since 1857. We thus contend that stress transfer exerts a control on the seismicity of thrust faults across a broad spectrum of spatial and temporal scales. Copyright 2004 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Harrington, Rebecca M.; Liu, Yajing; Wang, Bei; Kao, Honn; Yu, Hongyu
2017-04-01
Here we investigate the occurrence of remote dynamic triggering in three sedimentary basins in Canada where recent fluid injection activity is correlated with increasing numbers of earthquakes. In efforts to count as many small, local earthquakes as possible for the statistical test of triggering, we apply a multi-station matched-filter detection method to continuous waveforms to detect uncataloged local earthquakes in 10-day time windows surrounding triggering mainshocks occurring between 2013-2015 with an estimated local peak ground velocity exceeding 0.01 cm/s. We count the number of earthquakes in 24-hour bins and use a statistical p-value test to determine if the changes in seismicity levels after the mainshock waves have passed are statistically significant. The p-value tests show occurrences of triggering following transient stress perturbations of < 10 kPa at all three sites that suggest local faults may remain critically stressed over periods similar to the time frame of our study ( 2 years) or longer, potentially due to maintained high pore pressures in tight shale formations following injection. The time window over which seismicity rates change varies at each site, with more delayed triggering occurring at sites where production history is longer. The observations combined with new modeling results suggest that the poroelastic response of the medium may be the dominant factor influencing instantaneous triggering, particularly in low-permeability tight shales. At sites where production history is longer and permeabilities have been increased, both pore pressure diffusion and the poroelastic response of the medium may work together to promote both instantaneous and delayed triggering. Not only does the interplay of the poroelastic response of the medium and pore pressure diffusion have implications for triggering induced earthquakes near injection sites, but it may be a plausible explanation for observations of instantaneous and delayed earthquake triggering in general.
Peak Stress Intensity Factor Governs Crack Propagation Velocity In Crosslinked UHMWPE
Sirimamilla, P. Abhiram; Furmanski, Jevan; Rimnac, Clare
2013-01-01
Ultra high molecular weight polyethylene (UHMWPE) has been successfully used as a bearing material in total joint replacement components. However, these bearing materials can fail as a result of in vivo static and cyclic loads. Crack propagation behavior in this material has been considered using the Paris relationship which relates fatigue crack growth rate, da/dN (mm/cycle) versus the stress intensity factor range, ΔK (Kmax-Kmin, MPa√m). However, recent work suggests that the crack propagation velocity of conventional UHMWPE is driven by the peak stress intensity (Kmax), not ΔK. The hypothesis of this study is that the crack propagation velocity of highly crosslinked and remelted UHMWPE is also driven by the peak stress intensity, Kmax, during cyclic loading, rather than by ΔK. To test this hypothesis, two highly crosslinked (65 kGy and 100 kGy) and remelted UHMWPE materials were examined. Frequency, waveform and R-ratio were varied between test conditions to determine the governing factor for fatigue crack propagation. It was found that the crack propagation velocity in crosslinked UHMWPE is also driven by Kmax and not ΔK, and is dependent on loading waveform and frequency in a predictable quasi-static manner. The current study supports that crack growth in crosslinked UHMWPE materials, even under cyclic loading conditions, can be described by a relationship between the velocity of crack growth, da/dt and the peak stress intensity, Kmax. The findings suggest that stable crack propagation can occur as a result of static loading only and this should be taken into consideration in design of UHMWPE total joint replacement components. PMID:23165898
Daily Stress as a Trigger of Migraine Attacks: Results of Thirteen Single-Subject Studies.
ERIC Educational Resources Information Center
Kohler, Thomas; Haimerl, Christianne
1990-01-01
Six-month longitudinal study examined whether migraine attacks were preceded by or occurred on stressful days. Every evening, 13 patients completed questionnaires assessing daily stress. Analyses on single-subject level tested when attacks occurred. Increased stress was generally not found for Days 2 and 3 before an attack, but often for Day 1 and…
Role of stress triggering in earthquake migration on the North Anatolian fault
Stein, R.S.; Dieterich, J.H.; Barka, A.A.
1996-01-01
Ten M???6.7 earthquakes ruptured 1,000 km of the North Anatolian fault (Turkey) during 1939-92, providing an unsurpassed opportunity to study how one large shock sets up the next. Calculations of the change in Coulomb failure stress reveal that 9 out of 10 ruptures were brought closer to failure by the preceding shocks, typically by 5 bars, equivalent to 20 years of secular stressing. We translate the calculated stress changes into earthquake probabilities using an earthquake-nucleation constitutive relation, which includes both permanent and transient stress effects. For the typical 10-year period between triggering and subsequent rupturing shocks in the Anatolia sequence, the stress changes yield an average three-fold gain in the ensuing earthquake probability. Stress is now calculated to be high at several isolated sites along the fault. During the next 30 years, we estimate a 15% probability of a M???6.7 earthquake east of the major eastern center of Erzincan, and a 12% probability for a large event south of the major western port city of Izmit. Such stress-based probability calculations may thus be useful to assess and update earthquake hazards elsewhere. ?? 1997 Elsevier Science Ltd.
Impoundment of the Zipingpu reservoir and triggering of the 2008 Mw 7.9 Wenchuan earthquake, China
Tao, Wei; Masterlark, Timothy; Ronchin, Erika
2015-01-01
Abstract Impoundment of the Zipingpu reservoir (ZR), China, began in September 2005 and was followed 2.7 years later by the 2008 Mw 7.9 Wenchuan earthquake (WE) rupturing the Longmen Shan Fault (LSF), with its epicenter ~12 km away from the ZR. Based on the poroelastic theory, we employ three‐dimensional finite element models to simulate the evolution of stress and pore pressure due to reservoir impoundment, and its effect on the Coulomb failure stress on the LSF. The results indicate that the reservoir impoundment formed a pore pressure front that slowly propagated through the crust with fluid diffusion. The reservoir loading induced either moderate or no increase of the Coulomb failure stress at the hypocenter prior to the WE. The Coulomb failure stress, however, grew ~9.3–69.1 kPa in the depth range of 1–8 km on the LSF, which may have advanced tectonic loading of the fault system by ~60–450 years. Due to uncertainties of fault geometry and hypocenter location of the WE, it is inconclusive whether impoundment of the ZR directly triggered the WE. However, a small event at the hypocenter could have triggered large rupture elsewhere on fault, where the asperities were weakened by the ZR. The microseismicity around the ZR also showed an expanding pattern from the ZR since its impoundment, likely associated with diffusion of a positive pore pressure pulse. These results suggest a poroelastic triggering effect (even if indirectly) of the WE due to the impoundment of the ZR. PMID:27812436
NASA Astrophysics Data System (ADS)
Chen, Rong; Li, Kang; Xia, Kaiwen; Lin, Yuliang; Yao, Wei; Lu, Fangyun
2016-10-01
A dynamic load superposed on a static pre-load is a key problem in deep underground rock engineering projects. Based on a modified split Hopkinson pressure bar test system, the notched semi-circular bend (NSCB) method is selected to investigate the fracture initiation toughness of rocks subjected to pre-load. In this study, a two-dimensional ANSYS finite element simulation model is developed to calculate the dimensionless stress intensity factor. Three groups of NSCB specimen are tested under a pre-load of 0, 37 and 74 % of the maximum static load and with the loading rate ranging from 0 to 60 GPa m1/2 s-1. The results show that under a given pre-load, the fracture initiation toughness of rock increases with the loading rate, resembling the typical rate dependence of materials. Furthermore, the dynamic rock fracture toughness decreases with the static pre-load at a given loading rate. The total fracture toughness, defined as the sum of the dynamic fracture toughness and initial stress intensity factor calculated from the pre-load, increases with the pre-load at a given loading rate. An empirical equation is used to represent the effect of loading rate and pre-load force, and the results show that this equation can depict the trend of the experimental data.
Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng
2017-12-26
The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.
Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng
2017-01-01
The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature. PMID:29278398
Behavior of tunnel form buildings under quasi-static cyclic lateral loading
Yuksel, S.B.; Kalkan, E.
2007-01-01
In this paper, experimental investigations on the inelastic seismic behavior of tunnel form buildings (i.e., box-type or panel systems) are presented. Two four-story scaled building specimens were tested under quasi-static cyclic lateral loading in longitudinal and transverse directions. The experimental results and supplemental finite element simulations collectively indicate that lightly reinforced structural walls of tunnel form buildings may exhibit brittle flexural failure under seismic action. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in outermost shear-walls. This type of failure takes place due to rupturing of longitudinal reinforcement without crushing of concrete, therefore is of particular interest in emphasizing the mode of failure that is not routinely considered during seismic design of shear-wall dominant structural systems.
Numerical simulation of fluid flow in a rotational bioreactor
NASA Astrophysics Data System (ADS)
Ganimedov, V. L.; Papaeva, E. O.; Maslov, N. A.; Larionov, P. M.
2017-10-01
Application of scaffold technology for the problem of bone tissue regeneration has great prospects in modern medicine. The influence of fluid shear stress on stem cells cultivation and its differentiation into osteoblasts is the subject of intensive research. Mathematical modeling of fluid flow in bioreactor allowed us to determine the structure of flow and estimate the level of mechanical stress on cells. The series of computations for different rotation frequencies (0.083, 0.124, 0.167, 0.2 and 0.233 Hz) was performed for the laminar flow regime approximation. It was shown that the Taylor vortices in the gap between the cylinders qualitatively change the distribution of static pressure and shear stress in the region of vortices connection. It was shown that an increase in the rotation frequency leads to an increase of the unevenness in distribution of the above mentioned functions. The obtained shear stress and static pressure dependence on the rotational frequency make it possible to choose the operating mode of the reactor depending on the provided requirements. It was shown that in the range of rotation frequencies chosen in this work (0.083 < f < 0.233 Hz), the shear stress does not exceed the known literature data (0.002 - 0.1 Pa).
Effect of stress ratio on the fatigue behaviour of glass/epoxy composite
NASA Astrophysics Data System (ADS)
Syayuthi, A. R. A.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Basaruddin, K. S.; Peng, T. L.
2017-10-01
The effect of stress ratio on the fatigue behaviour of the GFRE composite has been investigated. The glass fibre reinforced epoxy (GFRE) composite plates were fabricated using vacuum infusion method. Static tensile was performed in accordance with the ASTM D5766 standard, and the cyclic test was conducted according to ASTM D3479 with three different stress ratio, R = 0, 0.5, -1. Static tensile tests were carried out to determine the ultimate strength of this composite. Subsequently, fatigue tests loads ranging from 30% to 90% of the ultimate load were applied to each specimen. The S-N curve of different stress ratio loading of fibreglass/epoxy composites was then established. The results show that the number of cycles to failure increases as the loading is decreased. The specimens for fatigue tests loads 30% at R = 0 and -1 recorded the highest number of cycles at 2 million cycles. The results obtained from this test indicated a significant life reduction for R = -1 compared with the tension-tension loading, with the life reduction for R = -1 being greatest. The fatigue behaviour of the GFRE composite materials is not only influenced by the percentage of fatigue tests load but with different of stress ratio.
Stresses Produced in Airplane Wings by Gusts
NASA Technical Reports Server (NTRS)
Kussner, Hans Georg
1932-01-01
Accurate prediction of gust stress being out of the question because of the multiplicity of the free air movements, the exploration of gust stress is restricted to static method which must be based upon: 1) stress measurements in free flight; 2) check of design specifications of approved type airplanes. With these empirical data the stress must be compared which can be computed for a gust of known intensity and structure. This "maximum gust" then must be so defined as to cover the whole ambit of empiricism and thus serve as prediction for new airplane designs.
High School Dropout in Proximal Context: The Triggering Role of Stressful Life Events
ERIC Educational Resources Information Center
Dupéré, Véronique; Dion, Eric; Leventhal, Tama; Archambault, Isabelle; Crosnoe, Robert; Janosz, Michel
2018-01-01
Adolescents who drop out of high school experience enduring negative consequences across many domains. Yet, the circumstances triggering their departure are poorly understood. This study examined the precipitating role of recent psychosocial stressors by comparing three groups of Canadian high school students (52% boys; M[subscript…
Onset of frictional sliding of rubber–glass contact under dry and lubricated conditions
Tuononen, Ari J.
2016-01-01
Rubber friction is critical in many applications ranging from automotive tyres to cylinder seals. The process where a static rubber sample transitions to frictional sliding is particularly poorly understood. The experimental and simulation results in this paper show a completely different detachment process from the static situation to sliding motion under dry and lubricated conditions. The results underline the contribution of the rubber bulk properties to the static friction force. In fact, simple Amontons’ law is sufficient as a local friction law to produce the correct detachment pattern when the rubber material and loading conditions are modelled properly. Simulations show that micro-sliding due to vertical loading can release initial shear stresses and lead to a high static/dynamic friction coefficient ratio, as observed in the measurements. PMID:27291939
Chronic grouped social restriction triggers long-lasting immune system adaptations.
Tian, Rui; Hou, Gonglin; Song, Liuwei; Zhang, Jianming; Yuan, Ti-Fei
2017-05-16
Chronic stress triggers rigorous psychological and physiological changes, including immunological system adaptations. However, the effects of long-term social restriction on human immune system have not been investigated. The present study is to investigate the effect of chronic stress on immune changes in human blood, with the stress stimuli controlled.10 male volunteers were group isolated from the modern society in a 50-meter-square room for 150 days, with enriched nutrition and good living conditions provided. Serum examination of immune system markers demonstrated numerous changes in different aspects of the immune functions. The changes were observed as early as 30 days and could last for another 150 days after the termination of the restriction period (300 days' time point). The results strongly argued for the adaptation of immunological system under chronic social restriction stress in adult human, preceding a clear change in psychological conditions. The changes of these immune system factors could as well act as the serum biomarkers in clinical early-diagnosis of stress-related disorders.
Arloth, Janine; Bogdan, Ryan; Weber, Peter; Frishman, Goar; Menke, Andreas; Wagner, Klaus V.; Balsevich, Georgia; Schmidt, Mathias V.; Karbalai, Nazanin; Czamara, Darina; Altmann, Andre; Trümbach, Dietrich; Wurst, Wolfgang; Mehta, Divya; Uhr, Manfred; Klengel, Torsten; Erhardt, Angelika; Carey, Caitlin E.; Conley, Emily Drabant; Ripke, Stephan; Wray, Naomi R.; Lewis, Cathryn M.; Hamilton, Steven P.; Weissman, Myrna M.; Breen, Gerome; Byrne, Enda M.; Blackwood, Douglas H.R.; Boomsma, Dorret I.; Cichon, Sven; Heath, Andrew C.; Holsboer, Florian; Lucae, Susanne; Madden, Pamela A.F.; Martin, Nicholas G.; McGuffin, Peter; Muglia, Pierandrea; Noethen, Markus M.; Penninx, Brenda P.; Pergadia, Michele L.; Potash, James B.; Rietschel, Marcella; Lin, Danyu; Müller-Myhsok, Bertram; Shi, Jianxin; Steinberg, Stacy; Grabe, Hans J.; Lichtenstein, Paul; Magnusson, Patrik; Perlis, Roy H.; Preisig, Martin; Smoller, Jordan W.; Stefansson, Kari; Uher, Rudolf; Kutalik, Zoltan; Tansey, Katherine E.; Teumer, Alexander; Viktorin, Alexander; Barnes, Michael R.; Bettecken, Thomas; Binder, Elisabeth B.; Breuer, René; Castro, Victor M.; Churchill, Susanne E.; Coryell, William H.; Craddock, Nick; Craig, Ian W.; Czamara, Darina; De Geus, Eco J.; Degenhardt, Franziska; Farmer, Anne E.; Fava, Maurizio; Frank, Josef; Gainer, Vivian S.; Gallagher, Patience J.; Gordon, Scott D.; Goryachev, Sergey; Gross, Magdalena; Guipponi, Michel; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hoefels, Susanne; Hoogendijk, Witte; Hottenga, Jouke Jan; Iosifescu, Dan V.; Ising, Marcus; Jones, Ian; Jones, Lisa; Jung-Ying, Tzeng; Knowles, James A.; Kohane, Isaac S.; Kohli, Martin A.; Korszun, Ania; Landen, Mikael; Lawson, William B.; Lewis, Glyn; MacIntyre, Donald; Maier, Wolfgang; Mattheisen, Manuel; McGrath, Patrick J.; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M.; Middleton, Lefkos; Montgomery, Grant M.; Murphy, Shawn N.; Nauck, Matthias; Nolen, Willem A.; Nyholt, Dale R.; O’Donovan, Michael; Oskarsson, Högni; Pedersen, Nancy; Scheftner, William A.; Schulz, Andrea; Schulze, Thomas G.; Shyn, Stanley I.; Sigurdsson, Engilbert; Slager, Susan L.; Smit, Johannes H.; Stefansson, Hreinn; Steffens, Michael; Thorgeirsson, Thorgeir; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J.C.G.; Van Grootheest, Gerard; Völzke, Henry; Weilburg, Jeffrey B.; Willemsen, Gonneke; Zitman, Frans G.; Neale, Benjamin; Daly, Mark; Levinson, Douglas F.; Sullivan, Patrick F.; Ruepp, Andreas; Müller-Myhsok, Bertram; Hariri, Ahmad R.; Binder, Elisabeth B.
2015-01-01
Summary Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain. Video Abstract PMID:26050039
Static viscoelasticity of biomass polyethylene composites
NASA Astrophysics Data System (ADS)
Yang, Keyan; Cai, Hongzhen; Yi, Weiming; Zhang, Qingfa; Zhao, Kunpeng
The biomass polyethylene composites filled with poplar wood flour, rice husk, cotton stalk or corn stalk were prepared by extrusion molding. The static viscoelasticity of composites was investigated by the dynamic thermal mechanical analyzer (DMA). Through the stress-strain scanning, it is found that the linear viscoelasticity interval of composites gradually decreases as the temperature rises, and the critical stress and strain values are 0.8 MPa and 0.03% respectively. The experiment shows that as the temperature rises, the creep compliance of biomass polyethylene composites is increased; under the constant temperature, the creep compliance decreases with the increase of content of biomass and calcium carbonate. The biomass and calcium carbonate used to prepare composites as filler can improve damping vibration attenuation and reduce stress deformation of composites. The stress relaxation modulus of composites is reduced and the relaxation rate increases at the higher temperature. The biomass and calcium carbonate used to prepare composites as filler not only can reduce costs, but also can increase stress relaxation modulus and improve the size thermostability of composites. The corn stalk is a good kind of biomass raw material for composites since it can improve the creep resistance property and the stress relaxation resistance property of composites more effectively than other three kinds of biomass (poplar wood flour, rice husk and cotton stalk).
Static-stress analysis of dual-axis confinement vessel
NASA Astrophysics Data System (ADS)
Bultman, D. H.
1992-11-01
This study evaluates the static-pressure containment capability of a 6-ft-diameter, spherical vessel, made of HSLA-100 steel, to be used for high-explosive (HE) containment. The confinement vessel is designed for use with the Dual-Axis Radiographic Hydrotest Facility (DARHT) being developed at Los Alamos National Laboratory. Two sets of openings in the vessel are covered with x-ray transparent covers to allow radiographic imaging of an explosion as it occurs inside the vessel. The confinement vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section 8, Division 1, and the Welding Research Council Bulletin, WRC-107. Combined stresses resulting from internal pressure and external loads on nozzles are calculated and compared with the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzles of the confinement vessel are adequately designed to safely contain the maximum residual pressure of 1675 psi that would result from an HE charge of 24.2 kg detonated in a vacuum. Shell stresses at the shell-to-nozzle interface, produced from external loads on the nozzles, were less than 400 psi. The maximum combined stress resulting from the internal pressure plus external loads was 16,070 psi, which is less than half the allowable stress of 42,375 psi for HSLA-100 steel.
The function of small RNAs in plant biotic stress response.
Huang, Juan; Yang, Meiling; Zhang, Xiaoming
2016-04-01
Small RNAs (sRNAs) play essential roles in plants upon biotic stress. Plants utilize RNA silencing machinery to facilitate pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity to defend against pathogen attack or to facilitate defense against insect herbivores. Pathogens, on the other hand, are also able to generate effectors and sRNAs to counter the host immune response. The arms race between plants and pathogens/insect herbivores has triggered the evolution of sRNAs, RNA silencing machinery and pathogen effectors. A great number of studies have been performed to investigate the roles of sRNAs in plant defense, bringing in the opportunity to utilize sRNAs in plant protection. Transgenic plants with pathogen-derived resistance ability or transgenerational defense have been generated, which show promising potential as solutions for pathogen/insect herbivore problems in the field. Here we summarize the recent progress on the function of sRNAs in response to biotic stress, mainly in plant-pathogen/insect herbivore interaction, and the application of sRNAs in disease and insect herbivore control. © 2016 Institute of Botany, Chinese Academy of Sciences.
Magmatically triggered slow slip at Kilauea Volcano, Hawaii.
Brooks, Benjamin A; Foster, James; Sandwell, David; Wolfe, Cecily J; Okubo, Paul; Poland, Michael; Myer, David
2008-08-29
We demonstrate that a recent dike intrusion probably triggered a slow fault-slip event (SSE) on Kilauea volcano's mobile south flank. Our analysis combined models of Advanced Land Observing Satellite interferometric dike-intrusion displacement maps with continuous Global Positioning System (GPS) displacement vectors to show that deformation nearly identical to four previous SSEs at Kilauea occurred at far-field sites shortly after the intrusion. We model stress changes because of both secular deformation and the intrusion and find that both would increase the Coulomb failure stress on possible SSE slip surfaces by roughly the same amount. These results, in concert with the observation that none of the previous SSEs at Kilauea was directly preceded by intrusions but rather occurred during times of normal background deformation, suggest that both extrinsic (intrusion-triggering) and intrinsic (secular fault creep) fault processes can lead to SSEs.
Programmers manual for static and dynamic reusable surface insulation stresses (resist)
NASA Technical Reports Server (NTRS)
Ogilvie, P. L.; Levy, A.; Austin, F.; Ojalvo, I. U.
1974-01-01
Programming information for the RESIST program for the dynamic and thermal stress analysis of the space shuttle surface insulation is presented. The overall flow chart of the program, overlay chart, data set allocation, and subprogram calling sequence are given along with a brief description of the individual subprograms and typical subprogram output.
NASA Technical Reports Server (NTRS)
Whetstone, W. D.
1976-01-01
The functions and operating rules of the SPAR system, which is a group of computer programs used primarily to perform stress, buckling, and vibrational analyses of linear finite element systems, were given. The following subject areas were discussed: basic information, structure definition, format system matrix processors, utility programs, static solutions, stresses, sparse matrix eigensolver, dynamic response, graphics, and substructure processors.
Delamination onset in polymeric composite laminates under thermal and mechanical loads
NASA Technical Reports Server (NTRS)
Martin, Roderick H.
1991-01-01
A fracture mechanics damage methodology to predict edge delamination is described. The methodology accounts for residual thermal stresses, cyclic thermal stresses, and cyclic mechanical stresses. The modeling is based on the classical lamination theory and a sublaminate theory. The prediction methodology determines the strain energy release rate, G, at the edge of a laminate and compares it with the fatigue and fracture toughness of the composite. To verify the methodology, isothermal static tests at 23, 125, and 175 C and tension-tension fatigue tests at 23 and 175 C were conducted on laminates. The material system used was a carbon/bismaleimide, IM7/5260. Two quasi-isotropic layups were used. Also, 24 ply unidirectional double cantilever beam specimens were tested to determine the fatigue and fracture toughness of the composite at different temperatures. Raising the temperature had the effect of increasing the value of G at the edge for these layups and also to lower the fatigue and fracture toughness of the composite. The static stress to edge delamination was not affected by temperature but the number of cycles to edge delamination decreased.
NASA Astrophysics Data System (ADS)
Lupi, Matteo; Frehner, Marcel; Weis, Philipp; Skelton, Alasdair; Saenger, Erik H.; Tisato, Nicola; Geiger, Sebastian; Chiodini, Giovanni; Driesner, Thomas
2017-09-01
Earthquake-triggered volcanic activity promoted by dynamic and static stresses are considered rare and difficult-to-capture geological processes. Calderas are ideal natural laboratories to investigate earthquake-volcano interactions due to their sensitivity to incoming seismic energy. The Campi Flegrei caldera, Italy, is one of the most monitored volcanic systems worldwide. We compare ground elevation time series at Campi Flegrei with earthquake catalogues showing that uplift events at Campi Flegrei are associated with large regional earthquakes. Such association is supported by (yet non-definitive) binomial tests. Over a 70-year time window we identify 14 uplift events, 12 of them were preceded by an earthquake, and for 8 of them the earthquake-to-uplift timespan ranges from immediate responses to 1.2 yr. Such variability in the response delay may be due to the preparedness of the system with faster responses probably occurring in periods during which the Campi Flegrei system was already in a critical state. To investigate the process that may be responsible for the proposed association we simulate the propagation of elastic waves and show that passing body waves impose high dynamic strains at the roof of the magmatic reservoir of the Campi Flegrei at about 7 km depth. This may promote a short-lived embrittlement of the magma reservoir's carapace otherwise marked by a ductile behaviour. Such failure allows magma and exsolved volatiles to be released from the magmatic reservoir. The fluids, namely exsolved volatiles and/or melts, ascend through a nominally plastic zone above the magmatic reservoir. This mechanism and the associated inherent uncertainties require further investigations but the new concept already implies that geological processes triggered by passing seismic waves may become apparent several months after passage of the seismic waves.
Delayed inflation triggerd by regional earthquakes at Campi Flegrei Caldera, Italy.
NASA Astrophysics Data System (ADS)
Lupi, M.; Frehner, M.; Weis, P.; Skelton, A.; Saenger, E.; Tisato, N.; Geiger, S.; Chiodini, G.; Driesner, T.
2017-12-01
What if earthquakes were affecting volcanoes more than we currently think because their effects are not immediately visible? Earthquake-volcano interactions promoted by dynamic and static stresses are considered seldom and difficult-to-capture geological processes. The Campi Flegrei caldera, Italy, is one of the best-monitored volcanic systems worldwide. We use a 70-years long time series to suggest a provocative and intriguing hypothesis to explain bradyseismic activity at Campi Flegrei. By comparing ground elevation time series at Campi Flegrei with seismic catalogues we show that uplift events at Campi Flegrei follow within 1.2 years large regional earthquakes. The accelerated uplifts are over-imposed on long-term inflation or deflation trends. Such association is supported by (yet-non definitive) binomial tests. Due to the non-definitive nature of the statistical tests we carried on additional numerical tests. We simulate the propagation of elastic waves showing that passing body waves impose high dynamic strains at the roof of the magmatic reservoir of the Campi Flegrei at about 7 km depth. Such elevated dynamic strains promote a brittle behaviour in an otherwise ductile material (i.e. the crystal mush) at near-lithostatic conditions. Such failure allows magma and exsolved volatiles to be released from the magmatic reservoir. The fluids would ascend through a plastic zone above the magmatic reservoir and inject into the shallow hydrothermal system where they phase-separate and expand causing a delayed effect, i.e. inflation. This mechanism and the associated inherent uncertainties require further investigations. However, the new concept already implies that geological processes triggered by passing seismic waves may become apparent several months after the triggering earthquake.
NASA Astrophysics Data System (ADS)
Scambelluri, M.; Pennacchioni, G.; Gilio, M.; Bestmann, M.
2016-12-01
While geophysical studies and laboratory experiments provide much information on subduction earthquakes, field studies identifying the rock types for earthquake development and the deep seismogenic environments are still scarce. To date, fluid overpressure and volume decrease during hydrous mineral breakdown the widely favoured trigger of subduction earthquakes in serpentinized lithospheric mantle and hydrated low-velocity layers atop slabs. Here we document up to 40 cm-thick pseudotachylyte (PST) in Alpine oceanic gabbro and peridotite (2-2.5 GPa-550-620°C), the analogue of a modern cold subducting oceanic lithosphere. These rocks mostly remained unaltered dry systems; only very minor domains (<1%) record partial hydration and static eclogitic metamorphism. Meta-peridotite shows high-pressure olivine + antigorite (garnet + zoisite + chlorite after mantle plagioclase); meta-gabbro develops omphacite + zoisite + talc + chloritoid + garnet. Abundant syn-eclogitic pseudotachylyte cut the dry gabbro-peridotite and the eclogitized domains. In meta-peridotite, PST shows olivine, orthopyroxene, spinel microliths and clasts of high-pressure olivine + antigorite and garnet + zoisite + chlorite aggregates. In metagabbro, microfaults in damage zones near PST cut brecciated igneous pyroxene cemented by omphacite. In unaltered gabbro, glassy PST contains micron-scale garnet replacing plagioclase microliths during, or soon after, PST cooling. In the host rock, garnet coronas between igneous olivine and plagioclase only occur near PST and between closely spaced PST veins. Absence of garnet away from PST indicates that garnet growth was triggered by mineral seeds and by heat released by PST. The above evidence shows that pseudotachylyte formed at eclogite-facies conditions. In such setting, strong, dry, metastable gabbro-peridotite concentrate stress to generate large intermediate depth subduction earthquakes without much involvement of free fluid.
The Plant Actin Cytoskeleton Responds to Signals from Microbe-Associated Molecular Patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henty-Ridilla, Jessica L.; Shimono, Masaki; Li, Jiejie
2013-04-04
Plants are constantly exposed to a large and diverse array of microbes; however, most plants are immune to the majority of potential invaders and susceptible to only a small subset of pathogens. The cytoskeleton comprises a dynamic intracellular framework that responds rapidly to biotic stresses and supports numerous fundamental cellular processes including vesicle trafficking, endocytosis and the spatial distribution of organelles and protein complexes. For years, the actin cytoskeleton has been assumed to play a role in plant innate immunity against fungi and oomycetes, based largely on static images and pharmacological studies. To date, however, there is little evidence thatmore » the host-cell actin cytoskeleton participates in responses to phytopathogenic bacteria. Here, we quantified the spatiotemporal changes in host-cell cytoskeletal architecture during the immune response to pathogenic and non-pathogenic strains of Pseudomonas syringae pv. tomato DC3000. Two distinct changes to host cytoskeletal arrays were observed that correspond to distinct phases of plant-bacterial interactions i.e. the perception of microbe-associated molecular patterns (MAMPs) during pattern-triggered immunity (PTI) and perturbations by effector proteins during effector-triggered susceptibility (ETS). We demonstrate that an immediate increase in actin filament abundance is a conserved and novel component of PTI. Notably, treatment of leaves with a MAMP peptide mimic was sufficient to elicit a rapid change in actin organization in epidermal cells, and this actin response required the host-cell MAMP receptor kinase complex, including FLS2, BAK1 and BIK1. Finally, we found that actin polymerization is necessary for the increase in actin filament density and that blocking this increase with the actin-disrupting drug latrunculin B leads to enhanced susceptibility of host plants to pathogenic and non-pathogenic bacteria.« less
The Role of Deep Creep in the Timing of Large Earthquakes
NASA Astrophysics Data System (ADS)
Sammis, C. G.; Smith, S. W.
2012-12-01
The observed temporal clustering of the world's largest earthquakes has been largely discounted for two reasons: a) it is consistent with Poisson clustering, and b) no physical mechanism leading to such clustering has been proposed. This lack of a mechanism arises primarily because the static stress transfer mechanism, commonly used to explain aftershocks and the clustering of large events on localized fault networks, does not work at global distances. However, there is recent observational evidence that the surface waves from large earthquakes trigger non-volcanic tremor at the base of distant fault zones at global distances. Based on these observations, we develop a simple non-linear coupled oscillator model that shows how the triggering of such tremor can lead to the synchronization of large earthquakes on a global scale. A basic assumption of the model is that induced tremor is a proxy for deep creep that advances the seismic cycle of the fault. We support this hypothesis by demonstrating that the 2010 Maule Chile and the 2011 Fukushima Japan earthquakes, which have been shown to induce tremor on the Parkfield segment of the San Andreas Fault, also produce changes in off-fault seismicity that are spatially and temporally consistent with episodes of deep creep on the fault. The observed spatial pattern can be simulated using an Okada dislocation model for deep creep (below 20 km) on the fault plane in which the slip rate decreases from North to South consistent with surface creep measurements and deepens south of the "Parkfield asperity" as indicated by recent tremor locations. The model predicts the off-fault events should have reverse mechanism consistent with observed topography.
Fatigue crack tip deformation and fatigue crack propagation
NASA Technical Reports Server (NTRS)
Kang, T. S.; Liu, H. W.
1972-01-01
The effects of stress ratio, prestress cycling and plate thickness on the fatigue crack propagation rate are studied on 2024-T351 aluminum alloy. Fatigue crack propagation rate increases with the plate thickness and the stress ratio. Prestress cycling below the static yield strength has no noticeable effect on the fatigue crack propagation rate. However, prestress cycling above the static yield strength causes the material to strain harden and increases the fatigue crack propagation rate. Crack tip deformation is used to study the fatigue crack propagation. The crack tip strains and the crack opening displacements were measured from moire fringe patterns. The moire fringe patterns were obtained by a double exposure technique, using a very high density master grille (13,400 lines per inch).
A contact stress model for multifingered grasps of rough objects
NASA Technical Reports Server (NTRS)
Sinha, Pramath Raj; Abel, Jacob M.
1990-01-01
The model developed utilizes a contact-stress analysis of an arbitrarily shaped object in a multifingered grasp. The fingers and the object are all treated as elastic bodies, and the region of contact is modeled as a deformable surface patch. The relationship between the friction and normal forces is nonlocal and nonlinear in nature and departs from the Coulomb approximation. The nature of the constraints arising out of conditions for compatibility and static equilibrium motivated the formulation of the model as a nonlinear constrained minimization problem. The model is able to predict the magnitude of the inwardly directed normal forces and both the magnitude and direction of the tangential (friction) forces at each finger-object interface for grasped objects in static equilibrium.
NASA Astrophysics Data System (ADS)
Koochi, Ali; Hosseini-Toudeshky, Hossein; Abadyan, Mohamadreza
2018-03-01
Herein, a corrected theoretical model is proposed for modeling the static and dynamic behavior of electrostatically actuated narrow-width nanotweezers considering the correction due to finite dimensions, size dependency and surface energy. The Gurtin-Murdoch surface elasticity in conjunction with the modified couple stress theory is employed to consider the coupling effect of surface stresses and size phenomenon. In addition, the model accounts for the external force corrections by incorporating the impact of narrow width on the distribution of Casimir attraction, van der Waals (vdW) force and the fringing field effect. The proposed model is beneficial for the precise modeling of the narrow nanotweezers in nano-scale.
Static shape of an acoustically levitated drop with wave-drop interaction
NASA Astrophysics Data System (ADS)
Lee, C. P.; Anilkumar, A. V.; Wang, T. G.
1994-11-01
The static shape of a drop levitated and flattened by an acoustic standing wave field in air is calculated, requiring self-consistency between the drop shape and the wave. The wave is calculated for a given shape using the boundary integral method. From the resulting radiation stress on the drop surface, the shape is determined by solving the Young-Laplace equation, completing an iteration cycle. The iteration is continued until both the shape and the wave converge. Of particular interest are the shapes of large drops that sustain equilibrium, beyond a certain degree of flattening, by becoming more flattened at a decreasing sound pressure level. The predictions for flattening versus acoustic radiation stress, for drops of different sizes, compare favorably with experimental data.
Performance of stress-laminated timber highway bridges in cold climates
James P. Wacker
2009-01-01
This paper summarizes recent laboratory and field data studies on thermal performance of stress-laminated timber highway bridges. Concerns about the reliability of stress-laminated deck bridges when exposed to sub-freezing temperatures triggered several investigations. Two laboratory studies were conducted to study the effects of wood species, preservative, moisture...
Daigh, Leighton H; Liu, Chad; Chung, Mingyu; Cimprich, Karlene A; Meyer, Tobias
2018-06-04
Faithful DNA replication is challenged by stalling of replication forks during S phase. Replication stress is further increased in cancer cells or in response to genotoxic insults. Using live single-cell image analysis, we found that CDK2 activity fluctuates throughout an unperturbed S phase. We show that CDK2 fluctuations result from transient ATR signals triggered by stochastic replication stress events. In turn, fluctuating endogenous CDK2 activity causes corresponding decreases and increases in DNA synthesis rates, linking changes in stochastic replication stress to fluctuating global DNA replication rates throughout S phase. Moreover, cells that re-enter the cell cycle after mitogen stimulation have increased CDK2 fluctuations and prolonged S phase resulting from increased replication stress-induced CDK2 suppression. Thus, our study reveals a dynamic control principle for DNA replication whereby CDK2 activity is suppressed and fluctuates throughout S phase to continually adjust global DNA synthesis rates in response to recurring stochastic replication stress events. Copyright © 2018. Published by Elsevier Inc.
Möller, Jette; Hallqvist, Johan; Laflamme, Lucie; Mattsson, Fredrik; Ponzer, Sari; Sadigh, Siv; Engström, Karin
2009-01-01
Background Sudden emotions may interfere with mechanisms for keeping balance among the elderly. The aim of this study is to analyse if emotional stress and specifically feelings of anger, sadness, worries, anxiety or stress, can trigger falls leading to hip or pelvic fracture among autonomous older people. Methods The study applied the case-crossover design and was based on data gathered by face to face interviews carried out in Stockholm between November 2004 and January 2006 at the emergency wards of two hospitals. Cases (n = 137) were defined as persons aged 65 and older admitted for at least one night due to a fall-related hip or pelvic fracture (ICD10: S72 or S32) and meeting a series of selection criteria. Results are presented as relative risks with 95% confidence intervals. Results There was an increased risk for fall and subsequent hip or pelvic fracture for up to one hour after emotional stress. For anger there was an increased relative risk of 12.2 (95% CI 2.7–54.7), for sadness of 5.7 (95% CI 1.1–28.7), and for stress 20.6 (95% CI 4.5–93.5) compared to periods with no such feelings. Conclusion Emotional stress seems to have the potential to trigger falls and subsequent hip or pelvic fracture among autonomous older people. Further studies are needed to clarify how robust the findings are – as the number of exposed cases is small – and the mechanisms behind them – presumably balance and vision impairment in stress situation. PMID:19203356
Peng, Zhigang; Hill, David P.; Shelly, David R.; Aiken, Chastity
2010-01-01
We examine remotely triggered microearthquakes and tectonic tremor in central California following the 2010 Mw 8.8 Chile earthquake. Several microearthquakes near the Coso Geothermal Field were apparently triggered, with the largest earthquake (Ml 3.5) occurring during the large-amplitude Love surface waves. The Chile mainshock also triggered numerous tremor bursts near the Parkfield-Cholame section of the San Andreas Fault (SAF). The locally triggered tremor bursts are partially masked at lower frequencies by the regionally triggered earthquake signals from Coso, but can be identified by applying high-pass or matched filters. Both triggered tremor along the SAF and the Ml 3.5 earthquake in Coso are consistent with frictional failure at different depths on critically-stressed faults under the Coulomb failure criteria. The triggered tremor, however, appears to be more phase-correlated with the surface waves than the triggered earthquakes, likely reflecting differences in constitutive properties between the brittle, seismogenic crust and the underlying lower crust.
2012-01-01
Background Chest pain, a key element in the investigation of coronary artery disease is often regarded as a benign prognosis when present in panic attacks. However, panic disorder has been suggested as an independent risk factor for long-term prognosis of cardiovascular diseases and a trigger of acute myocardial infarction. Objective Faced with the extreme importance in differentiate from ischemic to non-ischemic chest pain, we report a case of panic attack induced by inhalation of 35% carbon dioxide triggering myocardial ischemia, documented by myocardial perfusion imaging study. Discussion Panic attack is undoubtedly a strong component of mental stress. Patients with coronary artery disease may present myocardial ischemia in mental stress response by two ways: an increase in coronary vasomotor tone or a sympathetic hyperactivity leading to a rise in myocardial oxygen consumption. Coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. Possibly the carbon dioxide challenge test could trigger myocardial ischemia by the same mechanisms. Conclusion The use of mental stress has been suggested as an alternative method for myocardial ischemia investigation. Based on translational medicine objectives the use of CO2 challenge followed by Sestamibi SPECT could be a useful method to allow improved application of research-based knowledge to the medical field, specifically at the interface of PD and cardiovascular disease. PMID:22999016
Soares-Filho, Gastão Luiz Fonseca; Mesquita, Claudio Tinoco; Mesquita, Evandro Tinoco; Arias-Carrión, Oscar; Machado, Sergio; González, Manuel Menéndez; Valença, Alexandre Martins; Nardi, Antonio Egidio
2012-09-21
Chest pain, a key element in the investigation of coronary artery disease is often regarded as a benign prognosis when present in panic attacks. However, panic disorder has been suggested as an independent risk factor for long-term prognosis of cardiovascular diseases and a trigger of acute myocardial infarction. Faced with the extreme importance in differentiate from ischemic to non-ischemic chest pain, we report a case of panic attack induced by inhalation of 35% carbon dioxide triggering myocardial ischemia, documented by myocardial perfusion imaging study. Panic attack is undoubtedly a strong component of mental stress. Patients with coronary artery disease may present myocardial ischemia in mental stress response by two ways: an increase in coronary vasomotor tone or a sympathetic hyperactivity leading to a rise in myocardial oxygen consumption. Coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. Possibly the carbon dioxide challenge test could trigger myocardial ischemia by the same mechanisms. The use of mental stress has been suggested as an alternative method for myocardial ischemia investigation. Based on translational medicine objectives the use of CO2 challenge followed by Sestamibi SPECT could be a useful method to allow improved application of research-based knowledge to the medical field, specifically at the interface of PD and cardiovascular disease.
NASA Astrophysics Data System (ADS)
Ghouse, N.; Hu, J.; Chang, J. C.
2016-12-01
The Pawnee M5.8 event is the largest earthquake in Oklahoma since instrumented history. How this earthquake affects known seismogenic areas in the state is a key issue for seismic hazard probability studies. In this study, we quantify stress loading and unloading on seismicity-delineated faults from the Oklahoma Geological Survey relocated-earthquake catalog. Our modeling indicates that areas in Noble, Pawnee, and Payne county are more prone to triggered seismicity, while areas in Alfalfa, Grant, Garfield, Logan, Major, Oklahoma, and Woods county are less prone to seismic triggering.
Neuroendocrine mechanisms for immune system regulation during stress in fish.
Nardocci, Gino; Navarro, Cristina; Cortés, Paula P; Imarai, Mónica; Montoya, Margarita; Valenzuela, Beatriz; Jara, Pablo; Acuña-Castillo, Claudio; Fernández, Ricardo
2014-10-01
In the last years, the aquaculture crops have experienced an explosive and intensive growth, because of the high demand for protein. This growth has increased fish susceptibility to diseases and subsequent death. The constant biotic and abiotic changes experienced by fish species in culture are challenges that induce physiological, endocrine and immunological responses. These changes mitigate stress effects at the cellular level to maintain homeostasis. The effects of stress on the immune system have been studied for many years. While acute stress can have beneficial effects, chronic stress inhibits the immune response in mammals and teleost fish. In response to stress, a signaling cascade is triggered by the activation of neural circuits in the central nervous system because the hypothalamus is the central modulator of stress. This leads to the production of catecholamines, corticosteroid-releasing hormone, adrenocorticotropic hormone and glucocorticoids, which are the essential neuroendocrine mediators for this activation. Because stress situations are energetically demanding, the neuroendocrine signals are involved in metabolic support and will suppress the "less important" immune function. Understanding the cellular mechanisms of the neuroendocrine regulation of immunity in fish will allow the development of new pharmaceutical strategies and therapeutics for the prevention and treatment of diseases triggered by stress at all stages of fish cultures for commercial production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Besada, Cristina; Gil, Rebeca; Bonet, Luis; Quiñones, Ana; Intrigliolo, Diego; Salvador, Alejandra
2016-03-01
In recent years many hectares planted with persimmon trees in E Spain have been diagnosed with chloride toxicity. An effect of this abiotic stress on fruit quality has been reported in different crops. However, the impact of chloride stress on persimmon fruit quality is unknown. The harvest and postharvest quality of persimmons harvested from trees that manifest different intensities of chloride toxicity foliar symptoms was evaluated herein. Our results revealed that fruits from trees under chloride stress conditions underwent chloride accumulation in the calyx, which was more marked the greater the salt stress intensity trees were exposed to. Increased chloride concentrations in the calyx stimulated ethylene production in this tissue. In the fruits affected by slight and moderate chloride stress, calyx ethylene production accelerated the maturity process, as reflected by increased fruit colour and diminished fruit firmness. In the fruits under severe chloride stress, the high ethylene levels in the calyx triggered autocatalytic ethylene production in other fruit tissues, which led fruit maturity to drastically advance. In these fruits effectiveness of CO2 deastringency treatment was not complete and fruit softening enhanced during the postharvest period. Moreover, chloride stress conditions had a marked effect on reducing fruit weight, even in slightly stressed trees. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Mechanical loading of bovine pericardium accelerates enzymatic degradation.
Ellsmere, J C; Khanna, R A; Lee, J M
1999-06-01
Bioprosthetic heart valves fail as the result of two simultaneous processes: structural deterioration and calcification. Leaflet deterioration and perforation have been correlated with regions of highest stress in the tissue. The failures have long been assumed to be due to simple mechanical fatigue of the collagen fibre architecture; however, we have hypothesized that local stresses-and particularly dynamic stresses-accelerate local proteolysis, leading to tissue failure. This study addresses that hypothesis. Using a novel, custom-built microtensile culture system, strips of bovine pericardium were subjected to static and dynamic loads while being exposed to solutions of microbial collagenase or trypsin (a non-specific proteolytic enzyme). The time to extend to 30% strain (defined here as time to failure) was recorded. After failure, the percentage of collagen solubilized was calculated based on the amount of hydroxyproline present in solution. All data were analyzed by analysis of variance (ANOVA). In collagenase, exposure to static load significantly decreased the time to failure (P < 0.002) due to increased mean rate of collagen solubilization. Importantly, specimens exposed to collagenase and dynamic load failed faster than those exposed to collagenase under the same average static load (P = 0.02). In trypsin, by contrast, static load never led to failure and produced only minimal degradation. Under dynamic load, however, specimens exposed to collagenase, trypsin, and even Tris/CaCl2 buffer solution, all failed. Only samples exposed to Hanks' physiological solution did not fail. Failure of the specimens exposed to trypsin and Tris/CaCl2 suggests that the non-collagenous components and the calcium-dependent proteolytic enzymes present in pericardial tissue may play roles in the pathogenesis of bioprosthetic heart valve degeneration.
Portable spark-gap arc generator
NASA Technical Reports Server (NTRS)
Ignaczak, L. R.
1978-01-01
Self-contained spark generator that simulates electrical noise caused by discharge of static charge is useful tool when checking sensitive component and equipment. In test set-up, device introduces repeatable noise pulses as behavior of components is monitored. Generator uses only standard commercial parts and weighs only 4 pounds; portable dc power supply is used. Two configurations of generator have been developed: one is free-running arc source, and one delivers spark in response to triggering pulse.
Experimental Development of Low-emittance Field-emission Electron Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lueangaranwong, A.; Buzzard, C.; Divan, R.
2016-10-10
Field emission electron sources are capable of extreme brightness when excited by static or time-dependent electro- magnetic fields. We are currently developing a cathode test stand operating in DC mode with possibility to trigger the emission using ultra-short (~ 100-fs) laser pulses. This contribution describes the status of an experiment to investigate field-emission using cathodes under development at NIU in collaboration with the Argonne’s Center for Nanoscale Materials.
Dynamic and static fatigue of a machinable glass ceramic
NASA Technical Reports Server (NTRS)
Magida, M. B.; Forrest, K. A.; Heslin, T. M.
1984-01-01
The dynamic and static fatigue behavior of a machinable glass ceramic was investigated to assess its susceptibility to stress corrosion-induced delayed failure. Fracture mechanics techniques were used to analyze the results so that lifetime predictions for components of this material could be made. The resistance to subcritical crack growth of this material was concluded to be only moderate and was found to be dependent on the size of its microstructure.
Kapilevich, Leonid V.; Zakharova, Anna N.; Kabachkova, Anastasia V.; Kironenko, Tatyana A.; Orlov, Sergei N.
2017-01-01
Extensive exercise increases the plasma content of IL-6, IL-8, IL-15, leukemia inhibitory factor (LIF), and several other cytokines via their augmented transcription in skeletal muscle cells. However, the relative impact of aerobic and resistant training interventions on cytokine production remains poorly defined. In this study, we compared effects of dynamic and static load on cytokine plasma content in elite strength- and endurance-trained athletes vs. healthy untrained volunteers. The plasma cytokine content was measured before, immediately after, and 30 min post-exercise using enzyme-linked immunosorbent assay. Pedaling on a bicycle ergometer increased IL-6 and IL-8 content in the plasma of trained athletes by about 4- and 2-fold, respectively. In contrast to dynamic load, weightlifting had negligible impact on these parameters in strength exercise-trained athletes. Unlike IL-6 and IL-8, dynamic exercise had no impact on IL-15 and LIF, whereas static load increases the content of these cytokines by ~50%. Two-fold increment of IL-8 content seen in athletes subjected to dynamic exercise was absent in untrained individuals, whereas the ~50% increase in IL-15 triggered by static load in the plasma of weightlifting athletes was not registered in the control group. Thus, our results show the distinct impact of static and dynamic exercises on cytokine content in the plasma of trained athletes. They also demonstrate that both types of exercises differentially affect cytokine content in plasma of athletes and untrained persons. PMID:28194116
Persistent inhibition of hippocampal long-term potentiation in vivo by learned helplessness stress.
Ryan, Benedict K; Vollmayr, Barbara; Klyubin, Igor; Gass, Peter; Rowan, Michael J
2010-06-01
The persistent cognitive disruptive effects of stress have been strongly implicated in the pathophysiology of depression and post-traumatic stress disorder. Here we examined factors influencing the time course of recovery from the inhibitory effect of acute inescapable stressors on the ability to induce long-term potentiation (LTP) in the dorsal hippocampus in vivo. We tested different forms of LTP, different stressors and different inbred strains of rats. Acute elevated platform stress completely, but transiently (<3 h), inhibited induction of both NMDA receptor-dependent LTP induced by a standard high frequency (200 Hz) conditioning stimulus and an additional LTP that required voltage-dependent Ca(2+) channel activation triggered by strong (400 Hz) conditioning stimulation. In contrast, acute inescapable footshock stress, used to study learned helplessness, inhibited LTP for at least 4 weeks. Contrary to expectations, there was no clear relationship between the ability of the footshock to trigger helpless behavior, a model of stress-induced depression, and the magnitude of LTP inhibition. Moreover, LTP did not appear to be affected by genetic susceptibility to learned helplessness, a model of genetic vulnerability to depression. This long-lasting synaptic plasticity disruption may underlie persistent impairment of hippocampus-dependent cognition by excessive acute inescapable stress.
NASA Astrophysics Data System (ADS)
Belov, Nikolay; Yugov, Nikolay; Kopanitsa, Dmitry; Kopanitsa, Georgy; Yugov, Alexey; Kaparulin, Sergey; Plyaskin, Andrey; Kalichkina, Anna; Ustinov, Artyom
2016-01-01
When designing buildings with reinforced concrete that are planned to resist dynamic loads it is necessary to calculate this structural behavior under operational static and emergency impact and blast loads. Calculations of the structures under shock-wave loads can be performed by solving dynamic equations that do not consider static loads. Due to this fact the calculation of reinforced concrete frame under a simultaneous static and dynamic load in full 3d settings becomes a very non trivial and resource consuming problem. This problem can be split into two tasks. The first one is a shock-wave problem that can be solved using software package RANET-3, which allows solving the problem using finite elements method adapted for dynamic task. This method calculates strain-stress state of the material and its dynamic destruction, which is considered as growth and consolidation of micro defects under loading. On the second step the results of the first step are taken as input parameters for quasi static calculation of simultaneous static and dynamic load using finite elements method in AMP Civil Engineering-11.
Comparison of Static and Dynamic Elastic Modules of Different Strength Concretes
NASA Astrophysics Data System (ADS)
Uyanık, Osman; Sabbaǧ, Nevbahar
2016-04-01
In this study, the static and dynamic elastic (Young) modules of concrete with different strength was intended to compare. For this purpose 150mm dimensions 9 for each design cubic samples prepared and they were subjected to water cure during 28 days. After Seismic Ultrasonic P and S wave travel time measurements of samples, P and S wave velocities and taking advantage of elasticity theory the dynamic elastic modules were calculated. Concrete strength was obtained from the uniaxial compression tests in order to calculate the static elastic modules of the samples. The static elastic modulus is calculated by using the empirical relationships used in international standards. The obtained static and dynamic elastic modules have been associated. A curve was obtained from this association result that approximately similar to the stress-strain curve of obtaining at failure criterion of the sample. This study was supported with OYP05277-DR-14 Project No. by SDU and State Hydraulic Works 13th Regional/2012-01 Project No. Keywords: Concrete Strength, P and S wave Velocities, Static, Dynamic, Young Modules
Static stress changes associated with normal faulting earthquakes in South Balkan area
NASA Astrophysics Data System (ADS)
Papadimitriou, E.; Karakostas, V.; Tranos, M.; Ranguelov, B.; Gospodinov, D.
2007-10-01
Activation of major faults in Bulgaria and northern Greece presents significant seismic hazard because of their proximity to populated centers. The long recurrence intervals, of the order of several hundred years as suggested by previous investigations, imply that the twentieth century activation along the southern boundary of the sub-Balkan graben system, is probably associated with stress transfer among neighbouring faults or fault segments. Fault interaction is investigated through elastic stress transfer among strong main shocks ( M ≥ 6.0), and in three cases their foreshocks, which ruptured distinct or adjacent normal fault segments. We compute stress perturbations caused by earthquake dislocations in a homogeneous half-space. The stress change calculations were performed for faults of strike, dip, and rake appropriate to the strong events. We explore the interaction between normal faults in the study area by resolving changes of Coulomb failure function ( ΔCFF) since 1904 and hence the evolution of the stress field in the area during the last 100 years. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic half-space, and taking into account both the coseismic slip in strong earthquakes and the slow tectonic stress buildup associated with major fault segments. We evaluate if these stress changes brought a given strong earthquake closer to, or sent it farther from, failure. Our modeling results show that the generation of each strong event enhanced the Coulomb stress on along-strike neighbors and reduced the stress on parallel normal faults. We extend the stress calculations up to present and provide an assessment for future seismic hazard by identifying possible sites of impending strong earthquakes.
Souza-Talarico, Juliana Nery; Wan, Nathalie; Santos, Sheila; Fialho, Patrícia Paes Araujo; Chaves, Eliane Corrêa; Caramelli, Paulo; Bianchi, Estela Ferraz; Santos, Aline Talita; Lupien, Sonia J
2016-06-03
Negative effects of stress have pose one of the major threats to the health and economic well being of individuals independently of age and cultural background. Nevertheless, the term "stress" has been globally used unlinked from scientificevidence-based meaning. The discrepancies between scientific and public stress knowledge are focus of concern and little is know about it. This is relevant since misconceptions about stress may influence the effects of stress-management psychoeducational programs and the development of best practices for interventions. The study aimed to analyze stress knowledge among the Canadian and Brazilian general public and to determine the extent to which scientific and popular views of stress differ between those countries. We evaluated 1156 healthy participants between 18 and 88 years of age recruited from Canada (n = 502) and Brazil (n = 654). To assess stress knowledge, a questionnaire composed of questions regarding stress concepts ("stress is bad" versus "stress-free life is good") and factors capable of triggering the stress response ("novelty, unpredictability, low sense of control and social evaluative threat versus "time pressure,work overload, conflict, unbalance and children") was used. Both Canadian and Brazilian participants showed misconceptions about stress and the factors capable of triggering a stress response. However, the rate of misconceptions was higher in Brazil than in Canada (p < 0.05). These findings suggest a lack of public understanding of stress science and its variance according to a country's society. Psychoeducational programs and vulnerability of stress-related disorder are discussed.
NASA Astrophysics Data System (ADS)
Volosukhin, V. A.; Bandurin, M. A.; Vanzha, V. V.; Mikheev, A. V.; Volosukhin, Y. V.
2018-05-01
The results of finite element state simulation of stressed and strained changes under different damages of hydraulic structures are presented. As a result of the experiment, a solidstate model of bearing elements was built. Stressed and strained state of reinforced concrete bearing elements under different load combinations is considered. Intensive threshold of danger to form longitudinal cracks and defects in reinforced concrete elements is determined.
Accelerated Stress-Corrosion Testing
NASA Technical Reports Server (NTRS)
1986-01-01
Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.
NASA Astrophysics Data System (ADS)
Segou, Margarita
2014-05-01
Corinth Gulf (Central Greece) is the fastest continental rift in the world with extension rates 11-15 mm/yr with diverse seismic deformation including earthquakes with M greater than 6.0, several periods of increased microseismic activity, usually lasting few months and possibly related with fluid diffusion, and swarm episodes lasting few days. In this study I perform a retrospective forecast experiment between 1995-2012, focusing on the comparison between physics-based and statistical models for short term time classes. Even though Corinth gulf has been studied extensively in the past there is still today a debate whether earthquake activity is related with the existence of either a shallow dipping structure or steeply dipping normal faults. In the light of the above statement, two CRS realization are based on resolving Coulomb stress changes on specified receiver faults, expressing the aforementioned structural models, whereas the third CRS model uses optimally-oriented for failure planes. The CRS implementation accounts for stress changes following all major ruptures with M greater than 4.5 within the testing phase. I also estimate fault constitutive parameters from modeling the response to major earthquakes at the vicinity of the gulf (Aσ=0.2, stressing rate app. 0.02 bar/yr). The generic ETAS parameters are taken as the maximum likelihood estimates derived from the stochastic declustering of the modern seismicity catalog (1995-2012) with minimum triggering magnitude M2.5. I test whether the generic ETAS can efficiently describe the aftershock spatio-temporal clustering but also the evolution of swarm episodes and microseismicity. For the reason above, I implement likelihood tests to evaluate the forecasts for their spatial consistency and for the total amount of predicted versus observed events with M greater than 3.0 in 10-day time windows during three distinct evaluation phases; the first evaluation phase focuses on the Aigio 1995 aftershock sequence (15/06/1995, M6.4), the second covers the period between September 2006-May 2007, characterized for its intense microseismicity, and the third is related with the May 2013 swarm. The conclusions support that (1) geology based CRS models are preferred over optimally oriented planes (2) CRS models are consistent forecasters (60-70%) of transient seismicity, having in most cases comparable performance with ETAS models (3) microseismicity and swarms are not triggered by static stress changes of preceding local events with magnitude M greater than 4.5 and (4) the generic ETAS model can efficiently describe the recent swarm episode. The findings of this study have a number of important implications for future short-term forecasting and time-dependent hazard within Corinth Gulf.
Killing approximation for vacuum and thermal stress-energy tensor in static space-times
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, V.P.; Zel'nikov, A.I.
1987-05-15
The problem of the vacuum polarization of conformal massless fields in static space-times is considered. A tensor T/sub ..mu..//sub ..nu../ constructed from the curvature, the Killing vector, and their covariant derivatives is proposed which can be used to approximate the average value of the stress-energy tensor /sup ren/ in such spaces. It is shown that if (i) its trace T /sub epsilon//sup epsilon/ coincides with the trace anomaly /sup ren/, (ii) it satisfies the conservation law T/sup ..mu..//sup epsilon/ /sub ;//sub epsilon/ = 0, and (iii) it has the correct behavior under the scale transformations, then it is uniquely definedmore » up to a few arbitrary constants. These constants must be chosen to satisfy the boundary conditions. In the case of a static black hole in a vacuum these conditions single out the unique tensor T/sub ..mu..//sub ..nu../ which provides a good approximation for /sup ren/ in the Hartle-Hawking vacuum. The relation between this approach and the Page-Brown-Ottewill approach is discussed.« less
Elastic-Plastic Behaviour of Ultrasonic Assisted Compression of Polyvinyl Chloride (PVC) Foam
NASA Astrophysics Data System (ADS)
Muhalim, N. A. D.; Hassan, M. Z.; Daud, Y.
2018-04-01
The present study aims to investigate the elastic-plastic behaviour of ultrasonic assisted compression of PVC closed-cell foam. A series of static and ultrasonic compression test of PVC closed-cell foam were conducted at a constant cross head speed of 30 mm/min on dry surface condition. For quasi-static test, specimen was compressed between two rigid platens using universal testing machine. In order to evaluate the specimen behavior under ultrasonic condition, specimen was placed between a specifically design double-slotted block horn and rigid platen. The horn was designed and fabricated prior to the test as a medium to transmit the ultrasonic vibration from the ultrasonic transducer to the working specimen. It was tuned to a frequency of 19.89 kHz in longitudinal mode and provided an average oscillation amplitude at 6 µm on the uppermost surface. Following, the characteristics of stress-strain curves for quasi-static and ultrasonic compression tests were analyzed. It was found that the compressive stress was significantly reduced at the onset of superimposed ultrasonic vibration during plastic deformation.
Mayr, Stefan; Bertel, Clara; Dämon, Birgit; Beikircher, Barbara
2014-01-01
The xylem hydraulic efficiency and safety is usually measured on mechanically unstressed samples, although trees may be exposed to combined hydraulic and mechanical stress in the field. We analysed changes in hydraulic conductivity and vulnerability to drought-induced embolism during static bending of Picea abies and Pinus sylvestris branches as well as the effect of dynamic bending on the vulnerability. We hypothesized this mechanical stress to substantially impair xylem hydraulics. Intense static bending caused an only small decrease in hydraulic conductance (−19.5 ± 2.4% in P. abies) but no shift in vulnerability thresholds. Dynamic bending caused a 0.4 and 0.8 MPa decrease of the water potential at 50 and 88% loss of conductivity in P. sylvestris, but did not affect vulnerability thresholds in P. abies. With respect to applied extreme bending radii, effects on plant hydraulics were surprisingly small and are thus probably of minor eco-physiological importance. More importantly, results indicate that available xylem hydraulic analyses (of conifers) sufficiently reflect plant hydraulics under field conditions. PMID:24697679
Ergotamine-Induced Takotsubo Cardiomyopathy.
Ozpelit, Ebru; Ozpelit, Mehmet E; Akdeniz, Bahri; Göldeli, Özhan
2016-01-01
Takotsubo cardiomyopathy (TC) is a recently increasing diagnosed disease showed by transient apical or mid-apical left ventricular dysfunction. It is known as a disease of postmenopausal women, which is usually triggered by emotional or physical stress. Although the trigger is mostly endogenous, some drugs have also been reported as the cause. Published case reports of TC associated with drug usage consist of sympathomimetic drugs, inotropic agents, thyroid hormone, cocaine, and 5-fluorouracil. We present an unusual case of TC in which the possible trigger is ergotamine toxicity.
Irmen, Friederike; Wehner, Tim; Lemieux, Louis
2015-02-01
Recent changes in the understanding and classification of reflex seizures have fuelled a debate on triggering mechanisms of seizures and their conceptual organization. Previous studies and patient reports have listed extrinsic and intrinsic triggers, albeit their multifactorial and dynamic nature is poorly understood. This paper aims to review literature on extrinsic and intrinsic seizure triggers and to discuss common mechanisms among them. Among self-reported seizure triggers, emotional stress is most frequently named. Reflex seizures are typically associated with extrinsic sensory triggers; however, intrinsic cognitive or proprioceptive triggers have also been assessed. The identification of a trigger underlying a seizure may be more difficult if it is intrinsic and complex, and if triggering mechanisms are multifactorial. Therefore, since observability of triggers varies and triggers are also found in non-reflex seizures, the present concept of reflex seizures may be questioned. We suggest the possibility of a conceptual continuum between reflex and spontaneous seizures rather than a dichotomy and discuss evidence to the notion that to some extent most seizures might be triggered. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nandi, N.; Chowdhury, Roy; Dutta, S. C.
2018-02-01
The present study makes an effort to understand the damage of earthen dams under static and seismic loading condition. To make the investigation more realistic, behaviour of earthen dams considering the occurrence of a phreatic line indicating the submerged zone due to seepage within the dam body is considered. In case of earthen dams, homogeneous or nonhomogeneous, the consideration of the occurrence of a phreatic line or seepage line through the dam body is an important part of the earthen dam design methodology. The impervious material properties in the submerged zone below the phreatic line due to seepage may differ a lot in magnitudes as compared to the value of the same materials lying above this line. Hence, to have the exact stress distribution scenarios within the earthen dam, the different material properties above and below the phreatic line are considered in this present study. The study is first carried out by two-dimensional as well as three-dimensional finite element analysis under static loading condition. The work is further extended to observe the effect of seepage due to the consideration of the phreatic line on dynamic characteristics of earthen dams. Free vibration analysis and seismic analysis based on the Complete Quadratic Combination (CQC) method by considering twodimensional and three-dimensional modeling are carried out to present the frequencies, mode shapes and the stress distribution pattern of the earthen dam.
Pranayama Meditation (Yoga Breathing) for Stress Relief: Is It Beneficial for Teachers?
ERIC Educational Resources Information Center
Hepburn, Stevie-Jae; McMahon, Mary
2017-01-01
The effects of stress can have a significant impact on an individual's personal life, relationship with colleagues, job satisfaction and career prospects. If unmanaged, stress can be the trigger that drives talented, motivated teachers out of our classrooms and into other professions. Yoga and meditation have been prescribed as a form of…