Hannafin, J A; Arnoczky, S P
1994-05-01
This study was designed to determine the effects of various loading conditions (no load and static and cyclic tensile load) on the water content and pattern of nutrient diffusion of canine flexor tendons in vitro. Region D (designated by Okuda et al.) of the flexor digitorum profundus was subjected to a cyclic or static tensile load of 100 g for times ranging from 5 minutes to 24 hours. The results demonstrated a statistically significant loss of water in tendons subjected to both types of load as compared with the controls (no load). This loss appeared to progress with time. However, neither static nor cyclic loading appeared to alter the diffusion of 3H-glucose into the tendon over a 24-hour period compared with the controls. These results suggest that any benefit in tendon repair derived from intermittent passive motion is probably not a result of an increase in the diffusion of small nutrients in response to intermittent tensile load.
Effects of static tensile load on the thermal expansion of Gr/PI composite material
NASA Technical Reports Server (NTRS)
Farley, G. L.
1981-01-01
The effect of static tensile load on the thermal expansion of Gr/PI composite material was measured for seven different laminate configurations. A computer program was developed which implements laminate theory in a piecewise linear fashion to predict the coupled nonlinear thermomechanical behavior. Static tensile load significantly affected the thermal expansion characteristics of the laminates tested. This effect is attributed to a fiber instability micromechanical behavior of the constituent materials. Analytical results correlated reasonably well with free thermal expansion tests (no load applied to the specimen). However, correlation was poor for tests with an applied load.
Xu, Yidong
2015-01-01
This paper describes the non-uniform corrosion characteristics and mechanical properties of reinforcement under coupled action of carbonation and static loading. The two parameters, namely area-box (AB) value and arithmetical mean deviation (Ra), are adopted to characterize the corrosion morphology and pitting distribution from experimental observations. The results show that the static loading affects the corrosion characteristics of reinforcement. Local stress concentration in corroded reinforcement caused by tensile stress drives the corrosion pit pattern to be more irregular. The orthogonal test results from finite element simulations show that pit shape and pit depth are the two significant factors affecting the tensile behavior of reinforcement. Under the condition of similar corrosion mass loss ratio, the maximum plastic strain of corroded reinforcement increases with the increase of Ra and load time-history significantly. PMID:28793729
NASA Astrophysics Data System (ADS)
Khalili, S. M. R.; Shariyat, M.; Mokhtari, M.
2014-06-01
In this study, the central cracked aluminum plates repaired with two sided composite patches are investigated numerically for their response to static tensile and transient dynamic loadings. Contour integral method is used to define and evaluate the stress intensity factors at the crack tips. The reinforcement for the composite patches is carbon fibers. The effect of adhesive thickness and patch thickness and configuration in tensile loading case and pre-tension, pre-compression and crack length effect on the evolution of the mode I stress intensity factor (SIF) (KI) of the repaired structure under transient dynamic loading case are examined. The results indicated that KI of the central cracked plate is reduced by 1/10 to 1/2 as a result of the bonded composite patch repair in tensile loading case. The crack length and the pre-loads are more effective in repaired structure in transient dynamic loading case in which, the 100 N pre-compression reduces the maximum KI for about 40 %, and the 100 N pre-tension reduces the maximum KI after loading period, by about 196 %.
Park, Jaeyeong; Jo, Min Cheol; Jeong, Hyeok Jae; Sohn, Seok Su; Kwak, Jai-Hyun; Kim, Hyoung Seop; Lee, Sunghak
2017-11-16
Phenomena occurring in duplex lightweight steels under dynamic loading are hardly investigated, although its understanding is essentially needed in applications of automotive steels. In this study, quasi-static and dynamic tensile properties of duplex lightweight steels were investigated by focusing on how TRIP and TWIP mechanisms were varied under the quasi-static and dynamic loading conditions. As the annealing temperature increased, the grain size and volume fraction of austenite increased, thereby gradually decreasing austenite stability. The strain-hardening rate curves displayed a multiple-stage strain-hardening behavior, which was closely related with deformation mechanisms. Under the dynamic loading, the temperature rise due to adiabatic heating raised the austenite stability, which resulted in the reduction in the TRIP amount. Though the 950 °C-annealed specimen having the lowest austenite stability showed the very low ductility and strength under the quasi-static loading, it exhibited the tensile elongation up to 54% as well as high strain-hardening rate and tensile strength (1038 MPa) due to appropriate austenite stability under dynamic loading. Since dynamic properties of the present duplex lightweight steels show the excellent strength-ductility combination as well as continuously high strain hardening, they can be sufficiently applied to automotive steel sheets demanded for stronger vehicle bodies and safety enhancement.
Cyclic tensile response of a pre-tensioned polyurethane
NASA Astrophysics Data System (ADS)
Nie, Yizhou; Liao, Hangjie; Chen, Weinong W.
2018-05-01
In the research reported in this paper, we subject a polyurethane to uniaxial tensile loading at a quasi-static strain rate, a high strain rate and a jumping strain rate where the specimen is under quasi-static pre-tension and is further subjected to a dynamic cyclic loading using a modified Kolsky tension bar. The results obtained at the quasi-static and high strain rate clearly show that the mechanical response of this material is significantly rate sensitive. The rate-jumping experimental results show that the response of the material behavior is consistent before jumping. After jumping the stress-strain response of the material does not jump to the corresponding high-rate curve. Rather it approaches the high-rate curve asymptotically. A non-linear hyper-viscoelastic (NLHV) model, after having been calibrated by monotonic quasi-static and high-rate experimental results, was found to be capable of describing the material tensile behavior under such rate jumping conditions.
NASA Astrophysics Data System (ADS)
Ren, Yiru; Zhang, Songjun; Jiang, Hongyong; Xiang, Jinwu
2018-04-01
Based on continuum damage mechanics (CDM), a sophisticated 3D meso-scale finite element (FE) model is proposed to characterize the progressive damage behavior of 2D Triaxial Braided Composites (2DTBC) with 60° braiding angle under quasi-static tensile load. The modified Von Mises strength criterion and 3D Hashin failure criterion are used to predict the damage initiation of the pure matrix and fiber tows. A combining interface damage and friction constitutive model is applied to predict the interface damage behavior. Murakami-Ohno stiffness degradation scheme is employed to predict the damage evolution process of each constituent. Coupling with the ordinary and translational symmetry boundary conditions, the tensile elastic response including tensile strength and failure strain of 2DTBC are in good agreement with the available experiment data. The numerical results show that the main failure modes of the composites under axial tensile load are pure matrix cracking, fiber and matrix tension failure in bias fiber tows, matrix tension failure in axial fiber tows and interface debonding; the main failure modes of the composites subjected to transverse tensile load are free-edge effect, matrix tension failure in bias fiber tows and interface debonding.
Jin, Xiaochao; Hou, Cheng; Fan, Xueling; Lu, Chunsheng; Yang, Huawei; Shu, Xuefeng; Wang, Zhihua
2017-11-10
As concrete and mortar materials widely used in structural engineering may suffer dynamic loadings, studies on their mechanical properties under different strain rates are of great importance. In this paper, based on splitting tests of Brazilian discs, the tensile strength and failure pattern of concrete and mortar were investigated under quasi-static and dynamic loadings with a strain rate of 1-200 s -1 . It is shown that the quasi-static tensile strength of mortar is higher than that of concrete since coarse aggregates weaken the interface bonding strength of the latter. Numerical results confirmed that the plane stress hypothesis lead to a lower value tensile strength for the cylindrical specimens. With the increase of strain rates, dynamic tensile strengths of concrete and mortar significantly increase, and their failure patterns change form a single crack to multiple cracks and even fragment. Furthermore, a relationship between the dynamic increase factor and strain rate was established by using a linear fitting algorithm, which can be conveniently used to calculate the dynamic increase factor of concrete-like materials in engineering applications.
2011-01-01
blast and weapon fragmentation. A particular cementitious composite of interest is an inorganic polymer cement or “ geopolymer ” cement. The term...www.sciencedirect.com ICM11 Characterization and performance optimization of a cementitious composite for quasi-static and dynamic loads W.F. Hearda,b, P.K. Basub...rapid-set, high-strength geopolymer cement under quasi-static and dynamic loads. Four unique tensile experiments were conducted to characterize and
Note: Motor-piezoelectricity coupling driven high temperature fatigue device
NASA Astrophysics Data System (ADS)
Ma, Z. C.; Du, X. J.; Zhao, H. W.; Ma, X. X.; Jiang, D. Y.; Liu, Y.; Ren, L. Q.
2018-01-01
The design and performance evaluation of a novel high temperature fatigue device simultaneously driven by servo motor and piezoelectric actuator is our focus. The device integrates monotonic and cyclic loading functions with a maximum tensile load of 1800 N, driving frequency of 50 Hz, alternating load of 95 N, and maximum service temperature of 1200 °C. Multimodal fatigue tests with arbitrary combinations of static and dynamic loads are achieved. At temperatures that range from RT to 1100 °C, the tensile and tensile-fatigue coupling mechanical behaviors of UM Co50 alloys are investigated to verify the feasibility of the device.
High-speed imaging on static tensile test for unidirectional CFRP
NASA Astrophysics Data System (ADS)
Kusano, Hideaki; Aoki, Yuichiro; Hirano, Yoshiyasu; Kondo, Yasushi; Nagao, Yosuke
2008-11-01
The objective of this study is to clarify the fracture mechanism of unidirectional CFRP (Carbon Fiber Reinforced Plastics) under static tensile loading. The advantages of CFRP are higher specific stiffness and strength than the metal material. The use of CFRP is increasing in not only the aerospace and rapid transit railway industries but also the sports, leisure and automotive industries. The tensile fracture mechanism of unidirectional CFRP has not been experimentally made clear because the fracture speed of unidirectional CFRP is quite high. We selected the intermediate modulus and high strength unidirectional CFRP laminate which is a typical material used in the aerospace field. The fracture process under static tensile loading was captured by a conventional high-speed camera and a new type High-Speed Video Camera HPV-1. It was found that the duration of fracture is 200 microseconds or less, then images taken by a conventional camera doesn't have enough temporal-resolution. On the other hand, results obtained by HPV-1 have higher quality where the fracture process can be clearly observed.
Lamination residual stresses in fiber composites
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Liber, T.
1975-01-01
An experimental investigation was conducted to determine the magnitude of lamination residual stresses in angle-ply composites and to evaluate their effects on composite structural integrity. The materials investigated were boron/epoxy, boron/polyimide, graphite/low modulus epoxy, graphite/high modulus epoxy, graphite/polyimide and s-glass/epoxy. These materials were fully characterized. Static properties of laminates were also determined. Experimental techniques using embedded strain gages were developed and used to measure residual strains during curing. The extent of relaxation of lamination residual stresses was investigated. It was concluded that the degree of such relaxation is low. The behavior of angle-ply laminates subjected to thermal cycling, tensile load cycling, and combined thermal cycling with tensile load was investigated. In most cases these cycling programs did not have any measurable influence on residual strength and stiffness of the laminates. In the tensile load cycling tests, the graphite/polyimide shows the highest endurance with 10 million cycle runouts at loads up to 90 percent of the static strength.
NASA Astrophysics Data System (ADS)
Luterbacher, R.; Trask, R. S.; Bond, I. P.
2016-01-01
The effect of including hollow channels (vascules) within cross-ply laminates on static tensile properties and fatigue performance is investigated. No change in mechanical properties or damage formation is observed when a single vascule is included in the 0/90 interface, representing 0.5% of the cross sectional area within the specimen. During tensile loading, matrix cracks develop in the 90° layers leading to a reduction of stiffness and strength (defined as the loss of linearity) and a healing agent is injected through the vascules in order to heal them and mitigate the caused degradation. Two different healing agents, a commercial low viscosity epoxy resin (RT151, Resintech) and a toughened epoxy blend (bespoke, in-house formulation) have been used to successfully recover stiffness under static loading conditions. The RT151 system recovered 75% of the initial failure strength, whereas the toughened epoxy blend achieved a recovery of 67%. Under fatigue conditions, post healing, a rapid decay of stiffness was observed as the healed damage re-opened within the first 2500 cycles. This was caused by the high fatigue loading intensity, which was near the static failure strength of the healing resin. However, the potential for ameliorating (via self-healing or autonomous repair) more diffuse transverse matrix damage via a vascular network has been shown.
Aggregate Effect on the Concrete Cone Capacity of an Undercut Anchor under Quasi-Static Tensile Load
Marcon, Marco; Ninčević, Krešimir; Boumakis, Ioannis; Czernuschka, Lisa-Marie
2018-01-01
In the last decades, fastening systems have become an essential part of the construction industry. Post-installed mechanical anchors are frequently used in concrete members to connect them with other load bearing structural members, or to attach appliances. Their performance is limited by the concrete related failure modes which are highly influenced by the concrete mix design. This paper aims at investigating the effect that different aggregates used in the concrete mix have on the capacity of an undercut anchor under tensile quasi-static loading. Three concrete batches were cast utilising three different aggregate types. For two concrete ages (28 and 70 days), anchor tensile capacity and concrete properties were obtained. Concrete compressive strength, fracture energy and elastic modulus are used to normalize and compare the undercut anchor concrete tensile capacity employing some of the most widely used prediction models. For a more insightful comparison, a statistical method that yields also scatter information is introduced. Finally, the height and shape of the concrete cones are compared by highly precise and objective photogrammetric means. PMID:29723972
Marcon, Marco; Ninčević, Krešimir; Boumakis, Ioannis; Czernuschka, Lisa-Marie; Wan-Wendner, Roman
2018-05-01
In the last decades, fastening systems have become an essential part of the construction industry. Post-installed mechanical anchors are frequently used in concrete members to connect them with other load bearing structural members, or to attach appliances. Their performance is limited by the concrete related failure modes which are highly influenced by the concrete mix design. This paper aims at investigating the effect that different aggregates used in the concrete mix have on the capacity of an undercut anchor under tensile quasi-static loading. Three concrete batches were cast utilising three different aggregate types. For two concrete ages (28 and 70 days), anchor tensile capacity and concrete properties were obtained. Concrete compressive strength, fracture energy and elastic modulus are used to normalize and compare the undercut anchor concrete tensile capacity employing some of the most widely used prediction models. For a more insightful comparison, a statistical method that yields also scatter information is introduced. Finally, the height and shape of the concrete cones are compared by highly precise and objective photogrammetric means.
NASA Astrophysics Data System (ADS)
Pramanik, Brahmananda
The dynamic response of exfoliated graphite nanoplatelet (xGnP) reinforced and carboxyl terminated butadiene nitrile (CTBN) toughened vinyl ester based nanocomposites are characterized under both dynamic tensile and compressive loading. Dynamic direct tensile tests are performed applying the reverse impact Split Hopkinson Pressure Bar (SHPB) technique. The specimen geometry for tensile test is parametrically optimized by Finite Element Analysis (FEA) using ANSYS Mechanical APDLRTM. Uniform stress distribution within the specimen gage length has been verified using high-speed digital photography. The on-specimen strain gage installation is substituted by a non-contact Laser Occlusion Expansion Gage (LOEG) technique for infinitesimal dynamic tensile strain measurements. Due to very low transmitted pulse signal, an alternative approach based on incident pulse is applied for obtaining the stress-time history. Indirect tensile tests are also performed combining the conventional SHPB technique with Brazilian disk test method for evaluating cylindrical disk specimens. The cylindrical disk specimen is held snugly in between two concave end fixtures attached to the incident and transmission bars. Indirect tensile stress is estimated from the SHPB pulses, and diametrical transverse tensile strain is measured using LOEG. Failure diagnosis using high-speed digital photography validates the viability of utilizing this indirect test method for characterizing the tensile properties of the candidate vinyl ester based nanocomposite system. Also, quasi-static indirect tensile response agrees with previous investigations conducted using the traditional dog-bone specimen in quasi-static direct tensile tests. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Finally, the conventional compressive SHPB tests are performed. It is observed that both strength and energy absorbing capacity of these candidate material systems are distinctively less under dynamic tension than under compressive loading. Nano-reinforcement appears to marginally improve these properties for pure vinyl ester under dynamic tension, although it is found to be detrimental under dynamic compression.
Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun
2017-01-01
Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers. PMID:29140284
Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun
2017-11-15
Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers.
The Dynamic Tensile Behavior of Railway Wheel Steel at High Strain Rates
NASA Astrophysics Data System (ADS)
Jing, Lin; Han, Liangliang; Zhao, Longmao; Zhang, Ying
2016-11-01
The dynamic tensile tests on D1 railway wheel steel at high strain rates were conducted using a split Hopkinson tensile bar (SHTB) apparatus, compared to quasi-static tests. Three different types of specimens, which were machined from three different positions (i.e., the rim, web and hub) of a railway wheel, were prepared and examined. The rim specimens were checked to have a higher yield stress and ultimate tensile strength than those web and hub specimens under both quasi-static and dynamic loadings, and the railway wheel steel was demonstrated to be strain rate dependent in dynamic tension. The dynamic tensile fracture surfaces of all the wheel steel specimens are cup-cone-shaped morphology on a macroscopic scale and with the quasi-ductile fracture features on the microscopic scale.
NASA Astrophysics Data System (ADS)
Garkushin, G. V.; Razorenov, S. V.; Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.
2015-02-01
The elastic limit and tensile strength of deformed magnesium alloys Ma2-1 with different structures and textures were measured with the aim of finding a correlation between the spectrum of defects in the material and the resistance to deformation and fracture under quasi-static and dynamic loading conditions. The studies were performed using specimens in the as-received state after high-temperature annealing and specimens subjected to equal-channel angular pressing at a temperature of 250°C. The anisotropy of strength characteristics of the material after shock compression with respect to the direction of rolling of the original alloy was investigated. It was shown that, in contrast to the quasi-static loading conditions, under the shock wave loading conditions, the elastic limit and tensile strength of the magnesium alloy Ma2-1 after equal-channel angular pressing decrease as compared to the specimens in the as-received state.
Tensile characterisation of the aorta across quasi-static to blast loading strain rates
NASA Astrophysics Data System (ADS)
Magnus, Danyal; Proud, William; Haller, Antoine; Jouffroy, Apolline
2017-06-01
The dynamic tensile failure mechanisms of the aorta during Traumatic Aortic Injury (TAI) are poorly understood. In automotive incidents, where the aorta may be under strains of the order of 100/s, TAI is the second largest cause of mortality. In these studies, the proximal descending aorta is the most common site where rupture is observed. In particular, the transverse direction is most commonly affected due to the circumferential orientation of elastin, and hence the literature generally concentrates upon axial samples. This project extends these dynamic studies to the blast loading regime where strain-rates are of the order of 1000/s. A campaign of uniaxial tensile experiments are conducted at quasi-static, intermediate (drop-weight) and high (tensile Split-Hopkinson Pressure Bar) strain rates. In each case, murine and porcine aorta models are considered and the extent of damage assessed post-loading using histology. Experimental data will be compared against current viscoelastic models of the aorta under axial stress. Their applicability across strain rates will be discussed. Using a multi-disciplinary approach, the conditions applied to the samples replicate in vivo conditions, employing a blood simulant-filled tubular specimen surrounded by a physiological solution.
On the dynamic stability of shear deformable beams under a tensile load
NASA Astrophysics Data System (ADS)
Caddemi, S.; Caliò, I.; Cannizzaro, F.
2016-07-01
Loss of stability of beams in a linear static context due to the action of tensile loads has been disclosed only recently in the scientific literature. However, tensile instability in the dynamic regime has been only marginally covered. Several aspects concerning the role of shear deformation on the tensile dynamic instability on continuous and discontinuous beams are still to be addressed. It may appear as a paradox, but also for the case of the universally studied Timoshenko beam model, despite its old origin, frequency-axial load diagrams in the range of negative values of the load (i.e. tensile load) has never been brought to light. In this paper, for the first time, the influence of a conservative tensile axial loads on the dynamic behaviour of the Timoshenko model, according to the Haringx theory, is assessed. It is shown that, under increasing tensile loads, regions of positive/negative fundamental frequency variations can be distinguished. In addition, the beam undergoes eigen-mode changes, from symmetric to anti-symmetric shapes, until tensile instability of divergence type is reached. As a further original contribution on the subject, taking advantage of a new closed form solution, it is shown that the same peculiarities are recovered for an axially loaded Euler-Bernoulli vibrating beam with multiple elastic sliders. This latter model can be considered as the discrete counterpart of the Timoshenko beam-column in which the internal sliders concentrate the shear deformation that in the Timoshenko model is continuously distributed. Original aspects regarding the evolution of the vibration frequencies and the relevant mode shapes with the tensile load value are highlighted.
Parametric Study of Single Bolted Composite Bolted Joint Subjected to Static Tensile Loading
NASA Astrophysics Data System (ADS)
Awadhani, L. V.; Bewoor, Anand, Dr.
2017-08-01
The use of composites is increasing in the engineering applications in order to reduce the weight, building energy efficient systems, designing a suitable material according to the requirements of the application. But at the same time, building a structure is possible only by bonding or bolting or combination of them. There are limitations for the bonding methods and problems with the bolting such as stress concentration near the neighborhood of the bolt hole, tensile or shear failure, delamination etc. Hence the design of a composite bolted structure needs a special attention. This paper focuses on the performance of the composite bolted joint under static tensile loading and the effect of variation in the parameters such as the bolt pitch, plate width, thickness, bolt tightening torque, composite material, coefficient of friction between the bolt and plate etc. A simple spring mass model is used to study the single bolted composite bolted joint. The influencing parameters are identified through the developed model and compared with the results from the literature. The best geometric parameters for the applied load are identified for the composite bolted joints.
NASA Technical Reports Server (NTRS)
Poole, Lamont R.; Councill, Earl L., Jr.
1972-01-01
A series of tests has been conducted to investigate the elastic behavior of Viking-type suspension-line material under dynamic loading conditions. Results indicate that there is a decrease in both rupture-load capability and elongation at rupture as the test strain rate is increased. Preliminary examination of force-strain characteristics indicates that, on the average, the material exhibits some type of viscous effect which results in a greater force being produced, for a particular value of strain, under dynamic loading conditions than that produced under quasi-static loading conditions. A great deal of uncertainty exists in defining a priori the tensile properties of viscoelastic materials, such as nylon or dacron, under dynamic loading conditions. Additional uncertainty enters the picture when woven configurations such as suspension,line material are considered. To eliminate these uncertainties, with respect to the Viking parachute configuration, a test program has been conducted to obtain data on the tensile properties of Viking-type suspension-line material over a wide range of strain rates. Based on preliminary examination of these data, the following conclusions can be drawn: 1. Material rupture-load capability decreases as strain-rate is increased. At strain rates above 75 percent/sec, no rupture loads were observed which would meet the minimum tensile strength specification of 880 pounds. 2. The material, on the average, exhibits some type of viscous effect which, for a particular value of strain, produces a greater load under dynamic loading conditions than that produced under quasi-static loading conditions.
Reinforcement of composite laminate free edges with U-shaped caps
NASA Technical Reports Server (NTRS)
Howard, W. E.; Gossard, T., Jr.; Jones, R. M.
1986-01-01
Generalized plane strain finite element analysis is used to predict reduction of interlaminar normal stresses when a U-shaped cap is bonded to the edge of a laminate. Three-dimensional composite material failure criteria are used in a progressive laminate failure analysis to predict failure loads of laminates with different edge cap designs. In an experimental program, symmetric 11-layer graphite-epoxy laminates with a one-layer cap of Kevlar-epoxy cloth are shown to be 130 to 140 percent stronger than uncapped laminates under static tensile and tension-tension fatigue loading. In addition, the coefficient of variation of the static tensile failure load decreases from 24 to 8 percent when edge caps are added. The predicted failure load calculated with the finite element results is 10 percent lower than the actual failure load. For both capped and uncapped laminates, actual failure loads are much lower than those predicted using classical lamination theory stresses and a two-dimensional failure criterion. Possible applications of the free edge reinforcement concept are described, and future research is suggested.
Failure of a laminated composite under tension-compression fatigue loading
NASA Technical Reports Server (NTRS)
Rotem, A.; Nelson, H. G.
1989-01-01
The fatigue behavior of composite laminates under tension-compression loading is analyzed and compared with behavior under tension-tension and compression-compression loading. It is shown that for meaningful fatigue conditions, the tension-compression case is the dominant one. Both tension and compression failure modes can occur under the reversed loading, and failure is dependent on the specific lay-up of the laminate and the difference between the tensile static strength and the absolute value of the compressive static strength. The use of a fatigue failure envelope for determining the fatigue life and mode of failure is proposed and demonstrated.
Hempel, Nico; Bunn, Jeffrey R.; Nitschke-Pagel, Thomas; ...
2017-02-02
This research is dedicated to the experimental investigation of the residual stress relaxation in girth-welded pipes due to quasi-static bending loads. Ferritic-pearlitic steel pipes are welded with two passes, resulting in a characteristic residual stress state with high tensile residual stresses at the weld root. Also, four-point bending is applied to generate axial load stress causing changes in the residual stress state. These are determined both on the outer and inner surfaces of the pipes, as well as in the pipe wall, using X-ray and neutron diffraction. Focusing on the effect of tensile load stress, it is revealed that notmore » only the tensile residual stresses are reduced due to exceeding the yield stress, but also the compressive residual stresses for equilibrium reasons. Furthermore, residual stress relaxation occurs both parallel and perpendicular to the applied load stress.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hempel, Nico; Bunn, Jeffrey R.; Nitschke-Pagel, Thomas
This research is dedicated to the experimental investigation of the residual stress relaxation in girth-welded pipes due to quasi-static bending loads. Ferritic-pearlitic steel pipes are welded with two passes, resulting in a characteristic residual stress state with high tensile residual stresses at the weld root. Also, four-point bending is applied to generate axial load stress causing changes in the residual stress state. These are determined both on the outer and inner surfaces of the pipes, as well as in the pipe wall, using X-ray and neutron diffraction. Focusing on the effect of tensile load stress, it is revealed that notmore » only the tensile residual stresses are reduced due to exceeding the yield stress, but also the compressive residual stresses for equilibrium reasons. Furthermore, residual stress relaxation occurs both parallel and perpendicular to the applied load stress.« less
High strain rate and quasi-static tensile behaviour of Ti-6Al-4V after cyclic damage
NASA Astrophysics Data System (ADS)
Galán López, J.; Verleysen, P.; Degrieck, J.
2012-08-01
It is common that energy absorbing structural elements are subjected to a number of loading cycles before a crash event. Several studies have shown that previous fatigue can significantly influence the tensile properties of some materials, and hence the behaviour of structural elements made of them. However, when the capacity of absorbing energy of engineering materials is determined, fresh material without any fatigue damage is most often used. This study investigates the effect of fatigue damage on the dynamic tensile properties of Ti-6Al-4V in thin-sheet form. Results are completed with tests at quasi-static strain rates and observations of the fracture surfaces, and compared with results obtained from other alloys and steel grades. The experiments show that the dynamic properties of Ti-6Al-4V are not affected by a number of fatigue loading cycles high enough to significantly reduce the energy absorbing capabilities of EDM machined samples.
NASA Astrophysics Data System (ADS)
Zhuang, Weimin; Ao, Wenhong
2018-03-01
Damage propagation induced failure is a predominant damage mechanism. This study is aimed at assessing the damage state and damage propagation induced failure with different stacking angles, of woven carbon fiber/epoxy laminates subjected to quasi-static tensile and bending load. Different stages of damage processing and damage behavior under the bending load are investigated by Scanning Electron Microscopy (SEM). The woven carbon fiber/epoxy laminates which are stacked at six different angles (0°, 15°, 30°, 45°, 60°, 75°) with eight plies have been analyzed: [0]8, [15]8, [30]8, [45]8, [60]8, [75]8. Three-point bending test and quasi-static tensile test are used in validating the woven carbon fiber/epoxy laminates’ mechanical properties. Furthermore, the damage propagation and failure modes observed under flexural loading is correlated with flexural force and load-displacement behaviour respectively for the laminates. The experimental results have indicated that [45]8 laminate exhibits the best flexural performance in terms of energy absorption duo to its pseudo-ductile behaviour but the tensile strength and flexural strength drastically decreased compared to [0]8 laminate. Finally, SEM micrographs of specimens and fracture surfaces are used to reveal the different types of damage of the laminates with different stacking angles.
NASA Astrophysics Data System (ADS)
Liu, J. X.; Deng, S. C.; Liang, N. G.
2008-02-01
Concrete is heterogeneous and usually described as a three-phase material, where matrix, aggregate and interface are distinguished. To take this heterogeneity into consideration, the Generalized Beam (GB) lattice model is adopted. The GB lattice model is much more computationally efficient than the beam lattice model. Numerical procedures of both quasi-static method and dynamic method are developed to simulate fracture processes in uniaxial tensile tests conducted on a concrete panel. Cases of different loading rates are compared with the quasi-static case. It is found that the inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, an unrealistic result will be obtained if a fracture process including unstable cracking is simulated by the quasi-static procedure.
Effect of stress ratio on the fatigue behaviour of glass/epoxy composite
NASA Astrophysics Data System (ADS)
Syayuthi, A. R. A.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Basaruddin, K. S.; Peng, T. L.
2017-10-01
The effect of stress ratio on the fatigue behaviour of the GFRE composite has been investigated. The glass fibre reinforced epoxy (GFRE) composite plates were fabricated using vacuum infusion method. Static tensile was performed in accordance with the ASTM D5766 standard, and the cyclic test was conducted according to ASTM D3479 with three different stress ratio, R = 0, 0.5, -1. Static tensile tests were carried out to determine the ultimate strength of this composite. Subsequently, fatigue tests loads ranging from 30% to 90% of the ultimate load were applied to each specimen. The S-N curve of different stress ratio loading of fibreglass/epoxy composites was then established. The results show that the number of cycles to failure increases as the loading is decreased. The specimens for fatigue tests loads 30% at R = 0 and -1 recorded the highest number of cycles at 2 million cycles. The results obtained from this test indicated a significant life reduction for R = -1 compared with the tension-tension loading, with the life reduction for R = -1 being greatest. The fatigue behaviour of the GFRE composite materials is not only influenced by the percentage of fatigue tests load but with different of stress ratio.
NASA Astrophysics Data System (ADS)
Kumarasamy, S.; Shukur Zainol Abidin, M.; Abu Bakar, M. N.; Nazida, M. S.; Mustafa, Z.; Anjang, A.
2018-05-01
In this paper, the tensile performance of glass fiber reinforced polymer (GFRP) composites at high and low temperature was experimentally evaluated. GFRP laminates were manufactured using the wet hand lay-up assisted by vacuum bag, which has resulted in average fibre volume fraction of 0.45. Using simultaneous heating/cooling and loading, glass fiber epoxy and polyester laminates were evaluated for their mechanical performance in static tensile loading. In the elevated temperature environment test, the tension mechanical properties; stress and modulus were reduced with increasing temperature from 25°C to 80°C. Results of low temperature environment from room temperature to a minimum temperature of -20°C, indicated that there is no considerable effect on the tensile strength, however a slight decrease of tensile modulus were observed on the GFRP laminates. The results obtained from the research highlight the structural survivability on tensile properties at low and high temperature of the GFRP laminates.
Deformation and failure mechanisms of graphite/epoxy composites under static loading
NASA Technical Reports Server (NTRS)
Clements, L. L.
1981-01-01
The mechanisms of deformation and failure of graphite epoxy composites under static loading were clarified. The influence of moisture and temperature upon these mechanisms were also investigated. Because the longitudinal tensile properties are the most critical to the performance of the composite, these properties were investigated in detail. Both ultimate and elastic mechanical properties were investigated, but the study of mechanisms emphasized those leading to failure of the composite. The graphite epoxy composite selected for study was the system being used in several NASA sponsored flight test programs.
Fatigue Lifetime of Ceramic Matrix Composites at Intermediate Temperature by Acoustic Emission
Racle, Elie; Godin, Nathalie; Reynaud, Pascal; Fantozzi, Gilbert
2017-01-01
The fatigue behavior of a Ceramic Matrix Composite (CMC) at intermediate temperature under air is investigated. Because of the low density and the high tensile strength of CMC, they offer a good technical solution to design aeronautical structural components. The aim of the present study is to compare the behavior of this composite under static and cyclic loading. Comparison between incremental static and cyclic tests shows that cyclic loading with an amplitude higher than 30% of the ultimate tensile strength has significant effects on damage and material lifetimes. In order to evaluate the remaining lifetime, several damage indicators, mainly based on the investigation of the liberated energy, are introduced. These indicators highlight critical times or characteristic times, allowing an evaluation of the remaining lifetime. A link is established with the characteristic time around 25% of the total test duration and the beginning of the matrix cracking during cyclic fatigue. PMID:28773019
Mechanical Properties of Transgenic Silkworm Silk Under High Strain Rate Tensile Loading
NASA Astrophysics Data System (ADS)
Chu, J.-M.; Claus, B.; Chen, W.
2017-12-01
Studies have shown that transgenic silkworm silk may be capable of having similar properties of spider silk while being mass-producible. In this research, the tensile stress-strain response of transgenic silkworm silk fiber is systematically characterized using a quasi-static load frame and a tension Kolsky bar over a range of strain-rates between 10^{-3} and 700/s. The results show that transgenic silkworm silk tends to have higher overall ultimate stress and failure strain at high strain rate (700/s) compared to quasi-static strain rates, indicating rate sensitivity of the material. The failure strain at the high strain rate is higher than that of spider silk. However, the stress levels are significantly below that of spider silk, and far below that of high-performance fiber. Failure surfaces are examined via scanning electron microscopy and reveal that the failure modes are similar to those of spider silk.
Fatigue of concrete subjected to biaxial loading in the tension region
NASA Astrophysics Data System (ADS)
Subramaniam, Kolluru V. L.
Rigid airport pavement structures are subjected to repeated high-amplitude loads resulting from passing aircraft. The resulting stress-state in the concrete is a biaxial combination of compression and tension. It is of interest to model the response of plain concrete to such loading conditions and develop accurate fatigue-based material models for implementation in mechanistic pavement design procedures. The objective of this work is to characterize the quasi-static and low-cycle fatigue response of concrete subjected to biaxial stresses in the tensile-compression-tension (t-C-T) region, where the principal tensile stress is larger in magnitude than the principal compressive stress. An experimental investigation of material behavior in the biaxial t-C-T region is conducted. The experimental setup consists of the following test configurations: (a) notched concrete beams tested in three-point bend configuration, and (b) hollow concrete cylinders subjected to torsion with or without superimposed axial tensile force. The damage imparted to the material is examined using mechanical measurements and an independent nondestructive evaluation (NDE) technique based on vibration measurements. The failure of concrete in t-C-T region is shown to be a local phenomenon under quasi-static and fatigue loading, wherein the specimen fails owing to a single crack. The crack propagation is studied using the principles of fracture mechanics. It is shown that the crack propagation resulting from the t-C-T loading can be predicted using mode I fracture parameters. It is observed that crack growth in constant amplitude fatigue loading is a two-phase process: a deceleration phase followed by an acceleration stage. The quasi-static load envelope is shown to predict the crack length at fatigue failure. A fracture-based fatigue failure criterion is proposed, wherein the fatigue failure can be predicted using the critical mode I stress intensity factor. A material model for the damage evolution during fatigue loading of concrete in terms of crack propagation is proposed. The crack growth acceleration stage is shown to follow Paris law. The model parameters obtained from uniaxial fatigue tests are shown to be sufficient for predicting the considered biaxial fatigue response.
NASA Astrophysics Data System (ADS)
Hojo, M.; Osawa, K.; Adachi, T.; Inoue, Y.; Osamura, K.; Ochiai, S.; Ayai, N.; Hayashi, K.
2010-11-01
Tensile strain tolerance of the critical current in (Bi,Pb)2Sr2Ca2Cu3Ox (Bi2223) composite superconductor is dramatically improved when the tape is laminated with stainless steel. For practical applications, it is important to understand whether this reinforcement by lamination is effective under fatigue loading. In the present study, we carried out fatigue tests in LN2 and measured the critical current at the specific fatigue cycles to clarify the strain tolerance of the critical current in stainless steel-laminated drastically innovative Bi2223 (DI-BSCCO®) tapes. The fatigue tests were carried out using a computer-controlled 10 kN servo-hydraulic fatigue testing machine with a load cell capacity of 2.5 kN. Tests under static loading showed that the irreversible stress at which the critical current is reduced by 1% from the original value (tensile stress at Ic/Ic0 = 0.99) was 315 MPa when measured at unloading state. The present fatigue tests results indicated that the critical current was maintained at over 98% of the original value at unloading state after stress cycles of 106 when the static irreversible stress was selected as the maximum stress under fatigue loading. Thus, laminated DI-BSCCO tapes showed excellent mechanical properties even under fatigue loading.
New Polylactic Acid Composites Reinforced with Artichoke Fibers
Botta, Luigi; Fiore, Vincenzo; Scalici, Tommaso; Valenza, Antonino; Scaffaro, Roberto
2015-01-01
In this work, artichoke fibers were used for the first time to prepare poly(lactic acid) (PLA)-based biocomposites. In particular, two PLA/artichoke composites with the same fiber loading (10% w/w) were prepared by the film-stacking method: the first one (UNID) reinforced with unidirectional long artichoke fibers, the second one (RANDOM) reinforced by randomly-oriented long artichoke fibers. Both composites were mechanically characterized in tensile mode by quasi-static and dynamic mechanical tests. The morphology of the fracture surfaces was analyzed through scanning electron microscopy (SEM). Moreover, a theoretical model, i.e., Hill’s method, was used to fit the experimental Young’s modulus of the biocomposites. The quasi-static tensile tests revealed that the modulus of UNID composites is significantly higher than that of the neat PLA (i.e., ~40%). Moreover, the tensile strength is slightly higher than that of the neat matrix. The other way around, the stiffness of RANDOM composites is not significantly improved, and the tensile strength decreases in comparison to the neat PLA.
Some observations on loss of static strength due to fatigue cracks
NASA Technical Reports Server (NTRS)
Illg, Walter; Hardrath, Herbert F
1955-01-01
Static tensile tests were performed on simple notched specimens containing fatigue cracks. Four types of aluminum alloys were investigated: 2024-T3(formerly 24S-T3) and 7075-T6(formerly 75S-T6) in sheet form, and 2024-T4(formerly 24S-T4) and 7075-T6(formerly 75S-T6) in extruded form. The cracked specimens were tested statically under four conditions: unmodified and with reduced eccentricity of loading by three methods. Results of static tests on C-46 wings containing fatigue cracks are also reported.
Tensile Deformation and Adiabatic Heating in Post-Yield Response of Polycarbonate
2015-11-01
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) November 2015 2...to investigate the rate-dependent mechanical response from quasi-static to intermediate (~5/s) strain rates using a traditional servo -hydraulic load...less than 7-mm thickness) These specimens were loaded in tension using an Instron servo -hydraulic test frame. Far-field load and stress measurements
2013-08-01
The SDM was subjected to forced small (0.5) sinusoidal pitching oscillations and derivatives were computed from measured model loads, angles of... aluminium alloy when subjected to both tensile and torsional loading. He joined the Aeronautical Research Laboratories (now called the Defence...oscillations and derivatives were computed from measured model loads, angles of attack, reduced frequency of oscillation and aircraft geometrical parameters
Multiscale Static Analysis of Notched and Unnotched Laminates Using the Generalized Method of Cells
NASA Technical Reports Server (NTRS)
Naghipour Ghezeljeh, Paria; Arnold, Steven M.; Pineda, Evan J.; Stier, Bertram; Hansen, Lucas; Bednarcyk, Brett A.; Waas, Anthony M.
2016-01-01
The generalized method of cells (GMC) is demonstrated to be a viable micromechanics tool for predicting the deformation and failure response of laminated composites, with and without notches, subjected to tensile and compressive static loading. Given the axial [0], transverse [90], and shear [+45/-45] response of a carbon/epoxy (IM7/977-3) system, the unnotched and notched behavior of three multidirectional layups (Layup 1: [0,45,90,-45](sub 2S), Layup 2: [0,60,0](sub 3S), and Layup 3: [30,60,90,-30, -60](sub 2S)) are predicted under both tensile and compressive static loading. Matrix nonlinearity is modeled in two ways. The first assumes all nonlinearity is due to anisotropic progressive damage of the matrix only, which is modeled, using the multiaxial mixed-mode continuum damage model (MMCDM) within GMC. The second utilizes matrix plasticity coupled with brittle final failure based on the maximum principle strain criteria to account for matrix nonlinearity and failure within the Finite Element Analysis--Micromechanics Analysis Code (FEAMAC) software multiscale framework. Both MMCDM and plasticity models incorporate brittle strain- and stress-based failure criteria for the fiber. Upon satisfaction of these criteria, the fiber properties are immediately reduced to a nominal value. The constitutive response for each constituent (fiber and matrix) is characterized using a combination of vendor data and the axial, transverse, and shear responses of unnotched laminates. Then, the capability of the multiscale methodology is assessed by performing blind predictions of the mentioned notched and unnotched composite laminates response under tensile and compressive loading. Tabulated data along with the detailed results (i.e., stress-strain curves as well as damage evolution states at various ratios of strain to failure) for all laminates are presented.
NASA Technical Reports Server (NTRS)
Peck, Ann W.
1998-01-01
As composites are introduced into more complex structures with out-of-plane loadings, a better understanding is needed of the out-of-plane, matrix-dominated failure mechanisms. This work investigates the transverse tension fatigue characteristics of IM6/3501 composite materials. To test the 90 degree laminae, a three-point bend test was chosen, potentially minimizing handling and gripping issues associated with tension tests. A finite element analysis was performed of a particular specimen configuration to investigate the influence of specimen size on the stress distribution for a three-point bend test. Static testing of 50 specimens of 9 different sized configurations produced a mean transverse tensile strength of 61.3 Mpa (8.0 ksi). The smallest configuration (10.2 mm wide, Span-to-thickness ratio of 3) consistently exhibited transverse tensile failures. A volume scale effect was difficult to discern due to the large scatter of the data. Static testing of 10 different specimens taken from a second panel produced a mean transverse tensile strength of 82.7 Mpa (12.0 ksi). Weibull parameterization of the data was possible, but due to variability in raw material and/or manufacturing, more replicates are needed for greater confidence. Three-point flex fatigue testing of the smallest configuration was performed on 59 specimens at various levels of the mean static transverse tensile strength using an R ratio of 0.1 and a frequency of 20 Hz. A great deal of scatter was seen in the data. The majority of specimens failed near the center loading roller. To determine whether the scatter in the fatigue data is due to variability in raw material and/or the manufacturing process, additional testing should be performed on panels manufactured from different sources.
NASA Astrophysics Data System (ADS)
Xu, Yuan; Dai, Feng
2018-03-01
A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.
NASA Astrophysics Data System (ADS)
Götz, Benedict; Platz, Roland; Melz, Tobias
2018-03-01
In this paper, vibration attenuation of a beam with circular cross-section by resonantly shunted piezo-elastic supports is experimentally investigated for varying axial tensile and compressive beam loads. The beam's first mode resonance frequency, the general electromechanical coupling coefficient and static transducer capacitance are analyzed for varying axial loads. All three parameter values are obtained from transducer impedance measurements on an experimental test setup. Varying axial beam loads manipulate the beam's lateral bending stiffness and, thus, lead to a detuning of the resonance frequencies. Furthermore, they affect the general electromechanical coupling coefficient of transducer and beam, an important modal quantity for shunt-damping, whereas the static transducer capacitance is nearly unaffected. Frequency transfer functions of the beam with one piezoe-elastic support either shunted to an RL-shunt or to an RL-shunt with negative capacitance, the RLC-shunt, are compared for varying axial loads. It is shown that the beam vibration attenuation with the RLC-shunt is less influenced by varying axial beam loads and, therefore, is more robust against detuning.
The Assessing of the Failure Behavior of Glass/Polyester Composites Subject to Quasi Static Stresses
NASA Astrophysics Data System (ADS)
Stanciu, M. D.; Savin, A.; Teodorescu-Drăghicescu, H.
2017-06-01
Using glass fabric reinforced composites for structure of wind turbine blades requires high mechanical strengths especially to cyclic stresses. Studies have shown that approximately 50% of composite material failure occurs because of fatigue. Composites behavior to cyclic stresses involves three stages regarding to stiffness variation: the first stage is characterized by the accelerated decline of stiffness with micro-cracks, the second stage - a slight decrease of stiffness characterized by the occurrence of delamination and third stage characterized by higher decreases of resistance and occurrence of fracture thereof. The aim of the paper is to analyzed the behavior of composites reinforced with glass fibers fabric type RT500 and polyester resin subjected to tensile cyclic loading with pulsating quasi-static regime with asymmetry coefficient R = 0. The samples were tested with the universal tensile machine LS100 Lloyd Instruments Plus, with a load capacity of 100 kN. The load was applied with different speeds of 1 mm/min, 10 mm/min and 20 mm/min. After tests, it was observed that the greatest permanent strains were recorded in the first load cycles when the total energy storage by material was lost due to internal friction. With increasing number of cycles, the glass/polyester composites ability to store energy of deformation decreases, the flow phenomenon characterized by large displacements to smaller loading forces appearing.
Design procedures for fiber composite structural components - Rods, beams, and beam columns
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1984-01-01
Step by step procedures are described which are used to design structural components (rods, columns, and beam columns) subjected to steady state mechanical loads and hydrothermal environments. Illustrative examples are presented for structural components designed for static tensile and compressive loads, and fatigue as well as for moisture and temperature effects. Each example is set up as a sample design illustrating the detailed steps that are used to design similar components.
Design procedures for fiber composite structural components: Rods, columns and beam columns
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1983-01-01
Step by step procedures are described which are used to design structural components (rods, columns, and beam columns) subjected to steady state mechanical loads and hydrothermal environments. Illustrative examples are presented for structural components designed for static tensile and compressive loads, and fatigue as well as for moisture and temperature effects. Each example is set up as a sample design illustrating the detailed steps that are used to design similar components.
Freedman, Benjamin R.; Zuskov, Andrey; Sarver, Joseph J.; Buckley, Mark R.; Soslowsky, Louis J.
2015-01-01
The complex structure of tendons relates to their mechanical properties. Previous research has associated the waviness of collagen fibers (crimp) during quasi-static tensile loading to tensile mechanics, but less is known about the role of fatigue loading on crimp properties. In this study (IACUC approved), mouse patellar tendons were fatigue loaded while an integrated plane polariscope simultaneously assessed crimp properties. We demonstrate a novel structural mechanism whereby tendon crimp amplitude and frequency are altered with fatigue loading. In particular, fatigue loading increased the crimp amplitude across the tendon width and length, and these structural alterations were shown to be both region and load dependent. The change in crimp amplitude was strongly correlated to mechanical tissue laxity (defined as the ratio of displacement and gauge length relative to the first cycle of fatigue loading assessed at constant load throughout testing), at all loads and regions evaluated. Together, this study highlights the role of fatigue loading on tendon crimp properties as a function of load applied and region evaluated, and offers an additional structural mechanism for mechanical alterations that may lead to ultimate tendon failure. PMID:25773654
Effects of mechanical and thermal cycling on composite and hybrid laminates with residual stresses
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Liber, T.
1977-01-01
The effects of tensile load cycling and thermal cycling on residual stiffness and strength properties of the following composite and hybrid angle-ply laminates were studied: boron/epoxy, boron/polyimide, graphite/low-modulus epoxy, graphite/high-modulus epoxy, graphite/polyimide, S-glass/epoxy, graphite/Kevlar 49/epoxy, and graphite/S-glass/epoxy. Specimens of the first six types were mechanically cycled up to 90% of static strength. Those that survived 10 million cycles were tested statically to failure, and no significant changes in residual strength and modulus were noted. Specimens of all types were subjected to thermal cycling between room temperature and 411 K for the epoxy-matrix composites and 533 K for the polyimide-matrix composites. The residual strength and stiffness remained largely unchanged, except for the graphite/low-modulus epoxy, which showed reductions in both of approximately 35%. When low-temperature thermal cycling under tensile load was applied, there was a noticeable reduction in modulus and strength in the graphite/low-modulus epoxy and some strength reduction in the S-glass/epoxy.
NASA Astrophysics Data System (ADS)
Sivagurunathan, Rubentheran; Lau Tze Way, Saijod; Sivagurunathan, Linkesvaran; Yaakob, Mohd. Yuhazri
2018-01-01
The usage of composite materials have been improving over the years due to its superior mechanical properties such as high tensile strength, high energy absorption capability, and corrosion resistance. In this present study, the energy absorption capability of circular jute/epoxy composite tubes were tested and evaluated. To induce the progressive crushing of the composite tubes, four different types of triggering mechanisms were used which were the non-trigger, single chamfered trigger, double chamfered trigger and tulip trigger. Quasi-static axial loading test was carried out to understand the deformation patterns and the load-displacement characteristics for each composite tube. Besides that, the influence of energy absorption, crush force efficiency, peak load, mean load and load-displacement history were examined and discussed. The primary results displayed a significant influence on the energy absorption capability provided that stable progressive crushing occurred mostly in the triggered tubes compared to the non-triggered tubes. Overall, the tulip trigger configuration attributed the highest energy absorption.
Statistical characterization of the fatigue behavior of composite lamina
NASA Technical Reports Server (NTRS)
Yang, J. N.; Jones, D. L.
1979-01-01
A theoretical model was developed to predict statistically the effects of constant and variable amplitude fatigue loadings on the residual strength and fatigue life of composite lamina. The parameters in the model were established from the results of a series of static tensile tests and a fatigue scan and a number of verification tests were performed. Abstracts for two other papers on the effect of load sequence on the statistical fatigue of composites are also presented.
Twinning behaviors of a rolled AZ31 magnesium alloy under multidirectional loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Dewen
The microstructure and texture evolution of an AZ31 magnesium rolled sheet during quasi-static compression at strain rates of 10{sup −3} s{sup −1} has been investigated by in situ electron backscattered diffraction. The influence of the initial and pre-deformed texture on the predominant deformation mechanisms during compression has been examined. It has been found that extensive grain reorientation due to (10 − 12) tensile twinning appeared when compressed along transverse direction. Tensile twin variants were observed under this loading condition, and different variants will cause an effect to the following deformation. Several twinning modes occurred with continuative loading along rolling direction.more » - Highlights: •Twinning behaviors were investigated through in situ multidirectional compressive tests. •Deformation behavior was affected by the twin variants. •Four types of twinning behaviors were observed during deformation process.« less
NASA Astrophysics Data System (ADS)
Kablov, E. N.; Grinevich, A. V.; Lutsenko, A. N.; Erasov, V. S.; Nuzhnyi, G. A.; Gulina, I. V.
2017-04-01
A new type of specimens is proposed to study the fracture kinetics of the metallic materials subjected to a long-term simultaneous action of a tensile load and a corrosive medium. The new design of specimens makes it possible to determine the stress intensity factor at the crack opening fixed by a wedging bolt, to perform investigations in any aggressive medium, and to measure the tensile load on a specimen at any stage of tests. Standard apparatus is used for this purpose. Plate specimens made of structural aluminum alloys 1163T and V95pchT2 are tested. A paradoxical fact of increasing the conventional stress intensity factor of the V95pchT2 alloy during the development of a corrosion crack is revealed.
Modeling damage evolution in a hybrid ceramic matrix composite under static tensile load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonora, N.; Newaz, G.
In this investigation, damage evolution in a unidirectional hybrid ceramic composite made from Nicalon and SiC fibers in a Lithium Aluminosilicate (LAS) glass matrix was studied. The static stress-strain response of the composite exhibited a linear response followed by load drop in a progressive manner. Careful experiments were conducted stopping the tests at various strain levels and using replication technique, scanning and optical microscopy to monitor the evolution of damage in these composites. It was observed that the constituents of the composite failed in a sequential manner at increasing strain levels. The matrix cracks were followed by SiC fiber failuresmore » near ultimate tensile stress. After that, the load drop was associated with progressive failure of the Nicalon fibers. Identification of these failure modes were critical to the development of a concentric cylinder model representing all three constituent phases to predict the constitutive response of the CMC computationally. The strain-to-failure of the matrix and fibers were used to progressively fail the constituents in the model and the overall experimental constitutive response of the CMC was recovered. A strain based analytical representation was developed relating stiffness loss to applied strain. Based on this formulation, damage evolution and its consequence on tensile stress-strain response was predicted for room temperature behavior of hybrid CMCs. The contribution of the current work is that the proposed strain-damage phenomenological model can capture the damage evolution and the corresponding material response for continuous fiber-reinforced CMCs. The modeling approach shows much promise for the complex damage processes observed in hybrid CMCs.« less
Large Deformation Dynamic Bending of Composite Beams
NASA Technical Reports Server (NTRS)
Derian, E. J.; Hyer, M. W.
1986-01-01
Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams tested were 23 in. by 2 in. and generally 30 plies thick. The beams were loaded dynamically with a gravity-driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 300 or 150 off-axis plies occurred in several events. All laminates exhibited bimodular elastic properties. The compressive flexural moduli in some laminates was measured to be 1/2 the tensile flexural modulus. No simple relationship could be found among the measured ultimate failure strains of the different laminate types. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.
NASA Astrophysics Data System (ADS)
Wei, Yan-Peng; Li, Mao-Hui; Yu, Gang; Wu, Xian-Qian; Huang, Chen-Guang; Duan, Zhu-Ping
2012-10-01
The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 and AISI316 L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strain-stress curves at the strain rate around 103 s-1 were obtained by the split Hopkinson tensile bar (SHTB). The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side. However, the strain rate sensitivity has a strong dependence on laser power density. The value of strain rate factor decreases with the increase of laser power density. The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance.
NASA Astrophysics Data System (ADS)
Bittner-Rohrhofer, K.; Humer, K.; Weber, H. W.; Hamada, K.; Sugimoto, M.; Okuno, K.
2002-12-01
The insulation system proposed by the Japanese Home Team for the ITER Toroidal Field coil (TF coil) is a T-glass-fiber/Kapton reinforced epoxy prepreg system. In order to assess the material performance under the actual operating conditions of the coils, the insulation system was irradiated in the TRIGA reactor (Vienna) to a fast neutron fluence of 2×10 22 m -2 ( E>0.1 MeV). After measurements of swelling, all mechanical tests were carried out at 77 K. Tensile and short-beam-shear (SBS) tests were performed under static loading conditions. In addition, tension-tension fatigue experiments up to about 10 6 cycles were made. The laminate swells in the through-thickness direction by 0.86% at the highest dose level. The fatigue tests as well as the static tests do not show significant influences of the irradiation on the mechanical behavior of this composite.
Static aeroelastic deformation of flexible skin for continuous variable trailing-edge camber wing
NASA Astrophysics Data System (ADS)
Liu, Libo; Yin, Weilong; Dai, Fuhong; Liu, Yanju; Leng, Jinsong
2011-03-01
The method for analyzing the static aeroelastic deformation of flexible skin under the air loads was developed. The effect of static aeroelastic deformation of flexible skin on the aerodynamic characteristics of aerofoil and the design parameters of skin was discussed. Numerical results show that the flexible skin on the upper surface of trailing-edge will bubble under the air loads and the bubble has a powerful effect on the aerodynamic pressure near the surface of local deformation. The static aeroelastic deformation of flexible skin significantly affects the aerodynamic characteristics of aerofoil. At small angle of attack, the drag coefficient increases and the lift coefficient decreases. With the increasing angle of attack, the effect of flexible skin on the aerodynamic characteristics of aerofoil is smaller and smaller. The deformation of flexible skin becomes larger and larger with the free-stream velocity increasing. When the free-stream velocity is greater than a value, both of the deformation of flexible skin and the drag coefficient of aerofoil increase rapidly. The maximum tensile strain of flexible skin is increased with consideration of the static aeroelastic deformation.
Ductile Crack Initiation Criterion with Mismatched Weld Joints Under Dynamic Loading Conditions.
An, Gyubaek; Jeong, Se-Min; Park, Jeongung
2018-03-01
Brittle failure of high toughness steel structures tends to occur after ductile crack initiation/propagation. Damages to steel structures were reported in the Hanshin Great Earthquake. Several brittle failures were observed in beam-to-column connection zones with geometrical discontinuity. It is widely known that triaxial stresses accelerate the ductile fracture of steels. The study examined the effects of geometrical heterogeneity and strength mismatches (both of which elevate plastic constraints due to heterogeneous plastic straining) and loading rate on critical conditions initiating ductile fracture. This involved applying the two-parameter criterion (involving equivalent plastic strain and stress triaxiality) to estimate ductile cracking for strength mismatched specimens under static and dynamic tensile loading conditions. Ductile crack initiation testing was conducted under static and dynamic loading conditions using circumferentially notched specimens (Charpy type) with/without strength mismatches. The results indicated that the condition for ductile crack initiation using the two parameter criterion was a transferable criterion to evaluate ductile crack initiation independent of the existence of strength mismatches and loading rates.
Effect of Load History on Fatigue Life.
1980-06-01
emission 166 6.4.4 Edge replication 176 6.4.5 Stiffness monitoring 177 6.4.6 Temperature monitoring 179 6.5 Selection of NDI Techniques for Tasks II and III...composites of T300/5208 and T300/934 in room temperature, laboratory at R = 0.0 139 66 Schematic of acoustic emission event 151 67 Schematic diagram of...acoustic emission system 152 68 Cross section in the 00 direction of a coupon loaded statically to 60% of the Average Ultimate Tensile Strength 158
NASA Astrophysics Data System (ADS)
Ghamgosar, M.; Erarslan, N.
2016-03-01
The development of fracture process zones (FPZ) in the Cracked Chevron Notched Brazilian Disc (CCNBD) monsonite and Brisbane tuff specimens was investigated to evaluate the mechanical behaviour of brittle rocks under static and various cyclic loadings. An FPZ is a region that involves different types of damage around the pre-existing and/or stress-induced crack tips in engineering materials. This highly damaged area includes micro- and meso-cracks, which emerge prior to the main fracture growth or extension and ultimately coalescence to macrofractures, leading to the failure. The experiments and numerical simulations were designed for this study to investigate the following features of FPZ in rocks: (1) ligament connections and (2) microcracking and its coalescence in FPZ. A Computed Tomography (CT) scan technique was also used to investigate the FPZ behaviour in selected rock specimens. The CT scan results showed that the fracturing velocity is entirely dependent on the appropriate amount of fracture energy absorbed in rock specimens due to the change of frequency and amplitudes of the dynamic loading. Extended Finite Element Method (XFEM) was used to compute the displacements, tensile stress distribution and plastic energy dissipation around the propagating crack tip in FPZ. One of the most important observations, the shape of FPZ and its extension around the crack tip, was made using numerical and experimental results, which supported the CT scan results. When the static rupture and the cyclic rupture were compared, the main differences are twofold: (1) the number of fragments produced is much greater under cyclic loading than under static loading, and (2) intergranular cracks are formed due to particle breakage under cyclic loading compared with smooth and bright cracks along cleavage planes under static loading.
Numerical Modelling of Glass Fibre Reinforced Laminates Subjected to a Low Velocity Impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, J. Y.; Guana, Z. W.; Cantwell, W. J.
2010-05-21
This paper presents a series of numerical predictions of the perforation behaviour of glass fibre laminates subjected to quasi-static and low-velocity impact loading. Both shear and tensile failure criteria were used in the finite element models to simulate the post-failure processes via an automatic element removal procedure. The appropriate material properties, obtained through a series of uniaxial tension and bending tests on the composites, were used in the numerical models. Four, eight and sixteen ply glass fibre laminates panels were perforated at quasi-static rates and under low-velocity impact loading. Reasonably good correlation was obtained between the numerical simulations and themore » experimental results, both in terms of the failure modes and the load-deflection relationships before and during the penetration phase. The predicted impact energies of the GFRP panels were compared with the experimental data and reasonable agreement was observed.« less
Deformation behavior and spall fracture of the Hadfield steel under shock-wave loading
NASA Astrophysics Data System (ADS)
Gnyusov, S. F.; Rotshtein, V. P.; Polevin, S. D.; Kitsanov, S. A.
2011-03-01
Comparative studies of regularities in plastic deformation and fracture of the Hadfield polycrystalline steel upon quasi-static tension, impact failure, and shock-wave loading with rear spall are performed. The SINUS-7 accelerator was used as a shock-wave generator. The electron beam parameters of the accelerator were the following: maximum electron energy was 1.35 MeV, pulse duration at half-maximum was 45 ns, maximum energy density on a target was 3.4·1010 W/cm2, shock-wave amplitude was ~20 GPa, and strain rate was ~106 s-1. It is established that the failure mechanism changes from ductile transgranular to mixed ductile-brittle intergranular one when going from quasi-static tensile and Charpy impact tests to shock-wave loading. It is demonstrated that a reason for the intergranular spallation is the strain localization near the grain boundaries containing a carbide interlayer.
Lietaert, Karel; Cutolo, Antonio; Boey, Dries; Van Hooreweder, Brecht
2018-03-21
Mechanical performance of additively manufactured (AM) Ti6Al4V scaffolds has mostly been studied in uniaxial compression. However, in real-life applications, more complex load conditions occur. To address this, a novel sample geometry was designed, tested and analyzed in this work. The new scaffold geometry, with porosity gradient between the solid ends and scaffold middle, was successfully used for quasi-static tension, tension-tension (R = 0.1), tension-compression (R = -1) and compression-compression (R = 10) fatigue tests. Results show that global loading in tension-tension leads to a decreased fatigue performance compared to global loading in compression-compression. This difference in fatigue life can be understood fairly well by approximating the local tensile stress amplitudes in the struts near the nodes. Local stress based Haigh diagrams were constructed to provide more insight in the fatigue behavior. When fatigue life is interpreted in terms of local stresses, the behavior of single struts is shown to be qualitatively the same as bulk Ti6Al4V. Compression-compression and tension-tension fatigue regimes lead to a shorter fatigue life than fully reversed loading due to the presence of a mean local tensile stress. Fractographic analysis showed that most fracture sites were located close to the nodes, where the highest tensile stresses are located.
NASA Astrophysics Data System (ADS)
Haentzsche, Eric; Mueller, Ralf; Huebner, Matthias; Ruder, Tristan; Unger, Reimar; Nocke, Andreas; Cherif, Chokri
2016-10-01
Based on in situ strain sensors consisting of piezo-resistive carbon filament yarns (CFYs), which have been successfully integrated into textile reinforcement structures during their textile-technological manufacturing process, a continuous load of fibre-reinforced plastic (FRP) components has been realised. These sensors are also suitable for structural health monitoring (SHM) applications. The two-dimensional sensor layout is made feasible by the usage of a modular warp yarn path manipulation unit. Using a functional model of a small wind turbine blade in thermoset composite design, the sensor function for basic SHM applications (e.g. static load monitoring) are demonstrated. Any mechanical loads along the pressure or suction side of the wind turbine blade can be measured and calculated via a correlative change in resistance of the CFYs within the textile reinforcement plies. Performing quasi-static load tests on both tensile specimen and full-scale wind turbine blade, elementary results have been obtained concerning electro-mechanical behaviour and spatial resolution of global and even local static stresses according to the CFY sensor integration length. This paper demonstrates the great potential of textile-based and textile-technological integrated sensors in reinforcement structures for future SHM applications of FRPs.
The dynamic properties behavior of high strength concrete under different strain rate
NASA Astrophysics Data System (ADS)
Abdullah, Hasballah; Husin, Saiful; Umar, Hamdani; Rizal, Samsul
2005-04-01
This paper present a number experimental data and numerical technique used in the dynamic behavior of high strength concrete. A testing device is presented for the experimental study of dynamic behavior material under high strain rates. The specimen is loaded by means of a high carbon steel Hopkinson pressure bar (40 mm diameter, 3000 mm long input bar and 1500 mm long out put bar) allowing for the testing of specimen diameter is large enough in relation to the size of aggregates. The other method also proposed for measuring tensile strength, the measurement method based on the superposition and concentration of tensile stress wave reflected both from the free-free ends of striking bar and the specimen bar. The compression Hopkinson bar test, the impact tensile test of high strength concrete bars are performed, together with compression static strength test. In addition, the relation between break position under finite element simulation and impact tensile strength are examined. The three-dimensional simulation of the specimen under transient loading are presented and comparisons between the experimental and numerical simulation on strain rate effects of constitutive law use in experimental are study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakubowska, Paulina; Klozinski, Arkadiusz
The aim of this work was to determine the possibility of thermovision technique usage for estimating thermal properties of ternary highly filled composites (PE-MD/iPP/CaCO{sub 3}) and polymer blends (PE-MD/iPP) during mechanical measurements. The ternary, polyolefin based composites that contained the following amounts of calcium carbonate: 48, 56, and 64 wt % were studied. All materials were applying under tensile cyclic loads (x1, x5, x10, x20, x50, x100, x500, x1000). Simultaneously, a fully radiometric recording, using a TESTO infrared camera, was created. After the fatigue process, all samples were subjected to static tensile test and the maximum temperature at break wasmore » also recorded. The temperature values were analyzed in a function of cyclic loads and the filler content. The changes in the Young’s modulus values were also investigated.« less
Evaluation of composite flattened tubular specimen. [fatigue tests
NASA Technical Reports Server (NTRS)
Liber, T.; Daniel, I. M.
1978-01-01
Flattened tubular specimens of graphite/epoxy, S-glass/epoxy, Kevlar-49/epoxy, and graphite/S-glass/epoxy hybrid materials were evaluated under static and cyclic uniaxial tensile loading and compared directly with flat coupon data of the same materials generated under corresponding loading conditions. Additional development for the refinement of the flattened specimen configuration and fabrication was required. Statically tested graphite/epoxy, S-glass/epoxy, and Kevlar 49/epoxy flattened tube specimens exhibit somewhat higher average strengths than their corresponding flat coupons. Flattened tube specimens of the graphite/S-glass/epoxy hybrid and the graphite/epoxy flattened tube specimens failed in parasitic modes with consequential lower strength than the corresponding flat coupons. Fatigue tested flattened tube specimens failed in parasitic modes resulting in lower fatigue strengths than the corresponding flat coupons.
Graphene nanoplatelet-reinforced silicone for the valvular prosthesis application.
Lordeus, Makensley; Estrada, Angie; Stewart, Danique; Dua, Rupak; Zhang, Cheng; Agarwal, Arvind; Ramaswamy, Sharan
2015-01-01
Newly developed elastomer heart valves have been shown to better re-create the flow physics of native heart valves, resulting in preferable hemodynamic responses. This emergence has been motivated in part by the recent introduction of percutaneous valve approaches in the clinic. Unfortunately, elastomers such as silicone are prone to structural failure, which drastically limits their applicability the development of a valve prosthesis. To produce a mechanically more robust silicone substrate, we reinforced it with graphene nanoplatelets (GNPs). The nanoplatelets were introduced into a two-part silicone mixture and allowed to cure. Cytotoxicity and hemocompatibility tests revealed that the incorporation of GNPs did not adversely affect cell proliferation or augment adhesion of platelets on the surface of the composite materials. Static mechanical characterization by loading in the tensile direction subsequently showed no observable effect when graphene was utilized. However, cyclic tensile testing (0.05 Hz) demonstrated that silicone samples containing 250 mg graphene/L of uncured silicone significantly improved (p<0.05) material fatigue properties compared with silicone-only controls. This finding suggests that for the silicone-graphene composite, static loads were principally transferred onto the matrix. On the other hand, in cyclic loading conditions, the GNPs were recruited effectively to delay failure of the bulk material. We conclude that application of GNPs to extend silicone durability is useful and warrants further evaluation at the trileaflet valve configuration.
Effect of Elastin Digestion on the Quasi-static Tensile Response of Medial Collateral Ligament
Henninger, Heath B.; Underwood, Clayton J.; Romney, Steven J.; Davis, Grant L.; Weiss, Jeffrey A.
2014-01-01
Elastin is a structural protein that provides resilience to biological tissues. We examined the contributions of elastin to the quasi-static tensile response of porcine medial collateral ligament through targeted disruption of the elastin network with pancreatic elastase. Elastase concentration and treatment time were varied to determine a dose response. Whereas elastin content decreased with increasing elastase concentration and treatment time, the change in peak stress after cyclic loading reached a plateau above 1 U/ml elastase and 6 hr treatment. For specimens treated with 2 U/ml elastase for 6 hr, elastin content decreased approximately 35%. Mean peak tissue strain after cyclic loading (4.8%, p≥0.300), modulus (275 MPa, p≥0.114) and hysteresis (20%, p≥0.553) were unaffected by elastase digestion, but stress decreased significantly after treatment (up to 2 MPa, p≤0.049). Elastin degradation had no effect on failure properties, but tissue lengthened under the same pre-stress. Stiffness in the linear region was unaffected by elastase digestion, suggesting that enzyme treatment did not disrupt collagen. These results demonstrate that elastin primarily functions in the toe region of the stress-strain curve, yet contributes load support in the linear region. The increase in length after elastase digestion suggests that elastin may pre-stress and stabilize collagen crimp in ligaments. PMID:23553827
Simple green approach to reinforce natural rubber with bacterial cellulose nanofibers.
Trovatti, Eliane; Carvalho, Antonio J F; Ribeiro, Sidney J L; Gandini, Alessandro
2013-08-12
Natural rubber (NR) is a renewable polymer with a wide range of applications, which is constantly tailored, further increasing its utilizations. The tensile strength is one of its most important properties susceptible of being enhanced by the simple incorporation of nanofibers. The preparation and characterization of natural-rubber based nanocomposites reinforced with bacterial cellulose (BC) and bacterial cellulose coated with polystyrene (BCPS), yielded high performance materials. The nanocomposites were prepared by a simple and green process, and characterized by tensile tests, dynamical mechanical analysis (DMA), scanning electron microscopy (SEM), and swelling experiments. The effect of the nanofiber content on morphology, static, and dynamic mechanical properties was also investigated. The results showed an increase in the mechanical properties, such as Young's modulus and tensile strength, even with modest nanofiber loadings.
Dynamic mechanical characterization of aluminum: analysis of strain-rate-dependent behavior
NASA Astrophysics Data System (ADS)
Rahmat, Meysam
2018-05-01
A significant number of materials show different mechanical behavior under dynamic loads compared to quasi-static (Salvado et al. in Prog. Mater. Sci. 88:186-231, 2017). Therefore, a comprehensive study of material dynamic behavior is essential for applications in which dynamic loads are dominant (Li et al. in J. Mater. Process. Technol. 255:373-386, 2018). In this work, aluminum 6061-T6, as an example of ductile alloys with numerous applications including in the aerospace industry, has been studied under quasi-static and dynamic tensile tests with strain rates of up to 156 s^{-1}. Dogbone specimens were designed, instrumented and tested with a high speed servo-hydraulic load frame, and the results were validated with the literature. It was observed that at a strain rate of 156 s^{-1} the yield and ultimate strength increased by 31% and 33% from their quasi-static values, respectively. Moreover, the failure elongation and fracture energy per unit volume also increased by 18% and 52%, respectively. A Johnson-Cook model was used to capture the behavior of the material at different strain rates, and a modified version of this model was presented to enhance the capabilities of the original model, especially in predicting material properties close to the failure point. Finally, the fracture surfaces of specimens tested under quasi-static and dynamic loads were compared and conclusions about the differences were drawn.
Wenski, Edward G [Lenexa, KS
2007-08-21
A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.
Wenski, Edward G.
2006-01-10
A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.
Wenski, Edward G [Lenexa, KS
2007-07-17
A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.
Fatigue and creep to leak tests of proton exchange membranes using pressure-loaded blisters
NASA Astrophysics Data System (ADS)
Li, Yongqiang; Dillard, David A.; Case, Scott W.; Ellis, Michael W.; Lai, Yeh-Hung; Gittleman, Craig S.; Miller, Daniel P.
In this study, three commercially available proton exchange membranes (PEMs) are biaxially tested using pressure-loaded blisters to characterize their resistance to gas leakage under either static (creep) or cyclic fatigue loading. The pressurizing medium, air, is directly used for leak detection. These tests are believed to be more relevant to fuel cell applications than quasi-static uniaxial tensile-to-rupture tests because of the use of biaxial cyclic and sustained loading and the use of gas leakage as the failure criterion. They also have advantages over relative humidity cycling test, in which a bare PEM or catalyst coated membrane is clamped with gas diffusion media and flow field plates and subjected to cyclic changes in relative humidity, because of the flexibility in allowing controlled mechanical loading and accelerated testing. Nafion ® NRE-211 membranes are tested at three different temperatures and the time-temperature superposition principle is used to construct stress-lifetime master curve. Tested at 90 °C, 2%RH extruded Ion Power ® N111-IP membranes have a longer lifetime than Gore™-Select ® 57 and Nafion ® NRE-211 membranes.
Can human mesenchymal stem cells survive on a NiTi implant material subjected to cyclic loading?
Habijan, T; Glogowski, T; Kühn, S; Pohl, M; Wittsiepe, J; Greulich, C; Eggeler, G; Schildhauer, T A; Köller, M
2011-06-01
Nickel-titanium shape memory alloys (NiTi-SMAs) exhibit mechanical and chemical properties which make them attractive candidate materials for various types of biomedical applications. However, the high nickel content of NiTi-SMAs may result in adverse tissue reactions, especially when they are considered for load-bearing implants. It is generally assumed that a protective titanium oxide layer separates the metallic alloy from its environment and that this explains the good biocompatibility of NiTi. Cyclic loading may result in failure of the protective oxide layer. The scientific objective of this work was to find out whether cyclic dynamic strain, in a range relevant for orthopedic implants, diminishes the biocompatibility of NiTi-SMAs. In order to analyze the biocompatibility of NiTi-SMA surfaces subjected to cyclic loading, NiTi-SMA tensile specimens were preloaded with mesenchymal stem cells, transferred to a sterile cell culture system and fixed to the pull rods of a tensile testing machine. Eighty-six thousand and four hundred strain cycles at 2% pseudoelastic strain were performed for a period of 24 h or 7 days. Cytokines (IL-6, IL-8 and VEGF) and nickel ion release were determined within the cell culture medium. Adherent cells on the tensile specimens were stained with calcein-AM and propidium iodide to determine cell viability. Dynamic loading of the tensile specimens did not influence the viability of adherent human mesenchymal stem cells (hMSCs) after 24 h or 7 days compared with the non-strained control. Dynamic cycles of loading and unloading did not affect nickel ion release from the tensile specimens. The release of IL-6 from hMSCs cultured under dynamic conditions was significantly higher after mechanical load (873 pg ml(-1)) compared with static conditions (323 pg ml(-1)). The present work demonstrates that a new type of mechanical in vitro cell culture experiment can provide information which previously could only be obtained in large animal experiments. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Vapor Cavitation in Dynamically Loaded Journal Bearings
NASA Technical Reports Server (NTRS)
Jacobson, B. O.; Hamrock, B. J.
1983-01-01
High speed motion camera experiments were performed on dynamically loaded journal bearings. The length to diameter ratio of the bearing, the speed of the roller and the tube, the surface material of the roller, and the static and dynamic eccentricity of the bearing were varied. One hundred and thirty-four cases were filmed. The occurrence of vapor cavitation was clearly evident in the films and figures presented. Vapor cavitation was found to occur when the tensile stress applied to the oil exceeded the tensile strength of the oil or the binding of the oil to the surface. The physical situation in which vapor cavitation occurs is during the squeezing and sliding motion within a bearing. Besides being able to accurately capture the vapor cavitation on film, an analysis of the formation and collapse of the cavitation bubbles and characteristics of the bubble content are presented.
Full-field fabric stress mapping by micro Raman spectroscopy in a yarn push-out test.
Lei, Z K; Qin, F Y; Fang, Q C; Bai, R X; Qiu, W; Chen, X
2018-02-01
The full-field stress distribution of a two-dimensional plain fabric was mapped using micro Raman spectroscopy (MRS) through a novel yarn push-out test, simulating a quasi-static projectile impact on the fabric. The stress-strain relationship for a single yarn was established using a digital image correlation method in a single-yarn tensile test. The relationship between Raman peak shift and aramid Kevlar 49 yarn stress was established using MRS in a single-yarn tensile test. An out-of-plane loading test was conducted on an aramid Kevlar 49 plain fabric, and the yarn stress was measured using MRS. From the full-field fabric stress distribution, it can be observed that there is a cross-shaped distribution of high yarn stress; this result would be helpful in further studies on load transfer on a fabric during a projectile impact.
NASA Technical Reports Server (NTRS)
Coguill, Scott L.; Adams, Donald F.; Zimmerman, Richard S.
1989-01-01
Six types of uncoated ceramic fibers were static tensile and tensile creep tested at various elevated temperatures. Three types of boron nitride coated fibers were also tested. Room temperature static tensile tests were initially performed on all fibers, at gage lengths of 1, 2, and 4 inches, to determine the magnitude of end effects from the gripping system used. Tests at one elevated temperature, at gage lengths of 8 and 10 inches, were also conducted, to determine end effects at elevated temperatures. Fiber cross sectional shapes and areas were determined using scanning electron microscopy. Creep testing was typically performed for 4 hours, in an air atmosphere.
NASA Astrophysics Data System (ADS)
Chaouadi, R.
2008-01-01
This paper examines the effect of irradiation-induced plastic flow localization on the crack resistance behavior. Tensile and crack resistance measurements were performed on Eurofer-97 that was irradiated at 300 °C to neutron doses ranging between 0.3 and 2.1 dpa. A severe degradation of crack resistance behavior is experimentally established at quasi-static loading, in contradiction with the Charpy impact data and the dynamic crack resistance measurements. This degradation is attributed to the dislocation channel deformation phenomenon. At quasi-static loading rate, scanning electron microscopy observations of the fracture surfaces revealed a significant change of fracture topography, mainly from equiaxed dimples (mode I) to shear dimples (mode I + II). With increasing loading rate, the high peak stresses that develop inside the process zone activate much more dislocation sources resulting in a higher density of cross cutting dislocation channels and therefore an almost unaffected crack resistance. These explanations provide a rational to all experimental observations.
NASA Astrophysics Data System (ADS)
Meng, Rui; Cheong, Kang Hao; Bao, Wei; Wong, Kelvin Kian Loong; Wang, Lu; Xie, Neng-gang
2018-06-01
This article attempts to evaluate the safety and economic performance of an arch dam under the action of static loads. The geometric description of a crown cantilever section and the horizontal arch ring is presented. A three-objective optimization model of arch dam shape is established based on the arch dam volume, maximum principal tensile stress and total strain energy. The evolutionary game method is then applied to obtain the optimal solution. In the evolutionary game technique, a novel and more efficient exploration method of the game players' strategy space, named the 'sorting partition method under the threshold limit', is presented, with the game profit functions constructed according to both competitive and cooperative behaviour. By way of example, three optimization goals have all shown improvements over the initial solutions. In particular, the evolutionary game method has potentially faster convergence. This demonstrates the preliminary proof of principle of the evolutionary game method.
NASA Astrophysics Data System (ADS)
Maier, A.; Schledjewski, R.
2016-07-01
For continuous manufacturing processes mechanical preloading of the fibers occurs during the delivery of the fibers from the spool creel to the actual manufacturing process step. Moreover preloading of the dry roving bundles might be mandatory, e.g. during winding, to be able to produce high quality components. On the one hand too high tensile loads within dry roving bundles might result in a catastrophic failure and on the other hand the part produced under too low pre-tension might have low quality and mechanical properties. In this work, load conditions influencing mechanical properties of dry glass fiber bundles during continuous composite manufacturing processes were analyzed. Load conditions, i.e. fiber delivery speed, necessary pre-tension and other effects of the delivery system during continuous fiber winding, were chosen in process typical ranges. First, the strain rate dependency under static tensile load conditions was investigated. Furthermore different free gauge lengths up to 1.2 m, interactions between fiber points of contact regarding influence of sizing as well as impregnation were tested and the effect of twisting on the mechanical behavior of dry glass fiber bundles during the fiber delivery was studied.
Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures
NASA Technical Reports Server (NTRS)
Zimmerman, Richard S.; Adams, Donald F.
1989-01-01
Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber; Nippon Carbon, Ltd., (Dow Corning) nicalon NLM-102 silicon carbide fiber; and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 C to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.
Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures
NASA Technical Reports Server (NTRS)
Zimmerman, Richard S.; Adams, Donald F.
1988-01-01
Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber, Nippon Carbon, Ltd., (Dow Corning) Nicalon NLM-102 silicon carbide fiber, and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, David Robert; Fensin, Saryu Jindal; Dippo, Olivia
Here, we present a study on the spall strength of additive manufactured (AM) Ti-6Al-4V. Samples were obtained from two pieces of selective laser melted (SLM, a powder bed fusion technique) Ti-6Al-4V such that the response to dynamic tensile loading could be investigated as a function of the orientation between the build layers and the loading direction. A sample of wrought bar-stock Ti-6Al-4V was also tested to act as a baseline representing the traditionally manufactured material response. A single-stage light gas-gun was used to launch a thin flyer plate into the samples, generating a region of intense tensile stress on amore » plane normal to the impact direction. The rear free surface velocity time history of each sample was recorded with laser-based velocimetry to allow the spall strength to be calculated. The samples were also soft recovered to enable post-mortem characterization of the spall damage evolution. Results showed that when the tensile load was applied normal to the interfaces between the build layers caused by the SLM fabrication process the spall strength was drastically reduced, dropping to 60% of that of the wrought material. However, when loaded parallel to the AM build layer interfaces the spall strength was found to remain at 95% of the wrought control, suggesting that when loading normal to the AM layer interfaces, void nucleation is facilitated more readily due to weaknesses along these boundaries. Quasi-static testing of the same sample orientations revealed a much lower degree of anisotropy, demonstrating the importance of rate-dependent studies for damage evolution in AM materials.« less
A Static Burst Test for Composite Flywheel Rotors
NASA Astrophysics Data System (ADS)
Hartl, Stefan; Schulz, Alexander; Sima, Harald; Koch, Thomas; Kaltenbacher, Manfred
2016-06-01
High efficient and safe flywheels are an interesting technology for decentralized energy storage. To ensure all safety aspects, a static test method for a controlled initiation of a burst event for composite flywheel rotors is presented with nearly the same stress distribution as in the dynamic case, rotating with maximum speed. In addition to failure prediction using different maximum stress criteria and a safety factor, a set of tensile and compressive tests is carried out to identify the parameters of the used carbon fiber reinforced plastics (CFRP) material. The static finite element (FE) simulation results of the flywheel static burst test (FSBT) compare well to the quasistatic FE-simulation results of the flywheel rotor using inertia loads. Furthermore, it is demonstrated that the presented method is a very good controllable and observable possibility to test a high speed flywheel energy storage system (FESS) rotor in a static way. Thereby, a much more expensive and dangerous dynamic spin up test with possible uncertainties can be substituted.
Strain induced chemical potential difference between monolayer graphene sheets.
Zhang, Yupeng; Luo, Chengzhi; Li, Weiping; Pan, Chunxu
2013-04-07
Monolayer graphene sheets were deposited on a transparent and flexible polydimethylsiloxane (PDMS) substrate, and a tensile strain was loaded by stretching the substrate in one direction. It was found that an electric potential difference between stretched and static monolayer graphene sheets reached 8 mV when the strain was 5%. Theoretical calculations for the band structure and total energy revealed an alternative way to experimentally tune the band gap of monolayer graphene, and induce the generation of electricity.
Standardized static and dynamic evaluation of myocardial tissue properties.
Ramadan, Sherif; Paul, Narinder; Naguib, Hani E
2017-03-20
Quantifying the mechanical behaviors of soft biological tissues is of considerable research interest. However, validity and reproducibility between different researchers and apparatus is questionable. This study aims to quantify the mechanical properties of myocardium while investigating methodologies that can standardize biological tissue testing. Tensile testing was performed to obtain Young's modulus and a dynamic mechanical analysis (DMA) determined the viscoelastic properties. A frequency range of 0.5 Hz (30bpm) to 3.5 Hz (210bpm) was analyzed. For tensile testing three different preconditioning settings were tested: no load, 0.05 N preload, and a cyclic preload at 2.5% strain and 10 cycles. Samples were placed in saline and tested at 37 °C. Five ovine and five porcine hearts were tested. Cyclic loading results in the most consistent moduli values. The modulus of ovine/porcine tissue was mean = 0.05/.06 MPa, SD = 0.02/0.03 MPa. The storage/loss modulus varied from = 0.02/0.003 MPa at 0.5 Hz to 0.04/0.008 MPa at 3.5 Hz; Stiffness increases linearly from 400 to 800 N m -1 with a tan delta around 0.175. Static analysis of the mechanical properties of myocardial tissue confirms that; preconditioning is necessary for reproducibility, and DMA provides a platform for reproducible testing of soft biological tissues.
Blasting response of the Eiffel Tower
NASA Astrophysics Data System (ADS)
Horlyck, Lachlan; Hayes, Kieran; Caetano, Ryan; Tahmasebinia, Faham; Ansourian, Peter; Alonso-Marroquin, Fernando
2016-08-01
A finite element model of the Eiffel Tower was constructed using Strand7 software. The model replicates the existing tower, with dimensions justified through the use of original design drawings. A static and dynamic analysis was conducted to determine the actions of the tower under permanent, imposed and wind loadings, as well as under blast pressure loads and earthquake loads due to an explosion. It was observed that the tower utilises the full axial capacity of individual members by acting as a `truss of trusses'. As such, permanent and imposed loads are efficiently transferred to the primary columns through compression, while wind loads induce tensile forces in the windward legs and compressive forces in the leeward. Under blast loading, the tower experienced both ground vibrations and blast pressures. Ground vibrations induced a negligibly small earthquake loading into the structure which was ignored in subsequent analyses. The blast pressure was significant, and a dynamic analysis of this revealed that further research is required into the damping qualities of the structure due to soil and mechanical properties. In the worst case scenario, the blast was assumed to completely destroy several members in the adjacent leg. Despite this weakened condition, it was observed that the tower would still be able to sustain static loads, at least for enough time for occupant evacuation. Further, an optimised design revealed the structure was structurally sound under a 46% reduction of the metal tower's mass.
Tensile Properties of Under-Matched Weld Joints for 950 MPa Steel.
NASA Astrophysics Data System (ADS)
Yamamoto, Kouji; Arakawa, Toshiaki; Akazawa, Nobuki; Yamamoto, Kousei; Matsuo, Hiroki; Nakagara, Kiyoyuki; Suita, Yoshikazu
In welding of 950 MPa-class high tensile strength steel, preheating is crucial in order to avoid cold cracks, which, however, eventually increases welding deformations. One way to decrease welding deformations is lowering preheating temperature by using under-matched weld metal. Toyota and others clarify that although breaking elongation can decrease due to plastic constraint effect under certain conditions, static tensile of under-matched weld joints is comparable to that of base metal. However, there has still been no report about joint static tensile of under-matched weld joints applied to 950 MPa-class high tensile strength steel. In this study, we aim to research tensile strength and fatigue strength of under-matched weld joints applied to 950 MPa-class high tensile steel.
NASA Astrophysics Data System (ADS)
Ma, Zhichao; Zhao, Hongwei; Ren, Luquan
2016-06-01
Most miniature in situ tensile devices compatible with scanning/transmission electron microscopes or optical microscopes adopt a horizontal layout. In order to analyze and calculate the measurement error of the tensile Young’s modulus, the effects of gravity and temperature changes, which would respectively lead to and intensify the bending deformation of thin specimens, are considered as influencing factors. On the basis of a decomposition method of static indeterminacy, equations of simplified deflection curves are obtained and, accordingly, the actual gage length is confirmed. By comparing the effects of uniaxial tensile load on the change of the deflection curve with gravity, the relation between the actual and directly measured tensile Young’s modulus is obtained. Furthermore, the quantitative effects of ideal gage length l o, temperature change ΔT and the density ρ of the specimen on the modulus difference and modulus ratio are calculated. Specimens with larger l o and ρ present more obvious measurement errors for Young’s modulus, but the effect of ΔT is not significant. The calculation method of Young’s modulus is particularly suitable for thin specimens.
Parametric instability analysis of truncated conical shells using the Haar wavelet method
NASA Astrophysics Data System (ADS)
Dai, Qiyi; Cao, Qingjie
2018-05-01
In this paper, the Haar wavelet method is employed to analyze the parametric instability of truncated conical shells under static and time dependent periodic axial loads. The present work is based on the Love first-approximation theory for classical thin shells. The displacement field is expressed as the Haar wavelet series in the axial direction and trigonometric functions in the circumferential direction. Then the partial differential equations are reduced into a system of coupled Mathieu-type ordinary differential equations describing dynamic instability behavior of the shell. Using Bolotin's method, the first-order and second-order approximations of principal instability regions are determined. The correctness of present method is examined by comparing the results with those in the literature and very good agreement is observed. The difference between the first-order and second-order approximations of principal instability regions for tensile and compressive loads is also investigated. Finally, numerical results are presented to bring out the influences of various parameters like static load factors, boundary conditions and shell geometrical characteristics on the domains of parametric instability of conical shells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahfuz, H.; Maniruzzaman, M.; Vaidya, U.
1997-04-01
Monotonic tensile and fatigue response of continuous silicon carbide fiber reinforced silicon nitride (SiC{sub f}/Si{sub 3}N{sub 4}) composites has been investigated. The monotonic tensile tests have been performed at room and elevated temperatures. Fatigue tests have been conducted at room temperature (RT), at a stress ratio, R = 0.1 and a frequency of 5 Hz. It is observed during the monotonic tests that the composites retain only 30% of its room temperature strength at 1,600 C suggesting a substantial chemical degradation of the matrix at that temperature. The softening of the matrix at elevated temperature also causes reduction in tensilemore » modulus, and the total reduction in modulus is around 45%. Fatigue data have been generated at three load levels and the fatigue strength of the composite has been found to be considerably high; about 75% of its ultimate room temperature strength. Extensive statistical analysis has been performed to understand the degree of scatter in the fatigue as well as in the static test data. Weibull shape factors and characteristic values have been determined for each set of tests and their relationship with the response of the composites has been discussed. A statistical fatigue life prediction method developed from the Weibull distribution is also presented. Maximum Likelihood Estimator with censoring techniques and data pooling schemes has been employed to determine the distribution parameters for the statistical analysis. These parameters have been used to generate the S-N diagram with desired level of reliability. Details of the statistical analysis and the discussion of the static and fatigue behavior of the composites are presented in this paper.« less
NASA Astrophysics Data System (ADS)
Kannan, Manigandan
The history of steel dates back to the 17th century and has been instrumental in the betterment of every aspect of our lives ever since, from the pin that holds the paper together to the Automobile that takes us to our destination steel touches everyone every day. Path breaking improvements in manufacturing techniques, access to advanced machinery and understanding of factors like heat treatment, corrosion resistance have aided in the advancement in the properties of steel in the last few years. In this dissertation document, the results of a study aimed at the influence of alloy chemistry, processing and influence of the quasi static and fatigue behavior of seven alloy steels is discussed. The microstructure of the as-received steel was examined and characterized for the nature and morphology of the grains and the presence of other intrinsic features in the microstructure. The tensile, cyclic fatigue and bending fatigue tests were done on a fully automated closed-loop servo-hydraulic test machine at room temperature. The failed samples of high strength steels were examined in a scanning electron microscope for understanding the fracture behavior, especially the nature of loading be it quasi static, cyclic fatigue or bending fatigue . The quasi static and cyclic fatigue fracture behavior of the steels examined coupled with various factors contributing to failure are briefly discussed in light of the conjoint and mutually interactive influences of intrinsic microstructural effects, nature of loading, and stress (load)-deformation-microstructural interactions.
Spall fracture in additive manufactured Ti-6Al-4V
Jones, David Robert; Fensin, Saryu Jindal; Dippo, Olivia; ...
2016-10-07
Here, we present a study on the spall strength of additive manufactured (AM) Ti-6Al-4V. Samples were obtained from two pieces of selective laser melted (SLM, a powder bed fusion technique) Ti-6Al-4V such that the response to dynamic tensile loading could be investigated as a function of the orientation between the build layers and the loading direction. A sample of wrought bar-stock Ti-6Al-4V was also tested to act as a baseline representing the traditionally manufactured material response. A single-stage light gas-gun was used to launch a thin flyer plate into the samples, generating a region of intense tensile stress on amore » plane normal to the impact direction. The rear free surface velocity time history of each sample was recorded with laser-based velocimetry to allow the spall strength to be calculated. The samples were also soft recovered to enable post-mortem characterization of the spall damage evolution. Results showed that when the tensile load was applied normal to the interfaces between the build layers caused by the SLM fabrication process the spall strength was drastically reduced, dropping to 60% of that of the wrought material. However, when loaded parallel to the AM build layer interfaces the spall strength was found to remain at 95% of the wrought control, suggesting that when loading normal to the AM layer interfaces, void nucleation is facilitated more readily due to weaknesses along these boundaries. Quasi-static testing of the same sample orientations revealed a much lower degree of anisotropy, demonstrating the importance of rate-dependent studies for damage evolution in AM materials.« less
Spall fracture in additive manufactured Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Jones, D. R.; Fensin, S. J.; Dippo, O.; Beal, R. A.; Livescu, V.; Martinez, D. T.; Trujillo, C. P.; Florando, J. N.; Kumar, M.; Gray, G. T.
2016-10-01
We present a study on the spall strength of additive manufactured (AM) Ti-6Al-4V. Samples were obtained from two pieces of selective laser melted (SLM, a powder bed fusion technique) Ti-6Al-4V such that the response to dynamic tensile loading could be investigated as a function of the orientation between the build layers and the loading direction. A sample of wrought bar-stock Ti-6Al-4V was also tested to act as a baseline representing the traditionally manufactured material response. A single-stage light gas-gun was used to launch a thin flyer plate into the samples, generating a region of intense tensile stress on a plane normal to the impact direction. The rear free surface velocity time history of each sample was recorded with laser-based velocimetry to allow the spall strength to be calculated. The samples were also soft recovered to enable post-mortem characterization of the spall damage evolution. Results showed that when the tensile load was applied normal to the interfaces between the build layers caused by the SLM fabrication process the spall strength was drastically reduced, dropping to 60% of that of the wrought material. However, when loaded parallel to the AM build layer interfaces the spall strength was found to remain at 95% of the wrought control, suggesting that when loading normal to the AM layer interfaces, void nucleation is facilitated more readily due to weaknesses along these boundaries. Quasi-static testing of the same sample orientations revealed a much lower degree of anisotropy, demonstrating the importance of rate-dependent studies for damage evolution in AM materials.
Thomopoulos, Stavros; Das, Rosalina; Birman, Victor; Smith, Lester; Ku, Katherine; Elson, Elliott L; Pryse, Kenneth M; Marquez, Juan Pablo; Genin, Guy M
2011-04-01
Although much is known about the effects of uniaxial mechanical loading on fibrocartilage development, the stress fields to which fibrocartilaginous regions are subjected to during development are mutiaxial. That fibrocartilage develops at tendon-to-bone attachments and in compressive regions of tendons is well established. However, the three-dimensional (3D) nature of the stresses needed for the development of fibrocartilage is not known. Here, we developed and applied an in vitro system to determine whether fibrocartilage can develop under a state of periodic hydrostatic tension in which only a single principal component of stress is compressive. This question is vital to efforts to mechanically guide morphogenesis and matrix expression in engineered tissue replacements. Mesenchymal stromal cells in a 3D culture were exposed to compressive and tensile stresses as a result of an external tensile hydrostatic stress field. The stress field was characterized through mechanical modeling. Tensile cyclic stresses promoted spindle-shaped cells, upregulation of scleraxis and type one collagen, and cell alignment with the direction of tension. Cells experiencing a single compressive stress component exhibited rounded cell morphology and random cell orientation. No difference in mRNA expression of the genes Sox9 and aggrecan was observed when comparing tensile and compressive regions unless the medium was supplemented with the chondrogenic factor transforming growth factor beta3. In that case, Sox9 was upregulated under static loading conditions and aggrecan was upregulated under cyclic loading conditions. In conclusion, the fibrous component of fibrocartilage could be generated using only mechanical cues, but generation of the cartilaginous component of fibrocartilage required biologic factors in addition to mechanical cues. These studies support the hypothesis that the 3D stress environment influences cell activity and gene expression in fibrocartilage development.
Das, Rosalina; Birman, Victor; Smith, Lester; Ku, Katherine; Elson, Elliott L.; Pryse, Kenneth M.; Marquez, Juan Pablo; Genin, Guy M.
2011-01-01
Although much is known about the effects of uniaxial mechanical loading on fibrocartilage development, the stress fields to which fibrocartilaginous regions are subjected to during development are mutiaxial. That fibrocartilage develops at tendon-to-bone attachments and in compressive regions of tendons is well established. However, the three-dimensional (3D) nature of the stresses needed for the development of fibrocartilage is not known. Here, we developed and applied an in vitro system to determine whether fibrocartilage can develop under a state of periodic hydrostatic tension in which only a single principal component of stress is compressive. This question is vital to efforts to mechanically guide morphogenesis and matrix expression in engineered tissue replacements. Mesenchymal stromal cells in a 3D culture were exposed to compressive and tensile stresses as a result of an external tensile hydrostatic stress field. The stress field was characterized through mechanical modeling. Tensile cyclic stresses promoted spindle-shaped cells, upregulation of scleraxis and type one collagen, and cell alignment with the direction of tension. Cells experiencing a single compressive stress component exhibited rounded cell morphology and random cell orientation. No difference in mRNA expression of the genes Sox9 and aggrecan was observed when comparing tensile and compressive regions unless the medium was supplemented with the chondrogenic factor transforming growth factor beta3. In that case, Sox9 was upregulated under static loading conditions and aggrecan was upregulated under cyclic loading conditions. In conclusion, the fibrous component of fibrocartilage could be generated using only mechanical cues, but generation of the cartilaginous component of fibrocartilage required biologic factors in addition to mechanical cues. These studies support the hypothesis that the 3D stress environment influences cell activity and gene expression in fibrocartilage development. PMID:21091338
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng
2018-01-01
Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.
Failure mechanics in low-velocity impacts on thin composite plates
NASA Technical Reports Server (NTRS)
Elber, W.
1983-01-01
Eight-ply quasi-isotropic composite plates of Thornel 300 graphite in Narmco 5208 epoxy resin (T300/5208) were tested to establish the degree of equivalence between low-velocity impact and static testing. Both the deformation and failure mechanics under impact were representable by static indentation tests. Under low-velocity impacts such as tool drops, the dominant deformation mode of the plates was the first, or static, mode. Higher modes are excited on contact, but they decay significantly by the time the first-mode load reaches a maximum. The delamination patterns were observed by X-ray analysis. The areas of maximum delamination patterns were observed by X-ray analysis. The areas of maximum delamination coincided with the areas of highest peel stresses. The extent of delamination was similar for static and impact tests. Fiber failure damage was established by tensile tests on small fiber bundles obtained by deplying test specimens. The onset of fiber damage was in internal plies near the lower surface of the plates. The distribution and amount of fiber damage was similar fo impact and static tests.
NASA Astrophysics Data System (ADS)
Chen, Yunsheng; Lu, Xinghua
2018-05-01
The mechanical parts of the fuselage surface of the UAV are easily fractured by the action of the centrifugal load. In order to improve the compressive strength of UAV and guide the milling and planing of mechanical parts, a numerical simulation method of UAV fuselage compression under centrifugal load based on discrete element analysis method is proposed. The three-dimensional discrete element method is used to establish the splitting tensile force analysis model of the UAV fuselage under centrifugal loading. The micro-contact connection parameters of the UAV fuselage are calculated, and the yield tensile model of the mechanical components is established. The dynamic and static mechanical model of the aircraft fuselage milling is analyzed by the axial amplitude vibration frequency combined method. The correlation parameters of the cutting depth on the tool wear are obtained. The centrifugal load stress spectrum of the surface of the UAV is calculated. The meshing and finite element simulation of the rotor blade of the unmanned aerial vehicle is carried out to optimize the milling process. The test results show that the accuracy of the anti - compression numerical test of the UAV is higher by adopting the method, and the anti - fatigue damage capability of the unmanned aerial vehicle body is improved through the milling and processing optimization, and the mechanical strength of the unmanned aerial vehicle can be effectively improved.
NASA Astrophysics Data System (ADS)
Battaglia, Eleonora; Bonollo, Franco; Ferro, Paolo
2017-05-01
Defects, particularly porosity and oxides, in high-pressure die casting can seriously compromise the in-service behavior and durability of products subjected to static or cyclic loadings. In this study, the influence of dimension, orientation, and position of casting defects on the mechanical properties of an AlSi12(b) (EN-AC 44100) aluminum alloy commercial component has been studied. A finite element model has been carried out in order to calculate the stress distribution induced by service loads and identify the crack initiation zones. Castings were qualitatively classified on the basis of porosities distribution detected by X-ray technique and oxides observed on fracture surfaces of specimens coming from fatigue and tensile tests. A damage criterion has been formulated which considers the influence of defects position and orientation on the mechanical strength of the components. Using the proposed damage criterion, it was possible to describe the mechanical behavior of the castings with good accuracy.
Normalized stiffness ratios for mechanical characterization of isotropic acoustic foams.
Sahraoui, Sohbi; Brouard, Bruno; Benyahia, Lazhar; Parmentier, Damien; Geslain, Alan
2013-12-01
This paper presents a method for the mechanical characterization of isotropic foams at low frequency. The objective of this study is to determine the Young's modulus, the Poisson's ratio, and the loss factor of commercially available foam plates. The method is applied on porous samples having square and circular sections. The main idea of this work is to perform quasi-static compression tests of a single foam sample followed by two juxtaposed samples having the same dimensions. The load and displacement measurements lead to a direct extraction of the elastic constants by means of normalized stiffness and normalized stiffness ratio which depend on Poisson's ratio and shape factor. The normalized stiffness is calculated by the finite element method for different Poisson ratios. The no-slip boundary conditions imposed by the loading rigid plates create interfaces with a complex strain distribution. Beforehand, compression tests were performed by means of a standard tensile machine in order to determine the appropriate pre-compression rate for quasi-static tests.
Rock failure analysis by combined thermal weakening and water jet impact
NASA Technical Reports Server (NTRS)
Nayfeh, A. H.
1976-01-01
The influence of preheating on the initiation of fracture in rocks subjected to the impingement of a continuous water jet is studied. Preheating the rock is assumed to degrade its mechanical properties and strength in accordance with existing experimental data. The water jet is assumed to place a quasi-static loading on the surface of the rock. The loading is approximated by elementary functions which permit analytic computation of the induced stresses in a rock half-space. The resulting stresses are subsequently coupled with the Griffith criteria for tensile failure to estimate the change, due to heating, in the critical stagnation pressure and velocity of the water jet required to cause failure in the rock.
NASA Technical Reports Server (NTRS)
Howard, W. E.; Gossard, Terry, Jr.; Jones, Robert M.
1989-01-01
The present generalized plane-strain FEM analysis for the prediction of interlaminar normal stress reduction when a U-shaped cap is bonded to the edge of a composite laminate gives attention to the highly variable transverse stresses near the free edge, cap length and thickness, and a gap under the cap due to the manufacturing process. The load-transfer mechanism between cap and laminate is found to be strain-compatibility, rather than shear lag. In the second part of this work, the three-dimensional composite material failure criteria are used in a progressive laminate failure analysis to predict failure loads of laminates with different edge-cap designs; symmetric 11-layer graphite-epoxy laminates with a one-layer cap of kevlar-epoxy are shown to carry 130-140 percent greater loading than uncapped laminates, under static tensile and tension-tension fatigue loading.
Time- and temperature-dependent failures of a bonded joint
NASA Astrophysics Data System (ADS)
Sihn, Sangwook
This dissertation summarizes my study of time- and temperature-dependent behavior of a tubular lap bonded joint to provide a design methodology for windmill blade structures. The bonded joint is between a cast-iron rod and a GFRP composite pipe. The adhesive material is an epoxy containing chopped glass fibers. We proposed a new fabrication method to make concentric and void-less specimens of the tubular joint with a thick adhesive bondline to stimulate the root bond of a blade. The thick bondline facilitates the joint assembly of actual blades. For a better understanding of the behavior of the bonded joint, we studied viscoelastic behavior of the adhesive materials by measuring creep compliance at several temperatures during loading period. We observed that the creep compliance depends highly on the period of loading and the temperature. We applied time-temperature equivalence to the creep compliance of the adhesive material to obtain time-temperature shift factors. We also performed constant-rate of monotonically increased uniaxial tensile tests to measure static strength of the tubular lap joint at several temperatures and different strain-rates. We observed two failure modes from load-deflection curves and failed specimens. One is the brittle mode, which was caused by weakness of the interfacial strength occurring at low temperature and short period of loading. The other is the ductile mode, which was caused by weakness of the adhesive material at high temperature and long period of loading. Transition from the brittle to the ductile mode appeared as the temperature or the loading period increased. We also performed tests under uniaxial tensile-tensile cyclic loadings to measure fatigue strength of the bonded joint at several temperatures, frequencies and stress ratios. The fatigue data are analyzed statistically by applying the residual strength degradation model to calculate statistical distribution of the fatigue life. Combining the time-temperature equivalence and the residual strength degradation model enables us to estimate the fatigue life of the bonded joint at different load levels, frequencies and temperatures with a certain probability. A numerical example shows how to apply the life estimation method to a structure subjected to a random load history by rainflow cycle counting.
Henninger, Heath B; Valdez, William R; Scott, Sara A; Weiss, Jeffrey A
2015-10-01
Elastin is a highly extensible structural protein network that provides near-elastic resistance to deformation in biological tissues. In ligament, elastin is localized between and along the collagen fibers and fascicles. When ligament is stretched along the primary collagen axis, elastin supports a relatively high percentage of load. We hypothesized that elastin may also provide significant load support under elongation transverse to the primary collagen axis and shear along the collagen axis. Quasi-static transverse tensile and shear material tests were performed to quantify the mechanical contributions of elastin during deformation of porcine medial collateral ligament. Dose response studies were conducted to determine the level of elastase enzymatic degradation required to produce a maximal change in the mechanical response. Maximal changes in peak stress occurred after 3h of treatment with 2U/ml porcine pancreatic elastase. Elastin degradation resulted in a 60-70% reduction in peak stress and a 2-3× reduction in modulus for both test protocols. These results demonstrate that elastin provides significant resistance to elongation transverse to the collagen axis and shear along the collagen axis while only constituting 4% of the tissue dry weight. The magnitudes of the elastin contribution to peak transverse and shear stress were approximately 0.03 MPa, as compared to 2 MPa for axial tensile tests, suggesting that elastin provides a highly anisotropic contribution to the mechanical response of ligament and is the dominant structural protein resisting transverse and shear deformation of the tissue. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Benmokrane, B.; Debaiky, A.; El-Ragaby, A.; Roy, R.; El-Gamal, S.; El-Salakawy, E.
2006-03-01
There is a growing need for designing and constructing innovative concrete bridges using FRP reinforcing bars as internal reinforcement to avoid the corrosion problems and high costs of maintenance and repair. For efficient use and to increase the lifetime of these bridges, it is important to develop efficient monitoring systems for such innovative structures. Fabry-Perot and Bragg fibre optic sensors (FOS) that can measure the strains and temperature are promising candidates for life-long health monitoring of these structures. This article reports laboratory and field performance of Fabry-Perot and Bragg FOS sensors as well as electrical strain gauges in static and dynamic strain monitoring in concrete bridge decks. The laboratory tests include tensile testing of glass FRP bars and testing of full-scale concrete bridge deck slabs reinforced with glass and carbon FRP bars under static and cyclic concentrated loads. The field tests include static and dynamic testing of two bridges reinforced with steel and glass FRP bars. The obtained strain results showed satisfactory agreement between the different gauges.
Whiplash causes increased laxity of cervical capsular ligament
Ivancic, Paul C.; Ito, Shigeki; Tominaga, Yasuhiro; Rubin, Wolfgang; Coe, Marcus P.; Ndu, Anthony B.; Carlson, Erik J.; Panjabi, Manohar M.
2009-01-01
Background Previous clinical studies have identified the cervical facet joint, including the capsular ligaments, as sources of pain in whiplash patients. The goal of this study was to determine whether whiplash caused increased capsular ligament laxity by applying quasi-static loading to whiplash-exposed and control capsular ligaments. Methods A total of 66 capsular ligament specimens (C2/3 to C7/T1) were prepared from 12 cervical spines (6 whiplash-exposed and 6 control). The whiplash-exposed spines had been previously rear impacted at a maximum peak T1 horizontal acceleration of 8 g. Capsular ligaments were elongated at 1 mm/s in increments of 0.05 mm until a tensile force of 5 N was achieved and subsequently returned to neutral position. Four pre-conditioning cycles were performed and data from the load phase of the fifth cycle were used for subsequent analyses. Ligament elongation was computed at tensile forces of 0, 0.25, 0.5, 0.75, 1.0, 2.5, and 5.0 N. Two factor, non-repeated measures ANOVA (P<0.05) was performed to determine significant differences in the average ligament elongation at tensile forces of 0 and 5 N between the whiplash-exposed and control groups and between spinal levels. Findings Average elongation of the whiplash-exposed capsular ligaments was significantly greater than that of the control ligaments at tensile forces of 0 and 5 N. No significant differences between spinal levels were observed. Interpretation Capsular ligament injuries, in the form of increased laxity, may be one component perpetuating chronic pain and clinical instability in whiplash patients. PMID:17959284
Electrothermal fracturing of tensile specimens
NASA Technical Reports Server (NTRS)
Blinn, H. O.; Hanks, J. G.; Perkins, H. P.
1970-01-01
Pulling device consisting of structural tube, connecting rod, spring-loaded nuts, loading rod, heating element, and three bulkheads fractures tensile specimens. Alternate heating and cooling increases tensile loading by increments until fracturing occurs. Load cell or strain gage, applied to pulling rod, determines forces applied.
Static and fatigue interlaminar tensile characterization of laminated composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koudela, K.L.; Strait, L.H.; Caiazzo, A.A.
1997-12-31
Spool and curved-beam specimens were evaluated to determine the viability of using either one or both of these configurations to characterize the static and fatigue interlaminar tensile behavior of carbon/epoxy laminates. Unidirectional curved-beam and quasi-isotropic spool specimens were fabricated, nondestructively inspected, and statically tested to failure. Tension-tension fatigue tests were conducted at 10 Hz and an R-ratio ({sigma}{sub min}/{sigma}{sub max}) equal to 0.1 for each specimen configuration. The interlaminar tensile strength of the spool specimen was 12% larger than the strength obtained using curved-beam specimens. In addition, data scatter associated with spool specimens was significantly less than the scatter associatedmore » with curved-beam specimens. The difference in data scatter was attributed to the influence of the fabrication process on the quality of the laminates tested. The fatigue limit at 0{sup 7} cycles for both specimen types was shown to be at least 40% of the average interlaminar tensile strength. Based on the results of this study, it was concluded that either the spool or the curved-beam specimens can be used to characterize the interlaminar tensile static and fatigue behavior of carbon/epoxy laminates. However, to obtain the most representative results, the test specimen configuration should be selected so that the specimen fabrication process closely simulates the actual component fabrication process.« less
Behavior of plywood and fiberglass steel composite tube structures subjected to impact loading
NASA Astrophysics Data System (ADS)
Armaghani, Seyamend Bilind
Paratransit buses are custom built as the major vehicle manufacturer produces the custom built passenger cage installed on the chassis for the Paratransit bus. In order for these Paratransit bus members to be sufficient, they have to be evaluated for crashworthiness and energy absorption. This has prompted Florida Department of Transportation (FDOT) to fund research for the safety evaluation of Paratransit busses consisting of crash and safety analysis. There has been a large body of research done on steel subjected to static loads, but more research is needed for steel applied under dynamic loading and high speeds in order to improve crashworthiness in events such as rollovers and side impacts. Bare steel Hollow Structural Section (HSS) tubing are used a lot as structural members of Paratransit buses because of their lightness and progressive buckling under loading. The research will be conducted on quantifying the tubing's behavior under bending by conducting static three point bending and impact loading tests. In addition to the bare tubing, plywood and fiberglass composites are investigated because they are both strong and lightweight and their behavior under dynamic loading hasn't been quantified. As a result, the main purpose of this research is to quantify the differences between the dynamic and static behavior of plywood steel composite and fiberglass steel composite tubing and compare these findings with those of bare steel tubing. The differences will be quantified using detailed and thorough experiments that will examine the composites behavior under both static and dynamic loading. These tests will determine if there are any advantages of using the composite materials and thus allow for recommendations to be made to the FDOT with the goal of improving the safety of Paratransit busses. Tensile tests were conducted to determine the material properties of the tested specimens. Before the static and dynamic experiments are run to investigate the differences between static and dynamic behavior, Preliminary three point bending testing was conducted to determine the parameters for the final experiments. Static bending testing was conducted on the bare, plywood composite, and fiberglass composite steel tubing. The point of these experiments was to produce a Moment vs. Rotation plot to determine the specimens' maximum moments and their associated rotation, as that is when the steel buckles and fails. The dynamic three point bending experiments were conducted using the impact loading apparatus and had the same purpose as the static experiments. For both static and dynamic experiments, the performances of the different types of specimens were compared based upon their Moment vs. Rotation plots. This will determine the effect that the composite has on the rotation and maximum moment at which the tubing fails. After conducting these experiments, amplification factors were established for each specimen by comparing the maximum moment and their associated rotation between static and dynamic testing. lambda was calculated to quantify the ratio between the static and dynamic maximum moments. beta was used to quantify the ratio between the rotation needed to produce the maximum moment between static and dynamic events. A small amplification factor denotes that material performs well under impact loading and the material doesn't experience dramatic change in behavior during dynamic events. Amplification factors were compared between the bare, plywood, and fiberglass composite steel tubing in order to evaluate the performance of the composites. After comparing the amplification factors of the different types of tubing, recommendations can be made. Fiberglass and plywood composite were shown to be valuable because it decreased the effect of dynamic forces as beta was reduced by a factor of 2 in comparison to bare tubing. Based upon the amplification factors, it was recommended to use 14 gauge fiberglass composite tubing as Paratransit bus structural members because it was affected the least by dynamic loading.
Static Dissipative Cable Ties, Such as for Radiation Belt Storm Probes
NASA Technical Reports Server (NTRS)
Langley, Patrick T. (Inventor); Siddique, Fazle E. (Inventor)
2013-01-01
Methods of cyclically heating and cooling an article formed of a static dissipative ETFE resin, such as to reduce an electrical resistivity and/or to increase a tensile strength of the article, and methods of irradiating an article formed of a static dissipative ETFE resin, such as to increase a tensile strength of the article. Also disclosed herein are articles formed of a static dissipative ETFE resin, and processed in accordance with methods disclosed herein. Such an article may include, for example and without limitation, a cable strap to wrap, support, and/or secure one or more wires or cables, such as a cable tie.
Billing, Beant Kaur; Dhar, Purbarun; Singh, Narinder; Agnihotri, Prabhat K
2018-01-03
A detailed experimental investigation was carried out to establish the relationship between CNT purification and functionalization routes and the average response of CNT/epoxy nanocomposites under static and dynamic loading. It was shown that the relative improvement in the mechanical properties of the epoxy matrix due to the addition of CNTs depends on the choice of purification and functionalization steps. A better dispersion of CNTs was recorded for the functionalized CNTs as compared to the oxidized and CVD grown CNTs. Moreover, tensile, 3-point bending and nanoDMA testing performed on nanocomposites processed with CVD-grown, oxidized and functionalized CNTs revealed that COOH functionalization after the oxidation of CNTs at 350 °C is the optimized processing route to harness the excellent properties of CNTs in CNT/epoxy nanocomposites.
CARES/Life Software for Designing More Reliable Ceramic Parts
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Powers, Lynn M.; Baker, Eric H.
1997-01-01
Products made from advanced ceramics show great promise for revolutionizing aerospace and terrestrial propulsion, and power generation. However, ceramic components are difficult to design because brittle materials in general have widely varying strength values. The CAPES/Life software eases this task by providing a tool to optimize the design and manufacture of brittle material components using probabilistic reliability analysis techniques. Probabilistic component design involves predicting the probability of failure for a thermomechanically loaded component from specimen rupture data. Typically, these experiments are performed using many simple geometry flexural or tensile test specimens. A static, dynamic, or cyclic load is applied to each specimen until fracture. Statistical strength and SCG (fatigue) parameters are then determined from these data. Using these parameters and the results obtained from a finite element analysis, the time-dependent reliability for a complex component geometry and loading is then predicted. Appropriate design changes are made until an acceptable probability of failure has been reached.
NASA Technical Reports Server (NTRS)
Howell, W. E.
1974-01-01
The structural performance of a boron-epoxy reinforced titanium drag strut, which contains a bonded scarf joint and was designed to the criteria of the Boeing 747 transport, was evaluated. An experimental and analytical investigation was conducted. The strut was exposed to two lifetimes of spectrum loading and was statically loaded to the tensile and compressive design ultimate loads. Throughout the test program no evidence of any damage in the drag strut was detected by strain gage measurements, ultrasonic inspection, or visual observation. An analytical study of the bonded joint was made using the NASA structural analysis computer program NASTRAN. A comparison of the strains predicted by the NASTRAN computer program with the experimentally determined values shows excellent agreement. The NASTRAN computer program is a viable tool for studying, in detail, the stresses and strains induced in a bonded joint.
NASA Astrophysics Data System (ADS)
Gnyusov, S. F.; Rotshtein, V. P.; Polevin, S. D.; Kitsanov, S. A.
2010-09-01
Features of the plastic deformation and dynamic spall fracture of Hadfield steel under conditions of shock wave loading at a straining rate of ˜106 s-1 have been studied. The shock load (˜30 GPa, ˜0.2 μs) was produced by pulses of a SINUS-7 electron accelerator, which generated relativistic electron bunches with an electron energy of up to 1.35 MeV, a duration of 45 ns, and a peak power on the target of 3.4 × 1010 W/cm2. It is established that the spalling proceeds via mixed viscous-brittle intergranular fracture, unlike the cases of quasi-static tensile and impact loading, where viscous transgranular fracture is typical. It is shown that the intergranular character of the spall fracture is caused by the localization of plastic deformation at grain boundaries containing precipitated carbide inclusions.
Stress-strain state of mechanical rebar couplings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimenov, Vasilij, E-mail: nauka@tsuab.ru; Tomsk State University of Architecture and Buildings, 2 Solyanaya Sq., Tomsk, 634003; Ovchinnikov, Artem
Mechanical rebar couplers are preferable in the advanced building construction and structural design of anti-seismic elements. The paper presents destructive inspection techniques used to investigate stress fields (tensile and compressive) and deformation curves for mechanical rebar splicing. The properties of mechanical rebar splicing are investigated by the non-destructive testing digital radiography. The behavior of real connections (column-to-column, beam-to-column) is studied under static and dynamic loads. Investigation results allow the elaboration of recommendations on their application in the universal prefabricated anti-seismic structural system developed at Tomsk State University of Architecture and Building, Tomsk, Russia.
NASA Technical Reports Server (NTRS)
Krempl, Erhard; An, Deukman
1991-01-01
Fatigue tests conducted with and without internal pressure have been found to possess approximately the same fatigue life as (+/-45)s graphite/epoxy tubes for zero-to-tension axial load-controlled conditions on an axial torsion servohydraulic apparatus. These tests therefore cannot be considered as confirmations of the suspected detrimental effect of interlaminar tensile stresses on the fatigue performance of thin-walled tubes. The addition of 90-deg plies on both the inside and the outside is found to significantly improve the tubes' static and fatigue strengths.
Fastener load tests and retention systems tests for cryogenic wind-tunnel models
NASA Technical Reports Server (NTRS)
Wallace, J. W.
1984-01-01
A-286 stainless steel screws were tested to determine the tensile load capability and failure mode of various screw sizes and types at both cryogenic and room temperature. Additionally, five fastener retention systems were tested by using A-286 screws with specimens made from the primary metallic alloys that are currently used for cryogenic models. The locking system effectiveness was examined by simple no-load cycling to cryogenic temperatures (-275 F) as well as by dynamic and static loading at cryogenic temperatures. In general, most systems were found to be effective retention devices. There are some differences between the various devices with respect to ease of application, cleanup, and reuse. Results of tests at -275 F imply that the cold temperatures act to improve screw retention. The improved retention is probably the result of differential thermal contraction and/or increased friction (thread-binding effects). The data provided are useful in selecting screw sizes, types, and locking devices for model systems to be tested in cryogenic wind tunnels.
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir
2012-03-01
Features of mechanical behavior of nanostructured and ultrafine-grained metals under quasistatic and shock wave loadings are discussed. Features of mechanical behavior of nanostructured and ultrafine grained metals over a wide range of strain rates are discussed. A constitutive model for mechanical behavior of metal alloys under shock wave loading including a grain size distribution, a precipitate hardening, and physical mechanisms of shear stress relaxation is presented. Strain rate sensitivity of the yield stress of face-centered-cubic, hexagonal close-packed metal alloys depends on grain size, whereas the Hugoniot elastic limits of ultrafine-grained copper, aluminum, and titanium alloys are close to values of coarse-grained counterparts. At quasi-static loading the yield strength and the tensile strength of titanium alloys with grain size from 300 to 500 nm are twice higher than at coarse-grained counterparts. But the spall strength of the UFG titanium alloys exceeds the value of coarse-grained counterparts only for 10 percents.
Study on the Strength of GFRP/Stainless Steel Adhesive Joints Reinforced with Glass Mat
NASA Astrophysics Data System (ADS)
Iwasa, Masaaki
The adhesive strengths of glass fiber reinforced plastics/metal adhesive joints reinforced with glass mat under tensile shear loads and tensile loads were investigated analytically and experimentally. First, the stress singularity parameters of the bonding edges were analyzed by FEM for various types of adhesive joints reinforced with glass mat. The shear stress and normal stress distributions near the bonding edge can be expressed by two stress singularity parameters. Second, tensile shear tests were performed on taper lap joint and taper lap joint reinforced with glass mat and tensile tests were performed on T-type adhesive joint and T-type adhesive joint reinforced with glass mat. The relationships between the loads and the crosshead displacements were measured. We concluded that reinforcing adhesive joints has a greater effect on strength under tensile load than under tensile shear load. The adhesive joints strength reinforced with glass mat can be evaluated by using stress singularity parameters.
Static behavior and the effects of thermal cycling in hybrid laminates
NASA Technical Reports Server (NTRS)
Liber, T. M.; Daniel, I. M.; Chamis, C. C.
1977-01-01
Static stiffness, strength and ultimate strain after thermal cycling were investigated for graphite/Kevlar 49/epoxy and graphite/S-glass/epoxy angle-ply laminates. Tensile stress-strain curves to failure and uniaxial tensile properties were determined, and theoretical predictions of modulus, Poisson's ratio and ultimate strain, based on linear lamination theory, constituent ply properties and measured strength, were made. No significant influence on tensile stress properties due to stacking sequence variations was observed. In general, specimens containing two 0-degree Kevlar or S-glass plies were found to behave linearly to failure, while specimens containing 4 0-degree Kevlar or S-glass plies showed some nonlinear behavior.
High strain rate properties of off-axis composite laminates, part 2
NASA Technical Reports Server (NTRS)
Daniel, I. M.
1991-01-01
Unidirectional off-axis graphite/epoxy and graphite/S-glass/epoxy laminates were characterized in uniaxial tension at strain rates ranging from quasi-static to over 500 s(sup -1). Laminate ring specimens were loaded by internal pressure with the tensile stress at 22.5, 30, and 45 degrees relative to the fiber direction. Results were presented in the form of stress-strain curves to failure. Properties determined included moduli, Poisson's ratios, strength, and ultimate strain. In all three laminates of both materials the modulus and strength increase sharply with strain rate, reaching values roughly 100, 150, and 200 percent higher than corresponding static values for the 22.5(sub 8), 30(sub 8), and 45(sub 8) degree laminates, respectively. In the case of ultimate strain no definite trends could be established, but the maximum deviation from the average of any value for any strain rate was less than 18 percent.
NASA Technical Reports Server (NTRS)
Hartmann, E C; Stickley, G W
1942-01-01
Fatigue-test were conducted on six specimens made from 3/4-inch-diameter 17S-T rolled-and-drawn rod for the purpose of obtaining additional data on the fatigue life of the material at stresses up to the static strength. The specimens were tested in direct tension using a stress range from zero to a maximum in tension. A static testing machine was used to apply repeated loads in the case of the first three specimens; the other three specimens were tested in a direct tension-compression fatigue machine. The direct-stress fatigue curve obtained for the material indicates that, in the range of stresses above about two-thirds the tensile strength, the fatigue strength is higher than might be expected by simply extrapolating the ordinary curve of stress plotted against the number of cycles determined at lower stresses.
NASA Astrophysics Data System (ADS)
Huang, Y. G.; Wang, L. G.; Lu, Y. L.; Chen, J. R.; Zhang, J. H.
2015-09-01
Based on the two-dimensional elasticity theory, this study established a mechanical model under chordally opposing distributed compressive loads, in order to perfect the theoretical foundation of the flattened Brazilian splitting test used for measuring the indirect tensile strength of rocks. The stress superposition method was used to obtain the approximate analytic solutions of stress components inside the flattened Brazilian disk. These analytic solutions were then verified through a comparison with the numerical results of the finite element method (FEM). Based on the theoretical derivation, this research carried out a contrastive study on the effect of the flattened loading angles on the stress value and stress concentration degree inside the disk. The results showed that the stress concentration degree near the loading point and the ratio of compressive/tensile stress inside the disk dramatically decreased as the flattened loading angle increased, avoiding the crushing failure near-loading point of Brazilian disk specimens. However, only the tensile stress value and the tensile region were slightly reduced with the increase of the flattened loading angle. Furthermore, this study found that the optimal flattened loading angle was 20°-30°; flattened load angles that were too large or too small made it difficult to guarantee the central tensile splitting failure principle of the Brazilian splitting test. According to the Griffith strength failure criterion, the calculative formula of the indirect tensile strength of rocks was derived theoretically. This study obtained a theoretical indirect tensile strength that closely coincided with existing and experimental results. Finally, this paper simulated the fracture evolution process of rocks under different loading angles through the use of the finite element numerical software ANSYS. The modeling results showed that the Flattened Brazilian Splitting Test using the optimal loading angle could guarantee the tensile splitting failure initiated by a central crack.
High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.
Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E
2016-02-01
To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair strength compared with high-tensile strength suture at time-zero simulated testing. Published by Elsevier Inc.
Finite Element Simulation of Aluminium/GFRP Fibre Metal Laminate under Tensile Loading
NASA Astrophysics Data System (ADS)
Merzuki, M. N. M.; Rejab, M. R. M.; Romli, N. K.; Bachtiar, D.; Siregar, J.; Rani, M. F.; Salleh, Salwani Mohd
2018-03-01
The response of a fibre metal laminate (FML) model to the tensile loading is predicted through a computational approach. The FML consisted with layers of aluminum alloy and embedded with one layer of composite material, Glass fibre Reinforced Plastic (GFRP). The glass fibre and aluminium alloy 2024-0 was laminated by using thermoset epoxy. A compression moulding technique was used in the process of a FML fabrication. The aluminium has been roughen by a metal sanding method which to improve the bonding between the fibre and metal layer. The main objective of this paper is to determine the failure behaviour of the FML under the tensile loading. The responses on the FML under the tensile loading were numerically performed. The FML was modelled and analysed by using Abaqus/CAE 6.13 version. Based on the experimental and FE data of the tensile, the ultimate tensile stress is 120 MPa where delamination and fibre breakage happened. A numerical model was developed and agreed well with the experimental results. The laminate has an inelastic respond to increase the tensile loads which due to the plasticity of the aluminium layers.
NASA Astrophysics Data System (ADS)
Nakai, Kenji; Yokoyama, Takashi
2015-09-01
The effect of strain rate up to approximately ɛ˙ = 102/s on the tensile stress-strain properties of unidirectional and cross-ply carbon/epoxy laminated composites in the through-thickness direction is investigated. Waisted cylindrical specimens machined out of the laminated composites in the through-thickness direction are used in both static and dynamic tests. The dynamic tensile stress-strain curves up to fracture are determined using the split Hopkinson bar (SHB). The low and intermediate strain-rate tensile stress-strain relations up to fracture are measured on an Instron 5500R testing machine. It is demonstrated that the ultimate tensile strength and absorbed energy up to fracture increase significantly, while the fracture strain decreases slightly with increasing strain rate. Macro- and micro-scopic examinations reveal a marked difference in the fracture surfaces between the static and dynamic tension specimens.
Characterization of delamination onset and growth in a composite laminate
NASA Technical Reports Server (NTRS)
Obrien, T. K.
1981-01-01
The onset and growth of delaminations in unnotched (+ or - 30/+ or - 30/90/90 bar) sub S graphite epoxy laminates is described quantitatively. These laminates, designed to delaminate at the edges under tensile loads, were tested and analyzed. Delamination growth and stiffness loss were monitored nondestructively. Laminate stiffness decreased linearly with delamination size. The strain energy release rate, G, associated with delamination growth, was calculated from two analyses. A critical G for delamination onset was determined, and then was used to predict the onset of delaminations in (+45 sub n/-45 sub n/o sub n/90 sub n) sub s (n=1,2,3) laminates. A delamination resistance curve (R curve) was developed to characterize the observed stable delamination growth under quasi static loading. A power law correlation between G and delamination growth rates in fatigue was established.
High velocity impact on composite link of aircraft wing flap mechanism
NASA Astrophysics Data System (ADS)
Heimbs, Sebastian; Lang, Holger; Havar, Tamas
2012-12-01
This paper describes the numerical investigation of the mechanical behaviour of a structural component of an aircraft wing flap support impacted by a wheel rim fragment. The support link made of composite materials was modelled in the commercial finite element code Abaqus/Explicit, incorporating intralaminar and interlaminar failure modes by adequate material models and cohesive interfaces. Validation studies were performed step by step using quasi-static tensile test data and low velocity impact test data. Finally, high velocity impact simulations with a metallic rim fragment were performed for several load cases involving different impact angles, impactor rotation and pre-stress. The numerical rim release analysis turned out to be an efficient approach in the development process of such composite structures and for the identification of structural damage and worst case impact loading scenarios.
NASA Astrophysics Data System (ADS)
Lotfi, Muhamad Nadhli Amin; Ismail, Hanafi; Othman, Nadras
2017-10-01
Tensile, swelling and morphological properties of bentonite filled acrylonitrile butadiene rubber (NBR/Bt) composites were studied. The experiments were conducted at room temperature by using two rolled mill, universal testing machine (INSTRON), and American Standard Testing Method (ASTM) D471 for compounding, tensile testing, and swelling test, respectively. Results obtained indicated that a better tensile strength, elongation at break and tensile modulus were recorded as compared to the pure NBR particularly up to 90 phr of Bt loading. However, swelling (%) exhibited the opposite trend where the liquid uptake by the composites was indirectly proportional with the increasing of Bt loading. Scanning electron microscopy (SEM) used on the tensile fractured surface of the NBR/Bt composites have shown that the fillers were well embedded in the NBR matrix, for Bt loading up to 90 phr. The agglomeration of fillers occurred for Bt loading exceeding 90 phr.
NASA Astrophysics Data System (ADS)
Yin, Qiang; Chen, Tian-jin; Li, Wei-yang; Xiong, Ze-cheng; Ma, Rui
2017-09-01
In order to obtain the deformation map and equivalent stress distribution of rectifier cabinet for nuclear power generating stations, the quality distribution of structure and electrical are described, the tensile bond strengths of the rings are checked, and the finite element model of cabinet is set up by ANSYS. The transport conditions of the hoisting state and fork loading state are analyzed. The deformation map and equivalent stress distribution are obtained. The attentive problems are put forward. It is a reference for analysis method and the obtained results for the transport of rectifier cabinet for nuclear power generating stations.
Method of measuring metal coating adhesion
Roper, J.R.
A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.
Method of measuring metal coating adhesion
Roper, John R.
1985-01-01
A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.
Correlation between strength properties in standard test specimens and molded phenolic parts
NASA Technical Reports Server (NTRS)
Turner, P S; Thomason, R H
1946-01-01
This report describes an investigation of the tensile, flexural, and impact properties of 10 selected types of phenolic molding materials. The materials were studied to see in what ways and to what extent their properties satisfy some assumptions on which the theory of strength of materials is based: namely, (a) isotropy, (b) linear stress-strain relationship for small strains, and (c) homogeneity. The effect of changing the dimensions of tensile and flexural specimens and the span-depth ratio in flexural tests were studied. The strengths of molded boxes and flexural specimens cut from the boxes were compared with results of tests on standard test specimens molded from the respective materials. The nonuniformity of a material, which is indicated by the coefficient of variation, affects the results of tests made with specimens of different sizes and tests with different methods of loading. The strength values were found to depend on the relationship between size and shape of the molded specimen and size and shape of the fillers. The most significant variations observed within a diversified group of materials were found to depend on the orientation of fibrous fillers. Of secondary importance was the dependence of the variability of test results on the pieces of filler incorporated into the molding powder as well as on the size of the piece. Static breaking strength tests on boxes molded from six representative phenolic materials correlated well with falling-ball impact tests on specimens cut from molded flat sheets. Good correlation was obtained with Izod impact tests on standard test specimens prepared from the molding materials. The static breaking strengths of the boxes do not correlate with the results of tensile or flexural tests on standard specimens.
Tensile strength of cementing agents on the CeraOne system of dental prosthesis on implants.
Montenegro, Alexandre Campos; Machado, Aldir Nascimento; Depes Gouvêa, Cresus Vinicius
2008-12-01
The aim of this in vitro study was to evaluate the tensile strength of titanium cylinders cemented on stainless steel abutment mock-ups by the Cerazone system. Four types of cements were used: glass ionomer, Fuji I (GC); zinc phosphate, Cimento LS (Vigodent); zinc oxide without eugenol, Rely x Temp NE (3M ESPE); and resin cement, Rely x ARC (3M ESPE). Four experimental groups were formed, each composed of 5 test specimens. Each test specimen consisted of a set of 1 cylinder and 1 stainless steel abutment mock-up. All cements tested were manipulated in accordance with manufacturers' instructions. A static load of 5 Newtons (N) for 2 minutes was used to standardize the procedure. The tensile tests were performed by a mechanical universal testing machine (EMIC DL500MF) at a crosshead speed of 0.5 mm/min. The highest bonding values resulting from the experiment were obtained by Cimento LS (21.86 MPa mean), followed by the resin cement Rely x ARC (12.95 MPa mean), Fuji I (6.89 MPa mean), and Rely x Temp NE (4.71 MPa mean). The results were subjected to analysis of variance (ANOVA) and the Student's t test. The cements differed amongst them as regards tensile strength, with the highest bonding levels recorded with zinc phosphate (Cimento LS) and the lowest with the zinc oxide without eugenol (Rely x Temp NE).
An Ultrasonic Technique to Determine the Residual Strength of Adhesive Bonds
NASA Technical Reports Server (NTRS)
Achenbach, J. D.; Tang, Z.
1999-01-01
In this work, ultrasonic techniques to nondestructively evaluate adhesive bond degradation have been studied. The key to the present approach is the introduction of an external factor which pulls the adhesive bond in the nonlinear range, simultaneously with the application of an ultrasonic technique. With the aid of an external static tensile loading, a superimposed longitudinal wave has.been used to obtain the slopes of the stress-strain curve of an adhesive bond at a series of load levels. The critical load, at which a reduction of the slope is detected by the superimposed longitudinal wave, is an indication of the onset of nonlinear behavior of the adhesive bond, and therefore of bond degradation. This approach has been applied to the detection of adhesive bond degradation induced by cyclic fatigue loading. Analogously to the longitudinal wave case, a superimposed shear wave has been used to obtain the effective shear modulus of adhesive layers at different shear load levels. The onset of the nonlinear behavior of an adhesive bond under shear loading has been detected by the use of a superimposed shear wave. Experiments show that a longitudinal wave can also detect the nonlinear behavior when an adhesive bond is subjected to shear loading. An optimal combination of ultrasonic testing and mechanical loading methods for the detection of degradation related nonlinear behavior of adhesive bonds has been discussed. For the purpose of a practical application, an ultrasonic technique that uses a temperature increase as an alternative to static loading has also been investigated. A general strain-temperature correspondence principle that relates a mechanical strain to a temperature has been presented. Explicit strain-temperature correspondence relations for both the tension and shear cases have been derived. An important parameter which quantifies the relation between the wave velocity and temperature has been defined. This parameter, which is indicative of adhesive bond nonlinearity and which can be conveniently obtained by an ultrasonic measurement, has been used as an indication of adhesive bond degradation. Experimental results have shown that the temperature increase method is a convenient and productive alternative to static loading. A technique which uses the reflected waveform data to obtain the fundamental ultrasonic parameters (transit time, reflection coefficient and attenuation coefficient) of an adhesive bond has also been presented.
Wieding, Jan; Fritsche, Andreas; Heinl, Peter; Körner, Carolin; Cornelsen, Matthias; Seitz, Hermann; Mittelmeier, Wolfram; Bader, Rainer
2013-12-16
The repair of large segmental bone defects caused by fracture, tumor or infection remains challenging in orthopedic surgery. The capability of two different bone scaffold materials, sintered tricalciumphosphate and a titanium alloy (Ti6Al4V), were determined by mechanical and biomechanical testing. All scaffolds were fabricated by means of additive manufacturing techniques with identical design and controlled pore geometry. Small-sized sintered TCP scaffolds (10 mm diameter, 21 mm length) were fabricated as dense and open-porous samples and tested in an axial loading procedure. Material properties for titanium alloy were determined by using both tensile (dense) and compressive test samples (open-porous). Furthermore, large-sized open-porous TCP and titanium alloy scaffolds (30 mm in height and diameter, 700 µm pore size) were tested in a biomechanical setup simulating a large segmental bone defect using a composite femur stabilized with an osteosynthesis plate. Static physiologic loads (1.9 kN) were applied within these tests. Ultimate compressive strength of the TCP samples was 11.2 ± 0.7 MPa and 2.2 ± 0.3 MPa, respectively, for the dense and the open-porous samples. Tensile strength and ultimate compressive strength was 909.8 ± 4.9 MPa and 183.3 ± 3.7 MPa, respectively, for the dense and the open-porous titanium alloy samples. Furthermore, the biomechanical results showed good mechanical stability for the titanium alloy scaffolds. TCP scaffolds failed at 30% of the maximum load. Based on recent data, the 3D printed TCP scaffolds tested cannot currently be recommended for high load-bearing situations. Scaffolds made of titanium could be optimized by adapting the biomechanical requirements.
The role of frictional contact of constituent blocks on the stability of masonry domes.
Beatini, Valentina; Royer-Carfagni, Gianni; Tasora, Alessandro
2018-01-01
The observation of old construction works confirms that masonry domes can withstand tensile hoop stresses, at least up to a certain level. Here, such tensile resistance, rather than a priori assumed as a property of the bulk material, is attributed to the contact forces that are developed at the interfaces between interlocked blocks under normal pressure, specified by Coulomb's friction law. According to this rationale, the aspect ratio of the blocks, as well as the bond pattern, becomes of fundamental importance. To investigate the complex assembly of blocks, supposed rigid, we present a non-smooth contact dynamic analysis, implemented in a custom software based on the Project Chrono C++ framework and complemented with parametric-design interfaces for pre- and post-processing complex geometries. Through this advanced tool, we investigate the role of frictional forces resisting hoop stresses in the stability of domes, either circular or oval, under static and dynamic loading, focusing, in particular, on the structural role played by the underlying drum and the surmounting tiburium .
NASA Astrophysics Data System (ADS)
Surya, I.; Ismail, H.
2018-02-01
The effects of Alkanolamide (ALK) addition on swelling, rheometric and tensile properties of unfilled chloroprene rubber (CR) compounds were investigated. The ALK was prepared from Refined Bleached Deodorized Palm Stearin and diethanolamine and -together with magnesium and zinc oxides- incorporated into the CR compounds. The ALK loadings were 0.5, 1.0, 1.5 and 2.0 phr. It was found that ALK enhanced the cure rate and torque difference of the CR compounds. ALK also enhanced the tensile modulus and tensile strength; especially up to a 1.5 phr loading. The swelling test proved that the 1.5 phr of ALK exhibited the highest degree of crosslink density which caused the highest in tensile modulus and tensile strength.
Choudhary, Lokesh; Raman, R K Singh
2012-02-01
It is essential that a metallic implant material possesses adequate resistance to cracking/fracture under the synergistic action of a corrosive physiological environment and mechanical loading (i.e. stress corrosion cracking (SCC)), before the implant can be put to actual use. This paper presents a critique of the fundamental issues with an assessment of SCC of a rapidly corroding material such as magnesium alloys, and describes an investigation into the mechanism of SCC of a magnesium alloy in a physiological environment. The SCC susceptibility of the alloy in a simulated human body fluid was established by slow strain rate tensile (SSRT) testing using smooth specimens under different electrochemical conditions for understanding the mechanism of SCC. However, to assess the life of the implant devices that often possess fine micro-cracks, SCC susceptibility of notched specimens was investigated by circumferential notch tensile (CNT) testing. CNT tests also produced important design data, i.e. threshold stress intensity for SCC (KISCC) and SCC crack growth rate. Fractographic features of SCC were examined using scanning electron microscopy. The SSRT and CNT results, together with fractographic evidence, confirmed the SCC susceptibility of both smooth and notched specimens of a magnesium alloy in the physiological environment. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Shear fracture of jointed steel plates of bolted joints under impact load
NASA Astrophysics Data System (ADS)
Daimaruya, M.; Fujiki, H.; Ambarita, H.; Kobayashi, H.; Shin, H.-S.
2013-07-01
The present study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of bolted joints used in a car body, which contributes to crash simulations by CAE. We focus our attention on the shear fracture of the jointed steel plates of lap-bolted joints in the suspension of a car under impact load. Members of lap-bolted joints are modelled as a pair of steel plates connected by a bolt. One of the plates is a specimen subjected to plastic deformation and fracture and the other is a jig subjected to elastic deformation only. Three kinds of steel plate specimens are examined, i.e., a common steel plate with a tensile strength of 270 MPa and high tensile strength steel plates of 440 and 590 MPa used for cars. The impact shear test was performed using the split Hopkinson bar technique for tension impact, together with the static test using a universal testing machine INSTRON 5586. The behaviour of the shear stress and deformation up to rupture taking place in the joint was discussed. The obtained results suggest that a stress-based fracture criterion may be developed for the impact fracture of jointed steel plates of a lap-bolted joint.
NASA Astrophysics Data System (ADS)
Weiß-Borkowski, Nathalie; Lian, Junhe; Camberg, Alan; Tröster, Thomas; Münstermann, Sebastian; Bleck, Wolfgang; Gese, Helmut; Richter, Helmut
2018-05-01
Determination of forming limit curves (FLC) to describe the multi-axial forming behaviour is possible via either experimental measurements or theoretical calculations. In case of theoretical determination, different models are available and some of them consider the influence of strain rate in the quasi-static and dynamic strain rate regime. Consideration of the strain rate effect is necessary as many material characteristics such as yield strength and failure strain are affected by loading speed. In addition, the start of instability and necking depends not only on the strain hardening coefficient but also on the strain rate sensitivity parameter. Therefore, the strain rate dependency of materials for both plasticity and the failure behaviour is taken into account in crash simulations for strain rates up to 1000 s-1 and FLC can be used for the description of the material's instability behaviour at multi-axial loading. In this context, due to the strain rate dependency of the material behaviour, an extrapolation of the quasi-static FLC to dynamic loading condition is not reliable. Therefore, experimental high-speed Nakajima tests or theoretical models shall be used to determine the FLC at high strain rates. In this study, two theoretical models for determination of FLC at high strain rates and results of experimental high-speed Nakajima tests for a DP600 are presented. One of the theoretical models is the numerical algorithm CRACH as part of the modular material and failure model MF GenYld+CrachFEM 4.2, which is based on an initial imperfection. Furthermore, the extended modified maximum force criterion considering the strain rate effect is also used to predict the FLC. These two models are calibrated by the quasi-static and dynamic uniaxial tensile tests and bulge tests. The predictions for the quasi-static and dynamic FLC by both models are presented and compared with the experimental results.
NASA Astrophysics Data System (ADS)
Jelani, Mohsan; Li, Zewen; Shen, Zhonghua; Sardar, Maryam; Tabassum, Aasma
2017-05-01
The present work reports the investigation of the thermal and mechanical behaviour of aluminium alloys under the combined action of tensile loading and laser irradiations. The two types of aluminium alloys (Al-1060 and Al-6061) are used for the experiments. The continuous wave Ytterbium fibre laser (wavelength 1080 nm) was employed as irradiation source, while tensile loading was provided by tensile testing machine. The effects of various pre-loading and laser power densities on the failure time, temperature distribution and on deformation behaviour of aluminium alloys are analysed. The experimental results represents the significant reduction in failure time and temperature for higher laser powers and for high load values, which implies that preloading may contribute a significant role in the failure of the material at elevated temperature. The reason and characterization of material failure by tensile and laser loading are explored in detail. A comparative behaviour of under tested materials is also investigated. This work suggests that, studies considering only combined loading are not enough to fully understand the mechanical behaviour of under tested materials. For complete characterization, one must consider the effect of heating as well as loading rate.
Durability and Damage Development in Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Haque, A.; Rahman, M.; Tyson, O. Z.; Jeelani, S.; Verrilli, Michael J. (Technical Monitor)
2001-01-01
Damage development in woven SiC/SiNC ceramic matrix composites (CMC's) under tensile and cyclic loading both at room and elevated temperatures have been investigated for the exhaust nozzle of high-efficient turbine engines. The ultimate strength, failure strain, proportional limit and modulus data at a temperature range of 23 to 1250 C are generated. The tensile strength of SiC/SiNC woven composites have been observed to increase with increased temperatures up to 1000 C. The stress/strain plot shows a pseudo-yield point at 25 percent of the failure strain (epsilon(sub r)) which indicates damage initiation in the form of matrix cracking. The evolution of damage beyond 0.25 epsilon(sub f), both at room and elevated temperature comprises multiple matrix cracking, interfacial debonding, and fiber pullout. Although the nature of the stress/strain plot shows damage-tolerant behavior under static loading both at room and elevated temperature, the life expectancy of SiC/SiNC composites degrades significantly under cyclic loading at elevated temperature. This is mostly due to the interactions of fatigue damage caused by the mechanically induced plastic strain and the damage developed by the creep strain. The in situ damage evolutions are monitored by acoustic event parameters, ultrasonic C-scan and stiffness degradation. Rate equations for modulus degradation and fatigue life prediction of ceramic matrix composites both at room and elevated temperatures are developed. These rate equations are observed to show reasonable agreement with experimental results.
Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong
2018-01-01
In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material’s fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11−20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11−20} tensile twins. PMID:29597278
Yan, Zhifeng; Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong
2018-03-28
In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material's fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11-20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11-20} tensile twins.
Improved Tensile Adhesion Specimens for High Strength Epoxy Systems in Aerospace Applications
NASA Technical Reports Server (NTRS)
Haddock, M. Reed; McLennan, Michael L.
2000-01-01
An improved tensile adhesion button has been designed and tested that results in higher measured tensile adhesion strength while providing increased capability for testing high strength epoxy adhesive systems. The best attributes of two well-established tensile button designs were combined and refined into an optimized tensile button. The most significant design change to the tensile button was to improve alignment of the bonded tensile button specimens during tensile testing by changing the interface between the tensile button and the tensile test machine. The established or old button design uses a test fixture that pulls from a grooved annulus or anvil head while the new button design pulls from a threaded hole in the centerline of the button. Finite element (FE) analysis showed that asymmetric loading of the established anvil head tensile button significantly increases the stress concentration in the adhesive, causing failure at lower tensile test loads. The new tensile button was designed to eliminate asymmetric loading and eliminate misalignment sensitivity. Enhanced alignment resulted in improved tensile adhesion strength measurement up to 13.8 MPa (2000psi) over the established button design. Another design change increased the capability of the button by increasing the threaded hole diameter allowing it to test high strength epoxy systems up to 85 MPa(less than 12,000 psi). The improved tensile button can be used in button- to-button or button-to-panel configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayari, F.; Supmeca/LISMMA-Paris, School of Mechanical and Manufacturing Engineering; Bayraktar, E.
2011-01-17
Elastomeric matrix composites (EMC-rubbers) are considered as isotropic hyper elastic incompressible materials under static loading conditions. As a rubber material element cannot be extended to an infinite stretch ratio, a damage mechanism at large strain is considered. The phenomenon of cavitation plays an important role in the damage of EMCs and influences the toughening mechanism of rubber-modified plastics. Indeed, cavitation in elastomers is thought to be initiated from flaws, which grow primarily due to a hydrostatic tensile stress and ahead of the crack; there will not only be a high stress perpendicular to the plane of the crack but alsomore » significant stress components in the other direction. However, there exists historically much discussion on the evolution of the cavitation in elastomers under monotonic and/or static solicitation. Mainly, cavitation instability occurs when the stress levels are sufficiently high so that the void expansion rate becomes infinitely large. Many research works have been performed to understand the effects of rubber cavitation on toughening of plastics. In fact, the cavitation phenomenon is not well known in detail. The most popular idea states that the cavitation is related to the existence of the gas bubbles trapped in the material during the production stage and the growing of the cavities would then be the result of the growing gas bubbles. Further, instable failure mechanism at the end of the cavitation is not well known too.« less
Long Term Displacement Data of Woven Fabric Webbings Under Constant Load for Inflatable Structures
NASA Technical Reports Server (NTRS)
Kenner, Winfred S.; Jones, Thomas C.; Doggett, William R.; Lucy, Melvin H.; Grondin, Trevor A.; Whitley, Karen S.; Duncan, Quinton; Plant, James V.
2014-01-01
Inflatable modules for space applications offer weight and launch volume savings relative to current metallic modules. Limited data exist on the creep behavior of the restraint layer of inflatable modules. Long-term displacement and strain data of two high strength woven fabric webbings, Kevlar and Vectran, under constant load is presented. The creep behavior of webbings is required by designers to help determine service life parameters of inflatable modules. Four groups of different webbings with different loads were defined for this study. Group 1 consisted of 4K Kevlar webbings loaded to 33% ultimate tensile strength and 6K Vectran webbings loaded to 27% ultimate tensile strength, group 2 consisted of 6K Kevlar webbings loaded to 40% and 43% ultimate tensile strength, and 6K Vectran webbings loaded to 50% ultimate tensile strength, group 3 consisted of 6K Kevlar webbings loaded to 52% ultimate tensile strength and 6K Vectran webbings loaded to 60% ultimate tensile strength, and group 4 consisted of 12.5K Kevlar webbings loaded to 22% ultimate tensile strength, and 12.5K Vectran webbings loaded to 22% ultimate tensile strength. The uniquely designed test facility, hardware, displacement measuring devices, and test data are presented. Test data indicate that immediately after loading all webbings stretch an inch or more, however as time increases displacement values significantly decrease to fall within a range of several hundredth of an inch over the remainder of test period. Webbings in group 1 exhibit near constant displacements and strains over a 17-month period. Data acquisition was suspended after the 17th month, however webbings continue to sustain load without any local webbing damage as of the 21st month of testing. Webbings in group 2 exhibit a combination of initial constant displacement and subsequent increases in displacement rates over a 16-month period. Webbings in group 3 exhibit steady increases in displacement rates leading to webbing failure over a 3-month period. Five of six webbings experienced local damage and subsequent failure in group 3. Data from group 4 indicates increasing webbing displacements over a 7-month period. All webbings in groups 1, 2, and 4 remain suspended without any local damage as of the writing of this paper. Variations in facility temperatures over test period seem to have had limited effect on long-term webbing displacement data.
A torque, tension and stress corrosion evaluation of high strength A286 bolts
NASA Technical Reports Server (NTRS)
Montano, J. W.
1986-01-01
The problems associated with overtorque applied to the Booster Separation Motor (BSM) Igniter Adapter high strength 200 KSI (1379 Mpa) A286 CRES bolts and the threaded holes of the 7075-T73 aluminum alloy BSM cases are addressed. The evaluation included torque, tensile, and stress corrosion tests incorporating the A286 CRES bolts and the 7075-T73 aluminum alloy BSM cases. The tensile test data includes ultimate tensile load (UTL), Johnson's 2/3 yield load (J2/3YL), proportional limit load (PLL), and total bolt stretch. Torque tension data includes torque, torque induced load, and positive and negative break-away torque. Stress corrosion test data reflect the overtorque and the resulting torque induced loads sustained by the A286 CRES bolts torqued into a 7075-T73 aluminum alloy forged dome with threaded holes. After 60 days of salt fog exposure, the positive and the negative break-away torques, the subsequent mechanical property tensile test results, and the BSM dome threaded hole axial tensile pullout loads are reported.
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.
2017-01-01
Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) light alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength.
Pramanik, Brahmananda; Tadepalli, Tezeswi; Mantena, P. Raju
2012-01-01
In this study, the fractal dimensions of failure surfaces of vinyl ester based nanocomposites are estimated using two classical methods, Vertical Section Method (VSM) and Slit Island Method (SIM), based on the processing of 3D digital microscopic images. Self-affine fractal geometry has been observed in the experimentally obtained failure surfaces of graphite platelet reinforced nanocomposites subjected to quasi-static uniaxial tensile and low velocity punch-shear loading. Fracture energy and fracture toughness are estimated analytically from the surface fractal dimensionality. Sensitivity studies show an exponential dependency of fracture energy and fracture toughness on the fractal dimensionality. Contribution of fracture energy to the total energy absorption of these nanoparticle reinforced composites is demonstrated. For the graphite platelet reinforced nanocomposites investigated, surface fractal analysis has depicted the probable ductile or brittle fracture propagation mechanism, depending upon the rate of loading. PMID:28817017
NASA Astrophysics Data System (ADS)
Gao, Xiang; Shao, Wenquan; Ji, Hongwei
2010-10-01
Kevlar fiber-reinforced epoxy (KFRE) composites are widely used in the fields of aerospace, weapon, shipping, and civil industry, due to their outstanding capabilities. In this paper, mechanical properties and damage behaviors of KFRE laminate (02/902) were tested and studied under tension condition. To precisely measure the tensile mechanical properties of the material and investigate its micro-scale damage evolution, a micro-image measuring system with in-situ tensile device was designed. The measuring system, by which the in-situ tensile test can be carried out and surface morphology evolution of the tensile specimen can be visually monitored and recorded during the process of loading, includes an ultra-long working distance zoom microscope and a in-situ tensile loading device. In this study, a digital image correlation method (DICM) was used to calculate the deformation of the tensile specimen under different load levels according to the temporal series images captured by an optical microscope and CCD camera. Then, the elastic modulus and Poisson's ratio of the KFRE was obtained accordingly. The damage progresses of the KFRE laminates were analyzed. Experimental results indicated that: (1) the KFRE laminate (02/902) is almost elastic, its failure mode is brittle tensile fracture.(2) Mechanical properties parameters of the material are as follows: elastic modulus is 14- 16GPa, and tensile ultimate stress is 450-480 Mpa respectively. (3) The damage evolution of the material is that cracks appear in epoxy matrix firstly, then, with the increasing of the tensile loading, matrix cracks add up and extend along a 45° angle direction with tensile load. Furthermore, decohesion between matrix and fibers as well as delamination occurs. Eventually, fibers break and the material is damaged.
NASA Technical Reports Server (NTRS)
Rotem, Assa
1990-01-01
Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.
Al Jabbari, Youssef S; Fournelle, Raymond; Ziebert, Gerald; Toth, Jeffrey; Iacopino, Anthony M
2008-04-01
The aim of this study was to determine the preload and tensile fracture load values of prosthetic retaining screws after long-term use in vivo compared to unused screws (controls). Additionally, the investigation addressed whether the preload and fracture load values of prosthetic retaining screws reported by the manufacturer become altered after long-term use in vivo. For preload testing, 10 new screws (controls) from Nobel Biocare (NB) and 73 used retaining screws [58 from NB and 15 from Sterngold (SG)] were subjected to preload testing. For tensile testing, eight controls from NB and 58 used retaining screws (46 from NB and 12 from SG) were subjected to tensile testing. Used screws for both tests were in service for 18-120 months. A custom load frame, load cell, and torque wrench setup were used for preload testing. All 83 prosthetic screws were torqued once to 10 Ncm, and the produced preload value was recorded (N) using an X-Y plotter. Tensile testing was performed on a universal testing machine and the resulting tensile fracture load value was recorded (N). Preload and tensile fracture load values were analyzed with 2-way ANOVA and Tukey post-hoc tests. There was a significant difference between preload values for screws from NB and screws from SG (p < 0.001). The preload values for gold alloy screws from NB decreased as the number of years in service increased. There was a significant difference between tensile fracture values for the three groups (gold alloy screws from NB and SG and palladium alloy screws from NB) at p < 0.001. The tensile fracture values for gold alloy screws from NB and SG decreased as the number of years in service increased. In fixed detachable hybrid prostheses, perhaps as a result of galling, the intended preload values of prosthetic retaining screws may decrease with increased in-service time. The reduction of the fracture load value may be related to the increase of in-service time; however, the actual determination of this relationship is not possible from this study alone.
Static mechanical strain induces capillary endothelial cell cycle re-entry and sprouting.
Zeiger, A S; Liu, F D; Durham, J T; Jagielska, A; Mahmoodian, R; Van Vliet, K J; Herman, I M
2016-08-16
Vascular endothelial cells are known to respond to a range of biochemical and time-varying mechanical cues that can promote blood vessel sprouting termed angiogenesis. It is less understood how these cells respond to sustained (i.e., static) mechanical cues such as the deformation generated by other contractile vascular cells, cues which can change with age and disease state. Here we demonstrate that static tensile strain of 10%, consistent with that exerted by contractile microvascular pericytes, can directly and rapidly induce cell cycle re-entry in growth-arrested microvascular endothelial cell monolayers. S-phase entry in response to this strain correlates with absence of nuclear p27, a cyclin-dependent kinase inhibitor. Furthermore, this modest strain promotes sprouting of endothelial cells, suggesting a novel mechanical 'angiogenic switch'. These findings suggest that static tensile strain can directly stimulate pathological angiogenesis, implying that pericyte absence or death is not necessarily required of endothelial cell re-activation.
Katona, T R; Chen, J
1994-08-01
The stress levels within the cement layer (hence, the apparent strength) of a direct bonded orthodontic bracket depends, to a large extent, on the alignment of the tensile loads that are applied to the specimen. The purpose of this analysis was to determine how the construction of a ligature wire harness affects the alignment of the applied loads. Tensile tests conducted on a modified bracket/cement system showed large variations in the force-elongation curve profiles. An engineering model was developed to explain these deviations. The results indicate that it is virtually impossible to evenly apply tensile loads to the bracket. It was also proposed that long harnesses constructed with thin ligature wire, prestressing the harness, and lubrication may reduce some of the effects of unavoidable load-bracket misalignment.
Study on the Optimal Groove Shape and Glue Material for Fiber Bragg Grating Measuring Bolts.
Zhao, Yiming; Zhang, Nong; Si, Guangyao; Li, Xuehua
2018-06-02
Fiber Bragg grating (FBG) measuring bolts, as a useful tool to evaluate the behaviors of steel bolts in underground engineering, can be manufactured by gluing the FBG sensors inside the grooves, which are usually symmetrical cuts along the steel bolt rod. The selection of the cut shape and the glue types could perceivably affect the final supporting strength of the bolts. Unfortunately, the impact of cut shape and glue type on bolting strength is not yet clear. In this study, based on direct tension tests, full tensile load⁻displacement curves of rock bolts with different groove shapes were obtained and analyzed. The effects of groove shape on the bolt strength were discussed, and the stress redistribution in the cross-section of a rock bolt with different grooves was simulated using ANSYS. The results indicated that the trapezoidal groove is best for manufacturing the FBG bolt due to its low reduction of supporting strength. Four types of glues commonly used for the FBG sensors were assessed by conducting tensile tests on the mechanical testing and simulation system and the static and dynamic optical interrogators system. Using linear regression analysis, the relationship between the reflected wavelength of FBG sensors and tensile load was obtained. Practical recommendations for glue selection in engineering practice are also provided.
Microstructural and micromechanical study of a Ti6Al4V component made by electron beam melting
NASA Astrophysics Data System (ADS)
Scherillo, F.; Franchitti, S.; Borrelli, R.; Pirozzi, C.; Squillace, A.; Langella, A.; Carrino, L.
2016-10-01
Additive Layer Manufacturing is one of the most promising and investigated manufacturing system due to its advantages to produces near net shape components, also with a very complex shape, in a single shot. Among the different techniques now available, the Electron Beam Melting (EBM) is of particular interest in the production of metal components. Particularly the application of this technique to titanium alloys allows to produces components with a very low buy to fly ratio. In the present paper the microstructure attained is accurately described and mini tensile tests performed allowed to understand the fracture behavior of specimen with the specific microstructure realized under static load.
Development of Standardized Material Testing Protocols for Prosthetic Liners
Cagle, John C.; Reinhall, Per G.; Hafner, Brian J.; Sanders, Joan E.
2017-01-01
A set of protocols was created to characterize prosthetic liners across six clinically relevant material properties. Properties included compressive elasticity, shear elasticity, tensile elasticity, volumetric elasticity, coefficient of friction (CoF), and thermal conductivity. Eighteen prosthetic liners representing the diverse range of commercial products were evaluated to create test procedures that maximized repeatability, minimized error, and provided clinically meaningful results. Shear and tensile elasticity test designs were augmented with finite element analysis (FEA) to optimize specimen geometries. Results showed that because of the wide range of available liner products, the compressive elasticity and tensile elasticity tests required two test maxima; samples were tested until they met either a strain-based or a stress-based maximum, whichever was reached first. The shear and tensile elasticity tests required that no cyclic conditioning be conducted because of limited endurance of the mounting adhesive with some liner materials. The coefficient of friction test was based on dynamic coefficient of friction, as it proved to be a more reliable measurement than static coefficient of friction. The volumetric elasticity test required that air be released beneath samples in the test chamber before testing. The thermal conductivity test best reflected the clinical environment when thermal grease was omitted and when liner samples were placed under pressure consistent with load bearing conditions. The developed procedures provide a standardized approach for evaluating liner products in the prosthetics industry. Test results can be used to improve clinical selection of liners for individual patients and guide development of new liner products. PMID:28233885
Vectran Fiber Time-Dependent Behavior and Additional Static Loading Properties
NASA Technical Reports Server (NTRS)
Fette, Russell B.; Sovinski, Marjorie F.
2004-01-01
Vectran HS appears from literature and testing to date to be an ideal upgrade from Kevlar braided cords for many long-term, static-loading applications such as tie-downs on solar arrays. Vectran is a liquid crystalline polymer and exhibits excellent tensile properties. The material has been touted as a zero creep product. Testing discussed in this report does not support this statement, though the creep is on the order of four times slower than with similar Kevlar 49 products. Previous work with Kevlar and new analysis of Vectran testing has led to a simple predictive model for Vectran at ambient conditions. The mean coefficient of thermal expansion (negative in this case) is similar to Kevlar 49, but is not linear. A positive transition in the curve occurs near 100 C. Out-gassing tests show that the material performs well within parameters for most space flight applications. Vectran also offers increased abrasion resistance, minimal moisture regain, and similar UV degradation. The effects of material construction appear to have a dramatic effect in stress relaxation for braided Vectran. To achieve the improved relaxation rate, upgrades must also examine alternate construction or preconditioning methods. This report recommends Vectran HS as a greatly improved replacement material for applications where time-dependent relaxation is a major factor.
NASA Astrophysics Data System (ADS)
Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.
2018-01-01
Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).
Tensile properties of chrome tanned leather waste short fibre filled unsaturated polyester composite
NASA Astrophysics Data System (ADS)
Talib, Satariah; Romli, Ahmad Zafir; Saad, Siti Zaleha
2017-12-01
Waste leather from industries was commonly disposed via land filling or incineration where the oxidation of Cr III to Cr VI by oxidants (such as peroxides and hypohalide) can easily occur. Cr VI is well known as carcinogenic and mutagenic element where the excessive exposure to this element can be very harmful. As an alternative way, the leather waste from footwear industry was utilised as filler in unsaturated polyester composite (UPC). The leather waste was ground using 0.25 mm mesh size and used without any chemical treatment. The sample was fabricated via castingtechnique and the study was carried out at 1 wt%, 2 wt% and 3 wt% filler loading. The leather waste filled composites showed lower tensile strength and Young's modulus than the unfilled composite. The increasing loading amount of leather waste led to the decreased in tensile strength and Young's modulus. The tensile results was supported by the decreasing pattern of density result which indicates the increasing of void content as the filler loading increased. The results of glass transition temperature are also parallel to the tensile properties where the increasing filler loading had decreased the glass transition temperature. Based on the morphological observation on the fractured tensile sample, much severe filler agglomerations and higher amount of voids was observed at higher filler loading compared to the lower filler loading.
NASA Astrophysics Data System (ADS)
Sanyang, M. L.; Sapuan, S. M.; Haron, M.
2017-10-01
Over the years, cocoa-pod husk (CPH) generation significantly increased due to the growing global demand of chocolate products, since cocoa bean is the main ingredient for chocolate production. Proper utilization of CPH as natural filler for reinforcement of polymer composites provides economic advantages as well as environmental solutions for CPH waste disposal problems. In this study, CPH filled PLA composite films were developed using solution casting method. The effect of CPH loading on the tensile properties of CPH/PLA composite films were investigated. The obtained results manifested that increasing CPH loading from 0% to 10 % significantly increased tensile strength of CPH/PLA composite. However, further addition of CPH loading up to 15 % decreased the tensile strength of film samples. As CPH loading increased from 0% to 15%, tensile modulus of CPH/PLA composite films also increased from 1.5MPa to 10.4MPa, whereas their elongation at break reduced from 190% to 90%. These findings points out CPH as a potential natural filler for reinforcing thermoplastic polymer composites.
NASA Astrophysics Data System (ADS)
Gaaz, Tayser Sumer; Luaibi, Hasan Mohammed; Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.
2018-06-01
The high aspect ratio of nanoscale reinforcements enhances the tensile properties of pure polymer matrix. The composites were first made by adding halloysite nanotubes (HNTs) at low weight percentages of 1, 2, and 3 wt% to thermoplastic polyurethane (TPU). Then, HNTs were phosphoric acid-treated before adding to TPU at same weight percentage to create phosphoric acid HNTs-TPU composites. The samples were fabricated using injection moulding. The HNTs-TPU composites were characterized according to the tensile properties including tensile strength, tensile strain and Young's modulus. The loading has shown its highest tensile values at 2 wt% HNTs loading and same findings are shown with the samples that treated with phosphoric acid. The tensile strength increased to reach 24.65 MPa compare with the 17.7 MPa of the neat TPU showing about 26% improvement. For the phosphoric acid-treated composites, the improvement has reached 35% compared to the neat sample. Regarding the tensile stain, the improvement was about 83% at 2 wt% HNTs loading. For Young's modulus, the results obtained in this study have shown that Young's modulus is linearly improved with either the loading content or the phosphoric acid treated achieving its highest values at 3 wt% HNTs of 14.53 MPa and 16.27 MPa for untreated and treated, respectively. FESEM results showed that HNTs were well dispersed in TPU matrix. Thus, HNTs-TPU has improved tensile properties compared with pure TPU due to the addition of nanofiller.
Lamb Wave-Based Structural Health Monitoring on Composite Bolted Joints under Tensile Load
Yang, Bin; Xuan, Fu-Zhen; Xiang, Yanxun; Li, Dan; Zhu, Wujun; Tang, Xiaojun; Xu, Jichao; Yang, Kang; Luo, Chengqiang
2017-01-01
Online and offline monitoring of composite bolted joints under tensile load were investigated using piezoelectric transducers. The relationships between Lamb wave signals, pre-tightening force, the applied tensile load, as well as the failure modes were investigated. Results indicated that S0/A0 wave amplitudes decrease with the increasing of load. Relationships between damage features and S0/A0 mode were built based on the finite element (FE) simulation and experimental results. The possibility of application of Lamb wave-based structure health monitoring in bolted joint-like composite structures was thus achieved. PMID:28773014
Creep Damage Analysis of a Lattice Truss Panel Structure
NASA Astrophysics Data System (ADS)
Jiang, Wenchun; Li, Shaohua; Luo, Yun; Xu, Shugen
2017-01-01
The creep failure for a lattice truss sandwich panel structure has been predicted by finite element method (FEM). The creep damage is calculated by three kinds of stresses: as-brazed residual stress, operating thermal stress and mechanical load. The creep damage at tensile and compressive loads have been calculated and compared. The creep rate calculated by FEM, Gibson-Ashby and Hodge-Dunand models have been compared. The results show that the creep failure is located at the fillet at both tensile and creep loads. The damage rate at the fillet at tensile load is 50 times as much as that at compressive load. The lattice truss panel structure has a better creep resistance to compressive load than tensile load, because the creep and stress triaxiality at the fillet has been decreased at compressive load. The maximum creep strain at the fillet and the equivalent creep strain of the panel structure increase with the increase of applied load. Compared with Gibson-Ashby model and Hodge-Dunand models, the modified Gibson-Ashby model has a good prediction result compared with FEM. However, a more accurate model considering the size effect of the structure still needs to be developed.
Abramowitch, Steven D.; Zhang, Xiaoyan; Curran, Molly; Kilger, Robert
2010-01-01
Background Over fifty-percent of anterior cruciate ligament reconstructions are performed using semitendinosus and gracilis tendon autografts. Despite their increased use, there remains little quantitative data on their mechanical behavior. Therefore, the objective of this study was to investigate the quasi-static mechanical and nonlinear viscoelastic properties of human semitendinosus and gracilis tendons, as well as the variation of these properties along their length. Methods Specimens were subjected to a series of uniaxial tensile tests: one-hour static stress-relaxation test, 30-cycle cyclic stress-relaxation test and load to failure test. To describe the nonlinear viscoelastic behavior, the quasi-linear viscoelastic theory was utilized to model data from the static stress relaxation experiment. Findings The constants describing the viscoelastic behavior were similar between the proximal and distal halves of the gracilis tendon. The proximal half of the semitendinosus tendon, however, had a greater viscous response than its distal half, which was also significantly higher than the proximal gracilis tendon. In terms of the quasi-static mechanical properties, the properties were similar between the proximal and distal halves of the semitendinosus tendon. However, the distal gracilis tendon showed a significantly higher tangent modulus and ultimate stress compared to its proximal half, which was also significantly higher than the distal semitendinosus tendon. Interpretation The results of this study demonstrate differences between the semitendinosus and gracilis tendons in terms of their quasi-static mechanical and nonlinear viscoelastic properties. These results are important for establishing surgical preconditioning protocols and graft selection. PMID:20092917
NASA Astrophysics Data System (ADS)
Brown, Hayley Rebecca
The industrial demand for high strength-to-weight ratio materials is increasing due to the need for high performance components. Epoxy polymers, although often used in fiber-reinforced polymeric composites, have an inherent low toughness that further decreases with decreasing temperatures. Second-phase additives have been effective in increasing the toughness of epoxies at room temperature; however, the mechanisms at low temperatures are still not understood. In this study, the deformation mechanisms of a DGEBA epoxy modified with MX960 core-shell rubber (CSR) particles were investigated under quasi-static tensile and impact loads at room temperature (RT) and liquid nitrogen (LN 2) temperature. Overall, the CSR had little effect on the tensile properties at RT and LN2 temperature. The impact strength decreased from neat to 3 wt% but increased from neat to 5 wt% at RT and LN2 temperature, with a higher impact strength at RT at all CSR loadings. The CSR particles debonded in front of the crack tip, inducing voids into the matrix. It was found that an increase in shear deformation and void growth likely accounted for the higher impact strength at 5 wt% CSR loading at RT while the thermal stress fields due to the coefficient of thermal expansion mismatch between rubber and epoxy and an increase in secondary cracking is likely responsible for the higher impact strength at 5 wt% tested at LN2 temperature. While a large toughening effect was not seen in this study, the mechanisms analyzed herein will likely be of use for further material investigations at cryogenic temperatures.
Thompson, Melanie L; Backman, David; Branemark, Rickard; Mechefske, Chris K
2011-05-01
Osseointegrated transfemoral implants have been introduced as a prosthetic solution for above knee amputees. They have shown great promise, providing an alternative for individuals who could not be accommodated by conventional, socket-based prostheses; however, the occurrence of device failures is of concern. In an effort to improve the strength and longevity of the device, a new design has been proposed. This study investigates the mechanical behavior of the new taper-based assembly in comparison to the current hex-based connection for osseointegrated transfemoral implant systems. This was done to better understand the behavior of components under loading, in order to optimize the assembly specifications and improve the useful life of the system. Digital image correlation was used to measure surface strains on two assemblies during static loading in bending. This provided a means to measure deformation over the entire sample and identify critical locations as the assembly was subjected to a series of loading conditions. It provided a means to determine the effects of tightening specifications and connection geometry on the material response and mechanical behavior of the assemblies. Both osseoinegrated assemblies exhibited improved strength and mechanical performance when tightened to a level beyond the current specified tightening torque of 12 N m. This was shown by decreased strain concentration values and improved distribution of tensile strain. Increased tightening torque provides an improved connection between components regardless of design, leading to increased torque retention, decreased peak tensile strain values, and a more gradual, primarily compressive distribution of strains throughout the assembly.
NASA Astrophysics Data System (ADS)
Zhu, Ning; Sun, Shou-Guang; Li, Qiang; Zou, Hua
2014-12-01
One of the major problems in structural fatigue life analysis is establishing structural load spectra under actual operating conditions. This study conducts theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains. The quasistatic load series that corresponds to quasi-static deformation modes are identified according to the structural form and bearing conditions of high-speed train bogie frames. Moreover, a force-measuring frame is designed and manufactured based on the quasi-static load series. The load decoupling model of the quasi-static load series is then established via calibration tests. Quasi-static load-time histories, together with online tests and decoupling analysis, are obtained for the intermediate range of the Beijing—Shanghai dedicated passenger line. The damage consistency calibration of the quasi-static discrete load spectra is performed according to a damage consistency criterion and a genetic algorithm. The calibrated damage that corresponds with the quasi-static discrete load spectra satisfies the safety requirements of bogie frames.
NASA Astrophysics Data System (ADS)
Durrenberger, L.; Even, D.; Molinari, A.; Rusinek, A.
2006-08-01
In order to reduce the gas emission without decreasing the passengers safety, the UHSS (Ultra High Strength Steel) steels are more and more used in the automotive industry. The very high mechanical characteristics of these steels allow to reduce the car weight thanks to the thickness reduction of the structure parts. The aim of this study is to analyse the plastic pre-strain effect (forming) on the crash properties of a crash-box structure. In order to achieve this goal, experimental rheological tests have been performed by combining quasi-static tensile tests followed by dynamic tensile test (8.10 - 3 s - 1 ≤ dot{\\varepsilon} ≤ 1000 s - 1) for a TRIP steel produced by ARCELOR. The combination of these results allows to obtain a better understanding of the steel behaviour in dynamic loading under different strain paths. All these information are necessary for an efficient simulation of crash test by including a pertinent material response. A special attention is given to the influence of the previous forming process on the dynamical response of crash boxes.
Knight, M M; Toyoda, T; Lee, D A; Bader, D L
2006-01-01
In numerous cell types, the cytoskeleton has been widely implicated in mechanotransduction pathways involving stretch-activated ion channels, integrins and deformation of intracellular organelles. Studies have also demonstrated that the cytoskeleton can undergo remodelling in response to mechanical stimuli such as tensile strain or fluid flow. In articular chondrocytes, the mechanotransduction pathways are complex, inter-related and as yet, poorly understood. Furthermore, little is known of how the chondrocyte cytoskeleton responds to physiological mechanical loading. This study utilises the well-characterised chondrocyte-agarose model and an established confocal image-analysis technique to demonstrate that both static and cyclic, compressive strain and hydrostatic pressure all induce remodelling of actin microfilaments. This remodelling was characterised by a change from a uniform to a more punctate distribution of cortical actin around the cell periphery. For some loading regimes, this remodelling was reversed over a subsequent 1h unloaded period. This reversible remodelling of actin cytoskeleton may therefore represent a mechanism through which the chondrocyte alters its mechanical properties and mechanosensitivity in response to physiological mechanical loading.
Bolted joints in graphite-epoxy composites
NASA Technical Reports Server (NTRS)
Hart-Smith, L. J.
1976-01-01
All-graphite/epoxy laminates and hybrid graphite-glass/epoxy laminates were tested. The tests encompassed a range of geometries for each laminate pattern to cover the three basic failure modes - net section tension failure through the bolt hole, bearing and shearout. Static tensile and compressive loads were applied. A constant bolt diameter of 6.35 mm (0.25 in.) was used in the tests. The interaction of stress concentrations associated with multi-row bolted joints was investigated by testing single- and double-row bolted joints and open-hole specimens in tension. For tension loading, linear interaction was found to exist between the bearing stress reacted at a given bolt hole and the remaining tension stress running by that hole to be reacted elsewhere. The interaction under compressive loading was found to be non-linear. Comparative tests were run using single-lap bolted joints and double-lap joints with pin connection. Both of these joint types exhibited lower strengths than were demonstrated by the corresponding double-lap joints. The analysis methods developed here for single bolt joints are shown to be capable of predicting the behavior of multi-row joints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MANDELL, JOHN F.; SAMBORSKY, DANIEL D.; CAIRNS, DOUGLAS
This report presents the major findings of the Montana State University Composite Materials Fatigue Program from 1997 to 2001, and is intended to be used in conjunction with the DOE/MSU Composite Materials Fatigue Database. Additions of greatest interest to the database in this time period include environmental and time under load effects for various resin systems; large tow carbon fiber laminates and glass/carbon hybrids; new reinforcement architectures varying from large strands to prepreg with well-dispersed fibers; spectrum loading and cumulative damage laws; giga-cycle testing of strands; tough resins for improved structural integrity; static and fatigue data for interply delamination; andmore » design knockdown factors due to flaws and structural details as well as time under load and environmental conditions. The origins of a transition to increased tensile fatigue sensitivity with increasing fiber content are explored in detail for typical stranded reinforcing fabrics. The second focus of the report is on structural details which are prone to delamination failure, including ply terminations, skin-stiffener intersections, and sandwich panel terminations. Finite element based methodologies for predicting delamination initiation and growth in structural details are developed and validated, and simplified design recommendations are presented.« less
Insights into the effects of tensile and compressive loadings on human femur bone.
Havaldar, Raviraj; Pilli, S C; Putti, B B
2014-01-01
Fragile fractures are most likely manifestations of fatigue damage that develop under repetitive loading conditions. Numerous microcracks disperse throughout the bone with the tensile and compressive loads. In this study, tensile and compressive load tests are performed on specimens of both the genders within 19 to 83 years of age and the failure strength is estimated. Fifty five human femur cortical samples are tested. They are divided into various age groups ranging from 19-83 years. Mechanical tests are performed on an Instron 3366 universal testing machine, according to American Society for Testing and Materials International (ASTM) standards. The results show that stress induced in the bone tissue depends on age and gender. It is observed that both tensile and compression strengths reduces as age advances. Compressive strength is more than tensile strength in both the genders. The compression and tensile strength of human femur cortical bone is estimated for both male and female subjecting in the age group of 19-83 years. The fracture toughness increases till 35 years in male and 30 years in female and reduces there after. Mechanical properties of bone are age and gender dependent.
NASA Astrophysics Data System (ADS)
Jajam, Kailash; Lee, Jaejun; Sottos, Nancy
2015-06-01
Energy absorbing, lightweight, thin transparent layers/coatings are desirable in many civilian and military applications such as hurricane resistant windows, personnel face-shields, helmet liners, aircraft canopies, laser shields, blast-tolerant sandwich structures, sound and vibration damping materials to name a few. Polyurea, a class of segmented block copolymer, has attracted recent attention for its energy absorbing properties. However, most of the dynamic property characterization of polyurea is limited to tensile and split-Hopkinson-pressure-bar compression loading experiments with strain rates on the order of 102 and 104 s-1, respectively. In the present work, we report the energy absorption behavior of polyurea thin films (1 to 2 μm) subjected to laser-induced dynamic tensile and mixed-mode loading. The laser-generated high amplitude stress wave propagates through the film in short time frames (15 to 20 ns) leading to very high strain rates (107 to 108 s-1) . The substrate stress, surface velocity and fluence histories are inferred from the displacement fringe data. On comparing input and output fluences, test results indicate significant energy absorption by the polyurea films under both tensile and mixed-mode loading conditions. Microscopic examination reveals distinct changes in failure mechanisms under mixed-mode loading from that observed under pure tensile loading. Office of Naval Research MURI.
30 CFR 56.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...
30 CFR 56.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...
30 CFR 56.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...
30 CFR 56.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...
30 CFR 56.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...
Tensile properties of compressed moulded Napier/glass fibre reinforced epoxy composites
NASA Astrophysics Data System (ADS)
Fatinah, T. S.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Hong, T. W.; Amin, N. A. M.; Afendi, M.
2017-10-01
This paper describes the experimental investigation of the tensile properties of compressed moulded Napier grass fibres reinforced epoxy composites. The effect of treatment 5% sodium hydroxide (NaOH) concentrated solution and hybridization of Napier with CSM E-glass fibres on tensile properties was also studied. The untreated and treated Napier fibres with 25% fibre loading were fabricated with epoxy resin by a cold press process. 7% fibre loading of CSM glass fibre was hybrid as the skin layer for 18% fibre loading of untreated Napier grass fibre. The tensile tests were conducted using Universal Testing Machine in accordance with ASTM D638. The tensile properties of the untreated Napier/epoxy composites were compared with treated Napier/epoxy and untreated Napier/CSM/epoxy composites. The results demonstrated that the tensile performance of untreated Napier fibre composites was significantly improved by both of the modification; alkali treatment and glass fibre hybridization. Napier grass fibres showed promising potentials to be used as reinforcement in the polymer based composites.
Baker, Brendon M.; Shah, Roshan P.; Huang, Alice H.
2011-01-01
Fibrocartilaginous tissues such as the meniscus serve critical load-bearing roles, relying on arrays of collagen fibers to resist tensile loads experienced with normal activity. As these structures are frequently injured and possess limited healing capacity, there exists great demand for tissue-engineered replacements. Toward recreating the structural features of these anisotropic tissues in vitro, we employ scaffolds composed of co-aligned nanofibers that direct mesenchymal stem cell (MSC) orientation and the formation of organized extracellular matrix (ECM). Concomitant with ECM synthesis, the mechanical properties of constructs increase with free-swelling culture, but ultimately failed to achieve equivalence with meniscal fibrocartilage. As mechanical forces are essential to the development and maintenance of musculoskeletal tissues, this work examined the effect of cyclic tensile loading on MSC-laden nanofibrous constructs. We hypothesized that loading would modulate the transcriptional behavior of MSCs, spur the deposition of ECM, and lead to enhancements in construct mechanical properties compared to free-swelling controls. Fiber-aligned scaffolds were seeded with MSCs and dynamically loaded daily in tension or maintained as nonloaded controls for 4 weeks. With mechanical stimulation, fibrous gene expression increased, collagen deposition increased, and the tensile modulus increased by 16% relative to controls. These results show that dynamic tensile loading enhances the maturation of MSC-laden aligned nanofibrous constructs, suggesting that recapitulation of the structural and mechanical environment of load-bearing tissues results in increases in functional properties that can be exploited for tissue engineering applications. PMID:21247342
Baker, Brendon M; Shah, Roshan P; Huang, Alice H; Mauck, Robert L
2011-05-01
Fibrocartilaginous tissues such as the meniscus serve critical load-bearing roles, relying on arrays of collagen fibers to resist tensile loads experienced with normal activity. As these structures are frequently injured and possess limited healing capacity, there exists great demand for tissue-engineered replacements. Toward recreating the structural features of these anisotropic tissues in vitro, we employ scaffolds composed of co-aligned nanofibers that direct mesenchymal stem cell (MSC) orientation and the formation of organized extracellular matrix (ECM). Concomitant with ECM synthesis, the mechanical properties of constructs increase with free-swelling culture, but ultimately failed to achieve equivalence with meniscal fibrocartilage. As mechanical forces are essential to the development and maintenance of musculoskeletal tissues, this work examined the effect of cyclic tensile loading on MSC-laden nanofibrous constructs. We hypothesized that loading would modulate the transcriptional behavior of MSCs, spur the deposition of ECM, and lead to enhancements in construct mechanical properties compared to free-swelling controls. Fiber-aligned scaffolds were seeded with MSCs and dynamically loaded daily in tension or maintained as nonloaded controls for 4 weeks. With mechanical stimulation, fibrous gene expression increased, collagen deposition increased, and the tensile modulus increased by 16% relative to controls. These results show that dynamic tensile loading enhances the maturation of MSC-laden aligned nanofibrous constructs, suggesting that recapitulation of the structural and mechanical environment of load-bearing tissues results in increases in functional properties that can be exploited for tissue engineering applications.
NASA Astrophysics Data System (ADS)
Liu, Yong Jun; Li, Chao; Zhou, When Jun
2018-06-01
This paper presents some numerical simulation results of tensile properties of reinforcing bars spliced by grout-filled coupling sleeves under fire conditions to identify the effect of load ratio on fire resistance time of spliced reinforcing bars, which provide a useful base for predicting structural behaviors of pre-cast reinforced concrete buildings in fires. A spliced rebar system investigated in this paper consists of two equal-diameter steel reinforcing bars with 25mm diameter and a straight coupling sleeve with 50mm outer and 45mm inner diameters. As a result, the thickness of grout between steel bars and sleeves are 20mm. Firstly, the temperature distributions in steel bars connected by grout- filled coupling sleeves exposed to ISO 834 standard fire were calculated utilizing finite element analysis software ANSYS. Secondly, the stress changes in heated steel bars connected by grout-filled coupling sleeves under different constant tensile loads were calculated step by step until the rebar system failed due to fire. Thus, the fire resistant time of rebar spliced by grout-filled coupling sleeves under different axial tensile loads can be determined, further, the relationship between fire resistance time and axial tensile loads ratio can could be obtained. Finally, the fire resistant times versus axial tensile load ratios curve of grout-filled splice sleeve rebars exposed to ISO 834 standard fire is presented.
Puetzer, Jennifer L; Bonassar, Lawrence J
2016-07-01
The meniscus is a dense fibrocartilage tissue that withstands the complex loads of the knee via a unique organization of collagen fibers. Attempts to condition engineered menisci with compression or tensile loading alone have failed to reproduce complex structure on the microscale or anatomic scale. Here we show that axial loading of anatomically shaped tissue-engineered meniscus constructs produced spatial distributions of local strain similar to those seen in the meniscus when the knee is loaded at full extension. Such loading drove formation of tissue with large organized collagen fibers, levels of mechanical anisotropy, and compressive moduli that match native tissue. Loading accelerated the development of native-sized and aligned circumferential and radial collagen fibers. These loading patterns contained both tensile and compressive components that enhanced the major biochemical and functional properties of the meniscus, with loading significantly improved glycosaminoglycan (GAG) accumulation 200-250%, collagen accumulation 40-55%, equilibrium modulus 1000-1800%, and tensile moduli 500-1200% (radial and circumferential). Furthermore, this study demonstrates local changes in mechanical environment drive heterogeneous tissue development and organization within individual constructs, highlighting the importance of recapitulating native loading environments. Loaded menisci developed cartilage-like tissue with rounded cells, a dense collagen matrix, and increased GAG accumulation in the more compressively loaded horns, and fibrous collagen-rich tissue in the more tensile loaded outer 2/3, similar to native menisci. Loaded constructs reached a level of organization not seen in any previous engineered menisci and demonstrate great promise as meniscal replacements.
Design and fabrication of realistic adhesively bonded joints
NASA Technical Reports Server (NTRS)
Shyprykevich, P.
1983-01-01
Eighteen bonded joint test specimens representing three different designs of a composite wing chordwise bonded splice were designed and fabricated using current aircraft industry practices. Three types of joints (full wing laminate penetration, two side stepped; midthickness penetration, one side stepped; and partial penetration, scarfed) were analyzed using state of the art elastic joint analysis modified for plastic behavior of the adhesive. The static tensile fail load at room temperature was predicted to be: (1) 1026 kN/m (5860 1b/in) for the two side stepped joint; (2) 925 kN/m (5287 1b/in) for the one side stepped joint; and (3) 1330 kN/m (7600 1b/in) for the scarfed joint. All joints were designed to fail in the adhesive.
Properties of medium-density fiberboard related to hardwood specific gravity
George E. Woodson
1976-01-01
Boards of acceptable quality were made from barky material, pressure-refined from 14 species of southern hardwoods. Static bending and tensile properties (parallel to surface) of specimens were negatively correlated to stem specific gravity (wood plus bark), chip bulk density, and fiber bulk density. Bending and tensile properties increased with increasing...
Creep Behavior of Poly(lactic acid) Based Biocomposites
Morreale, Marco; Mistretta, Maria Chiara; Fiore, Vincenzo
2017-01-01
Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep behavior of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. Tensile creep tests were performed at different temperatures (i.e., 40 and 60 °C). The results showed that the creep behavior of the composites is strongly influenced by the temperature and the woven fabrics used. As preliminary characterization, quasi-static tensile tests and dynamic mechanical tests were carried out on the composites. Furthermore, fabrics (both flax and jute) were tested as received by means of quasi-static tests and creep tests to evaluate the influence of fabrics mechanical behavior on the mechanical response of the resulting composites. The morphological analysis of the fracture surface of the tensile samples showed the better fiber-matrix adhesion between PLA and jute fabric. PMID:28772755
Creep Behavior of Poly(lactic acid) Based Biocomposites.
Morreale, Marco; Mistretta, Maria Chiara; Fiore, Vincenzo
2017-04-08
Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep behavior of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. Tensile creep tests were performed at different temperatures (i.e., 40 and 60 °C). The results showed that the creep behavior of the composites is strongly influenced by the temperature and the woven fabrics used. As preliminary characterization, quasi-static tensile tests and dynamic mechanical tests were carried out on the composites. Furthermore, fabrics (both flax and jute) were tested as received by means of quasi-static tests and creep tests to evaluate the influence of fabrics mechanical behavior on the mechanical response of the resulting composites. The morphological analysis of the fracture surface of the tensile samples showed the better fiber-matrix adhesion between PLA and jute fabric.
Effect of strain on the electronic structure and optical properties of germanium
NASA Astrophysics Data System (ADS)
Wen, Shumin; Zhao, Chunwang; Li, Jijun; Hou, Qingyu
2018-05-01
The effects of biaxial strain parallel to the (001) plane on the electronic structures and optical properties of Ge are calculated using the first-principles plane-wave pseudopotential method based on density functional theory. The screened-exchange local-density approximation function was used to obtain more reliable band structures, while strain was changed from ‑4% to +4%. The results show that the bandgap of Ge decreases with the increase of strain. Ge becomes a direct-bandgap semiconductor when the tensile strain reaches to 2%, which is in good agreement with the experimental results. The density of electron states of strained Ge becomes more localized. The tensile strain can increase the static dielectric constant distinctly, whereas the compressive strain can decrease the static dielectric constant slightly. The strain makes the absorption band edge move toward low energy. Both the tensile strain and compressive strain can significantly increase the reflectivity in the range from 7 eV to 14 eV. The tensile strain can decrease the optical conductivity, but the compressive strain can increase the optical conductivity significantly.
Investigation of Mechanical Properties and Interfacial Mechanics of Crystalline Nanomaterials
NASA Astrophysics Data System (ADS)
Qin, Qingquan
Nanowires (NWs) and nanotubes (NTs) are critical building blocks of nanotechnologies. The operation and reliability of these nanomaterials based devices depend on their mechanical properties of the nanomaterials, which is therefore important to accurately measure the mechanical properties. Besides, the NW--substrate interfaces also play a critical role in both mechanical reliability and electrical performance of these nanodevices, especially when the size of the NW is small. In this thesis, we focus on the mechanical properties and interface mechanics of three important one dimensional (1D) nanomaterials: ZnO NWs, Ag NWs and Si NWs. For the size effect study, this thesis presents a systematic experimental investigation on the elastic and failure properties of ZnO NWs under different loading modes: tension and buckling. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The elastic modulus also shows loading mode dependent; the bending modulus increases more rapidly than the tensile modulus. The tension experiments showed that fracture strain and strength of ZnO NWs increase as the NW diameter decrease. A resonance testing setup was developed to measure elastic modulus of ZnO NWs to confirm the loading mode dependent effect. A systematic study was conducted on the effect of clamping on resonance frequency and thus measured Young's modulus of NWs via a combined experiment and simulation approach. A simple scaling law was provided as guidelines for future designs to accurate measure elastic modulus of a cantilevered NW using the resonance method. This thesis reports the first quantitative measurement of a full spectrum of mechanical properties of five-fold twinned Ag NWs including Young's modulus, yield strength and ultimate tensile strength. In situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a SEM. Young's modulus, yield strength and ultimate tensile strength were found to all increased as the NW diameter decreased. For the temperature effect study, a brief review on brittle-to-ductile transition (BDT) of silicon (Si) is presented. BDT temperature shows decreasing trend as size of the sample decrease. However, controversial results have been reported in terms of brittle or ductile behaviors for Si NWs at room temperature. A microelectromechanical systems (MEMS) thermal actuator (ETA) was designed to test NW without involving external heating. To circumvent undesired heating of the end effector, heat sink beams that can be co-fabricated with the thermal actuator were introduced. A combined modeling and experimental study was conducted to access the effect of such heat sink beams. Temperature distribution was measured and simulated using Raman scattering and multiphysics finite element method, respectively. Our results demonstrated that heat sink beams are effective in reducing the temperature of the thermal actuator. To get elevated temperature in a controllable fashion, a comb drive actuator was designed with separating actuation and heating mechanisms. Multiphysics finite element analysis (coupled electrical-thermal-mechanical) was used to optimize structure design and minimize undesired thermal loading/unloading. A Si NW with diameter of 50 nm was tested on the device under different temperatures. Stress strain curves at different temperatures revealed that plastic deformation occurs at temperature of 55 °C. For interfacial mechanics, we report an experimental study on the friction between Ag and ZnO NW tips (ends) and a gold substrate. An innovative experimental method based on column buckling theory was developed for the friction measurements. Direct measurements of the static friction force and interfacial shear strength between Si NWs and poly(dimethylsiloxane) (PDMS) is reported. The static friction and shear strength were found to increase rapidly and then decrease with the increasing ultraviolet/ozone (UVO) treatment of PDMS.
Modelling poly(p-phenylene teraphthalamide) at Extreme Tensile Loading using Reactive Potentials
NASA Astrophysics Data System (ADS)
Yilmaz, Dundar
2015-03-01
Aromatic polyamides classified as rigid-rod polymers due to orientation of their monomers. Because of their excellent mechanical and thermal properties, aramids are widely used in the industry. For example DuPont's brand Kevlar, for its commercial aromatic polyamide polymer, due to wide usage of this polymer in ballistic applications, habitually used as a nickname for bulletproof vests. In order to engineer these ballistic fabrics, material properties of aramid fibers should be studied. In this work we focused on the poly(p-phenylene teraphthalamide) PPTA fiber, known as brand name Kevlar. We employed Reactive potentials to simulate PPTA polymer under tensile loading. We first simulated both amorphous and crystalline phases of PPTA. We also introduced defects with varying densities. We further analysed the recorded atomic positions data to understand how tensile load distributed and failure mechanisms at extreme tensile loads. This work supported by TUBITAK under Grant No: 113F358.
NASA Technical Reports Server (NTRS)
Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.
1995-01-01
Solving for the displacements of free-free coupled systems acted upon by static loads is commonly performed throughout the aerospace industry. Many times, these problems are solved using static analysis with inertia relief. This solution technique allows for a free-free static analysis by balancing the applied loads with inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus displacement-dependent loads. Solving for the final displacements of such systems is commonly performed using iterative solution techniques. Unfortunately, these techniques can be time-consuming and labor-intensive. Since the coupled system equations for free-free systems with displacement-dependent loads can be written in closed-form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. Using a MSC/NASTRAN DMAP Alter, displacement-dependent loads have been included in static analysis with inertia relief. Such an Alter has been used successfully to solve efficiently a common aerospace problem typically solved using an iterative technique.
Galetz, Mathias Christian; Glatzel, Uwe
2010-05-01
The deformation behavior of ultrahigh molecular polyethylene (UHMWPE) is studied in the temperature range of 23-80 degrees C. Samples are examined in quasi-static compression, tensile and creep tests to determine the accelerated deformation of UHMWPE at elevated temperatures. The deformation mechanisms under compression load can be described by one strain rate and temperature dependent Eyring process. The activation energy and volume of that process do not change between 23 degrees C and 50 degrees C. This suggests that the deformation mechanism under compression remains stable within this temperature range. Tribological tests are conducted to transfer this activated energy approach to the deformation behavior under loading typical for artificial knee joints. While this approach does not cover the wear mechanisms close to the surface, testing at higher temperatures is shown to have a significant potential to reduce the testing time for lifetime predictions in terms of the macroscopic creep and deformation behavior of artificial joints. Copyright 2010. Published by Elsevier Ltd.
Structural health monitoring of Lindquist bridge
NASA Astrophysics Data System (ADS)
Sargent, D. D.; Murison, E. R.; Bakht, B.; Mufti, A. A.
2007-04-01
Many forestry bridges in Canada are typically single-lane, single span structures with two steel plate girders and a deck comprising of precast reinforced concrete panels. The concept of arching in deck slabs was utilized in the steel-free precast panels used in the Lindquist Bridge in British Columbia, Canada. The panels were completely devoid of tensile reinforcement and transverse confinement to the panels was provided by external steel straps. After the bridge was constructed in 1998, electrical strain gauges were installed on the girders and straps. Static and dynamic load tests were performed. The cracks on the top and bottom of the deck were mapped in 1999 and 2003. In 2006, a load test and crack mapping were performed on the bridge. The strain readings in the straps were compared with the data obtained 8 years prior. After analysis of the strain gauge readings, conclusions were drawn on the performance of the bridge. The cracks were formed to accommodate arching action and it was concluded that the bridge is still performing as it was designed.
Nondestructive Measurement of Dynamic Modulus for Cellulose Nanofibril Films
Yan Qing; Robert J. Ross; Zhiyong Cai; Yiqiang Wu
2013-01-01
Nondestructive evaluation of cellulose nanofibril (CNF) films was performed using cantilever beam vibration (CBV) and acoustic methods to measure dynamic modulus. Static modulus was tested using tensile tension method. Correlation analysis shows the data measured by CBV has little linear relationship with static modulus, possessing a correlation coefficient (R
The effect of carbon black loading and structure on tensile property of natural rubber composite
NASA Astrophysics Data System (ADS)
Savetlana, S.; Zulhendri; Sukmana, I.; Saputra, F. A.
2017-07-01
Natural rubber composite has been continuously developed due to its advantages such as a good combination of strength and damping property. Most of carbon black (CB)/Natural Rubber (NR) composite were used as material in tyre industry. The addition of CB in natural rubber is very important to enhance the strength of natural rubber. The particle loading and different structure of CB can affect the composite strength. The effects of CB particle loading of 20, 25 and 30 wt% and the effects of CB structures of N220, N330, N550 and N660 series on tensile property of composite were investigated. The result shows that the tensile strength and elastic modulus of natural rubber/CB composite was higher than pure natural rubber. From SEM observation the agglomeration of CB aggregate increases with particle loading. It leads to decrease of tensile strength of composite as more particle was added. High structure of CB particle i.e. N220 resulted in highest tensile stress. In fact, composite reinforced by N660 CB particle shown a comparable tensile strength and elastic modulus with N220 CB particle. SEM observation shows that agglomeration of CB aggregates of N330 and N550 results in lower stress of associate NR/CB composite.
Strain rate effects on the mechanical behavior of two Dual Phase steels in tension
NASA Astrophysics Data System (ADS)
Cadoni, E.; Singh, N. K.; Forni, D.; Singha, M. K.; Gupta, N. K.
2016-05-01
This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001 s-1 to 600 s-1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10 mm, width 4 mm and thickness 2 mm (DP1200) and 1.25 mm (DP1400), are tested at room temperature (20∘C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001 s-1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3 s-1, and 18 s-1) and high strain rates (200 s-1, 400 s-1, and 600 s-1) respectively. Tests under quasi-static condition are performed at high temperature (200∘C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.
NASA Technical Reports Server (NTRS)
James, Mark Anthony
1999-01-01
A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.
Testing Machine for Biaxial Loading
NASA Technical Reports Server (NTRS)
Demonet, R. J.; Reeves, R. D.
1985-01-01
Standard tensile-testing machine applies bending and tension simultaneously. Biaxial-loading test machine created by adding two test fixtures to commercial tensile-testing machine. Bending moment applied by substrate-deformation fixture comprising yoke and anvil block. Pneumatic tension-load fixture pulls up on bracket attached to top surface of specimen. Tension and deflection measured with transducers. Modified test apparatus originally developed to load-test Space Shuttle surface-insulation tiles and particuarly important for composite structures.
NASA Technical Reports Server (NTRS)
Illg, W.
1986-01-01
A partial-bonding interlaminar toughening concept was evaluated for resistance to impact and for behavior of a loaded hole. Perforated Mylar sheets were interleaved between all 24 plies of a graphite/epoxy quasi-isotropic lay-up. Specimens were impacted by aluminum spheres while under tensile or compressive loads. Impact-failure thresholds and residual strengths were obtained. Loaded-hole specimens were tested in three configurations that were critical in bearing, shear, or tension. Partial bonding reduced the tensile and compressive strengths of undamaged specimens by about one-third. For impact, partial bonding did not change the threshold for impact failure under tensile preload. However, under compressive preload, partial bonding caused serious degradation of impact resistance. Partial bonding reduced the maximum load-carrying capacity of all three types of loaded-hole specimens. Overall, partial bonding degraded both impact resistance and bearing strength of holes.
NASA Technical Reports Server (NTRS)
1996-01-01
Solving for the displacements of free-free coupled systems acted upon by static loads is a common task in the aerospace industry. Often, these problems are solved by static analysis with inertia relief. This technique allows for a free-free static analysis by balancing the applied loads with the inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus the displacement-dependent loads. A launch vehicle being acted upon by an aerodynamic loading can have such applied loads. The final displacements of such systems are commonly determined with iterative solution techniques. Unfortunately, these techniques can be time consuming and labor intensive. Because the coupled system equations for free-free systems with displacement-dependent loads can be written in closed form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. An MSC/NASTRAN (MacNeal-Schwendler Corporation/NASA Structural Analysis) DMAP (Direct Matrix Abstraction Program) Alter was used to include displacement-dependent loads in static analysis with inertia relief. It efficiently solved a common aerospace problem that typically has been solved with an iterative technique.
Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model
NASA Astrophysics Data System (ADS)
Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr
2017-10-01
Issues concerning the advanced numerical analysis of concrete building structures in sophisticated computing systems currently require the involvement of nonlinear mechanics tools. The efforts to design safer, more durable and mainly more economically efficient concrete structures are supported via the use of advanced nonlinear concrete material models and the geometrically nonlinear approach. The application of nonlinear mechanics tools undoubtedly presents another step towards the approximation of the real behaviour of concrete building structures within the framework of computer numerical simulations. However, the success rate of this application depends on having a perfect understanding of the behaviour of the concrete material models used and having a perfect understanding of the used material model parameters meaning. The effective application of nonlinear concrete material models within computer simulations often becomes very problematic because these material models very often contain parameters (material constants) whose values are difficult to obtain. However, getting of the correct values of material parameters is very important to ensure proper function of a concrete material model used. Today, one possibility, which permits successful solution of the mentioned problem, is the use of optimization algorithms for the purpose of the optimization-based inverse material parameter identification. Parameter identification goes hand in hand with experimental investigation while it trying to find parameter values of the used material model so that the resulting data obtained from the computer simulation will best approximate the experimental data. This paper is focused on the optimization-based inverse identification of the parameters of a concrete cap material model which is known under the name the Continuous Surface Cap Model. Within this paper, material parameters of the model are identified on the basis of interaction between nonlinear computer simulations, gradient based and nature inspired optimization algorithms and experimental data, the latter of which take the form of a load-extension curve obtained from the evaluation of uniaxial tensile test results. The aim of this research was to obtain material model parameters corresponding to the quasi-static tensile loading which may be further used for the research involving dynamic and high-speed tensile loading. Based on the obtained results it can be concluded that the set goal has been reached.
NASA Astrophysics Data System (ADS)
Du, Yicheng
Natural fibers have the potential to replace glass fibers in fiber-reinforced composite applications. However, the natural fibers' intrinsic properties cause these issues: (1) the mechanical property variation; (2) moisture uptake by natural fibers and their composites; (3) lack of sound, cost-effective, environment-friendly fiber-matrix compounding processes; (4) incompatibility between natural fibers and polymer matrices; and (5) low heat-resistance of natural fibers and their composites. This dissertation systematically studied the use of kenaf bast fiber bundles, obtained via a mechanical retting method, as a light-weight reinforcement material for fiber-reinforced thermoset polymer composites for automotive applications. Kenaf bast fiber bundle tensile properties were tested, and the effects of locations in the kenaf plant, loading rates, retting methods, and high temperature treatments and their durations on kenaf bast fiber bundle tensile properties were evaluated. A process has been developed for fabricating high fiber loading kenaf bast fiber bundle-reinforced unsaturated polyester composites. The generated composites possessed high elastic moduli and their tensile strengths were close to specification requirements for glass fiber-reinforced sheet molding compounds. Effects of fiber loadings and lengths on resultant composite's tensile properties were evaluated. Fiber loadings were very important for composite tensile modulus. Both fiber loadings and fiber lengths were important for composite tensile strengths. The distributions of composite tensile, flexural and impact strengths were analyzed. The 2-parameter Weibull model was found to be the most appropriate for describing the composite strength distributions and provided the most conservative design values. Kenaf-reinforced unsaturated polyester composites were also proved to be more cost-effective than glass fiber-reinforced SMCs at high fiber loadings. Kenaf bast fiber bundle-reinforced composite's water absorption properties were tested. Surface-coating and edge-sealing significantly reduced composite water resistance properties. Encapsulation was a practical method to improve composite water resistance properties. The molding pressure and styrene concentrations on composite and matrix properties were evaluated. Laser and plasma treatment improved fiber-to-matrix adhesion.
A study on the dynamic behavior of the Meuse/Haute-Marne argillite
NASA Astrophysics Data System (ADS)
Cai, M.; Kaiser, P. K.; Suorineni, F.; Su, K.
Excavation of underground tunnels can be conducted by tunnel boring machines (TBM) or drill-and-blast. TBMs cause minimum damage to excavation walls. Blasting effects on excavation walls depend on the care with which the blasting is executed. For blast-induced damage in excavation walls, two issues have to be addressed: rate of loss of confinement (rate of excavation) and dynamic loading from wave propagation that causes both intended and unintended damage. To address these two aspects, laboratory dynamic tests were conducted for the determination of the dynamic properties of the Meuse/Haute-Marne argillite. In the present study, 17 tensile (Brazilian) and 15 compression split Hopkinson pressure bar (SHPB) tests were conducted. The test revealed that the dynamic strengths of the argillite are strain rate dependent. The average dynamic increase factors (ratio of dynamic strength to static strength) for tensile and compressive strength are about 3.3 and 2.4, respectively. A high-speed video camera was used to visualize the initiation of failure and subsequent deformation of the specimens. The direct compression specimens were found to deform and fail uniformly around the circumference of the specimen, by a spalling process. The SHPB Brazilian tests indicated that failure occurred in tension along the line of load application. Radial fractures were also observed. The test results can be used for the development of a dynamic constitutive model for the argillite for the prediction of damage in underground excavation utilizing the drill-and blast method.
Training and shape retention in conducting polymer artificial muscles
NASA Astrophysics Data System (ADS)
Tominaga, Kazuo; Hashimoto, Hikaru; Takashima, Wataru; Kaneto, Keiichi
2011-12-01
Electrochemomechanical deformation (ECMD) of the conducting polymer polyaniline film is studied to investigate the behaviour of actuation under tensile loads. The ECMD was induced by the strains due to the insertion of ionic species (cyclic strain) and a creep due to applied loads during the redox cycle. The cyclic strain was enhanced by the experience of high tensile loads, indicating a training effect. The training effect was explained by the enhanced electrochemical activity of the film. The creep was recovered by removal of the tensile load and several electrochemical cycles. This fact indicates that the creep results from the one-dimensional anisotropic deformation, and is retained (shape retention) by the ionic crosslink. The recovery of creep results from the elastic relaxation of the polymer conformation.
NASA Astrophysics Data System (ADS)
Kowarsch, Robert; Zhang, Jiajun; Sguazzo, Carmen; Hartmann, Stefan; Rembe, Christian
2017-06-01
The analysis of materials and geometries in tensile tests and the extraction of mechanic parameters is an important field in solid mechanics. Especially the measurement of thickness changes is important to obtain accurate strain information of specimens under tensile loads. Current optical measurement methods comprising 3D digital image correlation enable thickness-change measurement only with nm-resolution. We present a phase-shifting electronic speckle-pattern interferometer in combination with speckle-correlation technique to measure the 3D deformation. The phase-shift for the interferometer is introduced by fast wavelength tuning of a visible diode laser by injection current. In a post-processing step, both measurements can be combined to reconstruct the 3D deformation. In this contribution, results of a 3Ddeformation measurement for a polymer membrane are presented. These measurements show sufficient resolution for the detection of 3D deformations of thin specimen in tensile test. In future work we address the thickness changes of thin specimen under tensile loads.
Kenaf-glass fiber reinforced unsaturated polyester hybrid composites: Tensile properties
NASA Astrophysics Data System (ADS)
Zhafer, S. F.; Rozyanty, A. R.; Shahnaz, S. B. S.; Musa, L.; Zuliahani, A.
2016-07-01
The use of natural fibers in composite is rising in recent years due their lightweight, non-abrasive, combustible, non-toxic, low cost and biodegradable properties. However, in comparison with synthetic fibers, the mechanical properties of natural fibers are lower. Therefore, the inclusion of synthetic fibers could improve the mechanical performance of natural fiber based composites. In this study, kenaf bast fiber and glass fiber at different weight percentage loading were used as reinforcement to produce hybrid composites. Unsaturated polyester (UP) resin was used as matrix and hand lay-up process was performed to apply the UP resin on the hybrid kenaf bast/glass fiber composite. Effect of different fiber loading on tensile strength, tensile modulus and elongation at break of the hybrid composite was studied. It has been found that the highest value of tensile strength and modulus was achieved at 10 wt.% kenaf/10 wt.% glass fiber loading. It was concluded that addition of glass fiber has improved the tensile properties of kenaf bast fiber based UP composites.
NASA Astrophysics Data System (ADS)
Yao, Yong-Jie; Sun, Hui-Pin; Yue, Yong; Sun, Xi-Qing; Wu, Xing-Yu
Changes of venous compliance may contribute to postflight orthostatic intolerance; however, direct animal studies to address the changes of venous compliance to microgravity have been rare. The purpose of this study was to determine compliance changes of mesenteric veins of rabbits after 21 days of head-down rest (HDR). Twenty-four healthy male New Zealand Rabbits were randomly divided into 21 days of HDR group, horizontal immobilization group (HIG) and control group (Ctrl), with eight in each. Loading tensile force-stretch relationships of mesenteric vein segments were constructed after 21 d HDR. With the increase of loading tensile force, both longitudinal and circumferential stretches of vein samples increased significantly. Under the same loading tensile force, mesenteric vein of the HDR showed significant increase both in circumferential stretch and longitudinal stretches compared to those of Ctrl group and HIG group. These results indicate that, a 21-day simulated weightlessness leads to increase of mesenteric venous compliance.
NASA Astrophysics Data System (ADS)
Surya, Indra; Fauzi Siregar, Syahrul; Ismail, Hanafi
2018-03-01
Effects of alkanolamide (ALK) addition on cure characteristics, swelling behaviour and tensile properties of silica-filled natural rubber (NR)/chloroprene rubber (CR) blends were investigated. The ALK was synthesized from Refined Bleached Deodorized Palm Stearin (RBDPS) and diethanolamine, and incorporated into the silica-filled NR/CR blends as a non-toxic rubber additive. The ALK loadings were 0.0, 1.0, 3.0, 5.0 and 7.0 phr. It was found that the ALK exhibited shorter scorch and cure times and higher elongation at break of the silica-filled NR/CR blends. The ALK also exhibited higher torque differences, tensile modulus and tensile strength at a 1.0 phr of ALK loading and then decreased with further increases in the ALK loading. The swelling measurement proved that the 1.0 phr loading of ALK caused the highest degree in crosslink density of the silica-filled NR/CR blends.
NASA Astrophysics Data System (ADS)
Cho, Seungchan; Kikuchi, Keiko; Kawasaki, Akira; Kwon, Hansang; Kim, Yangdo
2012-08-01
Multi-walled carbon nanotube (MWCNT) reinforced copper (Cu) matrix composites, which exhibit chromium (Cr) carbide nanostructures at the MWCNT/Cu interface, were prepared through a carbide formation using CuCr alloy powder. The fully densified and oriented MWCNTs dispersed throughout the composites were prepared using spark plasma sintering (SPS) followed by hot extrusion. The tensile strengths of the MWCNT/CuCr composites increased with increasing MWCNTs content, while the tensile strength of MWCNT/Cu composite decreased from that of monolithic Cu. The enhanced tensile strength of the MWCNT/CuCr composites is a result of possible load-transfer mechanisms of the interfacial Cr carbide nanostructures. The multi-wall failure of MWCNTs observed in the fracture surface of the MWCNT/CuCr composites indicates an improvement in the load-bearing capacity of the MWCNTs. This result shows that the Cr carbide nanostructures effectively transferred the tensile load to the MWCNTs during fracture through carbide nanostructure formation in the MWCNT/Cu composite.
Mechanical properties of composite materials
NASA Technical Reports Server (NTRS)
Thornton, H. Richard; Cornwell, L. R.
1993-01-01
A composite material incorporates high strength, high modulus fibers in a matrix (polymer, metal, or ceramic). The fibers may be oriented in a manner to give varying in-plane properties (longitudinal, transverse-stress, strain, and modulus of elasticity). The lay-up of the composite laminates is such that a center line of symmetry and no bending moment exist through the thickness. The laminates are tabbed, with either aluminum or fiberglass, and are ready for tensile testing. The determination of the tensile properties of resin matrix composites, reinforced by continuous fibers, is outlined in ASTM standard D 3039, Tensile Properties of Oriented Fiber Composites. The tabbed flat tensile coupons are placed into the grips of a tensile machine and load-deformation curves plotted. The load-deformation data are translated into stress-strain curves for determination of mechanical properties (ultimate tensile strength and modulus of elasticity).
An Experimental Study to Measure the Mechanical Properties of the Human Liver.
Karimi, Alireza; Shojaei, Ahmad
2018-01-01
Since the liver is one of the most important organs of the body that can be injured during trauma, that is, during accidents like car crashes, understanding its mechanical properties is of great interest. Experimental data is needed to address the mechanical properties of the liver to be used for a variety of applications, such as the numerical simulations for medical purposes, including the virtual reality simulators, trauma research, diagnosis objectives, as well as injury biomechanics. However, the data on the mechanical properties of the liver capsule is limited to the animal models or confined to the tensile/compressive loading under single direction. Therefore, this study was aimed at experimentally measuring the axial and transversal mechanical properties of the human liver capsule under both the tensile and compressive loadings. To do that, 20 human cadavers were autopsied and their liver capsules were excised and histologically analyzed to extract the mean angle of a large fibers population (bundle of the fine collagen fibers). Thereafter, the samples were cut and subjected to a series of axial and transversal tensile/compressive loadings. The results revealed the tensile elastic modulus of 12.16 ± 1.20 (mean ± SD) and 7.17 ± 0.85 kPa under the axial and transversal loadings respectively. Correspondingly, the compressive elastic modulus of 196.54 ± 13.15 and 112.41 ± 8.98 kPa were observed under the axial and transversal loadings respectively. The compressive axial and transversal maximum/failure stress of the capsule were 32.54 and 37.30 times higher than that of the tensile ones respectively. The capsule showed a stiffer behavior under the compressive load compared to the tensile one. In addition, the axial elastic modulus of the capsule was found to be higher than that of the transversal one. The findings of the current study have implications not only for understanding the mechanical properties of the human capsule tissue under tensile/compressive loading, but also for providing unprocessed data for both the doctors and engineers to be used for diagnosis and simulation purposes. © 2017 S. Karger AG, Basel.
Structure Optimization of Porous Dental Implant Based on 3D Printing
NASA Astrophysics Data System (ADS)
Ji, Fangqiu; Zhang, Chunyu; Chen, Xianshuai
2018-03-01
In this paper, selective laser melting (SLM) technology is used to process complex structures. In combination with the theory of biomedicine, a porous implant with a porous structure is designed to induce bone cell growth. The mechanical strength advantage of SLM was discussed by observing the metallographic structure of SLM specimen with mechanical microscope and mechanical tensile test. The osseointegration of porous implants was observed and analyzed by biological experiments. By establishing a mechanical model, the mechanical properties of the bone implant combined with the jaw bone were studied by the simple mechanical analysis under static multi loading and the finite element mechanical analysis. According to the experimental observation and mechanical research, the optimization suggestions for the structure design of the implant made by SLM technology were put forward.
Elastic Response and Failure Studies of Multi-Wall Carbon Nanotube Twisted Yarns
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Jefferson, Gail D.; Frankland, Sarah-Jane V.
2007-01-01
Experimental data on the stress-strain behavior of a polymer multiwall carbon nanotube (MWCNT) yarn composite are used to motivate an initial study in multi-scale modeling of strength and stiffness. Atomistic and continuum length scale modeling methods are outlined to illustrate the range of parameters required to accurately model behavior. The carbon nanotubes yarns are four-ply, twisted, and combined with an elastomer to form a single-layer, unidirectional composite. Due to this textile structure, the yarn is a complicated system of unique geometric relationships subjected to combined loads. Experimental data illustrate the local failure modes induced by static, tensile tests. Key structure-property relationships are highlighted at each length scale indicating opportunities for parametric studies to assist the selection of advantageous material development and manufacturing methods.
Examination of Buckling Behavior of Thin-Walled Al-Mg-Si Alloy Extrusions
NASA Astrophysics Data System (ADS)
Vazdirvanidis, Athanasios; Koumarioti, Ioanna; Pantazopoulos, George; Rikos, Andreas; Toulfatzis, Anagnostis; Kostazos, Protesilaos; Manolakos, Dimitrios
To achieve the combination of improved crash tolerance and maximum strength in aluminium automotive extrusions, a research program was carried out. The main objective was to study AA6063 alloy thin-walled square tubes' buckling behavior under axial quasi-static load after various artificial aging treatments. Variables included cooling rate after solid solution treatment, duration of the 1st stage of artificial aging and time and temperature of the 2nd stage of artificial aging. Metallography and tensile testing were employed for developing deeper knowledge on the effect of the aging process parameters. FEM analysis with the computer code LS-DYNA was supplementary applied for deformation mode investigation and crashworthiness prediction. Results showed that data from actual compression tests and numerical modeling were in considerable agreement.
Note on performance of tapered grip tensile loading devices
NASA Technical Reports Server (NTRS)
Jones, M. H.; Brown, W. F., Jr.
1975-01-01
Alignment results are presented in terms of percent bending for a quick release, tapered grip, tensile loading device that has been proposed for testing sharply notched specimens of aluminum and magnesium alloys by a Task Group of the ASTM Committee E-24 on Fracture Testing of Metals. The results show that the bending introduced by the fixtures is strongly dependent on their relative rotational positions in respect to the loading rods which adapt them, to the tensile machine. For one set of tapered grips the highest bending was about 15%. Recommendations are made for improvement in the design of the tapered grips which should reduce the bending stresses substantially.
NASA Technical Reports Server (NTRS)
Sinclair, J. H.
1980-01-01
Angelplied laminates of high modulus graphite fiber/epoxy were studied in several ply configurations at various tensile loading angles to the zero ply direction in order to determine the effects of ply orientations on tensile properties, fracture modes, and fracture surface characteristics of the various plies. It was found that fracture modes in the plies of angleplied laminates can be characterized by scanning electron microscope observation. The characteristics for a given fracture mode are similar to those for the same fracture mode in unidirectional specimens. However, no simple load angle range can be associated with a given fracture mode.
CAD/CAM glass ceramics for single-tooth implant crowns: a finite element analysis.
Akça, Kvanç; Cavusoglu, Yeliz; Sagirkaya, Elcin; Aybar, Buket; Cehreli, Murat Cavit
2013-12-01
To evaluate the load distribution of CAD/CAM mono-ceramic crowns supported with single-tooth implants in functional area. A 3-dimensional numerical model of a soft tissue-level implant was constructed with cement-retained abutment to support glass ceramic machinable crown. Implant-abutment complex and the retained crown were embedded in a Ø 1.5 × 1.5 cm geometric matrix for evaluation of mechanical behavior of mono-ceramic CAD/CAM aluminosilicate and leucite glass crown materials. Laterally positioned axial load of 300 N was applied on the crowns. Resulting principal stresses in the mono-ceramic crowns were evaluated in relation to different glass ceramic materials. The highest compressive stresses were observed at the cervical region of the buccal aspect of the crowns and were 89.98 and 89.99 MPa, for aluminosilicate and leucite glass ceramics, respectively. The highest tensile stresses were observed at the collar of the lingual part of the crowns and were 24.54 and 25.39 MPa, respectively. Stresses induced upon 300 N static loading of CAD/CAM aluminosalicate and leucite glass ceramics are below the compressive strength of the materials. Impact loads may actuate the progress to end failure of mono-ceramic crowns supported by metallic implant abutments.
Grips for Lightweight Tensile Specimens
NASA Technical Reports Server (NTRS)
Witte, William G., Jr.; Gibson, Walter D.
1987-01-01
Set of grips developed for tensile testing of lightweight composite materials. Double-wedge design substantially increases gripping force and reduces slippage. Specimen held by grips made of hardened wedges. Assembly screwed into load cell in tensile-testing machine.
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
NASA Astrophysics Data System (ADS)
Belov, Nikolay; Yugov, Nikolay; Kopanitsa, Dmitry; Kopanitsa, Georgy; Yugov, Alexey; Kaparulin, Sergey; Plyaskin, Andrey; Kalichkina, Anna; Ustinov, Artyom
2016-01-01
When designing buildings with reinforced concrete that are planned to resist dynamic loads it is necessary to calculate this structural behavior under operational static and emergency impact and blast loads. Calculations of the structures under shock-wave loads can be performed by solving dynamic equations that do not consider static loads. Due to this fact the calculation of reinforced concrete frame under a simultaneous static and dynamic load in full 3d settings becomes a very non trivial and resource consuming problem. This problem can be split into two tasks. The first one is a shock-wave problem that can be solved using software package RANET-3, which allows solving the problem using finite elements method adapted for dynamic task. This method calculates strain-stress state of the material and its dynamic destruction, which is considered as growth and consolidation of micro defects under loading. On the second step the results of the first step are taken as input parameters for quasi static calculation of simultaneous static and dynamic load using finite elements method in AMP Civil Engineering-11.
Ma, Zuwei; Hong, Yi; Nelson, Devin M; Pichamuthu, Joseph E; Leeson, Cory E; Wagner, William R
2011-09-12
Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience at small strains (<50%) but showed poor resilience under large strains because of stress-induced crystallization of the PCL segments, with a permanent set of 677 ± 30% after tensile failure. To obtain softer and more resilient PUUs, we used noncrystalline poly(trimethylene carbonate) (PTMC) or poly(δ-valerolactone-co-ε-caprolactone) (PVLCL) macrodiols of different molecular weights as SSs that were reacted with 1,4-diisocyanatobutane and chain extended with 1,4-diaminobutane. Mechanical properties of the PUUs were characterized by tensile testing with static or cyclic loading and dynamic mechanical analysis. All of the PUUs synthesized showed large elongations at break (800-1400%) and high tensile strength (30-60 MPa). PUUs with noncrystalline SSs all showed improved elasticity and resilience relative to the crystalline PCL-based PUU, especially for the PUUs with high molecular weight SSs (PTMC 5400 M(n) and PVLCL 6000 M(n)), of which the permanent deformation after tensile failure was only 12 ± 7 and 39 ± 4%, respectively. The SS molecular weight also influenced the tensile modulus in an inverse fashion. Accelerated degradation studies in PBS containing 100 U/mL lipase showed significantly greater mass loss for the two polyester-based PUUs versus the polycarbonate-based PUU and for PVLCL versus PCL polyester PUUs. Basic cytocompatibility was demonstrated with primary vascular smooth muscle cell culture. The synthesized families of PUUs showed variable elastomeric behavior that could be explained in terms of the underlying molecular design and crystalline behavior. Depending on the application target of interest, these materials may provide options or guidance for soft tissue scaffold development.
Fatigue Behavior of Glass Fiber-Reinforced Polymer Bars after Elevated Temperatures Exposure.
Li, Guanghui; Zhao, Jun; Wang, Zike
2018-06-16
Fiber-reinforced polymer (FRP) bars have been widely applied in civil engineering. This paper presents the results of an experimental study to investigate the tensile fatigue mechanical properties of glass fiber-reinforced polymer (GFRP) bars after elevated temperatures exposure. For this purpose, a total of 105 GFRP bars were conducted for testing. The specimens were exposed to heating regimes of 100, 150, 200, 250, 300 and 350 °C for a period of 0, 1 or 2 h. The GFRP bars were tested with different times of cyclic load after elevated temperatures exposure. The results show that the tensile strength and elastic modulus of GFRP bars decrease with the increase of elevated temperature and holding time, and the tensile strength of GFRP bars decreases obviously by 19.5% when the temperature reaches 250 °C. Within the test temperature range, the tensile strength of GFRP bars decreases at most by 28.0%. The cyclic load accelerates the degradation of GFRP bars after elevated temperature exposure. The coupling of elevated temperature and holding time enhance the degradation effect of cyclic load on GFRP bars. The tensile strength of GFRP bars after elevated temperatures exposure at 350 °C under cyclic load is reduced by 50.5% compared with that at room temperature and by 36.3% compared with that after exposing at 350 °C without cyclic load. In addition, the elastic modulus of GFRP bars after elevated temperatures exposure at 350 °C under cyclic load is reduced by 17.6% compared with that at room temperature and by 6.0% compared with that after exposing at 350 °C without cyclic load.
Evaluation of Geosynthetic-Reinforced Flexible Pavements using Static Plate Load Tests
DOT National Transportation Integrated Search
2010-01-01
This study focuses on the response of full-scale geogrid-reinforced flexible pavements to static surface loading. Specifically, static plate load (SPL) tests were performed on a low-volume, asphalt pavement frontage road in Eastern Arkansas, USA (the...
NASA Astrophysics Data System (ADS)
Meraj, Md.; Nayak, Shradha; Krishanjeet, Kumar; Pal, Snehanshu
2018-03-01
In this paper, we present a lucid understanding about the deformation behaviour of nanocrystalline (NC) Ni with and without defects subjected to tensile followed by compressive loading using molecular dynamic (MD) simulations. The embedded atom method (EAM) potential have been incorporated in the simulation for three kinds of samples-i.e. for NC Ni (without any defect), porous NC Ni and NC Ni containing a centrally located void. All the three samples, which have been prepared by implementing the Voronoi method and using Atom Eye software, consist of 16 uniform grains. The total number of atoms present in NC Ni, porous NC Ni and NC Ni containing a void are 107021, 105968 and 107012 respectively. The stress-strain response of NC Ni under tensile followed by compressive loading are simulated at a high strain rate of 107 s-1 and at a constant temperature of 300K. The stress-strain curves for the NC Ni with and without defects have been plotted for three different types of loading: (a) tensile loading (b) compressive loading (c) forward tensile loading followed by reverse compressive loading. Prominent change in yield strength of the NC Ni is observed due to the introduction of defects. For tensile followed by compressive loading (during forward loading), the yield point for NC Ni with void is lesser than the yield point of NC Ni and porous NC Ni. The saw tooth shape or serration portion of the stress-strain curve is mainly due to three characteristic phenomena, dislocation generation and its movement, dislocation pile-up at the junctions, and dislocation annihilation. Both twins and stacking faults are observed due to plastic deformation as the deformation mechanism progresses. The dislocation density, number of clusters and number of vacancy of the NC sample with and without defects are plotted against the strain developed in the sample. It is seen that introduction of defects brings about change in mechanical properties of the NC Ni. The crystalline nature of NC Ni is found to decrease with introduction of defects. The findings of this work can thus be extended in bringing a whole new insight related to the deformation behaviour and properties of Nano- materials during cyclic deformation at various temperatures.
[Mechanics analysis of fracture of orthodontic wires].
Wang, Yeping; Sun, Xiaoye; Zhang, Longqi
2003-03-01
Fracture problem of orthodontic wires was discussed in this paper. The calculation formulae of bending stress and tensile stress were obtained. All main factors that affect bending stress and tensile stress of orthodontic wires were analyzed and discussed. It was concluded that the main causes of fracture of orthodontic wires were fatigue and static disruption. Some improving proposals for preventing fracture of orthodontic wires were put forward.
30 CFR 57.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall be...
30 CFR 57.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall be...
30 CFR 57.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall be...
30 CFR 57.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall be...
30 CFR 57.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall be...
Performance tradeoffs in static and dynamic load balancing strategies
NASA Technical Reports Server (NTRS)
Iqbal, M. A.; Saltz, J. H.; Bokhart, S. H.
1986-01-01
The problem of uniformly distributing the load of a parallel program over a multiprocessor system was considered. A program was analyzed whose structure permits the computation of the optimal static solution. Then four strategies for load balancing were described and their performance compared. The strategies are: (1) the optimal static assignment algorithm which is guaranteed to yield the best static solution, (2) the static binary dissection method which is very fast but sub-optimal, (3) the greedy algorithm, a static fully polynomial time approximation scheme, which estimates the optimal solution to arbitrary accuracy, and (4) the predictive dynamic load balancing heuristic which uses information on the precedence relationships within the program and outperforms any of the static methods. It is also shown that the overhead incurred by the dynamic heuristic is reduced considerably if it is started off with a static assignment provided by either of the other three strategies.
Characterization of Damage in Triaxial Braid Composites Under Tensile Loading
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Roberts, Gary D.; Goldberg, Robert K.
2009-01-01
Carbon fiber composites utilizing flattened, large tow yarns in woven or braided forms are being used in many aerospace applications. Their complex fiber architecture and large unit cell size present challenges in both understanding deformation processes and measuring reliable material properties. This report examines composites made using flattened 12k and 24k standard modulus carbon fiber yarns in a 0 /+60 /-60 triaxial braid architecture. Standard straight-sided tensile coupons are tested with the 0 axial braid fibers either parallel with or perpendicular to the applied tensile load (axial or transverse tensile test, respectively). Nonuniform surface strain resulting from the triaxial braid architecture is examined using photogrammetry. Local regions of high strain concentration are examined to identify where failure initiates and to determine the local strain at the time of initiation. Splitting within fiber bundles is the first failure mode observed at low to intermediate strains. For axial tensile tests splitting is primarily in the 60 bias fibers, which were oriented 60 to the applied load. At higher strains, out-of-plane deformation associated with localized delamination between fiber bundles or damage within fiber bundles is observed. For transverse tensile tests, the splitting is primarily in the 0 axial fibers, which were oriented transverse to the applied load. The initiation and accumulation of local damage causes the global transverse stress-strain curves to become nonlinear and causes failure to occur at a reduced ultimate strain. Extensive delamination at the specimen edges is also observed.
76 FR 68668 - Airworthiness Directives; Fokker Services B.V. Model F.28 Mark 0100 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-07
... compressive stress during braking at higher deceleration levels outside the regular fatigue load spectrum. [T]he high compressive stress locally exceeds the elasticity limit of the material, leaving a residual tensile stress at release of the heavy braking load. Subsequently, this local residual tensile stress...
Dynamic tensile fracture of mortar at ultra-high strain-rates
NASA Astrophysics Data System (ADS)
Erzar, B.; Buzaud, E.; Chanal, P.-Y.
2013-12-01
During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 104 to 4 × 104 s-1. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belov, Nikolay, E-mail: n.n.belov@mail.ru; Kopanitsa, Dmitry, E-mail: kopanitsa@mail.ru; Yugov, Alexey, E-mail: yugalex@mail.ru
When designing buildings with reinforced concrete that are planned to resist dynamic loads it is necessary to calculate this structural behavior under operational static and emergency impact and blast loads. Calculations of the structures under shock-wave loads can be performed by solving dynamic equations that do not consider static loads. Due to this fact the calculation of reinforced concrete frame under a simultaneous static and dynamic load in full 3d settings becomes a very non trivial and resource consuming problem. This problem can be split into two tasks. The first one is a shock-wave problem that can be solved usingmore » software package RANET-3, which allows solving the problem using finite elements method adapted for dynamic task. This method calculates strain-stress state of the material and its dynamic destruction, which is considered as growth and consolidation of micro defects under loading. On the second step the results of the first step are taken as input parameters for quasi static calculation of simultaneous static and dynamic load using finite elements method in AMP Civil Engineering-11.« less
NASA Astrophysics Data System (ADS)
Nadhirah, A. Ainatun.; Sam, S. T.; Noriman, N. Z.; Voon, C. H.; Samera, S. S.
2015-05-01
The effect of rambutan peels flour (RPF) content on the tensile properties of linear low density polyethylene filled with rambutan peel flour was studied. RPF was melt blended with linear low-density polyethylene (LLDPE). LLDPE/RPF blends were prepared by using internal mixer (brabender) at 160 °C with the flour content ranged from 0 to 15 wt%. The tensile properties were tested by using a universal testing machine (UTM) according to ASTM D638. The highest tensile strength was observed for pure LLDPE while the tensile strength LLDPE/RPF decreased gradually with the addition of rambutan peels flour content from 0% to 15%. Young's modulus of 63 µm to 250 µm rambutan peels blends with LLDPE with the fiber loading of 0 - 15 wt% increased with increasing fiber loading.
Static Dissipative Cable Ties, Such as for Radiation Belt Storm Probes
NASA Technical Reports Server (NTRS)
Langley, Patrick T. (Inventor); Siddique, Fazle E. (Inventor)
2015-01-01
An article, such as, but not limited to, a cable strap to wrap, support, or secure one or more wires or cables, is formed by cyclically heating and cooling and/or irradiating an article formed of a static dissipative ethylene tetrafluoroethylen (ETFE) resin, to reduce an electrical resistivity and/or to increase a tensile strength of the article.
NASA Astrophysics Data System (ADS)
Hoelzel, M.; Gan, W. M.; Hofmann, M.; Randau, C.; Seidl, G.; Jüttner, Ph.; Schmahl, W. W.
2013-05-01
Novel tensile rigs have been designed and manufactured at the research reactor Heinz Maier-Leibnitz (FRM II, Garching near Munich). Besides tensile and compressive stress, also torsion can be applied. The unique Eulerian cradle type design (ω, χ, and φ axis) allows orienting the stress axis with respect to the scattering vector. Applications of these tensile rigs at our neutron diffractometers enable various investigations of structural changes under mechanical load, e.g. crystallographic texture evolution, stress-induced phase transformations or lattice expansion, and the anisotropy of mechanical response.
Investigation on local ductility of 6xxx-aluminium sheet alloys
NASA Astrophysics Data System (ADS)
Henn, P.; Liewald, M.; Sindel, M.
2017-09-01
Within the scope of this paper influence of localization of loading conditions on the ductility of two different 6xxx-aluminium sheet alloys is investigated. In order to improve the prediction of sheet material crash performance, material parameters based on uniaxial tensile and notched tensile tests are determined with varying consolidation areas. Especially evaluation methods based on the localized necking behaviour in tensile tests are investigated. The potential of local ductility characterisation is validated with results of Edge-Compression Tests (ECT) which applies load conditions that occur in actual crash events.
Paepoemsin, T; Reichart, P A; Chaijareenont, P; Strietzel, F P; Khongkhunthian, P
2016-01-01
The aim of this study was to evaluate the removal torque of three different abutment screws and pull out strength of implant-abutment connection for single implant restorations after mechanical cyclic loading. The study was performed in accordance with ISO 14801:2007. Three implant groups (n=15) were used: group A, PW Plus® with flat head screw; group B, PW Plus® with tapered screw; and group C, Conelog® with flat head screw. All groups had the same implant-abutment connection feature: cone with mandatory index. All screws were tightened with manufacturer's recommended torque. Ten specimens in each group underwent cyclic loading (1×106 cycles, 10 Hz, and 250 N). Then, all specimens were un-tightened, measured for the removal torque, and underwent a tensile test. The force that dislodged abutment from implant fixture was recorded. The data were analysed using independent sample t-test, ANOVA and Tukey HSD test. Before cyclic loading, removal torque in groups A, B and C were significantly different (B> A> C, P<.05). After cyclic loading, removal torque in all groups decreased significantly (P<.05). Group C revealed significantly less removal torque than groups A and B (P<.005). Tensile force in all groups significantly increased after cyclic loading (P<.05), group A had significantly less tensile force than groups B and C (P<.005). Removal torque reduced significantly after cyclic loading. Before cyclic loading, tapered screws maintained more preload than did flat head screws. After cyclic loading, tapered and flat head screws maintained even amounts of preload. The tensile force that dislodged abutment from implant fixture increased immensely after cyclic loading.
PAEPOEMSIN, T.; REICHART, P. A.; CHAIJAREENONT, P.; STRIETZEL, F. P.; KHONGKHUNTHIAN, P.
2016-01-01
SUMMARY Purpose The aim of this study was to evaluate the removal torque of three different abutment screws and pull out strength of implant-abutment connection for single implant restorations after mechanical cyclic loading. Methods The study was performed in accordance with ISO 14801:2007. Three implant groups (n=15) were used: group A, PW Plus® with flat head screw; group B, PW Plus® with tapered screw; and group C, Conelog® with flat head screw. All groups had the same implant-abutment connection feature: cone with mandatory index. All screws were tightened with manufacturer’s recommended torque. Ten specimens in each group underwent cyclic loading (1×106 cycles, 10 Hz, and 250 N). Then, all specimens were un-tightened, measured for the removal torque, and underwent a tensile test. The force that dislodged abutment from implant fixture was recorded. The data were analysed using independent sample t-test, ANOVA and Tukey HSD test. Results Before cyclic loading, removal torque in groups A, B and C were significantly different (B> A> C, P<.05). After cyclic loading, removal torque in all groups decreased significantly (P<.05). Group C revealed significantly less removal torque than groups A and B (P<.005). Tensile force in all groups significantly increased after cyclic loading (P<.05), group A had significantly less tensile force than groups B and C (P<.005). Conclusions Removal torque reduced significantly after cyclic loading. Before cyclic loading, tapered screws maintained more preload than did flat head screws. After cyclic loading, tapered and flat head screws maintained even amounts of preload. The tensile force that dislodged abutment from implant fixture increased immensely after cyclic loading. PMID:28042450
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Roberts, Gary D.
2003-01-01
Procedures for modeling the effect of high strain rate on composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. The nonlinearity and strain rate dependence of the composite response is primarily due to the matrix constituent. Therefore, in developing material models to be used in the design of impact-resistant composite engine cases, the deformation of the polymer matrix must be correctly analyzed. However, unlike in metals, the nonlinear response of polymers depends on the hydrostatic stresses, which must be accounted for within an analytical model. An experimental program has been carried out through a university grant with the Ohio State University to obtain tensile and shear deformation data for a representative polymer for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used at the NASA Glenn Research Center to develop, characterize, and correlate a material model in which the strain rate dependence and nonlinearity (including hydrostatic stress effects) of the polymer are correctly analyzed. To obtain the material data, Glenn s researchers designed and fabricated test specimens of a representative toughened epoxy resin. Quasi-static tests at low strain rates and split Hopkinson bar tests at high strain rates were then conducted at the Ohio State University. The experimental data confirmed the strong effects of strain rate on both the tensile and shear deformation of the polymer. For the analytical model, Glenn researchers modified state variable constitutive equations previously used for the viscoplastic analysis of metals to allow for the analysis of the nonlinear, strain-rate-dependent polymer deformation. Specifically, we accounted for the effects of hydrostatic stresses. An important discovery in the course of this work was that the hydrostatic stress effects varied during the loading process, which needed to be accounted for within the constitutive equations. The model is characterized primarily by shear data, with tensile data used to characterize the hydrostatic stress effects.
Connizzo, Brianne K; Grodzinsky, Alan J
2017-03-21
Tendons transmit load from muscle to bone by utilizing their unique static and viscoelastic tensile properties. These properties are highly dependent on the composition and structure of the tissue matrix, including the collagen I hierarchy, proteoglycans, and water. While the role of matrix constituents in the tensile response has been studied, their role in compression, particularly in matrix pressurization via regulation of fluid flow, is not well understood. Injured or diseased tendons and tendon regions that naturally experience compression are known to have alterations in glycosaminoglycan content, which could modulate fluid flow and ultimately mechanical function. While recent theoretical studies have predicted tendon mechanics using poroelastic theory, no experimental data have directly demonstrated such behavior. In this study, we use high-bandwidth AFM-based rheology to determine the dynamic response of tendons to compressive loading at the nanoscale and to determine the presence of poroelastic behavior. Tendons are found to have significant characteristic dynamic relaxation behavior occurring at both low and high frequencies. Classic poroelastic behavior is observed, although we hypothesize that the full dynamic response is caused by a combination of flow-dependent poroelasticity as well as flow-independent viscoelasticity. Tendons also demonstrate regional dependence in their dynamic response, particularly near the junction of tendon and bone, suggesting that the structural and compositional heterogeneity in tendon may be responsible for regional poroelastic behavior. Overall, these experiments provide the foundation for understanding fluid-flow-dependent poroelastic mechanics of tendon, and the methodology is valuable for assessing changes in tendon matrix compressive behavior at the nanoscale. Copyright © 2017 Elsevier Ltd. All rights reserved.
Self-aligning hydraulic piston assembly for tensile testing of ceramic
Liu, Kenneth C.
1987-01-01
The present invention is directed to a self-aligning grip housing assembly that can transmit an uniaxial load to a tensil specimen without introducing bending stresses into the specimen. Disposed inside said grip housing assembly are a multiplicity of supporting pistons connected to a common source of pressurized oil that carry equal shares of the load applied to the specimen irregardless whether there is initial misalignment between the specimen load column assembly and housing axis.
Self-aligning hydraulic piston assembly for tensile testing of ceramic
Liu, K.C.
1987-08-18
The present invention is directed to a self-aligning grip housing assembly that can transmit an uniaxial load to a tensile specimen without introducing bending stresses into the specimen. Disposed inside said grip housing assembly are a multiplicity of supporting pistons connected to a common source of pressurized oil that carry equal shares of the load applied to the specimen regardless whether there is initial misalignment between the specimen load column assembly and housing axis. 4 figs.
NASA Astrophysics Data System (ADS)
Love, Corey T.
2011-03-01
Static and dynamic thermomechanical analysis was performed with a dynamic mechanical analyzer (DMA) to identify thermal and mechanical transitions for commercially available polymer separators under mechanical loading. Clear transitions in deformation mode were observed at elevated temperatures. These transitions identified the onset of separator "shutdown" which occurred at temperatures below the polymer melting point. Mechanical loading direction was critical to the overall integrity of the separator. Anisotropic separators (Celgard 2320, 2400 and 2500) were mechanically limited when pulled in tensile in the transverse direction. The anisotropy of these separators is a result of the dry technique used to manufacture the micro-porous membranes. Separators prepared using the wet technique (Entek Gold LP) behaved more uniformly, or biaxially, where all mechanical properties were nearly identical within the separator plane. The information provided by the DMA can also be useful for predicting the long-term durability of polymer separators in lithium-ion batteries exposed to electrolyte (solvent and salt), thermal fluctuations and electrochemical cycling. Small losses in mechanical integrity were observed for separators exposed to the various immersion environments over the 4-week immersion time.
Development of a Numerical Model for High-Temperature Shape Memory Alloys
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan A.; Melcher, Kevin J.; Noebe, Ronald D.; Gaydosh, Darrell J.
2006-01-01
A thermomechanical hysteresis model for a high-temperature shape memory alloy (HTSMA) actuator material is presented. The model is capable of predicting strain output of a tensile-loaded HTSMA when excited by arbitrary temperature-stress inputs for the purpose of actuator and controls design. Common quasi-static generalized Preisach hysteresis models available in the literature require large sets of experimental data for model identification at a particular operating point, and substantially more data for multiple operating points. The novel algorithm introduced here proposes an alternate approach to Preisach methods that is better suited for research-stage alloys, such as recently-developed HTSMAs, for which a complete database is not yet available. A detailed description of the minor loop hysteresis model is presented in this paper, as well as a methodology for determination of model parameters. The model is then qualitatively evaluated with respect to well-established Preisach properties and against a set of low-temperature cycled loading data using a modified form of the one-dimensional Brinson constitutive equation. The computationally efficient algorithm demonstrates adherence to Preisach properties and excellent agreement to the validation data set.
Force Relaxation Characteristics of Medium Force Orthodontic Latex Elastics: A Pilot Study
Fernandes, Daniel J.; Abrahão, Gisele M.; Elias, Carlos N.; Mendes, Alvaro M.
2011-01-01
To evaluate force extension relaxation of different brands and diameters of latex elastics subjected to static tensile testing under an apparatus designed to simulate oral environments, sample sizes of 5 elastics from American Orthodontics (AO), Tp, and Morelli Orthodontics (Mo) of equivalent medium force, (3/16, 1/4, and 5/16 inch size) were tested. The forces were read after 1-, 3-, 6-, 12- and 24-hour periods in Emic testing machine with 30 mm/min cross-head speed and load cell of 20 N. Two-way ANOVA and Bonferroni tests were used to identify statistical significance. There were statistically differences among different manufacturers at all observation intervals (P < 0.0001). The relationships among loads at 24-hour time period were as follows: Morelli>AO>Tp for 3/16, 1/4, and 5/16 elastics. The force decay pattern showed a notable drop-off of forces until 3 hours, a slight increase in some groups from 3–6 hours and a more homogeneous force pattern over 6–24 hours. PMID:21991478
NASA Astrophysics Data System (ADS)
Sutton, M. A.; Gilat, A.; Seidt, J.; Rajan, S.; Kidane, A.
2018-01-01
The very early stages of high rate tensile loading are important when attempting to characterize the response of materials during the transient loading time. To improve understanding of the conditions imposed on the specimen during the transient stage, a series of high rate loading experiments are performed using a Kolsky tensile bar system. Specimen forces and velocities during the high rate loading experiment are obtained by performing a thorough method of characteristics analysis of the system employed in the experiments. The in-situ full-field specimen displacements, velocities and accelerations during the loading process are quantified using modern ultra-high-speed imaging systems to provide detailed measurements of specimen response, with emphasis on the earliest stages of loading. Detailed analysis of the image-based measurements confirms that conditions are nominally consistent with those necessary for use of the one-dimensional wave equation within the relatively thin, dog-bone shaped tensile specimen. Specifically, measurements and use of the one-dimensional wave equation show clearly that the specimen has low inertial stresses in comparison to the applied transmitted force. Though the accelerations of the specimen continue for up to 50 μs, measurements show that the specimen is essentially in force equilibrium beginning a few microseconds after initial loading. These local measurements contrast with predictions based on comparison of the wave-based incident force measurements, which suggest that equilibrium occurs much later, on the order of 40-50 μs .
From the promotion of biodiversity to the Recovery of organic waste
NASA Astrophysics Data System (ADS)
Jammoukh, Mustapha; Mansouri, Khalifa; Salhi, Bachir
2018-05-01
This article presents an empirical research to classify a new renewable resource material, as opposed to eco-composites, it has been neglected by the materials specialist. This classification is based on the typology of elastic behavior demonstrated by tensile tests. In addition, some identifying criterions of the usefulness of this material were examined. To justify the relevance of this classification, curves from the extension of tests focusing on the virgin material, illustrate significant results of the review. Obtained from waste, having a significant recycling possibilities and potential from renewable resources, bio-mechanically characterized loads will be injected into polymeric materials of different categories. All in the perspective of promoting changes in thermomechanical properties, whether static or dynamic; such as resistance to corrosion, heat, wear… They result in functional changes such as security, relief, coatings and stability…
Creep rupture behavior of unidirectional advanced composites
NASA Technical Reports Server (NTRS)
Yeow, Y. T.
1980-01-01
A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.
Connelly, John T; Vanderploeg, Eric J; Mouw, Janna K; Wilson, Christopher G; Levenston, Marc E
2010-06-01
Mesenchymal progenitors such as bone marrow stromal cells (BMSCs) are an attractive cell source for fibrocartilage tissue engineering, but the types or combinations of signals required to promote fibrochondrocyte-specific differentiation remain unclear. The present study investigated the influences of cyclic tensile loading on the chondrogenesis of BMSCs and the development of engineered fibrocartilage. Cyclic tensile displacements (10%, 1 Hz) were applied to BMSC-seeded fibrin constructs for short (24 h) or extended (1-2 weeks) periods using a custom loading system. At early stages of chondrogenesis, 24 h of cyclic tension stimulated both protein and proteoglycan synthesis, but at later stages, tension increased protein synthesis only. One week of intermittent cyclic tension significantly increased the total sulfated glycosaminoglycan and collagen contents in the constructs, but these differences were lost after 2 weeks of loading. Constraining the gels during the extended culture periods prevented contraction of the fibrin matrix, induced collagen fiber alignment, and increased sulfated glycosaminoglycan release to the media. Cyclic tension specifically stimulated collagen I mRNA expression and protein synthesis, but had no effect on collagen II, aggrecan, or osteocalcin mRNA levels. Overall, these studies suggest that the combination of chondrogenic stimuli and tensile loading promotes fibrochondrocyte-like differentiation of BMSCs and has the potential to direct fibrocartilage development in vitro.
Dynamic tensile fracture of mortar at ultra-high strain-rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erzar, B., E-mail: benjamin.erzar@cea.fr; Buzaud, E.; Chanal, P.-Y.
2013-12-28
During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10{sup 4} to 4 × 10{sup 4} s{sup −1}. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of thismore » cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.« less
14 CFR 23.507 - Jacking loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Vertical-load factor of 1.35 times the static reactions. (2) Fore, aft, and lateral load factors of 0.4 times the vertical static reactions. (b) The horizontal loads at the jack points must be reacted by...
14 CFR 23.507 - Jacking loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Vertical-load factor of 1.35 times the static reactions. (2) Fore, aft, and lateral load factors of 0.4 times the vertical static reactions. (b) The horizontal loads at the jack points must be reacted by...
14 CFR 23.507 - Jacking loads.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Vertical-load factor of 1.35 times the static reactions. (2) Fore, aft, and lateral load factors of 0.4 times the vertical static reactions. (b) The horizontal loads at the jack points must be reacted by...
14 CFR 23.507 - Jacking loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Vertical-load factor of 1.35 times the static reactions. (2) Fore, aft, and lateral load factors of 0.4 times the vertical static reactions. (b) The horizontal loads at the jack points must be reacted by...
NASA Astrophysics Data System (ADS)
Zakaria, Nurzam Ezdiani; Baharum, Azizah; Ahmad, Ishak
2018-04-01
The main objective of this research is to study the effects of chemical modification on the mechanical properties of treated Sansevieria trifasciata fiber/natural rubber/high density polyethylene (TSTF/NR/HDPE) composites. Processing of STF/NR/HDPE composites was done by using an internal mixer. The processing parameters used were 135°C for temperature and a mixing rotor speed of 55 rpm for 15 minutes. Filler loading was varied from 10% to 40% of STF and the fiber size used was 125 µm. The composite blends obtained then were pressed with a hot press machine to get test samples of 1 mm and 3 mm of thickness. Samples were evaluated via tensile tests, Izod impact test and scanning electron microscopy (SEM). Results showed that tensile strength and strain value decreased while tensile modulus increased when filler loading increased. Impact strength increased when filler loading increased and began to decrease after 10% of filler amount for treated composites. For untreated composites, impact strength began to decrease after 20% of filler loading. Chemical modification by using silane coupling agent has improved certain mechanical properties of the composites such as tensile strength, strain value and tensile modulus. Adding more amount of filler will also increase the viscosity and the stiffness of the materials.
Influence of gaseous hydrogen on metals
NASA Technical Reports Server (NTRS)
Walter, R. J.; Chandler, W. T.
1973-01-01
Tensile, fracture toughness, threshold stress intensity for sustained-load crack growth, and cyclic and sustained load crack growth rate measurements were performed on a number of alloys in high-pressure hydrogen and helium environments. The results of tensile tests performed in 34.5 MN/m2 (5000 psi) hydrogen indicated that Inconel 625 was considerable embrittled at ambient temperature but was not embrittled at 144 K (-200 F). The tensile properties of AISI 321 stainless steel were slightly reduced at ambient temperature and 144 K (-200 F). The tensile properties of Ti-5Al-2.5 Sn ELI were essentially unaffected by hydrogen at 144 K (-200 F). OFHC copper was not embrittled by hydrogen at ambient temperature or at 144 K (-200 F).
Relationship between notch strengthening threshold and mechanical property for ductile cast iron
NASA Astrophysics Data System (ADS)
Ikeda, T.; Noda, N.-A.; Sano, Y.; Umetani, T.; Kai, N.
2018-06-01
In this study, dynamic tensile tests were conducted at the various strain rates and temperatures for traditional ductile cast iron. Then, the notch strength {σ }{{B}}{{noth}} and the static tensile strength at room temperature {σ }{{B,}\\quad {{RT}}}{{smooth}} were discussed in terms of the strain rate- temperature parameter R, which is known to be useful for evaluating the combined influence of strain rate and temperature. This study focuses on the notch strengthening threshold R ≧ R th where {σ }{{B}}{{noth}} is larger than {σ }{{B,}\\quad {{RT}}}{{smooth}} and therefore notched components can be used safely. In other words, if R ≧ R th, {σ }{{B,}\\quad {{RT}}}{{smooth}} can be used to evaluate notched components in mechanical design to prevent the instantaneous fracture. In this study, it was found that the R th value can be predicted from the static tensile property and Brinell hardness. Since the traditional ductile cast iron considered in this paper has a broad range of mechanical properties, the present approach and discussion can be applied to evaluate other materials under various temperature and strain rate.
An experimental study of the mechanism of failure of rocks under borehole jack loading
NASA Technical Reports Server (NTRS)
Van, T. K.; Goodman, R. E.
1971-01-01
Laboratory and field tests with an experimental jack and an NX-borehole jack are reported. The following conclusions were made: Under borehole jack loading, a circular opening in a brittle solid fails by tensile fracturing when the bearing plate width is not too small. Two proposed contact stress distributions can explain the mechanism of tensile fracturing. The contact stress distribution factor is a material property which can be determined experimentally. The borehole tensile strength is larger than the rupture flexural strength. Knowing the magnitude and orientation of the in situ stress field, borehole jack test results can be used to determine the borehole tensile strength. Knowing the orientation of the in situ stress field and the flexural strength of the rock substance, the magnitude of the in situ stress components can be calculated. The detection of very small cracks is essential for the accurate determination of the failure loads which are used in the calculation of strengths and stress components.
Divac, Marija; Stawarczyk, Bogna; Sahrmann, Philipp; Attin, Thomas; Schmidlin, Patrick R
2013-01-01
To assess the primary stability of a hybrid self-tapping implant and a cylindric non-self-tapping implant in an in vitro test model using polyurethane foam. Eighty standardized blocks of cellular rigid polyurethane foam, 2 cm long and 1 cm wide, with different thicknesses of 2, 4, 6, and 9 mm (n = 10 per group) were cut. Two implant systems--a hybrid self-tapping (Tapered Effect [TE], Straumann) and a cylindric non-self-tapping (Standard Plus [SP] Wide Neck, Straumann) were placed in the block specimens. Subsequently, resonance frequency analysis (RFA) was performed. The RFA measurements were made in triplicate on four aspects of each implant (mesial, distal, buccal, and oral), and the mean RFA value was calculated. Subsequently, the tensile load of the implants was determined by pull-out tests. The data were analyzed using one-way and two-way analysis of variance followed by a post hoc Scheffe test and a t test (α = .05). Additionally, the simple linear correlation between the RFA and tensile load values was evaluated. No statistically significant differences were found between TE and SP in terms of RFA at different bone thicknesses. Starting from a bone thickness of 4 mm, TE implants showed significantly higher tensile load compared to SP implants (P = .016 to .040). A correlation was found between the RFA measurements and tensile load. Mechanically stable placement is possible with TE and SP implants in a trabecular bone model. RFA and tensile load increased with greater bone thickness.
Accelerated Stress-Corrosion Testing
NASA Technical Reports Server (NTRS)
1986-01-01
Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.
Lee, Ji-Hye; Lee, Won; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2017-09-05
To evaluate the axial displacement of the implant-abutment assembly of different implant diameter after static and cyclic loading of overload condition. An internal conical connection system with three diameters (Ø 4.0, 4.5, and 5.0) applying identical abutment dimension and the same abutment screw was evaluated. Axial displacement of abutment and reverse torque loss of abutment screw were evaluated under static and cyclic loading conditions. Static loading test groups were subjected to vertical static loading of 250, 400, 500, 600, 700, and 800 N consecutively. Cyclic loading test groups were subjected to 500 N cyclic loading to evaluate the effect of excessive masticatory loading. After abutment screw tightening for 30 Ncm, axial displacement was measured upon 1, 3, 10, and 1,000,000 cyclic loadings of 500 N. Repeated-measure ANOVA and 2-way ANOVA were used for statistical analysis (α = 0.05). The increasing magnitude of vertical load and thinner wall thickness of implant increased axial displacement of abutment and reverse torque loss of abutment screw (p < 0.05). Implants in the Ø 5.0 diameter group demonstrated significantly low axial displacement, and reverse torque loss after static loading than Ø 4.0 and Ø 4.5 diameter groups (p < 0.05). In the cyclic loading test, all diameter groups of implant showed significant axial displacement after 1 cycle of loading of 500 N (p < 0.05). There was no significant axial displacement after 3, 10, or 1,000,000 cycles of loading (p = 0.603). Implants with Ø 5.0 diameter demonstrated significantly low axial displacement and reverse torque loss after the cyclic and static loading of overload condition. © 2017 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Nishida, Masahiro; Ogura, Takashi; Shinzawa, Hideyuki; Nishida, Masakazu; Kanematsu, Wataru
2016-11-01
In order to improve the mechanical properties of Polyhydroxyalkanoate (PHA), the polycaprolactone (PCL) pellet was blended with a PHA-based pellet. The effects of the mixing ratio on the tensile properties, Young's modulus, tensile strength and elongation at break, were examined using a universal testing machine. When the mixing ration of PCL increased to 50%, the elongation at break of the polymer blend increased and the gauge area of tensile test specimens whitened and became porous. In order to understand this behavior, a rheo-optical characterization technique based on near-infrared (NIR) spectroscopy was applied to the mechanical deformation of the polymer blends during static tensile tests. Two-dimensional (2D) correlation of NIR spectra was then examined. It was found from peaks of ethyl group or methyl group that PCL was preferentially deformed. The difference in the deformation behavior is thought to be the cause of the porous structure.
Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing
2014-06-01
In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shupeng; Zhang, Zhihui, E-mail: zhzh@jlu.edu.cn; Ren, Luquan
2014-06-15
In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principlemore » of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.« less
Kishen, A; Vedantam, S
2007-10-01
This investigation is to understand the role of free water in the dentinal tubules on the mechanical integrity of bulk dentine. Three different experiments were conducted in this study. In experiment 1, three-dimensional models of dentine with gradient elastic modulus, homogenous elastic modulus, and with and without hydrostatic pressure were simulated using the finite element method. Static compressive loads of 15, 50 and 100 N were applied and the distribution of the principal stresses, von Mises stresses, and strains in loading direction were determined. In experiment 2, experimental compression testing of fully hydrated and partially dehydrated dentine (21 degrees C for 72 h) was conducted using a Universal testing machine. In experiment 3, Fourier transform infrared spectroscopic analysis of hydrated and partially dehydrated dentine was carried out. The finite element analysis revealed that the dentine model with simulated hydrostatic pressure displayed residual tensile stresses and strains in the inner region adjacent to the root canal. When external compressive loads were applied to the model, the residual stresses and strains counteracted the applied loads. Similarly the hydrated specimens subjected to experimental compression loads showed greater toughness when compared to the partially dehydrated specimens. The stress at fracture was significantly higher in partially dehydrated specimens (p=0.014), while the strain at fracture was significantly higher in hydrated dentine specimens (p=0.037). These experiments highlighted the distinct role of free water in the dentinal tubules and hydrostatic pressure on the stress-strain distribution within the bulk dentine.
30 CFR 56.19021 - Minimum rope strength.
Code of Federal Regulations, 2010 CFR
2010-07-01
...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0-0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes....19021 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...
30 CFR 57.19021 - Minimum rope strength.
Code of Federal Regulations, 2011 CFR
2011-07-01
...=Static Load×4.0. (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0. (c) Tail....19021 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...
30 CFR 57.19021 - Minimum rope strength.
Code of Federal Regulations, 2010 CFR
2010-07-01
...=Static Load×4.0. (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0. (c) Tail....19021 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...
30 CFR 56.19021 - Minimum rope strength.
Code of Federal Regulations, 2011 CFR
2011-07-01
...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0-0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes....19021 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...
NASA Astrophysics Data System (ADS)
Dai, Donghua; Gu, Dongdong; Zhang, Han; Xiong, Jiapeng; Ma, Chenglong; Hong, Chen; Poprawe, Reinhart
2018-02-01
Selective laser melting additive manufacturing of the AlSi12 material parts through the re-melting of the previously solidified layer using the continuous two layers 90° rotate scan strategy was conducted. The influence of the re-melting behavior and scan strategy on the formation of the ;track-track; and ;layer-layer; molten pool boundaries (MPBs), dimensional accuracy, microstructure feature, tensile properties, microscopic sliding behavior and the fracture mechanism as loaded a tensile force has been studied. It showed that the defects, such as the part distortion, delamination and cracks, were significantly eliminated with the deformation rate less than 1%. The microstructure of a homogeneous distribution of the Si phase, no apparent grain orientation on both sides of the MPBs, was produced in the as-fabricated part, promoting the efficient transition of the load stress. Cracks preferentially initiate at the ;track-track; MPBs when the tensile stress increases to a certain value, resulting in the formation of the cleavage steps along the tensile loading direction. The cracks propagate along the ;layer-layer; MPBs, generating the fine dimples. The mechanical behavior of the SLM-processed AlSi12 parts can be significantly enhanced with the ultimate tensile strength, yield strength and elongation of 476.3 MPa, 315.5 MPa and 6.7%, respectively.
NASA Astrophysics Data System (ADS)
Das, Anindya; Biswas, Pinaki; Tarafder, S.; Chakrabarti, D.; Sivaprasad, S.
2018-05-01
In order to ensure crash resistance of the steels used in automotive components, the ensile deformation behavior needs to be studied and predicted not only under quasi-static condition, but also under dynamic loading rates. In the present study, tensile tests have been performed on four different automobile grade sheet steels, namely interstitial free steel, dual-phase 600 and 800, and a carbon manganese steel over the strain rate regime of 0.001-800/s. Apart from the variation in strength (which always increased with strain rate), the effect of strengthening mechanism on strain rate sensitivity and strain hardening behavior has been evaluated. Strain rate sensitivity was found to increase at high-strain rate regime for all the steels. Contribution of solid solution hardening on strain rate sensitivity at lower plastic strains was found to be higher compared to dislocation strengthening and second-phase hardening. However, precipitation hardening coupled with solid solution hardening produced the highest strain rate sensitivity, in C-Mn-440 steel at high strain rates. Different strain-rate-sensitive models which take into account the change in yield stress and strain hardening behavior with strain rate for ductile materials were used to predict the flow behavior of these sheet steels at strain rates up to 800/s.
NASA Astrophysics Data System (ADS)
Ershov, N. V.; Fedorov, V. I.; Chernenkov, Yu. P.; Lukshina, V. A.; Shishkin, D. A.
2017-09-01
The changes of quasi-static magnetic hysteresis loops and X-ray diffraction patterns of the Fe73.5Si13.5B9Nb3Cu1 doped to 10 at % chromium instead of iron have been studied to elucidate the influence of the thermomechanical treatment consisting of annealing and cooling of the alloy under the tensile stress (tensile-stress annealing (TSA)) on the magnetic properties and the structure of these alloys. It is shown that the treatment results in the induction of the magnetic anisotropy of the hard axis type at which the magnetization reversal along the direction of applying the external stress during annealing is hampered. The energy of the induced magnetic anisotropy decreases as the chromium content increases. During TSA, the nanocrystal lattices are deformed, and the deformation is retained after cooling. The interplanar spacings increase along the extension direction and decrease in the transverse direction. The deformation anisotropy is observed for crystallographic directions. The anisotropic deformation of the bcc lattice of nanocrystals with high content of the ordered Fe3Si phase characterized by a negative magnetoelastic interaction is the cause of formation of the state with the transverse magnetic anisotropy of the hard axis type.
Pulsed electric discharge laser technology. Electron beam window foil material
NASA Astrophysics Data System (ADS)
McGeoch, M. W.; Defuria, A. J.; Pike, C. T.
1984-01-01
An experimental and theoretical study of titanium alloy foil windows is described. The alloys considered are Ti 15-3-3-3, Ti 3-2.5, and CP Ti(4). The foil thickness ranges from 0.5 mil to 1.0 mil. Tensile strength data is presented for 75 F and 600 F. High-cycle (10 to the 7th power) fatigue data is presented to Ti 15-3-3-3 and Ti 3-2.5 at 75 F and 600 F. Crystal structures are shown for all the alloys. Measurements of the biaxial, or membrane, strength of the alloys is presented. A simulation of laser pulsed overpressure conditions is described, and the foil fatigue under these conditions is documented. The stresses in pressure loaded foil windows were calculated by the finite element method, both for static and dynamic loading. The shape of the foil support rib was optimized to minimize the foil stresses. A correlation was performed between the computed stress cycling under pulsed loading and the measured fatigue strength in uniaxial tension. As a check on the pulse simulation, the actual movement of an electron-beam foil window was measured by interferometry. A speckle interferometer which allows measurement of the movement of unpolished foil surfaces is described.
Mechanical testing of advanced coating system, volume 1
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Nagy, A.; Popelar, C. F.
1990-01-01
The Electron Beam Physical Vapor Deposition (EBPVD) coating material has a highly columnar microstructure, and as a result it was expected to have very low tensile strength. To be able to fabricate the required compression and tensile specimens, a substrate was required to provide structural integrity for the specimens. Substrate and coating dimensions were adjusted to provide sufficient sensitivity to resolve the projected loads carried by the EBPVD coating. The use of two distinctively different strain transducer systems, for tension and compression loadings, mandated two vastly different specimen geometries. Compression specimen and tensile specimen geometries are given. Both compression and tensile test setups are described. Data reduction mathematical models are given and discussed in detail as is the interpretation of the results. Creep test data is also given and discussed.
Assessment of reliability of CAD-CAM tooth-colored implant custom abutments.
Guilherme, Nuno Marques; Chung, Kwok-Hung; Flinn, Brian D; Zheng, Cheng; Raigrodski, Ariel J
2016-08-01
Information is lacking about the fatigue resistance of computer-aided design and computer-aided manufacturing (CAD-CAM) tooth-colored implant custom abutment materials. The purpose of this in vitro study was to investigate the reliability of different types of CAD-CAM tooth-colored implant custom abutments. Zirconia (Lava Plus), lithium disilicate (IPS e.max CAD), and resin-based composite (Lava Ultimate) abutments were fabricated using CAD-CAM technology and bonded to machined titanium-6 aluminum-4 vanadium (Ti-6Al-4V) alloy inserts for conical connection implants (NobelReplace Conical Connection RP 4.3×10 mm; Nobel Biocare). Three groups (n=19) were assessed: group ZR, CAD-CAM zirconia/Ti-6Al-4V bonded abutments; group RC, CAD-CAM resin-based composite/Ti-6Al-4V bonded abutments; and group LD, CAD-CAM lithium disilicate/Ti-6Al-4V bonded abutments. Fifty-seven implant abutments were secured to implants and embedded in autopolymerizing acrylic resin according to ISO standard 14801. Static failure load (n=5) and fatigue failure load (n=14) were tested. Weibull cumulative damage analysis was used to calculate step-stress reliability at 150-N and 200-N loads with 2-sided 90% confidence limits. Representative fractured specimens were examined using stereomicroscopy and scanning electron microscopy to observe fracture patterns. Weibull plots revealed β values of 2.59 for group ZR, 0.30 for group RC, and 0.58 for group LD, indicating a wear-out or cumulative fatigue pattern for group ZR and load as the failure accelerating factor for groups RC and LD. Fractographic observation disclosed that failures initiated in the interproximal area where the lingual tensile stresses meet the compressive facial stresses for the early failure specimens. Plastic deformation of titanium inserts with fracture was observed for zirconia abutments in fatigue resistance testing. Significantly higher reliability was found in group ZR, and no significant differences in reliability were determined between groups RC and LD. Differences were found in the failure characteristics of group ZR between static and fatigue loading. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Duan, Leiguang; Wang, Guang; Zhang, Guoxing; Sun, Xinya; Shang, Hehao
2018-06-01
In order to study the uniaxial and quasi-biaxial mechanical properties of aging solid propellants under low temperature and high strain rate, stress-strain curves and tensile fracture surfaces of HTPB propellant were obtained in a wide range of temperature (-30,25 °C) and strain rates (0.4,4.0 and 14.29 s-1), respectively, by means of uniaxial and biaxial tensile tests and electron microscopy scanning on the fracture cross section. The results indicate that the quasi-biaxial tensile mechanical properties of aging HTPB propellant is same as the uniaxial tensile mechanical properties influenced distinctly by temperature and strain rate. With decreasing temperature and increasing strain rate, the mechanical properties gradually strengthen. The damage for HTPB propellant changes from "dehumidification" to grain fracture. The initial elastic modulus E and maximum tensile stress σ of the uniaxial and biaxial tensile increase gradually with decreasing temperature and increasing strain rate, and well present linear-log function relation with strain rate. The ratio of quasi-biaxial and uniaxial stretching under different loading conditions was obtained so that the researchers could predict the quasi-biaxial tensile mechanical properties of the propellant based on the uniaxial test data.
NASA Astrophysics Data System (ADS)
Akbari, Edris; Karimi Taheri, Kourosh; Karimi Taheri, Ali
2018-05-01
In this research, the samples of a low carbon steel sheet were rolled up to a thickness prestrain of 67% at three different temperatures consisted of room, blue brittleness, and subzero temperature. Microhardness, SEM, and tensile tests were carried out to evaluate the static recrystallization kinetics defined by the Avrami equation, microstructural evolution, and mechanical properties. It was found that the Avrami exponent is altered with change in prestrain temperature and it achieves the value of 1 to 1. 5. Moreover, it was indicated that prestraining at subzero temperature followed by annealing at 600 °C leads to considerable enhancement in tensile properties and kinetics of static recrystallization compared to room and blue brittleness temperatures. The prestraining at blue brittleness temperature followed by annealing treatment caused, however, a higher strength and faster kinetics compared with that at room temperature. It was concluded that although from the steel ductility point of view, the blue brittleness temperature is called an unsuitable temperature, but it can be used as prestraining temperature to develop noticeable combination of strength and ductility in low carbon steel.
Connelly, John T.; Vanderploeg, Eric J.; Mouw, Janna K.; Wilson, Christopher G.
2010-01-01
Mesenchymal progenitors such as bone marrow stromal cells (BMSCs) are an attractive cell source for fibrocartilage tissue engineering, but the types or combinations of signals required to promote fibrochondrocyte-specific differentiation remain unclear. The present study investigated the influences of cyclic tensile loading on the chondrogenesis of BMSCs and the development of engineered fibrocartilage. Cyclic tensile displacements (10%, 1 Hz) were applied to BMSC-seeded fibrin constructs for short (24 h) or extended (1–2 weeks) periods using a custom loading system. At early stages of chondrogenesis, 24 h of cyclic tension stimulated both protein and proteoglycan synthesis, but at later stages, tension increased protein synthesis only. One week of intermittent cyclic tension significantly increased the total sulfated glycosaminoglycan and collagen contents in the constructs, but these differences were lost after 2 weeks of loading. Constraining the gels during the extended culture periods prevented contraction of the fibrin matrix, induced collagen fiber alignment, and increased sulfated glycosaminoglycan release to the media. Cyclic tension specifically stimulated collagen I mRNA expression and protein synthesis, but had no effect on collagen II, aggrecan, or osteocalcin mRNA levels. Overall, these studies suggest that the combination of chondrogenic stimuli and tensile loading promotes fibrochondrocyte-like differentiation of BMSCs and has the potential to direct fibrocartilage development in vitro. PMID:20088686
University Engineering Design Challenge
2015-01-02
strength its members provide. Trusses are common load - bearing structures, and are found in many modern-day applications due to their simple, strong, and...we ran simulations on was one of the member arms. We applied a bearing load on the surfaces of the holes on one side and tested it for static stress...73.24 ksi yield strength as shown figures 17 below. Figure 17: von Mises stress under static bearing load of 8750 lb. Under the static bearing load
30 CFR 77.1431 - Minimum rope strength.
Code of Federal Regulations, 2011 CFR
2011-07-01
...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH...
30 CFR 77.1431 - Minimum rope strength.
Code of Federal Regulations, 2010 CFR
2010-07-01
...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH...
Tensile and shear loading of four fcc high-entropy alloys: A first-principles study
NASA Astrophysics Data System (ADS)
Li, Xiaoqing; Schönecker, Stephan; Li, Wei; Varga, Lajos K.; Irving, Douglas L.; Vitos, Levente
2018-03-01
Ab initio density-functional calculations are used to investigate the response of four face-centered-cubic (fcc) high-entropy alloys (HEAs) to tensile and shear loading. The ideal tensile and shear strengths (ITS and ISS) of the HEAs are studied by employing first-principles alloy theory formulated within the exact muffin-tin orbital method in combination with the coherent-potential approximation. We benchmark the computational accuracy against literature data by studying the ITS under uniaxial [110] tensile loading and the ISS for the [11 2 ¯] (111 ) shear deformation of pure fcc Ni and Al. For the HEAs, we uncover the alloying effect on the ITS and ISS. Under shear loading, relaxation reduces the ISS by ˜50 % for all considered HEAs. We demonstrate that the dimensionless tensile and shear strengths are significantly overestimated by adopting two widely used empirical models in comparison with our ab initio calculations. In addition, our predicted relationship between the dimensionless shear strength and shear instability are in line with the modified Frenkel model. Using the computed ISS, we derive the half-width of the dislocation core for the present HEAs. Employing the ratio of ITS to ISS, we discuss the intrinsic ductility of HEAs and compare it with a common empirical criterion. We observe a strong linear correlation between the shear instability and the ratio of ITS to ISS, whereas a weak positive correlation is found in the case of the empirical criterion.
1992-12-01
Augmentation Program (28) state that for filled hole tensile testing of MMCs the tolerance between the pin diameter and hole diameter must not exceed .0254...Acetate replication, metallography, and fractography will be used in conjunction with analytical methods to define the aforementioned material... fractography that this bi-linear response is due to the release of residual stresses and interfacial failures of the off-axis plies and not micro
14 CFR 23.813 - Emergency exit access.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...
14 CFR 23.813 - Emergency exit access.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...
14 CFR 23.813 - Emergency exit access.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...
14 CFR 23.813 - Emergency exit access.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...
14 CFR 23.813 - Emergency exit access.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...
Warin, Pongsakorn; Rungsiyakull, Pimduen; Rungsiyakull, Chaiy; Khongkhunthian, Pathawee
2018-01-01
To investigate the strains around mini-dental implants (MDIs) and retromolar edentulous areas when using different numbers of MDIs in order to retain mandibular overdentures. Four different prosthetic situations were fabricated on an edentulous mandibular model including a complete denture (CD), and three overdentures, retained by four, three or two MDIs in the interforaminal region with retentive attachments. A static load of 200N was applied on the posterior teeth of the dentures under bilateral or unilateral loading conditions. The strains at the mesial and distal of the MDIs and the retromolar edentulous ridges were measured using twelve strain gauges. Comparisons of the mean microstrains among all strain gauges in all situations were analyzed. The strain distribution determined during bilateral loading experienced a symmetrical distribution; while during unilateral loading, the recorded strains tended to change from compressive strains on the loaded side to tensile strains. Overall, the number of MDIs was found to be passively correlated to the generated compressive strain. The highest strains were recorded in the four MDIs followed by three, two MDIs retained overdenture and CD situations, respectively. The highest strain was found around the terminal MDI. The use of a low number of MDIs tends to produce low strain values in the retromolar denture-bearing area and around the terminal MDIs during posterior loadings. However, when using a high number of MDIs, the overdenture tends to have more stability during function. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Effect of loading speed on the stress-induced magnetic behavior of ferromagnetic steel
NASA Astrophysics Data System (ADS)
Bao, Sheng; Gu, Yibin; Fu, Meili; Zhang, Da; Hu, Shengnan
2017-02-01
The primary goal of this research is to investigate the effect of loading speed on the stress-induced magnetic behavior of a ferromagnetic steel. Uniaxial tension tests on Q235 steel were carried out with various stress levels under different loading speeds. The variation of the magnetic signals surrounding the tested specimen was detected by a fluxgate magnetometer. The results indicated that the magnetic signal variations depended not only on the tensile load level but on the loading speed during the test. The magnetic field amplitude seemed to decrease gradually with the increase in loading speed at the same tensile load level. Furthermore, the evolution of the magnetic reversals is also related to the loading speed. Accordingly, the loading speed should be considered as one of the influencing variables in the Jies-Atherton model theory of the magnetomechanical effect.
Finite element analysis of maxillary bone stress caused by Aramany Class IV obturator prostheses.
Miyashita, Elcio Ricardo; Mattos, Beatriz Silva Câmara; Noritomi, Pedro Yoshito; Navarro, Hamilton
2012-05-01
The retention of an Aramany Class IV removable partial dental prosthesis can be compromised by a lack of support. The biomechanics of this obturator prosthesis result in an unusual stress distribution on the residual maxillary bone. This study evaluated the biomechanics of an Aramany Class IV obturator prosthesis with finite element analysis and a digital 3-dimensional (3-D) model developed from a computed tomography scan; bone stress was evaluated according to the load placed on the prosthesis. A 3-D model of an Aramany Class IV maxillary resection and prosthesis was constructed. This model was used to develop a finite element mesh. A 120 N load was applied to the occlusal and incisal platforms corresponding to the prosthetic teeth. Qualitative analysis was based on the scale of maximum principal stress; values obtained through quantitative analysis were expressed in MPa. Under posterior load, tensile and compressive stresses were observed; the tensile stress was greater than the compressive stress, regardless of the bone region, and the greatest compressive stress was observed on the anterior palate near the midline. Under an anterior load, tensile stress was observed in all of the evaluated bone regions; the tensile stress was greater than the compressive stress, regardless of the bone region. The Aramany Class IV obturator prosthesis tended to rotate toward the surgical resection when subjected to posterior or anterior loads. The amount of tensile and compressive stress caused by the Aramany Class IV obturator prosthesis did not exceed the physiological limits of the maxillary bone tissue. (J Prosthet Dent 2012;107:336-342). Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Rong; Li, Kang; Xia, Kaiwen; Lin, Yuliang; Yao, Wei; Lu, Fangyun
2016-10-01
A dynamic load superposed on a static pre-load is a key problem in deep underground rock engineering projects. Based on a modified split Hopkinson pressure bar test system, the notched semi-circular bend (NSCB) method is selected to investigate the fracture initiation toughness of rocks subjected to pre-load. In this study, a two-dimensional ANSYS finite element simulation model is developed to calculate the dimensionless stress intensity factor. Three groups of NSCB specimen are tested under a pre-load of 0, 37 and 74 % of the maximum static load and with the loading rate ranging from 0 to 60 GPa m1/2 s-1. The results show that under a given pre-load, the fracture initiation toughness of rock increases with the loading rate, resembling the typical rate dependence of materials. Furthermore, the dynamic rock fracture toughness decreases with the static pre-load at a given loading rate. The total fracture toughness, defined as the sum of the dynamic fracture toughness and initial stress intensity factor calculated from the pre-load, increases with the pre-load at a given loading rate. An empirical equation is used to represent the effect of loading rate and pre-load force, and the results show that this equation can depict the trend of the experimental data.
NASA Astrophysics Data System (ADS)
Tragazikis, I. K.; Exarchos, D. A.; Dalla, P. T.; Matikas, T. E.
2016-04-01
This paper deals with the use of complimentary nondestructive methods for the evaluation of damage in engineering materials. The application of digital image correlation (DIC) to engineering materials is a useful tool for accurate, noncontact strain measurement. DIC is a 2D, full-field optical analysis technique based on gray-value digital images to measure deformation, vibration and strain a vast variety of materials. In addition, this technique can be applied from very small to large testing areas and can be used for various tests such as tensile, torsion and bending under static or dynamic loading. In this study, DIC results are benchmarked with other nondestructive techniques such as acoustic emission for damage localization and fracture mode evaluation, and IR thermography for stress field visualization and assessment. The combined use of these three nondestructive methods enables the characterization and classification of damage in materials and structures.
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.; Gastelli, Michael G.; Ellis, John R.; Burke, Christopher S.
1995-01-01
An experimental study was conducted to investigate the mechanical behavior of a T650-35/AMB21 eight-harness satin weave polymer composite system. Emphasis was placed on the development and refinement of techniques used in elevated temperature uniaxial PMC testing. Issues such as specimen design, gripping, strain measurement, and temperature control and measurement were addressed. Quasi-static tensile and fatigue properties (R(sub sigma) = 0.1) were examined at room and elevated temperatures. Stiffness degradation and strain accumulation during fatigue cycling were recorded to monitor damage progression and provide insight for future analytical modeling efforts. Accomplishments included an untabbed dog-bone specimen design which consistently failed in the gage section, accurate temperature control and assessment, and continuous in-situ strain measurement capability during fatigue loading at elevated temperatures. Finally, strain accumulation and stiffness degradation during fatigue cycling appeared to be good indicators of damage progression.
Experiments and simulation for 6061-T6 aluminum alloy resistance spot welded lap joints
NASA Astrophysics Data System (ADS)
Florea, Radu Stefanel
This comprehensive study is the first to quantify the fatigue performance, failure loads, and microstructure of resistance spot welding (RSW) in 6061-T6 aluminum (Al) alloy according to welding parameters and process sensitivity. The extensive experimental, theoretical and simulated analyses will provide a framework to optimize the welding of lightweight structures for more fuel-efficient automotive and military applications. The research was executed in four primary components. The first section involved using electron back scatter diffraction (EBSD) scanning, tensile testing, laser beam profilometry (LBP) measurements, and optical microscopy(OM) images to experimentally investigate failure loads and deformation of the Al-alloy resistance spot welded joints. Three welding conditions, as well as nugget and microstructure characteristics, were quantified according to predefined process parameters. Quasi-static tensile tests were used to characterize the failure loads in specimens based upon these same process parameters. Profilometer results showed that increasing the applied welding current deepened the weld imprints. The EBSD scans revealed the strong dependency between the grain sizes and orientation function on the process parameters. For the second section, the fatigue behavior of the RSW'ed joints was experimentally investigated. The process optimization included consideration of the forces, currents, and times for both the main weld and post-heating. Load control cyclic tests were conducted on single weld lap-shear joint coupons to characterize the fatigue behavior in spot welded specimens. Results demonstrate that welding parameters do indeed significantly affect the microstructure and fatigue performance for these welds. The third section comprised residual strains of resistance spot welded joints measured in three different directions, denoted as in-plane longitudinal, in-plane transversal, and normal, and captured on the fusion zone, heat affected zone and base metal of the joints. Neutron diffraction results showed residual stresses in the weld are approximately 40% lower than the yield strength of the parent material, with maximum variation occurring in the vertical position of the specimen because of the orientation of electrode clamping forces that produce a non-uniform solidification pattern. In the final section a theoretical continuum modeling framework for 6061-T6 aluminum resistance spot welded joints is presented.
Local nanoscale strain mapping of a metallic glass during in situ testing
NASA Astrophysics Data System (ADS)
Gammer, Christoph; Ophus, Colin; Pekin, Thomas C.; Eckert, Jürgen; Minor, Andrew M.
2018-04-01
The local elastic strains during tensile deformation in a CuZrAlAg metallic glass are obtained by fitting an elliptic shape function to the characteristic amorphous ring in electron diffraction patterns. Scanning nanobeam electron diffraction enables strain mapping with a resolution of a few nanometers. Here, a fast direct electron detector is used to acquire the diffraction patterns at a sufficient speed to map the local transient strain during continuous tensile loading in situ in the transmission electron microscope. The elastic strain in tensile direction was found to increase during loading. After catastrophic fracture, a residual elastic strain that relaxes over time was observed.
Computer-assisted recording of tensile tests for the evaluation of serrated flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinhandl, H.; Mitter, F.; Bernt, W.
1994-12-01
In a previous paper the authors pointed out the difficulties which arise in the evaluation of serrated flow curves when the applied tensile strain rates are just above normal''. The recording system of tensile testing machines which were built, say, twenty years ago, are not capable of recording the full size of the load drops due to the inertia of the recording pen. This handicap was then overcome by establishing correction factors which were determined from recording a small number of load drops with an oscilloscope. Modern testing machines are equipped with digital recording. The disadvantage of the common systemmore » is, however, their limited capacity, so that not enough space for data points is available. Consequently, the time intervals between data points are of the order of tenths of seconds. It will become obvious from the present results that such a time interval is too large for recording a correct serration size. This report is concerned with the recording of complete load-extension relations during tensile tests using a computer which is capable of storing the data at sufficiently small time intervals.« less
In situ X-ray monitoring of damage accumulation in SiC/RBSN tensile specimens
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Bhatt, Ramkrishna T.
1991-01-01
The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ X-ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (O)1, (O)3, (O)5, and (O)8 composite specimens showed that X-ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.
In-situ x-ray monitoring of damage accumulation in SiC/RBSN tensile specimens
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Bhatt, Ramakrishna T.
1991-01-01
The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ x ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (0)1, (0)3, (0)5, and (0)8 composite specimens, showed that x ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.
Tensile experiments and SEM fractography on bovine subchondral bone.
Braidotti, P; Bemporad, E; D'Alessio, T; Sciuto, S A; Stagni, L
2000-09-01
Subchondral bone undecalcified samples, extracted from bovine femoral heads, are subjected to a direct tensile load. The Young's modulus of each sample is determined from repeated tests within the elastic limit. In a last test, the tensile load is increased up to the specimen failure, determining the ultimate tensile strength. The investigation is performed on both dry and wet specimens. The measured Young's modulus for dry samples is 10.3+/-2.5GPa, while that of wet samples is 3.5+/-1.2GPa. The ultimate tensile strengths are 36+/-10 and 30+/-7.5MPa for dry and wet specimens, respectively. SEM micrographs of failure surfaces show characteristic lamellar bone structures, with lamellae composed of calcified collagen fibers. Rudimentary osteon-like structures are also observed. Failure surfaces of wet samples show a marked fiber pull-out, while delamination predominates in dry samples. The obtained results are interpreted on the basis of the deformation mechanisms typical of fiber-reinforced laminated composite materials.
Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading
NASA Technical Reports Server (NTRS)
Gilat, Amos; Goldberg, Robert K.; Roberts, Gary D.
2005-01-01
The mechanical response of E-862 and PR-520 resins is investigated in tensile and shear loadings. At both types of loading the resins are tested at strain rates of about 5x10(exp 5), 2, and 450 to 700 /s. In addition, dynamic shear modulus tests are carried out at various frequencies and temperatures, and tensile stress relaxation tests are conducted at room temperature. The results show that the toughened PR-520 resin can carry higher stresses than the untoughened E-862 resin. Strain rate has a significant effect on the response of both resins. In shear both resins show a ductile response with maximum stress that is increasing with strain rate. In tension a ductile response is observed at low strain rate (approx. 5x10(exp 5) /s), and brittle response is observed at the medium and high strain rates (2, and 700 /s). The hydrostatic component of the stress in the tensile tests causes premature failure in the E-862 resin. Localized deformation develops in the PR-520 resin when loaded in shear. An internal state variable constitutive model is proposed for modeling the response of the resins. The model includes a state variable that accounts for the effect of the hydrostatic component of the stress on the deformation.
NASA Astrophysics Data System (ADS)
Ghaztar, Muhammad Mustakim Mohd; Romli, Ahmad Zafir; Ibrahim, Nik Noor Idayu Nik
2017-12-01
The level of fibre-matrix interaction and consolidation are essential aspects to determine the composite deformation but, less attention is given to the effect of small fibre weight increment (5 wt%), chemical treatment coalition (NaOH/ silane), fibre's length and aspect ratio to the physical and mechanical properties of the composite. Hence, this paper studies the correlation between these parameters towards hardness and tensile properties of Kenaf fibre and unsaturated polyester (UP) matrix. The study was carried out by fabricating the sample into two (2) types of fibre categories and fibre loadings and tested to determine its properties. The results showed that the hardness and tensile stress were significantly influenced by the fibre loading and dispersion of the fabricated samples. At low filler loading, the treated samples for both fibre sizes showed lower hardness property compared to the untreated samples. The chemical treatment coalition might diffuse out the pectin and hemicellulose which affect the ability of the fibre to absorb the force applied by the hardness indenter. Good fibre dispersion observed for the treated samples also resulted in the fibre-dominating composite system where the fibres were efficiently absorbed and distributed the indentation force. However, chemical treatments and good fibre dispersion contributed to the higher tensile stress of the treated fibre samples especially for smaller fibre length and aspect ratio compared to the untreated samples. At high fibre loading, treated fibre samples showed higher hardness property compared to the untreated samples since the treatment resulted in better fibre wetting by the matrix and the formation of pack structure. However, high fibre loading caused the mutual abrasion among the fibre which led to the lower tensile stress compared to the low fibre loading samples. In conclusion, by understanding the factors that influenced the reinforcing mechanism of the composite, the inconsistency of natural based composite strength can be resolved.
Subramanian, Gayathri; Elsaadany, Mostafa; Bialorucki, Callan; Yildirim-Ayan, Eda
2017-08-01
Mechanical loading bioreactors capable of applying uniaxial tensile strains are emerging to be a valuable tool to investigate physiologically relevant cellular signaling pathways and biochemical expression. In this study, we have introduced a simple and cost-effective uniaxial tensile strain bioreactor for the application of precise and homogenous uniaxial strains to 3D cell-encapsulated collagen constructs at physiological loading strains (0-12%) and frequencies (0.01-1 Hz). The bioreactor employs silicone-based loading chambers specifically designed to stretch constructs without direct gripping to minimize stress concentration at the ends of the construct and preserve its integrity. The loading chambers are driven by a versatile stepper motor ball-screw actuation system to produce stretching of the constructs. Mechanical characterization of the bioreactor performed through Finite Element Analysis demonstrated that the constructs experienced predominantly uniaxial tensile strain in the longitudinal direction. The strains produced were found to be homogenous over a 15 × 4 × 2 mm region of the construct equivalent to around 60% of the effective region of characterization. The strain values were also shown to be consistent and reproducible during cyclic loading regimes. Biological characterization confirmed the ability of the bioreactor to promote cell viability, proliferation, and matrix organization of cell-encapsulated collagen constructs. This easy-to-use uniaxial tensile strain bioreactor can be employed for studying morphological, structural, and functional responses of cell-embedded matrix systems in response to physiological loading of musculoskeletal tissues. It also holds promise for tissue-engineered strategies that involve delivery of mechanically stimulated cells at the site of injury through a biological carrier to develop a clinically useful therapy for tissue healing. Biotechnol. Bioeng. 2017;114: 1878-1887. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Scaling Effects in Carbon/Epoxy Laminates Under Transverse Quasi-Static Loading
NASA Technical Reports Server (NTRS)
Nettles, Alan T.; Douglas, Michael J.; Estes, Eric E.
1999-01-01
Scaling effects were considered for 8, 16, 32, and 64 ply IM-7/8551-7 carbon/epoxy composites plates transversely loaded to the first significant load drop by means of both a quasi-static and an equivalent impact force. The resulting damage was examined by x-ray and photomicroscopy analysis. Load-deflection curves were generated for the quasi-static tests and the resulting indentation depth was measured. Results showed that the load-deflection data scaled well for most of the various thicknesses of plates. However, damage did not scale as well. No correlation could be found between dent depth and any of the other parameters measured in this study. The impact test results showed that significantly less damage was formed compared to the quasi- static results for a given maximum transverse load. The criticality of ply-level scaling (grouping plies) was also examined.
NASA Technical Reports Server (NTRS)
Morscher, G. N.; Gyekenyesi, J. Z.
1998-01-01
Composites consisting of woven Hi-Nicalon fibers, BN interphases, and different SiC matrices were studied in tension at room temperature. Composites with SiC matrices processed by CVI and melt infiltration were compared. Monotonic and load/unload/reload tensile hysteresis experiments were performed. A modal acoustic emission (AE) analyzer was used to monitor damage accumulation during the tensile test. Post test polishing of the tensile gage sections was performed to determine the extent of cracking. The occurrence and location of cracking could easily be determined using modal AE. The loss of modulus could also effectively be determined from the change in the velocity of sound across the sample. Finally, the stresses where cracks appear to intersect the load-bearing fibers correspond with high temperature low cycle fatigue run out stresses for these materials.
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
Code of Federal Regulations, 2012 CFR
2012-01-01
... experiences the static inertia loads corresponding to the following ultimate load factors— (i) Upward, 3.0g... occupant, experience the static inertia loads corresponding to the following ultimate load factors— (i... ultimate inertia force of 3 g; and (ii) A coefficient of friction of 0.5 at the ground. (d) If it is not...
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Yun, Hee Mann; DiCarlo, James A.
2007-01-01
The tensile mechanical properties of ceramic matrix composites (CMC) in directions off the primary axes of the reinforcing fibers are important for architectural design of CMC components that are subjected to multi-axial stress states. In this study, 2D-woven melt-infiltrated (MI) SiC/SiC composite panels with balanced fiber content in the 0 degree and 90 degree directions were tensile loaded in-plane in the 0 degree direction and at 45 degree to this direction. In addition, a 2D triaxially-braided MI composite panel with balanced fiber content in the plus or minus 67 degree bias directions and reduced fiber content in the axial direction was tensile loaded perpendicular to the axial direction tows (i.e., 23 degrees from the bias fibers). Stress-strain behavior, acoustic emission, and optical microscopy were used to quantify stress-dependent matrix cracking and ultimate strength in the panels. It was observed that both off-axis loaded panels displayed higher composite onset stresses for through-thickness matrix cracking than the 2D-woven 0/90 panels loaded in the primary 0 degree direction. These improvements for off-axis cracking strength can in part be attributed to higher effective fiber fractions in the loading direction, which in turn reduces internal stresses on critical matrix flaws for a given composite stress. Also for the 0/90 panel loaded in the 45 degree direction, an improved distribution of matrix flaws existed due to the absence of fiber tows perpendicular to the loading direction. In addition, for the +67/0/-67 braided panel, the axial tows perpendicular to the loading direction were not only low in volume fraction, but were also were well separated from one another. Both off-axis oriented panels also showed relatively good ultimate tensile strength when compared to other off-axis oriented composites in the literature, both on an absolute strength basis as well as when normalized by the average fiber strength within the composites. Initial implications are discussed for constituent and architecture design to improve the directional cracking of SiC/SiC CMC components with MI matrices.
Development of an updated tensile neck injury criterion.
Parr, Jeffrey C; Miller, Michael E; Schubert Kabban, Christine M; Pellettiere, Joseph A; Perry, Chris E
2014-10-01
Ejection neck safety remains a concern in military aviation with the growing use of helmet mounted displays (HMDs) worn for entire mission durations. The original USAF tensile neck injury criterion proposed by Carter et al. (4) is updated and an injury protection limit for tensile loading is presented to evaluate escape system and HMD safety. An existent tensile neck injury criterion was updated through the addition of newer post mortem human subject (PMHS) tensile loading and injury data and the application of Survival Analysis to account for censoring in this data. The updated risk function was constructed with a combined human subject (N = 208) and PMHS (N = 22) data set. An updated AIS 3+ tensile neck injury criterion is proposed based upon human and PMHS data. This limit is significantly more conservative than the criterion proposed by Carter in 2000, yielding a 5% risk of AIS 3+ injury at a force of 1136 N as compared to a corresponding force of 1559 N. The inclusion of recent PMHS data into the original tensile neck injury criterion results in an injury protection limit that is significantly more conservative, as recent PMHS data is substantially less censored than the PMHS data included in the earlier criterion. The updated tensile risk function developed in this work is consistent with the tensile risk function published by the Federal Aviation Administration used as the basis for their neck injury criterion for side facing aircraft seats.
Becker, Thorsten H.
2018-01-01
Current post-process heat treatments applied to selective laser melting produced Ti-6Al-4V do not achieve the same microstructure and therefore superior tensile behaviour of thermomechanical processed wrought Ti-6Al-4V. Due to the growing demand for selective laser melting produced parts in industry, research and development towards improved mechanical properties is ongoing. This study is aimed at developing post-process annealing strategies to improve tensile behaviour of selective laser melting produced Ti-6Al-4V parts. Optical and electron microscopy was used to study α grain morphology as a function of annealing temperature, hold time and cooling rate. Quasi-static uniaxial tensile tests were used to measure tensile behaviour of different annealed parts. It was found that elongated α’/α grains can be fragmented into equiaxial grains through applying a high temperature annealing strategy. It is shown that bi-modal microstructures achieve a superior tensile ductility to current heat treated selective laser melting produced Ti-6Al-4V samples. PMID:29342079
Laboratory tests for hot-mix asphalt characterization in Virginia.
DOT National Transportation Integrated Search
2005-01-01
This project reviewed existing laboratory methods for accurately describing the constitutive behavior of the mixes used in the Commonwealth of Virginia. Indirect tensile (IDT) strength, resilient modulus, static creep in the IDT and uniaxial modes, f...
Strength measurement of optical fibers by bending
NASA Astrophysics Data System (ADS)
Srubshchik, Leonid S.
1999-01-01
A two-point bending technique has been used not only to measure the breaking stress of optical fiber but also to predict its static and dynamic fatigue. The present theory of this test is based on elastica theory of rod. However, within the limits of elastica theory the tensile and shear stresses cannot be determined. In this paper we study dynamic and static problems for optical fiber in the two- point bending test on the base of geometrically exact theory in which rod can suffer flexure, extension, and shear. We obtain the governing partial differential equations taking into account the fact that the lateral motion of the fiber is restrained by the presence of flat parallel plates. We develop the computational methods for solving the initial and equilibrium free-boundary nonlinear planar problems. We derive the formulas for predicting of the tensile strength from strength in the bending and calculate one example.
Relationships between microstructure and mechanical properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy
NASA Astrophysics Data System (ADS)
Li, Z. Y.; Wu, G. Q.; Huang, Z.
2018-03-01
Through a statistical, quantitative analysis on microstructure of Ti-5Al-5Mo-5V-3Cr-1Zr (Ti55531) alloy, the relationships between microstructure and mechanical properties and heat treatment temperatures were investigated. The results show that in Widmanstätten structure, the size of β grain is greatly increased with increasing annealing temperature. Static toughness is related to grain boundary alpha phase discontinuity, the tensile strength is related to acicular alpha phase interface length and acicular alpha phase proportion. In duplex microstructure, the tensile strength is related to the equiaxed alpha proportion. Elongation, static toughness and crack forming work are related to the equiaxed alpha proportion and negatively related to secondary phase proportion. The microstructure can be described quantitatively and the mechanical properties can be predicted by analysis of microstructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, D. G.
2002-01-01
A round-robin study was conducted with the participation of three laboratory facilities: Los Alamos National Laboratory (LANL), BWXT Pantex Plant (PX), and Lawrence Livermore National Laboratory (LLNL). The study involved the machining and quasi-static tension testing of two plastic-bonded high explosive (PBX) composites, PBX 9501 and PBX 9502. Nine tensile specimens for each type of PBX were to be machined at each of the three facilities; 3 of these specimens were to be sent to each of the participating materials testing facilities for tensile testing. The resultant data was analyzed to look for trends associated with specimen machining location and/ormore » trends associated with materials testing location. The analysis provides interesting insights into the variability and statistical nature of mechanical properties testing on PBX composites. Caution is warranted when results are compared/exchanged between testing facilities.« less
Characterization and modeling of tensile behavior of ceramic woven fabric composites
NASA Technical Reports Server (NTRS)
Kuo, Wen-Shyong; Chen, Wennei Y.; Parvizi-Majidi, Azar; Chou, Tsu-Wei
1991-01-01
This paper examines the tensile behavior of SiC/SiC fabric composites. In the characterization effort, the stress-strain relation and damage evolution are studied with a series of loading and unloading tensile test experiments. The stress-strain relation is linear in response to the initial loading and becomes nonlinear when loading exceeds the proportional limit. Transverse cracking has been observed to be a dominant damage mode governing the nonlinear deformation. The damage is initiated at the inter-tow pores where fiber yarns cross over each other. In the modeling work, the analysis is based upon a fiber bundle model, in which fiber undulation in the warp and fill directions and gaps among fiber yarns have been taken into account. Two limiting cases of fabric stacking arrangements are studied. Closed form solutions are obtained for the composite stiffness and Poisson's ratio. Transverse cracking in the composite is discussed by applying a constant failure strain criterion.
A theoretical derivation of the dilatancy equation for brittle rocks based on Maxwell model
NASA Astrophysics Data System (ADS)
Li, Jie; Huang, Houxu; Wang, Mingyang
2017-03-01
In this paper, the micro-cracks in the brittle rocks are assumed to be penny shaped and evenly distributed; the damage and dilatancy of the brittle rocks is attributed to the growth and expansion of numerous micro-cracks under the local tensile stress. A single crack's behaviour under the local tensile stress is generalized to all cracks based on the distributed damage mechanics. The relationship between the local tensile stress and the external loading is derived based on the Maxwell model. The damage factor corresponding to the external loading is represented using the p-alpha ( p- α) model. A dilatancy equation that can build up a link between the external loading and the rock dilatancy is established. A test of dilatancy of a brittle rock under triaxial compression is conducted; the comparison between experimental results and our theoretical results shows good consistency.
Study of fatigue behavior of longitudinal welded pipes
NASA Astrophysics Data System (ADS)
Simion, P.; Dia, V.; Istrate, B.; Hrituleac, G.; Hrituleac, I.; Munteanu, C.
2016-08-01
During transport and storage of the various fluids, welded pipes are subjected to cyclic loading due to pressure fluctuations that often exceed the prescribed values for normal operation. These cyclic loading can significantly reduce the life of the pipes; as a result the design should be based on the fatigue strength not only on static resistance. In general the fatigue strength of pipes is dependent by strength, pipe geometry and surface quality. In case of the electric longitudinal welded pipes, the fatigue strength is significantly limited by concentration of residual stress and the size of existing defects in the weld seam. This paper presents the fatigue behaviour of the electric welded pipes by high frequency, under conditions that simulate real operating conditions pipes. Fatigue testing was performed on welded pipes made of micro alloyed carbon steels. Some of these pipes were previously subjected to a heat treatment of normalization, in order to also determine the influence of heat treatment on the fatigue strength of welded pipes. To determine and correlate the different factors affecting the fatigue strength, welded pipes were also subjected to various tests: tensile tests, impact tests, measurement of micro hardness, microstructural analysis by optical microscopy and scanning electron microscopy.
Crack propagation analysis using acoustic emission sensors for structural health monitoring systems.
Kral, Zachary; Horn, Walter; Steck, James
2013-01-01
Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.
2015-06-01
Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) Al 1560 aluminum and Ma2-1 magnesium alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength. The increasing of fine precipitations concentration not only causes the hardening but increasing of ductility of UFG alloys with bimodal grain size distribution. This research carried out in 2014-2015 was supported by grant from ``The Tomsk State University Academic D.I. Mendeleev Fund Program''.
NASA Astrophysics Data System (ADS)
Taheri-Behrooz, Fathollah; Kiani, Ali
2017-04-01
Shape memory alloys (SMAs) are a type of shape memory materials that recover large deformation and return to their primary shape by rising temperature. In the current research, the effect of embedding SMA wires on the macroscopic mechanical behavior of glass-epoxy composites is investigated through finite element simulations. A perfect interface between SMA wires and the host composite is assumed. Effects of various parameters such as SMA wires volume fraction, SMA wires pre-strain and temperature are investigated during loading-unloading and reloading steps by employing ANSYS software. In order to quantify the extent of induced compressive stress in the host composite and residual tensile stress in the SMA wires, a theoretical approach is presented. Finally, it was shown that smart structures fabricated using composite layers and pre-strained SMA wires exhibited overall stiffness reduction at both ambient and elevated temperatures which were increased by adding SMA volume fraction. Also, the induced compressive stress on the host composite was increased remarkably using 4% pre-strained SMA wires at elevated temperature. Results obtained by FE simulations were in good correlation with the rule of mixture predictions and available experimental data in the literature.
Sommer, Gerhard; Eder, Maximilian; Kovacs, Laszlo; Pathak, Heramb; Bonitz, Lars; Mueller, Christoph; Regitnig, Peter; Holzapfel, Gerhard A
2013-11-01
A preoperative simulation of soft tissue deformations during plastic and reconstructive surgery is desirable to support the surgeon's planning and to improve surgical outcomes. The current development of constitutive adipose tissue models, for the implementation in multilayer computational frameworks for the simulation of human soft tissue deformations, has proved difficult because knowledge of the required mechanical parameters of fat tissue is limited. Therefore, for the first time, human abdominal adipose tissues were mechanically investigated by biaxial tensile and triaxial shear tests. The results of this study suggest that human abdominal adipose tissues under quasi-static and dynamic multiaxial loadings can be characterized as a nonlinear, anisotropic and viscoelastic soft biological material. The nonlinear and anisotropic features are consequences of the material's collagenous microstructure. The aligned collagenous septa observed in histological investigations causes the anisotropy of the tissue. A hyperelastic model used in this study was appropriate to represent the quasi-static multiaxial mechanical behavior of fat tissue. The constitutive parameters are intended to serve as a basis for soft tissue simulations using the finite element method, which is an apparent method for obtaining promising results in the field of plastic and reconstructive surgery. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Failure criterion of glass fabric reinforced plastic laminates
NASA Technical Reports Server (NTRS)
Haga, O.; Hayashi, N.; Kasuya, K.
1986-01-01
Failure criteria are derived for several modes of failure (in unaxial tensile or compressive loading, or biaxial combined tensile-compressive loading) in the case of closely woven plain fabric, coarsely-woven plain fabric, or roving glass cloth reinforcements. The shear strength in the interaction formula is replaced by an equation dealing with tensile or compressive strength in the direction making a 45 degree angle with one of the anisotropic axes, for the uniaxial failure criteria. The interaction formula is useful as the failure criterion in combined tension-compression biaxial failure for the case of closely woven plain fabric laminates, but poor agreement is obtained in the case of coarsely woven fabric laminates.
High burn-up spent nuclear fuel transport reliability investigation
Wang, Jy-An; Wang, Hong; Jiang, Hao; ...
2018-04-15
Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During road or rail transportation, SNF will experience unique conditions that could affect the structural integrity of the cladding due to vibrational and impact loading. Lack of SNF inertia-induced dynamic fatigue data, especially for the high burn-up (HBU) SNF systems, has brought significant challenges to quantify the reliability of SNF during transportation with a high degree of confidence. To address this shortcoming, Oak Ridge National Laboratory (ORNL) developed a SNF vibration testing protocol without fuel pellets removal, which hasmore » provided significant insight regarding the dynamics of mechanical interactions between pellet and cladding. This research has provided a detailed understanding about the effect of loading rate and loading mode on the fatigue damage evolution of HBU SNF under normal conditions of transport (NCT). Static and dynamic loading experimental data were generated for SNF under simulated transportation environments using a cyclic integrated reversible-bending fatigue tester (CIRFT), an enabling hot-cell testing technology developed at ORNL. SNF flexural tensile strength and fatigue S-N data from pressurized water reactors (PWRs) and boiling water reactor (BWR) HBU SNF are presented in this paper, including the potential effects of pellet-cladding interface bonding, hydride reorientation, and thermal annealing to SNF vibration reliability. The data presented here can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in safety of SNF transportation operations.« less
High burn-up spent nuclear fuel transport reliability investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An; Wang, Hong; Jiang, Hao
Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During road or rail transportation, SNF will experience unique conditions that could affect the structural integrity of the cladding due to vibrational and impact loading. Lack of SNF inertia-induced dynamic fatigue data, especially for the high burn-up (HBU) SNF systems, has brought significant challenges to quantify the reliability of SNF during transportation with a high degree of confidence. To address this shortcoming, Oak Ridge National Laboratory (ORNL) developed a SNF vibration testing protocol without fuel pellets removal, which hasmore » provided significant insight regarding the dynamics of mechanical interactions between pellet and cladding. This research has provided a detailed understanding about the effect of loading rate and loading mode on the fatigue damage evolution of HBU SNF under normal conditions of transport (NCT). Static and dynamic loading experimental data were generated for SNF under simulated transportation environments using a cyclic integrated reversible-bending fatigue tester (CIRFT), an enabling hot-cell testing technology developed at ORNL. SNF flexural tensile strength and fatigue S-N data from pressurized water reactors (PWRs) and boiling water reactor (BWR) HBU SNF are presented in this paper, including the potential effects of pellet-cladding interface bonding, hydride reorientation, and thermal annealing to SNF vibration reliability. The data presented here can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in safety of SNF transportation operations.« less
Proof Test Diagrams for a Lithia-Alumina-Silica Glass-Ceramic
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.
2003-01-01
The glass-ceramic (Zerodur, Schott Glaswerke, Mainz, Germany) contains 70% to 78% by weight crystalline phase of high-quartz structure with a mean crystal size of 50-55 nm. The vitreous phase has a positive thermal expansion coefficient which is practically balanced by the negative coefficient of the crystalline phase. This results in a material which can maintain longitudinal stability during thermal cycling. This was one of the reasons for its choice as the material for the grazing incidence mirrors for the Chandra X-Ray Facility. Brittle materials such as glass and glass-ceramics which exhibit slow crack growth and subsequent fast fracture to failure exhibit a time dependence in strength. The decrease in strength for a constant applied load is known as static fatigue. In many cases, environment plays a major role in the material lifetime. It has been shown for silicate glasses that crack velocity will increase as the amount of water vapor in the environment surface finish and rate of loading. A rough surface finish leads to a lower tensile strength than for an optically polished surface. The strength of glass is observed in general to increase with increasing load rate. This phenomena is known as dynamic fatigue. This was observed for Zerodur by Tucker and Gent and Tucker in previous dynamic fatigue studies, in which lifetimes were obtained. All of the above named factors need to be considered when glass is to be used in load bearing applications.
Ab initio elastic properties and tensile strength of crystalline hydroxyapatite.
Ching, W Y; Rulis, Paul; Misra, A
2009-10-01
We report elastic constant calculation and a "theoretical" tensile experiment on stoichiometric hydroxyapatite (HAP) crystal using an ab initio technique. These results compare favorably with a variety of measured data. Theoretical tensile experiments are performed on the orthorhombic cell of HAP for both uniaxial and biaxial loading. The results show considerable anisotropy in the stress-strain behavior. It is shown that the failure behavior of the perfect HAP crystal is brittle for tension along the z-axis with a maximum stress of 9.6 GPa at 10% strain. Biaxial failure envelopes from six "theoretical" loading tests show a highly anisotropic pattern. Structural analysis of the crystal under various stages of tensile strain reveals that the deformation behavior manifests itself mainly in the rotation of the PO(4) tetrahedron with concomitant movements of both the columnar and axial Ca ions. These results are discussed in the context of mechanical properties of bioceramic composites relevant to mineralized tissues.
NASA Astrophysics Data System (ADS)
Chen, Ruey Shan; Ahmad, Sahrim; Ghani, Mohd Hafizuddin Ab; Salleh, Mohd Nazry
2014-09-01
Biocomposites of recycled high density polyethylene / recycled polyethylene terephthalate (rHDPE/rPET) blend incorporated with rice husk flour (RHF) were prepared using a corotating twin screw extruder. Maleic anhydride polyethylene (MAPE) was added as a coupling agent to improve the fibre-matrix interface adhesion. The effect of high filler loadings (50-90 wt%) on morphology and tensile properties of compatibilized rHDPE/rPET blend was investigated. The results of our study shown that composite with 70 wt% exhibited the highest tensile strength and Young's modulus, which are 22 MPa and 1752 MPa, respectively. The elongation at break decreased with increasing percentage of RHF. SEM micrograph confirmed fillers dispersion, morphological interaction and enhanced interfacial bonding between recycled polymer blends and rice husk. It can be concluded that the optimum RHF content is 70 wt% with maximum tensile strength.
NASA Astrophysics Data System (ADS)
Maier, Galina; Astafurova, Elena; Melnikov, Eugene; Moskvina, Valentina; Galchenko, Nina
2017-12-01
The effect of grain orientation relative to tensile load on the strain hardening behavior and fracture mechanism of directionally solidified high-nitrogen steel Fe-20Cr-22Mn-1.5V-0.2C-0.6N (in wt %) was studied. The tensile samples oriented along the longitudinal direction of columnar grains demonstrated the improved mechanical properties compared to specimens with the transversal directions of columnar grains: the values of tensile strength and strain-to-fracture were as high as 1080 MPa and 22%, respectively, for tension along the columnar grains and 870 MPa and 11%, respectively, for the tension transversal to the columnar grains. The change in the grain orientation relative to the tensile load varies a fracture mode of the steel. The fraction of the transgranular fracture was higher in the samples with longitudinal directions of the columnar grains compared to the transversal ones.
NASA Astrophysics Data System (ADS)
Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun
2017-10-01
Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.
NASA Astrophysics Data System (ADS)
Lemke, E. H.
We consider a space elevator system for lunar surface access that consists of a space station in circumlunar orbit, a cable reaching down to some meters above the surface and a magnetically levitated vehicle driven by a linear motor. It accelerates the load to be lifted to the speed of the cable end. Loads to be delivered are either put on the vehicle and slowed down by it or they are slowed down by a sand braking technique in a mare terrain. It is technically possible to operate this transport system nearly without fuel supply from Earth. We calculate various steel cable dimensions for a static stress maximum of 1/5th of the tensile strength. The process of takeover is considered in detail. Five ways of eliminating the adverse large cable elongation due to the load are described. The touchdown process and behaviour of the cable after disconnection are analysed. The positive difference between the speed of the load at takeover and cable end can excite a large inplane swing motion. We propose to damp it by a dissipative pulley that hangs in a loop of wire leading to the ends of two beams mounted on the space station tangentially to the orbit, the pulley's core being connected with the load. Roll librations are damped by energy losses in the elastic beams; damping can be reinforced by viscous beam elements and/or controlled out-of-plane motions of the beams. We argue in favour of the possibility of fast deployment. The problems of vehicle vibrations and agglutination at sand braking blades are underlined and their combined experimental investigation is suggested.
A tensile machine with a novel optical load cell for soft biological tissues application.
Faturechi, Rahim; Hashemi, Ata; Abolfathi, Nabiollah
2014-11-01
The uniaxial tensile testing machine is the most common device used to measure the mechanical properties of industrial and biological materials. The need for a low-cost uniaxial tension testing device for small research centers has always been the subject of research. To address this need, a novel uniaxial tensile testing machine was designed and fabricated to measure the mechanical properties of soft biological tissues. The device is equipped with a new low-cost load cell which works based on the linear displacement/force relationship of beams. The deflection of the beam load cell is measured optically by a digital microscope with an accuracy of 1 µm. The stiffness of the designed load cell was experimentally and theoretically determined at 100 N mm(-1). The stiffness of the load cell can be easily adjusted according to the tissue's strength. The force-time behaviour of soft tissue specimens was obtained by an in-house image processing program. To demonstrate the efficiency of the fabricated device, the mechanical properties of amnion tissue was measured and compared with available data. The obtained results indicate a strong agreement with that of previous studies.
NASA Astrophysics Data System (ADS)
Kasa, Siti Norbaya; Omar, Mohd Firdaus; Ismail, Ismarul Nizam
2017-12-01
Nanocrystalline cellulose (NCC) was synthesized from banana stem through strong acid hydrolysis with measured length of approximately 287.0 ± 56.4 nm and diameter of 26.6 ± 4.8 nm. Modification of NCC was carried by acetylation reaction in order to increase the compatibility during reinforcement with polylactic acid (PLA) polymer. The reinforcing effect towards morphology, crystallinity, mechanical and thermal properties of bio-nanocomposites was investigated. Scanning Electron Microscope (SEM) micrograph reveals the uniform dispersion achieved at 1 %, 3 % and 5% aNC loading while agglomeration was found at 7 % aNC loading. Disappearance of crystallinity peak at 2θ = 22.7⁰ for low aNC loading during elemental analysis using X-Ray Diffraction (XRD) indicates the proper dispersion of aNC in PLA polymer. From the tensile test, 1 % aNC loading gives the highest mechanical properties of bio-nanocomposite film with 82.71 %, 118.7 % and 24.18 % increment in tensile strength, tensile modulus and elongation at break. However, 7 % aNC loading gives the highest increment in TGA of aNC-PLA nanocomposites which is from 310 °C to 320 °C.
Effect of Multiaxial Loading on Crack Growth. Volume 2. Compilation of Experimental Data
1978-12-01
3121 9. PERFORMING ORGANIZATION NAME AND ADORESS 10 . PROGRAM ELEMENT. PROJECT, TASK Northrop Corporation AREA & WORK UNIT NUMBERS Aircraft Group 3901...Stresses in the Center of the 2024-T351 9 Cruciform Specimen 9 Stress Distribution along the X-axis of the 10 Cruciform Specimen 10 Stress Distribution...Tensile Test Results for 7075-T7351 584 8 Tensile Test Results for 7075-T7351 600 9 Tensile Test Results for 2024-T351 610 10 Tensile Test Results for
The Mechanical Metallurgy of Armour Steels
2016-10-01
Group -TR-3305 UNCLASSIFIED 7 Figure 5: Linear relationship between quasi -static tensile yield stress and ballistic limit...te d Ba lli st ic L im it (m /s ) Experimental Ballistic Limit (m/s) UNCLASSIFIED DST- Group -TR-3305 UNCLASSIFIED 9 flow stress with strain...1000 1500 2000 2500 3000 0 0.2 0.4 0.6 0.8 Tr ue S tr es s (M Pa ) True Strain Quasi -static Dynamic RHA HHA UHHA UNCLASSIFIED DST- Group
Sugiyama, Toshihiro; Price, Joanna S; Lanyon, Lance E
2010-02-01
In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC+STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static "pre-load" of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static "pre-load" alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 mum) micro-computed tomography (microCT). In the DYNAMIC+STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC+STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These microCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them. (c) 2009 Elsevier Inc. All rights reserved.
Quasi-Static Viscoelasticity Loading Measurements of an Aircraft Tire
NASA Technical Reports Server (NTRS)
Mason, Angela J.; Tanner, John A.; Johnson, Arthur R.
1997-01-01
Stair-step loading, cyclic loading, and long-term relaxation tests were performed on an aircraft tire to observe the quasi-static viscoelastic response of the tire. The data indicate that the tire continues to respond viscoelastically even after it has been softened by deformation. Load relaxation data from the stair-step test at the 15,000-lb loading was fit to a monotonically decreasing Prony series.
Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures
NASA Technical Reports Server (NTRS)
Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser
2012-01-01
Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the system can capture acoustic emission events that can be a prelude to structural failure, as well as piezoactuator-induced ultrasonic Lamb-waves-based techniques as a basis for damage detection.
NASA Technical Reports Server (NTRS)
Dolan, Thomas J
1942-01-01
Laboratory tests were made to obtain information on the load-resisting properties of X76S-T aluminum alloy when subjected to static, impact, and repeated loads. Results are presented from static-load test of unnotched specimens in tension and in torsion and of notched specimens in tension. Charpy impact values obtained from bend tests on notched specimens and tension impact values for both notched and unnotched specimens tested at several different temperatures are included. The endurance limits obtained from repeated bending fatigue tests made on three different types of testing machine are given for unnotched polished specimens, and the endurance limits of notched specimens subjected to six different ranges of bending stress are also reported. The results indicated that: (a) polished rectangular specimens had an endurance limit about 30 percent less than that obtained for round specimens; (b) a comparison of endurance limits obtained from tests on three different types of machine indicated that there was no apparent effect of speed of testing on the endurance limit for the range of speeds used (1,750 to 13,000 rpm). (c) the fatigue strength (endurance limit) of the X76S-T alloy was greatly decreased by the presence of a notch in the specimens; (d) no complete fractures of the entire specimens occurred in notched fatigue specimens when subjected to stress cycles for which the mean stress at the notch during the cycle was a compressive stress; for this test condition a microscopic cracking occurred near the root of the notch and was used as a criterion of failure of the specimen. (e) as the mean stress at the notch was decreased from a tensile (+) stress to a compressive (-) stress, it was found that the alternating stress that could be superimposed on the mean stress in the cycle without causing failure of the specimens was increased.
Portable pallet weighing apparatus
NASA Technical Reports Server (NTRS)
Day, R. M. (Inventor)
1984-01-01
An assembly for use with several like units in weighing the mass of a loaded cargo pallet supported by its trunnions has a bridge frame for positioning the assembly on a transportation frame carrying the pallet while straddling one trunnion of the pallet and its trunnion lock, and a cradle assembly for incrementally raising the trunnion. The mass at the trunnion is carried as a static load by a slidable bracket mounted upon the bridge frame for supporting the cradle assembly. The bracket applies the static loading to an electrical load cell symmetrically positioned between the bridge frame and the bracket. The static loading compresses the load cell, causing a slight deformation and a potential difference at load cell terminals which is proportional in amplitude to the mass of the pallet at the trunnion.
NASA Astrophysics Data System (ADS)
Wang, Miaomiao; Tan, Chengxuan; Meng, Jing; Yang, Baicun; Li, Yuan
2017-08-01
Characterization and evolution of the cracking mode in shale formation is significant, as fracture networks are an important element in shale gas exploitation. In this study we determine the crack modes and evolution in anisotropic shale under cyclic loading using the acoustic emission (AE) parameter-analysis method based on the average frequency and RA (rise-time/amplitude) value. Shale specimens with bedding-plane orientations parallel and perpendicular to the axial loading direction were subjected to loading cycles with increasing peak values until failure occurred. When the loading was parallel to the bedding plane, most of the cracks at failure were shear cracks, while tensile cracks were dominant in the specimens that were loaded normal to the bedding direction. The evolution of the crack mode in the shale specimens observed in the loading-unloading sequence except for the first cycle can be divided into three stages: (I) no or several cracks (AE events) form as a result of the Kaiser effect, (II) tensile and shear cracks increase steadily at nearly equal proportions, (III) tensile cracks and shear cracks increase abruptly, with more cracks forming in one mode than in the other. As the dominant crack motion is influenced by the bedding, the failure mechanism is discussed based on the evolution of the different crack modes. Our conclusions can increase our understanding of the formation mechanism of fracture networks in the field.
Stasuk, Alexander
2017-01-01
Adipose-derived mesenchymal stem cells have become a popular cell choice for tendon repair strategies due to their relative abundance, ease of isolation, and ability to differentiate into tenocytes. In this study, we investigated the solo effect of different uniaxial tensile strains and loading frequencies on the matrix directionality and tenogenic differentiation of adipose-derived stem cells encapsulated within three-dimensional collagen scaffolds. Samples loaded at 0%, 2%, 4%, and 6% strains and 0.1 Hz and 1 Hz frequencies for 2 hours/day over a 7-day period using a custom-built uniaxial tensile strain bioreactor were characterized in terms of matrix organization, cell viability, and musculoskeletal gene expression profiles. The results displayed that the collagen fibers of the loaded samples exhibited increased matrix directionality with an increase in strain values. Gene expression analyses demonstrated that ASC-encapsulated collagen scaffolds loaded at 2% strain and 0.1 Hz frequency showed significant increases in extracellular matrix genes and tenogenic differentiation markers. Importantly, no cross-differentiation potential to osteogenic, chondrogenic, and myogenic lineages was observed at 2% strain and 0.1 Hz frequency loading condition. Thus, 2% strain and 0.1 Hz frequency were identified as the appropriate mechanical loading regime to induce tenogenic differentiation of adipose-derived stem cells cultured in a three-dimensional environment. PMID:29375625
Experimental characterization of composites. [load test methods
NASA Technical Reports Server (NTRS)
Bert, C. W.
1975-01-01
The experimental characterization for composite materials is generally more complicated than for ordinary homogeneous, isotropic materials because composites behave in a much more complex fashion, due to macroscopic anisotropic effects and lamination effects. Problems concerning the static uniaxial tension test for composite materials are considered along with approaches for conducting static uniaxial compression tests and static uniaxial bending tests. Studies of static shear properties are discussed, taking into account in-plane shear, twisting shear, and thickness shear. Attention is given to static multiaxial loading, systematized experimental programs for the complete characterization of static properties, and dynamic properties.
Code of Federal Regulations, 2010 CFR
2010-01-01
... occupant experiences the static inertia loads corresponding to the following ultimate load factors— (i... could injure an occupant, experience the static inertia loads corresponding to the following ultimate...) A downward ultimate inertia force of 3 g; and (ii) A coefficient of friction of 0.5 at the ground...
Embedded data collector (EDC) phase II load and resistance factor design (LRFD).
DOT National Transportation Integrated Search
2015-09-01
A total of 16 static load test results was collected in Florida and Louisiana. New static load tests on five test piles : in Florida (four of which were voided) were monitored with Embedded Data Collector (EDC) instrumentation and : contributed to th...
Code of Federal Regulations, 2011 CFR
2011-01-01
... occupant experiences the static inertia loads corresponding to the following ultimate load factors— (i... could injure an occupant, experience the static inertia loads corresponding to the following ultimate...) A downward ultimate inertia force of 3 g; and (ii) A coefficient of friction of 0.5 at the ground...
Code of Federal Regulations, 2014 CFR
2014-01-01
... occupant experiences the static inertia loads corresponding to the following ultimate load factors— (i... could injure an occupant, experience the static inertia loads corresponding to the following ultimate...) A downward ultimate inertia force of 3 g; and (ii) A coefficient of friction of 0.5 at the ground...
Code of Federal Regulations, 2013 CFR
2013-01-01
... occupant experiences the static inertia loads corresponding to the following ultimate load factors— (i... could injure an occupant, experience the static inertia loads corresponding to the following ultimate...) A downward ultimate inertia force of 3 g; and (ii) A coefficient of friction of 0.5 at the ground...
Static behaviour of 3x3 pile group in sand under lateral loading
NASA Astrophysics Data System (ADS)
SureshKumar, R.; BharathKumar, R.; MohanKumar, L.; Visuvasam, J.; Sairam, V.
2017-11-01
This paper presents the static lateral load behaviour of single pile in comparison with 3x3 pile group in sand. The piled raft system is modelled using PLAXIS3D. Parametric studies of varying length to diameter (L/D) and spacing of piles in a group and diameter of piles (S/D) have been performed. The behaviour of group piles in terms of static lateral load capacity and group efficiency has been discussed.
The effect of fatigue cracks on fastener flexibility, load distribution, and fatigue crack growth
NASA Astrophysics Data System (ADS)
Whitman, Zachary Layne
Fatigue cracks typically occur at stress risers such as geometry changes and holes. This type of failure has serious safety and economic repercussions affecting structures such as aircraft. The need to prevent catastrophic failure due to fatigue cracks and other discontinuities has led to durability and damage tolerant methodologies influencing the design of aircraft structures. Holes in a plate or sheet filled with a fastener are common fatigue critical locations in aircraft structure requiring damage tolerance analysis (DTA). Often, the fastener is transferring load which leads to a loading condition involving both far-field stresses such as tension and bending, and localized bearing at the hole. The difference between the bearing stress and the tensile field at the hole is known as load transfer. The ratio of load transfer as well as the magnitude of the stresses plays a significant part in how quickly a crack will progress to failure. Unfortunately, the determination of load transfer in a complex joint is far from trivial. Many methods exist in the open literature regarding the analysis of splices, doublers and attachment joints to determine individual fastener loads. These methods work well for static analyses but greater refinement is needed for crack growth analysis. The first fastener in a splice or joint is typically the most critical but different fastener flexibility equations will all give different results. The constraint of the fastener head and shop end, along with the type of fastener, affects the stiffness or flexibility of the fastener. This in turn will determine the load that the fastener will transfer within a given fastener pattern. However, current methods do not account for the change in flexibility at a fastener as the crack develops. It is put forth that a crack does indeed reduce the stiffness of a fastener by changing its constraint, thus lessening the load transfer. A crack growth analysis utilizing reduced load transfer will result in a slower growing crack versus an analysis that ignores the effect.
Processing and characterization of unidirectional thermoplastic nanocomposites
NASA Astrophysics Data System (ADS)
Narasimhan, Kameshwaran
The manufacture of continuous fibre-reinforced thermoplastic nanocomposites is discussed for the case of E-Glass reinforced polypropylene (PP) matrix and for E-Glass reinforced Polyamide-6 (Nylon-6), with and without dispersed nanoclay (montmorillonite) platelets. The E-Glass/PP nanocomposite was manufactured using pultrusion, whereas the E-Glass/Nylon-6 nanocomposite was manufactured using compression molding. Mechanical characterization of nanocomposites were performed and compared with traditional microcomposites. Compressive as well as shear strength of nanocomposites was improved by improving the yield strength of the surrounding matrix through the dispersion of nanoclay. Significant improvements were achieved in compressive strength and shear strength with relatively low nanoclay loadings. Initially, polypropylene with and without nanoclay were melt intercalated using a single-screw extruder and the pultruded nanocomposite was fabricated using extruded pre-impregnated (pre-preg) tapes. Compression tests were performed as mandated by ASTM guidelines. SEM and TEM characterization revealed presence of nanoclay in an intercalated and partially exfoliated morphology. Mechanical tests confirmed significant improvements in compressive strength (˜122% at 10% nanoclay loading) and shear strength (˜60% at 3% nanoclay loading) in modified pultruded E-Glass/PP nanocomposites in comparison with baseline properties. Uniaxial tensile tests showed a small increase in tensile strength (˜3.4%) with 3% nanoclay loading. Subsequently, E-Glass/Nylon-6 nanocomposite panels were manufactured by compression molding. Compression tests were performed according to IITRI guidelines, whereas short beam shear and uni-axial tensile tests were performed according to ASTM standards. Mechanical tests confirmed strength enhancement with nanoclay addition, with a significant improvement in compressive strength (50% at 4% nanoclay loading) and shear strength (˜36% at 4% nanoclay loading) when compared with the baseline E-Glass/Nylon-6. Uni-axial tensile tests resulted in a small increase in tensile strength (˜3.2%) with 4% nanoclay loading. Also, hygrothermal aging (50°C and 100% RH) of baseline and nanoclay modified (4%) E-Glass/Nylon-6 was studied. It was observed that the moisture diffusion process followed Fickian diffusion. E-Glass/Nylon-6 modified with 4% nanoclay loading showed improved barrier performance with a significant reduction (˜30%) in moisture uptake compared to baseline E-Glass/Nylon-6 composites. Significant improvement in mechanical properties was also observed in hygrothermally aged nanocomposite specimens when compared with the aged baseline composite.
Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials
NASA Astrophysics Data System (ADS)
Han, Jihoon; Pugno, Nicola M.; Ryu, Seunghwa
2015-09-01
Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials.Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials. Electronic ESI (ESI) available: Modelling of polycrystalline graphene, verification of loading speed, biaxial tensile simulations, comparison of stress distribution, size effects of indenter radius, force-deflection curves, and stability analysis of crack propagation. See DOI: 10.1039/c5nr04134a
Abdolmohammadi, Sanaz; Siyamak, Samira; Ibrahim, Nor Azowa; Yunus, Wan Md Zin Wan; Rahman, Mohamad Zaki Ab; Azizi, Susan; Fatehi, Asma
2012-01-01
This study investigates the effects of calcium carbonate (CaCO3) nanoparticles on the mechanical and thermal properties and surface morphology of polycaprolactone (PCL)/chitosan nanocomposites. The nanocomposites of PCL/chitosan/CaCO3 were prepared using a melt blending technique. Transmission electron microscopy (TEM) results indicate the average size of nanoparticles to be approximately 62 nm. Tensile measurement results show an increase in the tensile modulus with CaCO3 nanoparticle loading. Tensile strength and elongation at break show gradual improvement with the addition of up to 1 wt% of nano-sized CaCO3. Decreasing performance of these properties is observed for loading of more than 1 wt% of nano-sized CaCO3. The thermal stability was best enhanced at 1 wt% of CaCO3 nanoparticle loading. The fractured surface morphology of the PCL/chitosan blend becomes more stretched and homogeneous in PCL/chitosan/CaCO3 nanocomposite. TEM micrograph displays good dispersion of CaCO3 at lower nanoparticle loading within the matrix. PMID:22605993
Tensile and fatigue behavior of polymer composites reinforced with superelastic SMA strands
NASA Astrophysics Data System (ADS)
Daghash, Sherif M.; Ozbulut, Osman E.
2018-06-01
This study explores the use of superelastic shape memory alloy (SMA) strands, which consist of seven individual small-diameter wires, in an epoxy matrix and characterizes the tensile and fatigue responses of the developed SMA/epoxy composites. Using a vacuum assisted hand lay-up technique, twelve SMA fiber reinforced polymer (FRP) specimens were fabricated. The developed SMA-FRP composites had a fiber volume ratio of 50%. Tensile response of SMA-FRP specimens were characterized under both monotonic loading and increasing amplitude loading and unloading cycles. The degradation in superelastic properties of the developed SMA-FRP composites during fatigue loading at different strain amplitudes was investigated. The effect of loading rate on the fatigue response of SMA-FRP composites was also explored. In addition, fractured specimens were examined using the scanning electron microscopy (SEM) technique to study the failure mechanisms of the tested specimens. A good interfacial bonding between the SMA strands and epoxy matrix was observed. The developed SMA-FRP composites exhibited good superelastic behavior at different strain amplitudes up to at least 800 cycle after which significant degradation occurred.
Observations, models, and mechanisms of failure of surface rocks surrounding planetary surface loads
NASA Technical Reports Server (NTRS)
Schultz, R. A.; Zuber, M. T.
1994-01-01
Geophysical models of flexural stresses in an elastic lithosphere due to an axisymmetric surface load typically predict a transition with increased distance from the center of the load of radial thrust faults to strike-slip faults to concentric normal faults. These model predictions are in conflict with the absence of annular zones of strike-slip faults around prominent loads such as lunar maria, Martian volcanoes, and the Martian Tharsis rise. We suggest that this paradox arises from difficulties in relating failure criteria for brittle rocks to the stress models. Indications that model stresses are inappropriate for use in fault-type prediction include (1) tensile principal stresses larger than realistic values of rock tensile strength, and/or (2) stress differences significantly larger than those allowed by rock-strength criteria. Predictions of surface faulting that are consistent with observations can be obtained instead by using tensile and shear failure criteria, along with calculated stress differences and trajectories, with model stress states not greatly in excess of the maximum allowed by rock fracture criteria.
NASA Technical Reports Server (NTRS)
Parker, Bradford H.
1992-01-01
An acoustic emission (AE) system was set up in a linear location data acquisition mode to monitor the tensile loading of eight-ply quasi-isotropic graphite/epoxy specimens containing low velocity impact damage. The impact damage was induced using an instrumented drop weight tower. During impact, specimens were supported by either an aluminum plate or a membrane configuration. Cross-sectional examinations revealed that the aluminum plate configuration resulted in primarily matrix cracking and back surface fiber failure. The membrane support resulted in only matrix cracking and delamination damage. Penetrant enhanced radiography and immersion ultrasonics were used in order to assess the amount of impact damage in each tensile specimen. During tensile loading, AE reliably detected and located the damage sites which included fiber failure. All specimens with areas of fiber breakage ultimately failed at the impact site. AE did not reliably locate damage which consisted of only delaminations and matrix cracking. Specimens with this type of damage did not ultimately fail at the impact site. In summary, AE demonstrated the ability to increase the reliability of structural proof tests; however, the successful use of this technique requires extensive baseline testing.
Tension-Compression Fatigue of a Nextel™720/alumina Composite at 1200 °C in Air and in Steam
NASA Astrophysics Data System (ADS)
Lanser, R. L.; Ruggles-Wrenn, M. B.
2016-08-01
Tension-compression fatigue behavior of an oxide-oxide ceramic-matrix composite was investigated at 1200 °C in air and in steam. The composite is comprised of an alumina matrix reinforced with Nextel™720 alumina-mullite fibers woven in an eight harness satin weave (8HSW). The composite has no interface between the fiber and matrix, and relies on the porous matrix for flaw tolerance. Tension-compression fatigue behavior was studied for cyclical stresses ranging from 60 to 120 MPa at a frequency of 1.0 Hz. The R ratio (minimum stress to maximum stress) was -1.0. Fatigue run-out was defined as 105 cycles and was achieved at 80 MPa in air and at 70 MPa in steam. Steam reduced cyclic lives by an order of magnitude. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Specimens subjected to prior cyclic loading in air retained 100 % of their tensile strength. The steam environment severely degraded tensile properties. Tension-compression cyclic loading was considerably more damaging than tension-tension cyclic loading. Composite microstructure, as well as damage and failure mechanisms were investigated.
Fatigue crack growth at elevated temperature 316 stainless steel and H-13 steel
NASA Technical Reports Server (NTRS)
Chen, W. C.; Liu, H. W.
1976-01-01
Crack growths were measured at elevated temperatures under four types of loading: pp, pc, cp, and cc. In H-13 steel, all these four types of loading gave nearly the same crack growth rates, and the length of hold time had negligible effects. In AISI 316 stainless steel, the hold time effects on crack growth rate were negligible if the loading was tension-tension type; however, these effects were significant in reversed bending load, and the crack growth rates under these four types of loading varied considerably. Both tensile and compressive hold times caused increased crack growth rate, but the compressive hold period was more deleterious than the tensile one. Metallographic examination showed that all the crack paths under different types of loading were largely transgranular for both CTS tension-tension specimens and SEN reversed cantilever bending specimens. In addition, an electric potential technique was used to monitor crack growth at elevated temperature.
NASA Technical Reports Server (NTRS)
1996-01-01
The bibliography contains citations concerning techniques and results of testing metal matrix composites for fatigue and fracture. Methods include non-destructive testing techniques, and static and cyclic techniques for assessing compression, tensile, bending, and impact characteristics.
On the tensile strength of soil grains in Hertzian response
NASA Astrophysics Data System (ADS)
Nadimi, Sadegh; Fonseca, Joana
2017-06-01
The breakage initiation of soil grains is controlled by its tensile capacity. Despite the importance of tensile strength, it is often disregarded due to difficulties in measurement. This paper presents an experimental and numerical investigation on the effect of tensile strength on Hertzian response of a single soil grain. Hertz theory is commonly used in numerical simulation to present the contact constitutive behaviour of a purely elastic grain under normal loading. This normal force:displacement comes from stress distribution and concentration inside the grain. When the stress reaches the tensile capacity, a crack initiates. A series of numerical tests have been conducted to determine the sensitivity of Hertzian response to the selected tensile strength used as an input data. An elastic-damage constitutive model has been employed for spherical grains in a combined finite-discrete element framework. The interpretation of results was enriched by considering previous theoretical work. In addition, systematic experimental tests have been carried out on both spherical glass beads and grains of two different sands, i.e. Leighton Buzzard silica sand and coarse carbonate sand from Persian Gulf. The preliminary results suggest that lower tensile strength leads to a softer response under normal loading. The wider range of responses obtained for the carbonate sand, are believed to be related to the large variety of grain shape associated with bioclastic origin of the constituent grains.
Hoogeslag, Roy A G; Brouwer, Reinoud W; Huis In 't Veld, Rianne; Stephen, Joanna M; Amis, Andrew A
2018-02-03
There is a lack of objective evidence investigating how previous non-augmented ACL suture repair techniques and contemporary augmentation techniques in ACL suture repair restrain anterior tibial translation (ATT) across the arc of flexion, and after cyclic loading of the knee. The purpose of this work was to test the null hypotheses that there would be no statistically significant difference in ATT after non-, static- and dynamic-augmented ACL suture repair, and they will not restore ATT to normal values across the arc of flexion of the knee after cyclic loading. Eleven human cadaveric knees were mounted in a test rig, and knee kinematics from 0° to 90° of flexion were recorded by use of an optical tracking system. Measurements were recorded without load and with 89-N tibial anterior force. The knees were tested in the following states: ACL-intact, ACL-deficient, non-augmented suture repair, static tape augmentation and dynamic augmentation after 10 and 300 loading cycles. Only static tape augmentation and dynamic augmentation restored ATT to values similar to the ACL-intact state directly postoperation, and maintained this after cyclic loading. However, contrary to dynamic augmentation, the ATT after static tape augmentation failed to remain statistically less than for the ACL-deficient state after cyclic loading. Moreover, after cyclic loading, ATT was significantly less with dynamic augmentation when compared to static tape augmentation. In contrast to non-augmented ACL suture repair and static tape augmentation, only dynamic augmentation resulted in restoration of ATT values similar to the ACL-intact knee and decreased ATT values when compared to the ACL-deficient knee immediately post-operation and also after cyclic loading, across the arc of flexion, thus allowing the null hypotheses to be rejected. This may assist healing of the ruptured ACL. Therefore, this study would support further clinical evaluation of dynamic augmentation of ACL repair.
Mechanical and morphological properties of kenaf powder filled natural rubber latex foam
NASA Astrophysics Data System (ADS)
Karim, Ahmad Fikri Abdul; Ismail, Hanafi; Ariff, Zulkifli Mohamad
2015-07-01
This research is carried out by incorporate kenaf powder with natural rubber latex (NRL) compound and is foamed to make natural rubber latex foam (NRLF) by using a well known technique called Dunlop method. Different loading of kenaf powder was added to NRL compound and was foamed to make NRLF. The tensile properties, and morphology of kenaf filled NRLF was studied. Increase in kenaf loading reduced the tensile strength and elongation at break and of a compound. Modulus at 100% elongation of the compound increased with increased in filler loading. The morphological and micro structural characterization has been performed by using scanning electron microscopy (SEM).
The effects of tensile preloads on the impact response of carbon/epoxy laminates
NASA Technical Reports Server (NTRS)
Nettles, Alan; Daniel, Vince; Branscomb, Caleb
1995-01-01
The effects of tensile preloads on the tension-after-impact (TAI) strength of composite laminates of IM7/8551-7 were examined. A failure threshold curve was first determined so the most informative values for preload/impact energy combinations could be determined. The impact tests were instrumented so maximum load of impact, as well as several other parameters could be measured. The elastic response data indicate that as the tensile preload is increased, the maximum load of impact also increases. The damage data show that at low impact energies, the damage/failure is an 'all-or-nothing' event but at higher impact energies, a region of preload values exists where the coupons could sustain damage, yet not fail catastrophically.
The Effect of Static Stretch on Elastin Degradation in Arteries
Chow, Ming-Jay; Choi, Myunghwan; Yun, Seok Hyun; Zhang, Yanhang
2013-01-01
Previously we have shown that gradual changes in the structure of elastin during an elastase treatment can lead to important transition stages in the mechanical behavior of arteries [1]. However, in vivo arteries are constantly being loaded due to systolic and diastolic pressures and so understanding the effects of loading on the enzymatic degradation of elastin in arteries is important. With biaxial tensile testing, we measured the mechanical behavior of porcine thoracic aortas digested with a mild solution of purified elastase (5 U/mL) in the presence of a static stretch. Arterial mechanical properties and biochemical composition were analyzed to assess the effects of mechanical stretch on elastin degradation. As elastin is being removed, the dimensions of the artery increase by more than 20% in both the longitude and circumference directions. Elastin assays indicate a faster rate of degradation when stretch was present during the digestion. A simple exponential decay fitting confirms the time constant for digestion with stretch (0.11±0.04 h−1) is almost twice that of digestion without stretch (0.069±0.028 h−1). The transition from J-shaped to S-shaped stress vs. strain behavior in the longitudinal direction generally occurs when elastin content is reduced by about 60%. Multiphoton image analysis confirms the removal/fragmentation of elastin and also shows that the collagen fibers are closely intertwined with the elastin lamellae in the medial layer. After removal of elastin, the collagen fibers are no longer constrained and become disordered. Release of amorphous elastin during the fragmentation of the lamellae layers is observed and provides insights into the process of elastin degradation. Overall this study reveals several interesting microstructural changes in the extracellular matrix that could explain the resulting mechanical behavior of arteries with elastin degradation. PMID:24358135
Quasi-Static Tensile Stress-Strain Curves. 1, 2024-T3510 Aluminum Alloy
1976-02-01
herein were conducted as part of the Core Materials Program of the Solid Mechanics Branch of the Terminal Ballistics Laboratory. The objective of this...describing the results of the Core Materials Program, covers quasi-static terVsile tests of 2024-T3510 aluminum E’lloy. The results include Young’s...11.31 4 580.6 9.94 TABLE II MATERIAL PROPERTIES OF 2024-T3510 ALUMINUM ALLOYa Results of Results of Results of Tensileb Compres ion Sonic Testing
Micromechanics f an Extrusion in High-Cycle Fatigue With Creep
1988-01-01
amount referred to as the "static extrusion" ( Mughrabi et al , 1983). This E{a causes an initial compression ta, in R. As the extrusion grows under cyclic...Deformation of sin- gle crystals at elevated temperatures (Johnson, et al , 1953, 1955) also occurs by slip in pri- marily the same slip systems that...growth will cease after the extrusion has reached the static extrusion. Lin, et al ., 1988 have shown that the residual tensile stress ’tact caused by
Bintivanou, Aimilia; Pissiotis, Argirios; Michalakis, Konstantinos
2017-04-01
Parallel labiolingual walls and the preservation of the cingulum in anterior tooth preparations have been advocated. However, their contribution to retention and resistance form has not been evaluated. The purpose of this in vitro study was to evaluate the retention and resistance failure loads of 2 preparation designs for maxillary anterior teeth. Forty metal restorations were fabricated and paired with 40 cobalt-chromium prepared tooth analogs. Twenty of the specimens had parallel buccolingual walls at the cervical part (group PBLW; the control group), whereas the remaining 20 had converging buccolingual walls (group CBLW; the experimental group). The restorations were cemented to the tooth analogs with a resin-modified glass ionomer luting agent. Ten specimens from each group were subjected to tensile loading with a universal testing machine; the rest were subjected to compression loading until failure. Descriptive statistics and the independent t test (α=.05) were used to determine the effect of failure loads in the tested groups. The independent t test revealed statistically significant differences between the tested groups in tensile loading (P<.001) and in compressive loading (P<.001). The PBLW group presented a higher tensile failure load than the CBLW. On the contrary, the PBLW group presented a smaller compression failure load than the CBLW. Parallelism of the buccolingual axial walls in anterior maxillary teeth increased the retention form but decreased the resistance form. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Fogel, Guy R; Li, Zhenyu; Liu, Weiqiang; Liao, Zhenhua; Wu, Jia; Zhou, Wenyu
2010-05-01
Anterior cervical plating has been accepted in corpectomy and fusion of the cervical spine. Constrained plates were criticized for stress shielding that may lead to subsidence and pseudarthrosis. A dynamic plate allows load sharing as the graft subsides. Ideally, the dynamic plate design should maintain adequate stiffness of the construct while providing a reasonable load sharing with the strut graft. The purpose of the study was to compare dynamic and static plate kinematics with graft subsidence. The study designed was an in vitro biomechanical study in a porcine cervical spine model. Twelve spines were initially tested in intact condition with 20-N axial load in 15 degrees of flexion and extension range of motion (ROM). Then, a two-level corpectomy was created in all specimens with spines randomized to receive either a static or dynamic plate. The spines were retested under identical conditions with optimal length and undersized graft. Range of motion and graft loading were analyzed with a one-way analysis of variance (p<.05). Both plates significantly limited ROM compared with the intact spine in both graft length conditions. In extension graft, load was significantly higher (p=.001) in the static plate with optimal length, and in flexion, there was a significant loss of graft load (p=.0004). In flexion, the dynamic plate with undersized graft demonstrated significantly more load sustained (p=.0004). Both plates reasonably limited the ROM of the corpectomy. The static plate had significantly higher graft loads in extension and significant loss of graft load in flexion, whereas the dynamic plate maintained a reasonable graft load in ROM even when graft contact was imperfect. Copyright 2010 Elsevier Inc. All rights reserved.
A Study of the Use of Contact Loading to Simulate Low Velocity Impact
NASA Technical Reports Server (NTRS)
Highsmith, Alton L.
1997-01-01
Although numerous studies on the impact response of laminated composites have been conducted, there is as yet no agreement within the composites community on what parameter or parameters are adequate for quantifying the severity of an impact event. One of the more interesting approaches that has been proposed uses the maximum contact force during impact to "quantify" the severity of the impact event, provided that the impact velocity is sufficiently low. A significant advantage of this approach, should it prove to be reliable, is that quasi-static contact loading could be used to simulate low velocity impact. In principle, a single specimen, loaded quasi-statically to successively increasing contact loads could be used to map the entire spectrum of damage as a function of maximum contact force. The present study had as its objective assessing whether or not the maximum contact force during impact is a suitable parameter for characterizing an impact. The response of [+/-60/0(sub 4)/+/-60/0(sub 2)](sub s) laminates fabricated from Fiberite T300/934 graphite epoxy and subjected to quasi-static contact loading and to low velocity impact was studied. Three quasi-static contact load levels - 525 lb., 600 lb., and 675 lb. - were selected. Three impact energy levels - 1.14 ft.-lb., 2.0 ft.-lb., and 2.60 ft.-lb. - were chosen in an effort to produce impact events in which the maximum contact forces during the impact events were 525 lb., 600 lb., and 625 lb., respectively. Damage development was documented using dye-penetrant enhanced x-ray radiography. A digital image processing technique was used to obtain quantitative information about the damage zone. Although it was intended that the impact load levels produce maximum contact forces equal to those used in the quasi-static contact experiments, larger contact forces were developed during impact loading. In spite of this, the damage zones developed in impacted specimens were smaller than the damage zones developed in specimens subjected to the corresponding quasi-static contact loading. The impacted specimens may have a greater tendency to develop fiber fracture, but, at present, a quantitative assessment of fiber fracture is not available. In addressing whether or not contact force is an adequate metric for describing the severity of an impact event, the results of this study suggest that it is not. In cases where the quasi-static load level and the maximum contact force during impact were comparable, the quasi-statically loaded specimens consistently developed larger damage zones. It should be noted, however, that using quasi-static damage data to forecast the behavior of impacted material may give conservative estimates of the residual strength of impacted composites.
Ma, C Benjamin; Comerford, Lyn; Wilson, Joseph; Puttlitz, Christian M
2006-02-01
Recent studies have shown that arthroscopic rotator cuff repairs can have higher rates of failure than do open repairs. Current methods of rotator cuff repair have been limited to single-row fixation of simple and horizontal stitches, which is very different from open repairs. The objective of this study was to compare the initial cyclic loading and load-to-failure properties of double-row fixation with those of three commonly used single-row techniques. Ten paired human supraspinatus tendons were split in half, yielding four tendons per cadaver. The bone mineral content at the greater tuberosity was assessed. Four stitch configurations (two-simple, massive cuff, arthroscopic Mason-Allen, and double-row fixation) were randomized and tested on each set of tendons. Specimens were cyclically loaded between 5 and 100 N at 0.25 Hz for fifty cycles and then loaded to failure under displacement control at 1 mm/sec. Conditioning elongation, peak-to-peak elongation, ultimate tensile load, and stiffness were measured with use of a three-dimensional tracking system and compared, and the failure type (suture or anchor pull-out) was recorded. No significant differences were found among the stitches with respect to conditioning elongation. The mean peak-to-peak elongation (and standard error of the mean) was significantly lower for the massive cuff (1.1 +/- 0.1 mm) and double-row stitches (1.1 +/- 0.1 mm) than for the arthroscopic Mason-Allen stitch (1.5 +/- 0.2 mm) (p < 0.05). The ultimate tensile load was significantly higher for double-row fixation (287 +/- 24 N) than for all of the single-row fixations (p < 0.05). Additionally, the massive cuff stitch (250 +/- 21 N) was found to have a significantly higher ultimate tensile load than the two-simple (191 +/- 18 N) and arthroscopic Mason-Allen (212 +/- 21 N) stitches (p < 0.05). No significant differences in stiffness were found among the stitches. Failure mechanisms were similar for all stitches. Rotator cuff repairs in the anterior half of the greater tuberosity had a significantly lower peak-to-peak elongation and higher ultimate tensile strength than did repairs on the posterior half. In this in vitro cadaver study, double-row fixation had a significantly higher ultimate tensile load than the three types of single-row fixation stitches. Of the single-row fixations, the massive cuff stitch had cyclic and load-to-failure characteristics similar to the double-row fixation. Anterior repairs of the supraspinatus tendon had significantly stronger biomechanical behavior than posterior repairs.
Method and apparatus for determining tensile strength
Ratigan, J.L.
1982-05-28
A method and apparatus is described for determining the statistical distribution of apparent tensile strength of rock, the size effect with respect to tensile strength, as well as apparent deformation modulus of both intact and fractured or jointed rock. The method is carried out by inserting a plug of deformable material, such as rubber, in an opening of a specimen to be tested. The deformable material is loaded by an upper and lower platen until the specimen ruptures, whereafter the tensile strength is calculated based on the parameters of the test specimen and apparatus.
Method and apparatus for determining tensile strength
Ratigan, Joe L.
1984-01-01
A method and apparatus for determining the statistical distribution of apparent tensile strength of rock, the size effect with respect to tensile strength, as well as apparent deformation modulus of both intact and fractured or jointed rock. The method is carried out by inserting a plug of deformable material, such as rubber, in an opening of a specimen to be tested. The deformable material is loaded by an upper and lower platen until the specimen ruptures, whereafter the tensile strength is calculated based on the parameters of the test specimen and apparatus.
Modelling of the Impact Response of Fibre-Reinforced Composites
1990-09-30
observed under tensile loading alone, the damage accumulation process following initial tensile fracture of a fibre tow somewhere within the test specimen...results to be obtained which are not inconsistent with those observed experimentally. Sim- ilarly the delamination process is modelled assuming an...publication either in journals or in conference proceedings. 1 . J. Harding and K. Saka, "The effect of strain rate on the tensile failure of woven reinforced
Analysis of SNL/MSU/DOE Fatigue Database Trends for Wind Turbine Blade Materials 2010-2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandell, John F.; Samborsky, Daniel D.; Miller, David A.
Wind turbine blades are designed to several major structural conditions, including tip deflection, strength and b uckling during severe loading, as well as very high numbers of fatigue cycles and various service environments. The MSU Database Program has, since 1989, addressed the broad range of properties needed for current and potential blade materials through stati c and fatigue testing and test development in cooperation with Sandia National Laboratories and wind industry and supplier partners. This report is the latest in a series, giving test results and analysis for the period 2010 - 2015. Program data are compiled in a publicmore » database [1] and other reports and publications given in the cited references. The report begins with an executive summary and introductory material including background discussion of previous related studies. Section 3 describes experimental methods including processing, test methods, instrumentation and test development. Section 4 provides static tension, compression and shear stress - strain properties in three directions using coupons sectioned from a thick infused unidirectional glass/epoxy laminate. The nonlinear, shear dominated static properties were characterized with loading - u nloading - reloading (LUR) tests in tension and compression to increasing load levels, for +-45O laminates. Section 5 explores the origins of tensile fatigue sensitivity in glass fiber dominated laminates with variations in fabric architecture including speci ally prepared fabrics and aligned strand laminates. Several types of resins are considered, with variations in resin toughness and bonding to fibers, as well as cure cycle variations for an epoxy. Conclusions are drawn as to the limits of tensile fatigue r esistance and the effects of resin type and fabric architecture, including the behavior of a commercial aligned glass strand product. Interactions between cyclic fatigue response and creep are addressed for off - axis (+-45O) glass/epoxy laminates in Sectio n 6. The nonlinear fatigue and creep stress - strain and cumulative strain response are characterized in tension and compression as a function of stress level, cycles and cumulative time, using square and sinewave loading over a broad range of frequency. The results are analyzed in terms of the cycles and cumulative time under load. A cumulative strain failure criterion is established, and used to construct shear and tension constant life diagrams (CLD's) with data for nine R - values. The effects of a more duc tile urethne resin are also explored. A previous study of thick adhesives testing is extended to mixed mode fracture mechanics testing in Section 7. Mechanisms of static and fatigue crack extension near the laminate adherend interface are reported in deta il. Data are presented for mixed mode adhesive fracture, compared to mixed mode fracture in ply delamination. Fatigue crack growth exponents are also developed for a mixed mode cracked lap shear coupon. The data for fatigue trends and relative failure stra ins and exponents are compared for various blade component materials in Section 8. The effects of temperature and seawater saturation are considered for selected materials of interest for wind and hydrokinetic turbine blades in Section 9. Section 10 gives detailed conclusions for each section. A cknowledgements The research presented in this report was carried out under Sandia National Laboratories purchase orders 1325028 an d 1543945 between 2010 and 2015, with support from the DOE Wind and Water Technologies Office . In addition to the authors listed, significant contributions were made by Patrick Flaherty, Pancastya Agastra, Michael Schuster, and Michael Voth. Industry m aterials suppliers include Vectorply, Saertex, OCV, AGY, Bayer, Ashland, 3M and Nextel. Industry suppliers with significant contributions to the study were Hexion, PPG, Reichhold, Gurit and NEPTCO. Intentionally Left Blank« less
NASA Astrophysics Data System (ADS)
Schilder, Constanze; Kohlhoff, Harald; Hofmann, Detlef; Basedau, Frank; Habel, Wolfgang R.; Baeßler, Matthias; Niederleithinger, Ernst; Georgi, Steven; Herten, Markus
2013-05-01
Static and dynamic pile tests are carried out to determine the load bearing capacity and the quality of reinforced concrete piles. As part of a round robin test to evaluate dynamic load tests, structure integrated fibre optic strain sensors were used to receive more detailed information about the strains along the pile length compared to conventional measurements at the pile head. This paper shows the instrumentation of the pile with extrinsic Fabry-Perot interferometers sensors and fibre Bragg gratings sensors together with the results of the conducted static load test as well as the dynamic load tests and pile integrity tests.
Modeling the Tensile Behavior of Cross-Ply C/SiC Ceramic-Matrix Composites
NASA Astrophysics Data System (ADS)
Li, L. B.; Song, Y. D.; Sun, Y. C.
2015-07-01
The tensile behavior of cross-ply C/SiC ceramic-matrix composites (CMCs) at room temperature has been investigated. Under tensile loading, the damage evolution process was observed with an optical microscope. A micromechanical approach was developed to predict the tensile stress-strain curve, which considers the damage mechanisms of transverse multicracking, matrix multicracking, fiber/matrix interface debonding, and fiber fracture. The shear-lag model was used to describe the microstress field of the damaged composite. By combining the shear-lag model with different damage models, the tensile stress-strain curve of cross-ply CMCs corresponding to each damage stage was modeled. The predicted tensile stress-strain curves of cross-ply C/SiC composites agreed with experimental data.
Experimental studies on fatigue behavior of macro fiber composite (MFC) under mechanical loading
NASA Astrophysics Data System (ADS)
Pandey, Akash; Arockiarajan, A.
2016-04-01
Macro fiber Composite (MFC) finds its application in active control, vibration control and sensing elements. MFC can be laminated to surfaces or embedded in the structures to be used as an actuator and sensors. Due to its attractive properties and applications, it may be subjected to continuous loading, which leads to the deterioration of the properties. This study is focused on the fatigue lifetime of MFC under tensile and compressive loading at room temperature. Experiments were performed using 4 point bending setup, with MFC pasted at the center of the mild steel beam, to maintain constant bending stress along MFC. MFC is pasted using vacuum bagging technique. Sinusoidal loading is given to sample while maintaining R=0.13 (for tensile testing) and R=10 (for compressive testing). For d31 and d33 type of MFC, test was conducted for the strain values of 727 μ strain, 1400 μ strain, 1700 μ strain and 1900 μ strain for fatigue under tensile loading. For fatigue under compressive loading, both d33 and d31, was subjected to minimum strain of -2000 μ strain. Decrease in the slope of dielectric displacement vs. strain is the measure for the degradation. 10 percent decrease in the slope is set as the failure criteria. Experimental results show that MFC is very reliable below 1700 μ strain (R=0.13) at the room temperature.
Alignment verification procedures
NASA Technical Reports Server (NTRS)
Edwards, P. R.; Phillips, E. P.; Newman, J. C., Jr.
1988-01-01
In alignment verification procedures each laboratory is required to align its test machines and gripping fixtures to produce a nearly uniform tensile stress field on an un-notched sheet specimen. The blank specimens (50 mm w X 305 mm l X 2.3 mm th) supplied by the coordinators were strain gauged. Strain gauge readings were taken at all gauges (n = 1 through 10). The alignment verification procedures are as follows: (1) zero all strain gauges while specimen is in a free-supported condition; (2) put strain-gauged specimen in the test machine so that specimen front face (face 1) is in contact with reference jaw (standard position of specimen), tighten grips, and at zero load measure strains on all gauges. (epsilon sub nS0 is strain at gauge n, standard position, zero load); (3) with specimen in machine and at a tensile load of 10 kN measure strains (specimen in standard position). (Strain = epsilon sub nS10); (4) remove specimen from machine. Put specimen in machine so that specimen back face (face 2) is in contact with reference jaw (reverse position of specimen), tighten grips, and at zero load measure strains on all gauges. (Strain - epsilon sub nR0); and (5) with specimen in machine and at tensile load of 10 kN measure strains (specimen in reverse position). (epsilon sub nR10 is strain at gauge n, reverse position, 10 kN load).
NASA Astrophysics Data System (ADS)
Chripunow, Andre; Kubisch, Aline; Ruder, Matthias; Forster, Andreas; Korber, Hannes
2014-06-01
The presented test setup utilises a custom-built furnace realising test temperatures of up to 500°C. In order to ensure always optimal test conditions the temperature cell can be exchanged depending on the mechanical tests and specimen sizes. Cells for tensile and flexural loadings had been developed. With the latter one it is possible to perform three-point-bending tests, interlaminar-shear-strength tests as well as tests to determine the interlaminar fracture toughness. In this work the effect of fibre orientation on the mechanical properties of CFRP prepreg material under tensile and flexural loads at elevated temperatures was studied. Especially the matrix dominated layups showed a rather early decay of the mechanical properties even at temperatures quite lower than Tg. An analytical model has been used to describe the temperature-dependent properties. The model shows good agreement concerning the strength whereas the proper prediction of the moduli was only possible for the matrix dominated layups.
NASA Astrophysics Data System (ADS)
Murasawa, Go; Yeduru, Srinivasa R.; Kohl, Manfred
2016-12-01
This study investigated macroscopic inhomogeneous deformation occurring in single-crystal Ni-Mn-Ga foils under uniaxial tensile loading. Two types of single-crystal Ni-Mn-Ga foil samples were examined as-received and after thermo-mechanical training. Local strain and the strain field were measured under tensile loading using laser speckle and digital image correlation. The as-received sample showed a strongly inhomogeneous strain field with intermittence under progressive deformation, but the trained sample result showed strain field homogeneity throughout the specimen surface. The as-received sample is a mainly polycrystalline-like state composed of the domain structure. The sample contains many domain boundaries and large domain structures in the body. Its structure would cause large local strain band nucleation with intermittence. However, the trained one is an ideal single-crystalline state with a transformation preferential orientation of variants after almost all domain boundary and large domain structures vanish during thermo-mechanical training. As a result, macroscopic homogeneous deformation occurs on the trained sample surface during deformation.
Kelly, Terri-Ann N; Roach, Brendan L; Weidner, Zachary D; Mackenzie-Smith, Charles R; O'Connell, Grace D; Lima, Eric G; Stoker, Aaron M; Cook, James L; Ateshian, Gerard A; Hung, Clark T
2013-07-26
The tensile modulus of articular cartilage is much larger than its compressive modulus. This tension-compression nonlinearity enhances interstitial fluid pressurization and decreases the frictional coefficient. The current set of studies examines the tensile and compressive properties of cylindrical chondrocyte-seeded agarose constructs over different developmental stages through a novel method that combines osmotic loading, video microscopy, and uniaxial unconfined compression testing. This method was previously used to examine tension-compression nonlinearity in native cartilage. Engineered cartilage, cultured under free-swelling (FS) or dynamically loaded (DL) conditions, was tested in unconfined compression in hypertonic and hypotonic salt solutions. The apparent equilibrium modulus decreased with increasing salt concentration, indicating that increasing the bath solution osmolarity shielded the fixed charges within the tissue, shifting the measured moduli along the tension-compression curve and revealing the intrinsic properties of the tissue. With this method, we were able to measure the tensile (401±83kPa for FS and 678±473kPa for DL) and compressive (161±33kPa for FS and 348±203kPa for DL) moduli of the same engineered cartilage specimens. These moduli are comparable to values obtained from traditional methods, validating this technique for measuring the tensile and compressive properties of hydrogel-based constructs. This study shows that engineered cartilage exhibits tension-compression nonlinearity reminiscent of the native tissue, and that dynamic deformational loading can yield significantly higher tensile properties. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Berkovits, Avraham
1961-01-01
Three existing hypotheses are formulated mathematically to estimate tensile creep strain under varied loads and constant temperature from creep data obtained under constant load and constant temperature. hypotheses investigated include the time-hardening, strain-hardening, and life-fraction rules. Predicted creep behavior is compared with data obtained from tensile creep tests of 2024-T3 aluminum-alloy sheet at 400 F under cyclic-load conditions. creep strain under varied loads is presented on the basis of an equivalent stress, derived from the life-fraction rule, which reduces the varied-load case to a constant-load problem. Creep strain in the region of interest for structural design and rupture times, determined from the hypotheses investigated, are in fair agreement with data in most cases, although calculated values of creep strain are generally greater than the experimental values because creep recovery is neglected in the calculations.
NASA Astrophysics Data System (ADS)
Yang, Di
Duplex stainless steel (DSS) is a dual-phase material with approximately equal volume amount of austenite and ferrite. It has both great mechanical properties (good ductility and high tensile/fatigue strength) and excellent corrosion resistance due to the mixture of the two phases. Cyclic loadings with high stress level and low frequency are experienced by many structures. However, the existing study on corrosion fatigue (CF) study of various metallic materials has mainly concentrated on relatively high frequency range. No systematic study has been done to understand the ultra-low frequency (˜10-5 Hz) cyclic loading effect on stress corrosion cracking (SCC) of DSSs. In this study, the ultra-low frequency cyclic loading effect on SCC of DSS 2205 was studied in acidified sodium chloride and caustic white liquor (WL) solutions. The research work focused on the environmental effect on SCC of DSS 2205, the cyclic stress effect on strain accumulation behavior of DSS 2205, and the combined environmental and cyclic stress effect on the stress corrosion crack initiation of DSS 2205 in the above environments. Potentiodynamic polarization tests were performed to investigate the electrochemical behavior of DSS 2205 in acidic NaCl solution. Series of slow strain rate tests (SSRTs) at different applied potential values were conducted to reveal the optimum applied potential value for SCC to happen. Room temperature static and cyclic creep tests were performed in air to illustrate the strain accumulation effect of cyclic stresses. Test results showed that cyclic loading could enhance strain accumulation in DSS 2205 compared to static loading. Moreover, the strain accumulation behavior of DSS 2205 was found to be controlled by the two phases of DSS 2205 with different crystal structures. The B.C.C. ferrite phase enhanced strain accumulation due to extensive cross-slips of the dislocations, whereas the F.C.C. austenite phase resisted strain accumulation due to cyclic strain hardening. Cyclic SSRTs were performed under the conditions that SCC occurs in sodium chloride and WL solutions. Test results show that cyclic stress facilitated crack initiations in DSS 2205. Stress corrosion cracks initiated from the intermetallic precipitates in acidic chloride environment, and the cracks initiated from austenite phase in WL environment. Cold-working has been found to retard the crack initiations induced by cyclic stresses.
NASA Astrophysics Data System (ADS)
Awwaluddin, Muhammad; Kristedjo, K.; Handono, Khairul; Ahmad, H.
2018-02-01
This analysis is conducted to determine the effects of static and dynamic loads of the structure of mechanical system of Ultrasonic Scanner i.e., arm, column, and connection systems for inservice inspection of research reactors. The analysis is performed using the finite element method with 520 N static load. The correction factor of dynamic loads used is the Gerber mean stress correction (stress life). The results of the analysis show that the value of maximum equivalent von Mises stress is 1.3698E8 Pa for static loading and value of the maximum equivalent alternating stress is 1.4758E7 Pa for dynamic loading. These values are below the upper limit allowed according to ASTM A240 standards i.e. 2.05E8 Pa. The result analysis of fatigue life cycle are at least 1E6 cycle, so it can be concluded that the structure is in the high life cycle category.
Simon, David D; Andrews, Sharon M; Robinson-Zeigler, Rebecca; Valdes, Thelma; Woods, Terry O
2018-02-01
Current mechanical testing of surgical mesh focuses primarily on tensile properties even though implanted devices are not subjected to pure tensile loads. Our objective was to determine the flexural (bending) properties of surgical mesh and determine if they correlate with mesh tensile properties. The flexural rigidity values of 11 different surgical mesh designs were determined along three textile directions (machine, cross-machine, and 45° to machine; n = 5 for each) using ASTM D1388-14 while tracking surface orientation. Tensile testing was also performed on the same specimens using ASTM D882-12. Linear regressions were performed to compare mesh flexural rigidity to mesh thickness, areal mass density, filament diameter, ultimate tensile strength, and maximum extension. Of 33 mesh specimen groups, 30 had significant differences in flexural rigidity values when comparing surface orientations (top and bottom). Flexural rigidity and mesh tensile properties also varied with textile direction (machine and cross-machine). There was no strong correlation between the flexural and tensile properties, with mesh thickness having the best overall correlation with flexural rigidity. Currently, surface orientation is not indicated on marketed surgical mesh, and a single mesh may behave differently depending on the direction of loading. The lack of correlation between flexural stiffness and tensile properties indicates the need to examine mesh bending stiffness to provide a more comprehensive understanding of surgical mesh mechanical behaviors. Further investigation is needed to determine if these flexural properties result in the surgical mesh behaving mechanically different depending on implantation direction. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 854-862, 2018. © 2017 Wiley Periodicals, Inc.
Seismic, creep, and tensile testing of various epoxy bonded rebar products in hardened concrete.
DOT National Transportation Integrated Search
2007-02-01
The objective of this project was to evaluate the performance of currently specified epoxy adhesive anchor systems on various epoxy-coated rebar under seismic, creep and tensile loading. Previous testing of dowel bonding materials for use in hardened...
DOT National Transportation Integrated Search
2015-03-01
The enhancement of load rating concrete structures by the installation of Fiber reinforced : polymer strips (FRP) is becoming a preferred short-term action. The addition of supplemental : tensile capacity to concrete beams by applying high tensile st...
Seismic, creep, and tensile testing of various epoxy bonded rebar products in hardened concrete.
DOT National Transportation Integrated Search
2007-01-01
The objective of this project was to evaluate the performance of currently specified epoxy adhesive : anchor systems on various epoxy-coated rebar under seismic, creep and tensile loading. Previous testing of : dowel bonding materials for use in hard...
Seismic, creep, and tensile testing of various epoxy bonded rebar products in hardened concrete.
DOT National Transportation Integrated Search
2006-02-01
The objective of this project was to evaluate the performance of currently specified epoxy adhesive : anchor systems on various epoxy-coated rebar under seismic, creep and tensile loading. Previous testing of : dowel bonding materials for use in hard...
Penjumras, Patpen; Abdul Rahman, Russly; Talib, Rosnita A.; Abdan, Khalina
2015-01-01
Response surface methodology was used to optimize preparation of biocomposites based on poly(lactic acid) and durian peel cellulose. The effects of cellulose loading, mixing temperature, and mixing time on tensile strength and impact strength were investigated. A central composite design was employed to determine the optimum preparation condition of the biocomposites to obtain the highest tensile strength and impact strength. A second-order polynomial model was developed for predicting the tensile strength and impact strength based on the composite design. It was found that composites were best fit by a quadratic regression model with high coefficient of determination (R 2) value. The selected optimum condition was 35 wt.% cellulose loading at 165°C and 15 min of mixing, leading to a desirability of 94.6%. Under the optimum condition, the tensile strength and impact strength of the biocomposites were 46.207 MPa and 2.931 kJ/m2, respectively. PMID:26167523
The Effect of Pre-Stressing on the Static Indentation Load Capacity of the Superelastic 60NiTi
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.
2013-01-01
Superelastic nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt.%), are under development for use in mechanical components like rolling element bearings and gears. Compared to traditional bearing steels, these intermetallic alloys, when properly heat-treated, are hard but exhibit much lower elastic modulus (approx.100 GPa) and a much broader elastic deformation range (approx.3 percent or more). These material characteristics lead to high indentation static load capacity, which is important for certain applications especially space mechanisms. To ensure the maximum degree of elastic behavior, superelastic materials must be pre-stressed, a process referred to as "training" in shape memory effect (SME) terminology, at loads and stresses beyond expected use conditions. In this paper, static indentation load capacity tests are employed to assess the effects of pre-stressing on elastic response behavior of 60NiTi. The static load capacity is measured by pressing 12.7 mm diameter ceramic Si3N4 balls into highly polished, hardened 60NiTi flat plates that have previously been exposed to varying levels of pre-stress (up to 2.7 GPa) to determine the load that results in shallow but measurable (0.6 m, 25 in. deep) permanent dents. Hertz stress calculations are used to estimate contact stress. Without exposure to pre-stress, the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.4 m deep) occurs. When pre-stressed to 2.7 GPa, a static load of 4900 kN is required to achieve a comparable dent, a 30 percent increase. These results suggest that stressing contact surfaces prior to use enhances the static indentation load capacity of the superelastic 60NiTi. This approach may be adaptable to the engineering and manufacture of highly resilient mechanical components such as rolling element bearings.
Microscopic Characterization of Tensile and Shear Fracturing in Progressive Failure in Marble
NASA Astrophysics Data System (ADS)
Cheng, Yi; Wong, Louis Ngai Yuen
2018-01-01
Compression-induced tensile and shear fractures were reported to be the two fundamental fracture types in rock fracturing tests. This study investigates such tensile and shear fracturing process in marble specimens containing two different flaw configurations. Observations first reveal that the development of a tensile fracture is distinct from shear fracture with respect to their nucleation, propagation, and eventual formation in macroscale. Second, transgranular cracks and grain-scale spallings become increasingly abundant in shear fractures as loading increases, which is almost not observed in tensile fractures. Third, one or some dominant extensional microcracks are commonly observed in the center of tensile fractures, while such development of microcracks is almost absent in shear fractures. Microcracks are generally of a length comparable to grain size and distribute uniformly within the damage zone of the shear fracture. Fourth, the width of densely damaged zone in the shear fracture is nearly 10 times of that in the tensile fracture. Quantitative measurement on microcrack density suggests that (1) microcrack density in tensile and shear fractures display distinct characteristics with increasing loading, (2) transgranular crack density in the shear fracture decreases logarithmically with the distance away from the shear fracture center, and (3) whatever the fracture type, the anisotropy can only be observed for transgranular cracks with a large density, which partially explains why microcrack anisotropy usually tends to be unobvious until approaching peak stress in specimens undergoing brittle failure. Microcracking characteristics observed in this work likely shed light to some phenomena and conclusions generalized in seismological studies.
Strain-rate behavior in tension of the tempered martensitic reduced activation steel Eurofer97
NASA Astrophysics Data System (ADS)
Cadoni, Ezio; Dotta, Matteo; Forni, Daniele; Spätig, Philippe
2011-07-01
The tensile properties of the high-chromium tempered martensitic reduced activation steel Eurofer97 were determined from tests carried out over a wide range of strain-rates on cylindrical specimens. The quasi-static tests were performed with a universal electro-mechanical machine, whereas a hydro-pneumatic machine and a JRC-split Hopkinson tensile bar apparatus were used for medium and high strain-rates respectively. This tempered martensitic stainless steel showed significant strain-rate sensitivity. The constitutive behavior was investigated within a framework of dislocations dynamics model using Kock's approach. The parameters of the model were determined and then used to predict the deformation range of the tensile deformation stability. A very good agreement between the experimental results and predictions of the model was found.
NASA Technical Reports Server (NTRS)
Esposito, J. J.; Zabora, R. F.
1975-01-01
Pertinent mechanical and physical properties of six high conductivity metals were determined. The metals included Amzirc, NARloy Z, oxygen free pure copper, electroformed copper, fine silver, and electroformed nickel. Selection of these materials was based on their possible use in high performance reusable rocket nozzles. The typical room temperature properties determined for each material included tensile ultimate strength, tensile yield strength, elongation, reduction of area, modulus of elasticity, Poisson's ratio, density, specific heat, thermal conductivity, and coefficient of thermal expansion. Typical static tensile stress-strain curves, cyclic stress-strain curves, and low-cycle fatigue life curves are shown. Properties versus temperature are presented in graphical form for temperatures from 27.6K (-410 F) to 810.9K (1000 F).
Cryogenic properties of dispersion strengthened copper for high magnetic fields
NASA Astrophysics Data System (ADS)
Toplosky, V. J.; Han, K.; Walsh, R. P.; Swenson, C. A.
2014-01-01
Cold deformed copper matrix composite conductors, developed for use in the 100 tesla multi-shot pulsed magnet at the National High Magnetic Field Laboratory (NHMFL), have been characterized. The conductors are alumina strengthened copper which is fabricated by cold drawing that introduces high dislocation densities and high internal stresses. Both alumina particles and high density of dislocations provide us with high tensile strength and fatigue endurance. The conductors also have high electrical conductivities because alumina has limited solubility in Cu and dislocations have little scattering effect on conduction electrons. Such a combination of high strength and high conductivity makes it an excellent candidate over other resistive magnet materials. Thus, characterization is carried out by tensile testing and fully reversible fatigue testing. In tensile tests, the material exceeds the design criteria parameters. In the fatigue tests, both the load and displacement were measured and used to control the amplitude of the tests to simulate the various loading conditions in the pulsed magnet which is operated at 77 K in a non-destructive mode. In order to properly simulate the pulsed magnet operation, strain-controlled tests were more suitable than load controlled tests. For the dispersion strengthened coppers, the strengthening mechanism of the aluminum oxide provided better tensile and fatigue properties over convention copper.
Overview of the 6 Meter HIAD Inflatable Structure and Flexible TPS Static Load Test Series
NASA Technical Reports Server (NTRS)
Swanson, Greg; Kazemba, Cole; Johnson, Keith; Calomino, Anthony; Hughes, Steve; Cassell, Alan; Cheatwood, Neil
2014-01-01
To support NASAs long term goal of landing humans on Mars, technologies which enable the landing of heavy payloads are being developed. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current launch vehicle fairing limitations. Therefore, past and present technologies are now being explored to provide a mass and volume efficient solution to atmospheric entry, including Hypersonic Inflatable Aerodynamic Decelerators (HIADs). At the beginning of 2014, a 6m HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify the designs structural performance. The 6m HIAD structure was constructed in a stacked toroid configuration using nine inflatable torus segments composed of fiber reinforced thin films, which were joined together using adhesives and high strength textile woven structural straps to help distribute the loads throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials to protect the inflatable structure from heat loads that would be seen during atmospheric entry. To perform the static load test series, a custom test fixture was constructed. The fixture consisted of a structural tub rim with enough height to allow for displacement of the inflatable structure as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The centerbody of the inflatable structure was attached to a pedestal mount as seen in Figure 1. Using an impermeable membrane seal draped over the test article, partial vacuum was pulled beneath the HIAD, resulting in a uniform static pressure load applied to the outer surface. During the test series an extensive amount of instrumentation was used to provide many data sets including: deformed shape, shoulder deflection, strap loads, cord loads, inflation pressures, and applied static load.In this overview, the 6m HIAD static load test series will be discussed in detail, including the 6m HIAD inflatable structure and flexible TPS design, test setup and execution, and finally initial results and conclusions from the test series.
Nano-Composite Material Development for 3-D Printers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satches, Michael Randolph
Graphene possesses excellent mechanical properties with a tensile strength that may exceed 130 GPa, excellent electrical conductivity, and good thermal properties. Future nano-composites can leverage many of these material properties in an attempt to build designer materials for a broad range of applications. 3-D printing has also seen vast improvements in recent years that have allowed many companies and individuals to realize rapid prototyping for relatively low capital investment. This research sought to create a graphene reinforced, polymer matrix nano-composite that is viable in commercial 3D printer technology, study the effects of ultra-high loading percentages of graphene in polymer matricesmore » and determine the functional upper limit for loading. Loadings varied from 5 wt. % to 50 wt. % graphene nanopowder loaded in Acrylonitrile Butadiene Styrene (ABS) matrices. Loaded sample were characterized for their mechanical properties using three point bending, tensile tests, as well as dynamic mechanical analysis.« less
Marrow fat may distribute the energy of impact loading throughout subchondral bone
Simkin, Peter A
2018-01-01
Abstract Most students of articular mechanics consider impact loads to be compressive forces that are borne by an intraosseous, trabecular scaffold. The possible role of marrow fat, which comprises about 75% of the structure, is generally ignored, and the potential contribution of type 1 collagen, the prototypic tensile protein, is not considered. Here, I question the evidence underlying these omissions and reject the conclusion of exclusive trabecular compression. Instead, I suggest that impact loading pressurizes the fat in subchondral compartments, and those pressures stretch the elastic trabecular walls, which are thereby subjected to tensile loading. The load-driven pressure pulses then diminish as they pass from each compartment to its adjoining neighbours. The resulting pressure gradient distributes the burden throughout the subchondrium, stores energy for ensuing recovery and subjects individual trabeculae only to the net pressure differences between adjacent compartments. PMID:28977578
Constitutive modeling of the dynamic-tensile-extrusion test of PTFE
NASA Astrophysics Data System (ADS)
Resnyansky, A. D.; Brown, E. N.; Trujillo, C. P.; Gray, G. T.
2017-01-01
Use of polymers in defense, aerospace and industrial applications under extreme loading conditions makes prediction of the behavior of these materials very important. Crucial to this is knowledge of the physical damage response in association with phase transformations during loading and the ability to predict this via multi-phase simulation accounting for thermodynamical non-equilibrium and strain rate sensitivity. The current work analyzes Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) experiments on polytetrafluoroethylene (PTFE). In particular, the phase transition during loading and subsequent tension are analyzed using a two-phase rate sensitive material model implemented in the CTH hydrocode. The calculations are compared with experimental high-speed photography. Deformation patterns and their link with changing loading modes are analyzed numerically and correlated to the test observations. It is concluded that the phase transformation is not as critical to the response of PTFE under Dyn-Ten-Ext loading as it is during the Taylor rod impact testing.
NASA Astrophysics Data System (ADS)
Ismail, R.; Mahadi, Z. A.; Ishak, I. S.
2018-04-01
This paper presented the study on the effect of carbon black as filler to the mechanical properties of natural rubber for base isolation system. This study used the five formulations with the different amount of carbon black filler for every sample. The samples were tested for tensile, hardness and resilience test. The samples were cured or vulcanized at 1500C for 23 minutes for every formulation. The filler used in this study was the carbon black filler with type N660. The tensile test was done to determine the ability of the sample in term of the elongation with the load at break. The hardness test, it has been done to determine the ability of the sample to resist the load. This hardness was measured in the unit of IRHD. The resilience test was being done to determine the properties of the sample in term of rebound characteristics. The finding of this study showed that, the high the loading of carbon black filler, the high the tensile strength of the sample and the high the hardness of the sample. In term of resilience, it was inversely proportional to the loading of the carbon black filler.
A laboratory based system for laue micro x-ray diffraction.
Lynch, P A; Stevenson, A W; Liang, D; Parry, D; Wilkins, S; Tamura, N
2007-02-01
A laboratory diffraction system capable of illuminating individual grains in a polycrystalline matrix is described. Using a microfocus x-ray source equipped with a tungsten anode and prefigured monocapillary optic, a micro-x-ray diffraction system with a 10 microm beam was developed. The beam profile generated by the ellipsoidal capillary was determined using the "knife edge" approach. Measurement of the capillary performance, indicated a beam divergence of 14 mrad and a useable energy bandpass from 5.5 to 19 keV. Utilizing the polychromatic nature of the incident x-ray beam and application of the Laue indexing software package X-Ray Micro-Diffraction Analysis Software, the orientation and deviatoric strain of single grains in a polycrystalline material can be studied. To highlight the system potential the grain orientation and strain distribution of individual grains in a polycrystalline magnesium alloy (Mg 0.2 wt % Nd) was mapped before and after tensile loading. A basal (0002) orientation was identified in the as-rolled annealed alloy; after tensile loading some grains were observed to undergo an orientation change of 30 degrees with respect to (0002). The applied uniaxial load was measured as an increase in the deviatoric tensile strain parallel to the load axis.
Evaluation of Margins of Safety in Brazed Joints
NASA Technical Reports Server (NTRS)
Flom, Yury; Wang, Len; Powell, Mollie M.; Soffa, Matthew A.; Rommel, Monica L.
2009-01-01
One of the essential steps in assuring reliable performance of high cost critical brazed structures is the assessment of the Margin of Safety (MS) of the brazed joints. In many cases the experimental determination of the failure loads by destructive testing of the brazed assembly is not practical and cost prohibitive. In such cases the evaluation of the MS is performed analytically by comparing the maximum design loads with the allowable ones and incorporating various safety or knock down factors imposed by the customer. Unfortunately, an industry standard methodology for the design and analysis of brazed joints has not been developed. This paper provides an example of an approach that was used to analyze an AlBeMet 162 (38%Be-62%Al) structure brazed with the AWS BAlSi-4 (Al-12%Si) filler metal. A practical and conservative interaction equation combining shear and tensile allowables was developed and validated to evaluate an acceptable (safe) combination of tensile and shear stresses acting in the brazed joint. These allowables are obtained from testing of standard tensile and lap shear brazed specimens. The proposed equation enables the assessment of the load carrying capability of complex brazed joints subjected to multi-axial loading.
NASA Astrophysics Data System (ADS)
Nepsha, Fedor; Efremenko, Vladimir
2017-11-01
The task of determining the static load characteristics is one of the most important tasks, the solution of which is necessary for the correct development of measures to increase the energy efficiency of the Kuzbass coal mines. At present, the influence of electric receivers on the level of consumption of active and reactive power is not taken into account, therefore, the proposed measures to increase the energy efficiency are not optimal. The article analyzes the L-shaped and T-shaped circuit for the replacement of an asynchronous motor (AM), according to the results of which it is determined that the T-shaped replacement scheme is the most accurate for determination of static load characteristics. The authors proposed and implemented in the MATLAB Simulink environment an algorithm for determining the static voltage characteristics of the motor load.
Static and yawed-rolling mechanical properties of two type 7 aircraft tires
NASA Technical Reports Server (NTRS)
Tanner, J. A.; Stubbs, S. M.; Mccarty, J. L.
1981-01-01
Selected mechanical properties of 18 x 5.5 and 49 x 17 size, type 7 aircraft tires were evaluated. The tires were subjected to pure vertical loads and to combined vertical and lateral loads under both static and rolling conditions. Parameters for the static tests consisted of tire load in the vertical and lateral directions, and parameters for the rolling tests included tire vertical load, yaw angle, and ground speed. Effects of each of these parameters on the measured tire characteristics are discussed and, where possible, compared with previous work. Results indicate that dynamic tire properties under investigation were generally insensitive to speed variations and therefore tend to support the conclusion that many tire dynamic characteristics can be obtained from static and low speed rolling tests. Furthermore, many of the tire mechanical properties are in good agreement with empirical predictions based on earlier research.
Mechanical and morphological properties of kenaf powder filled natural rubber latex foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karim, Ahmad Fikri Abdul, E-mail: a.fikri-89@yahoo.com; Ariff, Zulkifli Mohamad; Ismail, Hanafi
This research is carried out by incorporate kenaf powder with natural rubber latex (NRL) compound and is foamed to make natural rubber latex foam (NRLF) by using a well known technique called Dunlop method. Different loading of kenaf powder was added to NRL compound and was foamed to make NRLF. The tensile properties, and morphology of kenaf filled NRLF was studied. Increase in kenaf loading reduced the tensile strength and elongation at break and of a compound. Modulus at 100% elongation of the compound increased with increased in filler loading. The morphological and micro structural characterization has been performed bymore » using scanning electron microscopy (SEM)« less
NASA Astrophysics Data System (ADS)
Sinthaworn, S.; Puengpaiboon, U.; Warasetrattana, N.; Wanapaisarn, S.
2018-01-01
Endodontically treated teeth were simulated by finite element analysis in order to estimate ultimate tensile strength of dentin. Structures of the endodontically treated tooth cases are flared root canal, restored with different number of fiber posts {i.e. resin composite core without fiber post (group 1), fiber post No.3 with resin composite core (group 2) and fiber post No.3 accessory 2 fiber posts No.0 with resin composite core (group 3)}. Elastic modulus and Poisson’s ratio of materials were selected from literatures. The models were loaded by the average fracture resistances load of each groups (group 1: 361.80 N, group 2: 559.46 N, group 3: 468.48 N) at 135 degree angulation in respect to the longitudinal axis of the teeth. The stress analysis and experimental confirm that fracture zone is at dentin area. To estimate ultimate tensile strength of dentin, trial and error of ultimate tensile strength were tested to obtain factor of safety (FOS) equal to 1.00. The result reveals that ultimate tensile strength of dentin of group 1, 2, 3 are 38.89, 30.96, 37.19 MPa, respectively.
Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials
NASA Technical Reports Server (NTRS)
Baker, James Stewart
2014-01-01
Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.
14 CFR 25.519 - Jacking and tie-down provisions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...
14 CFR 25.519 - Jacking and tie-down provisions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...
14 CFR 25.519 - Jacking and tie-down provisions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...
Design criteria for portable timber bridge systems : static versus dynamic loads
John M. Franklin; S. E. Taylor; Paul A. Morgan; M. A. Ritter
1999-01-01
Design criteria are needed specifically for portable bridges to insure that they are safe and cost effective. This paper discusses different portable bridge categories and their general design criteria. Specific emphasis is given to quantifying the effects of dynamic live loads on portable bridge design. Results from static and dynamic load tests of two portable timber...
14 CFR 25.519 - Jacking and tie-down provisions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...
14 CFR 25.519 - Jacking and tie-down provisions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...
Effect of resin on impact damage tolerance of graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Williams, J. G.; Rhodes, M. D.
1982-01-01
Twenty-four different epoxy resin systems were evaluated by a variety of test techniques to identify materials that exhibited improved impact damage tolerance in graphite/epoxy composite laminates. Forty-eight-ply composite panels of five of the material systems were able to sustain 100 m/s impact by a 1.27-cm-diameter aluminum projectile while statically loaded to strains of 0.005. Of the five materials with the highest tolerance to impact, two had elastomeric additives, two had thermoplastic additives, and one had a vinyl modifier; all the five systems used bisphenol A as the base resin. An evaluation of test results shows that the laminate damage tolerance is largely determined by the resin tensile properties, and that improvements in laminate damage tolerance are not necessarily made at the expense of room-temperature mechanical properties. The results also suggest that a resin volume fraction of 40 percent or greater may be required to permit the plastic flow between fibers necessary for improved damage tolerance.
Full-Field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.
2008-01-01
Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape out of triaxial braided composite materials. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A more detailed investigation of deformation and failure processes in large-unit-cell-size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. This report presents some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12- and 24-k yarns and a 0 /+60 /-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed and correlations were made between these local failures and global composite deformation and strength.
Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites
NASA Astrophysics Data System (ADS)
James, N. K.; Lafont, U.; van der Zwaag, S.; Groen, W. A.
2014-05-01
Piezoelectric ceramic-polymer composites with 0-3 connectivity were fabricated using lead zirconium titanate (PZT) powder dispersed in an ionomer (Zn ionomer) and its reference ethylene methacrylic acid copolymer (EMAA) polymer matrix. The PZT-Zn ionomer and PZT-EMAA composites were prepared by melt extrusion followed by hot pressing. The effects of poling conditions such as temperature, time and electric field on the piezoelectric properties of the composites were investigated. The experimentally observed piezoelectric charge coefficient and dielectric constant of the composites were compared with theoretical models. The results show that PZT-Zn ionomer composites have better piezoelectric properties compared to PZT-EMAA composites. The static and fatigue properties of the composites were investigated. The PZT-Zn ionomer composites were found to have excellent fatigue resistance even at strain levels of 4%. Due to the self-healing capabilities of the ionomer matrix, the loss of piezoelectric properties after high strain tensile cyclic loading could be partially recovered by thermal healing.
Dynamic Breaking Tests of Airplane Parts
NASA Technical Reports Server (NTRS)
Hertel, Heinrich
1933-01-01
The static stresses of airplane parts, the magnitude of which can be determined with the aid of static load assumptions, are mostly superposed by dynamic stresses, the magnitude of which has been but little explored. The object of the present investigation is to show how the strength of airplane parts can best be tested with respect to dynamic stresses with and without superposed static loading, and to what extent the dynamic strength of the parts depends on their structural design. Experimental apparatus and evaluation methods were developed and tried for the execution of vibration-strength tests with entire structural parts both with and without superposed static loading. Altogether ten metal spars and spar pieces and two wooden spars were subjected to vibration breaking tests.
Fundamental considerations in ski binding analysis.
Mote, C D; Hull, M L
1976-01-01
1. The static adjustment of a ski binding by hand or by available machines is only an adjustment and is neither a static nor a dynamic evaluation of the binding design. Bindings of different design with identical static adjustments will perform differently in environments in which the forces are static or dynamic. 2. The concept of binding release force is a useful measure of binding adjustment, but it is inappropriate as a criterion for binding evaluation. First, it does not direct attention toward the injury causing mechanism, strain, or displacement in the leg. Second, it is only part of the evaluation in dynamic problems. 3. The binding release decision in present bindings is displacement controlled. The relative displacement of the boot and ski is the system variable. For any specified relative displacement the binding force can be any of an infinite number of possibilities determined by the loading path. 4. The response of the leg-ski system to external impulses applied to the ski is independent of the boot-ski relative motion as long as the boot recenters quickly in the binding. Response is dependent upon the external impulse plus system inertia, damping and stiffness. 5. When tested under half sinusoidal forces applied to a test ski, all bindings will demonstrate static and impulse loading regions. In the static region the force drives the binding to a relative release displacement. In the impulse region the initial velocity of the ski drives the binding to a release displacement. 6. The transition between the static and impulse loading regions is determined by the binding's capacity to store and dissipate energy along the principal loading path. Increased energy capacity necessitates larger external impulses to produce release. 7. In all bindings examined to date, the transmitted leg displacement or strain at release under static loading exceeds leg strain under dynamic or impact loading. Because static loading is responsible for many injuries, a skier should be able to release his bindings in every mode by simply pulling or twisting his foot outward. If that cannot be done without injury, the skier has identified for himself one type of fall that will result in injury. 8. And lastly, a little advice from Ben Franklin--"Carelessness does more harm than a want of knowledge."
Large Deformation Dynamic Bending of Composite Beams
NASA Technical Reports Server (NTRS)
Derian, E. J.; Hyer, M. W.
1986-01-01
Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.
1987-10-15
cracks and loss of fiber-matrix bond, leadin, to nonuniform loading (tensile overload) of composite structure. Figures 13 through 15 show the micro...propagation within the matrix, and alon- the interface, leading to a nonuniform load transfer from matrix to fibers, and causing tensile overload failure...long cracks, were attributed to high cyclic strains at crack tips within grains of maximum crystallographic orientation. Ma and Laire (4) studying the
Deformation behavior of welded steel sandwich panels under quasi-static loading
DOT National Transportation Integrated Search
2011-03-01
This report describes engineering studies that were conducted to examine the deformation behavior of flat, welded steel sandwich panels under two quasi-static loading conditions: (1) uniaxial compression; and (2) bending with an indenter. Testing and...
Pile Driving Analysis for Pile Design and Quality Assurance
DOT National Transportation Integrated Search
2017-08-01
Driven piles are commonly used in foundation engineering. The most accurate measurement of pile capacity is achieved from measurements made during static load tests. Static load tests, however, may be too expensive for certain projects. In these case...
Rached, Rodrigo Nunes; de Souza, Evelise Machado; Dyer, Scott R; Ferracane, Jack Liborio
2011-11-01
Fractures of overdentures occur in the denture base through the abutments. The purpose of this study was to evaluate the effect of reinforcements and the space available for their placement on the dynamic and static loading capacity of a simulated implant-supported overdenture model. Rhomboidal (6 × 6 × 25 mm) test specimens (n=8), made with an acrylic resin and containing 2 metal O-ring capsules, were reinforced with braided stainless steel bar (BS), stainless steel mesh (SM), unidirectional E-glass fiber (GF), E-glass mesh (GM), woven polyethylene braids (PE), or polyaramid fibers (PA). Two distinct spaces for reinforcement placement were investigated: a 2.5 mm and a 1 mm space. Control groups consisted of nonreinforced specimens. Specimens were thermocycled (5°C and 55°C, 5,000 cycles) and then subjected to a 100,000 cyclic load regime. Unbroken specimens were then loaded until failure. The number of failures under fatigue (f) and static load (s) were compared with the Chi-Square test, while static load means were compared with the Kruskal-Wallis test (α=.05). The number of failures (f:s) of GF (0:16), PE (0:16), and PA (0:16) differed significantly from the control group (8:8) and SM (4:12) (P=.037 and P=.025, respectively). For the 2.5 mm space group, these same reinforcements also exhibited higher static load means than the control (P=.016, P=.003, and P=.003, respectively); under static load, no significant differences were detected between the reinforced groups and the control for the 1.0 mm space group (P=1.0). E-glass fibers, woven polyethylene braids, and polyaramid fibers withstood the fatigue regime and increased the flexural strength of the implant-supported overdenture model. The spaces available for reinforcement did not affect the dynamic strength or the static loading capacity of the implant-supported overdenture model. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Marsano, Anna; Wendt, David; Raiteri, Roberto; Gottardi, Riccardo; Stolz, Martin; Wirz, Dieter; Daniels, Alma U; Salter, Donald; Jakob, Marcel; Quinn, Thomas M; Martin, Ivan
2006-12-01
The aim of this study was to demonstrate that differences in the local composition of bi-zonal fibrocartilaginous tissues result in different local biomechanical properties in compression and tension. Bovine articular chondrocytes were loaded into hyaluronan-based meshes (HYAFF-11) and cultured for 4 weeks in mixed flask, a rotary Cell Culture System (RCCS), or statically. Resulting tissues were assessed histologically, immunohistochemically, by scanning electron microscopy and mechanically in different regions. Local mechanical analyses in compression and tension were performed by indentation-type scanning force microscopy and by tensile tests on punched out concentric rings, respectively. Tissues cultured in mixed flask or RCCS displayed an outer region positively stained for versican and type I collagen, and an inner region positively stained for glycosaminoglycans and types I and II collagen. The outer fibrocartilaginous capsule included bundles (up to 2 microm diameter) of collagen fibers and was stiffer in tension (up to 3.6-fold higher elastic modulus), whereas the inner region was stiffer in compression (up to 3.8-fold higher elastic modulus). Instead, molecule distribution and mechanical properties were similar in the outer and inner regions of statically grown tissues. In conclusion, exposure of articular chondrocyte-based constructs to hydrodynamic flow generated tissues with locally different composition and mechanical properties, resembling some aspects of the complex structure and function of the outer and inner zones of native meniscus.
Tensile testing grips ensure uniform loading of bimetal tubing specimens
NASA Technical Reports Server (NTRS)
Driscol, S. D.; Hunt, V.
1968-01-01
Tensile testing grip uniformly distributes stresses to the internal and external tube of bimetal tubing specimens. The grip is comprised of a slotted external tube grip, a slotted internal tube grip, a machine bolt and nut, an internal grip expansion cone, and an external grip compression nut.
Camphor-Enabled Transfer and Mechanical Testing of Centimeter-Scale Ultrathin Films.
Wang, Bin; Luo, Da; Li, Zhancheng; Kwon, Youngwoo; Wang, Meihui; Goo, Min; Jin, Sunghwan; Huang, Ming; Shen, Yongtao; Shi, Haofei; Ding, Feng; Ruoff, Rodney S
2018-05-21
Camphor is used to transfer centimeter-scale ultrathin films onto custom-designed substrates for mechanical (tensile) testing. Compared to traditional transfer methods using dissolving/peeling to remove the support-layers, camphor is sublimed away in air at low temperature, thereby avoiding additional stress on the as-transferred films. Large-area ultrathin films can be transferred onto hollow substrates without damage by this method. Tensile measurements are made on centimeter-scale 300 nm-thick graphene oxide film specimens, much thinner than the ≈2 μm minimum thickness of macroscale graphene-oxide films previously reported. Tensile tests were also done on two different types of large-area samples of adlayer free CVD-grown single-layer graphene supported by a ≈100 nm thick polycarbonate film; graphene stiffens this sample significantly, thus the intrinsic mechanical response of the graphene can be extracted. This is the first tensile measurement of centimeter-scale monolayer graphene films. The Young's modulus of polycrystalline graphene ranges from 637 to 793 GPa, while for near single-crystal graphene, it ranges from 728 to 908 GPa (folds parallel to the tensile loading direction) and from 683 to 775 GPa (folds orthogonal to the tensile loading direction), demonstrating the mechanical performance of large-area graphene in a size scale relevant to many applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Guner, D.; Ozturk, H.
2016-08-01
The effects of curing time on tensile elastic material properties of thin spray-on liners (TSLs) were investigated in this study. Two different TSL products supplied by two manufacturers were tested comparatively. The "dogbone" tensile test samples that were prepared in laboratory conditions with different curing times (1, 7, 14, 21, and 28 days) were tested based on ASTM standards. It was concluded that longer curing times improves the tensile strength and the Young's Modulus of the TSLs but decreases their elongation at break. Moreover, as an additional conclusion of the testing procedure, it was observed that during the tensile tests, the common malpractice of measuring sample displacement from the grips of the loading machine with a linear variable displacement transducer versus the sample's gauge length had a major impact on modulus and deformation determination of TSLs. To our knowledge, true stress-strain curves were generated for the first time in TSL literature within this study. Numerical analyses of the laboratory tests were also conducted using Particle Flow Code in 2 Dimensions (PFC2D) in an attempt to guide TSL researchers throughout the rigorous PFC simulation process to model support behaviour of TSLs. A scaling coefficient between macro- and micro-properties of PFC was calculated which will help future TSL PFC modellers mimic their TSL behaviours for various tensile loading support scenarios.
Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems
Kral, Zachary; Horn, Walter; Steck, James
2013-01-01
Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN).more » Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.« less
Numerical modeling of the fracture process in a three-unit all-ceramic fixed partial denture.
Kou, Wen; Kou, Shaoquan; Liu, Hongyuan; Sjögren, Göran
2007-08-01
The main objectives were to examine the fracture mechanism and process of a ceramic fixed partial denture (FPD) framework under simulated mechanical loading using a recently developed numerical modeling code, the R-T(2D) code, and also to evaluate the suitability of R-T(2D) code as a tool for this purpose. Using the recently developed R-T(2D) code the fracture mechanism and process of a 3U yttria-tetragonal zirconia polycrystal ceramic (Y-TZP) FPD framework was simulated under static loading. In addition, the fracture pattern obtained using the numerical simulation was compared with the fracture pattern obtained in a previous laboratory test. The result revealed that the framework fracture pattern obtained using the numerical simulation agreed with that observed in a previous laboratory test. Quasi-photoelastic stress fringe pattern and acoustic emission showed that the fracture mechanism was tensile failure and that the crack started at the lower boundary of the framework. The fracture process could be followed both in step-by-step and step-in-step. Based on the findings in the current study, the R-T(2D) code seems suitable for use as a complement to other tests and clinical observations in studying stress distribution, fracture mechanism and fracture processes in ceramic FPD frameworks.
Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems
Horn, Walter; Steck, James
2013-01-01
Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536
NASA Technical Reports Server (NTRS)
Kim, Jae-Woo; Sauti, Godfrey; Cano, Roberto J.; Wincheski, Russell A.; Ratcliffe, James G.; Czabaj, Michael; Siochi, Emilie J.
2015-01-01
Carbon nanotubes (CNTs) are one-dimensional nanomaterials with outstanding electrical and thermal conductivities and mechanical properties. This combination of properties offers routes to enable lightweight structural aerospace components. Recent advances in the manufacturing of CNTs have made bulk forms such as yarns, tapes and sheets available in commercial quantities to permit the evaluation of these materials for aerospace use, where the superior tensile properties of CNT composites can be exploited in tension dominated applications such as composite overwrapped pressure vessels (COPVs). To investigate their utility in this application, aluminum rings were overwrapped with thermoset/CNT yarn composite and their mechanical properties measured. CNT composite overwrap characteristics such as processing method, CNT/resin ratio, and applied tension during CNT yarn winding were varied to determine their effects on the mechanical performance of the CNT composite overwrapped Al rings (CCOARs). Mechanical properties of the CCOARs were measured under static and cyclic loads at room, elevated, and cryogenic temperatures to evaluate their mechanical performance relative to bare Al rings. At room temperature, the breaking load of CCOARs with a 10.8% additional weight due to the CNT yarn/thermoset overwrap increased by over 200% compared to the bare Al ring. The quality of the wound CNT composites was also investigated using x-ray computed tomography.
Deformation behavior of welded steel sandwich panels under quasi-static loading
DOT National Transportation Integrated Search
2011-03-16
This paper summarizes basic research (i.e., testing and analysis) : conducted to examine the deformation behavior of flat-welded : steel sandwich panels under two types of quasi-static loading: : (1) uniaxial compression; and (2) bending through an i...
Commuter rail seat testing and analysis of facing seats
DOT National Transportation Integrated Search
2003-12-01
Tests have been conducted on the Bombardier back-to-back commuter rail car seat in a facing-seat configuration to evaluate its performance under static and dynamic loading conditions. Quasi-static tests have been conducted to establish the load defle...
Tensile stress-strain behavior of boron/aluminum laminates
NASA Technical Reports Server (NTRS)
Sova, J. A.; Poe, C. C., Jr.
1978-01-01
The tensile stress-strain behavior of five types of boron/aluminum laminates was investigated. Longitudinal and transverse stress-strain curves were obtained for monotonic loading to failure and for three cycles of loading to successively higher load levels. The laminate strengths predicted by assuming that the zero deg plies failed first correlated well with the experimental results. The stress-strain curves for all the boron/aluminum laminates were nonlinear except at very small strains. Within the small linear regions, elastic constants calculated from laminate theory corresponded to those obtained experimentally to within 10 to 20 percent. A limited amount of cyclic loading did not affect the ultimate strength and strain for the boron/aluminum laminates. The laminates, however, exhibited a permanent strain on unloading. The Ramberg-Osgood equation was fitted to the stress-strain curves to obtain average curves for the various laminates.
Resistance Spot Welding Characteristics and High Cycle Fatigue Behavior of DP 780 Steel Sheet
NASA Astrophysics Data System (ADS)
Pal, Tapan Kumar; Bhowmick, Kaushik
2012-02-01
Resistance spot welding characteristics of DP 780 steel was investigated using peel test, microhardness test, tensile shear test, and fatigue test. Tensile shear test provides better spot weld quality than conventional peel test and hardness is not a good indicator of the susceptibility to interfacial fracture. The results of high-cycle fatigue behavior of spot welded DP 780 steel under two different parameters show that at high load low cycle range a significant difference in the S- N curve and almost similar fatigue behavior of spot welds at low load high cycle range are obtained. However, when applied load was converted to stress intensity factor, the difference in the fatigue behavior between welds diminished. Furthermore, a transition in fracture mode, i.e., interfacial and plug and hole-type at about 50% of yield load is observed.
NASA Technical Reports Server (NTRS)
Charette, R. F.; Hyer, M. W.
1990-01-01
The influence is investigated of a curvilinear fiber format on load carrying capacity of a layered fiber reinforced plate with a centrally located hole. A curvilinear fiber format is descriptive of layers in a laminate having fibers which are aligned with the principal stress directions in those layers. Laminates of five curvilinear fiber format designs and four straightline fiber format designs are considered. A quasi-isotropic laminate having a straightline fiber format is used to define a baseline design for comparison with the other laminate designs. Four different plate geometries are considered and differentiated by two values of hole diameter/plate width equal to 1/6 and 1/3, and two values of plate length/plate width equal to 2 and 1. With the plates under uniaxial tensile loading on two opposing edges, alignment of fibers in the curvilinear layers with the principal stress directions is determined analytically by an iteration procedure. In-plane tensile load capacity is computed for all of the laminate designs using a finite element analysis method. A maximum strain failure criterion and the Tsai-Wu failure criterion are applied to determine failure loads and failure modes. Resistance to buckling of the laminate designs to uniaxial compressive loading is analyzed using the commercial code Engineering Analysis Language. Results indicate that the curvilinear fiber format laminates have higher in-plane tensile load capacity and comparable buckling resistance relative to the straightline fiber format laminates.
Effect of Heat Input on the Tensile Damage Evolution in Pulsed Laser Welded Ti6Al4V Titanium Sheets
NASA Astrophysics Data System (ADS)
Liu, Jing; Gao, Xiaolong; Zhang, Jianxun
2016-11-01
The present paper is focused on studying the effect of heat input on the tensile damage evolution of pulsed Nd:YAG laser welding of Ti6Al4V alloy under monotonic loading. To analyze the reasons that the tensile fracture site of the pulsed-laser-welded Ti6Al4V sheet joints changes with the heat input under monotonic loading, the microstructure of the sample with different nominal strain values was investigated by in situ observation. Experiment results show that the tensile ductility and fatigue life of welded joints with low heat input are higher than that of welded joints with high heat input. Under tensile loads, the critical engineering strain for crack initiation is much lower in the welded joint with high heat input than in the welded joints with low and medium heat input. And the microstructural damage accumulation is much faster in the fusion zone than in the base metal for the welded joints with high input, whereas the microstructural damage accumulation is much faster in the base metal than in the fusion zone for the welded joints with low input. Consequently, the welded joints fractured in the fusion zone for the welds with high heat input, whereas the welded joints ruptured in the base metal for the welds with low heat input. It is proved that the fine grain microstructure produced by low heat input can improve the critical nominal strain for crack initiation and the resistance ability of microstructural damage.
Katogi, Hideaki; Takemura, Kenichi; Akiyama, Motoki
2016-01-01
This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid) (PLA) during thermal cycling. Temperature ranges of thermal cycling tests were 35–45 °C and 35–55 °C. The maximum number of cycles was 103 cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35–45 °C, tensile strength of composite at 103 cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35–55 °C, tensile strength and Young’s modulus of composite at 103 cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 103 cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin. PMID:28773694
Benoit, A.; Mustafy, T.; Londono, I.; Grimard, G.; Aubin, C-E.; Villemure, I.
2016-01-01
Fusionless devices are currently designed to treat spinal deformities such as scoliosis by the application of a controlled mechanical loading. Growth modulation by dynamic compression was shown to preserve soft tissues. The objective of this in vivo study was to characterize the effect of static vs. dynamic loading on the bone formed during growth modulation. Controlled compression was applied during 15 days on the 7th caudal vertebra (Cd7) of rats during growth spurt. The load was sustained in the “static” group and sinusoidally oscillating in the “dynamic” group. The effect of surgery and of the device was investigated using control and sham (operated on but no load applied) groups. A high resolution CT-scan of Cd7 was acquired at days 2, 8 and 15 of compression. Growth rates, histomorphometric parameters and mineral density of the newly formed bone were quantified and compared. Static and dynamic loadings significantly reduced the growth rate by 20% compared to the sham group. Dynamic loading preserved newly formed bone histomorphometry and mineral density whereas static loading induced thicker (+31%) and more mineralized (+12%) trabeculae. A significant sham effect was observed. Growth modulation by dynamic compression constitutes a promising way to develop new treatment for skeletal deformities. PMID:27609036
Wang, Sumei; Lü, Dongyuan; Zhang, Zhenyu; Jia, Xingyuan; Yang, Lei
2018-01-01
To determine the effect of mechanical stretching load and the efficacy of postmenopausal estrogen therapy (ET) on pelvic organ prolapse (POP), vaginal fibroblasts isolated from postmenopausal women with or without POP were subjected to 0.1-Hz uniaxial cyclic mechanical stretching (CS) with 10% elongation and 10-8 M 17-β-estradiol (E2) treatment. We investigated the morphological characteristics of extracellular polymers using scanning electron microscopy (SEM) and monitored the mRNA expression of type I collagen (COL I) and type III collagen (COL III) as well as the small leucine-rich proteoglycan (SLRP) family members decorin (DCN), biglycan (BGN), fibromodulin (FMO), and lumican (LUM), using real-time quantitative polymerase chain reaction (RT-PCR). Using SEM, certain viscoelastic polymers were found to be randomly distributed among fibroblasts, which for normal fibroblasts formed clusters of plum flower-like patterns under static-culture conditions and resembled stretched strips when stretched in culture, whereas polymers among POP fibroblasts resembled stretched strips under static-cultured conditions and presented broken networks when stretched in culture. RT-PCR revealed that COL I, DCN, BGN, FMO, and LUM mRNA expression was significantly higher in POP than in normal fibroblasts under static-culture condition. Following CS, COL I and BGN mRNA expression was significantly up-regulated in normal fibroblasts, and DCN and FMO mRNA expression was down-regulated in POP fibroblasts. Following concomitant CS and E2 treatment, significantly elevated COL I and DCN mRNA expression was observed in normal fibroblasts, and significantly elevated COL I and BGN mRNA expression was observed in POP fibroblasts. COL III mRNA expression was not significantly different between the POP and normal group, and CS did not significantly affect expression in either group, though COL III was down-regulated in normal fibroblasts concomitantly treated with E2 and CS. We conclude that the morphological distribution of extracellular polymers in POP fibroblasts exhibited higher sensitivity and lower tolerance to stretching loads than do normal fibroblasts. These mechanical properties were further reflected in the transcription of COL I. Defects in the compensatory function of BGN for DCN and LUM for FMO exist in POP fibroblasts, which further affect the structure and function of COL I in response to stretching load, ultimately resulting in abnormal reconstruction of pelvic supportive connective tissues and the occurrence of POP. ET can maintain stretching-induced elevations in COL I and DCN transcription in healthy women and improve stretching-induced COL I, DCN, BGN, and FMO transcriptional changes in POP women to prevent and improve POP. Only down-regulated COL III transcription was observed upon concomitant CS and E2 treatment in normal fibroblasts, which suggests that the tensile strength, not the elasticity, of the supportive connective tissues is damaged in POP and that the higher tensile strength induced by ET in healthy fibroblasts prevents POP. These findings confirm the role of higher sensitivity and lower tolerance to mechanical stretching in the pathogenesis of POP and further provide evidence supporting the use of ET to prevent and inhibit POP in postmenopausal women.
MSC/NASTRAN Stress Analysis of Complete Models Subjected to Random and Quasi-Static Loads
NASA Technical Reports Server (NTRS)
Hampton, Roy W.
2000-01-01
Space payloads, such as those which fly on the Space Shuttle in Spacelab, are designed to withstand dynamic loads which consist of combined acoustic random loads and quasi-static acceleration loads. Methods for computing the payload stresses due to these loads are well known and appear in texts and NASA documents, but typically involve approximations such as the Miles' equation, as well as possible adjustments based on "modal participation factors." Alternatively, an existing capability in MSC/NASTRAN may be used to output exact root mean square [rms] stresses due to the random loads for any specified elements in the Finite Element Model. However, it is time consuming to use this methodology to obtain the rms stresses for the complete structural model and then combine them with the quasi-static loading induced stresses. Special processing was developed as described here to perform the stress analysis of all elements in the model using existing MSC/NASTRAN and MSC/PATRAN and UNIX utilities. Fail-safe and buckling analyses applications are also described.
Nonlinear resonance of the rotating circular plate under static loads in magnetic field
NASA Astrophysics Data System (ADS)
Hu, Yuda; Wang, Tong
2015-11-01
The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.
Development of superconducting magnetic bearing using superconducting coil and bulk superconductor
NASA Astrophysics Data System (ADS)
Seino, H.; Nagashima, K.; Arai, Y.
2008-02-01
The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.
NASA Astrophysics Data System (ADS)
Islam, Md. Mashfiqul; Chowdhury, Md. Arman; Sayeed, Md. Abu; Hossain, Elsha Al; Ahmed, Sheikh Saleh; Siddique, Ashfia
2014-09-01
Finite element analyses are conducted to model the tensile capacity of steel fiber-reinforced concrete (SFRC). For this purpose dog-bone specimens are casted and tested under direct and uniaxial tension. Two types of aggregates (brick and stone) are used to cast the SFRC and plain concrete. The fiber volume ratio is maintained 1.5 %. Total 8 numbers of dog-bone specimens are made and tested in a 1000-kN capacity digital universal testing machine (UTM). The strain data are gathered employing digital image correlation technique from high-definition images and high-speed video clips. Then, the strain data are synthesized with the load data obtained from the load cell of the UTM. The tensile capacity enhancement is found 182-253 % compared to control specimen to brick SFRC and in case of stone SFRC the enhancement is 157-268 %. Fibers are found to enhance the tensile capacity as well as ductile properties of concrete that ensures to prevent sudden brittle failure. The dog-bone specimens are modeled in the ANSYS 10.0 finite element platform and analyzed to model the tensile capacity of brick and stone SFRC. The SOLID65 element is used to model the SFRC as well as plain concretes by optimizing the Poisson's ratio, modulus of elasticity, tensile strength and stress-strain relationships and also failure pattern as well as failure locations. This research provides information of the tensile capacity enhancement of SFRC made of both brick and stone which will be helpful for the construction industry of Bangladesh to introduce this engineering material in earthquake design. Last of all, the finite element outputs are found to hold good agreement with the experimental tensile capacity which validates the FE modeling.
The role of shear and tensile failure in dynamically triggered landslides
Gipprich, T.L.; Snieder, R.K.; Jibson, R.W.; Kimman, W.
2008-01-01
Dynamic stresses generated by earthquakes can trigger landslides. Current methods of landslide analysis such as pseudo-static analysis and Newmark's method focus on the effects of earthquake accelerations on the landslide mass to characterize dynamic landslide behaviour. One limitation of these methods is their use Mohr-Coulomb failure criteria, which only accounts for shear failure, but the role of tensile failure is not accounted for. We develop a limit-equilibrium model to investigate the dynamic stresses generated by a given ground motion due to a plane wave and use this model to assess the role of shear and tensile failure in the initiation of slope instability. We do so by incorporating a modified Griffith failure envelope, which combines shear and tensile failure into a single criterion. Tests of dynamic stresses in both homogeneous and layered slopes demonstrate that two modes of failure exist, tensile failure in the uppermost meters of a slope and shear failure at greater depth. Further, we derive equations that express the dynamic stress in the near-surface in the acceleration measured at the surface. These equations are used to approximately define the depth range for each mechanism of failure. The depths at which these failure mechanisms occur suggest that shear and tensile failure might collaborate in generating slope failure. ?? 2007 The Authors Journal compilation ?? 2007 RAS.
ELsyad, Moustafa Abdou; Errabti, Hatem Mokhtar; Mustafa, Aisha Zakaria
2016-12-01
The aim of this in vitro study was to evaluate and compare mandibular denture base deformation between ball and Locator attachments of implant-retained overdentures. An experimental acrylic model covered with resilient silicone mucosal simulation was constructed. Two laboratory implants were placed in the canine areas of the model. Two duplicate experimental overdentures were constructed and connected to the implants with either ball (GI) or Locator (GII) attachments. To measure overdenture strain around the attachments, 3 strain gauges were attached to the lingual polished surface of the overdentures opposite to the right implant (loading side) 2 mm above the attachment level (Ch1), at the attachment level (Ch2), and 2 mm below the attachment level (Ch3). Another 3 gauges were bonded opposite to the left implant (non-loading side) in the same manner (Ch6, Ch7, and Ch8). To measure strain at the midline of the overdentures, two strain gauges were attached in the midline at 5 mm intervals (Ch4 and Ch5). A universal testing device was used to deliver vertical static load of 50 N unilaterally and bilaterally to the first molar area to measure strain using a multi-channel digital strain meter. During bilateral load application, GII recorded higher compressive strains than GI at the majority of channels. During unilateral load application, GI recorded higher tensile strains at Ch1, Ch2, and Ch3, and GII recorded higher strains than GI at Ch6, Ch7, and Ch8. During bilateral loading the highest strain was concentrated at Ch5 for both groups. During unilateral loading, the highest strain was concentrated at Ch2 for GI, and at Ch5 for GII. Ball attachments for implant-retained overdentures were associated with significant mandibular denture base deformation over the implants compared to Locator attachments. Therefore, denture base reinforcement may be recommended with ball attachmentz to increase fracture resistance of the base. © 2015 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Nihei, Tatsuya; Nishioka, Hidetoshi; Kawamura, Chikara; Nishimura, Masahiro; Edamatsu, Masayuki; Koda, Masayuki
In order to introduce the performance based design of pile foundation, vertical stiffness of pile is one of the important design factors. Although it had been es timated the vertical stiffness of pile had the displacement-level dependency, it had been not clarified. We compared the vertical stiffness of pile measured by two loading conditions at pile foundation of the railway viaduct. Firstly, we measured the vertical stiffness at static loading test under construction of the viaduct. Secondly, we measured the vertical stiffness at the time of train passing. So, we recognized that the extrapolation of the displacement level dependency in static loading test could evaluate the vertical stiffness of pile during train passing.
Earthquake triggering by transient and static deformations
Gomberg, J.; Beeler, N.M.; Blanpied, M.L.; Bodin, P.
1998-01-01
Observational evidence for both static and transient near-field and far-field triggered seismicity are explained in terms of a frictional instability model, based on a single degree of freedom spring-slider system and rate- and state-dependent frictional constitutive equations. In this study a triggered earthquake is one whose failure time has been advanced by ??t (clock advance) due to a stress perturbation. Triggering stress perturbations considered include square-wave transients and step functions, analogous to seismic waves and coseismic static stress changes, respectively. Perturbations are superimposed on a constant background stressing rate which represents the tectonic stressing rate. The normal stress is assumed to be constant. Approximate, closed-form solutions of the rate-and-state equations are derived for these triggering and background loads, building on the work of Dieterich [1992, 1994]. These solutions can be used to simulate the effects of static and transient stresses as a function of amplitude, onset time t0, and in the case of square waves, duration. The accuracies of the approximate closed-form solutions are also evaluated with respect to the full numerical solution and t0. The approximate solutions underpredict the full solutions, although the difference decreases as t0, approaches the end of the earthquake cycle. The relationship between ??t and t0 differs for transient and static loads: a static stress step imposed late in the cycle causes less clock advance than an equal step imposed earlier, whereas a later applied transient causes greater clock advance than an equal one imposed earlier. For equal ??t, transient amplitudes must be greater than static loads by factors of several tens to hundreds depending on t0. We show that the rate-and-state model requires that the total slip at failure is a constant, regardless of the loading history. Thus a static load applied early in the cycle, or a transient applied at any time, reduces the stress at the initiation of failure, whereas static loads that are applied sufficiently late raise it. Rate-and-state friction predictions differ markedly from those based on Coulomb failure stress changes (??CFS) in which ??t equals the amplitude of the static stress change divided by the background stressing rate. The ??CFS model assumes a stress failure threshold, while the rate-and-state equations require a slip failure threshold. The complete rale-and-state equations predict larger ??t than the ??CFS model does for static stress steps at small t0, and smaller ??t than the ??CFS model for stress steps at large t0. The ??CFS model predicts nonzero ??t only for transient loads that raise the stress to failure stress levels during the transient. In contrast, the rate-and-state model predicts nonzero ??t for smaller loads, and triggered failure may occur well after the transient is finished. We consider heuristically the effects of triggering on a population of faults, as these effects might be evident in seismicity data. Triggering is manifest as an initial increase in seismicity rate that may be followed by a quiescence or by a return to the background rate. Available seismicity data are insufficient to discriminate whether triggered earthquakes are "new" or clock advanced. However, if triggering indeed results from advancing the failure time of inevitable earthquakes, then our modeling suggests that a quiescence always follows transient triggering and that the duration of increased seismicity also cannot exceed the duration of a triggering transient load. Quiescence follows static triggering only if the population of available faults is finite.
Analysis for lateral deflection of railroad track under quasi-static loading
DOT National Transportation Integrated Search
2013-10-15
This paper describes analyses to examine the lateral : deflection of railroad track subjected to quasi-static loading. : Rails are assumed to behave as beams in bending. Movement : of the track in the lateral plane is constrained by idealized : resis...
NASA Technical Reports Server (NTRS)
Bently, D. E.; Muszynska, A.
1984-01-01
The complex behavior of cylindrical bearings and seals that are statically loaded to eccentricities in excess of 0.7 are examined. The stiffness algorithms as a function of static load are developed from perturbation methodology by empirical modeling.
DOT National Transportation Integrated Search
1996-10-01
Tests have been conducted on Amtrak's traditional passenger seat to evaluate its performance under static and dynamic loading conditions. Quasi-static tests have been conducted to establish the load-deflection characteristics of the seat. Dynamic tes...
Reinforced Thermoplastic Polyimide with Dispersed Functionalized Single Wall Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Lebron-Colon, Marisabel; Meador, Michael A.; Gaier, James R.; Sola, Francisco; Scheiman, Daniel A.; McCorkle, Linda S.
2010-01-01
Molecular pi-complexes were formed from pristine HiPCO single-wall carbon nanotubes (SWCNTs) and 1-pyrene- N-(4- N'-(5-norbornene-2,3-dicarboxyimido)phenyl butanamide, 1. Polyimide films were prepared with these complexes as well as uncomplexed SWCNTs and the effects of nanoadditive addition on mechanical, thermal, and electrical properties of these films were evaluated. Although these properties were enhanced by both nanoadditives, larger increases in tensile strength and thermal and electrical conductivities were obtained when the SWCNT/1 complexes were used. At a loading level of 5.5 wt %, the Tg of the polyimide increased from 169 to 197 C and the storage modulus increased 20-fold (from 142 to 3045 MPa). The addition of 3.5 wt % SWCNT/1 complexes increased the tensile strength of the polyimide from 61.4 to 129 MPa; higher loading levels led to embrittlement and lower tensile strengths. The electrical conductivities (DC surface) of the polyimides increased to 1 x 10(exp -4) Scm(exp -1) (SWCNT/1 complexes loading level of 9 wt %). Details of the preparation of these complexes and their effects on polyimide film properties are discussed.
Deformation behavior of micro-indentation defects under uniaxial and biaxial loads
NASA Astrophysics Data System (ADS)
Ma, Zhichao; Zhao, Hongwei; Lu, Shuai; Li, Hailian; Liu, Changyi; Liu, Xianhua
2015-09-01
The microdefects of structure frequently act as the source to generate initial cracks and lead to the fracture failure. Study on the deformation behaviors of embedded defects would be conducive to better understand the failure mechanisms of structural materials. Micro-indentation technique was applied to prepare the initial indentations as embedded surface defects at the gauge length section and central section of a cross-shaped AZ31B magnesium alloy specimen. A novel in situ biaxial tensile device was developed to apply the synchronous biaxial loads. Via the observation by an optical microscope with three-dimensional imaging and measurement functions, the changing laws of the indentation topographies under uniaxial and biaxial tensile loads were discussed. Compared with the gauge length section, the increasing trend of the indentation length of the central section was relatively flat, and the decreasing trend of the indentation depth was more significant. The changes of indentation topographies were explained by the Poisson effect, and the significant plastic tensile stress has led to the releasing of the residual stress around the indentation location and also promoted the planarization of the pileup.
Deformation behavior of micro-indentation defects under uniaxial and biaxial loads.
Ma, Zhichao; Zhao, Hongwei; Lu, Shuai; Li, Hailian; Liu, Changyi; Liu, Xianhua
2015-09-01
The microdefects of structure frequently act as the source to generate initial cracks and lead to the fracture failure. Study on the deformation behaviors of embedded defects would be conducive to better understand the failure mechanisms of structural materials. Micro-indentation technique was applied to prepare the initial indentations as embedded surface defects at the gauge length section and central section of a cross-shaped AZ31B magnesium alloy specimen. A novel in situ biaxial tensile device was developed to apply the synchronous biaxial loads. Via the observation by an optical microscope with three-dimensional imaging and measurement functions, the changing laws of the indentation topographies under uniaxial and biaxial tensile loads were discussed. Compared with the gauge length section, the increasing trend of the indentation length of the central section was relatively flat, and the decreasing trend of the indentation depth was more significant. The changes of indentation topographies were explained by the Poisson effect, and the significant plastic tensile stress has led to the releasing of the residual stress around the indentation location and also promoted the planarization of the pileup.
Biomechanics of the incudo-malleolar-joint - Experimental investigations for quasi-static loads.
Ihrle, S; Gerig, R; Dobrev, I; Röösli, C; Sim, J H; Huber, A M; Eiber, A
2016-10-01
Under large quasi-static loads, the incudo-malleolar joint (IMJ), connecting the malleus and the incus, is highly mobile. It can be classified as a mechanical filter decoupling large quasi-static motions while transferring small dynamic excitations. This is presumed to be due to the complex geometry of the joint inducing a spatial decoupling between the malleus and incus under large quasi-static loads. Spatial Laser Doppler Vibrometer (LDV) displacement measurements on isolated malleus-incus-complexes (MICs) were performed. With the malleus firmly attached to a probe holder, the incus was excited by applying quasi-static forces at different points. For each force application point the resulting displacement was measured subsequently at different points on the incus. The location of the force application point and the LDV measurement points were calculated in a post-processing step combining the position of the LDV points with geometric data of the MIC. The rigid body motion of the incus was then calculated from the multiple displacement measurements for each force application point. The contact regions of the articular surfaces for different load configurations were calculated by applying the reconstructed motion to the geometry model of the MIC and calculate the minimal distance of the articular surfaces. The reconstructed motion has a complex spatial characteristic and varies for different force application points. The motion changed with increasing load caused by the kinematic guidance of the articular surfaces of the joint. The IMJ permits a relative large rotation around the anterior-posterior axis through the joint when a force is applied at the lenticularis in lateral direction before impeding the motion. This is part of the decoupling of the malleus motion from the incus motion in case of large quasi-static loads. Copyright © 2015 Elsevier B.V. All rights reserved.
Computer program to compute buckling loads of simply supported anisotropic plates
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1973-01-01
Program handles several types of composites and several load conditions for each plate, both compressive or tensile membrane loads, and bending-stretching coupling via the concept of reduced bending rigidities. Vibration frequencies of homogeneous or layered anisotropic plates can be calculated by slightly modifying the program.
Compression Behavior and Energy Absorption of Aluminum Alloy AA6061 Tubes with Multiple Holes
NASA Astrophysics Data System (ADS)
Simhachalam, Bade; Lakshmana Rao, C.; Srinivas, Krishna
2014-05-01
In this article, compression behavior and energy absorption of aluminum alloy AA6061 tubes are investigated both experimentally and numerically. Static and dynamic simulations are done using LS-Dyna Software for AA6061 tubes. True stress-plastic strain curves from the tensile test are used in the static and dynamic simulations of AA6061 tubes. The energy absorption values between experimental compression results and numeral simulation are found to be in good agreement. Dynamic simulations are done with drop velocity of up to 10 m/s to understand the inertia effects on energy absorption. The deformed modes from the numerical simulation are compared between tubes with and without holes in static and dynamic conditions.
NASA Astrophysics Data System (ADS)
Li, Wei-bing; Li, Kang; Fan, Kan-qi; Zhang, Da-xing; Wang, Wei-dong
2018-04-01
Atomistic simulations are capable of providing insights into physical mechanisms responsible for mechanical properties of the transition metal of Tantalum (Ta). By using molecular dynamics (MD) method, temperature and pressure dependences of the elastic properties of Ta single crystals are investigated through <100> tensile loading. First of all, a comparative study between two types of embedded-atom method (EAM) potentials is made in term of the elastic properties of Ta single crystals. The results show that Ravelo-EAM (Physical Review B, 2013, 88: 134101) potential behaves well at different hydrostatic pressures. Then, the MD simulation results based on the Ravelo-EAM potential show that Ta will experience a body-centered-cubic (BCC) to face-centered-cubic (FCC) phase transition before fracture under <100> tensile loading at 1 K temperature, and model size and strain rate have no obvious effects on tensile behaviors of Ta. Next, from the simulation results at the system temperature from 1 to 1500 K, it can be derived that the elastic modulus of E 100 linearly decrease with the increasing temperature, while the yielding stress decrease with conforming a quadratic polynomial formula. Finally, the pressure dependence of the elastic properties is performed from 0 to 140 GPa and the observations show that the elastic modulus increases with the increasing pressure overall.
Li, Wei-Bing; Li, Kang; Fan, Kang-Qi; Zhang, Da-Xing; Wang, Wei-Dong
2018-04-24
Atomistic simulations are capable of providing insights into physical mechanisms responsible for mechanical properties of the transition metal of Tantalum (Ta). By using molecular dynamics (MD) method, temperature and pressure dependences of the elastic properties of Ta single crystals are investigated through <100> tensile loading. First of all, a comparative study between two types of embedded-atom method (EAM) potentials is made in term of the elastic properties of Ta single crystals. The results show that Ravelo-EAM (Physical Review B, 2013, 88: 134101) potential behaves well at different hydrostatic pressures. Then, the MD simulation results based on the Ravelo-EAM potential show that Ta will experience a body-centered-cubic (BCC) to face-centered-cubic (FCC) phase transition before fracture under <100> tensile loading at 1 K temperature, and model size and strain rate have no obvious effects on tensile behaviors of Ta. Next, from the simulation results at the system temperature from 1 to 1500 K, it can be derived that the elastic modulus of E 100 linearly decrease with the increasing temperature, while the yielding stress decrease with conforming a quadratic polynomial formula. Finally, the pressure dependence of the elastic properties is performed from 0 to 140 GPa and the observations show that the elastic modulus increases with the increasing pressure overall.
NASA Astrophysics Data System (ADS)
Patselov, A. M.; Gladkovskii, S. V.; Lavrikov, R. D.; Kamantsev, I. S.
2015-10-01
The static and cyclic fracture toughnesses of a Ti-Al3Ti-Al-Al3Ti laminate composite material containing at most 15 vol % intermetallic compound are studied. Composite specimens are prepared by terminating reaction sintering of titanium and aluminum foils under pressure. The fracture of the titanium layers is quasi-cleavage during cyclic crack growth and is ductile during subsequent static loading.
Indentation-flexure and low-velocity impact damage in graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Kwon, Young S.; Sankar, Bhavani V.
1992-01-01
Static indentation and low velocity impact tests were performed on quasi-isotropic and cross ply graphite/epoxy composite laminates. The load deflection relations in static tests and impact force history in the impact tests were recorded. The damage was assessed by using ultrasonic C-scanning and photomicrographic techniques. The static behavior of the laminates and damage progression during loading, unloading, and reloading were explained by a simple plate delamination model. A good correlation existed between the static and impact responses. It was found that results from a few static indentation-flexture tests can be used to predict the response and damage in composite laminates due to a class of low velocity impact events.
Static pile load tests on driven piles into Intermediate-Geo Materials.
DOT National Transportation Integrated Search
2016-09-01
The Wisconsin Department of Transportation (WisDOT) has concerns with both predicting pile lengths and pile capacities for H-piles driven into Intermediate-Geo Materials (IGM). The goal of the research was to perform 7 static axial load tests at 7 lo...
Wei, YuJie
2008-03-01
We develop a physical model to describe the kinetic behavior in cell-adhesion molecules. Unbinding of noncovalent biological bonds is assumed to occur by both bond dissociation and bond rupture. Such a decomposition of debonding processes is a space decomposition of the debonding events. Dissociation under thermal fluctuation is nondirectional in a three-dimensional space, and its energy barrier to escape is not influenced by a tensile force, but the microstates that could lead to dissociation are changed by the tensile force; rupture happens along the tensile force direction. An applied force effectively lowers the energy barrier to escape along the loading direction. The lifetime of the biological bond, due to the two concurrent off rates, may grow with increasing tensile force to a moderate amount and then decrease with further increasing load. We hypothesize that a catch-to-slip bond transition is a generic feature in biological bonds. The model also predicts that catch bonds in a more flexible molecular structure have longer lifetimes and need less force to be fully activated.
Tang, Haibin; Chen, Zhangxing; Zhou, Guowei; ...
2018-02-06
To develop further understanding towards the role of a heterogeneous microstructure on tensile crack initiation and failure behavior in chopped carbon fiber chip-reinforced composites, uni-axial tensile tests are performed on coupons cut from compression molded plaque with varying directions. Our experimental results indicate that failure initiation is relevant to the strain localization, and a new criterion with the nominal modulus to predict the failure location is proposed based on the strain analysis. Furthermore, optical microscopic images show that the nominal modulus is determined by the chip orientation distribution. At the area with low nominal modulus, it is found that chipsmore » are mostly aligning along directions transverse to loading direction and/or less concentrated, while at the area with high nominal modulus, more chips are aligning to tensile direction. On the basis of failure mechanism analysis, it is concluded that transversely-oriented chips or resin-rich regions are easier for damage initiation, while longitudinally-oriented chips postpone the fracture. Good agreement is found among failure mechanism, strain localization and chip orientation distribution.« less
Goyat, M S; Rana, S; Halder, Sudipta; Ghosh, P K
2018-01-01
Optimized ultrasonic assisted dispersion of un-functionalized titanium dioxide (TiO 2 ) nanoparticles (0.5-20wt%) into epoxy resin is reported. The investigation shows that there is a direct relation among nanoparticles content, inter-particle spacing and cluster size of the particles on the glass transition temperature (T g ) and tensile properties of the prepared nanocomposites. A significant improvement in tensile strength and modulus with minimal detrimental effect on the toughness was observed for the prepared composites, where compared to pristine epoxy resins, about 26% and 18% improvement in tensile strength and strain-to-break %, respectively, was observed for 10wt% particles loading, whereas a maximum improvement of about 54% for tensile toughness was observed for 5wt% particles loaded resins. The investigations found that a strong particle-matrix interface results in the enhancement of the mechanical properties due to leading toughening mechanisms such as crack deflection, particle pull out and plastic deformation. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Haibin; Chen, Zhangxing; Zhou, Guowei
To develop further understanding towards the role of a heterogeneous microstructure on tensile crack initiation and failure behavior in chopped carbon fiber chip-reinforced composites, uni-axial tensile tests are performed on coupons cut from compression molded plaque with varying directions. Our experimental results indicate that failure initiation is relevant to the strain localization, and a new criterion with the nominal modulus to predict the failure location is proposed based on the strain analysis. Furthermore, optical microscopic images show that the nominal modulus is determined by the chip orientation distribution. At the area with low nominal modulus, it is found that chipsmore » are mostly aligning along directions transverse to loading direction and/or less concentrated, while at the area with high nominal modulus, more chips are aligning to tensile direction. On the basis of failure mechanism analysis, it is concluded that transversely-oriented chips or resin-rich regions are easier for damage initiation, while longitudinally-oriented chips postpone the fracture. Good agreement is found among failure mechanism, strain localization and chip orientation distribution.« less
NASA Astrophysics Data System (ADS)
Meraj, Md.; Deng, Chuang; Pal, Snehanshu
2018-01-01
In this study, the feasibility of stress induced solid-state amorphization (SSA) of nanocrystalline (NC) Ni and NiZr alloys having ˜10 nm grain size has been investigated under constant tensile load (uniaxial and triaxial) via molecular dynamics simulations. In order to track the structural evaluation in both NC Ni and NiZr alloys during the SSA process, various types of analysis have been used, including simulated X-ray diffraction, centro-symmetry parameter, Voronoi cluster, common neighbor analysis, and radial distribution function. It is found that SSA in both NC Ni and NiZr alloys can only be achieved under triaxial loading conditions, and the hydrostatic tensile stress required for SSA is significantly lower when at. % Zr is increased in the NC NiZr alloy. Specifically, SSA in NC Ni and Ni-5 at. % Zr alloy was observed only when the temperature and hydrostatic tensile stress reached 800 K and 6 GPa, while SSA could occur in NC Ni-10 at. % Zr alloy under just 2 GPa of hydrostatic tensile stress at 300 K.
NASA Astrophysics Data System (ADS)
Hanafee, Z. M.; Khalina, A.; Norkhairunnisa, M.; Syams, Z. Edi; Liew, K. E.
2017-09-01
This paper investigates the effect of fibre volume fraction on mechanical properties of banana-pineapple leaf (PaLF)-glass reinforced epoxy resin under tensile loading. Uniaxial tensile tests were carried out on specimens with different fibre contents (30%, 40%, 50% in weight). The composite specimens consists of 13 different combinations. The effect of hybridisation between synthetic and natural fibre onto tensile properties was determined and the optimum fibre volume fraction was obtained at 50% for both banana and PaLF composites. Additional 1 layer of woven glass fibre increased the tensile strength of banana-PaLF composite up to 85%.
NASA Astrophysics Data System (ADS)
Dutta, R. K.; Huizenga, R. M.; Petrov, R. H.; Amirthalingam, M.; King, A.; Gao, H.; Hermans, M. J. M.; Richardson, I. M.
2014-01-01
In-situ synchrotron diffraction studies on the kinetics of phase transformation and transformation strain development during bainitic transformation were presented in part I of the current article. In the current article, in-situ phase transformation behavior of a high-strength (830 MPa yield stress) quenched and tempered S690QL1 [Fe-0.16C-0.2Si-0.87Mn-0.33Cr-0.21Mo (wt. pct)] structural steel, during continuous cooling and under different mechanical loading conditions to promote martensitic transformation, has been studied. Time-temperature-load resolved 2D synchrotron diffraction patterns were recorded and used to calculate the phase fractions and lattice parameters of the phases during heating and cooling cycles under different loading conditions. In addition to the thermal expansion behavior, the effects of the applied stress on the elastic strains during the martensitic transformation were calculated. The results show that small tensile stresses applied at the transformation temperature do not change the kinetics of the phase transformation. The start temperature for the martensitic transformation increases with the increasing applied tensile stress. The elastic strains are not affected significantly with the increasing tensile stress. The variant selection during martensitic transformation under small applied loads (in the elastic region) is weak.
Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.
Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard
2017-01-01
Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.
NASA Astrophysics Data System (ADS)
Rahmah, M.; Nurazzi, N. Mohd; Farah Nordyana, A. R.; Syed Anas, S. M.
2017-07-01
The aim of this paper is to study the effect of epoxidised soybean oil (ESO) as an alternative plasticizer on physical, mechanical and thermal properties of plasticised polyvinyl chloride (PPVC). Samples were prepared using 10, 20, 30 and 40% by weight percent of ESO. The samples were characterized for density, water absorption, tensile, hardness and thermal properties. The addition of ESO as plasticizer in PVC had caused significant effect on the physical and mechanical properties of PPVC. Increasing of ESO loading had resulted in decreased density, tensile strength, tensile modulus but increased in elongation at break and shore hardness. From water absorption study, it was observed that the all the samples reached the plateau absorption at days 8 to 10 with absorption percentages of between 1.8 to 2%. In general the crystallinity of PPVC maintained between 10 to 13% with increase in ESO loading while the melting point ( Tm) is slightly decreased about 3 to 6°C. In this study, ESO which acts as plasticiser were found to result in lower glass transition temperature (Tg). The enhancements of super cooling with higher ESO loading were found to increase the crystallization temperature, promoting crystallisation and act as nucleating agent.
Xu, Yuan; Wang, Qiang; Li, Yudong; Gan, Yibo; Li, Pei; Li, Songtao; Zhou, Yue; Zhou, Qiang
2015-01-01
Different loading regimens of cyclic tensile strain impose different effects on cell proliferation and tenogenic differentiation of TDSCs in three-dimensional (3D) culture in vitro, which has been little reported in previous literatures. In this study we assessed the efficacy of TDSCs in a poly(L-lactide-co-ε-caprolactone)/collagen (P(LLA-CL)/Col) scaffold under mechanical stimulation in the custom-designed 3D tensile bioreactor, which revealed that cyclic tensile strain with different frequencies (0.3 Hz, 0.5 Hz, and 1.0 Hz) and amplitudes (2%, 4%, and 8%) had no influence on TDSC viability, while it had different effects on the proliferation and the expression of type I collagen, tenascin-C, tenomodulin, and scleraxis of TDSCs, which was most obvious at 0.5 Hz frequency with the same amplitude and at 4% amplitude with the same frequency. Moreover, signaling pathway from microarray analysis revealed that reduced extracellular matrix (ECM) receptor interaction signaling initiated the tendon genius switch. Cyclic tensile strain highly upregulated genes encoding regulators of NPM1 and COPS5 transcriptional activities as well as MYC related transcriptional factors, which contributed to cell proliferation and differentiation. In particular, the transcriptome analysis provided certain new insights on the molecular and signaling networks for TDSCs loaded in these conditions.
Static properties of hydrostatic thrust gas bearings with curved surfaces.
NASA Technical Reports Server (NTRS)
Rehsteiner, F. H.; Cannon, R. H., Jr.
1971-01-01
The classical treatment of circular, hydrostatic, orifice-regulated thrust gas bearings, in which perfectly plane bearing plates are assumed, is extended to include axisymmetric, but otherwise arbitrary, plate profiles. Plate curvature has a strong influence on bearing load capability, static stiffness, tilting stiffness, and side force per unit misalignment angle. By a suitable combination of gas inlet impedance and concave plate profile, the static stiffness can be made almost constant over a wide load range, and to remain positive at the closure load. Extensive measurements performed with convex and concave plates agree with theory to within the experimental error throughout and demonstrate the practical feasibility of using curved plates.
NASA Astrophysics Data System (ADS)
Mohamed, R.; Nurazzi, N. Mohd; Huzaifah, M.
2017-07-01
This study was conducted to investigate the possibility of utilizing sludge palm oil (SPO) as processing oil, with various amount of carbon black as its reinforcing filler, and its effects on the curing characteristics and mechanical properties of natural rubber/styrene butadiene rubber (NR/SBR) compound. Rubber compound with fixed 15 pphr of SPO loading, and different carbon black loading from 20 to 50 pphr, was prepared using two roll mills. The cure characteristics and mechanical tests that have been conducted are the scorch and cure time analysis, tensile strength and tear strength. Scorch time (ts5) and cure time (t90) of the compound increases with the increasing carbon black loading. The mechanical properties of NR/SBR compound viz. the tensile strength, modulus at 300% strain and tear strength were also improved by the increasing carbon black loading.
NASA Astrophysics Data System (ADS)
Husnan, M. A.; Ismail, H.; Shuib, R. K.
2018-02-01
Recently, the interest of polymer industry researchers have grown rapidly on the use of specific techniques which can reduce cost and utilize rubber waste into the processing form. The increasing of cognizance in environmental matters and the desire to sustain the resources had fortified the practice of recycling waste materials. In this work, the effect of carbon black loading on curing characteristics and mechanical properties of virgin acrylonitrile butadiene rubber/recycled acrylonitrile butadiene rubber (NBRv/NBRr) blends were studied. Cure time (t90), scorch time (tS2) and swelling percentage decreased but minimum torque (ML) and maximum torque (MH) increased with increasing carbon black (CB) loading in the blends. Increasing CB loading also increased tensile strength, tensile modulus (M100), hardness and compression set but decreased elongation at break (Eb) of NBRv/NBRr blends.
Structural Testing of a 6m Hypersonic Inflatable Aerodynamic Decelerator System
NASA Technical Reports Server (NTRS)
Swanson, G. T.; Kazemba, C. D.; Johnson, R. K.; Hughes, S. J.; Calomino, A. M.
2015-01-01
NASA is developing low ballistic coefficient technologies to support the Nations long-term goal of landing humans on Mars. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current and future launch vehicle fairing limitations. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) are being developed to circumvent this limitation and are now considered a leading technology to enable landing of heavy payloads on Mars. At the beginning of 2014, a 6m diameter HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify its structural performance under flight-relevant loads. The inflatable structure was constructed into a 60 degree sphere-cone configuration using nine inflatable torus segments composed of fiber-reinforced thin films. The inflatable tori were joined together using adhesives and high-strength textile woven structural straps. These straps help distribute the load throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials that are designed to protect the inflatable structure from heat loads that would be seen in flight during atmospheric entry. A custom test fixture was constructed to perform the static load test series. The fixture consisted of a round structural tub with enough height and width to allow for displacement of the HIAD test article as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The rigid centerbody of the HIAD was mounted to a pedestal in the center of the structural tub. Using an impermeable membrane draped over the HIAD test article, an airtight seal was created with the top rim of the static load tub. This seal allowed partial vacuum to be pulled beneath the HIAD resulting in a uniform static pressure load applied to the outer surface. Using this technique, the test article was subjected to loads of up to 50,000lbs. During the test series an extensive amount of instrumentation was used to provide a rich data set, including deflected shape, structural strap loads, torus cord loads, inflation pressures, and applied static load. In this paper the 2014 6m HIAD static load test series will be discussed in detail, including the design of the 6m HIAD test article, the test setup, and test execution. Analysis results will be described supporting the conclusions that were drawn from the test series..
Response, analysis, and design of pile groups subjected to static & dynamic lateral loads.
DOT National Transportation Integrated Search
2003-06-01
Static and dynamic lateral load tests were performed on four full-scale pile groups driven at four different spacings. P-multipliers to account for group : interaction effects were back-calculated for each test. P-multipliers were found to be a funct...
NASA Technical Reports Server (NTRS)
Shah, R. C.
1974-01-01
This experimental program was undertaken to determine the effects of (1) combined tensile and bending loadings, (2) combined tensile and shear loadings, and (3) proof overloads on fracture and flaw growth characteristics of aerospace alloys. Tests were performed on four alloys: 2219-T87 aluminum, 5Al-2.5Sn (ELl) titanium, 6Al-4V beta STA titanium and high strength 4340 steel. Tests were conducted in room air, gaseous nitrogen at -200F (144K), liquid nitrogen and liquid hydrogen. Flat center cracked and surface flawed specimens, cracked tube specimens, circumferentially notched round bar and surface flawed cylindrical specimens were tested. The three-dimensional photoelastic technique of stress freezing and slicing was used to determine stress intensity factors for surface flawed cylindrical specimens subjected to tension or torsion. Results showed that proof load/temperature histories used in the tests have a small beneficial effect or no effect on subsequent fracture strength and flaw growth rates.
Delaminations in composite plates under transverse static loads - Experimental results
NASA Technical Reports Server (NTRS)
Finn, Scott R.; He, Yi-Fei; Springer, George S.
1992-01-01
Tests were performed measuring the damage initiation loads and the locations, shapes, and sizes of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite-PEEK plates subjected to transverse static loads. The data were compared to the results of the Finn-Springer model, and good agreements were found between the measured and calculated delamination lengths and widths.
In vitro tensile strength of luting cements on metallic substrate.
Orsi, Iara A; Varoli, Fernando K; Pieroni, Carlos H P; Ferreira, Marly C C G; Borie, Eduardo
2014-01-01
The aim of this study was to determine the tensile strength of crowns cemented on metallic substrate with four different types of luting agents. Twenty human maxillary molars with similar diameters were selected and prepared to receive metallic core castings (Cu-Al). After cementation and preparation the cores were measured and the area of crown's portion was calculated. The teeth were divided into four groups based on the luting agent used to cement the crowns: zinc phosphate cement; glass ionomer cement; resin cement Rely X; and resin cement Panavia F. The teeth with the crowns cemented were subjected to thermocycling and later to the tensile strength test using universal testing machine with a load cell of 200 kgf and a crosshead speed of 0.5 mm/min. The load required to dislodge the crowns was recorded and converted to MPa/mm(2). Data were subjected to Kruskal-Wallis analysis with a significance level of 1%. Panavia F showed significantly higher retention in core casts (3.067 MPa/mm(2)), when compared with the other cements. Rely X showed a mean retention value of 1.877 MPa/mm(2) and the zinc phosphate cement with 1.155 MPa/mm(2). Glass ionomer cement (0.884 MPa/mm(2)) exhibited the lowest tensile strength value. Crowns cemented with Panavia F on cast metallic posts and cores presented higher tensile strength. The glass ionomer cement showed the lowest tensile strength among all the cements studied.
PaR Tensile Truss for Nuclear Decontamination and Decommissioning - 12467
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebler, Gary R.
2012-07-01
Remote robotics and manipulators are commonly used in nuclear decontamination and decommissioning (D and D) processes. D and D robots are often deployed using rigid telescoping masts in order to apply and counteract side loads. However, for very long vertical reaches (15 meters or longer) and high lift capacities, a telescopic is usually not practical due to the large cross section and weight required to make the mast stiff and resist seismic forces. For those long vertical travel applications, PaR Systems has recently developed the Tensile Truss, a rigid, hoist-driven 'structure' that employs six independent wire rope hoists to achievemore » long vertical reaches. Like a mast, the Tensile Truss is typically attached to a bridge-mounted trolley and is used as a platform for robotic manipulators and other remotely operated tools. For suspended, rigid deployment of D and D tools with very long vertical reaches, the Tensile Truss can be a better alternative than a telescoping mast. Masts have length limitations that can make them impractical or unworkable as lengths increase. The Tensile Truss also has the added benefits of increased safety, ease of decontamination, superior stiffness and ability to withstand excessive side loading. A Tensile Truss system is currently being considered for D and D operations and spent fuel recovery at the Fukushima Daiichi Nuclear Power Plant in Japan. This system will deploy interchangeable tools such as underwater hydraulic manipulators, hydraulic shears and crushers, grippers and fuel grapples. (authors)« less